WO2020108637A1 - 信道探测的配置方法及装置 - Google Patents
信道探测的配置方法及装置 Download PDFInfo
- Publication number
- WO2020108637A1 WO2020108637A1 PCT/CN2019/122135 CN2019122135W WO2020108637A1 WO 2020108637 A1 WO2020108637 A1 WO 2020108637A1 CN 2019122135 W CN2019122135 W CN 2019122135W WO 2020108637 A1 WO2020108637 A1 WO 2020108637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- sounding
- terminal
- parameter
- detection
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
Definitions
- This application relates to the field of communication technology, and in particular, to a method and device for configuring channel sounding.
- Channel sounding technology is an indispensable technology for wireless communication and is used to obtain channel information. It can be understood that, especially when the communication system supports multi-user transmission, accurate channel information can improve the accuracy of precoding, thereby better eliminating inter-stream interference and improving the overall performance of multi-user transmission.
- the downlink channel detection methods can be mainly divided into two types, one is the downlink channel detection method based on codebook feedback, and its typical application scenarios such as frequency division duplex (frequency division duplexing, FDD) scene; the other is Based on the channel reciprocity of the downlink channel detection method, its typical application scenarios are, for example, time division duplex (time division duplexing, TDD) scenarios.
- the downlink channel detection method can also approach the upper limit of the channel capacity, and in the FDD scenario, the channel reciprocity can also be used to a certain extent to obtain downlink channel information. Therefore, the above two downlink channel detection methods have the basis of coexistence in the same communication system and even in the same communication scenario.
- the present application provides a channel sounding configuration method and device, which is used to enable a network device to learn a channel sounding mode supported by a terminal, so that the network device can correctly configure and schedule reference signal resources.
- a method for configuring channel sounding includes: the terminal generates sounding capability information, and the sounding capability information is used to indicate a channel sounding mode supported by the terminal; after that, the terminal sends the sounding capability information to the network device. Therefore, the network device can learn the channel detection mode supported by the terminal from the detection capability information, so that the network device can correctly configure and schedule the reference signal resource.
- the above channel sounding method includes at least one of a downlink sounding method based on channel reciprocity and a downlink sounding method based on codebook feedback.
- the above channel detection methods include a first detection method, a second detection method, and a third detection method.
- the first detection method is a downlink channel detection method based on codebook feedback only.
- the second detection method is a downlink channel detection method based on channel reciprocity only.
- the third detection method is a downlink channel detection method combining channel reciprocity and codebook feedback.
- the detection capability information includes at least one of information about the first detection mode, information about the second detection mode, and information about the third detection mode.
- the detection capability information includes information of one or more first-type detection methods
- the detection capability information is used to indicate that the terminal supports the corresponding one or more first-type detection methods. If the detection capability information does not include any information of the first type detection mode, the detection capability information is used to indicate that the terminal supports the second type detection mode.
- the second type of detection method is other detection methods except the first type of detection method in the channel detection method.
- the detection capability information includes the first parameter, the detection capability information is used to indicate that the terminal supports at least one of the second detection mode and the third detection mode.
- the detection capability information includes the second parameter.
- the second parameter is used to indicate the antenna port information of the terminal, and the antenna port information of the terminal includes the number of transmitting antenna ports and the number of receiving antenna ports. If the number of transmit antenna ports indicated by the second parameter is equal to the number of receive antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports at least the second sounding mode. If the number of transmit antenna ports indicated by the second parameter is not equal to the number of receive antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports at least the third sounding mode.
- the detection capability information includes the second parameter and the third parameter.
- the third parameter is used to indicate the antenna port information that the terminal has an antenna selection capability. If the antenna port information with antenna selection capability indicated by the third parameter is consistent with the antenna port information of the terminal indicated by the second parameter, the detection capability information is used to indicate that the terminal supports at least the second detection mode. If the antenna port information with antenna selection capability indicated by the third parameter is inconsistent with the antenna port information of the terminal indicated by the second parameter, the detection capability information is used to indicate that the terminal supports the third detection mode, or the detection capability information is used to indicate The terminal supports the third detection mode and the first detection mode.
- the sounding capability information includes a second parameter and a fourth parameter.
- the fourth parameter is used to indicate whether the terminal has antenna selection capability. If the fourth parameter is used to indicate that the terminal has an antenna selection capability, the detection capability information is used to indicate that the terminal supports at least the second detection mode. If the fourth parameter is used to indicate that the terminal does not have antenna selection capability, and the number of receive antenna ports indicated by the second parameter is not equal to the number of transmit antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports third sounding The mode, or, the detection capability information is used to indicate that the terminal supports the first detection mode and the third detection mode.
- the detection capability information includes the fifth parameter
- the detection capability information is used to indicate that the terminal supports the third detection mode.
- the fifth parameter is used to indicate that the terminal does not support channel reciprocity.
- the method further includes: the terminal receives indication information sent by the network device, the indication information is used to indicate a target channel detection mode, and the target channel detection mode is one of the channel detection modes indicated by the detection capability information. That is, the network device instructs the terminal to use an appropriate downlink channel sounding method in an explicit manner.
- the method further includes: the terminal receives configuration information sent by the network device, the configuration information is used to configure the reference signal resource required by the target channel detection mode for the terminal, and the configuration information is also used to enable the terminal to determine the target
- the channel sounding method, the target channel sounding method is one of the channel sounding methods indicated by the sounding capability information. That is, the network device implicitly instructs the terminal to use an appropriate downlink channel sounding method.
- the method further includes: if the terminal uses the third detection mode for downlink channel detection, the terminal sends downlink channel information to the network device; wherein, the downlink channel information includes: N characteristic values corresponding to the first matrix And the feature vector, the first matrix is equal to the conjugate transpose vector of the second channel vector multiplied by the second channel vector, the second channel vector is determined by dividing the first channel vector by the element at the preset position in the lower channel matrix, the first The channel vector is a row vector in the downlink channel matrix, and N is an integer greater than or equal to 1; or, the downlink channel information includes: a power phase difference parameter and N third channel vectors. The third channel vector is divided by the second channel vector by the power The phase difference parameter is determined.
- the second channel vector is determined by dividing the first channel vector by an element at a preset position in the lower channel matrix, and the power phase difference parameter is an element in N second channel vectors.
- the network device can accurately reconstruct the downlink channel according to the downlink channel information to avoid the influence of different power gains between the terminal and the network device.
- a method for configuring channel sounding includes: a network device receives sounding capability information sent by a terminal, and the sounding capability information is used to indicate a channel sounding mode supported by the terminal; after that, the network device determines Channel probing method supported by the terminal. In this way, it is possible to prevent the network device from erroneously configuring reference signal resources for downlink channel sounding by the terminal.
- the above channel sounding method includes at least one of a downlink sounding method based on channel reciprocity and a downlink sounding method based on codebook feedback.
- the above channel detection methods include a first detection method, a second detection method, and a third detection method.
- the first detection method is a downlink channel detection method based on codebook feedback only.
- the second detection method is a downlink channel detection method based on channel reciprocity only.
- the third detection method is a downlink channel detection method combining channel reciprocity and codebook feedback.
- the detection capability information includes at least one of information about the first detection mode, information about the second detection mode, and information about the third detection mode.
- the detection capability information includes information of one or more first-type detection methods
- the detection capability information is used to indicate that the terminal supports the corresponding one or more first-type detection methods. If the detection capability information does not include any information of the first type detection mode, the detection capability information is used to indicate that the terminal supports the second type detection mode.
- the second type of detection method is other detection methods except the first type of detection method in the channel detection method.
- the detection capability information includes the first parameter, the detection capability information is used to indicate that the terminal supports at least one of the second detection mode and the third detection mode.
- the detection capability information includes the second parameter.
- the second parameter is used to indicate the antenna port information of the terminal, and the antenna port information of the terminal includes the number of transmitting antenna ports and the number of receiving antenna ports. If the number of transmit antenna ports indicated by the second parameter is equal to the number of receive antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports at least the second sounding mode. If the number of transmit antenna ports indicated by the second parameter is not equal to the number of receive antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports at least the third sounding mode.
- the detection capability information includes the second parameter and the third parameter.
- the third parameter is used to indicate the antenna port information that the terminal has an antenna selection capability. If the antenna port information with antenna selection capability indicated by the third parameter is consistent with the antenna port information of the terminal indicated by the second parameter, the detection capability information is used to indicate that the terminal supports at least the second detection mode. If the antenna port information with antenna selection capability indicated by the third parameter is inconsistent with the antenna port information of the terminal indicated by the second parameter, the detection capability information is used to indicate that the terminal supports the third detection mode, or the detection capability information is used to indicate The terminal supports the third detection mode and the first detection mode.
- the sounding capability information includes a second parameter and a fourth parameter.
- the fourth parameter is used to indicate whether the terminal has antenna selection capability. If the fourth parameter is used to indicate that the terminal has an antenna selection capability, the detection capability information is used to indicate that the terminal supports at least the second detection mode. If the fourth parameter is used to indicate that the terminal does not have antenna selection capability, and the number of receive antenna ports indicated by the second parameter is not equal to the number of transmit antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports third sounding The mode, or, the detection capability information is used to indicate that the terminal supports the first detection mode and the third detection mode.
- the detection capability information includes the fifth parameter
- the detection capability information is used to indicate that the terminal supports the third detection mode.
- the fifth parameter is used to indicate that the terminal does not support channel reciprocity.
- the method further includes: the network device sends indication information to the terminal, where the indication information is used to indicate a target channel detection mode, and the target channel detection mode is one of the channel detection modes indicated by the detection capability information. That is, the network device instructs the terminal to use an appropriate downlink channel sounding method in an explicit manner.
- the method further includes: the network device sends configuration information to the terminal.
- the configuration information is used to configure the reference signal resource required by the target channel detection mode for the terminal.
- the configuration information is also used to enable the terminal to determine the target channel.
- Probing mode, the target channel probing mode is one of the channel probing modes indicated by the probing capability information. That is, the network device implicitly instructs the terminal to use an appropriate downlink channel sounding method.
- the method further includes: the network device receives downlink channel information sent by the terminal.
- the downlink channel information includes: N eigenvalues and eigenvectors corresponding to the first matrix.
- the first matrix is equal to the conjugate transpose vector of the second channel vector times the second channel vector.
- the second channel vector is composed of the first channel vector
- the first channel vector is the row vector in the downlink channel matrix, and N is an integer greater than or equal to 1; or, the downlink channel information includes: the power phase difference parameter and the Nth Three channel vectors.
- the third channel vector is determined by dividing the second channel vector by the power phase difference parameter.
- the second channel vector is determined by dividing the first channel vector by the element at the preset position in the lower channel matrix.
- the first channel vector is For the row vector in the downlink channel matrix, the power phase difference parameter is an element in the N second channel vectors.
- the network device can accurately reconstruct the downlink channel according to the downlink channel information to avoid the influence of different power gains between the terminal and the network device.
- a terminal including: a processing module, configured to generate sounding capability information, and the sounding capability information is used to indicate a channel sounding mode supported by the terminal.
- the communication module is used to send detection capability information to the network device.
- the above channel sounding method includes at least one of a downlink sounding method based on channel reciprocity and a downlink sounding method based on codebook feedback.
- the above channel detection methods include a first detection method, a second detection method, and a third detection method.
- the first detection method is a downlink channel detection method based on codebook feedback only.
- the second detection method is a downlink channel detection method based on channel reciprocity only.
- the third detection method is a downlink channel detection method combining channel reciprocity and codebook feedback.
- the detection capability information includes at least one of information about the first detection mode, information about the second detection mode, and information about the third detection mode.
- the detection capability information includes information of one or more first-type detection methods
- the detection capability information is used to indicate that the terminal supports the corresponding one or more first-type detection methods. If the detection capability information does not include any information of the first type detection mode, the detection capability information is used to indicate that the terminal supports the second type detection mode.
- the second type of detection method is other detection methods except the first type of detection method in the channel detection method.
- the detection capability information includes the first parameter, the detection capability information is used to indicate that the terminal supports at least one of the second detection mode and the third detection mode.
- the detection capability information includes the second parameter.
- the second parameter is used to indicate the antenna port information of the terminal, and the antenna port information of the terminal includes the number of transmitting antenna ports and the number of receiving antenna ports. If the number of transmit antenna ports indicated by the second parameter is equal to the number of receive antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports at least the second sounding mode. If the number of transmit antenna ports indicated by the second parameter is not equal to the number of receive antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports at least the third sounding mode.
- the detection capability information includes the second parameter and the third parameter.
- the third parameter is used to indicate the antenna port information that the terminal has an antenna selection capability. If the antenna port information with antenna selection capability indicated by the third parameter is consistent with the antenna port information of the terminal indicated by the second parameter, the detection capability information is used to indicate that the terminal supports at least the second detection mode. If the antenna port information with antenna selection capability indicated by the third parameter is inconsistent with the antenna port information of the terminal indicated by the second parameter, the detection capability information is used to indicate that the terminal supports the third detection mode, or the detection capability information is used to indicate The terminal supports the third detection mode and the first detection mode.
- the sounding capability information includes a second parameter and a fourth parameter.
- the fourth parameter is used to indicate whether the terminal has antenna selection capability. If the fourth parameter is used to indicate that the terminal has an antenna selection capability, the detection capability information is used to indicate that the terminal supports at least the second detection mode. If the fourth parameter is used to indicate that the terminal does not have antenna selection capability, and the number of receive antenna ports indicated by the second parameter is not equal to the number of transmit antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports third sounding The mode, or, the detection capability information is used to indicate that the terminal supports the first detection mode and the third detection mode.
- the detection capability information includes the fifth parameter
- the detection capability information is used to indicate that the terminal supports the third detection mode.
- the fifth parameter is used to indicate that the terminal does not support channel reciprocity.
- the communication module is also used to receive the indication information sent by the network device.
- the indication information is used to indicate the target channel detection mode.
- the target channel detection mode is one of the channel detection modes indicated by the detection capability information.
- the communication module is also used to receive configuration information sent by the network device, the configuration information is used to configure the reference signal resource required by the target channel detection mode for the terminal, and the configuration information is also used to enable the terminal to determine the target
- the channel sounding method, the target channel sounding method is one of the channel sounding methods indicated by the sounding capability information.
- the communication module is also used to send downlink channel information to the network device if the terminal uses the third detection mode for downlink channel detection; wherein, the downlink channel information includes: N characteristic values corresponding to the first matrix And the feature vector, the first matrix is equal to the conjugate transpose vector of the second channel vector multiplied by the second channel vector, the second channel vector is determined by dividing the first channel vector by the element at the preset position in the lower channel matrix, the first The channel vector is a row vector in the downlink channel matrix, and N is an integer greater than or equal to 1; or, the downlink channel information includes: a power phase difference parameter and N third channel vectors. The third channel vector is divided by the second channel vector by the power The phase difference parameter is determined. The second channel vector is determined by dividing the first channel vector by an element at a preset position in the lower channel matrix, and the power phase difference parameter is an element in N second channel vectors.
- a terminal including: a processor, configured to couple with a memory, read an instruction in the memory, and implement channel probing according to any one of the first aspects above according to the instruction Configuration method.
- a communication device for performing the channel sounding configuration method described in any one of the above-mentioned first aspects.
- the communication device is implemented by a processor and a communication interface.
- the communication device is implemented by a logic circuit, an input interface, and an output interface.
- a computer-readable storage medium which stores instructions which, when run on a terminal, enable the terminal to perform the channel sounding configuration described in any one of the first aspects above method.
- a computer program product containing instructions that, when run on a terminal, enable the terminal to perform the channel sounding configuration method described in any one of the above first aspects.
- a chip system in an eighth aspect, includes a processor for supporting a terminal to implement the functions related to the first aspect. It should be noted that the processor may be a dedicated processor or a general-purpose processor. In a possible design, the chip system includes a memory for storing necessary program instructions and data of the terminal. The chip system may be composed of chips, or may include chips and other discrete devices.
- a network device including: a communication module configured to receive detection capability information sent by a terminal, and the detection capability information is used to indicate a channel detection mode supported by the terminal.
- the processing module is configured to determine the channel sounding mode supported by the terminal according to the sounding capability information.
- the above channel sounding method includes at least one of a downlink sounding method based on channel reciprocity and a downlink sounding method based on codebook feedback.
- the above channel detection methods include a first detection method, a second detection method, and a third detection method.
- the first detection method is a downlink channel detection method based on codebook feedback only.
- the second detection method is a downlink channel detection method based on channel reciprocity only.
- the third detection method is a downlink channel detection method combining channel reciprocity and codebook feedback.
- the detection capability information includes at least one of information about the first detection mode, information about the second detection mode, and information about the third detection mode.
- the detection capability information includes information of one or more first-type detection methods
- the detection capability information is used to indicate that the terminal supports the corresponding one or more first-type detection methods. If the detection capability information does not include any information of the first type detection mode, the detection capability information is used to indicate that the terminal supports the second type detection mode.
- the second type of detection method is other detection methods except the first type of detection method in the channel detection method.
- the detection capability information includes the first parameter, the detection capability information is used to indicate that the terminal supports at least one of the second detection mode and the third detection mode.
- the detection capability information includes the second parameter.
- the second parameter is used to indicate the antenna port information of the terminal, and the antenna port information of the terminal includes the number of transmitting antenna ports and the number of receiving antenna ports. If the number of transmit antenna ports indicated by the second parameter is equal to the number of receive antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports at least the second sounding mode. If the number of transmit antenna ports indicated by the second parameter is not equal to the number of receive antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports at least the third sounding mode.
- the detection capability information includes the second parameter and the third parameter.
- the third parameter is used to indicate the antenna port information that the terminal has an antenna selection capability. If the antenna port information with antenna selection capability indicated by the third parameter is consistent with the antenna port information of the terminal indicated by the second parameter, the detection capability information is used to indicate that the terminal supports at least the second detection mode. If the antenna port information with antenna selection capability indicated by the third parameter is inconsistent with the antenna port information of the terminal indicated by the second parameter, the detection capability information is used to indicate that the terminal supports the third detection mode, or the detection capability information is used to indicate The terminal supports the third detection mode and the first detection mode.
- the sounding capability information includes a second parameter and a fourth parameter.
- the fourth parameter is used to indicate whether the terminal has antenna selection capability. If the fourth parameter is used to indicate that the terminal has an antenna selection capability, the detection capability information is used to indicate that the terminal supports at least the second detection mode. If the fourth parameter is used to indicate that the terminal does not have antenna selection capability, and the number of receive antenna ports indicated by the second parameter is not equal to the number of transmit antenna ports indicated by the second parameter, the sounding capability information is used to indicate that the terminal supports third sounding The mode, or, the detection capability information is used to indicate that the terminal supports the first detection mode and the third detection mode.
- the detection capability information includes the fifth parameter
- the detection capability information is used to indicate that the terminal supports the third detection mode.
- the fifth parameter is used to indicate that the terminal does not support channel reciprocity.
- the communication module is also used to send indication information to the terminal.
- the indication information is used to indicate the target channel detection mode, and the target channel detection mode is one of the channel detection modes indicated by the detection capability information.
- the communication module is also used to send configuration information to the terminal.
- the configuration information is used to configure the reference signal resource required by the target channel detection mode for the terminal.
- the configuration information is also used to enable the terminal to determine the target channel detection
- the target channel sounding method is one of the channel sounding methods indicated by the sounding capability information.
- the communication module is also used to receive downlink channel information sent by the terminal.
- the downlink channel information includes: N eigenvalues and eigenvectors corresponding to the first matrix.
- the first matrix is equal to the conjugate transpose vector of the second channel vector times the second channel vector.
- the second channel vector is composed of the first channel vector.
- the first channel vector is the row vector in the downlink channel matrix, and N is an integer greater than or equal to 1; or, the downlink channel information includes: the power phase difference parameter and the Nth Three channel vectors.
- the third channel vector is determined by dividing the second channel vector by the power phase difference parameter.
- the second channel vector is determined by dividing the first channel vector by the element at the preset position in the lower channel matrix.
- the first channel vector is For the row vector in the downlink channel matrix, the power phase difference parameter is an element in the N second channel vectors.
- a network device including: a processor, configured to couple with a memory, read an instruction in the memory, and implement the channel according to any one of the second aspect according to the instruction Configuration method of detection.
- a communication device for performing the channel sounding configuration method described in any one of the above second aspects.
- the communication device is implemented by a processor and a communication interface.
- the communication device is realized by a logic circuit, an input interface, and an output interface.
- a computer-readable storage medium having instructions stored therein, which when executed on a network device, enables the network device to execute the channel described in any one of the second aspects above Configuration method of detection.
- a computer program product containing instructions that, when run on a network device, enable the network device to perform the channel sounding configuration method described in any one of the above second aspects.
- a chip system includes a processor for supporting a network device to implement the functions related to the second aspect.
- the processor may be a dedicated processor or a general-purpose processor.
- the chip system includes a memory for storing necessary program instructions and data of the network device.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- a communication system includes a network device and a terminal.
- the terminal is used to perform the channel sounding configuration method described in any one of the above-mentioned first aspects.
- the network device is used to perform the channel sounding configuration method described in any one of the second aspects above.
- FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
- FIG. 2 is a schematic diagram of a hardware structure of a terminal and a network device provided by an embodiment of this application;
- FIG. 3 is a flowchart 1 of a channel sounding configuration method provided by an embodiment of the present application.
- FIG. 4 is a flowchart 2 of a channel sounding configuration method provided by an embodiment of the present application.
- FIG. 5 is a flowchart 3 of a channel sounding configuration method provided by an embodiment of the present application.
- FIG. 6 is a flowchart 4 of a channel sounding configuration method provided by an embodiment of the present application.
- FIG. 7 is a flowchart of a method for reporting downlink channel information according to an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
- the first detection method is a downlink channel detection method based on codebook feedback only.
- the first detection mode is a downlink channel detection mode that obtains all downlink channel information based on codebook feedback.
- the process of the above-mentioned first detection mode is: the network device configures a downlink reference signal resource for the terminal; the terminal receives the downlink reference signal in the corresponding downlink reference signal resource, performs channel estimation on the downlink reference signal, and determines the downlink channel matrix; After that, the terminal determines the codeword matching the downlink channel matrix from the codebook, and sends the precoding matrix indication (precoding matrix indication (PMI)) corresponding to the codeword to the network device.
- precoding matrix indication precoding matrix indication (PMI)
- the second detection method is a downlink channel detection method based on channel reciprocity only.
- the second detection method is a downlink channel detection method that obtains all downlink channel information based on channel reciprocity.
- the channel reciprocity means that the upstream channel and the downstream channel have the same characteristics in the coherent time.
- the second sounding method can reduce the feedback overhead of the downlink channel information, and can also avoid the error caused by the quantization and feedback of the downlink channel information. In other words, the second sounding method can acquire more accurate downlink channel information when the channel conditions are good.
- the process of the above-mentioned second detection mode is: the network device configures the uplink reference signal resource for the terminal, and the terminal sends the uplink reference signal on the corresponding uplink reference signal resource; the network device estimates the uplink channel according to the received downlink reference signal To obtain the uplink channel matrix; then, based on the channel reciprocity, the network device transposes the uplink channel matrix non-conjugated into a downlink channel matrix.
- the channels of a multiple input multiple output (MIMO) system can be described by a channel matrix of N1*N2, where N1 represents the number of receiving antenna ports at the receiving end, and N2 represents the transmitting antenna port at the transmitting end number.
- N1 represents the number of receiving antenna ports at the receiving end
- N2 represents the transmitting antenna port at the transmitting end number.
- the number of transmit antenna ports that a terminal can support may not be equal to the number of receive antenna ports.
- the number of transmit antenna ports supported by the terminal is less than the number of receive antenna ports.
- the terminal has 2 receive antenna ports and 1 transmit antenna port.
- the terminal needs to have antenna selection capability to support the second detection mode.
- the antenna selection capability refers to the ability of the communication device to switch the antenna port through the physical switch to different physical antennas to send/receive signals respectively. Communication devices with antenna selection capabilities can use fewer antenna ports to achieve the goal of measuring channel information for more antenna ports.
- the antenna port for switching different physical antennas in the antenna selection capability may be a transmitting antenna port or a receiving antenna port according to different scenarios and configurations.
- the terminal has an antenna selection capability, which generally means that the transmit antenna port of the terminal can switch between different physical antennas. For example, assume that the number of transmit antenna ports of the terminal is 1 and the number of receive antenna ports is 2, and the terminal sends the uplink reference signal twice with the transmit antenna port.
- the transmitting antenna port needs to use a physical antenna that has not been used to transmit the uplink reference signal in this channel sounding. In this way, when the number of transmitting antenna ports of the terminal is smaller than the number of receiving antenna ports, the network device can also obtain uplink channel information of the two antenna ports, so that the network device can determine complete downlink channel information.
- the third detection method is a compromise between the second detection method and the first detection method.
- the third detection method is a downlink channel detection method combining channel reciprocity and codebook feedback.
- the third sounding method is to determine a part of downlink channel information based on channel reciprocity, and determine another part of downlink channel information based on codebook feedback. These two parts of downlink channel information can be reconstructed into complete downlink channel information.
- the third sounding method can reduce the feedback overhead of part of the downlink channel information, and can also avoid errors caused by quantization and feedback of this part of the downlink channel information.
- the third detection mode does not require the terminal to have an antenna selection capability.
- the third detection method is described below by way of example, assuming that the number of transmission antenna ports and reception antenna ports of the network device are both N2, the number of transmission antenna ports of the terminal is N3, and the number of reception antenna ports of the terminal is N1, N1 >N3.
- a part of the downlink channel information is determined based on the channel reciprocity. Specifically, the terminal sends uplink reference signals at N3 transmit antenna ports; the network device performs channel estimation on the uplink reference signal to determine the N2*N3 uplink channel matrix; the network device Based on the channel reciprocity, the N2*N3 uplink channel matrix is transposed into the N3*N2 downlink channel matrix.
- another part of the downlink channel information is determined based on the codebook feedback.
- the terminal receives the downlink reference signal, estimates the downlink reference signal, determines the downlink channel matrix of (N1-N3)*N2, and combines (N1- N3) *N2
- the downlink channel matrix is fed back to the network device through the codebook.
- the network device can perform channel reconstruction based on the N3*N2 downlink channel matrix determined by channel reciprocity and the (N1-N3)*N2 downlink channel matrix determined based on codebook feedback to determine the complete downlink Channel matrix.
- the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly explain the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
- the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
- “instructions” may include direct instructions and indirect instructions, and may also include explicit instructions and implicit instructions.
- the information indicated by certain information is called information to be indicated.
- information to be indicated In the specific implementation process, there are many ways to indicate the information to be indicated, such as but not limited to, you can Directly indicate the information to be indicated, such as the information to be indicated itself or an index of the information to be indicated.
- the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It may also indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the arrangement order of various information pre-agreed (for example, stipulated in a protocol), thereby reducing the indication overhead to a certain extent.
- the technical solutions provided by the embodiments of the present application may be applied to various communication systems, for example, an NR communication system adopting 5th generation (5G) communication technology, a future evolution system, or multiple communication fusion systems, etc.
- the technical solutions provided in this application can be applied to a variety of application scenarios, such as machine-to-machine (M2M), macro-micro communication, enhanced mobile Internet (enhanced mobile broadband (eMBB), ultra-high reliability and ultra-low latency Communication (ultra-reliable & low latency communication, uRLLC) and massive IoT communication (massive machine type communication, mMTC) and other scenarios.
- M2M machine-to-machine
- eMBB enhanced mobile Internet
- ultra-high reliability and ultra-low latency Communication ultra-reliable & low latency communication
- uRLLC ultra-reliable & low latency communication
- massive IoT communication massive machine type communication
- These scenarios may include, but are not limited to: communication scenarios between terminals and terminals, communication scenarios between network devices and network devices, communication scenarios between network devices and terminals, and so on.
- the following descriptions are based on the scenario applied to the communication between the network device and the terminal as an example.
- FIG. 1 shows a schematic diagram of a communication system to which the technical solution provided by the embodiments of the present application is applicable.
- the communication system may include one or more network devices 20 (only one is shown) and one or more terminals 10 connected to each network device 20.
- FIG. 1 is only a schematic diagram, and does not constitute a limitation on the applicable scenario of the technical solution provided by the present application.
- the network device 20 may be a base station or a base station controller for wireless communication, or the like.
- the base station may include various types of base stations, such as micro base stations (also called small base stations), macro base stations, relay stations, and access points, which are not specifically limited in the embodiments of the present application.
- the base station may be a global mobile communication system (global system for mobile communication, GSM), code division multiple access (code division multiple access, CDMA) base station (base transceiver station, BTS), broadband Base station (node B) in wideband code division multiple access (WCDMA), evolutionary base station (eNodeB B, eNB or e-NodeB) in LTE, Internet of Things (IoT) or narrowband
- GSM global system for mobile communication
- CDMA code division multiple access
- BTS broadband Base station
- node B in wideband code division multiple access
- WCDMA wideband code division multiple access
- eNodeB B, eNB or e-NodeB in LTE
- IoT Internet of Things
- the base station in the future 5G mobile communication network or the future evolved public land mobile network (PLMN)
- PLMN public land mobile network
- the terminal 10 is used to provide users with voice and/or data connectivity services.
- the terminal 10 may have different names, such as user equipment (UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, terminal Agents or terminal devices, etc.
- the terminal 10 may be various handheld devices, vehicle-mounted devices, wearable devices, and computers with communication functions, which are not limited in this embodiment of the present application.
- the handheld device may be a smartphone.
- the vehicle-mounted device may be a vehicle-mounted navigation system.
- the wearable device may be a smart bracelet.
- the computer may be a personal digital assistant (PDA) computer, a tablet computer, and a laptop computer.
- PDA personal digital assistant
- FIG. 2 is a schematic diagram of the hardware structure of the network device 20 and the terminal 10 provided by the embodiment of the present application.
- the terminal 10 includes at least one processor 101 and at least one transceiver 103.
- the terminal 10 may further include an output device 104, an input device 105, and at least one memory 102.
- the processor 101, the memory 102, and the transceiver 103 are connected by a bus.
- the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), microprocessor, application-specific integrated circuit (ASIC), or one or more used to control the execution of the program program of the application integrated circuit.
- the processor 101 may also include multiple CPUs, and the processor 101 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
- the processor here may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
- the memory 102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types that can store information and instructions
- the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), read-only compact disc (compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed is not limited in the embodiments of the present application.
- the memory 102 may exist independently, and is connected to the processor 101 through a bus.
- the memory 102 may also be integrated with the processor 101.
- the memory 102 is used to store application program code for executing the solution of the present application, and is controlled and executed by the processor 101.
- the processor 101 is used to execute the computer program code stored in the memory 102, so as to implement the method provided in the embodiments of the present application.
- the transceiver 103 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
- the transceiver 103 includes a transmitter Tx and a receiver Rx.
- the output device 104 communicates with the processor 101 and can display information in a variety of ways.
- the output device 104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
- the input device 105 communicates with the processor 101 and can receive user input in various ways.
- the input device 105 may be a mouse, a keyboard, a touch screen device, or a sensing device.
- the network device 20 includes at least one processor 201, at least one memory 202, at least one transceiver 203, and at least one network interface 204.
- the processor 201, memory 202, transceiver 203, and network interface 204 are connected by a bus.
- the network interface 204 is used to connect to the core network device through a link (such as an S1 interface), or to connect to a network interface of other network devices through a wired or wireless link (such as an X2 interface) (not shown in the figure), This embodiment of the present application does not specifically limit this.
- a method for configuring channel sounding includes the following steps:
- the terminal generates detection capability information, where the detection capability information is used to indicate a channel detection mode supported by the terminal.
- the above channel sounding method includes at least one of a downlink sounding method based on channel reciprocity and a downlink sounding method based on codebook feedback.
- the above channel sounding method includes at least one of a first sounding method, a second sounding method, and a third sounding method.
- the first detection method is a downlink channel detection method based on codebook feedback only.
- the second detection method is a downlink channel detection method based on channel reciprocity only.
- the third detection method is a downlink channel detection method combining channel reciprocity and codebook feedback.
- the embodiments of the present application do not limit the channel detection method, that is, the above channel detection method is not limited to include the first detection method, the second detection method, and the third detection method, and may also include other detection methods, for example, based on Channel detection methods of artificial intelligence algorithms, for example, channel detection methods based on a combination of artificial intelligence algorithms and other methods.
- the terminal actively generates the detection capability information, or the terminal generates the detection capability information after receiving the terminal capability query request sent by the network device.
- the channel sounding method indicated by the sounding capability information may be all of the channel sounding methods actually supported by the terminal, or a part of the channel sounding methods actually supported by the terminal.
- the terminal actually supports the second detection mode, the third detection mode, and the first detection mode, but the detection capability information generated by the terminal may only indicate that the terminal supports the second detection mode and the third detection mode.
- the terminal actually supports the second detection mode and the third detection mode, but the detection capability information generated by the terminal may only indicate that the terminal supports the second detection mode.
- the following uses the channel sounding method including the first sounding method, the second sounding method, and the third sounding method as examples to specifically explain how the sounding capability information indicates the channel sounding method supported by the terminal. It can be understood that, if the channel detection method further includes other detection methods, those skilled in the art can reasonably derive the corresponding technical solution based on the technical solution provided by the embodiments of the present application.
- the sounding capability information indicates the channel sounding mode supported by the terminal in an explicit manner.
- the detection capability information includes at least one of the following situations:
- the sounding capability information is represented by n bits, and the value of these n bits is used to indicate the channel sounding mode supported by the terminal.
- the detection capability information can be represented by three bits, “010” indicates that the terminal supports the first detection mode, "000” indicates that the terminal supports the second detection mode, "001" indicates that the terminal supports the third detection mode, and “100” indicates The terminal supports the first detection mode and the second detection mode, "101” indicates that the terminal supports the first detection mode and the third detection mode, "011” indicates that the terminal supports the second detection mode and the third detection mode, "110” indicates that the terminal supports The first detection mode, the second detection mode and the third detection mode.
- the detection capability information includes at least one of the following parameters: information about the first detection mode, information about the second detection mode, and information about the third detection mode.
- the information of the first detection mode is the identifier, index, name, etc. of the first detection mode.
- the information of the second detection mode may be the identifier, index, and name of the second detection mode.
- the information of the third detection mode may be the identifier, index, and name of the third detection mode.
- the detection capability information includes information of the first detection mode. If the detection capability information is used to indicate that the terminal supports the second detection mode, the detection capability information includes information of the second detection mode. If the detection capability information is used to indicate that the terminal supports the third detection mode, the detection capability information includes information of the third detection mode. If the detection capability information is used to indicate that the terminal supports the first detection mode and the second detection mode, the detection capability information includes information about the first detection mode and information about the second detection mode. If the detection capability information is used to indicate that the terminal supports the second detection mode and the third detection mode, the detection capability information includes information about the second detection mode and information about the third detection mode.
- the detection capability information includes information about the first detection mode and information about the third detection mode. If the detection capability information is used to indicate that the terminal supports the first detection mode, the second detection mode, and the third detection mode, the detection capability information includes information about the first detection mode, information about the second detection mode, and information about the third detection mode.
- first type detection method and “second type detection method” involved in the case three are briefly introduced below.
- the first type of detection and the second type of detection are two different types of channel detection.
- the communication system can determine the first type of detection and the second type of detection according to preset rules. For example, according to whether the communication system is based on channel reciprocity, the first detection method may be classified into the first type of detection method, and the second detection method and the third detection method may be classified into the second type of detection method. It can be understood that "whether or not based on channel reciprocity" is only an example of preset rules, and embodiments of the present application are not limited thereto.
- Scenario 3 If the detection capability information includes one or more first-type detection mode information, the detection capability information is used to indicate that the terminal supports the corresponding one or more first-type detection modes. If the detection capability information does not include any information of the first type detection mode, the detection capability information is used to indicate that the terminal supports the second type detection mode.
- the detection capability information may include other indication information to indicate that the terminal does not support any first type of detection mode, but supports the second type Detection method.
- any one or more channel detection methods may be the second type of detection methods.
- other detection methods except the second type of detection methods in the channel detection method may be the first type of detection methods.
- the channel detection method including the first detection method, the second detection method and the third detection method as an example, if the first detection method is the second detection method, the second detection method and the third detection method are both the first detection method Mode; if both the first detection mode and the third detection mode are the second type detection mode, the second detection mode is the first type detection mode.
- the second type of detection method is a protocol default detection method, that is, the second type of detection method is a detection method supported by the system default terminal when the terminal does not report the detection capability information.
- the second detection method and the third detection method are both the first type detection method, and the first detection method is the second type detection method as an example.
- the detection capability information includes information of the second detection method
- the detection capability The information is used to indicate that the terminal supports the second detection mode. If the detection capability information does not include the information about the second detection mode and the information about the third detection mode, but contains other indication information, for example, "neither", the detection capability information is used to indicate that the terminal supports the first detection mode.
- the sounding capability information indicates the channel sounding mode supported by the terminal in an implicit manner.
- the sounding capability information includes some parameters related to the channel sounding method.
- the network device determines the channel sounding mode supported by the terminal according to the parameters contained in the sounding capability information.
- the detection capability information contains at least one of the following situations:
- the detection capability information is used to indicate that the terminal supports at least one of the second detection mode and the third detection mode.
- the first parameter is used to indicate that the terminal supports channel reciprocity. In other words, the first parameter is used to indicate that the terminal supports a downlink channel detection method based on channel reciprocity.
- channel reciprocity is an inherent characteristic of the channel.
- the capabilities of the terminal may need to meet certain requirements before the terminal is allowed to adopt a downlink channel detection method based on channel reciprocity.
- the terminal needs to report capability information (such as the first parameter), so that the network device knows whether the terminal can use the downlink channel sounding method based on channel reciprocity.
- the second detection method and the third detection method are based on channel reciprocity. Therefore, when channel reciprocity is reported as a parameter, the network device can determine that the terminal supports channel reciprocity, and It is determined that the terminal supports at least one of the second detection mode and the third detection mode.
- the detection capability information includes the first parameter and the second parameter.
- the second parameter is used to indicate the antenna port information of the terminal.
- the second parameter is used to indicate the number of transmitting antenna ports and the number of receiving antenna ports of the terminal.
- the second parameter is 1T8R, indicating that the terminal has one transmit antenna port and eight receive antenna ports.
- the terminal may support the second detection mode. If the number of transmission ports of the terminal is not equal to the number of reception antenna ports, the terminal does not necessarily support the second detection mode.
- the sounding capability information is used to indicate that the terminal supports at least the second sounding mode.
- the sounding capability information is used to indicate that the terminal supports at least the third sounding mode.
- the detection capability information includes the first parameter, the second parameter, and the third parameter.
- the third parameter is used to indicate antenna port information that the terminal has an antenna selection capability.
- the third parameter is 1T4R, which means that the terminal has 1 transmit antenna port and 4 receive antenna ports, and this 1 transmit antenna port can switch the physical antenna 4 times, which means that the terminal can complete the uplink channel of 4 antenna ports probe.
- the detection capability information is used to indicate that the terminal supports at least the second detection mode. For example, if the third parameter included in the sounding capability information is 1T4R and the second parameter is 1T4R, the transmit antenna port configured by the terminal can switch the physical antenna 4 times to complete the uplink channel detection of the four antenna ports. Therefore, the sounding capability information It is used to instruct the terminal to support at least the second detection mode.
- the detection capability information is used to indicate that the terminal supports the third detection mode, or the detection capability information is used to indicate The terminal supports the third detection mode and the first detection mode.
- the third parameter included in the sounding capability information is 1T4R and the second parameter is 1T8R
- the terminal’s transmit antenna port can only switch the physical antenna 4 times, and the uplink channel measurement of 4 antenna ports is completed, while the remaining 4 The channel information of the antenna port needs to be obtained by measuring the downlink reference signal. Therefore, the detection capability information is used to indicate that the terminal supports the third detection mode, or the detection capability information is used to indicate that the terminal supports the third detection mode and the first detection mode .
- the detection capability information includes the first parameter, the second parameter, and the fourth parameter.
- the fourth parameter is used to indicate whether the terminal has antenna selection capability. Exemplarily, the fourth parameter is "support” to indicate that the terminal has antenna selection capability; the fourth parameter is "no support” to indicate that the terminal does not have antenna selection capability.
- the fourth parameter indicates that the terminal has the antenna selection capability, it indicates that the terminal has the capability of antenna selection according to the antenna port information indicated by the second parameter. For example, if the second parameter is 1T8R and the fourth parameter is "support", the terminal has 1 transmit antenna port and 8 receive antenna ports, and at the same time, the terminal can support 1T8R antenna selection.
- the detection capability information is used to indicate that the terminal supports at least the second detection mode.
- the sounding capability information is used to indicate that the terminal supports at least the second sounding mode.
- the detection capability information may not include the fourth parameter.
- the sounding capability information is used to indicate that the terminal supports third sounding The mode, or, the detection capability information is used to indicate that the terminal supports the first detection mode and the third detection mode.
- the detection capability information includes the fifth parameter
- the detection capability information is used to indicate that the terminal supports the third detection mode.
- the fifth parameter is used to indicate that the terminal does not support channel reciprocity.
- the fifth parameter is used to indicate that the terminal does not support the downlink channel sounding method based on channel reciprocity.
- the terminal need not report the first parameter to indicate that the terminal supports channel reciprocity. That is, in this case, the detection capability information does not include the first parameter.
- the detection capability information is used to indicate that the terminal supports at least one of the second detection mode and the third detection mode, including one of the following scenarios: (1.1) The detection capability information is used to indicate that the terminal supports The second detection mode; (1.2) The detection capability information is used to indicate that the terminal supports the third detection mode; (1.3) The detection capability information is used to indicate that the terminal supports the second detection mode and the third detection mode; (1.4) The detection capability information is used Instruct the terminal to support the first detection mode and the second detection mode; (1.5) The detection capability information is used to indicate that the terminal supports the first detection mode and the third detection mode; (1.6) The detection capability information is used to indicate that the terminal supports the first detection mode, The second detection mode and the third detection mode. It can be understood that the network device and the terminal specifically select which of the situations (1.1) to (1.6) above is determined by the pre-configuration of the communication system, or according to the protocol.
- the detection capability information is used to indicate that the terminal supports at least the second detection mode, including one of the following scenarios: (2.1) The detection capability information is used to indicate that the terminal supports the second detection mode; ( 2.2) The detection capability information is used to indicate that the terminal supports the first detection mode and the second detection mode; (2.3) The detection capability information is used to indicate that the terminal supports the second detection mode and the third detection mode; (2.4) The detection capability information is used to indicate The terminal supports the first detection mode, the second detection mode, and the third detection mode. It can be understood that the network device and the terminal specifically select which of the situations (2.1) to (2.4) above is determined by the pre-configuration of the communication system or according to the protocol.
- the detection capability information is used to indicate that the terminal supports at least the third detection mode, including one of the following scenarios: (3.1) The detection capability information is used to indicate that the terminal supports the third detection mode; (3.2) detection The capability information is used to indicate that the terminal supports the first detection mode and the third detection mode; (3.3) The detection capability information is used to indicate that the terminal supports the second detection mode and the third detection mode; (3.4) The detection capability information is used to indicate that the terminal supports the first detection mode A detection mode, a second detection mode and a third detection mode. It can be understood that the network device and the terminal specifically select which of the situations (3.1) to (3.4) above is determined by the pre-configuration of the communication system or according to the protocol.
- the above cases 4 to 5 are only examples of the detection capability information, and do not constitute any limitation.
- the first parameter to the fifth parameter are not necessarily included in the detection capability information, and may also be used as independent capability information. These independent capability information can be used as the basis for the network device to determine the channel sounding mode supported by the terminal.
- the terminal sends the detection capability information to the network device, so that the network device receives the detection capability information of the terminal.
- the terminal actively sends the detection capability information to the network device; or, after receiving the terminal capability query request sent by the network device, the terminal sends the detection capability information to the network device.
- the terminal may report the detection capability information to the network device alone, or the terminal may report the detection capability information together with other capability information to the network device.
- the other capability information includes: access layer version number, radio frequency parameters, physical layer parameters, and/or packet data convergence protocol (PDCP) parameters.
- PDCP packet data convergence protocol
- the network device determines the channel detection mode supported by the terminal according to the detection capability information.
- the terminal reports the detection capability information to enable the network device to learn the channel detection methods supported by the terminal, so that the network device can configure the terminal with appropriate reference signal resources to ensure the normal execution of the downlink channel detection process .
- the above channel sounding configuration method further includes step S201.
- the network device configures a reference signal resource for the terminal according to the channel detection mode indicated by the detection capability information.
- step S201 the network device configures at least one first reference signal resource set for the terminal, and the first reference signal resource set includes at least one uplink Reference signal resources.
- the first reference signal resource set is a sounding reference signal (SRS) resource set
- the uplink reference signal resource is an SRS resource.
- SRS sounding reference signal
- step S201 the network device configures at least one second reference signal resource set for the terminal, and the second reference signal resource set includes at least one downlink Reference signal resources.
- the second reference signal resource set is a channel state information reference signal (channel-state information reference, CSI-RS) resource set
- the downlink reference signal resource is a CSI-RS resource.
- step S201 includes one of the following modes:
- Manner 1 The network device sends first configuration information to the terminal, where the first configuration information includes at least one first reference signal resource set identifier and at least one second reference signal resource set identifier.
- the first configuration information is carried in radio resource control (radio resource control, RRC) signaling.
- RRC radio resource control
- the first configuration information includes the identification of a set of reference signal resources, such as ⁇ SRSresource#set# 0, SRS, resource#set, CSI-RS, resource#set ⁇ .
- the first configuration information may include identifiers of multiple sets of reference signal resource sets, such as ⁇ SRS resource #set#0, SRS resource set#1, CSI-RS resource source set#0 ⁇ , ⁇ SRS resource source set#0, SRS resource set #1, CSI-RS, resource#set ⁇ , ⁇ SRS, resource#set, SRS, resource#set, CSI-RS, resource#set ⁇ .
- the advantage of the above manner 1 is that the reference signal resource set separately configured for the uplink and downlink channels measurement by the system can be directly reused, without separately configuring a third reference signal resource set, which reduces signaling overhead.
- the network device may activate or downlink control information through media access control (MAC)-control element (CE) signaling (downlink control information, DCI) triggers the terminal to use one or more reference signal resource sets in this set of reference signal resource sets.
- MAC media access control
- CE control element
- the network device may activate the MAC-CE signaling or DCI to trigger the terminal to use one of the multiple reference signal resource sets.
- the network device configures at least one third reference signal resource set for the terminal, where the third reference signal resource set includes at least one uplink reference signal resource and at least one downlink reference signal resource.
- the reference signal resources in the third reference signal resource set may be arranged in the following manner: (1) The reference signal resources are arranged in ascending order. Wherein, if the sequence numbers of the uplink reference signal resource and the downlink reference signal resource are the same, the uplink reference signal resource is arranged before the downlink reference signal resource, or the uplink reference signal resource is arranged after the downlink reference signal resource.
- the third reference signal resource set is ⁇ SRS resource #1, CSI-RS resource #1, SRS resource #2, CSI-RS resource #2, SRS resource #3, CSI-RS resource #3, CSI- RS resource #4 ⁇ .
- Reference signal resources of the same type are arranged consecutively according to the sequence number from small to large, and each reference signal resource has an identifier for indicating its type.
- the third reference signal resource set is ⁇ SRS resource: #1, #2, #3, CSI-RS resource: #1, #2, #3, #4 ⁇ .
- the serial numbers of reference signal resources of the same type are continuous, and the serial numbers of reference signal resources of different types are not continuous.
- the protocol may further specify that, in the third reference signal resource set, the uplink reference signal resource is arranged before the downlink reference signal resource, or the uplink reference signal resource is arranged after the downlink reference signal resource.
- the protocol specifies that the CSI-RS is arranged before the SRS
- the third reference signal resource set is ⁇ #1, #2, #3, #5, #6, #7, #8 ⁇ . It can be understood that, in the third reference signal resource set, #1, #2, and #3 are sequence numbers of CSI-RS resources, and #5, #6, #7, and #8 are sequence numbers of SRS resources.
- the CSI-RS may be non-zero power (NZP)-CSI-RS, or other forms of CSI-RS, such as zero power (ZP)-CSI-RS, this
- NZP non-zero power
- ZP zero power
- the third reference signal resource set may multiplex the SRS resource set.
- the configuration process of the third reference signal resource set can refer to the current SRS resource set configuration process, and the trigger process of the third reference signal resource set can also refer to the current SRS resource set trigger process.
- the current SRS resource set does not include downlink reference signal resource information, such as the CSI-RS resource identifier, and is multiplexed as the third reference signal resource set
- the SRS resource set includes information of downlink reference signal resources.
- the protocol may specify the identifier of one or more specific SRS resource sets as the identifier of the third reference signal resource set.
- the identifier of the specific SRS resource set may be the smallest identifier allowed by the protocol (for example, #0), or the largest identifier allowed by the protocol.
- an indication field is added to the configuration information of the SRS resource set, and the indication field is used to indicate whether the SRS resource set configured by the configuration information of the SRS resource set is multiplexed as the third reference signal resource set.
- the third reference signal resource set may multiplex the CSI-RS resource set.
- the configuration process of the third reference signal resource set can refer to the current configuration process of the CSI-RS resource set
- the trigger process of the third reference signal resource set can also refer to the current trigger process of the CSI-RS resource set , No more details here.
- the current CSI-RS resource set does not include information of uplink reference signal resources, such as the SRS resource identifier, and is multiplexed as the third reference signal resource
- the set CSI-RS resource set includes information of uplink reference signal resources.
- the protocol may specify the identifier of one or more specific CSI-RS resource sets as the identifier of the third reference signal resource set.
- the identifier of the specific CSI-RS resource set may be the smallest identifier allowed by the protocol (eg #0), or the largest identifier allowed by the protocol.
- an indication field is added to the configuration information of the CSI-RS resource set to indicate whether the CSI-RS resource set configured by the configuration information of the CSI-RS resource set is multiplexed as the third reference signal Resource collection.
- the third reference signal resource set may be a newly defined reference signal resource set.
- the configuration process of the third reference signal resource set is: the network device sends second configuration information to the terminal, where the second configuration information includes at least the identifier of the third reference signal resource set and one or more uplink reference signals The identification of resources and the identification of one or more downlink reference signal resources.
- the second configuration information is carried in RRC signaling.
- the triggering process of the third reference signal resource set is: the network device sends first trigger information to the terminal, where the first trigger information is used to activate the uplink reference signal resource and the downlink reference signal resource in a third reference signal resource set.
- the network device sends second trigger information and/or third trigger information to the terminal, where the second trigger information is used to activate an uplink reference signal resource in a third reference signal resource set, and the third trigger information is used to Activate a downlink reference signal resource in a third reference signal resource set.
- the first trigger information, the second trigger information, and the third trigger information may be carried in MAC-CE signaling or DCI.
- the second trigger information may multiplex the trigger mode of the SRS resource.
- the third trigger information can multiplex the trigger mode of the CSI-RS resource.
- the network device may explicitly indicate the channel used by the terminal during the downlink channel sounding process Detection method.
- the method for configuring channel sounding shown in FIG. 4 further includes step S301.
- the network device sends instruction information to the terminal, so that the terminal receives the instruction information.
- the above indication information is used to indicate the target channel sounding mode.
- the target channel sounding method is one of the channel sounding methods indicated by the sounding capability information. It can be understood that the target channel sounding method is the channel sounding method used by the terminal in the downlink channel sounding process.
- the indication information includes information about the detection method of the target channel.
- the indication information may include information of the second detection mode to indicate that the target channel detection mode is the second detection mode; or, the indication information may include the third The information of the sounding mode indicates that the sounding mode of the target channel is the third sounding mode.
- the indication information includes information of the second detection mode, and the target channel detection mode is indicated as the second detection mode.
- the indication information is represented by n bits, for example, the indication information is represented by 2 bits, "00" indicates that the target channel detection mode is the second detection mode, and “01” indicates that the target channel detection mode is the third detection Mode, “10” indicates that the target channel detection mode is the first detection mode.
- the above indication information may be carried in RRC signaling, MAC-CE signaling or DCI.
- the network device may not send the indication information to the terminal to reduce signaling overhead.
- the target channel sounding mode is the channel sounding mode indicated by the sounding capability information.
- the detection capability information indicates that the terminal supports the first detection mode.
- the target channel detection mode is the first detection mode.
- the terminal can perform channel detection in the target channel detection mode according to the instructions of the network device.
- the reference signal resource configured by the network device for the terminal may be more than the reference signal resource required for actual channel detection.
- the terminal may select the corresponding reference signal resource according to a preset rule.
- the preset rule includes: from the reference signal resource set, the corresponding reference signal resource is selected according to the sequence from small to large. The above is only an example of the preset rule, which is not limited in this embodiment of the present application.
- the network device sends the first configuration information to the terminal to configure the reference signal resource for the terminal.
- the CSI-RS resource set associated with the first configuration information includes four 2-port CSI-RS resources, for example, CSI-RS resource #0 to CSI-RS resource set #3; the SRS resource associated with the first configuration information
- the set includes four 2port SRS resources, for example, SRS resource #0 to SRS resource #3.
- the terminal selects CSI-RS resource #0 for downlink channel measurement according to its own antenna port information 2T4R, and feeds back 2port At the same time, the terminal selects SRS resource #0 to send an uplink reference signal, so that the network device determines the other 2 port of downlink channel information based on channel reciprocity.
- the network device sends first configuration information to the terminal to configure the reference signal resource for the terminal.
- the CSI-RS resource set associated with the first configuration information includes four 2-port CSI-RS resources, for example, CSI-RS resource #0 to CSI-RS resource set #3; the SRS resource associated with the first configuration information
- the set includes four 1-port SRS resources, for example, SRS resource #0 to SRS resource #3.
- the terminal receives indication information indicating that the target detection mode is the third detection mode, the terminal selects CSI-RS resource #0 for downlink channel measurement according to its antenna port information 2T4R, and feeds back 2port At the same time, the terminal selects SRS resource #0 and SRS resource #1 to send an uplink reference signal, so that the network device determines another 2 port of downlink channel information based on channel reciprocity. If the terminal receives the indication information, the indication information indicates that the target detection mode is the first detection mode, and the terminal selects CSI-RS resource #0 and CSI-RS resource #1 for downlink channel detection, and feeds back 4 channel downlink channel information.
- the network device instructs the channel detection mode used by the terminal in the channel detection process in an implicit manner.
- the method for configuring channel sounding shown in FIG. 3 further includes step S401.
- the network device configures the reference signal resource required by the target channel detection mode for the terminal to instruct the terminal to use the target channel detection mode for downlink channel detection.
- the target channel sounding method is one of the channel sounding methods indicated by the sounding capability information.
- the target channel sounding method is the channel sounding method used by the terminal in the channel sounding process.
- the network device sends third configuration information to the terminal, where the third configuration information is used to configure the reference signal resource required by the target channel sounding mode for the terminal, and the third configuration information is also used to enable the terminal to determine the target Channel detection mode.
- the network device configures one or more uplink reference signal resources for the terminal. If the target channel sounding mode is the third sounding mode, the network device configures one or more uplink reference signal resources and one or more downlink reference signal resources for the terminal. If the target channel detection mode is the first detection mode, the network device configures one or more downlink reference signal resources for the terminal.
- the number of reference signal resources configured by the network device for the terminal is equal to the number of reference signal resources required for actual channel sounding.
- the terminal can determine the target channel sounding mode according to the type and number of reference signal resources configured by the network device. After that, the terminal uses the target channel sounding method to perform downlink channel sounding.
- the network device may configure a third reference signal resource set for the terminal.
- the third reference signal resource set includes four 1port SRS resources and one 4port CSI-RS resources. In this way, according to the reference signal resource set, the terminal can determine that the target channel sounding mode is the third sounding mode, so that the terminal uses the third sounding mode for downlink channel sounding.
- the antenna port information of the terminal is 2T2R.
- the network device may configure one 2port CSI-RS resource for the terminal.
- the network device may configure one 2port SRS resource for the terminal.
- the terminal has an antenna selection capability, and the network device instructs the terminal to use the second detection mode for downlink channel detection, the network device may configure two 1port SRS resources for the terminal.
- part of the downlink channel information is determined based on the measurement of the uplink reference signal, and the other part of the downlink channel information is determined based on the measurement of the downlink reference signal.
- first downlink channel information the downlink channel information determined based on the measured uplink reference signal
- second downlink channel information the downlink channel information determined based on the measured downlink reference signal
- the power of the downlink reference signal sent by the network device and the power of the uplink reference signal sent by the terminal may be different, which results in a deviation in power gain between the first downlink channel information and the second downlink channel information, which may affect the network device The accuracy of the downlink channel reconstructed according to the first downlink channel information and the second downlink channel information.
- the terminal may use the method shown in FIG. 7 to report downlink channel information.
- the method includes:
- the terminal performs channel estimation on the downlink reference signal, and determines a downlink channel matrix.
- step S501 reference may be made to the existing technology, which will not be repeated here.
- the terminal processes the downlink channel matrix to determine downlink channel information.
- the downlink channel information includes: eigenvalues and eigenvectors corresponding to N first matrices, the first matrix is equal to the conjugate transpose vector of the second channel vector times the second channel vector, and the second channel The vector is determined by dividing the first channel vector by the element at the preset position in the lower row channel matrix, where the first channel vector is the row vector in the downlink channel matrix, and N is an integer greater than or equal to 1.
- the downlink channel information includes: a power phase difference parameter and N third channel vectors, the third channel vector is determined by dividing the second channel vector by the power phase difference parameter, and the second channel vector is the first The channel vector is determined by dividing the element at the preset position in the lower row channel matrix, the first channel vector is the row vector in the downlink channel matrix, and the power phase difference parameter is an element in the N second channel vectors.
- the downlink channel matrix includes M column vectors, and M is greater than or equal to N.
- the downlink channel matrix determined by the second sounding method is The downlink channel matrix determined by the first detection method is Where n is the number of receiving antenna ports and m is the number of transmitting antenna ports.
- the H srs are processed, for example, an element (for example, h 11 ) is extracted from the H srs , and H′ srs is determined.
- the H′ srs is no longer affected by the power gain of the terminal and the network device.
- G csi-rs processed, e.g., to extract an element of the same position as the H srs extracted elements from G csi-rs (e.g., H srs extracted elements h 11, then G csi-rs extracted elements g 11), to determine G 'csi-rs, G' csi-rs is no longer affected by the power gain of the terminal and the network equipment.
- the channel vectors determined based on channel reciprocity are H 1 , ..., H j
- the channel vectors determined based on codebook feedback are G j+1 , ..., G n .
- j is less than n.
- H′ 1 , ..., H′ j , and G′ j+1 , ..., G′ n can determine the matrix that is not affected by the power gain :
- the terminal actually needs to report
- Example one report by terminal
- the terminal pair Perform feature value decomposition to determine U * ⁇ U, so that the terminal reports the feature vector U and the feature value to the network device.
- U * is the conjugate transpose vector of the feature vector U.
- ⁇ is a diagonal matrix, and its diagonal elements are corresponding eigenvalues.
- Example 2 Taking the terminal reporting G′ n as an example, the terminal reports an element (for example, g′ n1 ) in G′ n to the network device, and G′ n after the element is extracted. For example, the terminal reports g′ n1 to the network device, and
- step S501 includes the following steps: (1) Divide the N first channel vectors to be fed back in the downlink channel matrix by the element at the preset position in the lower channel matrix to determine N second channel vectors. It can be understood that the N first channel vectors to be fed back are G j+1 , ..., G n in the above analysis, and the N second channel vectors are G′ j+1 , ... in the above analysis. ..., G′ n . (2) For each second channel vector, eigenvalue decomposition is performed on the first matrix to determine the corresponding eigenvalue and eigenvector. The first matrix is equal to the conjugate transpose vector of the second channel vector times the second channel vector. Therefore, the downlink channel information includes: feature values and feature vectors corresponding to the N first matrices.
- the preset position is stipulated by the protocol or pre-configured by the communication system.
- step S501 includes the following steps: (1) Divide the N first channel vectors to be fed back in the downlink channel matrix by the element at the preset position in the lower channel matrix to determine N second channel vectors. (2) For the N second channel vectors, divide the N second channel vectors by the power phase parameter to determine N corresponding third channel vectors.
- the power phase difference parameter may be an element in N second channel vectors. Therefore, the downlink channel information includes: a power phase difference parameter, and N third channel vectors.
- the position of the power phase difference parameter in the N second channel vectors is specified by the protocol, or is pre-configured by the communication system.
- the power phase difference parameter may be the first element of the first second channel vector among the N second channel vectors.
- the downlink channel information may further include: position information, where the position information is used to indicate that the power phase difference parameter is in the N second The position in the channel vector.
- the terminal sends downlink channel information to the network device, so that the network device receives the downlink channel information.
- the network device can reconstruct a more accurate channel to avoid the influence of different power gains between the terminal and the network device.
- each network element such as a network device and a terminal, includes a hardware structure and/or a software module corresponding to each function.
- each network element such as a network device and a terminal
- each network element includes a hardware structure and/or a software module corresponding to each function.
- the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
- the embodiments of the present application may divide the function modules of the network device and the terminal according to the above method example, for example, each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module .
- the above integrated modules may be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner. The following uses an example of dividing each function module corresponding to each function as an example:
- FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
- the terminal includes: a processing module 301 and a communication module 302.
- the processing module 301 is used to support the terminal to perform step S101 in FIG. 3, steps S501 and S502 in FIG. 7, and/or other processes for the technical solutions described herein.
- the communication module 302 is used to support the terminal to perform step S102 in FIG. 3, step S201 in FIG. 4, step S301 in FIG. 5, step S401 in FIG. 6, step S503 in FIG. 7, and/or Other processes of the technical solution described in this article. All relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
- the communication module 302 in FIG. 8 may be implemented by the transceiver 103 in FIG. 2, and the processing module 301 in FIG. 8 may be implemented by the processor 101 in FIG. 2,
- the embodiments of the present application do not limit this.
- An embodiment of the present application further provides a communication device, configured to execute the methods shown in FIGS. 3-7.
- the communication device is implemented by a processor and a communication interface.
- the communication device is implemented by a logic circuit, an input interface, and an output interface.
- Embodiments of the present application also provide a computer-readable storage medium that stores computer instructions; when the computer-readable storage medium runs on the terminal shown in FIG. 2, the terminal is allowed to execute As shown in Figure 3-7.
- the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
- wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
- wireless such as infrared, wireless, microwave, etc.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers and data centers that can be integrated with the medium.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (SSD)) or the like.
- An embodiment of the present application further provides a chip system.
- the chip system includes a processor for supporting a terminal to implement the methods shown in FIG. 3 to FIG. 7.
- the processor may be a dedicated processor or a general-purpose processor.
- the chip system also includes a memory.
- the memory is used to store necessary program instructions and data of the terminal. Of course, the memory may not be in the chip system.
- the chip system may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
- An embodiment of the present application also provides a computer program product containing computer instructions, which when run on the terminal shown in FIG. 2, enables the terminal to execute the methods shown in FIGS. 3-7.
- the terminal, the computer storage medium, the chip system, and the computer program product provided in the above embodiments of the present application are all used to execute the method provided above. Therefore, for the beneficial effects that can be achieved, refer to the corresponding benefits provided by the method provided above The effect will not be repeated here.
- the network device includes: a communication module 401 and a processing module 402.
- the communication module 401 is used to support the network device to perform step S102 in FIG. 3, step S201 in FIG. 4, step S301 in FIG. 5, step S503 in FIG. 7, and/or for the technical solutions described herein Other processes.
- the processing module 402 is used to support the network device to perform step S103 in FIG. 3, and/or other processes for the technical solution described herein. All relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
- the communication module 401 in FIG. 9 may be implemented by the transceiver 203 in FIG. 2, and the processing module 402 in FIG. 9 may be implemented by the processor 201 in FIG. In this embodiment of the present application, there is no limitation on this.
- An embodiment of the present application further provides a communication device, configured to execute the methods shown in FIGS. 3-7.
- the communication device is implemented by a processor and a communication interface.
- the communication device is implemented by a logic circuit, an input interface, and an output interface.
- An embodiment of the present application further provides a computer-readable storage medium, in which instructions are stored; when the computer-readable storage medium runs on the network device shown in FIG. 2, the network device Perform the method shown in Figure 3-7.
- An embodiment of the present application further provides a chip system.
- the chip system includes a processor for supporting network devices to implement the methods shown in FIG. 3 to FIG. 7.
- the processor may be a dedicated processor or a general-purpose processor.
- the chip system also includes a memory.
- the memory is used to store necessary program instructions and data of network equipment. Of course, the memory may not be in the chip system.
- the chip system may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
- Embodiments of the present application also provide a computer program product containing computer instructions, which when run on the network device shown in FIG. 2, enables the network device to execute the methods shown in FIGS. 3-7.
- the network device, computer storage medium, chip system, and computer program product provided in the above embodiments of the present application are all used to perform the method provided above. Therefore, for the beneficial effects that can be achieved, refer to the corresponding method provided above The beneficial effects will not be repeated here.
- An embodiment of the present application further provides a communication system.
- the communication system includes a terminal and a network device, and the network device and the terminal are used to perform the methods shown in FIGS. 3-7.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种信道探测的配置方法及装置,涉及通信技术领域,用于使网络设备获知终端支持的下行信道探测方式,以便于网络设备能够正确地配置和调度参考信号资源。该方法包括:终端生成探测能力信息,该探测能力信息用于指示终端支持的信道探测方式;之后,终端向网络设备发送该探测能力信息;这样一来,网络设备根据该探测能力信息,能够确定终端支持的信道探测方式。本申请适用于终端能力上报的过程中。
Description
本申请要求于2018年11月30日提交国家知识产权局、申请号为201811460043.2、申请名称为“信道状态信息的反馈方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及信道探测的配置方法及装置。
信道探测技术是无线通信必不可少的一项技术,用于获取信道信息。可以理解的是,尤其在通信系统支持多用户传输的情况下,精确的信道信息可以提升预编码的准确性,从而更好的消除流间干扰,提升多用户传输的总体性能。目前,下行信道探测方式主要地可以分为两种,一种是基于码本反馈的下行信道探测方式,其典型的应用场景例如频分双工(frequency division duplexing,FDD)场景;另一种是基于信道互易性的下行信道探测方式,其典型的应用场景例如时分双工(time division duplexing,TDD)场景。
随着码本反馈精度的提升,以及基于互易性的下行信道探测方式的技术演进,这两种信道探测方式逐渐的不再与场景强绑定,例如,在TDD场景下,基于码本反馈的下行信道探测方式也可以逼近信道容量上限,而在FDD场景下,也可以一定程度地利用信道互易性获得下行信道信息。因此,上述两种下行信道探测方式有了在同一个通信系统,甚至在同一个通信场景下共存的基础。
然而,这两种下行信道探测方式对终端的软硬件要求不同,并且出于产品定位和设备成本等方面因素的考虑,不同终端的能力也是不同的。这样一来,在不了解终端是否支持不同的下行信道探测方式的前提下,网络设备无法正确地进行参考信号资源的配置和调度。目前,针对这一问题,业界未给出合适的解决方案。
发明内容
本申请提供一种信道探测的配置方法及装置,用于使网络设备获知终端支持的信道探测方式,以便于网络设备正确地进行参考信号资源的配置和调度。
为达到上述目的,本申请提供如下技术方案:
第一方面,提供一种信道探测的配置方法,包括:终端生成探测能力信息,该探测能力信息用于指示终端支持的信道探测方式;之后,终端向网络设备发送探测能力信息。从而,网络设备从探测能力信息,能够获知终端支持的信道探测方式,以便于网络设备正确地进行参考信号资源的配置和调度。
可选的,上述信道探测方式包括基于信道互易性的下行信道探测方式和基于码本反馈的下行信道探测方式中的至少一种。
或者,上述信道探测方式包括第一探测方式、第二探测方式和第三探测方式。其中,第一探测方式为仅基于码本反馈的下行信道探测方式。第二探测方式为仅基于信道互易性的下行信道探测方式。第三探测方式为结合信道互易性和码本反馈的下行信 道探测方式。
一种可能的设计中,探测能力信息包括第一探测方式的信息、第二探测方式的信息和第三探测方式的信息中的至少一种。
一种可能的设计中,若探测能力信息包括一个或多个第一类探测方式的信息,则探测能力信息用于指示终端支持对应的一个或多个第一类探测方式。若探测能力信息不包括任意一个第一类探测方式的信息,则探测能力信息用于指示终端支持第二类探测方式。其中,第二类探测方式是信道探测方式中除第一类探测方式之外的其他探测方式。
一种可能的设计中,若探测能力信息包含第一参数,则探测能力信息用于指示终端至少支持第二探测方式和第三探测方式中的一种。
一种可能的设计中,探测能力信息包含第二参数。其中,第二参数用于指示终端的天线端口信息,终端的天线端口信息包括发送天线端口数和接收天线端口数。若第二参数所指示的发送天线端口数等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第二探测方式。若第二参数所指示的发送天线端口数不等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第三探测方式。
一种可能的设计中,探测能力信息包含第二参数和第三参数。其中,第三参数用于指示终端具有天线选择能力的天线端口信息。若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息一致,则探测能力信息用于指示终端至少支持第二探测方式。若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息不一致,则探测能力信息用于指示终端支持第三探测方式,或者探测能力信息用于指示终端支持第三探测方式和第一探测方式。
一种可能的设计中,探测能力信息包含第二参数和第四参数,第四参数用于指示终端是否具有天线选择能力。若第四参数用于指示终端具有天线选择能力,则探测能力信息用于指示终端至少支持第二探测方式。若第四参数用于指示终端不具有天线选择能力,且第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则探测能力信息用于指示终端支持第三探测方式,或者,探测能力信息用于指示终端支持第一探测方式和第三探测方式。
一种可能的设计中,若探测能力信息包含第五参数,则探测能力信息用于指示终端支持第三探测方式。其中,第五参数用于指示终端不支持信道互易性。
一种可能的设计中,该方法还包括:终端接收网络设备发送的指示信息,指示信息用于指示目标信道探测方式,目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。也即,网络设备以显式方式指示终端使用合适的下行信道探测方式。
一种可能的设计中,该方法还包括:终端接收网络设备发送的配置信息,该配置信息用于为终端配置目标信道探测方式所需的参考信号资源,该配置信息还用于使终端确定目标信道探测方式,目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。也即,网络设备以隐式方式指示终端使用合适的下行信道探测方式。
一种可能的设计中,该方法还包括:若终端使用第三探测方式进行下行信道探测, 则终端向网络设备发送下行信道信息;其中,下行信道信息包括:N个第一矩阵对应的特征值以及特征向量,第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量,第二信道向量由第一信道向量除以下行信道矩阵中预设位置的元素来确定,第一信道向量为下行信道矩阵中的行向量,N为大于等于1的整数;或者,下行信道信息包括:功率相位差参数以及N个第三信道向量,第三信道向量由第二信道向量除以功率相位差参数来确定,第二信道向量为第一信道向量除以下行信道矩阵中预设位置的元素来确定,功率相位差参数为N个第二信道向量中的一个元素。这样一来,网络设备能够根据该下行信道信息,准确重构下行信道,避免终端和网络设备之间功率增益不同的影响。
第二方面,提供一种信道探测的配置方法,包括:网络设备接收终端发送的探测能力信息,该探测能力信息用于指示终端支持的信道探测方式;之后,网络设备根据该探测能力信息,确定终端支持的信道探测方式。这样一来,能够避免网络设备会终端错误配置用于下行信道探测的参考信号资源。
可选的,上述信道探测方式包括基于信道互易性的下行信道探测方式和基于码本反馈的下行信道探测方式中的至少一种。
或者,上述信道探测方式包括第一探测方式、第二探测方式和第三探测方式。其中,第一探测方式为仅基于码本反馈的下行信道探测方式。第二探测方式为仅基于信道互易性的下行信道探测方式。第三探测方式为结合信道互易性和码本反馈的下行信道探测方式。
一种可能的设计中,探测能力信息包括第一探测方式的信息、第二探测方式的信息和第三探测方式的信息中的至少一种。
一种可能的设计中,若探测能力信息包括一个或多个第一类探测方式的信息,则探测能力信息用于指示终端支持对应的一个或多个第一类探测方式。若探测能力信息不包括任意一个第一类探测方式的信息,则探测能力信息用于指示终端支持第二类探测方式。其中,第二类探测方式是信道探测方式中除第一类探测方式之外的其他探测方式。
一种可能的设计中,若探测能力信息包含第一参数,则探测能力信息用于指示终端至少支持第二探测方式和第三探测方式中的一种。
一种可能的设计中,探测能力信息包含第二参数。其中,第二参数用于指示终端的天线端口信息,终端的天线端口信息包括发送天线端口数和接收天线端口数。若第二参数所指示的发送天线端口数等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第二探测方式。若第二参数所指示的发送天线端口数不等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第三探测方式。
一种可能的设计中,探测能力信息包含第二参数和第三参数。其中,第三参数用于指示终端具有天线选择能力的天线端口信息。若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息一致,则探测能力信息用于指示终端至少支持第二探测方式。若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息不一致,则探测能力信息用于指示终 端支持第三探测方式,或者探测能力信息用于指示终端支持第三探测方式和第一探测方式。
一种可能的设计中,探测能力信息包含第二参数和第四参数,第四参数用于指示终端是否具有天线选择能力。若第四参数用于指示终端具有天线选择能力,则探测能力信息用于指示终端至少支持第二探测方式。若第四参数用于指示终端不具有天线选择能力,且第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则探测能力信息用于指示终端支持第三探测方式,或者,探测能力信息用于指示终端支持第一探测方式和第三探测方式。
一种可能的设计中,若探测能力信息包含第五参数,则探测能力信息用于指示终端支持第三探测方式。其中,第五参数用于指示终端不支持信道互易性。
一种可能的设计中,该方法还包括:网络设备向终端发送指示信息,指示信息用于指示目标信道探测方式,目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。也即,网络设备以显式方式指示终端使用合适的下行信道探测方式。
一种可能的设计中,该方法还包括:网络设备向终端发送配置信息,该配置信息用于为终端配置目标信道探测方式所需的参考信号资源,该配置信息还用于使终端确定目标信道探测方式,目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。也即,网络设备以隐式方式指示终端使用合适的下行信道探测方式。
一种可能的设计中,该方法还包括:网络设备接收终端发送的下行信道信息。其中,下行信道信息包括:N个第一矩阵对应的特征值以及特征向量,第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量,第二信道向量由第一信道向量除以下行信道矩阵中预设位置的元素来确定,第一信道向量为下行信道矩阵中的行向量,N为大于等于1的整数;或者,下行信道信息包括:功率相位差参数以及N个第三信道向量,第三信道向量由第二信道向量除以功率相位差参数来确定,第二信道向量为第一信道向量除以下行信道矩阵中预设位置的元素来确定,第一信道向量为下行信道矩阵中的行向量,功率相位差参数为N个第二信道向量中的一个元素。这样一来,网络设备能够根据该下行信道信息,准确重构下行信道,避免终端和网络设备之间功率增益不同的影响。
第三方面,提供一种终端,包括:处理模块,用于生成探测能力信息,所述探测能力信息用于指示所述终端支持的信道探测方式。通信模块,用于向网络设备发送探测能力信息。
可选的,上述信道探测方式包括基于信道互易性的下行信道探测方式和基于码本反馈的下行信道探测方式中的至少一种。
或者,上述信道探测方式包括第一探测方式、第二探测方式和第三探测方式。其中,第一探测方式为仅基于码本反馈的下行信道探测方式。第二探测方式为仅基于信道互易性的下行信道探测方式。第三探测方式为结合信道互易性和码本反馈的下行信道探测方式。
一种可能的设计中,探测能力信息包括第一探测方式的信息、第二探测方式的信息和第三探测方式的信息中的至少一种。
一种可能的设计中,若探测能力信息包括一个或多个第一类探测方式的信息,则 探测能力信息用于指示终端支持对应的一个或多个第一类探测方式。若探测能力信息不包括任意一个第一类探测方式的信息,则探测能力信息用于指示终端支持第二类探测方式。其中,第二类探测方式是信道探测方式中除第一类探测方式之外的其他探测方式。
一种可能的设计中,若探测能力信息包含第一参数,则探测能力信息用于指示终端至少支持第二探测方式和第三探测方式中的一种。
一种可能的设计中,探测能力信息包含第二参数。其中,第二参数用于指示终端的天线端口信息,终端的天线端口信息包括发送天线端口数和接收天线端口数。若第二参数所指示的发送天线端口数等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第二探测方式。若第二参数所指示的发送天线端口数不等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第三探测方式。
一种可能的设计中,探测能力信息包含第二参数和第三参数。其中,第三参数用于指示终端具有天线选择能力的天线端口信息。若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息一致,则探测能力信息用于指示终端至少支持第二探测方式。若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息不一致,则探测能力信息用于指示终端支持第三探测方式,或者探测能力信息用于指示终端支持第三探测方式和第一探测方式。
一种可能的设计中,探测能力信息包含第二参数和第四参数,第四参数用于指示终端是否具有天线选择能力。若第四参数用于指示终端具有天线选择能力,则探测能力信息用于指示终端至少支持第二探测方式。若第四参数用于指示终端不具有天线选择能力,且第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则探测能力信息用于指示终端支持第三探测方式,或者,探测能力信息用于指示终端支持第一探测方式和第三探测方式。
一种可能的设计中,若探测能力信息包含第五参数,则探测能力信息用于指示终端支持第三探测方式。其中,第五参数用于指示终端不支持信道互易性。
一种可能的设计中,通信模块,还用于接收网络设备发送的指示信息,指示信息用于指示目标信道探测方式,目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。
一种可能的设计中,通信模块,还用于接收网络设备发送的配置信息,该配置信息用于为终端配置目标信道探测方式所需的参考信号资源,该配置信息还用于使终端确定目标信道探测方式,目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。
一种可能的设计中,通信模块,还用于若终端使用第三探测方式进行下行信道探测,则向网络设备发送下行信道信息;其中,下行信道信息包括:N个第一矩阵对应的特征值以及特征向量,第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量,第二信道向量由第一信道向量除以下行信道矩阵中预设位置的元素来确定,第一信道向量为下行信道矩阵中的行向量,N为大于等于1的整数;或者,下行信道信息 包括:功率相位差参数以及N个第三信道向量,第三信道向量由第二信道向量除以功率相位差参数来确定,第二信道向量为第一信道向量除以下行信道矩阵中预设位置的元素来确定,功率相位差参数为N个第二信道向量中的一个元素。
第四方面,提供一种终端,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第一方面任一项所述的信道探测的配置方法。
第五方面,提供一种通信装置,用于执行上述第一方面任一项所述的信道探测的配置方法。作为一种可能的产品形态,该通信装置由处理器和通信接口来实现。作为另一种可能的产品形态,该通信装置由逻辑电路、输入接口和输出接口来实现。
第六方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在终端上运行时,使得终端可以执行上述第一方面任一项所述的信道探测的配置方法。
第七方面,提供一种包含指令的计算机程序产品,当其在终端上运行时,使得终端可以执行上述第一方面任一项所述的信道探测的配置方法。
第八方面,提供一种芯片系统,该芯片系统包括处理器,用于支持终端实现上述第一方面所涉及的功能。需要说明的是,该处理器可以是专用处理器,也可以是通用处理器。在一种可能的设计中,该芯片系统包括存储器,该存储器用于保存终端必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
其中,上述第三方面至第八方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第九方面,提供一种网络设备,包括:通信模块,用于接收终端发送的探测能力信息,所述探测能力信息用于指示所述终端支持的信道探测方式。处理模块,用于根据所述探测能力信息,确定所述终端支持的信道探测方式。
可选的,上述信道探测方式包括基于信道互易性的下行信道探测方式和基于码本反馈的下行信道探测方式中的至少一种。
或者,上述信道探测方式包括第一探测方式、第二探测方式和第三探测方式。其中,第一探测方式为仅基于码本反馈的下行信道探测方式。第二探测方式为仅基于信道互易性的下行信道探测方式。第三探测方式为结合信道互易性和码本反馈的下行信道探测方式。
一种可能的设计中,探测能力信息包括第一探测方式的信息、第二探测方式的信息和第三探测方式的信息中的至少一种。
一种可能的设计中,若探测能力信息包括一个或多个第一类探测方式的信息,则探测能力信息用于指示终端支持对应的一个或多个第一类探测方式。若探测能力信息不包括任意一个第一类探测方式的信息,则探测能力信息用于指示终端支持第二类探测方式。其中,第二类探测方式是信道探测方式中除第一类探测方式之外的其他探测方式。
一种可能的设计中,若探测能力信息包含第一参数,则探测能力信息用于指示终端至少支持第二探测方式和第三探测方式中的一种。
一种可能的设计中,探测能力信息包含第二参数。其中,第二参数用于指示终端 的天线端口信息,终端的天线端口信息包括发送天线端口数和接收天线端口数。若第二参数所指示的发送天线端口数等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第二探测方式。若第二参数所指示的发送天线端口数不等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第三探测方式。
一种可能的设计中,探测能力信息包含第二参数和第三参数。其中,第三参数用于指示终端具有天线选择能力的天线端口信息。若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息一致,则探测能力信息用于指示终端至少支持第二探测方式。若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息不一致,则探测能力信息用于指示终端支持第三探测方式,或者探测能力信息用于指示终端支持第三探测方式和第一探测方式。
一种可能的设计中,探测能力信息包含第二参数和第四参数,第四参数用于指示终端是否具有天线选择能力。若第四参数用于指示终端具有天线选择能力,则探测能力信息用于指示终端至少支持第二探测方式。若第四参数用于指示终端不具有天线选择能力,且第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则探测能力信息用于指示终端支持第三探测方式,或者,探测能力信息用于指示终端支持第一探测方式和第三探测方式。
一种可能的设计中,若探测能力信息包含第五参数,则探测能力信息用于指示终端支持第三探测方式。其中,第五参数用于指示终端不支持信道互易性。
一种可能的设计中,通信模块,还用于向终端发送指示信息,指示信息用于指示目标信道探测方式,目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。
一种可能的设计中,通信模块,还用于向终端发送配置信息,该配置信息用于为终端配置目标信道探测方式所需的参考信号资源,该配置信息还用于使终端确定目标信道探测方式,目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。
一种可能的设计中,通信模块,还用于接收终端发送的下行信道信息。其中,下行信道信息包括:N个第一矩阵对应的特征值以及特征向量,第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量,第二信道向量由第一信道向量除以下行信道矩阵中预设位置的元素来确定,第一信道向量为下行信道矩阵中的行向量,N为大于等于1的整数;或者,下行信道信息包括:功率相位差参数以及N个第三信道向量,第三信道向量由第二信道向量除以功率相位差参数来确定,第二信道向量为第一信道向量除以下行信道矩阵中预设位置的元素来确定,第一信道向量为下行信道矩阵中的行向量,功率相位差参数为N个第二信道向量中的一个元素。
第十方面,提供一种网络设备,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第二方面任一项所述的信道探测的配置方法。
第十一方面,提供一种通信装置,用于执行上述第二方面任一项所述的信道探测的配置方法。作为一种可能的产品形态,该通信装置由处理器和通信接口来实现。作 为另一种可能的产品形态,该通信装置由逻辑电路、输入接口和输出接口来实现。
第十二方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在网络设备上运行时,使得网络设备可以执行上述第二方面任一项所述的信道探测的配置方法。
第十三方面,提供一种包含指令的计算机程序产品,当其在网络设备上运行时,使得网络设备可以执行上述第二方面任一项所述的信道探测的配置方法。
第十四方面,提供一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述第二方面所涉及的功能。需要说明的是,该处理器可以是专用处理器,也可以是通用处理器。在一种可能的设计中,该芯片系统包括存储器,该存储器用于保存网络设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
其中,上述第九方面至第十四方面中任一种设计方式所带来的技术效果可参见第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十五方面,提供一种通信系统,该通信系统包括网络设备和终端。该终端用于执行上述第一方面中任一项所述的信道探测的配置方法。该网络设备用于执行上述第二方面中任一项所述的信道探测的配置方法。
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种终端和网络设备的硬件结构示意图;
图3为本申请实施例提供的一种信道探测的配置方法的流程图一;
图4为本申请实施例提供的一种信道探测的配置方法的流程图二;
图5为本申请实施例提供的一种信道探测的配置方法的流程图三;
图6为本申请实施例提供的一种信道探测的配置方法的流程图四;
图7为本申请实施例提供的一种下行信道信息的上报方法的流程图;
图8为本申请实施例提供的一种终端的结构示意图;
图9为本申请实施例提供的一种网络设备的结构示意图。
为了便于理解,下面先对本申请实施例涉及的一些概念进行简单介绍。
(1)第一探测方式
第一探测方式为仅基于码本反馈的下行信道探测方式。换句话说,第一探测方式即为基于码本反馈获取全部下行信道信息的下行信道探测方式。
示例性的,上述第一探测方式的流程为:网络设备为终端配置下行参考信号资源;终端在相应的下行参考信号资源接收下行参考信号,并对下行参考信号进行信道估计,确定下行信道矩阵;之后,终端从码本中确定匹配该下行信道矩阵的码字,并将该码字对应的预编码矩阵指示(precoding matrix indication,PMI)发送给网络设备。
需要说明的是,上文仅是对第一探测方式的简单介绍,不构成对第一探测方式的限定。对于第一探测方式的具体实现方式,本领域技术人员可以参考现有技术。
(2)第二探测方式
第二探测方式为仅基于信道互易性的下行信道探测方式。换句说说,第二探测方 式即为基于信道互易性获得全部下行信道信息的下行信道探测方式。其中,信道互易性是指上行信道和下行信道在相干时间内具有一致的特性。
相比于第一探测方式来说,第二探测方式能够减少下行信道信息的反馈开销,还能够避免下行信道信息由于量化和反馈所带来的误差。也就是说,第二探测方式在信道条件状况良好的情况下,能够获取更加准确的下行信道信息。
示例性的,上述第二探测方式的流程为:网络设备为终端配置上行参考信号资源,终端在相应的上行参考信号资源上发送上行参考信号;网络设备根据接收到的下行参考信号,估计上行信道,获取上行信道矩阵;然后,网络设备基于信道互易性,将上行信道矩阵非共轭转置为下行信道矩阵。
需要说明的是,多输入多输出(multiple input multiple output,MIMO)系统的信道可以用N1*N2的信道矩阵来描述,其中N1表示接收端的接收天线端口的数目,N2表示发送端的发送天线端口的数目。若第二探测方式应用在MIMO系统,假设终端的接收天线端口的数目为N1,网络设备的发送天线端口的数目为N2,终端通过N1个发送天线端口发送上行参考信号,网络设备通过N2个接收天线端口接收上行参考信号,从而确定N2*N1的上行信道矩阵。之后,网络设备基于信道互易性,将N2*N1的上行信道矩阵非共轭转置为N1*N2的下行信道矩阵,从而网络设备获取到完整的下行信道信息。
但是,出于产品定位和成本的考虑,终端能够支持的发送天线端口的数目不一定等于接收天线端口的数目。一般情况下,终端支持的发送天线端口的数目要少于接收天线端口的数目。例如,终端有2个接收天线端口,1个发送天线端口。在这种情况下,终端需要具有天线选择能力,才能支持第二探测方式。可以理解的是,天线选择能力是指通信设备可以将天线端口通过物理开关切换不同的物理天线分别发送/接收信号的能力。具有天线选择能力的通信设备可以使用较少的天线端口,实现测量较多天线端口的信道信息的目标。天线选择能力中切换不同物理天线的天线端口根据具体场景和配置的不同,可以是发送天线端口,也可以是接收天线端口。在本申请实施例中,终端具有天线选择能力,一般是指终端的发送天线端口可以切换不同的物理天线。举例来说,假设终端的发送天线端口数为1,接收天线端口数为2,终端以发送天线端口发送2次上行参考信号。并且,在每次发送上行参考信号时,发送天线端口需要使用本次信道探测中还未用于发送上行参考信号的物理天线。这样一来,在终端的发送天线端口数小于接收天线端口数的情况下,网络设备同样可以获得2个天线端口的上行信道信息,从而网络设备能够确定完整的下行信道信息。
需要说明的是,上文仅是对第二探测方式的简单介绍,不构成对第二探测方式的限定。对于第二探测方式的具体实现方式,本领域技术人员可以参考现有技术。
(3)第三探测方式
第三探测方式是第二探测方式和第一探测方式之间的折中方案。第三探测方式是结合信道互易性和码本反馈的下行信道探测方式。也就是说,第三探测方式是基于信道互易性确定一部分下行信道信息,基于码本反馈确定另一部分下行信道信息。这两部分下行信道信息能够重构成完整的下行信道信息。
相比于第一探测方式来说,第三探测方式能够减小一部分下行信道信息的反馈开 销,还能够避免这部分下行信道信息由于量化和反馈而导致的误差。相比于第二探测方式来说,第三探测方式不要求终端具有天线选择能力。
下面以举例的方式来说明第三探测方式,假设网络设备的发送天线端口和接收天线端口的数目均为N2,终端的发送天线端口的数目为N3,终端的接收天线端口的数目为N1,N1>N3。一方面,基于信道互易性确定一部分下行信道信息,具体的,终端在N3个发送天线端口发送上行参考信号;网络设备对上行参考信号进行信道估计,确定N2*N3的上行信道矩阵;网络设备基于信道互易性,将N2*N3的上行信道矩阵转置为N3*N2的下行信道矩阵。另一方面,基于码本反馈确定另一部分下行信道信息,具体的,终端接收下行参考信号,对下行参考信号进行估计,确定出(N1-N3)*N2的下行信道矩阵,并将(N1-N3)*N2的下行信道矩阵通过码本反馈给网络设备。这样一来,网络设备可以基于信道互易性确定的N3*N2的下行信道矩阵,以及基于码本反馈确定的(N1-N3)*N2的下行信道矩阵,进行信道重构,确定完整的下行信道矩阵。
需要说明的是,上文仅是对第三探测方式的简单介绍,不构成对第三探测方式的限定。对于第三探测方式的具体实现方式,本领域技术人员可以参考现有技术。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的探测能力信息)所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示所述待指示信息,如所述待指示信息本身或者所述待指示信息的索引等。也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系。还可以仅仅指示所述待指示信息的一部分,而所述待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,采用第五代(5th generation,5G)通信技术的NR通信系统,未来演进系统或者多种通信融合系统等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:终端与终端之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与终端之间的通信场景等。下文中均是以应用于网络设备和终端通信的场景中为例进行说明的。
图1给出了本申请实施例提供的技术方案所适用的一种通信系统示意图。如图1所示,该通信系统可以包括一个或多个网络设备20(仅示出了1个)以及与每一网络设备20连接的一个或多个终端10。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备20可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是全球移动通信系统(global system for mobile communication,GSM),码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(node B),LTE中的演进型基站(evolutional node B,eNB或e-NodeB),物联网(internet of things,IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,未来5G移动通信网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作任何限制。
终端10用于向用户提供语音和/或数据连通性服务。所述终端10可以有不同的名称,例如用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。可选的,所述终端10可以为各种具有通信功能的手持设备、车载设备、可穿戴设备、计算机,本申请实施例对此不作任何限定。例如,手持设备可以是智能手机。车载设备可以是车载导航系统。可穿戴设备可以是智能手环。计算机可以是个人数字助理(personal digital assistant,PDA)电脑、平板型电脑以及膝上型电脑(laptop computer)。
图2为本申请实施例提供的网络设备20和终端10的硬件结构示意图。
终端10包括至少一个处理器101和至少一个收发器103。可选的,终端10还可以包括输出设备104、输入设备105和至少一个存储器102。
处理器101、存储器102和收发器103通过总线相连接。处理器101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器101也可以包括多个CPU,并且处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area networks,WLAN)等。收发器103包括发射机Tx和接收机Rx。
输出设备104和处理器101通信,可以以多种方式来显示信息。例如,输出设备104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备105和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备105可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备20包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端10中处理器101、存储器102和收发器103的描述,在此不再赘述。
如图3所示,为本申请实施例提供的一种信道探测的配置方法,包括以下步骤:
S101、终端生成探测能力信息,所述探测能力信息用于指示终端支持的信道探测方式。
其中,上述信道探测方式包括基于信道互易性的下行信道探测方式和基于码本反馈的下行信道探测方式中的至少一种。
或者,上述信道探测方式包括第一探测方式、第二探测方式和第三探测方式中的至少一种。其中,所述第一探测方式为仅基于码本反馈的下行信道探测方式。所述第二探测方式为仅基于信道互易性的下行信道探测方式。所述第三探测方式为结合信道互易性和码本反馈的下行信道探测方式。
需要说明的是,本申请实施例不对信道探测方式进行限定,也即上述信道探测方式不局限于包括第一探测方式、第二探测方式和第三探测方式,还可以包括其他探测方式,例如基于人工智能算法的信道探测方式,又例如基于人工智能算法和其他方式 结合的信道探测方式。
一种可选的实现方式中,终端主动生成所述探测能力信息,或者终端在接收到网络设备发送的终端能力查询请求之后生成所述探测能力信息。
需要说明的是,探测能力信息所指示的信道探测方式可以是终端实际支持的信道探测方式的全部,或者是终端实际支持的信道探测方式中的一部分。例如,终端实际支持第二探测方式、第三探测方式和第一探测方式,但是终端生成的探测能力信息可以仅指示终端支持第二探测方式和第三探测方式。又例如,终端实际支持第二探测方式和第三探测方式,但是终端生成的探测能力信息可以仅指示终端支持第二探测方式。
下面以信道探测方式包括第一探测方式、第二探测方式以及第三探测方式为例,具体说明探测能力信息如何指示终端支持的信道探测方式。可以理解的是,若信道探测方式还包括其他探测方式,则本领域技术人员能够根据本申请实施例提供的技术方案,合理推导出相应的技术方案。
作为一种实现方式,探测能力信息以显式的方式指示终端支持的信道探测方式。在这种情况下,探测能力信息至少包括以下情形之一:
情形一,探测能力信息以n个比特来表示,这n个比特的取值用于指示终端支持的信道探测方式。例如,探测能力信息可以以三个比特来表示,“010”表示终端支持第一探测方式,“000”表示终端支持第二探测方式,“001”表示终端支持第三探测方式,“100”表示终端支持第一探测方式和第二探测方式,“101”表示终端支持和第一探测方式第三探测方式,“011”表示终端支持第二探测方式和第三探测方式,“110”表示终端支持第一探测方式、第二探测方式和第三探测方式。
情形二,探测能力信息包括以下参数中的至少一项:第一探测方式的信息、第二探测方式的信息、以及第三探测方式的信息。其中,第一探测方式的信息为第一探测方式的标识、索引、名称等。第二探测方式的信息可以为第二探测方式的标识、索引、名称等。第三探测方式的信息可以为第三探测方式的标识、索引、名称等。
可以理解的是,若探测能力信息用于指示终端支持第一探测方式,则探测能力信息包含第一探测方式的信息。若探测能力信息用于指示终端支持第二探测方式,则探测能力信息包含第二探测方式的信息。若探测能力信息用于指示终端支持第三探测方式,则探测能力信息包含第三探测方式的信息。若探测能力信息用于指示终端支持第一探测方式和第二探测方式,则探测能力信息包含第一探测方式的信息和第二探测方式的信息。若探测能力信息用于指示终端支持第二探测方式和第三探测方式,则探测能力信息包含第二探测方式的信息和第三探测方式的信息。若探测能力信息用于指示终端支持第一探测方式和第三探测方式,则探测能力信息包含第一探测方式的信息和第三探测方式的信息。若探测能力信息用于指示终端支持第一探测方式、第二探测方式和第三探测方式,则探测能力信息包含第一探测方式的信息、第二探测方式的信息和第三探测方式的信息。
为了便于本领域技术人员理解下述情形三所述的示例,下面先对情形三所涉及的术语“第一类探测方式”和“第二类探测方式”进行简单介绍。
第一类探测方式和第二类探测方式是两种不同类型的信道探测方式,通信系统可以按照预设规则确定第一类探测方式和第二类探测方式。例如,通信系统按照是否基 于信道互易性,可以将第一探测方式划分为第一类探测方式,将第二探测方式和第三探测方式划分为第二类探测方式。可以理解的是,“是否基于信道互易性”仅是预设规则的一种示例,本申请实施例不限于此。
情形三,若探测能力信息包括一个或多个第一类探测方式的信息,则探测能力信息用于指示终端支持对应的一个或多个第一类探测方式。若探测能力信息不包括任何一个第一类探测方式的信息,则探测能力信息用于指示终端支持第二类探测方式。
可选的,当探测能力信息不包括任何一种第一类探测方式的信息时,探测能力信息可以包括其他指示信息,以指示终端不支持任意一个第一类探测方式,而是支持第二类探测方式。
其中,任意一种或者多种信道探测方式均可以是第二类探测方式。相应的,信道探测方式中除第二类探测方式之外的其他探测方式均可以是第一类探测方式。以信道探测方式包括第一探测方式、第二探测方式和第三探测方式为例,若第一探测方式为第二类探测方式,则第二探测方式和第三探测方式均为第一类探测方式;若第一探测方式和第三探测方式均为第二类探测方式,则第二探测方式为第一类探测方式。
可选的,第二类探测方式为协议默认的探测方式,也就是说,第二类探测方式为当终端不上报所述探测能力信息时系统默认终端支持的探测方式。
示例性的,以第二探测方式、第三探测方式均为第一类探测方式,第一探测方式为第二类探测方式为例,若探测能力信息包含第二探测方式的信息,则探测能力信息用于指示终端支持第二探测方式。若探测能力信息不包含第二探测方式的信息和第三探测方式的信息,而是包含其他指示信息,例如“两者都不是”,则探测能力信息用于指示终端支持第一探测方式。
需要说明的是,上述情形一至情形三仅是探测能力信息的示例,不构成对探测能力信息的限定。
作为另一种实现方式,探测能力信息以隐式的方式指示终端支持的信道探测方式。也就是说,探测能力信息包含一些与信道探测方式相关的参数。这样一来,网络设备根据探测能力信息所包含的参数,确定出终端支持的信道探测方式。
在这种情况下,探测能力信息至少包含以下情形之一:
情形四,若探测能力信息包含第一参数,则探测能力信息用于指示终端至少支持第二探测方式和第三探测方式中的一种。其中,所述第一参数用于指示终端支持信道互易性,换句话说,第一参数用于指示终端支持基于信道互易性的下行信道探测方式。
可以理解的是,虽然信道互易性是信道的固有特征。但是,对于未来通信系统来说,在信道具有互易性的情况下,终端的能力可能需要满足一定的要求,才允许终端采用基于信道互易性的下行信道探测方式。基于这种考虑,终端需要通过上报能力信息(例如第一参数),以使得网络设备获知终端是否能够采用基于信道互易性的下行信道探测方式。
可以理解的是,第二探测方式和第三探测方式是基于信道互易性的,因此,在信道互易性作为一项参数上报的情况下,网络设备可以确定终端支持信道互易性,进而确定终端支持第二探测方式和第三探测方式中的至少一种。
情形五、探测能力信息包含第一参数和第二参数。其中,第二参数用于指示终端 的天线端口信息,具体的,第二参数用于指示终端的发送天线端口数与接收天线端口数。例如,第二参数为1T8R,表示终端具有一个发送天线端口和八个接收天线端口。又例如,第二参数可以为T=R=8,表示终端的发送天线端口和接收天线端口相等,且均为8。
可以理解的是,若终端的发送天线端口数等于接收天线端口数,则终端可以支持第二探测方式。若终端的发送端口数不等于接收天线端口数,则终端不一定支持第二探测方式。
因此,若第二参数所指示的发送天线端口数等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第二探测方式。
若第二参数所指示的发送天线端口数不等于第二参数所指示的接收天线端口数,则探测能力信息用于指示终端至少支持第三探测方式。
情形六、探测能力信息包含第一参数、第二参数和第三参数。其中,所述第三参数用于指示终端具有天线选择能力的天线端口信息。例如,第三参数为1T4R,表示终端具有1个发送天线端口和4个接收天线端口,并且这1个发送天线端口可以切换4次物理天线,也就是说终端可以完成4个天线端口的上行信道探测。
若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息一致,则探测能力信息用于指示终端至少支持第二探测方式。例如,若探测能力信息包含的第三参数为1T4R,第二参数为1T4R,则终端配置的发送天线端口可以切换4次物理天线,完成4个天线端口的上行信道探测,因此,该探测能力信息用于指示终端至少支持第二探测方式。
若第三参数所指示的具有天线选择能力的天线端口信息与第二参数所指示的终端的天线端口信息不一致,则探测能力信息用于指示终端支持第三探测方式,或者探测能力信息用于指示终端支持第三探测方式和第一探测方式。例如,若探测能力信息包含的第三参数为1T4R,第二参数为1T8R,则终端的发送天线端口只能切换4次物理天线,完成其中4个天线端口的上行信道测量,而剩余的4个天线端口的信道信息则需要通过接收下行参考信号测量获得,因此,该探测能力信息用于指示终端支持第三探测方式,或者该探测能力信息用于指示终端支持第三探测方式和第一探测方式。
情形七、探测能力信息包含第一参数、第二参数和第四参数。其中,第四参数用于指示终端是否具有天线选择能力。示例性的,第四参数为“support”,以表示终端具有天线选择能力;第四参数为“no support”,以表示终端不具有天线选择能力。
可以理解的是,若第四参数指示终端具有天线选择能力,表示所述终端具有按照第二参数所指示的天线端口信息进行天线选择的能力。例如,第二参数为1T8R,第四参数为“support”,则终端具有1个发送天线端口和8个接收天线端口,同时,终端可以支持1T8R的天线选择。
若第四参数用于指示终端具有天线选择能力,则探测能力信息用于指示终端至少支持第二探测方式。
若第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则无论第四参数如何取值,所述探测能力信息用于指示终端至少支持第二探测方式。
可以理解的是,在终端的发送天线端口数等于接收天线端口数的情况下,探测能 力信息可以不包含第四参数。
若第四参数用于指示终端不具有天线选择能力,且第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则探测能力信息用于指示终端支持第三探测方式,或者,探测能力信息用于指示终端支持第一探测方式和第三探测方式。
情形八、若探测能力信息包含第五参数,则探测能力信息用于指示终端支持第三探测方式。其中,所述第五参数用于指示终端不支持信道互易性,换句话说,所述第五参数用于指示终端不支持基于信道互易性的下行信道探测方式。
需要说明的是,对于上述情形五至情形七来说,若信道互易性是系统的固有属性,则终端无需上报第一参数,以指示终端支持信道互易性。也即,在这种情况下,探测能力信息不包含第一参数。
需要说明的是,在情形四中,探测能力信息用于指示终端至少支持第二探测方式和第三探测方式中的一种,包括以下情形之一:(1.1)探测能力信息用于指示终端支持第二探测方式;(1.2)探测能力信息用于指示终端支持第三探测方式;(1.3)探测能力信息用于指示终端支持第二探测方式和第三探测方式;(1.4)探测能力信息用于指示终端支持第一探测方式和第二探测方式;(1.5)探测能力信息用于指示终端支持第一探测方式和第三探测方式;(1.6)探测能力信息用于指示终端支持第一探测方式、第二探测方式和第三探测方式。可以理解的是,网络设备和终端具体选择上述(1.1)至(1.6)中的哪一种情形,由通信系统的预先配置来确定,或者根据协议来确定。
需要说明的是,在情形五至情形七中,探测能力信息用于指示终端至少支持第二探测方式,包括以下情形之一:(2.1)探测能力信息用于指示终端支持第二探测方式;(2.2)探测能力信息用于指示终端支持第一探测方式和第二探测方式;(2.3)探测能力信息用于指示终端支持第二探测方式和第三探测方式;(2.4)探测能力信息用于指示终端支持第一探测方式、第二探测方式和第三探测方式。可以理解的是,网络设备和终端具体选择上述(2.1)至(2.4)中的哪一种情形,由通信系统的预先配置来确定,或者根据协议来确定。
需要说明的是,在情形六中,探测能力信息用于指示终端至少支持第三探测方式,包括以下情形之一:(3.1)探测能力信息用于指示终端支持第三探测方式;(3.2)探测能力信息用于指示终端支持第一探测方式和第三探测方式;(3.3)探测能力信息用于指示终端支持第二探测方式和第三探测方式;(3.4)探测能力信息用于指示终端支持第一探测方式、第二探测方式和第三探测方式。可以理解的是,网络设备和终端具体选择上述(3.1)至(3.4)中的哪一种情形,由通信系统的预先配置来确定,或者根据协议来确定。
可以理解的是上述情形四至情形五仅是对探测能力信息的示例,不构成任何限定。另外,第一参数至第五参数不一定包含在探测能力信息中,也可以作为独立的能力信息。这些独立的能力信息可以作为网络设备确定终端支持的信道探测方式的依据。
S102、终端将探测能力信息发送给网络设备,以使得网络设备接收到终端的探测能力信息。
一种可选的实现方式,终端主动将探测能力信息发送给网络设备;或者,终端在接收到网络设备发送的终端能力查询请求之后,将探测能力信息发送给网络设备。
可选的,终端可以将探测能力信息单独上报给网络设备,或者终端将探测能力信息和其他的能力信息一起上报给网络设备。
示例性的,其他的能力信息包括:接入层版本号、射频参数、物理层参数和/或分组数据汇聚协议(packet data convergence protocol,PDCP)参数。其他的能力信息可参考现有技术,此处不再赘述。
S103、网络设备根据探测能力信息,确定终端支持的信道探测方式。
基于图3所示的技术方案,终端通过上报探测能力信息,以使得网络设备获知终端支持的信道探测方式,从而网络设备可以为终端配置合适的参考信号资源,以保证下行信道探测流程的正常执行。
如图4所示,上述信道探测的配置方法还包括步骤S201。
S201、网络设备根据探测能力信息所指示的信道探测方式,为终端配置参考信号资源。
若探测能力信息用于指示终端仅支持第二探测方式,则步骤S201的具体实现方式为:网络设备为终端配置至少一个第一参考信号资源集合,所述第一参考信号资源集合包括至少一个上行参考信号资源。可选的,第一参考信号资源集合为探测参考信号(sounding reference signal,SRS)资源集合,上行参考信号资源为SRS资源。
若探测能力信息用于指示终端仅支持第一探测方式,则步骤S201的具体实现方式为:网络设备为终端配置至少一个第二参考信号资源集合,所述第二参考信号资源集合包括至少一个下行参考信号资源。可选的,第二参考信号资源集合为信道状态信息参考信号(channel state information reference signal,CSI-RS)资源集合,下行参考信号资源为CSI-RS资源。
若探测能力信息指示终端至少支持指示两种不同的信道探测方式,或者探测能力信息指示终端至少支持第三探测方式,则步骤S201的具体实现方式包括以下方式之一:
方式一、网络设备向终端发送第一配置信息,所述第一配置信息包括至少一个第一参考信号资源集合的标识和至少一个第二参考信号资源集合的标识。可选的,第一配置信息承载于无线资源控制(radio resource control,RRC)信令中。
以示例来说明上述方式一,假设系统已经配置了SRS资源集合,包括SRS resource set#0,SRS resource set#1,SRS resource set#2;系统已经配置了CSI-RS资源集合,包括CSI-RS resource set#0,CSI-RS resource set#1,CSI-RS resource set#2,CSI-RS resource set#3,则第一配置信息包括一组参考信号资源集合的标识,例如{SRS resource set#0,SRS resource set#1,CSI-RS resource set#0}。或者,第一配置信息可以包括多组参考信号资源集合的标识,例如{SRS resource set#0,SRS resource set#1,CSI-RS resource set#0}、{SRS resource set#0,SRS resource set#1,CSI-RS resource set#2}、{SRS resource set#1,SRS resource set#2,CSI-RS resource set#3}。
需要说明的是,上述方式一的优点在于,可以直接复用系统给上下行信道测量分别配置的参考信号资源集合,无需单独配置第三参考信号资源集合,减少信令开销。
另外,在第一配置信息用于配置一组参考信号资源集合的情况下,网络设备可通过媒体介入控制(media access control,MAC)-控制单元(control element,CE)信令激活或者下行控制信息(downlink control information,DCI)触发终端使用这一组参 考信号资源集合中的一个或多个参考信号资源集合。
在第一配置信息用于配置多组参考信号资源集合的情况下,网络设备可通过MAC-CE信令激活或者DCI触发终端使用多组参考信号资源集合中的一组参考信号资源集合。
方式二、网络设备为终端配置至少一个第三参考信号资源集合,所述第三参考信号资源集合包括至少一个上行参考信号资源,以及至少一个下行参考信号资源。
可选的,第三参考信号资源集合中的参考信号资源可按照如下方式排列:(1)参考信号资源按照序号从小到大排列。其中,若上行参考信号资源和下行参考信号资源的序号相同,则上行参考信号资源排列在下行参考信号资源之前,或者上行参考信号资源排列在下行参考信号资源之后。示例性的,第三参考信号资源集合为{SRS资源#1,CSI-RS资源#1,SRS资源#2,CSI-RS资源#2,SRS资源#3,CSI-RS资源#3,CSI-RS资源#4}。(2)同一类型的参考信号资源按照序号从小到大连续排列,且每一种参考信号资源均有一个标识符用于指示其类别。示例性的,第三参考信号资源集合为{SRS资源:#1,#2,#3,CSI-RS资源:#1,#2,#3,#4}。(3)同一类型的参考信号资源之间序号连续,不同类型的参考信号资源之间序号不连续。另外,协议还可以规定:在第三参考信号资源集合中,上行参考信号资源排列在下行参考信号资源之前,或者上行参考信号资源排列在下行参考信号资源之后。示例性的,假设协议规定CSI-RS排列在SRS之前,第三参考信号资源集合为{#1,#2,#3,#5,#6,#7,#8}。可以理解的是,在该第三参考信号资源集合中,#1、#2、#3为CSI-RS资源的序号,#5、#6、#7、#8为SRS资源的序号。
在本申请实施例中,CSI-RS可以为非零功率(non zero power,NZP)-CSI-RS,或者其他形式的CSI-RS,例如零功率(zero power,ZP)-CSI-RS,本申请实施例对此不作限定。
其中,第三参考信号资源集合可以复用SRS资源集合。在这种情况下,第三参考信号资源集合的配置流程可参考当前的SRS资源集合的配置流程,第三参考信号资源集合的触发流程也可参考当前的SRS资源集合的触发流程,此处不再赘述。另外,需要说明的是,与当前的SRS资源集合不同的是,当前的SRS资源集合不会包括下行参考信号资源的信息,例如CSI-RS资源标识,而复用作为第三参考信号资源集合的SRS资源集合包括下行参考信号资源的信息。可选的,一种实现方式中,协议可以约定一个或多个特定的SRS资源集合的标识,作为第三参考信号资源集合的标识。示例性的,特定的SRS资源集合的标识可以为协议所允许的最小标识(例如#0),或者为协议所允许的最大标识。另一种实现方式中,SRS资源集合的配置信息中增加一个指示域,该指示域用于指示该SRS资源集合的配置信息所配置的SRS资源集合是否被复用为第三参考信号资源集合。
或者,第三参考信号资源集合可以复用CSI-RS资源集合。在这种情况下,第三参考信号资源集合的配置流程可参考当前的CSI-RS资源集合的配置流程,第三参考信号资源集合的触发流程也可参考当前的CSI-RS资源集合的触发流程,此处不再赘述。另外,需要说明的是,与当前的CSI-RS资源集合不同的是,当前的CSI-RS资源集合不会包括上行参考信号资源的信息,例如SRS资源标识,而复用作为第三参考信号资源 集合的CSI-RS资源集合包括上行参考信号资源的信息。可选的,一种实现方式中,协议可以约定一个或多个特定的CSI-RS资源集合的标识,作为第三参考信号资源集合的标识。示例性的,特定的CSI-RS资源集合的标识可以为协议所允许的最小标识(例如#0),或者为协议所允许的最大标识。另一种实现方式中,CSI-RS资源集合的配置信息中增加一个指示域,用于指示该CSI-RS资源集合的配置信息所配置的CSI-RS资源集合是否被复用为第三参考信号资源集合。
又或者,第三参考信号资源集合可以为新定义的参考信号资源集合。在这种情况下,第三参考信号资源集合的配置流程为:网络设备向终端发送第二配置信息,该第二配置信息至少包括第三参考信号资源集合的标识、一个或多个上行参考信号资源的标识、以及一个或多个下行参考信号资源的标识。可选的,所述第二配置信息承载于RRC信令中。第三参考信号资源集合的触发流程为:网络设备向终端发送第一触发信息,所述第一触发信息用于激活一个第三参考信号资源集合中的上行参考信号资源和下行参考信号资源。或者,网络设备向终端发送第二触发信息和/或第三触发信息,所述第二触发信息用于激活一个第三参考信号资源集合中的上行参考信号资源,所述第三触发信息用于激活一个第三参考信号资源集合中的下行参考信号资源。需要说明的是,第一触发信息、第二触发信息以及第三触发信息可以承载于MAC-CE信令或者DCI中。可选的,第二触发信息可以复用SRS资源的触发方式。第三触发信息可以复用CSI-RS资源的触发方式。
可选的,在网络设备为终端配置了探测能力信息所指示的每一种信道探测方式所需的参考信号资源之后,网络设备可以以显式的方式指示终端在下行信道探测过程中使用的信道探测方式。如图5所示,图4所示的信道探测的配置方法还包括步骤S301。
S301、网络设备向终端发送指示信息,以使得终端接收到指示信息。
其中,上述指示信息用于指示目标信道探测方式。目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。可以理解的是,目标信道探测方式即为终端在下行信道探测过程中使用的信道探测方式。
可选的,指示信息包含目标信道探测方式的信息。例如,探测能力信息指示终端支持第二探测方式和第三探测方式,则指示信息可以包含第二探测方式的信息,以指示目标信道探测方式为第二探测方式;或者,指示信息可以包含第三探测方式的信息,以指示目标信道探测方式为第三探测方式。又例如,探测能力信息指示终端支持第二探测方式,则指示信息包含第二探测方式的信息,以指示目标信道探测方式为第二探测方式。
可选的,指示信息以n个比特来表示,例如,指示信息以2个比特来表示,“00”指示目标信道探测方式为第二探测方式,“01”指示目标信道探测方式为第三探测方式,“10”指示目标信道探测方式为第一探测方式。
需要说明的是,上述指示信息可承载于RRC信令、MAC-CE信令或者DCI中。
可选的,在探测能力信息指示终端仅支持一种信道探测方式的情况下,网络设备也可以不向终端发送指示信息,以减少信令开销。此时,目标信道探测方式即为该探测能力信息所指示的信道探测方式。例如,探测能力信息指示终端支持第一探测方式,此时,目标信道探测方式即为第一探测方式。
这样一来,终端可以根据网络设备的指示,以目标信道探测方式来进行信道探测。
另外,结合步骤S201进行说明,在网络设备以显式的方式指示目标探测方式的情况下,网络设备为终端所配置的参考信号资源可以多于实际信道探测所需的参考信号资源。
另外,若网络设备为终端配置的参考信号资源的数目大于实际信道所需的参考信号资源的数目,终端可以按照预设规则选择对应的参考信号资源。例如,所述预设规则包括:从参考信号资源集合中,按照序号从小到大的顺序,选择对应的参考信号资源。以上仅是对预设规则的一种示例,本申请实施例对此不作任何限定。
举例来说,假设终端的天线端口信息为2T4R,且终端不具备天线选择能力,网络设备向终端发送第一配置信息,为终端配置参考信号资源。其中,第一配置信息所关联的CSI-RS资源集合包括4个2port的CSI-RS资源,例如,CSI-RS资源#0至CSI-RS资源集合#3;第一配置信息所关联的SRS资源集合包括4个2port的SRS资源,例如,SRS资源#0至SRS资源#3。在这种情况下,若终端收到指示信息,指示信息指示目标探测方式为第三探测方式,则终端根据自己的天线端口信息2T4R,选择CSI-RS资源#0进行下行信道测量,并反馈2port的下行信道信息;同时,终端选择SRS资源#0发送上行参考信号,以使得网络设备基于信道互易性确定另外2port的下行信道信息。
再举例来说,假设终端的天线端口信息为2T4R,且终端不具备天线选择能力,网络设备向终端发送第一配置信息,为终端配置参考信号资源。其中,第一配置信息所关联的CSI-RS资源集合包括4个2port的CSI-RS资源,例如,CSI-RS资源#0至CSI-RS资源集合#3;第一配置信息所关联的SRS资源集合包括4个1port的SRS资源,例如,SRS资源#0至SRS资源#3。在这种情况下,若终端收到指示信息,指示信息指示目标探测方式为第三探测方式,则终端根据自己的天线端口信息2T4R,选择CSI-RS资源#0进行下行信道测量,并反馈2port的下行信道信息;同时,终端选择SRS资源#0和SRS资源#1发送上行参考信号,以使得网络设备基于信道互易性确定另外2port的下行信道信息。若终端收到指示信息,指示信息指示目标探测方式为第一探测方式,终端选择CSI-RS资源#0和CSI-RS资源#1进行下行信道探测,并反馈4port的下行信道信息。
或者,网络设备以隐式的方式来指示终端在信道探测过程中使用的信道探测方式。如图6所示,图3所示的信道探测的配置方法还包括步骤S401。
S401、网络设备为终端配置目标信道探测方式所需的参考信号资源,以指示终端使用目标信道探测方式进行下行信道探测。
其中,目标信道探测方式为探测能力信息所指示的信道探测方式中的一种。换句话说,目标信道探测方式即为终端在信道探测过程中使用的信道探测方式。
作为一种实现方式,网络设备向终端发送第三配置信息,所述第三配置信息用于为终端配置目标信道探测方式所需的参考信号资源,该第三配置信息还用于使终端确定目标信道探测方式。
若目标信道探测方式为第二探测方式,则网络设备为终端配置一个或多个上行参考信号资源。若目标信道探测方式为第三探测方式,则网络设备为终端配置一个或多个上行参考信号资源和一个或多个下行参考信号资源。若目标信道探测方式为第一探 测方式,则网络设备为终端配置一个或多个下行参考信号资源。
可选的,网络设备为终端配置的参考信号资源的数目等于实际信道探测所需的参考信号资源的数目。也就是说,终端可以根据网络设备为其配置的参考信号资源的种类和数量,确定目标信道探测方式。之后,终端使用目标信道探测方式进行下行信道探测。
举例来说,假设终端的天线端口信息为1T8R,终端具有天线选择能力的天线端口信息为1T4R。若网络设备指示终端使用第三探测方式进行下行信道探测,则网络设备可以为终端配置一个第三参考信号资源集合,该第三参考信号资源集合包括4个1port的SRS资源,以及1个4port的CSI-RS资源。这样一来,终端根据该参考信号资源集合,能够确定目标信道探测方式为第三探测方式,从而终端使用第三探测方式进行下行信道探测。
举例来说,假设终端的天线端口信息为2T2R。若网络设备指示终端使用第一探测方式进行下行信道探测,则网络设备可以为终端配置1个2port的CSI-RS资源。或者,若网络设备指示终端使用第二探测方式进行下行信道探测,则网络设备可以为终端配置1个2port的SRS资源。又或者,若终端具有天线选择能力,网络设备指示终端使用第二探测方式进行下行信道探测,则网络设备可以为终端配置2个1port的SRS资源。
需要说明的是,网络设备是采用图5所示的技术方案还是采用图6所示的方案,是由通信系统预先配置确定的,或者是标准中定义的,又或者是网络设备和终端协商后确定的。
对于第三探测方式来说,一部分下行信道信息是基于测量上行参考信号确定的,另一部分下行信道信息是基于测量下行参考信号确定的。(为了便于描述,下文将基于测量上行参考信号确定的下行信道信息简称为第一下行信道信息,基于测量下行参考信号确定的下行信道信息简称为第二下行信道信息)。由于网络设备发送下行参考信号的功率与终端发送上行参考信号的功率可以是不相同的,这就导致第一下行信道信息与第二下行信道信息在功率增益上存在偏差,从而会影响网络设备根据第一下行信道信息和第二下行信道信息重构出来的下行信道的准确性。
为了解决上述技术问题,在终端采用第三探测方式进行下行信道探测的过程中,终端可以采用图7所示的方法,来上报下行信道信息。如图7所示,该方法包括:
S501、终端对下行参考信号进行信道估计,确定下行信道矩阵。
其中,步骤S501可参考现有技术,此处不再赘述。
S502、终端对下行信道矩阵进行处理,确定下行信道信息。
其中,所述下行信道信息包括:N个第一矩阵对应的特征值以及特征向量,所述第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量,所述第二信道向量由第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述第一信道向量为下行信道矩阵中的行向量,N为大于等于1的整数。
或者,所述下行信道信息包括:功率相位差参数以及N个第三信道向量,所述第三信道向量由第二信道向量除以功率相位差参数来确定,所述第二信道向量为第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述第一信道向量为下行信道矩 阵中的行向量,所述功率相位差参数为N个第二信道向量中的一个元素。
可以理解的是,下行信道矩阵包括M个列向量,M大于或等于N。
下面先对第一下行信道矩阵的处理思路进行简单介绍。
对H
srs进行处理,例如,从H
srs中提取出一个元素(例如h
11),确定H′
srs,H′
srs不再受终端和网络设备的功率增益的影响。
同样地,对G
csi-rs进行处理,例如,从G
csi-rs中提取出与H
srs所提取的元素相同位置的一个元素(例如,H
srs提取的元素为h
11,则G
csi-rs提取的元素为g
11),确定G′
csi-rs,G′
csi-rs不再受终端和网络设备的功率增益的影响。
这样一来,若不考虑信道估计的误差,[g′
n1 g′
n1 ... g′
nm]=[h′
n1 h′
n2 ... h′
nm]。
在采用第三探测方式的情况下,基于信道互易性确定出的信道向量为H
1、……、H
j,基于码本反馈确定出的信道向量为G
j+1、……、G
n。其中,j小于n。在这种情况下,网络设备进行信道重构时,以H′
1、……、H′
j,以及G′
j+1、……、G′
n,能够确定出不受功率增益影响的矩阵:
作为一种实现方式,步骤S501包括以下步骤:(1)将下行信道矩阵中的N个待反馈的第一信道向量除以下行信道矩阵中预设位置的元素,确定N个第二信道向量。可以理解的是,待反馈的N个第一信道向量即为上述分析中的G
j+1、……、G
n,N个第二信道向量即为上述分析中的G′
j+1、……、G′
n。(2)对于每一个第二信道向量来说,对第一矩阵进行特征值分解,确定对应的特征值以及特征向量。第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量。从而,下行信道信息包括:N个第一矩阵对应的特征值以及特征向量。
可以理解的是,预设位置是由协议规定的,或者通信系统预先配置的。
作为另一种实现方式,步骤S501包括以下步骤:(1)将下行信道矩阵中待反馈的N个第一信道向量除以下行信道矩阵中预设位置的元素,确定N个第二信道向量。(2)对于这N个第二信道向量来说,将N个第二信道向量除以功率相位参数,确定N个对应的第三信道向量。其中,功率相位差参数可以为N个第二信道向量中的一个元素。从而,下行信道信息包括:功率相位差参数,以及N个第三信道向量。
可以理解的是,功率相位差参数在N个第二信道向量中的位置是协议规定的,或者是通信系统预先配置的。例如,功率相位差参数可以为N个第二信道向量中第一个第二信道向量的第一个元素。
可选的,若功率相位差参数在N个第二信道向量中的位置未预先定义,则下行信道信息还可以包括:位置信息,所述位置信息用于指示功率相位差参数在N个第二信道向量中的位置。
S503、终端向网络设备发送下行信道信息,以使得网络设备接收到下行信道信息。
这样一来,网络设备基于终端上报的下行信道信息,能够重构出更为准确的信道,避免终端和网络设备之间功率增益不同的影响。
上述主要从每一个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,每一个网元,例如网络设备和终端,为了实现上述功能,其包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
图8为本申请实施例提供的一种终端的结构示意图。如图8所示,终端包括:处理模块301和通信模块302。其中,所述处理模块301用于支持终端执行图3中的步 骤S101,图7中的步骤S501和S502,和/或用于本文描述的技术方案的其他过程。所述通信模块302用于支持终端执行图3中的步骤S102,图4中的步骤S201,图5中的步骤S301,图6中的步骤S401,图7中的步骤S503,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
作为一个示例,结合图2所示的终端,图8中的通信模块302可以由图2中的收发器103来实现,图8中的处理模块301可以由图2中的处理器101来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种通信装置,用于执行如图3-图7所示的方法。作为一种可能的产品形态,该通信装置由处理器和通信接口来实现。作为另一种可能的产品形态,该通信装置由逻辑电路、输入接口和输出接口来实现。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图2所示的终端上运行时,使得该终端执行如图3-图7所示的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持终端实现图3-图7所示的方法。在本申请实施例中,该处理器可以是专用处理器,也可以是通用处理器。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存终端必要的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在图2所示的终端上运行时,使得终端可以执行图3-图7所示的方法。
上述本申请实施例提供的终端、计算机存储介质、芯片系统以及计算机程序产品均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
图9为本申请实施例提供的一种网络设备的结构示意图。如图9所示,网络设备包括:通信模块401和处理模块402。其中,通信模块401用于支持网络设备执行图3中的步骤S102,图4中的步骤S201,图5中的步骤S301,图7中的步骤S503,和/或用于本文描述的技术方案的其他过程。处理模块402用于支持网络设备执行图3中的步骤S103,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
作为一个示例,结合图2所示的网络设备,图9中的通信模块401可以由图2中 的收发器203来实现,图9中的处理模块402可以由图2中的处理器201来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种通信装置,用于执行如图3-图7所示的方法。作为一种可能的产品形态,该通信装置由处理器和通信接口来实现。作为另一种可能的产品形态,该通信装置由逻辑电路、输入接口和输出接口来实现。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令;当所述计算机可读存储介质在图2所示的网络设备上运行时,使得该网络设备执行如图3-图7所示的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现图3-图7所示的方法。在本申请实施例中,该处理器可以是专用处理器,也可以是通用处理器。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存网络设备必要的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在图2所示的网络设备上运行时,使得网络设备可以执行图3-图7所示的方法。
上述本申请实施例提供的网络设备、计算机存储介质、芯片系统以及计算机程序产品均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
本申请实施例还提供一种通信系统,该通信系统包括终端和网络设备,网络设备和终端用于执行如图3-图7所示的方法。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (43)
- 一种信道探测的配置方法,其特征在于,所述方法包括:终端生成探测能力信息,所述探测能力信息用于指示所述终端支持的信道探测方式;所述终端向网络设备发送所述探测能力信息。
- 根据权利要求1所述的信道探测的配置方法,其特征在于,所述信道探测方式包括基于信道互易性的下行信道探测方式和基于码本反馈的下行信道探测方式中的至少一种。
- 根据权利要求2所述的信道探测的配置方法,其特征在于,所述信道探测方式包括第一探测方式、第二探测方式、以及第三探测方式中的至少一种;其中,所述第一探测方式为仅基于码本反馈的下行信道探测方式;所述第二探测方式为仅基于信道互易性的下行信道探测方式;所述第三探测方式为结合信道互易性和码本反馈的下行信道探测方式。
- 根据权利要求3所述的信道探测的配置方法,其特征在于,若所述探测能力信息包含第一参数,则所述探测能力信息用于指示终端至少支持所述第二探测方式和所述第三探测方式中的一种;其中,所述第一参数用于指示所述终端支持信道互易性。
- 根据权利要求3或4所述的信道探测的配置方法,其特征在于,所述探测能力信息包含第二参数,所述第二参数用于指示所述终端的天线端口信息,所述终端的天线端口信息包括发送天线端口数和接收天线端口数;若所述第二参数所指示的发送天线端口数等于所述第二参数所指示的接收天线端口数,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第二参数所指示的发送天线端口数不等于所述第二参数所指示的接收天线端口数,则所述探测能力信息用于指示所述终端至少支持所述第三探测方式。
- 根据权利要求3或4所述的信道探测的配置方法,其特征在于,所述探测能力信息包含第二参数和第三参数;其中,所述第二参数用于指示所述终端的天线端口信息,所述第三参数用于指示所述终端具有天线选择能力的天线端口信息;若所述第三参数所指示的具有天线选择能力的天线端口信息与所述第二参数所指示的天线端口信息相同,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第三参数所指示的具有天线选择能力的天线端口信息与所述第二参数所指示的天线端口信息不相同,则所述探测能力信息用于指示所述终端支持所述第三探测方式,或者所述探测能力信息用于指示所述终端支持所述第三探测方式和所述第一探测方式。
- 根据权利要求3或4所述的信道探测的配置方法,其特征在于,所述探测能力信息包含第二参数和第四参数;其中,所述第二参数用于指示所述终端的天线端口信息,所述终端的天线端口信息包括发送天线端口数和接收天线端口数;所述第四参数用于指示所述终端是否具有天线选择能力;若所述第四参数用于指示所述终端具有天线选择能力,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第四参数用于指示所述终端不具有天线选择能力,且所述第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则所述探测能力信息用于指示所述终端支持所述第三探测方式,或者,所述探测能力信息用于指示所述终端支持所述第一探测方式和所述第三探测方式。
- 根据权利要求1至7任一项所述的信道探测的配置方法,其特征在于,所述方法还包括:所述终端接收所述网络设备发送的指示信息,所述指示信息用于指示目标信道探测方式,所述目标信道探测方式为所述探测能力信息所指示的信道探测方式中的一种。
- 根据权利要求1至7任一项所述的信道探测的配置方法,其特征在于,所述方法还包括:所述终端接收所述网络设备发送的配置信息,所述配置信息用于为所述终端配置目标信道探测方式所需的参考信号资源,所述配置信息还用于使所述终端确定所述目标信道探测方式,所述目标信道探测方式为所述探测能力信息所指示的信道探测方式中的一种。
- 根据权利要求3至9任一项所述的信道探测的配置方法,其特征在于,所述方法还包括:若所述终端使用第三探测方式进行下行信道探测,则所述终端向所述网络设备发送下行信道信息;其中,所述下行信道信息包括:N个第一矩阵对应的特征值以及特征向量,所述第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量,所述第二信道向量由第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述第一信道向量为下行信道矩阵中的行向量,N为大于等于1的整数;或者,所述下行信道信息包括:功率相位差参数以及N个第三信道向量,所述第三信道向量由第二信道向量除以功率相位差参数来确定,所述第二信道向量为第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述功率相位差参数为N个第二信道向量中的一个元素。
- 一种信道探测的配置方法,其特征在于,所述方法包括:网络设备接收终端发送的探测能力信息,所述探测能力信息用于指示所述终端支持的信道探测方式;所述网络设备根据所述探测能力信息,确定所述终端支持的信道探测方式。
- 根据权利要求11所述的信道探测的配置方法,其特征在于,所述信道探测方式包括基于信道互易性的下行信道探测方式和基于码本反馈的下行信道探测方式中的至少一种。
- 根据权利要求12所述的信道探测的配置方法,其特征在于,所述信道探测方式包括第一探测方式、第二探测方式、以及第三探测方式中的至少一种;其中,所述第一探测方式为仅基于码本反馈的下行信道探测方式;所述第二探测方式为仅基于信道互易性的下行信道探测方式;所述第三探测方式为结合信道互易性和码本反馈的下行信道探测方式。
- 根据权利要求13所述的信道探测的配置方法,其特征在于,若所述探测能力 信息包含第一参数,则所述探测能力信息用于指示终端至少支持所述第二探测方式和所述第三探测方式中的一种;其中,所述第一参数用于指示所述终端支持信道互易性。
- 根据权利要求13或14所述的信道探测的配置方法,其特征在于,所述探测能力信息包含第二参数,所述第二参数用于指示所述终端的天线端口信息,所述终端的天线端口信息包括发送天线端口数和接收天线端口数;若所述第二参数所指示的发送天线端口数等于所述第二参数所指示的接收天线端口数,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第二参数所指示的发送天线端口数不等于所述第二参数所指示的接收天线端口数,则所述探测能力信息用于指示所述终端至少支持所述第三探测方式。
- 根据权利要求13或14所述的信道探测的配置方法,其特征在于,所述探测能力信息包含第二参数和第三参数;其中,所述第二参数用于指示所述终端的天线端口信息,所述第三参数用于指示所述终端具有天线选择能力的天线端口信息;若所述第三参数所指示的具有天线选择能力的天线端口信息与所述第二参数所指示的天线端口信息相同,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第三参数所指示的具有天线选择能力的天线端口信息与所述第二参数所指示的天线端口信息不相同,则所述探测能力信息用于指示所述终端支持所述第三探测方式,或者所述探测能力信息用于指示所述终端支持所述第三探测方式和所述第一探测方式。
- 根据权利要求13或14所述的信道探测的配置方法,其特征在于,所述探测能力信息包含第二参数和第四参数;其中,所述第二参数用于指示所述终端的天线端口信息,所述终端的天线端口信息包括发送天线端口数和接收天线端口数;所述第四参数用于指示所述终端是否具有天线选择能力;若所述第四参数用于指示所述终端具有天线选择能力,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第四参数用于指示所述终端不具有天线选择能力,且所述第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则所述探测能力信息用于指示所述终端支持所述第三探测方式,或者,所述探测能力信息用于指示所述终端支持所述第一探测方式和所述第三探测方式。
- 根据权利要求11至17任一项所述的信道探测的配置方法,其特征在于,所述方法还包括:所述网络设备向所述终端发送指示信息,所述指示信息用于指示目标信道探测方式,所述目标信道探测方式为所述探测能力信息所指示的信道探测方式中的一种。
- 根据权利要求11至17任一项所述的信道探测的配置方法,其特征在于,所述方法还包括:所述网络设备向所述终端发送配置信息,所述配置信息用于为所述终端配置目标信道探测方式所需的参考信号资源,所述配置信息还用于使终端确定所述目标信道探测方式,所述目标信道探测方式为所述探测能力信息所指示的信道探测方式中的一种。
- 根据权利要求13至19任一项所述的信道探测的配置方法,其特征在于,所 述方法还包括:所述网络设备接收所述终端发送的下行信道信息;其中,所述下行信道信息包括:N个第一矩阵对应的特征值以及特征向量,所述第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量,所述第二信道向量由第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述第一信道向量为下行信道矩阵中的行向量,N为大于等于1的整数;或者,所述下行信道信息包括:功率相位差参数以及N个第三信道向量,所述第三信道向量由第二信道向量除以功率相位差参数来确定,所述第二信道向量为第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述第一信道向量为下行信道矩阵中的行向量,所述功率相位差参数为N个第二信道向量中的一个元素。
- 一种终端,其特征在于,包括:处理模块,用于生成探测能力信息,所述探测能力信息用于指示所述终端支持的信道探测方式;通信模块,用于向网络设备发送探测能力信息。
- 根据权利要求21所述的终端,其特征在于,所述信道探测方式包括基于信道互易性的下行信道探测方式和基于码本反馈的下行信道探测方式中的至少一种。
- 根据权利要求22所述的终端,其特征在于,所述信道探测方式包括第一探测方式、第二探测方式、以及第三探测方式中的至少一种;其中,所述第一探测方式为仅基于码本反馈的下行信道探测方式;所述第二探测方式为仅基于信道互易性的下行信道探测方式;所述第三探测方式为结合信道互易性和码本反馈的下行信道探测方式。
- 根据权利要求23所述的终端,其特征在于,若所述探测能力信息包含第一参数,则所述探测能力信息用于指示终端至少支持所述第二探测方式和所述第三探测方式中的一种;其中,所述第一参数用于指示所述终端支持信道互易性。
- 根据权利要求23或24所述的终端,其特征在于,所述探测能力信息包含第二参数,所述第二参数用于指示所述终端的天线端口信息,所述终端的天线端口信息包括发送天线端口数和接收天线端口数;若所述第二参数所指示的发送天线端口数等于所述第二参数所指示的接收天线端口数,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第二参数所指示的发送天线端口数不等于所述第二参数所指示的接收天线端口数,则所述探测能力信息用于指示所述终端至少支持所述第三探测方式。
- 根据权利要求23或24所述的终端,其特征在于,所述探测能力信息包含第二参数和第三参数;其中,所述第二参数用于指示所述终端的天线端口信息,所述第三参数用于指示所述终端具有天线选择能力的天线端口信息;若所述第三参数所指示的具有天线选择能力的天线端口信息与所述第二参数所指示的天线端口信息相同,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第三参数所指示的具有天线选择能力的天线端口信息与所述第二参数所指示的天线端口信息不相同,则所述探测能力信息用于指示所述终端支持所述第三探测 方式,或者所述探测能力信息用于指示所述终端支持所述第三探测方式和所述第一探测方式。
- 根据权利要求23或24所述的终端,其特征在于,所述探测能力信息包含第二参数和第四参数;其中,所述第二参数用于指示所述终端的天线端口信息,所述终端的天线端口信息包括发送天线端口数和接收天线端口数;所述第四参数用于指示所述终端是否具有天线选择能力;若所述第四参数用于指示所述终端具有天线选择能力,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第四参数用于指示所述终端不具有天线选择能力,且所述第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则所述探测能力信息用于指示所述终端支持所述第三探测方式,或者,所述探测能力信息用于指示所述终端支持所述第一探测方式和所述第三探测方式。
- 根据权利要求21至27任一项所述的终端,其特征在于,所述通信模块,还用于接收所述网络设备发送的指示信息,所述指示信息用于指示目标信道探测方式,所述目标信道探测方式为所述探测能力信息所指示的信道探测方式中的一种。
- 根据权利要求21至27任一项所述的终端,其特征在于,所述通信模块,还用于接收所述网络设备发送的配置信息,所述配置信息用于为所述终端配置目标信道探测方式所需的参考信号资源,所述配置信息还用于使所述终端确定所述目标信道探测方式,所述目标信道探测方式为所述探测能力信息所指示的信道探测方式中的一种。
- 根据权利要求23至29任一项所述的终端,其特征在于,所述通信模块,还用于若所述终端使用第三探测方式进行下行信道探测,向所述网络设备发送下行信道信息;其中,所述下行信道信息包括:N个第一矩阵对应的特征值以及特征向量,所述第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量,所述第二信道向量由第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述第一信道向量为下行信道矩阵中的行向量,N为大于等于1的整数;或者,所述下行信道信息包括:功率相位差参数以及N个第三信道向量,所述第三信道向量由第二信道向量除以功率相位差参数来确定,所述第二信道向量为第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述功率相位差参数为N个第二信道向量中的一个元素。
- 一种网络设备,其特征在于,包括:通信模块,用于接收终端发送的探测能力信息,所述探测能力信息用于指示所述终端支持的信道探测方式;处理模块,用于根据所述探测能力信息,确定所述终端支持的信道探测方式。
- 根据权利要求31所述的网络设备,其特征在于,所述信道探测方式包括基于信道互易性的下行信道探测方式和基于码本反馈的下行信道探测方式中的至少一种。
- 根据权利要求32所述的网络设备,其特征在于,所述信道探测方式包括第一 探测方式、第二探测方式、以及第三探测方式中的至少一种;其中,所述第一探测方式为仅基于码本反馈的下行信道探测方式;所述第二探测方式为仅基于信道互易性的下行信道探测方式;所述第三探测方式为结合信道互易性和码本反馈的下行信道探测方式。
- 根据权利要求33所述的网络设备,其特征在于,若所述探测能力信息包含第一参数,则所述探测能力信息用于指示终端至少支持所述第二探测方式和所述第三探测方式中的一种;其中,所述第一参数用于指示所述终端支持信道互易性。
- 根据权利要求33或34所述的网络设备,其特征在于,所述探测能力信息包含第二参数,所述第二参数用于指示所述终端的天线端口信息,所述终端的天线端口信息包括发送天线端口数和接收天线端口数;若所述第二参数所指示的发送天线端口数等于所述第二参数所指示的接收天线端口数,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第二参数所指示的发送天线端口数不等于所述第二参数所指示的接收天线端口数,则所述探测能力信息用于指示所述终端至少支持所述第三探测方式。
- 根据权利要求33或34所述的网络设备,其特征在于,所述探测能力信息包含第二参数和第三参数;其中,所述第二参数用于指示所述终端的天线端口信息,所述第三参数用于指示所述终端具有天线选择能力的天线端口信息;若所述第三参数所指示的具有天线选择能力的天线端口信息与所述第二参数所指示的天线端口信息相同,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第三参数所指示的具有天线选择能力的天线端口信息与所述第二参数所指示的天线端口信息不相同,则所述探测能力信息用于指示所述终端支持所述第三探测方式,或者所述探测能力信息用于指示所述终端支持所述第三探测方式和所述第一探测方式。
- 根据权利要求33或34所述的网络设备,其特征在于,所述探测能力信息包含第二参数和第四参数;其中,所述第二参数用于指示所述终端的天线端口信息,所述终端的天线端口信息包括发送天线端口数和接收天线端口数;所述第四参数用于指示所述终端是否具有天线选择能力;若所述第四参数用于指示所述终端具有天线选择能力,则所述探测能力信息用于指示所述终端至少支持所述第二探测方式;若所述第四参数用于指示所述终端不具有天线选择能力,且所述第二参数所指示的接收天线端口数不等于第二参数所指示的发送天线端口数,则所述探测能力信息用于指示所述终端支持所述第三探测方式,或者,所述探测能力信息用于指示所述终端支持所述第一探测方式和所述第三探测方式。
- 根据权利要求31至37任一项所述的网络设备,其特征在于,所述通信模块,还用于向所述终端发送指示信息,所述指示信息用于指示目标信道探测方式,所述目标信道探测方式为所述探测能力信息所指示的信道探测方式中的一种。
- 根据权利要求31至37任一项所述的网络设备,其特征在于,所述通信模块,还用于向所述终端发送配置信息,所述配置信息用于为所述终端配置目标信道探测方式所需的参考信号资源,所述配置信息还用于使所述终端确定所述目标信道探测方式,所述目标信道探测方式为所述探测能力信息所指示的信道探测方式中的一种。
- 根据权利要求33至39任一项所述的网络设备,其特征在于,所述通信模块,还用于接收所述终端发送的下行信道信息;其中,所述下行信道信息包括:N个第一矩阵对应的特征值以及特征向量,所述第一矩阵等于第二信道向量的共轭转置向量乘以第二信道向量,所述第二信道向量由第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述第一信道向量为下行信道矩阵中的行向量,N为大于等于1的整数;或者,所述下行信道信息包括:功率相位差参数以及N个第三信道向量,所述第三信道向量由第二信道向量除以功率相位差参数来确定,所述第二信道向量为第一信道向量除以下行信道矩阵中预设位置的元素来确定,所述功率相位差参数为N个第二信道向量中的一个元素。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时使得处理器执行如权利要求1至20任一项所述的信道探测的配置方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括程序指令,所述程序指令被处理器执行时使得处理器执行如权利要求1至20任一项所述的信道探测的配置方法。
- 一种芯片,其特征在于,所述芯片包括处理器,当所述处理器执行指令时,所述处理器用于执行权利要求1至20任一项所述的信道探测的配置方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811460043.2A CN111262667B (zh) | 2018-11-30 | 2018-11-30 | 信道探测的配置方法及装置 |
CN201811460043.2 | 2018-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020108637A1 true WO2020108637A1 (zh) | 2020-06-04 |
Family
ID=70852695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/122135 WO2020108637A1 (zh) | 2018-11-30 | 2019-11-29 | 信道探测的配置方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111262667B (zh) |
WO (1) | WO2020108637A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112152858A (zh) * | 2020-09-27 | 2020-12-29 | 普联技术有限公司 | 一种有线端口的配置方法 |
WO2022077202A1 (en) * | 2020-10-13 | 2022-04-21 | Qualcomm Incorporated | Methods and apparatus for managing ml processing model |
WO2023106979A1 (en) * | 2021-12-09 | 2023-06-15 | Telefonaktiebolaget Lm Ericsson (Publ) | A method performed in a network node for configuring downlink transmissions to a wireless device in a wireless communications network |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230217366A1 (en) * | 2020-06-10 | 2023-07-06 | Beijing Xiaomi Mobile Software Co., Ltd. | Access method, access apparatus, and storage medium |
CN115868134A (zh) * | 2020-08-31 | 2023-03-28 | 华为技术有限公司 | 一种通信方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102036393A (zh) * | 2009-09-28 | 2011-04-27 | 大唐移动通信设备有限公司 | 多小区信道信息的确定方法和设备 |
CN102142871A (zh) * | 2010-01-29 | 2011-08-03 | 普天信息技术研究院有限公司 | 一种改进的信道探测信号发送方法和系统 |
CN102238565A (zh) * | 2010-05-06 | 2011-11-09 | 中兴通讯股份有限公司 | 信道探测方法和装置 |
US20150131751A1 (en) * | 2011-08-01 | 2015-05-14 | Blackberry Limited | Joint transmission using interference alignment |
CN105453678A (zh) * | 2013-08-23 | 2016-03-30 | 华为技术有限公司 | 频分双工系统的信道探测 |
CN105634658A (zh) * | 2014-10-31 | 2016-06-01 | 中国移动通信集团公司 | 一种进行发送处理的方法、设备及系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006034577A1 (en) * | 2004-09-30 | 2006-04-06 | Nortel Networks Limited | Channel sounding in ofdma system |
CN103067132B (zh) * | 2012-12-28 | 2015-09-23 | 华为技术有限公司 | 信道探测方法、通信方法、终端及系统 |
CN106160939A (zh) * | 2015-04-20 | 2016-11-23 | 中兴通讯股份有限公司 | 一种信道探测方法、装置及系统 |
CN105933099A (zh) * | 2016-06-06 | 2016-09-07 | 深圳市金立通信设备有限公司 | 一种传输信道探测参考信号srs的方法、终端及基站 |
CN116137545A (zh) * | 2017-03-21 | 2023-05-19 | 三菱电机株式会社 | 通信系统 |
CN108631847B (zh) * | 2017-03-24 | 2021-06-01 | 华为技术有限公司 | 传输信道状态信息的方法、终端设备和网络设备 |
-
2018
- 2018-11-30 CN CN201811460043.2A patent/CN111262667B/zh active Active
-
2019
- 2019-11-29 WO PCT/CN2019/122135 patent/WO2020108637A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102036393A (zh) * | 2009-09-28 | 2011-04-27 | 大唐移动通信设备有限公司 | 多小区信道信息的确定方法和设备 |
CN102142871A (zh) * | 2010-01-29 | 2011-08-03 | 普天信息技术研究院有限公司 | 一种改进的信道探测信号发送方法和系统 |
CN102238565A (zh) * | 2010-05-06 | 2011-11-09 | 中兴通讯股份有限公司 | 信道探测方法和装置 |
US20150131751A1 (en) * | 2011-08-01 | 2015-05-14 | Blackberry Limited | Joint transmission using interference alignment |
CN105453678A (zh) * | 2013-08-23 | 2016-03-30 | 华为技术有限公司 | 频分双工系统的信道探测 |
CN105634658A (zh) * | 2014-10-31 | 2016-06-01 | 中国移动通信集团公司 | 一种进行发送处理的方法、设备及系统 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112152858A (zh) * | 2020-09-27 | 2020-12-29 | 普联技术有限公司 | 一种有线端口的配置方法 |
CN112152858B (zh) * | 2020-09-27 | 2022-12-09 | 普联技术有限公司 | 一种有线端口的配置方法 |
WO2022077202A1 (en) * | 2020-10-13 | 2022-04-21 | Qualcomm Incorporated | Methods and apparatus for managing ml processing model |
WO2023106979A1 (en) * | 2021-12-09 | 2023-06-15 | Telefonaktiebolaget Lm Ericsson (Publ) | A method performed in a network node for configuring downlink transmissions to a wireless device in a wireless communications network |
Also Published As
Publication number | Publication date |
---|---|
CN111262667B (zh) | 2022-04-05 |
CN111262667A (zh) | 2020-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020156103A1 (zh) | 信息反馈方法及装置 | |
WO2020108637A1 (zh) | 信道探测的配置方法及装置 | |
US12119902B2 (en) | Transmission precoding matrix indication method and device | |
US20200350965A1 (en) | Method for determining precoding matrix indicator, user equipment, and base station | |
US11997754B2 (en) | Power indication method and apparatus | |
WO2019214682A1 (zh) | 通信方法及装置 | |
WO2019137441A1 (zh) | 一种通信方法及装置 | |
WO2019137445A1 (zh) | 信道状态信息的测量方法和装置 | |
WO2018228228A9 (zh) | 信息传输方法及装置 | |
JP6783945B2 (ja) | 参照信号送信方法および装置 | |
TW201906445A (zh) | 波束管理方法、網路設備和終端 | |
US11705941B2 (en) | Quasi-co-location indication method and apparatus | |
EP4425802A1 (en) | Channel state information feedback method and apparatus | |
JP2021530161A (ja) | 通信方法及び通信機器 | |
WO2021203312A1 (en) | New radio (nr) multi-input multi-output (mimo) channel state information (csi) design for small bandwidth part (bwp) | |
US20190334595A1 (en) | Communication method, apparatus, and system | |
WO2020062265A1 (zh) | 通信方法、装置、网络设备、终端设备及系统 | |
WO2022040890A1 (zh) | 一种信息指示方法及装置 | |
WO2020192702A1 (zh) | 通信方法和通信装置 | |
CN112054831B (zh) | 信道状态信息的反馈方法及装置 | |
WO2019196886A1 (zh) | 一种预编码矩阵确定方法及装置 | |
WO2019085637A1 (zh) | 一种信道测量方法和用户设备 | |
WO2022193970A1 (zh) | 类型ⅱ端口选择码本的反馈、确定方法及装置、计算机可读存储介质 | |
WO2022198471A1 (zh) | 一种信息反馈方法以及相关装置 | |
WO2024208299A1 (zh) | 通信方法和通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19889551 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19889551 Country of ref document: EP Kind code of ref document: A1 |