WO2019214682A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2019214682A1
WO2019214682A1 PCT/CN2019/086202 CN2019086202W WO2019214682A1 WO 2019214682 A1 WO2019214682 A1 WO 2019214682A1 CN 2019086202 W CN2019086202 W CN 2019086202W WO 2019214682 A1 WO2019214682 A1 WO 2019214682A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
resource
symbol
srs resource
resource set
Prior art date
Application number
PCT/CN2019/086202
Other languages
English (en)
French (fr)
Inventor
秦熠
纪刘榴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19799822.2A priority Critical patent/EP3817469A4/en
Publication of WO2019214682A1 publication Critical patent/WO2019214682A1/zh
Priority to US16/949,676 priority patent/US20210058209A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communication technologies, and, more particularly, to a communication method and apparatus.
  • a 4th generation (4th generation, 4G) mobile communication system such as long term evolution (LTE)/LTE evolution (LTE-A)
  • UE user equipment
  • SRS Sounding Reference Signal
  • the UE considers that the multiple SRS resources conflict, thereby discarding the SRS transmission in the subframe, which is originally used for The resources for sending SRS are idle, which reduces resource utilization and adversely affects uplink channel measurement and uplink resource scheduling.
  • the UE In a 5th generation (5th generation, 5G) mobile communication system such as a new radio access technology (NR), the UE also periodically refines the SRS resources according to the base station (g Node B, gNB).
  • the SRS is sent to the eNB semi-persistently, or non-periodically.
  • the SRS resource configured by the gNB may be at least one SRS resource set, and each SRS resource set may include at least one SRS resource.
  • the SRS resource set may adopt one of the following types (setUse): a codebook (CB) based SRS resource set, a non-codebook (NCB) based SRS resource set, and is used for beam management (beam).
  • CB codebook
  • NCB non-codebook
  • BM SRS resource set and SRS resource set for Antenna Switching
  • AS Antenna Switching
  • the NR can support technologies such as BM and intra-slot AS, that is, the same UE can simultaneously transmit SRS on different SRS resources in the same time slot, as long as the time domain resources in different SRS resources are guaranteed. At least one of the frequency domain resource and the code domain resource can be distinguished.
  • the existing NR protocol version R15 release 15
  • the present application provides a communication method and apparatus, which are suitable for uplink signal transmission and reception for uplink channel quality measurement when resources conflict in a communication system.
  • a communication method including: receiving, by a terminal, first sounding reference signal SRS configuration information and second SRS configuration information, and determining whether a first SRS resource and a second SRS resource collide in a time unit. Even if the conflict occurs, the terminal may determine to transmit the SRS on one of the first SRS resource and the second SRS resource within the time unit.
  • the first SRS configuration information is used to indicate that the terminal sends the SRS on the first SRS resource
  • the second SRS configuration information is used to indicate that the terminal sends the SRS on the second SRS resource, where the time unit includes: a time slot or a symbol.
  • the terminal may further determine, in a time slot other than the time unit in the time slot in which the time unit is located, not in the first SRS resource and the second SRS resource.
  • the SRS is transmitted on another SRS resource other than the SRS resource, that is, the terminal determines that the SRS is transmitted only on one SRS resource of the first SRS resource and the second SRS resource in the time slot in which the time unit is located, Or the terminal determines that the SRS is not transmitted on another SRS resource other than one of the first SRS resource and the second SRS resource in the time slot in which the time unit is located.
  • the terminal does not consider that the first configuration information and the second configuration information configured to conflict between the first SRS resource and the second SRS resource in the time unit are received.
  • the terminal determines the first configuration information and the first The second configuration information is the wrong configuration information.
  • the terminal can send the SRS on one of the first SRS resource and the second SRS resource in the time unit, thereby avoiding In the case that the first SRS resource and the second SRS resource are idle in the time unit, the utilization efficiency of the SRS resource and the transmission efficiency of the SRS can be improved, thereby improving the measurement efficiency of the uplink channel and the scheduling efficiency of the uplink resource.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource meet the first time domain conflict condition, and the first SRS resource set and the second SRS resource set At least one of them is a resource set for antenna switching AS.
  • the first time domain conflict condition is that at least one time slot included in the first SRS resource is the same as at least one time slot included in the second SRS resource, and the time unit is a time slot.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set.
  • the first SRS resource set and the second SRS resource set may respectively be one of the following types of SRS resource sets: a codebook CB-based SRS resource set, a non-codebook NCB-based SRS resource set, and a beam management BM.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition and the first type conflict condition.
  • the second time domain conflict condition is that the at least one symbol included in the first SRS resource is the same as the at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the first type of conflict condition is that the first SRS resource set and the second SRS resource set are different types of SRS resource sets.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition and the second type conflict condition.
  • the second time domain conflict condition is that the at least one symbol included in the first SRS resource is the same as the at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the second type of conflict condition is that the first SRS resource set and the second SRS resource set are both SRS resource sets for the antenna switch AS.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition and the third type conflict condition.
  • the second time domain conflict condition is that the at least one symbol included in the first SRS resource is the same as the at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the third type of conflict condition is: the first SRS resource set is a SRS resource set for the beam management BM, and the third SRS resource indicated by the spatial relationship information in the second SRS configuration information belongs to the first SRS resource set, and the third The SRS resource is different from the first SRS resource.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition and the fourth type conflict condition.
  • the second time domain conflict condition is that the at least one symbol included in the first SRS resource is the same as the at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the fourth type of conflict condition is that the fourth SRS resource indicated by the spatial relationship information in the first SRS configuration information is different from the fifth SRS resource indicated by the spatial relationship information in the second SRS configuration information, and the fourth SRS resource is The fifth SRS resource belongs to the same SRS resource set, and the same SRS resource set is the SRS resource set used for beam management.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition, the frequency domain conflict condition, and the code domain conflict condition.
  • the second time domain conflict condition is that the at least one symbol included in the first SRS resource is the same as the at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the frequency domain collision condition is: the first SRS resource and the second SRS resource include at least one same subcarrier; the code domain collision condition is: the first SRS resource and the second SRS resource include at least one SRS sequence having the same cyclic shift.
  • the terminal determines that, in the time unit, sending the SRS on one of the first SRS resource and the second SRS resource
  • the method may include: if the terminal determines that the priority of the first SRS resource is higher than that of the second SRS resource Priority, the terminal determines to transmit the SRS on the first SRS resource in the time unit, so that the high priority SRS resource can be preferentially used for transmitting the SRS.
  • the priority of the SRS resource may be based on the type of the SRS resource set to which the SRS resource belongs (the CRS-based SRS resource set, the NCB-based SRS resource set, the SRS resource set for the BM, the SRS resource set for the AS), and the SRS.
  • Transmit mode periodic, semi-persistent, aperiodic
  • number of slots or symbols included in SRS resources scheduling time (time to receive DCI triggering aperiodic SRS) or activation time (received activation semi-continuous
  • the time of the SRS MAC CE is determined by at least one factor. It should be understood that the factors affecting the priority of the SRS resource may also include other factors than the above factors, and the application is not listed one by one.
  • a higher priority may be set for SRS resources that have a greater impact on uplink channel measurements and uplink resource scheduling.
  • the priority of the SRS resource included in the SRS resource set for the BM is generally higher than the priority of the SRS resource included in the other three types of SRS resource sets.
  • the priority of the SRS resource occupying a large number of symbols in the same time slot may be the priority of the SRS resource with a smaller number of occupied symbols in the same time slot.
  • the SRS resource with higher timeliness for uplink channel measurement and uplink resource scheduling may be set to a higher priority.
  • the priority of the SRS resource using the aperiodic (AP) transmission mode is higher than the priority of the SRS resource using the semi-persistent (SP) transmission mode, and the SRS using the semi-persistent transmission mode.
  • the priority of the resource is higher than the priority of the SRS resource using the periodic (P) transmission mode.
  • the priority of different SRS resources may also be determined according to the scheduling time of different SRS resources or the order of activation time. For example, the priority of the SRS resource after the scheduling time or the activation time is higher than the priority of the SRS resource with the scheduling time or the activation time.
  • the priority of the SRS resource may be determined according to one factor, or may be comprehensively determined according to a plurality of factors, for example, considering the timeliness requirement and the order of scheduling time or activation time.
  • the SRS resources may be first classified into an aperiodic group, a semi-persistent group, and a periodic group according to the SRS sending manner, and the priorities of the aperiodic group, the semi-persistent group, and the periodic group are sequentially high to low. Then, for each packet, the priority of each SRS resource within the packet is determined according to the order of scheduling time or activation time of all SRS resources included in the packet.
  • the communications method may further include: the terminal receiving the third SRS configuration information.
  • the third SRS configuration information is used to instruct the terminal to send the SRS on the sixth SRS resource.
  • the terminal determines that the sixth SRS resource conflicts with the second SRS resource in the time unit, and does not conflict with the first SRS resource.
  • the terminal determines that sending the SRS on the first SRS resource in the time unit may include: determining, by the terminal, sending the SRS on the first SRS resource and the sixth SRS resource in the time unit.
  • the communication method may further include: the terminal reporting the number of resources or the number of ports that can send the SRS in the same symbol, so that the network device determines the SRS configuration information for the terminal according to the quantity of the foregoing resources or the number of ports, thereby ensuring the configured configuration.
  • the number of simultaneously transmitted SRS resources or ports does not exceed the maximum number of terminals that can be supported by the terminal. Therefore, the probability of SRS resource conflicts indicated by different SRS configuration information can be reduced, thereby further improving the utilization efficiency of SRS resources and the transmission efficiency of SRS.
  • a communication method including: the network device transmitting the first sounding reference signal SRS configuration information and the second SRS configuration information.
  • the first SRS configuration information is used to indicate that the terminal sends an SRS on the first SRS resource
  • the second SRS configuration information is used to instruct the terminal to send the SRS on the second SRS resource.
  • the network device determines to receive the SRS on one of the first SRS resource and the second SRS resource in the time unit.
  • the time unit includes: a time slot or a symbol.
  • the network device can receive the SRS on one of the first SRS resource and the second SRS resource in the time unit, thereby avoiding In the case where both the first SRS resource and the second SRS resource are idle in the time unit, the utilization efficiency of the SRS resource and the transmission efficiency of the SRS can be improved, thereby improving the measurement efficiency of the uplink channel and the scheduling efficiency of the uplink resource.
  • the first SRS configuration information and the second SRS configuration information are determined and sent by the network device, that is, the network device also has the first SRS resource and the second SRS resource in the first aspect and the alternative thereof.
  • the ability to judge conflicts. Therefore, the network device can receive the SRS only on the non-conflicting SRS resources according to the judgment result, so as to reduce the calculation workload of the network device, thereby further improving the transmission efficiency of the SRS and the scheduling efficiency of the uplink resources.
  • the network device can also determine the SRS configuration information to be sent according to the sent SRS configuration information, so as to avoid the SRS resource conflict indicated by the two SRS configuration information.
  • the priority of the first SRS resource and the second SRS resource may also be determined according to the same communication method on the terminal side, and according to the determined The priority determines the SRS reception scheme. Therefore, the network device determines that, in the time unit, receiving the SRS on one of the first SRS resource and the second SRS resource, the network device determining that the first SRS resource has a higher priority than the second SRS The priority of the resource, and within the time unit, the SRS is received on the first SRS resource.
  • the communications method further includes: the network device sending the third SRS configuration information.
  • the third SRS configuration information is used to instruct the terminal to send the SRS on the sixth SRS resource.
  • the network device determines that the sixth SRS resource collides with the second SRS resource in the time unit, and does not collide with the first SRS resource, and the priority of the second SRS resource is higher than the priority of the sixth SRS resource.
  • the determining, by the network device, the SRS on the first SRS resource in the time unit may include: the network device receiving the SRS on the first SRS resource and the sixth SRS resource in the time unit.
  • the terminal reports that the number of resources or the number of ports that can send the SRS in the same symbol
  • the communication method further includes: the network device receiving the resource that the terminal can send the SRS in the same symbol.
  • a communication method including: receiving, by a terminal, first configuration information and second configuration information.
  • the first configuration information is used to indicate that the terminal sends the sounding reference signal SRS on the at least one first resource included in the first resource set, where the first resource set is an SRS resource set for the antenna switching AS, and the second configuration information is used by the second configuration information.
  • the terminal instructing the terminal to send the SRS or the uplink control channel PUCCH on the second resource. Then, if at least one guard interval GP symbol between the first resources in the first resource set is the same as the symbol in the second resource, the terminal determines to send the SRS or the PUCCH on the second resource, and the first resource set is avoided.
  • both the first resource and the second resource are idle, the resource utilization efficiency and the signal transmission efficiency can be improved.
  • the communication method may further include: determining, by the terminal, that the SRS is sent on the first resource other than the symbol that satisfies the first condition in the first resource set.
  • the first condition is one of the following conditions: a symbol in the first resource set that is located before the GP symbol and is closest to the GP symbol; and a first resource in the first resource set that is located before the GP symbol and is closest to the GP symbol.
  • All symbols in the first resource set which are located after the GP symbol and are closest to the GP symbol; all symbols in the first resource in the first resource set that are located after the GP symbol and are closest to the GP symbol; a symbol in a resource set that is located before the GP symbol and after the GP symbol and is closest to the GP symbol; all symbols in the first resource in the first resource set that are located before the GP symbol and after the GP symbol and are closest to the GP symbol
  • a symbol of a different transmit antenna is used in the first set of resources with the second resource.
  • the terminal may not perform the determination of the first condition described above. Therefore, optionally, the communication method may further include: determining, by the terminal, that the SRS is not sent on the first resource set in the time slot in which the second resource is located.
  • a communication method including: the network device sending the first configuration information and the second configuration information.
  • the first configuration information is used to indicate that the terminal sends the sounding reference signal SRS on the at least one first resource included in the first resource set, where the first resource set is an SRS resource set for the antenna switching AS, and the second configuration information is used by the second configuration information. And instructing the terminal to send the SRS or the uplink control channel PUCCH on the second resource.
  • the network device determines to receive the SRS or PUCCH on the second resource, avoiding the first resource set In the case where both the first resource and the second resource are idle, the resource utilization efficiency and the signal transmission efficiency can be improved.
  • the communication method may further include: determining, by the network device, that the SRS is received on the first resource other than the symbol that satisfies the first condition in the first resource set.
  • the first condition is one of the following conditions: a symbol in the first resource set that is located before the GP symbol and is closest to the GP symbol; and a first resource in the first resource set that is located before the GP symbol and is closest to the GP symbol.
  • All symbols in the first resource set which are located after the GP symbol and are closest to the GP symbol; all symbols in the first resource in the first resource set that are located after the GP symbol and are closest to the GP symbol; a symbol in a resource set that is located before the GP symbol and after the GP symbol and is closest to the GP symbol; all symbols in the first resource in the first resource set that are located before the GP symbol and after the GP symbol and are closest to the GP symbol
  • a symbol of a different transmit antenna is used in the first set of resources with the second resource.
  • the network device may not perform the determination of the first condition described above. Therefore, optionally, the communication method may further include: determining, by the network device, that the SRS is not received on the first resource set in the time slot in which the second resource is located.
  • the first configuration information and the second configuration information are determined and sent by the network device, that is, the network device also has the capability of determining the conflict between the first resource and the second resource in the third aspect and its alternatives. Therefore, the network device can receive the SRS only on the non-conflicting resources according to the judgment result, so as to reduce the calculation workload of the network device, thereby further improving the transmission efficiency of the SRS and the scheduling efficiency of the uplink resources.
  • the network device can also determine the configuration information to be sent according to the configured configuration information, so as to avoid resource conflicts indicated by the two configuration information.
  • a communication method including: receiving, by a terminal, first configuration information and second configuration information.
  • the first configuration information is used to indicate that the terminal sends the sounding reference signal SRS on the at least one SRS resource included in the first resource set, where the first resource set is an SRS resource set for the antenna switching AS, and the second configuration information is used.
  • the terminal transmits an SRS on the first resource and a PUCCH on the second resource.
  • the at least one guard interval GP symbol exists between the first symbol of the first first resource or the last symbol of the last first resource and the second resource in the same time slot.
  • the terminal determines the second resource and the first resource set.
  • the terminal determines the second resource and the first resource set.
  • the terminal does not perform any transmission within the GP or does not perform any uplink transmission. In this way, if the antenna switching is required between the SRS and the PUCCH, sufficient switching time can be ensured, so that the transmission performance of the two is not affected.
  • a communication method including: the network device sending the first configuration information and the second configuration information.
  • the first configuration information is used to indicate that the terminal sends the sounding reference signal SRS on the at least one SRS resource included in the first resource set, where the first resource set is an SRS resource set for the antenna switching AS, and the second configuration information is used.
  • the network device then receives the SRS on the first resource and the PUCCH on the second resource.
  • the at least one guard interval GP symbol exists between the first symbol of the first first resource or the last symbol of the last first resource and the second resource in the same time slot. It can be understood that whether the GP symbol between at least one SRS resource in the first resource set is used for transmitting other channels or signals is not limited herein.
  • the network device can also determine the configuration information to be sent according to the configured configuration information, so as to avoid resource conflicts indicated by the two configuration information.
  • the communication method provided by the embodiment of the present application, if at least one GP symbol exists between one SRS resource and the second resource included in the first resource set in one time slot, then in the time slot, in the foregoing Transmitting and transmitting the SRS on the first resource before the GP symbol, transmitting and receiving the PUCCH on the second resource after the GP symbol, or transmitting and receiving the SRS on the first resource after the GP symbol in the time slot, and the second before the GP symbol
  • the PUCCH is sent and received on the resource to reserve sufficient time for the antenna switching, so as to avoid adversely affecting the transmission of the SRS and the PUCCH, and the uplink channel quality and the accuracy of scheduling the uplink resource are ensured according to the SRS measurement result and the PUCCH measurement result.
  • a communication apparatus for performing the communication method according to any one of the first to sixth aspects and various alternatives thereof.
  • a communication device comprising: a processor coupled to the memory; a memory for storing the computer program; and a processor for executing the computer program stored in the memory to cause the device A communication method as described in any one of the first to sixth aspects and various alternatives thereof.
  • the above apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform a corresponding function of the terminal in the above communication method. For example, determining whether the first SRS resource and the second SRS resource collide, or determining whether the GP symbol between the resources included in the first resource set is the same as the symbol in the second resource.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions. For example, receiving the first SRS configuration information and the second SRS configuration information, receiving the first configuration information and the second configuration information, or transmitting the SRS.
  • the apparatus may further comprise one or more memories for coupling with the processor, which store program instructions and/or data necessary for the device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the device may be a smart terminal or a wearable device or the like, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above apparatus includes a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver transceiver signal for storing a computer program for executing a computer program in the memory, such that the apparatus performs the communication method of any of the first aspect and its alternative implementations A communication method performed by a terminal or a network device, and/or a communication method performed by a terminal or a network device in any one of the communication methods of the second aspect and its various alternative implementations.
  • the above apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the respective functions of the network device in the communication method described above. For example, determining whether the first SRS resource and the second SRS resource collide, or determining whether the GP symbol between the resources included in the first resource set is the same as the symbol in the second resource.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions. For example, the first SRS configuration information and the second SRS configuration information are transmitted, the first configuration information and the second configuration information are transmitted, or the SRS is received.
  • the apparatus may further comprise one or more memories for coupling with the processor, which store program instructions and/or data necessary for the network device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the device may be a base station, a gNB or a TRP, etc.
  • the communication unit may be a transceiver, or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above apparatus includes a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver transceiver signal for storing a computer program for executing a computer program in a memory, such that the apparatus performs the network device in any of the possible implementations of the second aspect or the second aspect The completed communication method.
  • a system comprising the above terminal and a network device.
  • a tenth aspect a readable storage medium comprising a program or an instruction, when the program or the instruction is run on a computer, the communication according to any one of the first to sixth aspects and various alternatives thereof The method is executed.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the first to sixth aspects described above A communication method in any of the alternatives.
  • the communication method provided in the embodiment of the present application can provide an uplink signal transceiving and communication method suitable for resource conflicts, and is applicable to the transceiving of signals used for uplink channel quality measurement when resources conflict.
  • FIG. 1 is a schematic diagram showing a communication system suitable for the communication method of the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method 1 provided by an embodiment of the present application.
  • FIG. 3A is a schematic diagram 1 of different SRS resource conflicts involved in a communication method provided by an embodiment of the present application.
  • FIG. 3B is a schematic diagram 2 of different SRS resource conflicts involved in the communication method provided by the embodiment of the present application.
  • FIG. 3C is a schematic diagram 3 of different SRS resource conflicts involved in the communication method provided by the embodiment of the present application.
  • FIG. 4 is a schematic scenario diagram of an SRS transmission scheme when an SRS resource conflicts related to a communication method provided by an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of a communication method 2 provided by an embodiment of the present application.
  • FIG. 6 is a schematic scenario diagram of resource conflicts involved in the communication method 2 provided by the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method 3 according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as an LTE system, a worldwide interoperability for microwave access (WiMAX) communication system, a future fifth generation 5G system, such as an NR system, and Future communication systems, such as the sixth generation (6th generation, 6G) system.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • NR NR system
  • Future communication systems such as the sixth generation (6th generation, 6G) system.
  • the application will present various aspects, embodiments, or features in a system that can include multiple devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
  • the subscript such as W1 may be a non-subscript form such as W1, and the meaning to be expressed is consistent when the difference is not emphasized.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the embodiment of the present application can be applied to a time division duplexing (TDD) scenario or a frequency division duplexing (FDD) scenario.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • the embodiments of the present application can be applied to a traditional typical network or to a UE-centric network in the future.
  • the UE-centric network introduces a non-cell network architecture, that is, deploying a large number of small stations in a specific area to form a hyper cell, and each small station is a transmission of the super cell.
  • a transmission point (TP) or TRP is connected to a centralized controller.
  • the network side device selects a new sub-cluster for the UE to serve, thereby avoiding true cell handover and achieving continuity of the UE service.
  • the network side device includes a wireless network device, such as a base station.
  • different base stations may be base stations with different identifiers, or may be base stations with the same identifier and deployed in different geographical locations.
  • the base station, or the baseband chip should support the communication method provided by the embodiment of the present application before deployment, because the base station does not know whether it will involve the scenario applied by the embodiment of the present application.
  • the identifiers of the foregoing base stations with different identifiers may be base station identifiers, or may be cell identifiers or other identifiers.
  • the scenario in the embodiment of the present application is described by taking the scenario of the NR network in the wireless communication network as an example. It should be noted that the solution in the embodiment of the present application may also be applied to other wireless communication networks, and the corresponding names may also be used in other scenarios. The name of the corresponding function in the wireless communication network is replaced.
  • the beam beam can be understood as a spatial resource, and can refer to a transmission or reception precoding vector with energy transmission directivity.
  • the transmitting or receiving precoding vector can be identified by index information.
  • the energy transmission directivity may refer to a signal having a better received power after receiving the precoding process through the precoding vector in a certain spatial position, such as satisfying a reception demodulation signal to noise ratio, etc.; Directivity may also mean that the same signals transmitted from different spatial locations are received by the precoding vector with different received power.
  • the same communication device (such as a terminal or a network device) may have different precoding vectors, and different devices may have different precoding vectors, that is, corresponding to different beams.
  • one communication device can use one or more of a plurality of different precoding vectors at the same time, ie, one or more beams can be formed at the same time.
  • the information of the beam can be identified by the index information.
  • the index information may correspond to a resource identifier (identity, ID) of the configuration terminal (such as the user equipment UE).
  • the index information may correspond to a configured channel state information reference signal (CSI).
  • CSI channel state information reference signal
  • the ID or resource of the -RS may also correspond to the ID or resource of the configured uplink sounding reference signal (SRS).
  • the index information may also be index information of a signal or channel display or implicit bearer carried by the beam, for example, the index information may be a synchronization signal sent by a beam or a broadcast channel indicating the beam. Index information.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the communication method of the embodiment of the present application.
  • the communication system 100 includes a network device 102 and a terminal 106.
  • the network device 102 can be configured with multiple antennas, and the terminal can also be configured with multiple antennas.
  • the communication system may further include a network device 104, and a terminal 108 that provides the network device 104 to access the network device 102, and the network device 104 may also be configured with multiple antennas, and the terminal 108 may also be configured with multiple antennas.
  • network device 102 or network device 104 may also include multiple components (eg, processors, modulators, multiplexers, demodulators or demultiplexers, etc.) associated with signal transmission and reception.
  • multiple components eg, processors, modulators, multiplexers, demodulators or demultiplexers, etc.
  • the network device is a device with a wireless transceiver function or a chip that can be disposed on the device, and the device includes, but is not limited to, an evolved Node B (eNB) and a radio network controller (RNC).
  • AP access point
  • WIFI wireless fidelity
  • TRP transmission point
  • TRP Transmission point
  • TP Transmission point
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations (including multiple antenna panels) in the 5G system
  • it may be a network node constituting a gNB or a transmission point,
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements radio resource control (RRC), the function of the packet data convergence protocol (PDCP) layer, and the DU implements the wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements the wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture.
  • the network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, and the CU may be divided into network devices in the core network CN, which is not limited herein.
  • a terminal may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent. Or user device.
  • the terminal in the embodiment of the present application may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, and an industrial Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety A wireless terminal in a wireless terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • the aforementioned terminal and a chip that can be disposed in the terminal are collectively referred to as a terminal.
  • both the network device 102 and the network device 104 can communicate with a plurality of terminals, such as the terminal 106 and terminal 110 shown in FIG.
  • Network device 102 and network device 104 can communicate with any number of terminals similar to terminal 106. It should be understood, however, that the terminal in communication with the network device 102 and the terminal in communication with the network device 104 may be the same or different.
  • the terminal 106 shown in FIG. 1 can simultaneously communicate with the network device 102 and the network device 104, but this only shows one possible scenario, in some scenarios, the terminal may only communicate with the network device 102 or the network device 104. This application does not limit this.
  • the terminal when the network device is a macro base station, the terminal may also be replaced by a micro base station or a relay station.
  • the network device 102 can be a macro base station, and correspondingly, the terminal can be replaced with the network device 104.
  • FIG. 1 is merely a simplified schematic diagram for ease of understanding.
  • the communication system may also include other network devices or may also include other terminals, which are not shown in FIG.
  • the communication method provided by the present application involves various uplink signals and resources for transmitting various uplink signals.
  • LTE including PUSCH, PUCCH, and SRS
  • 5G correspondingly for an uplink data channel, a control channel, a reference signal for demodulation, a reference signal for channel measurement, a channel for random access, and the like.
  • the foregoing resources may be resources of different resource granularities, for example, resources that may be the minimum resource granularity, or a set of resources. Among them, the resource set contains more than one minimum resource granularity.
  • the resource set may be at least one of a system frame, a radio frame, a frame, a subframe, a time slot, a half slot, a mini slot, a symbol, a symbol set, and the like in the perspective of the time domain.
  • it may be at least one of a carrier, a system bandwidth, a partial bandwidth, a bandwidth portion, a sub-band, a resource block, a sub-carrier, or a serving cell.
  • the resource set may be at least one of a pilot sequence carried by the uplink signal, a pseudo random sequence, a training sequence, an orthogonalization code sequence, a synchronization sequence, or a cyclic shift of the synchronization sequence from the perspective of the code domain.
  • the set of resources may be at least one of a transmit antenna, a receive antenna, a beam, etc., in the perspective of the airspace.
  • the resource granularity can be the scheduling granularity of a channel or signal.
  • a time slot may include one or more symbols, such as 14 symbols, or 7 symbols.
  • a subframe may include one or more symbols, such as 14 symbols.
  • a node transmits or receives signals through multiple antennas, hereinafter referred to as MIMO.
  • MIMO multiple antennas
  • a node can adjust the MIMO transmission and reception scheme, such as adjusting the weight of the transmitting antenna, assigning different signals to different antennas, etc., and can obtain gains such as diversity and multiplexing, thereby improving system capacity and increasing system reliability.
  • massive MIMO massive MIMO
  • the wavelength of the signal is shorter, such as only the millimeter level, the corresponding antenna size will also be reduced, and the nodes in the network have the ability to configure a large-scale antenna array.
  • M-MIMO M-MIMO
  • a node can configure dozens, hundreds, or even more antenna elements.
  • These antenna arrays can be formed into antenna arrays according to a certain arrangement, such as linear arrangement, circular arrangement, and the like.
  • the antenna array can be divided into a plurality of independently controllable antenna panels, each of which can include at least one antenna array. Wherein, different beams may be simultaneously transmitted on the plurality of antenna panels, and beams may be transmitted on part of the antenna panels, and may be precoding, beam management (BM), antenna switching (AS).
  • BM beam management
  • AS antenna switching
  • At least one of the technical means is implemented.
  • the antenna gain can be obtained by adjusting the weight on the antenna array, so that the transmitted or received signal exhibits an uneven energy distribution in space.
  • the signal can be made to have an energy concentration effect in a part of the direction in space. This effect can be called beamforming.
  • the signal forms a beam in space.
  • the space here may be an angular distribution in the horizontal direction and/or an angular distribution in the vertical direction, and the like.
  • Beam transmission can be used between the network device and the terminal.
  • a beam is a physical resource. In some communication systems, it may be indexed as some pilot resources and/or time-frequency resources.
  • the physical meaning of the beam is that when transmitting or receiving a signal, multiple antenna technologies can be used for transmitting and receiving.
  • the transmitting node such as a network device or a terminal, can perform weight processing on multiple antennas, so that the transmitted and/or received signals are A non-uniform distribution of energy appears in a certain spatial direction, so that the signal energy has a certain aggregation, and the aggregation of such energy can be called a beam.
  • the embodiment of the present application provides a communication method suitable for SRS transmission in an NR system.
  • the embodiments of the present application can be applied to communication between a network device and a network device (such as a macro base station and a micro base station), and between the network device and the terminal.
  • a network device such as a macro base station and a micro base station
  • the communication between the network device and the terminal is described as an example, but is not limited thereto.
  • the communication method 200 can include S201-S206:
  • the network device sends the first sounding reference signal SRS configuration information and the second SRS configuration information.
  • the first SRS configuration information is used to indicate that the terminal sends an SRS on the first SRS resource
  • the second SRS configuration information is used to instruct the terminal to send the SRS on the second SRS resource.
  • the network device sends any one of the first SRS configuration information and the second SRS configuration information, which may include the following steps:
  • Step 1 The network device sends SRS configuration information that carries at least one SRS resource set.
  • the network device may send radio resource control (RRC) signaling carrying a resource set of at least one channel for uplink channel quality sounding.
  • RRC signaling may include: a resource set of at least one channel for uplink channel quality sounding, a set of resources of each channel for uplink channel quality sounding (setUse), and each for uplink channel quality sounding.
  • the resource set of the channel includes at least one identifier of a resource for a channel for uplink channel quality sounding.
  • the foregoing channel for uplink channel quality detection may be an SRS, a physical uplink control channel (PUCCH), or other signals, channels, signaling, etc. for uplink channel quality detection. limited.
  • At least one resource set of channels for uplink channel quality sounding may include: at most one CB-based resource set for uplink channel quality sounding, and at most one NCB-based channel for uplink channel quality sounding.
  • Resource set 0, 1 or more resource sets for channels for uplink channel quality sounding for BM, and 0, 1 or more channels for uplink channel quality sounding for AS Resource collection.
  • Step 2 The network device can trigger the SRS resource set by using one of the following four methods.
  • Method 1 Do not send a trigger indication.
  • the terminal periodically sends the SRS on the SRS resource included in each SRS resource set.
  • the network device also sends signaling that carries an activation indication or a trigger indication of a part or all of the SRS resource set. Details as follows:
  • Manner 2 The network device sends a media access control control element (MAC CE) signaling carrying a semi-persistent (SP) activation indication corresponding to each SRS resource set. If the activation indication indicates that the SRS resource set is activated, the terminal sends an SRS on the SRS resource included in the SRS resource set after receiving the activation indication, until the terminal receives another MAC CE signaling, and another MAC The deactivation indication carried by the CE signaling indicates that the SRS resource set is deactivated.
  • MAC CE media access control control element
  • SP semi-persistent
  • the MAC CE signaling may also carry information such as the effective time.
  • the effective time is the time when the terminal sends the SRS for the first time after receiving the MAC CE signaling. In view of the fact that the effective time is the prior art, the embodiments of the present application are not described again.
  • the network device sends downlink control information (DCI) signaling carrying an aperiodic (AP) trigger indication corresponding to the SRS resource set.
  • DCI downlink control information
  • AP aperiodic
  • an SRS Request (SRS Request) field in DCI signaling may carry an aperiodic trigger indication of one or more SRS resource sets. If the scheduling indication indicates that the SRS resource set is scheduled, the terminal sends an SRS on the SRS resource included in the SRS resource set, and then stops by itself.
  • DCI signaling can also carry information such as effective time and number of transmissions.
  • the effective time is the time when the terminal sends the SRS for the first time after receiving the DCI signaling.
  • the number of transmissions refers to the number of times the terminal needs to send SRS after receiving a DCI signaling. After the number of transmissions is reached, the terminal stops transmitting SRS. In view of the fact that the effective time and the number of times of transmission are the prior art, the embodiments of the present application are not described again.
  • Manner 4 The network device sends the DCI signaling carrying the aperiodic triggering indication, and further needs to send the MAC CE signaling carrying the candidate set configuration information of the SRS resource set triggered by the aperiodic triggering indication.
  • the network device may send the MAC CE signaling carrying the semi-persistent trigger indication and the DCI signaling carrying the aperiodic trigger indication.
  • the network device may send a trigger indication that uses different sending modes at different times for the same SRS resource set, or may send a trigger indication that uses the same sending mode at the same time for different SRS resource sets.
  • the network device sends, to the SRS resource set A, the MAC CE signaling that sends the SRS in a semi-persistent manner at the first time, and the MAC CE signaling that sends the SRS in a non-period manner at the second time.
  • the network device may send the same DCI carrying the aperiodic triggering indication for the SRS resource set A and the SRS resource set B. Signaling.
  • the network device needs to send the MAC CE signaling carrying the activation indication once for each activation of each SRS resource set.
  • the network device may carry a trigger indication of one or more SRS resource sets in one DCI signaling. It can be understood that, after the SRS is sent on the SRS resource included in the SRS resource set, if the network device needs to stop the SRS, the network device needs to be sent. A MAC CE signaling carrying a stop transmission indication.
  • first SRS configuration information and the second SRS configuration information may be delivered in the same downlink signaling, or may be delivered in different downlink signaling.
  • first SRS configuration information is sent in the RRC signaling 1
  • second SRS configuration information is sent in the RRC signaling 2.
  • different parts of the same SRS configuration information may be delivered in the same downlink signaling or in different downlink signaling.
  • the SRS resource set in the configuration information may be sent in the DCI signaling
  • the SRS resource set triggering indication in the configuration information may be sent in the MAC CE signaling or the DCI signaling.
  • the network device determines that the first SRS resource and the second SRS resource collide in a time unit.
  • the time unit includes: a time slot or a symbol.
  • the first SRS resource and the second SRS resource collide in a time unit, which may be caused by at least one of the following reasons:
  • the terminal cannot simultaneously send the SRS on the first SRS resource and the second SRS resource in the time unit. For example, the terminal does not support full antenna transmission (that is, the number of terminal transmission antennas is smaller than the number of reception antennas). If the first SRS resource and the second SRS resource are respectively located on different antennas, the first SRS resource and the second SRS resource collide. For example, the terminal supports the BM. If the first SRS resource and the second SRS resource respectively correspond to different analog transmit beams on one panel, the first SRS resource and the second SRS resource collide.
  • the terminal may further determine, in a time slot other than the time unit in the time slot in which the time unit is located, not in the first SRS resource and the second SRS resource.
  • the SRS is transmitted on another SRS resource other than the SRS resource, that is, the terminal determines that the SRS is transmitted only on one SRS resource of the first SRS resource and the second SRS resource in the time slot in which the time unit is located, Or the terminal determines that the SRS is not transmitted on another SRS resource other than one of the first SRS resource and the second SRS resource in the time slot in which the time unit is located.
  • the terminal does not consider that the first configuration information and the second configuration information configured to conflict between the first SRS resource and the second SRS resource in the time unit are received.
  • the terminal determines the first configuration information and the first The second configuration information is the wrong configuration information.
  • the terminal may send the SRS on the first SRS resource, or send the SRS on the second SRS resource, or send the SRS on the first SRS resource and the second SRS resource.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource meet the first time domain conflict condition, and the first SRS resource set and the second SRS resource set At least one of them is a resource set for antenna switching AS.
  • the first time domain conflict condition is that at least one time slot included in the first SRS resource is the same as at least one time slot included in the second SRS resource, and the time unit is a time slot.
  • the first SRS resource set is a resource set for the AS
  • the second SRS resource set may be a resource set for the AS, or may not be a resource set for the AS. This is not limited.
  • the first SRS resource set includes a time slot m, a time slot m+1, and a time slot m+2, wherein the time slot m+1 includes a GP symbol, and the second SRS resource includes a time slot m+1.
  • m+3, excluding the time slot m+2 (indicated by a dashed box in FIG. 3A), that is, the first SRS resource set and the second SRS resource satisfy the first time domain conflict condition on the time slot m+1.
  • first SRS resource set and the second SRS resource in FIG. 3A only include one same time slot.
  • the number of the same time slots may be more than one, and when the same time slot is multiple, multiple identical time slots may be consecutive or discontinuous, which is not limited in this application.
  • a time slot can usually include multiple symbols, and a single antenna switch typically only requires some of the symbols in that time slot. Therefore, the symbols included in the time slot that are not used for antenna switching can be used to transmit SRS, and can also be used to transmit other signals, such as channel measurement reports and data.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set.
  • the first SRS resource set and the second SRS resource set may be respectively one of the following types of SRS resource sets: a codebook CB based SRS resource set, a non-codebook NCB based SRS resource set, and used for beam management.
  • the types of the first SRS resource set and the second SRS resource set may be the same or different.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition and the first type conflict condition.
  • the second time domain conflict condition is that at least one symbol included in the first SRS resource is the same as at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the first SRS resource includes symbols n and n+1
  • the second SRS resource includes symbols n+1 and n+2, that is, the first SRS resource (symbol n+1) and the second The SRS resource (symbol n+1) satisfies the second time domain collision condition.
  • the first type of conflict condition may be that the first SRS resource set and the second SRS resource set are different types of SRS resource sets.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition and the second type conflict condition.
  • the second time domain conflict condition is that the at least one symbol included in the first SRS resource is the same as the at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the second type of conflict condition is that the first SRS resource set and the second SRS resource set are both SRS resource sets for the antenna switch AS.
  • the position of the GP symbol for the AS is not fixed.
  • the GP symbol may be part or all of the symbols between the SRS resources in the SRS resource set for the AS in the time slot, or before and/or after the SRS resource in the SRS resource set for the AS in the time slot.
  • the first SRS resource set includes a symbol n, a symbol n+2, and a symbol n+3, the symbol n+1 is a GP symbol, and the second SRS resource set includes a symbol n+1 and a symbol n+3, and a symbol n+2 is a GP symbol, that is, the first SRS resource set and the second SRS resource set both include the symbol n+3, and the first SRS resource and the second SRS resource are regarded as satisfying the second time domain conflict condition and the second type conflict condition. .
  • the conflict resolution may be performed in the manner as shown in FIG. 5.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition and the third type conflict condition.
  • the second time domain conflict condition is that the at least one symbol included in the first SRS resource is the same as the at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the third type of conflict condition is that the first SRS resource set is the SRS resource set for the beam management BM, and the third SRS resource indicated by the spatial relationship information (SRI) in the second SRS configuration information belongs to the first SRS resource.
  • the set, and the third SRS resource is different from the first SRS resource.
  • the beam indicated by the SRI may be an antenna panel used to transmit the SRS, that is, the SRS resource may also include a spatial domain resource.
  • the third SRS resource indicated by the SRI in the second SRS configuration information is: the same antenna indicating that the terminal is on the second SRS resource and is the same as the antenna panel used for transmitting the SRS on the third SRS resource. Send SRS on the panel. If the third SRS resource belongs to the first SRS resource set and is different from the first SRS resource, it is considered to satisfy the third type conflict condition.
  • the present application does not need to limit whether the second SRS resource set is an SRS resource set type for the BM, that is, regardless of the type of the second SRS resource set.
  • the first SRS resource belongs to the first SRS resource set
  • the second SRS resource belongs to the second SRS resource set.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition and the fourth type conflict condition.
  • the second time domain conflict condition is that the at least one symbol included in the first SRS resource is the same as the at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the fourth type of conflict condition is that the fourth SRS resource indicated by the spatial relationship information in the first SRS configuration information is different from the fifth SRS resource indicated by the spatial relationship information in the second SRS configuration information, and the fourth SRS resource is The fifth SRS resource belongs to the same SRS resource set, and the same SRS resource set is the SRS resource set used for beam management.
  • the first SRS resource set is a CB-based SRS resource set
  • the second SRS resource set is an SRS resource set for the AS
  • the fifth SRS resource indicated by the spatial relationship information in the two SRS configuration information, the fourth SRS resource and the fifth SRS resource are different, and all belong to the same SRS resource set for the BM, and are regarded as the first SRS resource and the second
  • the SRS resource satisfies the fourth type of conflict condition.
  • the present application does not need to define whether the first SRS resource set and the second SRS resource set are of the same type, that is, may be the same type or different types.
  • the reason is that the fifth SRS resource indicated by the spatial relationship information of the first SRS resource and the second SRS resource indicated by the spatial relationship information of the second SRS resource belong to the same SRS resource set for the BM, and the first The four SRS resources are different from the fifth SRS resource, that is, the first SRS resource and the second SRS resource are required to transmit the SRS on different antenna panels, and the SRS resource set for the BM cannot be simultaneously sent on the same antenna panel. Different SRS's.
  • the first SRS resource and the second SRS resource collide in the time unit, and the method includes: the first SRS resource and the second SRS resource satisfy the second time domain conflict condition, the frequency domain conflict condition, and the code domain conflict condition.
  • the second time domain conflict condition is that the at least one symbol included in the first SRS resource is the same as the at least one symbol included in the second SRS resource, and the time unit is a symbol.
  • the frequency domain collision condition is: the first SRS resource and the second SRS resource include at least one same subcarrier; the code domain collision condition is: the first SRS resource and the second SRS resource include at least one SRS sequence having the same cyclic shift.
  • the network device needs to receive and parse the SRS in a combined manner of the first SRS resource and the second SRS resource. That is to say, the embodiment of the present application may not include S202, that is, S202 is an optional step.
  • the terminal receives the first sounding reference signal SRS configuration information and the second SRS configuration information.
  • the terminal can receive the foregoing two SRS configuration information through an air interface connection.
  • the terminal determines that the first SRS resource and the second SRS resource collide in a time unit.
  • the terminal may determine that the first SRS resource and the second SRS resource conflict in the time unit by using the same communication method as that in S202, which is not repeatedly described in the embodiment of the present application.
  • the foregoing conflict determination condition may be pre-defined and stored in the network device and the terminal, or may be configured to the terminal through the network device, and the specific storage mode or configuration mode is This is not limited.
  • the above judgment condition may be configured when the first SRS configuration information or the second SRS configuration information is sent by the network device.
  • the terminal determines that, in the time unit, the SRS is sent on one of the first SRS resource and the second SRS resource.
  • the S205 terminal determines that, in the time unit, sending the SRS on one of the first SRS resource and the second SRS resource
  • the method may include: if the terminal determines that the priority of the first SRS resource is higher than the second SRS resource
  • the priority of the terminal determines that the SRS is transmitted on the first SRS resource in the time unit, so that the high priority SRS resource can be preferentially used for transmitting the SRS.
  • the high priority SRS resource may be an SRS resource that has a greater impact on uplink channel measurement and uplink resource scheduling. For example, the SRS resource for the BM or the SRS resource with more symbols in the same time slot.
  • the high priority SRS resource may also be a SRS resource that requires high timeliness for uplink channel measurement and uplink resource scheduling.
  • aperiodic (AP) SRS resources have higher priority than semi-persistent (SP) SRS resources, and semi-persistent SRS resources have higher priority than periodic (Periodic, P ) SRS resources.
  • the high priority SRS resource may also be an SRS resource with a scheduling time or an activation time in the two SRS resources.
  • the communications method may further include: the terminal receiving the third SRS configuration information.
  • the third SRS configuration information is used to instruct the terminal to send the SRS on the sixth SRS resource.
  • the terminal determines that sending the SRS on the first SRS resource in the time unit may include: sending, by the terminal, the SRS on the first SRS resource and the sixth SRS resource in the time unit.
  • the first SRS resource in a specified time period, such as a slot, includes a symbol n, a symbol n+1, and a symbol n+2, and the second SRS resource includes a symbol n.
  • the sixth SRS resource includes the symbol n+2, that is, the first SRS resource and the sixth SRS resource both collide with the second SRS resource, but the first SRS resource does not conflict with the sixth SRS resource.
  • the terminal may determine how to send the SRS by using one of the following two methods. .
  • Manner 1 The terminal determines the priority in the order of sending time, and sends the SRS on the SRS resource with the highest priority.
  • Step 1 On the symbol n, the terminal determines that the priority of the second SRS resource is higher than the priority of the sixth SRS resource, and the second SRS resource conflicts with the sixth SRS resource, and the terminal determines that the SRS is not sent on the sixth SRS resource.
  • Step 2 On the symbol n+2, the terminal determines that the priority of the first SRS resource is higher than the priority of the second SRS resource, and the first SRS resource conflicts with the second SRS resource, and the terminal determines not to send on the second SRS resource.
  • SRS that is, the terminal only transmits the SRS on the first SRS resource.
  • Manner 2 The terminal sends the SRS on the SRS resource with the highest priority and the SRS resource that does not conflict with the SRS resource with the highest priority.
  • Step 1 The terminal determines that the first SRS resource and the sixth SRS resource both conflict with the second SRS resource, but the first SRS resource does not conflict with the sixth SRS resource.
  • Step 2 The terminal determines that the priority of the first SRS resource is higher than the priority of the second SRS resource, or the priority of the sixth SRS resource is higher than the priority of the second SRS resource.
  • Step 3 The terminal determines to send the SRS on the first SRS resource and the sixth SRS resource according to the judgment result of the first step and the second step, and does not send the SRS on the second SRS resource.
  • the second method may send the SRS on the first SRS resource and the sixth SRS resource, that is, the first SRS resource with the highest priority is preferentially used for sending the SRS.
  • the second mode can also send the SRS on the sixth SRS resource, thereby further improving the utilization efficiency of the SRS resource and the transmission efficiency of the SRS.
  • the communication method may further include: the terminal reporting the number of resources or the number of ports that can send the SRS in the same symbol, so that the network device determines the SRS configuration information for the terminal according to the quantity of the foregoing resources or the number of ports, and ensures that the configuration is ensured.
  • the number of resources or the number of ports does not exceed the maximum number of resources or the maximum number of ports that the terminal can support, thereby reducing the probability of SRS resource conflicts indicated by different SRS configuration information, thereby further improving the utilization efficiency of SRS resources and the transmission efficiency of SRS. .
  • the network device determines to receive the SRS on one of the first SRS resource and the second SRS resource in the time unit.
  • the priority of the first SRS resource and the second SRS resource may also be determined according to the same communication method on the terminal side, and according to the determined The priority determines the number of SRSs that need to be received and parsed, and can avoid receiving and parsing the SRS on the union of the first SRS resource and the second SRS resource component, thereby reducing the computational workload of the network device, thereby further improving the SRS. Transmission efficiency.
  • the network device determines that receiving the SRS on one of the first SRS resource and the second SRS resource in the time unit, the network device determining that the first SRS resource has a higher priority than the second The SRS resource is prioritized, and within the time unit, the SRS is received on the first SRS resource.
  • the communication method further includes: the network device sends the third SRS configuration information.
  • the third SRS configuration information is used to instruct the terminal to send the SRS on the sixth SRS resource. Then, the network device determines that the sixth SRS resource collides with the second SRS resource in the time unit, and does not collide with the first SRS resource, and the priority of the second SRS resource is higher than the priority of the sixth SRS resource.
  • the network device determines, by the network device, that the SRS is received on the first SRS resource in the time unit, the network device, in the time unit, receiving the SRS on the first SRS resource and the sixth SRS resource, that is, guaranteeing the priority
  • the network device can also receive the SRS on the sixth SRS resource, thereby further improving the utilization efficiency of the SRS resource and the transmission efficiency of the SRS.
  • the terminal reports that the number of resources or the number of ports that can send the SRS in the same symbol
  • the communication method further includes: the network device receiving the resource that the terminal can send the SRS in the same symbol.
  • S202 may be executed after S201, or may be performed before S201 is executed, that is, the conflict is re-issued and the SRS configuration information is sent.
  • S202 may be executed before S204 is executed, or may be executed after S204 is executed, as long as S202 is guaranteed to be executed before S206.
  • the communication method provided by the embodiment of the present application can be in the first time in the time unit even if the first SRS resource configured by the first configuration information and the second SRS resource configured by the second configuration information collide in the time unit.
  • the SRS is sent and received on one of the SRS resource and the second SRS resource, which avoids the situation that the first SRS resource and the second SRS resource are idle in the time unit, and the utilization efficiency of the SRS resource and the transmission efficiency of the SRS can be improved. Thereby, the measurement efficiency of the uplink channel and the scheduling efficiency of the uplink resources are improved.
  • the embodiment of the present application provides a communication method suitable for SRS transmission in an NR system.
  • the embodiments of the present application can be applied to communication between a network device and a network device (such as a macro base station and a micro base station), and between the network device and the terminal.
  • the communication between the network device and the terminal is taken as an example, but is not limited thereto, and may be collectively referred to as communication between the transmitting end and the receiving end.
  • the uplink may refer to that the terminal is the transmitting end, the network device is the receiving end, and the downlink may refer to the network device as the transmitting end and the terminal as the receiving end.
  • the uplink may refer to one transmission direction
  • the downlink may refer to another transmission direction opposite to the uplink.
  • the communication method 500 can include S501-S506:
  • the network device sends the first configuration information and the second configuration information.
  • the first configuration information is used to indicate that the terminal sends the sounding reference signal SRS on the at least one first resource included in the first resource set, where the first resource set is an SRS resource set for the antenna switching AS, and the second configuration information is used by the second configuration information. And instructing the terminal to send the SRS or the uplink control channel PUCCH on the second resource.
  • the network device may send the first configuration information and the second configuration information to different RRC signaling, or send the first configuration information and the second configuration information to other downlink control signaling.
  • RRC signaling reference may be made to the foregoing embodiments, and details are not described herein again.
  • the PUCCH may be a physical uplink control channel (PUCCH), and is mainly used to carry uplink control information.
  • the uplink control information may include: an acknowledgment (ACK), a non-acknowledgement (NACK), and a channel quality indicator (CQI) of a hybrid automatic repeat request (HARQ).
  • ACK acknowledgment
  • NACK non-acknowledgement
  • CQI channel quality indicator
  • HARQ hybrid automatic repeat request
  • PMI precoding matrix indicator
  • RI rank indicator
  • the network device determines that the at least one guard interval GP symbol between the first resources included in the first resource set is the same as the symbol included in the second resource.
  • the first SRS resource set includes symbol n, symbol n+1, symbol n+3, and symbol n+4, symbol n+2 is a GP symbol, and second SRS resource includes symbol n to The symbol n+4, that is, the GP symbol between the symbol n+1 and the symbol n+3 included in the first SRS resource set is the same as the symbol n+2 in the second SRS resource, and is regarded as the first SRS resource set and the first Two SRS resource conflicts.
  • the first SRS resource set may also not include symbols adjacent to the GP symbol.
  • the first set of SRS resources may not include at least one of the symbol n+1 and the symbol n+3.
  • the symbols in the second resource can also be discontinuous.
  • the second resource may not include at least one of the symbol n, the symbol n+2, and the symbol n+4.
  • the embodiment of the present application may not include S502, that is, S502 is an optional step.
  • the network device needs to receive and parse the SRS or PUCCH in a combined set of the first resource set and the second resource.
  • the embodiment of the present application does not need to limit whether the resource set to which the second resource belongs is a resource set for the AS. If yes, the second resource is used as the first resource set, and all resources included in the time slot of the first resource set are used as the second resource, and then the communication method provided by the embodiment of the present application may be re-executed.
  • the terminal receives the first configuration information and the second configuration information.
  • the terminal determines that at least one guard interval GP symbol between the first resources in the first resource set is the same as a symbol in the second resource.
  • the terminal may use the same communication method as that in S502 to determine that the GP symbol in the first SRS resource set is the same as the symbol in the second SRS resource, which is not described in the embodiment of the present application.
  • the terminal determines to send the SRS or the uplink control channel PUCCH on the second resource.
  • the terminal may send the SRS on a part of the first resource included in the first resource set, so as to further improve resource utilization and signal transmission efficiency.
  • the terminal may determine to send the SRS on the first resource other than the symbol that satisfies the first condition in the first resource set.
  • the SRS may be transmitted on some or all of the symbols that do not satisfy the first condition.
  • the first condition may be one of the following conditions:
  • Condition 1 A specified number of symbols in the first resource set that are in front of the GP symbol and are closest to the GP symbol.
  • the specified quantity can be set, for example, the specified quantity can be 1 or 2.
  • the terminal does not transmit the SRS on symbol n+1, but may transmit the SRS on part or all of the symbol n, symbol n+2 to symbol n+4.
  • the symbol satisfying the condition 1 may be a symbol located before the GP symbol and adjacent to the GP symbol, such as the symbol n+1.
  • the symbol satisfying the condition 1 may be a symbol located before the GP symbol and not adjacent to the GP symbol. For example, if the first resource set does not include the symbol n+1, the symbol that satisfies the condition 1 is the symbol n.
  • Condition 2 All symbols in the first resource in the first resource set that are located before the GP symbol and are closest to the GP symbol.
  • the first resource set includes two first resources: a first resource A and a first resource B, where the first resource A includes a symbol n and a symbol n+1, and the first resource B includes a symbol n+3 and a symbol n+4.
  • the first resource located in front of the GP symbol and closest to the GP symbol in the first resource set is the first resource A, and the first resource set is located before the GP symbol, and All symbols in the first resource closest to the GP symbol are the symbol n and the symbol n+1 in the first resource A.
  • the terminal does not transmit the SRS on the symbol n and the symbol n+1 in the first resource A, but may transmit the SRS on the symbol n+3 and/or the symbol n+4 in the first resource B.
  • the first resource that satisfies the condition 2 may be a first resource located before the GP symbol and adjacent to the GP symbol, such as the first resource A.
  • the first resource that satisfies the condition 2 may be the first resource that is located before the GP symbol and is not adjacent to the GP symbol.
  • Condition 3 A specified number of symbols in the first resource set that are located after the GP symbol and are closest to the GP symbol.
  • the specified quantity can be set, for example, the specified quantity can be 1 or 2.
  • the terminal does not transmit the SRS on symbol n+3, but may transmit the SRS on some or all of the symbols n, n+1, and n+4.
  • the symbol satisfying the condition 3 may be a symbol located after the GP symbol and adjacent to the GP symbol, such as the symbol n+3.
  • the symbol satisfying the condition 3 may be a symbol located after the GP symbol and not adjacent to the GP symbol. For example, if the first resource set does not include the symbol n+3, the symbol satisfying the condition 3 is the symbol n+4.
  • Condition 4 All symbols in the first resource in the first resource set that are located after the GP symbol and are closest to the GP symbol.
  • the first resource set includes two first resources: a first resource A and a first resource B, where the first resource A includes a symbol n and a symbol n+1, and the first resource B includes a symbol n+3 and a symbol n+4, and the first resource located behind the GP symbol and closest to the GP symbol in the first resource set is the first resource B, and the first resource set is located after the GP symbol, and All symbols in the first resource closest to the GP symbol are the symbol n+3 and the symbol n+4 in the first resource B.
  • the terminal does not transmit the SRS on the symbol n+3 and the symbol n+4 in the first resource B, but may transmit the SRS on the symbol n and/or the symbol n+1 in the first resource A.
  • the first resource that satisfies the condition 4 may be a first resource that is located after the GP symbol and is adjacent to the GP symbol, such as the first resource B.
  • the first resource that satisfies the condition 4 may be the first resource that is located after the GP symbol and is not adjacent to the GP symbol.
  • Condition 5 A symbol in the first resource set that is located before the GP symbol and after the GP symbol and that is closest to the GP symbol, that is, the condition 5 is a combination of the above condition 1 and condition 3.
  • Condition 6 All symbols in the first resource located in front of the GP symbol and after the GP symbol and closest to the GP symbol in the first resource set, that is, condition 6 is a collection of the above condition 2 and condition 4.
  • Condition 7 A specified number of symbols of the different transmit antennas are used in the first set of resources with the second resource.
  • the specified quantity can be set, for example, the specified quantity can be 1 or 2.
  • the transmitting antenna refers to a physical antenna.
  • the symbol n and the symbol n+1 included in the first resource set use the transmitting antennas 0 and 1, and the symbols n+3 and symbols included in the first resource set.
  • n+4 uses transmit antennas 2 and 3, and all symbols in the second resource use transmit antennas 0 and 1, and the symbols n+3 and n+4 included in the first resource set satisfy condition 7.
  • the terminal does not transmit the SRS on the symbols n+3 and n+4 included in the first resource set, but may transmit the SRS on the symbol n and/or the symbol n+1 included in the first resource set.
  • the terminal may not determine the first condition, but directly determine that the SRS is not sent on the first resource set in the slot where the second resource is located, and the communication method further The method may include: determining, by the terminal, that the SRS is not sent on the first resource set in the time slot in which the second resource is located.
  • the network device determines to receive the SRS or the PUCCH on the second resource.
  • the network device may determine, according to the determination result in S502, that the terminal sends the SRS or the PUCCH on the second resource. Therefore, the network device can also receive and parse the received SRS or PUCCH on the second resource in a targeted manner, which can reduce the workload of the network device receiving and parsing the SRS or the PUCCH, thereby improving signal transmission efficiency.
  • the network device may also perform the determining process in the conditions 1 to 7 in the foregoing first condition (it may be understood that the network device and the terminal should follow the same condition), and determine to send in the terminal according to the determination result.
  • the SRS is received on the same first resource of the SRS, so that the network device receives and parses the SRS in a positive manner, thereby reducing the workload, thereby improving the transmission efficiency of the SRS and the uplink resource scheduling efficiency.
  • the method further includes: determining, by the terminal, that the SRS is not sent on the first resource set, in order to reduce the workload of the network device, the communications method may further include: determining, by the network device, that the first resource set is not in the time slot in which the second resource is located. Receive SRS.
  • the network device may send the first configuration information and the downlink signaling of the second configuration information to specify which conditions in the first condition need to be determined.
  • S502 may be executed after S501, or may be performed before S501 is executed, that is, the conflicting configuration information is first sent.
  • S502 may be performed before S504 is executed, or may be performed after S504 is executed, as long as S502 is guaranteed to be executed before S506.
  • the communication method provided by the embodiment of the present application may determine that the SRS or the PUCCH is sent and received on the second resource even if at least one guard interval GP symbol between the first resources in the first resource set is the same as the symbol in the second resource. The situation that the first resource and the second resource included in the first resource set are both idle is avoided, and resource utilization efficiency and signal transmission efficiency can be improved.
  • the embodiment of the present application further provides another communication method.
  • the network device sends the first configuration information and the second configuration information.
  • the first configuration information is used to indicate that the terminal sends the sounding reference signal SRS on the at least one first resource included in the first resource set, where the first resource set is an SRS resource set for the antenna switching AS, and the second configuration information is used by the second configuration information. And instructing the terminal to send the uplink control channel PUCCH on the second resource.
  • the terminal receives the first configuration information and the second configuration information.
  • the terminal sends an SRS on the first resource, and sends a PUCCH on the second resource.
  • the at least one guard interval GP symbol exists between the first symbol of the first first resource or the last symbol of the last first resource and the second resource in the same time slot.
  • the terminal determines that the second resource and the first resource set are in the a GP having a Y symbol between the first SRS resources in the time slot; if the symbol of the second resource is located in all the SRS resources in the time slot in the first resource set in one time slot, Then the terminal determines that the second resource and the first resource set have GPs with Y symbols between the last SRS resources in the time slot.
  • the terminal does not perform any transmission within the GP or does not perform any uplink transmission. In this way, if the antenna switching is required between the SRS and the PUCCH, sufficient switching time can be ensured, so that the transmission performance of the two is not affected.
  • the network device receives an SRS on the first resource and a PUCCH on the second resource.
  • the at least one guard interval GP symbol exists between the first symbol of the first first resource or the last symbol of the last first resource and the second resource in the same time slot.
  • S704 is a receiving step corresponding to S703. For details, refer to S703, and details are not described herein again.
  • the communication method provided by the embodiment of the present application can be configured, in a time slot, when at least one GP symbol exists between the first symbol or the last symbol of all the first resources included in the first resource set and the second resource. And transmitting, in the time slot, the SRS on the first resource before the GP symbol, and transmitting and receiving the PUCCH on the second resource after the GP symbol, or in the time slot, on the first resource after the GP symbol Transmitting and receiving the SRS, and transmitting and receiving the PUCCH on the second resource before the GP symbol, so as to reserve sufficient time for the antenna switching, thereby avoiding adversely affecting the transmission of the SRS and the PUCCH, and ensuring that the uplink channel is evaluated according to the SRS measurement result and the PUCCH measurement result. Quality and accuracy of scheduling upstream resources.
  • the communication method provided by the embodiment of the present application is described in detail in conjunction with FIG. 2 to FIG. 7 .
  • the communication device provided by the embodiment of the present application is described in detail below with reference to FIG. 8 to FIG.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal can be applied to the system shown in FIG. 1 to perform the functions of the terminal in the above embodiment of the communication method.
  • Figure 8 shows only the main components of the terminal.
  • the terminal 80 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal, executing the software program, and processing the data of the software program, for example, for supporting the terminal to perform the actions described in the foregoing communication method embodiment.
  • the memory is mainly used for storing software programs and data, for example, storing the first SRS configuration information, the second SRS configuration information, the first configuration information, the second configuration information, and the like described in the foregoing embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 8 shows only one memory and one processor for ease of illustration. In an actual terminal, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control the entire terminal and execute the software.
  • the processor in FIG. 8 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal may include a plurality of baseband processors to accommodate different network standards, the terminal may include a plurality of central processors to enhance its processing capabilities, and various components of the terminals may be connected by various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having the function of transmitting and receiving can be regarded as the transceiver unit 801 of the terminal 80, for example, for supporting the terminal to perform the receiving as described in at least one of FIG. 2, FIG. 5, and FIG. Features and send functions.
  • the processor having the processing function is treated as the processing unit 802 of the terminal 80.
  • the terminal 80 includes a transceiver unit 801 and a processing unit 802.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 801 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 801 is regarded as a sending unit, that is, the transceiver unit 801 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the processor 802 can be configured to execute instructions stored in the memory to control the transceiver unit 801 to receive signals and/or transmit signals to complete the functions of the terminal in the foregoing communication method embodiment.
  • the function of the transceiver unit 801 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application, which may be a schematic structural diagram of a base station.
  • the base station 90 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing communication method embodiment.
  • the base station 90 can include one or more radio frequency units, such as a remote radio unit (RRU) 901 and one or more baseband units (BBUs) 902.
  • RRU 901 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 9011 and a radio frequency unit 9012.
  • the RRU 901 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal.
  • the BBU 902 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 901 and the BBU 902 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 902 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU (processing unit) 902 can be used to control the base station to perform an operation procedure of the network device in the foregoing communication method embodiment.
  • the BBU 902 may be configured by one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may support different access systems respectively. Radio access network (such as LTE network, 5G network or other network).
  • the BBU 902 also includes a memory 9021 and a processor 9022 for storing the necessary instructions and data.
  • the memory 8021 stores at least one of the first SRS configuration information, the second SRS configuration information, the first configuration information, and the second configuration information in the above embodiment.
  • the processor 9022 is configured to control a base station to perform necessary actions, for example, to control a base station to perform an operation procedure of the network device in the foregoing method for communicating.
  • the memory 9021 and the processor 9022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • FIG. 10 shows a schematic structural diagram of a communication device 1000.
  • the device 1000 can be used to implement the communication method described in the foregoing communication method embodiment. For details, refer to the description in the foregoing communication method embodiment.
  • the communication device 1000 can be a chip, a network device (such as a base station), a terminal or other network device, and the like.
  • the communication device 1000 includes one or more processors 1001.
  • the processor 1001 may be a general purpose processor or a dedicated processor or the like.
  • it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • the communication device may include a transceiver unit for implementing input (reception) and output (transmission) of signals.
  • the communication device can be a chip, and the transceiver unit can be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used for a terminal or base station or other network device.
  • the communication device may be a terminal or a base station or other network device
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication device 1000 includes one or more of the processors 1001, and the one or more processors 1001 can implement the network device or the terminal in the embodiment shown in at least one of FIG. 2, FIG. 5, and FIG. Communication method.
  • the communication device 1000 includes means for performing the various processing functions performed by the network device in the aforementioned communication method embodiment.
  • the foregoing function may be performed by one or more processors, and the first SRS configuration information and the second SRS configuration information, the first configuration information, and the second configuration information are sent through a transceiver, or an input/output circuit, or an interface of the chip. And receive SRS.
  • the configuration information and the SRS refer to the related description in the foregoing communication method embodiment.
  • the communication device 1000 includes means for performing the various processing functions performed by the terminal in the aforementioned communication method embodiment.
  • the foregoing functions may be performed by one or more processors, and the first SRS configuration information and the second SRS configuration information, the first configuration information, and the second configuration may be received through a transceiver, or an input/output circuit, or an interface of the chip.
  • Information, as well as sending SRS For the configuration information and the SRS, refer to the related description in the foregoing communication method embodiment.
  • the processor 1001 can implement other functions in addition to the communication methods of the embodiments shown in FIG. 2, FIG. 5, and FIG. 7.
  • the processor 1001 may also include an instruction 1003, which may be executed on the processor, such that the communication device 1000 performs the communication method described in the above communication method embodiment.
  • the communication device 1000 can also include circuitry that can implement the functionality of the network device or terminal in the aforementioned communication method embodiments.
  • the communication device 1000 can include one or more memories 1002 having instructions 1004 stored thereon that can be executed on the processor such that the communication device 1000 executes The communication method described in the above embodiment of the communication method.
  • data may also be stored in the memory.
  • Instructions and/or data can also be stored in the optional processor.
  • the one or more memories 1002 can store the respective configuration information described in the above embodiments.
  • the processor and the memory may be provided separately or integrated.
  • the communication device 1000 may further include a transceiver unit 1005 and an antenna 1006.
  • the processor 1001 may be referred to as a processing unit that controls a communication device (terminal or base station).
  • the transceiver unit 1005 may be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 1006.
  • the application also provides a communication system comprising one or more of the aforementioned network devices, and one or more terminals.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integrated circuits.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware (such as circuitry), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, network cable, fiber optic, cable, etc.) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • At least one means one or more, and "a plurality” means two or more.
  • At least one of the following or a similar expression thereof refers to any combination of these items, including any combination of a single item or a plurality of items.
  • at least one of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, c may be single or multiple .
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, apparatus, and communication method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the communication method described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置。该通信方法包括:若第一SRS资源与第二SRS资源在同一时隙或同一符号内冲突,则在该同一时隙或同一符号内,在第一SRS资源和第二SRS资源中的一个SRS资源上收发SRS,和/或若第一资源集合所包括的资源间的至少一个GP符号与第二资源中的符号相同,则在第二资源上收发SRS或PUCCH。可以适用于资源冲突时收发用于上行信道质量测量的信号。

Description

通信方法及装置
本申请要求于2018年05月11日提交国家知识产权局、申请号为201810450801.6、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,并且更具体地,涉及一种通信方法及装置。
背景技术
在诸如长期演进(long term evolution,LTE)/长期演进增强(LTE advanced,LTE-A)等第4代(4th generation,4G)移动通信系统中,用户设备(user equipment,UE)根据基站(evolved Node B,eNB)配置的探测参考信号(sounding reference signal,SRS)资源,周期性地或非周期性地向eNB发送SRS,以便eNB完成上行信道测量和上行资源调度。然而,若基站为同一UE配置多个SRS资源,且上述多个SRS资源在同一子帧内,则该UE会认为上述多个SRS资源冲突,从而放弃在该子帧发送SRS,导致原本用于发送SRS的资源闲置,降低了资源利用率,且对上行信道测量和上行资源调度造成不良影响。
在诸如新的无线接入技术(new radio access technology,NR)等第5代(5th generation,5G)移动通信系统中,UE也会根据基站(g Node B,gNB)配置的SRS资源,周期性地,半持续性地,或非周期性地向eNB发送SRS。其中,gNB配置的SRS资源可以是至少一个SRS资源集合,每个SRS资源集合均可包括至少一个SRS资源。目前,SRS资源集合可以采用如下类型(setUse)之一:基于码本(codebook,CB)的SRS资源集合、基于非码本(non-codebook,NCB)的SRS资源集合、用于波束管理(beam management,BM)的SRS资源集合和用于天线切换(Antenna Switching,AS)的SRS资源集合。从技术本身而言,NR能够支持BM、时隙(slot)内AS等技术,即同一UE是可以在同一时隙内不同SRS资源上同时发送SRS的,只要保证不同SRS资源中的时域资源、频域资源和码域资源中的至少一项能够区分即可。然而,现有NR协议版本R15(release 15)并未区分上述各种场景,而是一律放弃在同一时隙发送SRS,即NR也存在与LTE/LTE-A类似的问题。
发明内容
本申请提供一种通信方法及装置,以期适用于通信系统中资源冲突时用于上行信道质量测量的上行信号收发。
第一方面,提供了一种通信方法,包括:终端接收第一探测参考信号SRS配置信息和第二SRS配置信息,并确定第一SRS资源与第二SRS资源在时间单元内是否冲突。即使冲突,终端也可以确定在该时间单元内,在第一SRS资源和第二SRS资源中的一个SRS资源上发送SRS。其中,第一SRS配置信息用于指示终端在第一SRS资源上发 送SRS,第二SRS配置信息用于指示终端在第二SRS资源上发送SRS,时间单元包括:时隙或符号。
可选的,当时间单元为符号时,终端还可以确定在所述时间单元所在的时隙内除所述时间单元以外的符号上,不在所述第一SRS资源和第二SRS资源中的一个SRS资源之外的另一个SRS资源上传输SRS,即所述终端确定在所述时间单元所在的时隙内仅在所述第一SRS资源和第二SRS资源中的一个SRS资源上传输SRS,或者说所述终端确定在所述时间单元所在的时隙内,不在所述第一SRS资源和第二SRS资源中的一个SRS资源之外的另一个SRS资源上传输SRS。
或者所述终端不认为会收到配置了第一SRS资源与第二SRS资源在时间单元内冲突的第一配置信息和第二配置信息。可选的,当终端收到所述配置了第一SRS资源与第二SRS资源在时间单元内冲突的第一配置信息和第二配置信息时,终端确定所述第一配置信息和所述第二配置信息为错误的配置信息。
由此可见,即使第一SRS资源与第二SRS资源在时间单元内冲突,终端也能够在该时间单元内,在第一SRS资源和第二SRS资源中的一个资源上发送SRS,避免了在该时间单元内第一SRS资源和第二SRS资源均被闲置的情况,能够提高SRS资源的利用效率和SRS的传输效率,从而提高了上行信道的测量效率和上行资源的调度效率。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源与第二SRS资源满足第一时域冲突条件,且第一SRS资源集合和第二SRS资源集合中的至少一个为用于天线切换AS的资源集合。其中,第一时域冲突条件为:第一SRS资源所包括的至少一个时隙与第二SRS资源所包括的至少一个时隙相同,时间单元为时隙。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。其中,第一SRS资源集合与第二SRS资源集合可以分别为以下一种类型的SRS资源集合:基于码本CB的SRS资源集合、基于非码本NCB的SRS资源集合、用于波束管理BM的SRS资源集合和用于天线切换AS的SRS资源集合。相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源与第二SRS资源满足第二时域冲突条件和第一类型冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符号相同,时间单元为符号。第一类型冲突条件为:第一SRS资源集合和第二SRS资源集合为不同类型的SRS资源集合。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源与第二SRS资源满足第二时域冲突条件和第二类型冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符号相同,时间单元为符号。第二类型冲突条件为:第一SRS资源集合与第二SRS资源集合均为用于天线切换AS的SRS资源集合。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS 资源与第二SRS资源满足第二时域冲突条件和第三类型冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符号相同,时间单元为符号。第三类型冲突条件为:第一SRS资源集合为用于波束管理BM的SRS资源集合,第二SRS配置信息中的空间关系信息所指示的第三SRS资源属于第一SRS资源集合,且第三SRS资源与第一SRS资源不同。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源与第二SRS资源满足第二时域冲突条件和第四类型冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符号相同,时间单元为符号。第四类型冲突条件为:第一SRS配置信息中的空间关系信息所指示的第四SRS资源与第二SRS配置信息中的空间关系信息所指示的第五SRS资源不同,且第四SRS资源与第五SRS资源属于同一个SRS资源集合,且同一个SRS资源集合为用于波束管理的SRS资源集合。
可选的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源和第二SRS资源同时满足第二时域冲突条件、频域冲突条件和码域冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符号相同,时间单元为符号。频域冲突条件为:第一SRS资源和第二SRS资源包括至少一个相同子载波;码域冲突条件为:第一SRS资源和第二SRS资源包括至少一个具有相同循环移位的SRS序列。
可选的,终端确定在时间单元内,在第一SRS资源和第二SRS资源中的一个SRS资源上发送SRS,可以包括:若终端确定第一SRS资源的优先级高于第二SRS资源的优先级,则终端确定在时间单元内,在第一SRS资源上发送SRS,从而能够保证高优先级SRS资源优先用于传输SRS。其中,SRS资源的优先级可以根据SRS资源所属SRS资源集合的类型(基于CB的SRS资源集合、基于NCB的SRS资源集合、用于BM的SRS资源集合、用于AS的SRS资源集合)、SRS发送方式(周期性、半持续性、非周期性)、SRS资源所包括的时隙数量或符号数量、调度时间(接收到触发非周期SRS的DCI的时间)或激活时间(接收到激活半持续SRS的MAC CE的时间)等至少一个因素确定。应理解,影响SRS资源优先级的因素,还可以包括除上述因素之外的其他因素,本申请不再一一列举。
示例性的,可以为对上行信道测量和上行资源调度具有更大影响的SRS资源设置更高的优先级。例如,用于BM的SRS资源集合所包括的SRS资源的优先级,通常高于上述其他3种类型的SRS资源集合所包括的SRS资源的优先级。又例如,可以为同一时隙内占用符号数量较多的SRS资源的优先级,通常高于同一时隙内占用符号数量较少的SRS资源的优先级。
示例性的,也可以为对上行信道测量和上行资源调度的时效性要求较高的SRS资源设置较高的优先级。例如,采用非周期性(aperiodic,AP)发送方式的SRS资源的优先级高于采用半持续性(semi-persistent,SP)发送方式的SRS资源的优先级,且采用半持续性发送方式的SRS资源的优先级高于采用周期性(periodic,P)发送方式的SRS资源的优先级。
示例性的,不同的SRS资源的优先级还可以根据不同的SRS资源的调度时间或激活时间的先后顺序来确定。例如,调度时间或激活时间在后的SRS资源的优先级高于调度时间或激活时间在前的SRS资源的优先级。
应理解,SRS资源的优先级可以根据一个因素确定,也可以根据多个因素综合确定,比如,既考虑时效性要求又考虑调度时间或激活时间的顺序。例如,可以首先根据SRS发送方式将SRS资源分为非周期性组、半持续性组和周期性组,非周期性组、半持续性组和周期性组的优先级依次从高到低。然后,针对每个分组,根据该分组所包括的所有SRS资源的调度时间或激活时间的先后顺序确定该分组内每个SRS资源的优先级。
可选的,该通信方法还可以包括:终端接收第三SRS配置信息。其中,第三SRS配置信息用于指示终端在第六SRS资源上发送SRS。然后,终端确定在时间单元内,第六SRS资源与第二SRS资源冲突,且与第一SRS资源不冲突。相应的,终端确定在时间单元内,在第一SRS资源上发送SRS,可以包括:终端确定在时间单元内,在第一SRS资源上和第六SRS资源上发送SRS。
可选的,该通信方法还可以包括:终端上报可在同一个符号内发送SRS的资源数量或端口数量,以便网络设备依据上述资源数量或端口数量为该终端确定SRS配置信息,从而保证配置的同时传输的SRS资源或端口数量不超过终端所能支持的最大数量,因此可以降低不同SRS配置信息所指示的SRS资源冲突的概率,从而进一步提高了SRS资源的利用效率和SRS的传输效率。
第二方面,提供了一种通信方法,包括:网络设备发送第一探测参考信号SRS配置信息和第二SRS配置信息。其中,第一SRS配置信息用于指示终端在第一SRS资源上发送SRS,第二SRS配置信息用于指示终端在第二SRS资源上发送SRS。之后,若第一SRS资源与第二SRS资源在时间单元内冲突,则网络设备确定在时间单元内,在第一SRS资源和第二SRS资源中的一个SRS资源上接收SRS。其中,时间单元包括:时隙或符号。
由此可见,即使第一SRS资源与第二SRS资源在时间单元内冲突,网络设备也能够在该时间单元内,在第一SRS资源和第二SRS资源中的一个资源上接收SRS,避免了在该时间单元内第一SRS资源和第二SRS资源均被闲置的情况,能够提高SRS资源的利用效率和SRS的传输效率,从而提高了上行信道的测量效率和上行资源的调度效率。
可以理解,第一SRS配置信息和第二SRS配置信息是由网络设备确定并发送的,即网络设备也具备第一方面及其可选方案中所述的第一SRS资源与第二SRS资源是否冲突的判断能力。因此,网络设备能够根据判断结果只在不冲突的SRS资源上接收SRS,以减少网络设备的计算工作量,从而进一步提高SRS的传输效率和上行资源的调度效率。
可以理解,网络设备也可以根据已发送的SRS配置信息,确定待发送SRS配置信息,以避免两个SRS配置信息所指示的SRS资源冲突。
可以理解,在网络设备确定第一SRS资源与第二SRS资源在时间单元内冲突时,也可以根据终端侧相同的通信方法确定第一SRS资源和第二SRS资源的优先级,并根 据确定的优先级确定SRS接收方案。因此,相应的,网络设备确定在时间单元内,在第一SRS资源和第二SRS资源中的一个SRS资源上接收SRS,可以包括:网络设备确定第一SRS资源的优先级高于第二SRS资源的优先级,且在时间单元内,在第一SRS资源上接收SRS。
可选的,在网络设备确定在时间单元内,该通信方法还包括:网络设备发送第三SRS配置信息。其中,第三SRS配置信息用于指示终端在第六SRS资源上发送SRS。然后,网络设备确定在时间单元内,第六SRS资源与第二SRS资源冲突,且与第一SRS资源不冲突,以及第二SRS资源的优先级高于第六SRS资源的优先级。相应地,网络设备确定在时间单元内,在第一SRS资源上接收SRS,可以包括:网络设备在时间单元内,在第一SRS资源上和第六SRS资源上接收SRS。
可选的,与第一方面所述的终端上报可在同一个符号内发送SRS的资源数量或端口数量相对应,该通信方法还包括:网络设备接收终端可在同一个符号内发送SRS的资源数量或端口数量,并依据上述资源数量或端口数量为该终端确定SRS配置信息,降低不同SRS配置信息所指示的SRS资源冲突的概率,从而进一步提高SRS资源的利用效率和SRS的传输效率。
第三方面,提供了一种通信方法,包括:终端接收第一配置信息和第二配置信息。其中,第一配置信息用于指示终端在第一资源集合所包括的至少一个第一资源上发送探测参考信号SRS,第一资源集合为用于天线切换AS的SRS资源集合;第二配置信息用于指示终端在第二资源上发送SRS或上行控制信道PUCCH。然后,若第一资源集合中的第一资源间的至少一个保护间隔GP符号与第二资源中的符号相同,则终端确定在第二资源上发送SRS或PUCCH,避免了第一资源集合所包括的第一资源和第二资源均被闲置的情况,能够提高资源利用效率和信号传输效率。
可选的,该通信方法还可以包括:终端确定在第一资源集合中除满足第一条件的符号之外的第一资源上发送SRS。其中,第一条件为以下条件之一:第一资源集合中位于GP符号前、且与GP符号距离最近的符号;第一资源集合中位于GP符号前、且与GP符号距离最近的第一资源中的所有符号;第一资源集合中位于GP符号后、且与GP符号距离最近的符号;第一资源集合中位于GP符号后、且与GP符号距离最近的第一资源中的所有符号;第一资源集合中位于GP符号前和GP符号后、且与GP符号距离最近的符号;第一资源集合中位于GP符号前和GP符号后、且与GP符号距离最近的第一资源中的所有符号;第一资源集合中与第二资源使用不同发送天线的符号。
可以理解,为了简化处理,终端也可以不进行上述第一条件的判断。因此,可选的,该通信方法还可以包括:终端确定不在第二资源所在时隙内的第一资源集合上发送SRS。
第四方面,提供了一种通信方法,包括:网络设备发送第一配置信息和第二配置信息。其中,第一配置信息用于指示终端在第一资源集合所包括的至少一个第一资源上发送探测参考信号SRS,第一资源集合为用于天线切换AS的SRS资源集合;第二配置信息用于指示终端在第二资源上发送SRS或上行控制信道PUCCH。之后,若第一资源集合中的第一资源间的至少一个保护间隔GP符号与第二资源中的符号相同,则网络设备确定在第二资源上接收SRS或PUCCH,避免了第一资源集合所包括的第一资源和 第二资源均被闲置的情况,能够提高资源利用效率和信号传输效率。
可选的,该通信方法还可以包括:网络设备确定在第一资源集合中除满足第一条件的符号之外的第一资源上接收SRS。其中,第一条件为以下条件之一:第一资源集合中位于GP符号前、且与GP符号距离最近的符号;第一资源集合中位于GP符号前、且与GP符号距离最近的第一资源中的所有符号;第一资源集合中位于GP符号后、且与GP符号距离最近的符号;第一资源集合中位于GP符号后、且与GP符号距离最近的第一资源中的所有符号;第一资源集合中位于GP符号前和GP符号后、且与GP符号距离最近的符号;第一资源集合中位于GP符号前和GP符号后、且与GP符号距离最近的第一资源中的所有符号;第一资源集合中与第二资源使用不同发送天线的符号。
可以理解,为了简化处理,网络设备也可以不进行上述第一条件的判断。因此,可选的,该通信方法还可以包括:网络设备确定不在第二资源所在时隙内的第一资源集合上接收SRS。
可以理解,第一配置信息和第二配置信息是由网络设备确定并发送的,即网络设备也具备第三方面及其可选方案中所述的第一资源与第二资源冲突的判断能力。因此,网络设备可以根据判断结果只在不冲突的资源上接收SRS,以减少网络设备的计算工作量,从而进一步提高SRS的传输效率和上行资源的调度效率。
可以理解,网络设备也可以根据已发送的配置信息,确定待发送的配置信息,以避免两个配置信息所指示的资源冲突。
第五方面,提供了一种通信方法,包括:终端接收第一配置信息和第二配置信息。其中,第一配置信息用于指示终端在第一资源集合所包括的至少一个SRS资源上发送探测参考信号SRS,第一资源集合为用于天线切换AS的SRS资源集合;第二配置信息用于指示终端在第二资源上发送上行控制信道PUCCH。然后,终端在第一资源上发送SRS,在第二资源上发送PUCCH。其中,在同一时隙内,第一资源集合中的第一个第一资源的第一个符号或最后一个第一资源的最后一个符号与第二资源之间存在至少一个保护间隔GP符号。
可选的,若在一个时隙内,所述第二资源的符号位于第一资源集合中所述时隙内的所有SRS资源之前,则终端确定所述第二资源与所述第一资源集合在所述时隙内的第一个SRS资源之间具有Y个符号的GP。
可选的,若在一个时隙内,所述第二资源的符号位于第一资源集合中所述时隙内的所有SRS资源之后,则终端确定所述第二资源与所述第一资源集合在所述时隙内的最后一个SRS资源之间具有Y个符号的GP。其中Y为大于等于1的正整数,可以是网络设备配置的或者预先定义的,例如对于15千赫兹(kilo-hertz,KHz)到60KHz的子载波间隔,Y=1,对于120KHz子载波间隔Y=2,对于240KHz子载波间隔Y=4。所述终端在所述GP内不进行任何传输,或不进行任何上行传输。这样可以在SRS与PUCCH之间如果需要天线切换时可以保证足够的切换时间,从而不影响两者的发送性能。
可以理解的是,第一资源集合中至少一个SRS资源之间的GP符号是否用于传输其他信道或信号,在此不予限定。
第六方面,提供了一种通信方法,包括:网络设备发送第一配置信息和第二配置信息。其中,第一配置信息用于指示终端在第一资源集合所包括的至少一个SRS资源 上发送探测参考信号SRS,第一资源集合为用于天线切换AS的SRS资源集合;第二配置信息用于指示终端在第二资源上发送上行控制信道PUCCH。然后,网络设备在第一资源上接收SRS,在第二资源上接收PUCCH。其中,在同一时隙内,第一资源集合中的第一个第一资源的第一个符号或最后一个第一资源的最后一个符号与第二资源之间存在至少一个保护间隔GP符号。可以理解的是,第一资源集合中至少一个SRS资源之间的GP符号是否用于传输其他信道或信号,在此不予限定。
可以理解,网络设备也可以根据已发送的配置信息,确定待发送的配置信息,以避免两个配置信息所指示的资源冲突。
本申请实施例提供的通信方法,能够在一个时隙内,第一资源集合所包括的一个SRS资源与第二资源之间存在至少一个GP符号的情况下,则在该时隙内,在上述GP符号之前的第一资源上收发SRS,在GP符号之后的第二资源上收发PUCCH,或者在该时隙内,在上述GP符号之后的第一资源上收发SRS,在GP符号之前的第二资源上收发PUCCH,以便为天线切换预留足够时间,从而避免对SRS和PUCCH的传输造成不利影响,能够保证依据SRS测量结果和PUCCH的测量结果评估上行信道质量和调度上行资源的准确性。
第七方面,提供了一种通信装置,用于执行如第一至第六方面及其各种可选方式中任意一项所述的通信方法。
第八方面,提供了一种通信装置,该通信装置包括:处理器,处理器与存储器耦合;存储器,用于存储计算机程序;处理器,用于执行存储器中存储的计算机程序,以使得该装置执行如第一至第六方面及其各种可选方式中任意一项所述的通信方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述通信方法中终端相应的功能。例如,确定第一SRS资源与第二SRS资源是否冲突,或者确定第一资源集合所包括的资源间的GP符号与第二资源中的符号是否相同。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,接收第一SRS配置信息和第二SRS配置信息、接收第一配置信息和第二配置信息,或者发送SRS。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为智能终端或者可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面及其各可选实现方式中任一通信方法中终端或网络设备完成的通信方法,和/或使得该装置执行第二方面及其各可选实现方式中任一通信方法中终端或网络设备完成的通信方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或 多个处理器被配置为支持所述装置执行上述通信方法中网络设备相应的功能。例如,确定第一SRS资源与第二SRS资源是否冲突,或者确定第一资源集合所包括的资源间的GP符号与第二资源中的符号是否相同。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,发送第一SRS配置信息和第二SRS配置信息、发送第一配置信息和第二配置信息,或者接收SRS。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为基站,gNB或TRP等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第二方面或第二方面中任一种可能实现方式中网络设备完成的通信方法。
第九方面,提供了一种系统,该系统包括上述终端和网络设备。
第十方面,提供了一种可读存储介质,包括程序或指令,当程序或指令在计算机上运行时,如第一至第六方面及其各种可选方式中任意一项所述的通信方法被执行。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行上述第一方面至第六方面中任一方面中的任一种可选方式中的通信方法。
通过本申请实施例提供的通信方法,可以提供一种适用于资源冲突时的上行信号收发通信方法,适用于资源冲突时用于上行信道质量测量的信号的收发。
附图说明
图1示出了适用于本申请实施例的通信方法的通信系统的示意图;
图2是本申请实施例提供的通信方法一的示意性流程图;
图3A示出了本申请实施例提供的通信方法一所涉及的不同SRS资源冲突的示意图一;
图3B示出了本申请实施例提供的通信方法一所涉及的不同SRS资源冲突的示意图二;
图3C示出了本申请实施例提供的通信方法一所涉及的不同SRS资源冲突的示意图三;
图4示出了本申请实施例提供的通信方法一所涉及的SRS资源冲突时的SRS发送方案的示意性场景图;
图5是本申请实施例提供的通信方法二的示意性流程图;
图6是本申请实施例提供的通信方法二所涉及的资源冲突的示意性场景图;
图7是本申请实施例提供的通信方法三的示意性流程图;
图8是本申请实施例提供的终端的结构示意图;
图9是本申请实施例提供的网络设备的结构示意图;
图10是本申请实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:LTE系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代5G系统,如NR系统,以及未来的通信系统,如第六代(6th generation,6G)系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例既可以应用于时分双工(time division duplexing,TDD)的场景,也可以适用于频分双工(frequency division duplexing,FDD)的场景。
本申请实施例既可以应用在传统的典型网络中,也可以应用在未来的以UE为中心(UE-centric)的网络中。以UE为中心的网络引入无小区(non-cell)的网络架构,即在某个特定的区域内部署大量小站,构成一个超级小区(hyper cell),每个小站为超级小区的一个传输点(transmission point,TP)或TRP,并与一个集中控制器(controller)相连。当UE在超级小区内移动时,网络侧设备时时为UE选择新的子簇(sub-cluster)为其服务,从而避免真正的小区切换,实现UE业务的连续性。其中,网络侧设备包括无线网络设备,如基站。
本申请实施例中不同基站可以为具有不同的标识的基站,也可以为具有相同的标识、且被部署在不同地理位置的基站。由于在基站被部署前,基站并不会知道其是否会涉及本申请实施例所应用的场景,因而,基站,或基带芯片,都应在部署前就支持本申请实施例所提供的通信方法。可以理解的是,前述具有不同标识的基站的标识可 以为基站标识,也可以为小区标识或者其他标识。
本申请实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例中,波束beam可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识。其中,所述能量传输指向性可以指在一定空间位置内,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。
可选地,同一通信设备(比如终端或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。
针对通信设备的配置或者能力,一个通信设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个或多个波束。波束的信息可以通过索引信息进行标识。可选地,所述索引信息可以对应配置终端(如用户设备UE)的资源标识(identity,ID),比如,所述索引信息可以对应配置的信道状态信息参考信号(channel state information reference signal,CSI-RS)的ID或者资源,也可以对应配置的上行探测参考信号(sounding reference signal,SRS)的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息可以是通过波束发送的同步信号或者广播信道指示该波束的索引信息。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信方法的通信系统的示意图。如图1所示,该通信系统100包括网络设备102和终端106,网络设备102可配置有多个天线,终端也可配置有多个天线。可选地,该通信系统还可包括网络设备104,以及提供网络设备104接入网络设备102的终端108,且网络设备104也可配置有多个天线,终端108也可配置有多个天线。
应理解,网络设备102或网络设备104还可包括与信号发送和接收相关的多个部件(例如,处理器、调制器、复用器、解调器或解复用器等)。
其中,网络设备为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端及可设置于前述终端的芯片统称为终端。
在该通信系统100中,网络设备102和网络设备104均可以与多个终端(例如图1中示出的终端106和终端110)通信。网络设备102和网络设备104可以与类似于终端106的任意数目的终端通信。但应理解,与网络设备102通信的终端和与网络设备104通信的终端可以是相同的,也可以是不同的。图1中示出的终端106可同时与网络设备102和网络设备104通信,但这仅示出了一种可能的场景,在某些场景中,终端可能仅与网络设备102或网络设备104通信,本申请对此不做限定。
需要说明的是,在采用宏-微基站架构部署的通信系统中,当网络设备为宏基站时,终端也可以替代为微基站或中继站。例如,如图1所示,网络设备102可以为宏基站,相应的,终端可以替代为网络设备104。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端,图1中未予以画出。
本申请提供的通信方法涉及各种上行信号,以及用于传输各种上行信号的资源。在LTE中,包括PUSCH、PUCCH和SRS,在5G中,可以对应地针对上行数据信道、控制信道、用于解调的参考信号、用于信道测量的参考信号、随机接入的信道等等。上述资源可以是不同资源粒度的资源,例如可以是最小资源粒度的资源,也可以是一个资源集合。其中,资源集合内包含了一个以上的最小资源粒度。资源集合在时域的角度上可以是系统帧、无线帧、帧、子帧、时隙、半时隙、迷你时隙、符号、符号集合中的至少一个等。在频域的角度上可以是载波、系统带宽、部分带宽、带宽部分、子 带、资源块、子载波、或,服务小区等中的至少一个。资源集合在码域上的角度上可以是上行信号携带的导频序列、伪随机序列、训练序列、正交化码序列、同步序列,或,同步序列的循环移位中的至少一个。资源集合在空域的角度上可以是发射天线、接收天线、波束等中的至少一个。一般地,资源粒度可以是一个信道或信号的调度粒度。举例而言,一个时隙可以包括一个或多个符号,比如包括14个符号,或者,7个符号。一个子帧可以包括一个或多个符号,比如14个符号。
在现代通信系统中,多天线技术被广泛应用,如在LTE、5G NR、WIFI等网络中。一个节点通过多天线发送或者接收信号,后文简称MIMO。在MIMO系统中,节点通过调整MIMO发送、接收方案,如调整发送天线的权值,分配不同的信号到不同的天线上等,可以获取分集、复用等增益,提高系统容量、增加系统可靠性。随着MIMO技术的发展,大规模MIMO(massive MIMO,M-MIMO)的应用,能够进一步提高系统性能。在高频的频段,信号的波长较短,如只有毫米级,对应的天线尺寸也会缩减,这,网络中的节点就有了配置大规模的天线阵列的能力。在M-MIMO中,节点可配置几十个、上百个甚至更多的天线阵子。这些天线阵子,按照一定的排布,如线性排布、圆形排布等,可形成天线阵列。例如,可以将天线阵列划分为多个可独立控制的天线面板,每个天线面板可以包括至少一个天线阵子。其中,可以在上述多个天线面板上同时发射不同波束,也可以在部分天线面板上发射波束,可以通过预编码(precoding)、波束管理(beam management,BM)、天线切换(antenna switching,AS)等中的至少一种技术手段予以实现。节点通过天线阵列发送或者接收信号时,可以通过调整天线阵子上的权值,获得天线增益,使得发送或者接收的信号,在空间中呈现出不均匀的能量分布。通过一些算法,可以使得信号在空间中的部分方向上具有能量集中的效果。这种效果可以成为称为是波束成形。此时信号在空间中形成波束的存在。这里的空间,可以是指水平方向的角度分布和/或垂直方向的角度分布等等。
网络设备和终端之间可以是采用波束传输。波束是一种物理资源,在一些通信系统中,可以是索引为一些导频资源和/或时频资源等等上。
波束的物理含义是,在发送或者接收信号时,可以采用多天线的技术进行发送、接收,传输节点如网络设备、终端等可以对多天线进行权值处理,使得发送和/或接收的信号在一定的空间方向中呈现出能量的非均匀分布,使得信号能量有一定的聚集,这种能量的聚集可以称为是波束。
如图2所示,本申请实施例提供一种通信方法,以适用于NR系统中的SRS传输。本申请实施例可以应用于网络设备与网络设备(如宏基站与微基站)、网络设备与终端之间的通信。在此,以网络设备与终端之间的通信为例进行描述,但并不限于此。
如图2所示,该通信方法200可以包括S201-S206:
S201、网络设备发送第一探测参考信号SRS配置信息和第二SRS配置信息。
其中,第一SRS配置信息用于指示终端在第一SRS资源上发送SRS,第二SRS配置信息用于指示终端在第二SRS资源上发送SRS。
示例性地,网络设备发送第一SRS配置信息和第二SRS配置信息中的任意一个SRS配置信息,可以包括如下步骤:
步骤一:网络设备发送携带有至少一个SRS资源集合的SRS配置信息。
其中,网络设备可以发送携带有至少一个用于上行信道质量探测的信道的资源集合的无线资源控制(radio resource control,RRC)信令。其中,RRC信令可以包括:至少一个用于上行信道质量探测的信道的资源集合、每个用于上行信道质量探测的信道的资源集合的类型(setUse),以及每个用于上行信道质量探测的信道的资源集合所包括的至少一个用于上行信道质量探测的信道的资源的标识。示例性的,上述用于上行信道质量探测的信道可以为SRS,也可以为物理上行控制信道PUCCH,还可以为其他用于上行信道质量探测的信号、信道、信令等,本申请对此不作限定。
通常,至少一个用于上行信道质量探测的信道的资源集合可以包括:至多1个基于CB的用于上行信道质量探测的信道的资源集合,至多1个基于NCB的用于上行信道质量探测的信道的资源集合,0个、1个或多个用于BM的用于上行信道质量探测的信道的资源集合,以及0个、1个或多个用于AS的用于上行信道质量探测的信道的资源集合。鉴于上述4种类型的用于上行信道质量探测的信道的资源集合为现有技术,此处不再赘述。下文中以SRS和SRS资源集合为例进行说明。
步骤二:网络设备可以采用如下4种方式之一触发SRS资源集合。
方式一:不发送触发指示。
若未接收到触发指示,终端会周期性地在每个SRS资源集合所包括的SRS资源上发送SRS。
与方式一不同,在方式二至方式四中,网络设备还会发送携带有部分或全部SRS资源集合的激活指示或触发指示的信令。具体如下:
方式二:网络设备发送携带有每个SRS资源集合对应的半持续(semi-persistent,SP)激活(avitivation)指示的媒体接入控制控制单元(media access control control element,MAC CE)信令。若上述激活指示表示激活该SRS资源集合,则终端在收到激活指示后,在该SRS资源集合所包括的SRS资源上发送SRS,直到该终端接收到另一个MAC CE信令,且另一个MAC CE信令携带的去激活指示表示去激活该SRS资源集合为止。
需要说明的是,MAC CE信令还可以携带生效时间等信息。其中,生效时间为终端接收到该MAC CE信令后,第一次发送SRS的时间。鉴于生效时间为现有技术,本申请实施例不再赘述。
方式三:网络设备发送携带有SRS资源集合对应的非周期性(aperiodic,AP)触发指示的下行控制信息(downlink control information,DCI)信令。例如,在DCI信令的SRS请求(SRS Request)域可以携带一个或多个SRS资源集合的非周期性触发指示。若上述调度指示表示调度该SRS资源集合,则终端在该SRS资源集合所包括的SRS资源上发送SRS,之后自行停止。
此外,DCI信令还可以携带生效时间、发送次数等信息。其中,生效时间为终端接收到该DCI信令后,第一次发送SRS的时间。发送次数是指,终端接收到一个DCI信令后,终端总共需要发送SRS的次数,在达到发送次数之后,终端自行停止发送SRS。鉴于生效时间、发送次数为现有技术,本申请实施例不再赘述。
方式四:网络设备发送携带有上述非周期性触发指示的DCI信令,此外还需要发送携带有配置所述非周期触发指示所触发的SRS资源集合的候选集合配置信息的MAC  CE信令。
或者,网络设备可以发送携带有上述半持续触发指示的MAC CE信令以及携带有上述非周期触发指示的DCI信令。
示例性的,网络设备可以为同一个SRS资源集合下发在不同时间采用不同发送方式的触发指示,也可以为不同SRS资源集合下发在同一时间采用相同发送方式的触发指示。例如,网络设备为SRS资源集合A下发在第一时间采用半持续方式发送SRS的MAC CE信令,以及在第二时间采用非周期性方式发送SRS的MAC CE信令。又例如,当网络设备要求SRS资源集合A和SRS资源集合B均采用非周期方式发送SRS时,网络设备可以为SRS资源集合A和SRS资源集合B下发同一个携带有非周期触发指示的DCI信令。
需要说明的是,对于采用半持续方式发送SRS的SRS资源集合,网络设备需要为每个SRS资源集合的每次激活各下发一次携带有激活指示的MAC CE信令。而对于采用非周期方式发送SRS的SRS资源集合,网络设备可以在一个DCI信令中携带一个或多于一个SRS资源集合的触发指示。可以理解,对于采用半持续方式发送SRS的SRS资源集合,在终端开始在该SRS资源集合所包括的SRS资源上发送SRS之后,若网络设备需要停止该终端发送SRS,则网络设备还需要下发一个携带有停止发送指示的MAC CE信令。
应理解,第一SRS配置信息和第二SRS配置信息,可以在同一个下行信令中下发,也可以在不同的下行信令中下发。例如,第一SRS配置信息在RRC信令1中下发,第二SRS配置信息在RRC信令2中下发。同理,同一SRS配置信息中的不同部分,可以在同一个下行信令中下发,也可以在不同的下行信令中下发。例如,配置信息中的SRS资源集合,可以在DCI信令中下发,配置信息中的SRS资源集合触发指示,可以在MAC CE信令或DCI信令中下发。
S202、网络设备确定第一SRS资源与第二SRS资源在时间单元内冲突。
其中,时间单元包括:时隙或符号。
示例性的,第一SRS资源与第二SRS资源在时间单元内冲突,可能是由以下至少一个原因导致的:
原因一:受限于终端能力,终端不能在该时间单元内的第一SRS资源上和第二SRS资源上同时发送SRS。例如,终端不支持全天线发送(即终端发送天线数量小于接收天线数量),若第一SRS资源和第二SRS资源分别位于不同天线上,则第一SRS资源和第二SRS资源冲突。再例如,终端支持BM,若第一SRS资源和第二SRS资源分别对应一个面板上的不同模拟发送波束,则第一SRS资源和第二SRS资源冲突。
原因二:第一SRS资源和第二SRS资源所包括的时域资源,频域资源和码域资源三者均存在相同部分,将会导致在第一SRS资源上发送的SRS与在第二SRS资源上发送的SRS之间存在严重干扰,从而导致网络设备无法正确解析上述两个SRS。
原因三:由于网络设备发送了错误的配置信息,导致第一SRS资源和第二SRS资源在时间单元内冲突。
需要说明的是,实际应用中,还可能存在其他导致冲突的原因,本申请实施例不再赘述。
可选的,当时间单元为符号时,终端还可以确定在所述时间单元所在的时隙内除所述时间单元以外的符号上,不在所述第一SRS资源和第二SRS资源中的一个SRS资源之外的另一个SRS资源上传输SRS,即所述终端确定在所述时间单元所在的时隙内仅在所述第一SRS资源和第二SRS资源中的一个SRS资源上传输SRS,或者说所述终端确定在所述时间单元所在的时隙内,不在所述第一SRS资源和第二SRS资源中的一个SRS资源之外的另一个SRS资源上传输SRS。
或者,所述终端不认为会收到配置了第一SRS资源与第二SRS资源在时间单元内冲突的第一配置信息和第二配置信息。可选的,当终端收到所述配置了第一SRS资源与第二SRS资源在时间单元内冲突的第一配置信息和第二配置信息时,终端确定所述第一配置信息和所述第二配置信息为错误的配置信息。进一步可选的,终端可以在第一SRS资源上发送SRS,也可以在第二SRS资源上发送SRS,还可以不在第一SRS资源和第二SRS资源上发送SRS。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源与第二SRS资源满足第一时域冲突条件,且第一SRS资源集合和第二SRS资源集合中的至少一个为用于天线切换AS的资源集合。其中,第一时域冲突条件为:第一SRS资源所包括的至少一个时隙与第二SRS资源所包括的至少一个时隙相同,时间单元为时隙。
示例性的,如图3A所示,第一SRS资源集合为用于AS的资源集合,第二SRS资源集合可以是用于AS的资源集合,也可以不是用于AS的资源集合,本申请对此不作限定。下面以第二SRS资源集合不是用于AS的资源集合为例进行说明。
如图3A所示,第一SRS资源集合包括时隙m、时隙m+1和时隙m+2,其中时隙m+1中包含有GP符号,第二SRS资源包括时隙m+1和m+3,不包括时隙m+2(图3A中以虚线框表示),即第一SRS资源集合和第二SRS资源在时隙m+1上满足第一时域冲突条件。
需要说明的是,图3A中第一SRS资源集合与第二SRS资源只包括一个相同时隙。事实上,相同时隙的数量可以不止一个,且当相同时隙为多个时,多个相同时隙之间可以连续,也可以不连续,本申请对此不作限定。
当然,一个时隙通常可以包括多个符号,一次天线切换通常只需要该时隙中的部分符号。因此,该时隙所包括的不用于天线切换的符号可以用于发送SRS,也可以用于发送其他信号,如下行信道测量报告和数据。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。其中,第一SRS资源集合与第二SRS资源集合可以分别为以下类型的SRS资源集合中的一种:基于码本CB的SRS资源集合、基于非码本NCB的SRS资源集合、用于波束管理BM的SRS资源集合和用于天线切换AS的SRS资源集合。第一SRS资源集合与第二SRS资源集合的类型可以相同,也可以不同。
相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源与第二SRS资源满足第二时域冲突条件和第一类型冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符 号相同,时间单元为符号。
示例性的,如图3B所示,第一SRS资源包括符号n和n+1,第二SRS资源包括符号n+1和n+2,即第一SRS资源(符号n+1)与第二SRS资源(符号n+1)满足第二时域冲突条件。
需要说明的是,图3B中示出的为一个符号(符号n+1)满足第二时域冲突条件的情形。事实上,满足第二时域冲突条件的符号可能不止一个。当满足第二时域冲突条件的符号为多个时,上述多个符号之间可以连续,也可以不连续,本申请对此不作限定。
可选的,为了简化资源集合类型是否冲突的判断过程,减少计算量,提高判断效率,也可以只判断第一SRS资源集合与第二SRS资源集合是否为同一类型的SRS资源集合。因此,第一类型冲突条件可以为:第一SRS资源集合和第二SRS资源集合为不同类型的SRS资源集合。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源与第二SRS资源满足第二时域冲突条件和第二类型冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符号相同,时间单元为符号。第二类型冲突条件为:第一SRS资源集合与第二SRS资源集合均为用于天线切换AS的SRS资源集合。
在现有NR协议R15中,用于AS的GP符号的位置并不固定。例如,GP符号可以为时隙内所述用于AS的SRS资源集合中SRS资源之间的部分或全部符号,或时隙内所述用于AS的SRS资源集合中SRS资源前和/或后的Y个符号,Y为大于等于0的整数,例如Y=1或Y=2。
如图3C所示,第一SRS资源集合包括符号n、符号n+2和符号n+3,符号n+1为GP符号,第二SRS资源集合包括符号n+1和符号n+3,符号n+2为GP符号,即第一SRS资源集合与第二SRS资源集合均包括符号n+3,视为第一SRS资源与第二SRS资源满足第二时域冲突条件和第二类型冲突条件。
需要说明的是,若第一SRS资源集合所包括的第一SRS资源间的GP符号与第二SRS资源集合所包括的第二SRS资源间的GP符号相同,例如上述2个GP符号均为符号n+1,且第一SRS资源与第二SRS资源在其他用于发送SRS的符号上不冲突,则视为第一SRS资源与第二SRS资源不满足第二时域冲突条件和第二类型冲突条件。若第一SRS资源集合所包括的第一SRS资源间的GP符号与第二SRS资源集合所包括的第二SRS资源的SRS符号相同,则可以采用如图5所示的方式进行冲突解决。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源与第二SRS资源满足第二时域冲突条件和第三类型冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符号相同,时间单元为符号。第三类型冲突条件为:第一SRS资源集合为用于波束管理BM的SRS资源集合,第二SRS配置信息中的空间关系信息(spatialRelationInfo,SRI)所指示的第三SRS资源属于第一SRS资源集合,且第三SRS资源与第一SRS资源 不同。
通常,SRI所指示的波束,可以是用来发送SRS的天线面板,即SRS资源也可以包括空域资源。可以理解,第二SRS配置信息中的SRI所指示的第三SRS资源,是指:指示终端在第二SRS资源上,且在与第三SRS资源上发送SRS所使用的天线面板相同的同一天线面板上发送SRS。若第三SRS资源属于第一SRS资源集合,且与第一SRS资源不同,则视为满足第三类型冲突条件。
需要说明的是,本申请并不需要限定第二SRS资源集合是否为用于BM的SRS资源集合类型,即,无论第二SRS资源集合的类型为何种,都可以适用。
可选的,第一SRS资源属于第一SRS资源集合,第二SRS资源属于第二SRS资源集合。相应的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源与第二SRS资源满足第二时域冲突条件和第四类型冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符号相同,时间单元为符号。第四类型冲突条件为:第一SRS配置信息中的空间关系信息所指示的第四SRS资源与第二SRS配置信息中的空间关系信息所指示的第五SRS资源不同,且第四SRS资源与第五SRS资源属于同一个SRS资源集合,且上述同一个SRS资源集合为用于波束管理的SRS资源集合。
示例性的,第一SRS资源集合为基于CB的SRS资源集合,第二SRS资源集合为用于AS的SRS资源集合,第一SRS配置信息中的空间关系信息所指示的第四SRS资源,第二SRS配置信息中的空间关系信息所指示的第五SRS资源,第四SRS资源和第五SRS资源不同,且均属于同一个用于BM的SRS资源集合,视为第一SRS资源和第二SRS资源满足第四类型冲突条件。
需要说明的是,本申请不需要限定第一SRS资源集合与第二SRS资源集合是否为同一类型,即可以为相同类型,也可以为不同类型。其原因在于:只要第一SRS资源的空间关系信息所指示的第四SRS资源和第二SRS资源的空间关系信息所指示的第五SRS资源均属于同一个用于BM的SRS资源集合,且第四SRS资源与第五SRS资源不同,即要求第一SRS资源和第二SRS资源在不同的天线面板上发送SRS,而对于用于BM的SRS资源集合,是不能在同一个天线面板上同时发送不同的SRS的。
可选的,第一SRS资源与第二SRS资源在时间单元内冲突,可以包括:第一SRS资源和第二SRS资源同时满足第二时域冲突条件、频域冲突条件和码域冲突条件。其中,第二时域冲突条件为:第一SRS资源所包括的至少一个符号与第二SRS资源所包括的至少一个符号相同,时间单元为符号。频域冲突条件为:第一SRS资源和第二SRS资源包括至少一个相同子载波;码域冲突条件为:第一SRS资源和第二SRS资源包括至少一个具有相同循环移位的SRS序列。
在不包括S202的情况下,网络设备需要在第一SRS资源和第二SRS资源组成的并集中接收和解析SRS。也就是说,本申请实施例可以不包括S202,即S202为可选步骤。
S203、终端接收第一探测参考信号SRS配置信息和第二SRS配置信息。
示例性的,终端可以通过空口连接接收上述2个SRS配置信息。
S204、终端确定第一SRS资源与第二SRS资源在时间单元内冲突。
示例性的,终端可以采用与S202中相同的通信方法确定第一SRS资源与第二SRS 资源在时间单元内冲突,本申请实施例不再赘述。
可以理解的是,为了确保网络设备和终端判断行为的一致性,以上冲突判断条件可以协议预定义并存储在网络设备和终端中,也可以通过网络设备向终端配置,具体保存方式或配置方式在此不予限定。比如:以上判断条件可以通过网络设备发送第一SRS配置信息或第二SRS配置信息时配置。
S205、终端确定在时间单元内,在第一SRS资源和第二SRS资源中的一个SRS资源上发送SRS。
可选的,S205终端确定在时间单元内,在第一SRS资源和第二SRS资源中的一个SRS资源上发送SRS,可以包括:若终端确定第一SRS资源的优先级高于第二SRS资源的优先级,则终端确定在时间单元内,在第一SRS资源上发送SRS,从而能够保证高优先级SRS资源优先用于传输SRS。其中,高优先级SRS资源可以为对上行信道测量和上行资源调度具有更大影响的SRS资源。例如,用于BM的SRS资源,或者在同一时隙内占用符号较多的SRS资源。高优先级SRS资源也可以为对上行信道测量和上行资源调度的时效性要求较高的SRS资源。例如,非周期性(aperiodic,AP)的SRS资源的优先级高于半持续性(semi-persistent,SP)的SRS资源,且半持续性的SRS资源的优先级高于周期性(periodic,P)的SRS资源。此外,高优先级SRS资源还可以为两个SRS资源中调度时间或激活时间在后的SRS资源。
可选的,在终端确定在时间单元内,该通信方法还可以包括:终端接收第三SRS配置信息。其中,第三SRS配置信息用于指示终端在第六SRS资源上发送SRS。然后,终端确定在时间单元内,第六SRS资源与第二SRS资源冲突,且与第一SRS资源不冲突,以及第二SRS资源的优先级高于第六SRS资源的优先级。相应的,终端确定在时间单元内,在第一SRS资源上发送SRS,可以包括:终端在时间单元内,在第一SRS资源上和第六SRS资源上发送SRS。
示例性的,如图4所示,在指定时间段内,如一个时隙(slot)内,第一SRS资源包括符号n、符号n+1和符号n+2,第二SRS资源包括符号n,第六SRS资源包括符号n+2,即第一SRS资源和第六SRS资源均与第二SRS资源冲突,但第一SRS资源与第六SRS资源不冲突。假定第一SRS资源的优先级高于第二SRS资源的优先级,且第二SRS资源的优先级高于第六SRS资源的优先级,则终端可以采用如下两者方式之一确定如何发送SRS。
方式一:终端以发送时间先后顺序判断优先级,并在优先级最高的SRS资源上发送SRS。
步骤一:在符号n上,终端确定第二SRS资源的优先级高于第六SRS资源的优先级,且第二SRS资源与第六SRS资源冲突,终端确定不在第六SRS资源上发送SRS。
步骤二:在符号n+2上,终端确定第一SRS资源的优先级高于第二SRS资源的优先级,且第一SRS资源与第二SRS资源冲突,终端确定不在第二SRS资源上发送SRS,即终端只在第一SRS资源上发送SRS。
方式二:终端在优先级最高的SRS资源上,以及与优先级最高的SRS资源不冲突的SRS资源上发送SRS。
步骤一:终端确定第一SRS资源和第六SRS资源均与第二SRS资源冲突,但第一 SRS资源与第六SRS资源不冲突。
步骤二:终端确定第一SRS资源的优先级高于第二SRS资源的优先级,或者第六SRS资源的优先级高于第二SRS资源的优先级。
步骤三:终端根据步骤一和步骤二的判断结果,确定在第一SRS资源上和第六SRS资源上发送SRS,不在第二SRS资源上发送SRS。
与方式一只在第一SRS资源上发送SRS相比,方式二可以在第一SRS资源上和第六SRS资源上发送SRS,即在保证优先级最高的第一SRS资源优先用于发送SRS的情况下,方式二还能够在第六SRS资源上发送SRS,从而进一步提高了SRS资源的利用效率和SRS的传输效率。
可选的,该通信方法还可以包括:终端上报可在同一个符号内发送SRS的资源数量或端口数量,以便网络设备依据上述资源数量或端口数量为该终端确定SRS配置信息,可以确保配置的资源数量或端口数量不会超过终端所能支持的最大资源数或最大端口数,从而降低不同SRS配置信息所指示的SRS资源冲突的概率,从而进一步提高了SRS资源的利用效率和SRS的传输效率。
S206、网络设备确定在时间单元内,在第一SRS资源和第二SRS资源中的一个SRS资源上接收SRS。
可以理解,在网络设备确定第一SRS资源与第二SRS资源在时间单元内冲突时,也可以根据终端侧相同的通信方法确定第一SRS资源和第二SRS资源的优先级,并根据确定的优先级确定需要接收和解析的SRS的数量,可以避免在第一SRS资源和第二SRS资源组成的并集上接收和解析SRS的情况,减少了网络设备的计算工作量,从而可以进一步提高SRS的传输效率。基于此,相应的,网络设备确定在时间单元内,在第一SRS资源和第二SRS资源中的一个SRS资源上接收SRS,可以包括:网络设备确定第一SRS资源的优先级高于第二SRS资源的优先级,且在时间单元内,在第一SRS资源上接收SRS。
可选的,该通信方法还包括:网络设备发送第三SRS配置信息。其中,第三SRS配置信息用于指示终端在第六SRS资源上发送SRS。然后,网络设备确定在时间单元内,第六SRS资源与第二SRS资源冲突,且与第一SRS资源不冲突,以及第二SRS资源的优先级高于第六SRS资源的优先级。相应地,网络设备确定在时间单元内,在第一SRS资源上接收SRS,可以包括:网络设备在时间单元内,在第一SRS资源上和第六SRS资源上接收SRS,即在保证优先级最高的第一SRS资源优先用于接收SRS的情况下,网络设备还能够在第六SRS资源上接收SRS,从而进一步提高了SRS资源的利用效率和SRS的传输效率。
可选的,与第一方面所述的终端上报可在同一个符号内发送SRS的资源数量或端口数量相对应,该通信方法还包括:网络设备接收终端可在同一个符号内发送SRS的资源数量或端口数量,并依据上述资源数量或端口数量为该终端确定SRS配置信息,降低不同SRS配置信息所指示的SRS资源冲突的概率,从而进一步提高SRS资源的利用效率和SRS传输效率。
需要说明的是,对于S201-S206,具体的执行顺序可能与其描述顺序可能不同。例如,S202也可以在S201后之执行,也可以在执行S201之前进行,即先判断冲突再 下发SRS配置信息。又例如,S202可以在执行S204之前执行,也可以在执行S204之后执行,只要保证S202在S206之前执行完毕即可。
本申请实施例提供的通信方法,即使第一配置信息所配置的第一SRS资源与第二配置信息所配置的第二SRS资源在时间单元内冲突,也能够在该时间单元内,在第一SRS资源和第二SRS资源中的一个资源上收发SRS,避免了在该时间单元内第一SRS资源和第二SRS资源均被闲置的情况,能够提高SRS资源的利用效率和SRS的传输效率,从而提高了上行信道的测量效率和上行资源的调度效率。
如图5所示,本申请实施例提供一种通信方法,以适用于NR系统中的SRS传输。本申请实施例可以应用于网络设备与网络设备(如宏基站与微基站),网络设备与终端之间的通信。在此,以网络设备与终端之间的通信为例进行描述,但并不限于此,比如可以统称为发送端与接收端之间的通信。在本申请中,上行可以指终端为发送端,网络设备为接收端,下行可以指网络设备为发送端,终端为接收端。本申请应用于发送端与接收端之间的通信时,上行可以指一个传输方向,下行可以指与上行相对的另一传输方向。
如图5所示,该通信方法500可以包括S501-S506:
S501、网络设备发送第一配置信息和第二配置信息。
其中,第一配置信息用于指示终端在第一资源集合所包括的至少一个第一资源上发送探测参考信号SRS,第一资源集合为用于天线切换AS的SRS资源集合;第二配置信息用于指示终端在第二资源上发送SRS或上行控制信道PUCCH。
示例性的,网络设备可以将第一配置信息和第二配置信息分别承载于不同的RRC信令上发送,也可以将第一配置信息和第二配置信息分别承载于其他下行控制信令上发送,本申请实施例对此不作限定。关于RRC信令,可以参照前述实施例,此处不再赘述。
示例性的,PUCCH可以是物理上行链路控制信道(physical uplink control channel,PUCCH),主要用于携带上行控制信息。其中,上行控制信息可以包括:混合自动重传请求(hybrid automatic repeat request,HARQ)的确认应答(acknowledgement,ACK)/否认应答(non-acknowledgement,NACK)、信道质量指示(channel quality indicator,CQI),预编码矩阵指示(precoding matrix indicator,PMI),或,秩指示(rank indicator,RI)中的至少一种。鉴于HARQ、CQI、PMI和RI均为现有技术,本申请实施例不再赘述。
S502、网络设备确定第一资源集合所包括的第一资源间的至少一个保护间隔GP符号与第二资源所包括的符号相同。
示例性的,如图6所示,第一SRS资源集合包括符号n、符号n+1、符号n+3和符号n+4,符号n+2为GP符号,第二SRS资源包括符号n至符号n+4,即第一SRS资源集合所包括的符号n+1和符号n+3之间的GP符号与第二SRS资源中的符号n+2相同,视为第一SRS资源集合与第二SRS资源冲突。
需要说明的是,第一SRS资源集合也可以不包括与GP符号相邻的符号。例如,第一SRS资源集合可以不包括符号n+1和符号n+3中的至少一个。可以理解,第二资源中的符号也可以是不连续的。例如,第二资源可以不包括符号n、符号n+2和符号n+4 中的至少一个。
需要说明的是,本申请实施例也可以不包括S502,即S502为可选步骤。在不包括S502的情况下,网络设备需要在第一资源集合和第二资源组成的并集中接收和解析SRS或PUCCH。
需要说明的是,本申请实施例不需要限定第二资源所属的资源集合是否为用于AS的资源集合。若是,则以第二资源作为第一资源集合,将第一资源集合在时隙内所包括的全部资源作为第二资源,然后重新执行本申请实施例提供的通信方法即可。
S503、终端接收第一配置信息和第二配置信息。
S504、终端确定第一资源集合中的第一资源间的至少一个保护间隔GP符号与第二资源中的符号相同。
示例性的,终端可以采用与S502中相同的通信方法确定第一SRS资源集合中的第一资源间的GP符号与第二SRS资源中的符号相同,本申请实施例不再赘述。
S505、终端确定在第二资源上发送SRS或上行控制信道PUCCH。
需要说明的是,终端可以在第一资源集合所包括的部分第一资源上发送SRS,以便进一步提高资源利用率和信号传输效率。
可选的,终端可以确定在第一资源集合中除满足第一条件的符号之外的第一资源上发送SRS。例如,可以在不满足第一条件的部分或全部符号上发送SRS。
其中,第一条件可以为以下条件之一:
条件1:第一资源集合中位于GP符号前、且与GP符号距离最近的指定数量的符号。其中,指定数量可以设置,例如指定数量可以为1,也可以为2。
示例性的,如图6所示,若指定数量为1,满足条件1的符号为符号n+1。相应的,终端不在符号n+1上发送SRS,但可以在符号n、符号n+2至符号n+4中的部分或全部符号上发送SRS。
需要说明的是,满足条件1的符号,可以是位于GP符号前、且与GP符号相邻的符号,如符号n+1。满足条件1的符号,也可以是位于GP符号前、且与GP符号不相邻的符号。例如,若第一资源集合不包括符号n+1,则满足条件1的符号为符号n。
条件2:第一资源集合中位于GP符号前、且与GP符号距离最近的第一资源中的所有符号。
示例性的,如图6所示,假定第一资源集合包括2个第一资源:第一资源A和第一资源B,其中,第一资源A包括符号n和符号n+1,第一资源B包括符号n+3和符号n+4,第一资源集合中位于GP符号前、且与GP符号距离最近的第一资源为第一资源A,第一资源集合中位于GP符号前、且与GP符号距离最近的第一资源中的所有符号为第一资源A中的符号n和符号n+1。相应的,终端不在第一资源A中的符号n和符号n+1上发送SRS,但可以在第一资源B中的符号n+3和/或符号n+4上发送SRS。
需要说明的是,满足条件2的第一资源,可以是位于GP符号前、且与GP符号相邻的第一资源,如第一资源A。或者,满足条件2的第一资源,也可以是位于GP符号前、且与GP符号不相邻的第一资源。
条件3:第一资源集合中位于GP符号后、且与GP符号距离最近的指定数量的符号。其中,指定数量可以设置,例如指定数量可以为1,也可以为2。
示例性的,如图6所示,若指定数量为1,满足条件3的符号为符号n+3。相应的,终端不在符号n+3上发送SRS,但可以在符号n、符号n+1和符号n+4中的部分或全部符号上发送SRS。
需要说明的是,满足条件3的符号,可以是位于GP符号后、且与GP符号相邻的符号,如符号n+3。满足条件3的符号,也可以是位于GP符号后、且与GP符号不相邻的符号。例如,若第一资源集合不包括符号n+3,则满足条件3的符号为符号n+4。
条件4:第一资源集合中位于GP符号后、且与GP符号距离最近的第一资源中的所有符号。
示例性的,如图6所示,假定第一资源集合包括2个第一资源:第一资源A和第一资源B,其中,第一资源A包括符号n和符号n+1,第一资源B包括符号n+3和符号n+4,第一资源集合中位于GP符号后、且与GP符号距离最近的第一资源为第一资源B,第一资源集合中位于GP符号后、且与GP符号距离最近的第一资源中的所有符号为第一资源B中的符号n+3和符号n+4。相应的,终端不在第一资源B中的符号n+3和符号n+4上发送SRS,但可以在第一资源A中的符号n和/或符号n+1上发送SRS。
需要说明的是,满足条件4的第一资源,可以是位于GP符号后、且与GP符号相邻的第一资源,如第一资源B。或者,满足条件4的第一资源,也可以是位于GP符号后、且与GP符号不相邻的第一资源。
条件5:第一资源集合中位于GP符号前和GP符号后、且与GP符号距离最近的符号,即条件5为上述条件1和条件3的合集。
条件6:第一资源集合中位于GP符号前和GP符号后、且与GP符号距离最近的第一资源中的所有符号,即条件6为上述条件2和条件4的合集。
条件7:第一资源集合中与第二资源使用不同发送天线的指定数量的符号。其中,指定数量可以设置,例如指定数量可以为1,也可以为2。
其中,发送天线是指物理天线。示例性的,如图6所示,若指定数量为1,第一资源集合所包括的符号n和符号n+1使用发送天线0和1,第一资源集合所包括的符号n+3和符号n+4使用发送天线2和3,第二资源中的所有符号均使用发送天线0和1,则第一资源集合所包括的符号n+3和符号n+4满足条件7。相应的,终端不在第一资源集合所包括的符号n+3和符号n+4上发送SRS,但可以在第一资源集合所包括的符号n和/或符号n+1上发送SRS。
可选的,为了简化判断过程,降低终端的工作量,终端也可以不再判断第一条件,而是直接确定不在第二资源所在时隙内的第一资源集合上发送SRS,该通信方法还可以包括:终端确定不在第二资源所在时隙内的第一资源集合上发送SRS。
S506、网络设备确定在第二资源上接收SRS或PUCCH。
其中,网络设备可以根据S502中的判断结果,确定终端在第二资源上发送SRS或PUCCH。因此,网络设备也可以有针对性地在第二资源上接收并解析接收到的SRS或PUCCH,可以减少网络设备接收并解析SRS或PUCCH的工作量,从而可以提高信号传输效率。
可选的,网络设备也可以执行上述第一条件中的条件1至条件7中的判断流程(可以理解的是,网络设备和终端应遵循相同的条件),并根据判断结果确定在与终端发 送SRS相同的第一资源上接收SRS,以便网络设备有正对性地接收和解析SRS,减少工作量,从而提高SRS的传输效率和上行资源调度效率。
可选的,与终端确定不在第一资源集合上发送SRS相对应,为了减少网络设备的工作量,该通信方法还可以包括:网络设备确定不在第二资源所在时隙内的第一资源集合上接收SRS。
需要说明的是,为了确保网络设备和终端判断行为的一致性,网络设备可以下发第一配置信息和第二配置信息的下行信令中指定第一条件中哪些条件需要作出判断。
需要说明的是,对于S501-S506,具体的执行顺序可能与其描述顺序可能不同。例如,S502也可以在S501后之执行,也可以在执行S501之前进行,即先判断冲突再下发配置信息。又例如,S502可以在执行S504之前执行,也可以在执行S504之后执行,只要保证S502在S506之前执行完毕即可。
本申请实施例提供的通信方法,即使第一资源集合中的第一资源间的至少一个保护间隔GP符号与第二资源中的符号相同,也可以确定在第二资源上收发SRS或PUCCH,从而避免了在第一资源集合所包括的第一资源和第二资源均被闲置的情况,能够提高资源利用效率和信号传输效率。
如图7所示,本申请实施例还提供另一种通信方法。
S701、网络设备发送第一配置信息和第二配置信息。
其中,第一配置信息用于指示终端在第一资源集合所包括的至少一个第一资源上发送探测参考信号SRS,第一资源集合为用于天线切换AS的SRS资源集合;第二配置信息用于指示终端在第二资源上发送上行控制信道PUCCH。
具体可以参考前述实施例的S501,此处不再赘述。
S702、终端接收第一配置信息和第二配置信息。
具体可以参考前述实施例的S503,此处不再赘述。
S703、终端在第一资源上发送SRS,在第二资源上发送PUCCH。其中,在同一时隙内,第一资源集合中的第一个第一资源的第一个符号或最后一个第一资源的最后一个符号与第二资源之间存在至少一个保护间隔GP符号。
具体的,若在一个时隙内,所述第二资源的符号位于第一资源集合中所述时隙内的所有SRS资源之前,终端确定所述第二资源与所述第一资源集合在所述时隙内的第一个SRS资源之间具有Y个符号的GP;若在一个时隙内,所述第二资源的符号位于第一资源集合中所述时隙内的所有SRS资源之后,则终端确定所述第二资源与所述第一资源集合在所述时隙内的最后一个SRS资源之间具有Y个符号的GP。其中Y为大于等于1的正整数,可以是基站配置的或者预先定义的,例如对于15KHz到60KHz的子载波间隔,Y=1,对于120KHz子载波间隔Y=2,对于240KHz子载波间隔Y=4.所述终端在所述GP内不进行任何传输,或不进行任何上行传输。这样可以在SRS与PUCCH之间如果需要天线切换时可以保证足够的切换时间,从而不影响两者的发送性能。
S704、网络设备在所述第一资源上接收SRS,在第二资源上接收PUCCH。其中,在同一时隙内,第一资源集合中的第一个第一资源的第一个符号或最后一个第一资源的最后一个符号与第二资源之间存在至少一个保护间隔GP符号。
S704为与S703对应的接收步骤,具体可以参考S703,此处不再赘述。
本申请实施例提供的通信方法,能够在一个时隙内,第一资源集合所包括的所有第一资源的第一个符号或最后一个符号与第二资源之间存在至少一个GP符号的情况下,则在该时隙内,在上述GP符号之前的第一资源上收发SRS,在GP符号之后的第二资源上收发PUCCH,或者在该时隙内,在上述GP符号之后的第一资源上收发SRS,在GP符号之前的第二资源上收发PUCCH,以便为天线切换预留足够时间,从而避免对SRS和PUCCH的传输造成不利影响,能够保证依据SRS测量结果和PUCCH的测量结果评估上行信道质量和调度上行资源的准确性。
可以理解的是,以上实施例中所描述的通信方法可以单独实施,也可以结合使用,在此不予限定。
以上结合图2至图7详细说明了本申请实施例提供的通信方法。以下结合图8至图10详细说明本申请实施例提供的通信装置。
图8是本申请实施例提供的一种终端的结构示意图。该终端可适用于图1所示出的系统中,执行上述通信方法实施例中终端的功能。为了便于说明,图8仅示出了终端的主要部件。如图8所示,终端80包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端执行上述通信方法实施例中所描述的动作。例如,确定第一SRS资源与第二SRS资源是否冲突,或者确定第一资源集合所包括的资源间的GP符号与第二资源中的符号是否相同。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述第一SRS配置信息、第二SRS配置信息、第一配置信息、第二配置信息等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和一个处理器。在实际的终端中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图8中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能 力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端80的收发单元801,例如,用于支持终端执行如图2、图5、图7中至少一项所述的接收功能和发送功能。将具有处理功能的处理器视为终端80的处理单元802。如图8所示,终端80包括收发单元801和处理单元802。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器802可用于执行该存储器存储的指令,以控制收发单元801接收信号和/或发送信号,完成上述通信方法实施例中终端的功能。作为一种实现方式,收发单元801的功能可以考虑通过收发电路或者收发的专用芯片实现。
图9是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图9所示,该基站可应用于如图1所示的系统中,执行上述通信方法实施例中网络设备的功能。基站90可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)901和一个或多个基带单元(baseband unit,BBU)902。所述RRU901可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线9011和射频单元9012。所述RRU 901部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端发送上述实施例中所述的信令消息。所述BBU902部分主要用于进行基带处理,对基站进行控制等。所述RRU 901与BBU 902可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 902为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)902可以用于控制基站执行上述通信方法实施例中关于网络设备的操作流程。
在一个实例中,所述BBU 902可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 902还包括存储器9021和处理器9022,所述存储器9021用于存储必要的指令和数据。例如存储器8021存储上述实施例中的第一SRS配置信息、第二SRS配置信息、第一配置信息、第二配置信息中的至少一个等。所述处理器9022用于控制基站进行必要的动作,例如用于控制基站执行上述通信方法实施例中关于网络设备的操作流程。所述存储器9021和处理器9022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图10给出了一种通信装置1000的结构示意图。装置1000可用于实现上述通信方法实施例中描述的通信方法,可以参见上述通信方法实施例中的说明。所述通信装置1000可以是芯片,网络设备(如基站),终端或者其他网络设备等。
所述通信装置1000包括一个或多个处理器1001。所述处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,通信装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端或基站或其他网络设备。又如,通信装置可以为终端或基站或其他网络设备,所述收发单元可以为收发器,射频芯片等。
所述通信装置1000包括一个或多个所述处理器1001,所述一个或多个处理器1001可实现图2、图5、图7中至少一项所示的实施例中网络设备或者终端的通信方法。
在一种可能的设计中,所述通信装置1000包括用于执行前述通信方法实施例中网络设备所执行的各处理功能的部件(means)。例如可以通过一个或多个处理器执行上述功能,通过收发器、或输入/输出电路、或芯片的接口发送第一SRS配置信息和第二SRS配置信息、发送第一配置信息和第二配置信息,以及接收SRS。所述各配置信息和SRS可以参见上述通信方法实施例中的相关描述。
在一种可能的设计中,所述通信装置1000包括用于执行前述通信方法实施例中终端所执行的各处理功能的部件(means)。例如可以通过一个或多个处理器执行上述功能,可以通过收发器、或输入/输出电路、或芯片的接口接收第一SRS配置信息和第二SRS配置信息、接收第一配置信息和第二配置信息,以及发送SRS。所述各配置信息和SRS可以参见上述通信方法实施例中的相关描述。
可选的,处理器1001除了实现图2、图5、图7所示的实施例的通信方法,还可以实现其他功能。
可选的,一种设计中,处理器1001也可以包括指令1003,所述指令可以在所述处理器上被运行,使得所述通信装置1000执行上述通信方法实施例中描述的通信方法。
在又一种可能的设计中,通信装置1000也可以包括电路,所述电路可以实现前述通信方法实施例中网络设备或终端的功能。
在又一种可能的设计中所述通信装置1000中可以包括一个或多个存储器1002,其上存有指令1004,所述指令可在所述处理器上被运行,使得所述通信装置1000执行上述通信方法实施例中描述的通信方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1002可以存储上述实施例中所描述的各配置信息。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置1000还可以包括收发单元1005以及天线1006。所述处理器1001可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发单元1005可以称为收发机、收发电路、或者收发器等,用于通过天线1006实现通信装置的收发功能。
本申请还提供一种通信系统,其包括前述的一个或多个网络设备,和,一个或多个终端。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing  unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如网线、光纤、电缆等)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同通信方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述通信方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和通信方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述通信方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种通信方法,其特征在于,包括:
    接收第一探测参考信号SRS配置信息和第二SRS配置信息;其中,所述第一SRS配置信息用于指示在第一SRS资源上发送SRS,所述第二SRS配置信息用于指示在第二SRS资源上发送SRS;
    若所述第一SRS资源与所述第二SRS资源在时间单元内冲突,则在所述时间单元内,在所述第一SRS资源和所述第二SRS资源中的一个SRS资源上发送SRS;其中,所述时间单元包括:时隙或符号。
  2. 一种通信方法,其特征在于,包括:
    发送第一探测参考信号SRS配置信息和第二SRS配置信息;其中,所述第一SRS配置信息用于指示在第一SRS资源上发送SRS,所述第二SRS配置信息用于指示在第二SRS资源上发送SRS;
    若所述第一SRS资源与所述第二SRS资源在时间单元内冲突,则在所述时间单元内,在所述第一SRS资源和所述第二SRS资源中的一个SRS资源上接收SRS;其中,所述时间单元包括:时隙或符号。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合;
    所述第一SRS资源与所述第二SRS资源在时间单元内冲突,包括:
    所述第一SRS资源与所述第二SRS资源满足第一时域冲突条件,且所述第一SRS资源集合和所述第二SRS资源集合中的至少一个为用于天线切换AS的资源集合;其中,所述第一时域冲突条件为:所述第一SRS资源所包括的至少一个时隙与所述第二SRS资源所包括的至少一个时隙相同,所述时间单元为时隙。
  4. 根据权利要求1或2所述的通信方法,其特征在于,所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合,所述第一SRS资源集合与所述第二SRS资源集合分别为以下一种类型:基于码本CB的SRS资源集合、基于非码本NCB的SRS资源集合、用于波束管理BM的SRS资源集合和用于天线切换AS的SRS资源集合;
    所述第一SRS资源与所述第二SRS资源在时间单元内冲突,包括:
    所述第一SRS资源与所述第二SRS资源满足第二时域冲突条件和第一类型冲突条件;其中,所述第二时域冲突条件为:所述第一SRS资源所包括的至少一个符号与所述第二SRS资源所包括的至少一个符号相同,所述时间单元为符号;所述第一类型冲突条件为:所述第一SRS资源集合和所述第二SRS资源集合为不同类型的SRS资源集合。
  5. 根据权利要求1或2所述的通信方法,其特征在于,所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合;
    所述第一SRS资源与所述第二SRS资源在时间单元内冲突,包括:
    所述第一SRS资源与所述第二SRS资源满足第二时域冲突条件和第二类型冲突条件;其中,所述第二时域冲突条件为:所述第一SRS资源所包括的至少一个符号与所述第二SRS资源所包括的至少一个符号相同,所述时间单元为符号;所述第二类型冲 突条件为:所述第一SRS资源集合与所述第二SRS资源集合均为用于天线切换AS的SRS资源集合。
  6. 根据权利要求1或2所述的通信方法,其特征在于,所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合;
    所述第一SRS资源与所述第二SRS资源在时间单元内冲突,包括:
    所述第一SRS资源与所述第二SRS资源满足第二时域冲突条件和第三类型冲突条件;其中,所述第二时域冲突条件为:所述第一SRS资源所包括的至少一个符号与所述第二SRS资源所包括的至少一个符号相同,所述时间单元为符号;所述第三类型冲突条件为:所述第一SRS资源集合为用于波束管理BM的SRS资源集合,所述第二SRS配置信息中的空间关系信息所指示的第三SRS资源属于所述第一SRS资源集合,且所述第三SRS资源与所述第一SRS资源不同。
  7. 根据权利要求1或2所述的通信方法,其特征在于,所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合;
    所述第一SRS资源与所述第二SRS资源在时间单元内冲突,包括:
    所述第一SRS资源与所述第二SRS资源满足第二时域冲突条件和第四类型冲突条件;其中,所述第二时域冲突条件为:所述第一SRS资源所包括的至少一个符号与所述第二SRS资源所包括的至少一个符号相同,所述时间单元为符号;所述第四类型冲突条件为:所述第一SRS配置信息中的空间关系信息所指示的第四SRS资源与所述第二SRS配置信息中的空间关系信息所指示的第五SRS资源不同,且所述第四SRS资源与第五SRS资源属于同一个SRS资源集合,且所述同一个SRS资源集合为用于波束管理的SRS资源集合。
  8. 根据权利要求1或2所述的通信方法,其特征在于,所述第一SRS资源与所述第二SRS资源在时间单元内冲突,包括:
    所述第一SRS资源和所述第二SRS资源同时满足第二时域冲突条件、频域冲突条件和码域冲突条件;其中,所述第二时域冲突条件为:所述第一SRS资源所包括的至少一个符号与所述第二SRS资源所包括的至少一个符号相同,所述时间单元为符号;所述频域冲突条件为:所述第一SRS资源和所述第二SRS资源包括至少一个相同子载波;所述码域冲突条件为:所述第一SRS资源和所述第二SRS资源包括至少一个具有相同循环移位的SRS序列。
  9. 根据权利要求1、3-8中任一项所述的通信方法,其特征在于,所述在所述时间单元内,在所述第一SRS资源和所述第二SRS资源中的一个SRS资源上发送SRS,包括:
    确定所述第一SRS资源的优先级高于所述第二SRS资源的优先级;
    确定在所述时间单元内,在所述第一SRS资源上发送SRS。
  10. 根据权利要求9所述的通信方法,其特征在于,还包括:
    接收第三SRS配置信息;其中,所述第三SRS配置信息用于指示在第六SRS资源上发送SRS;
    确定在所述时间单元内,所述第六SRS资源与所述第二SRS资源冲突,且与所述第一SRS资源不冲突;
    确定在所述时间单元内,在所述第一SRS资源上和所述第六SRS资源上发送SRS。
  11. 根据权利要求1、3-8中任一项所述的通信方法,其特征在于,还包括:
    上报可在同一个符号内发送SRS的资源数量或端口数量。
  12. 根据权利要求2-8任一项所述的通信方法,其特征在于,所述在所述时间单元内,在所述第一SRS资源和所述第二SRS资源中的一个SRS资源上接收SRS,包括:
    确定所述第一SRS资源的优先级高于所述第二SRS资源的优先级;
    确定在所述时间单元内,在所述第一SRS资源上接收SRS。
  13. 根据权利要求12所述的通信方法,其特征在于,还包括:
    发送第三SRS配置信息;其中,所述第三SRS配置信息用于指示在第六SRS资源上发送SRS;
    确定在所述时间单元内,所述第六SRS资源与所述第二SRS资源冲突,且与所述第一SRS资源不冲突;
    所述确定在所述时间单元内,在所述第一SRS资源上接收SRS,包括:
    确定在所述时间单元内,在所述第一SRS资源上和所述第六SRS资源上接收SRS。
  14. 根据权利要求2-8中任一项所述的通信方法,其特征在于,还包括:
    接收可在同一个符号内发送SRS的资源数量或端口数量。
  15. 一种通信方法,其特征在于,包括:
    接收第一配置信息和第二配置信息;其中,所述第一配置信息用于指示在第一资源集合所包括的至少一个第一资源上发送探测参考信号SRS,所述第一资源集合为用于天线切换AS的SRS资源集合;所述第二配置信息用于指示在第二资源上发送SRS或上行控制信道PUCCH;
    若所述第一资源集合中的第一资源间的至少一个保护间隔GP符号与所述第二资源所包括的符号相同,则确定在所述第二资源上发送SRS或PUCCH。
  16. 根据权利要求15所述的通信方法,其特征在于,还包括:
    确定在第一资源集合中除满足第一条件的符号之外的第一资源上发送SRS,所述第一条件为以下条件之一:
    所述第一资源集合中位于所述GP符号前,且与所述GP符号距离最近的符号;
    所述第一资源集合中位于所述GP符号前,且与所述GP符号距离最近的第一资源中的所有符号;
    所述第一资源集合中位于所述GP符号后,且与所述GP符号距离最近的符号;
    所述第一资源集合中位于所述GP符号后,且与所述GP符号距离最近的第一资源中的所有符号;
    所述第一资源集合中位于所述GP符号前和所述GP符号后,且与所述GP符号距离最近的符号;
    所述第一资源集合中位于所述GP符号前和所述GP符号后,且与所述GP符号距离最近的第一资源中的所有符号;
    所述第一资源集合中与所述第二资源使用不同发送天线的符号。
  17. 根据权利要求15所述的通信方法,其特征在于,还包括:
    确定不在所述第二资源所在时隙内的第一资源集合上发送SRS。
  18. 一种通信方法,其特征在于,包括:
    发送第一配置信息和第二配置信息;其中,所述第一配置信息用于指示在第一资源集合所包括的至少一个第一资源上发送探测参考信号SRS,所述第一资源集合为用于天线切换AS的SRS资源集合;所述第二配置信息用于指示在第二资源上发送SRS或上行控制信道PUCCH;
    若所述第一资源集合所中的第一资源间的至少一个保护间隔GP符号与所述第二资源中的符号相同,则确定在所述第二资源上接收SRS或PUCCH。
  19. 根据权利要求18所述的通信方法,其特征在于,还包括:
    确定在第一资源集合中除满足第一条件的符号之外的第一资源上接收SRS,所述第一条件为以下条件之一:
    所述第一资源集合中位于所述GP符号前、且与所述GP符号距离最近的符号;
    所述第一资源集合中位于所述GP符号前、且与所述GP符号距离最近的第一资源中的所有符号;
    所述第一资源集合中位于所述GP符号后、且与所述GP符号距离最近的符号;
    所述第一资源集合中位于所述GP符号后、且与所述GP符号距离最近的第一资源中的所有符号;
    所述第一资源集合中位于所述GP符号前和所述GP符号后、且与所述GP符号距离最近的符号;
    所述第一资源集合中位于所述GP符号前和所述GP符号后、且与所述GP符号距离最近的第一资源中的所有符号;
    所述第一资源集合中与所述第二资源使用不同发送天线的符号。
  20. 根据权利要求18所述的通信方法,其特征在于,还包括:
    确定不在所述第二资源所在时隙内的第一资源集合上接收SRS。
  21. 一种通信方法,其特征在于,包括:
    接收第一配置信息和第二配置信息;其中,所述第一配置信息用于指示在第一资源集合所包括的至少一个SRS资源上发送探测参考信号SRS;其中,所述第一资源集合为用于天线切换AS的SRS资源集合;所述第二配置信息用于指示在第二资源上发送上行控制信道PUCCH;
    在第一资源上发送SRS,在所述第二资源上发送PUCCH;其中,在同一时隙内,所述第一资源集合中的第一个第一资源的第一个符号或最后一个第一资源的最后一个符号与所述第二资源之间存在至少一个保护间隔GP符号。
  22. 根据权利要求21所述的通信方法,其特征在于,还包括:
    若在一个时隙内,所述第二资源的符号位于所述第一资源集合中所述时隙内的所有SRS资源之前,则确定所述第二资源与所述第一资源集合在所述时隙内的第一个SRS资源之间具有Y个GP符号;其中,Y为大于等于1的正整数。
  23. 根据权利要求21所述的通信方法,其特征在于,还包括:
    若在一个时隙内,所述第二资源的符号位于所述第一资源集合中所述时隙内的所有SRS资源之后,则确定所述第二资源与所述第一资源集合在所述时隙内的最后一个SRS资源之间具有Y个GP符号;其中,Y为大于等于1的正整数。
  24. 一种通信方法,其特征在于,包括:
    发送第一配置信息和第二配置信息;其中,所述第一配置信息用于指示终端在第一资源集合所包括的至少一个SRS资源上发送探测参考信号SRS,所述第一资源集合为用于天线切换AS的SRS资源集合;所述第二配置信息用于指示所述终端在第二资源上发送上行控制信道PUCCH;
    在第一资源上接收SRS,在所述第二资源上接收PUCCH;其中,在同一时隙内,所述第一资源集合中的第一个第一资源的第一个符号或最后一个第一资源的最后一个符号与所述第二资源之间存在至少一个保护间隔GP符号。
  25. 一种通信装置,其特征在于,用于执行如权利要求1至24中任一项所述的通信方法。
  26. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至24中任一项所述的通信方法。
  27. 一种可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1至24中任意一项所述的通信方法被执行。
PCT/CN2019/086202 2018-05-11 2019-05-09 通信方法及装置 WO2019214682A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19799822.2A EP3817469A4 (en) 2018-05-11 2019-05-09 METHOD AND DEVICE FOR COMMUNICATION
US16/949,676 US20210058209A1 (en) 2018-05-11 2020-11-10 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810450801.6A CN110474734B (zh) 2018-05-11 2018-05-11 通信方法及装置
CN201810450801.6 2018-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/949,676 Continuation US20210058209A1 (en) 2018-05-11 2020-11-10 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019214682A1 true WO2019214682A1 (zh) 2019-11-14

Family

ID=68467774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086202 WO2019214682A1 (zh) 2018-05-11 2019-05-09 通信方法及装置

Country Status (4)

Country Link
US (1) US20210058209A1 (zh)
EP (1) EP3817469A4 (zh)
CN (1) CN110474734B (zh)
WO (1) WO2019214682A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098560A1 (zh) * 2019-11-18 2021-05-27 维沃移动通信有限公司 Srs上报处理方法及相关设备
WO2022040198A1 (en) * 2020-08-18 2022-02-24 Ntt Docomo, Inc. Method of sharing srs resources between srs resource sets of different usages, and corresponding ue
EP4090118A4 (en) * 2020-02-06 2023-01-04 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR CONFIGURING REFERENCE SIGNAL RESOURCES

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020037207A1 (en) * 2018-08-17 2020-02-20 Idac Holdings, Inc. Beam management for multi-trp
CN109417717B (zh) * 2018-09-27 2022-06-24 北京小米移动软件有限公司 测量配置方法、装置、设备、系统及存储介质
CN111405663A (zh) * 2019-01-03 2020-07-10 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
EP3949214A4 (en) * 2019-03-29 2022-11-02 Lenovo (Beijing) Limited METHODS AND DEVICES FOR CONFIGURING AND INITIALIZING AN APERIODIC SRS TRANSMISSION
KR20220007732A (ko) * 2019-05-14 2022-01-18 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 무선 통신 네트워크에서 업링크 기준 신호 전송들을 제어하기 위한 방법들 및 장치
WO2021151394A1 (en) * 2020-01-31 2021-08-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, terminal device and network device for sounding reference signal transmission
US11877299B2 (en) * 2020-03-05 2024-01-16 Qualcomm Incorporated Control channel resources for group-feedback in multi-cast
CN111628801B (zh) * 2020-05-28 2022-02-01 维沃移动通信有限公司 射频前端器件控制方法及用户设备
CN114070528B (zh) * 2020-08-07 2023-07-14 大唐移动通信设备有限公司 一种信号传输方法、装置及存储介质
CN112702791B (zh) * 2020-12-11 2022-06-28 杭州红岭通信息科技有限公司 一种多bwp下探测参考信号的资源分配方法
CN115189833A (zh) * 2021-04-02 2022-10-14 华为技术有限公司 一种资源映射的方法和装置
CN115694759A (zh) * 2021-07-26 2023-02-03 华为技术有限公司 信息传输的方法和通信装置
CN113677029A (zh) * 2021-08-24 2021-11-19 维沃移动通信有限公司 上行信号传输方法、装置及终端
WO2023050302A1 (en) * 2021-09-30 2023-04-06 Lenovo (Beijing) Limited Collision handling for aperiodic srs triggering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428868A (zh) * 2012-05-15 2013-12-04 华为技术有限公司 上行发射方法和用户设备
CN104137465A (zh) * 2012-03-19 2014-11-05 高通股份有限公司 增强的探测参考信号(srs)操作
US20150110037A1 (en) * 2012-05-31 2015-04-23 Zte Corporation Methods, devices and system for transmitting sounding reference signal and User Equipment
CN105049165A (zh) * 2009-11-02 2015-11-11 诺基亚通信公司 用于电信的方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4938123B1 (ja) * 2010-10-04 2012-05-23 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
CN102612089A (zh) * 2011-01-25 2012-07-25 中兴通讯股份有限公司 信令发送方法、装置及协作传输系统
KR20130085701A (ko) * 2012-01-20 2013-07-30 삼성전자주식회사 무선통신 시스템에서 사운딩 참조 신호 자원 관리 방법 및 장치
US9451595B2 (en) * 2012-04-27 2016-09-20 Qualcomm Incorporated Methods and apparatus for TDD reconfiguration
US10159052B2 (en) * 2012-08-03 2018-12-18 Qualcomm Incorporated Method and apparatus for sounding reference signal triggering and power control for coordinated multi-point operations
US9509483B2 (en) * 2012-11-12 2016-11-29 Qualcomm Incorporated Uplink control and data transmission in multiflow-enabled networks
KR102058609B1 (ko) * 2013-01-10 2019-12-23 한국전자통신연구원 소형 셀 향상 방법
KR20150090816A (ko) * 2014-01-29 2015-08-06 삼성전자주식회사 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
CN105812088A (zh) * 2014-12-30 2016-07-27 中兴通讯股份有限公司 探测参考信号srs发送方法、装置及接收方法、装置
CN105490791B (zh) * 2015-11-19 2020-02-04 武汉虹信通信技术有限责任公司 Srs信号发送及触发方法、装置、用户设备和基站
US10362571B2 (en) * 2016-11-04 2019-07-23 Qualcomm Incorporated Power control and triggering of sounding reference signal on multiple component carriers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049165A (zh) * 2009-11-02 2015-11-11 诺基亚通信公司 用于电信的方法和设备
CN104137465A (zh) * 2012-03-19 2014-11-05 高通股份有限公司 增强的探测参考信号(srs)操作
CN103428868A (zh) * 2012-05-15 2013-12-04 华为技术有限公司 上行发射方法和用户设备
US20150110037A1 (en) * 2012-05-31 2015-04-23 Zte Corporation Methods, devices and system for transmitting sounding reference signal and User Equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3817469A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098560A1 (zh) * 2019-11-18 2021-05-27 维沃移动通信有限公司 Srs上报处理方法及相关设备
EP4090118A4 (en) * 2020-02-06 2023-01-04 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR CONFIGURING REFERENCE SIGNAL RESOURCES
JP2023512544A (ja) * 2020-02-06 2023-03-27 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 基準信号リソース構成方法および装置
WO2022040198A1 (en) * 2020-08-18 2022-02-24 Ntt Docomo, Inc. Method of sharing srs resources between srs resource sets of different usages, and corresponding ue

Also Published As

Publication number Publication date
US20210058209A1 (en) 2021-02-25
EP3817469A1 (en) 2021-05-05
EP3817469A4 (en) 2021-06-23
CN110474734B (zh) 2022-02-08
CN110474734A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2019214682A1 (zh) 通信方法及装置
US11962535B2 (en) Method and apparatus for configuring reference signal channel characteristics, and communication device
JP6798006B2 (ja) 上りリンクの送信方法
US11924815B2 (en) Bandwidth recourse switching method, terminal, and network device for indicating bandwidth resource switching
EP3567899B1 (en) Beam-specific and cell-specific measurements reporting
JP7321707B2 (ja) 方法、システムおよび装置
JP6676766B2 (ja) 無線通信方法
US11909559B2 (en) Quasi co-location information determining method, apparatus, and device
WO2019170089A1 (zh) 信息传输的方法、装置和通信节点
WO2019141285A1 (zh) 一种天线选择指示方法、装置和系统
JP7100016B2 (ja) 端末、無線通信方法、基地局及びシステム
JP2020509626A (ja) 基地局制御型ビーム管理
WO2019092859A1 (ja) ユーザ端末及び無線通信方法
JP2019506084A (ja) ユーザ装置及び無線通信方法
WO2019159304A1 (ja) ユーザ装置及び基地局装置
CN111586858A (zh) 信号传输方法和通信装置
EP3860091B1 (en) Information receiving method and device and information sending method and device
KR20210040083A (ko) 유저단말 및 무선 통신 방법
TW201902156A (zh) 涉及無線通信網絡中的通道狀態資訊報告的方法和裝置
WO2020030020A1 (zh) 带宽资源切换方法、指示带宽资源切换方法、终端和网络设备
US20230254030A1 (en) Beam-based communication method and related apparatus
JP2023552433A (ja) RedCap UEの識別のための方法及び装置
WO2020026451A1 (ja) ユーザ端末及び無線通信方法
WO2020026449A1 (ja) ユーザ端末及び無線通信方法
WO2020012620A1 (ja) ユーザ端末及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019799822

Country of ref document: EP

Effective date: 20201208