WO2021103006A1 - 一种跟踪参考信号的接收方法、发送方法及通信装置 - Google Patents
一种跟踪参考信号的接收方法、发送方法及通信装置 Download PDFInfo
- Publication number
- WO2021103006A1 WO2021103006A1 PCT/CN2019/122192 CN2019122192W WO2021103006A1 WO 2021103006 A1 WO2021103006 A1 WO 2021103006A1 CN 2019122192 W CN2019122192 W CN 2019122192W WO 2021103006 A1 WO2021103006 A1 WO 2021103006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- trs
- terminal
- receiving
- network device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- This application relates to the field of communication technology, and in particular to a receiving method, sending method and communication device for tracking reference signals.
- network equipment and terminals can use array technology to form high-gain directional beams for communication, which can increase antenna gain and compensate for path loss. Since both the network equipment and the terminal can generate multiple beams, beam training is required between the network equipment and the terminal before the directional beam is used for communication. The purpose of beam training is to find a suitable pair of transceiver beams among a variety of possible combinations of transceiver beams. Beam training is generally implemented by the following method: one end sends a reference signal, and the other end measures and feeds back the reception quality of the reference signal.
- the terminal In order to achieve correct reception, in addition to determining the beam direction, the terminal also needs to estimate the time-frequency offset of the signal, so as to use the result of the time-frequency offset estimation to perform subsequent signal processing, for example, to compensate the time-frequency offset.
- the terminal's time-frequency offset estimation of the signal is achieved by tracking reference signal (tracking reference signal, TRS).
- TRS tracking reference signal
- the terminal When the terminal selects a new beam through beam training, it needs to receive TRS on the updated beam to realize the estimation of the time-frequency offset on the new receiving beam.
- the network device After receiving the new beam reported by the terminal, the network device needs to notify the terminal of the configuration of the TRS receiving parameter on the new beam, so that the terminal can successfully receive the TRS according to the configuration of the TRS receiving parameter.
- the network equipment needs to notify the configuration of the receiving parameters of the TRS through RRC signaling. Then, each time the terminal reports a new beam, the network device needs to notify the configuration of the TRS receiving parameters through RRC signaling, which will lead to waste of signaling and greater signaling overhead.
- This application provides a receiving method, a sending method and a communication device for tracking reference signals, so as to reduce the signaling overhead when receiving TRS.
- a method for receiving a tracking reference signal is provided, and the method can be implemented by a terminal or a chip in the terminal.
- the method includes the following steps: sending a first message to a network device, the first message including information of a first reference signal, determining a second reference signal associated with the first reference signal; and determining a second reference signal associated with the first reference signal; Receive parameters and receive the tracking reference signal TRS from the network device.
- the terminal does not need to be notified by the network device of the TRS receiving parameter, which can save the signaling overhead consumed by the network device notifying the TRS receiving parameter, and further, saves the time delay of the TRS receiving parameter adjustment.
- the information of the first reference signal is used to indicate the selected first beam
- the terminal informs the network device of the selected beam by the terminal through the first reference signal.
- the network device may determine the beam selected by the terminal according to the information of the first reference signal, and send a signal on the beam.
- the information of the first reference signal may be an identifier of the first reference signal, for example, the ID of the first reference signal.
- sending the first message to the network device, and receiving the TRS from the network device according to the receiving parameters of the second reference signal can be implemented according to the following sequence: sending the first message to the network device at the first moment Starting from the second time, receiving the TRS from the network device according to the receiving parameter of the second reference signal; wherein the difference between the second time and the first time is a first set duration.
- the terminal may determine or adjust the receiving parameter of the second reference signal by detecting the second reference signal.
- the network device and the terminal can align the use time or the effective time of the terminal to select the beam, that is, the alignment of the received and sent signals on the new beam can be achieved after the beam is switched, so as to achieve a better realization Time-frequency offset estimation and better processing of subsequent signals according to the time-frequency offset estimation results.
- the first set duration is related to the period of the second reference signal.
- the first set duration may be N times the period of the second reference signal. N is a positive integer.
- the first set duration may be notified to the terminal by the network device, or negotiated in advance, for example, stipulated in an agreement.
- the first reference signal and the second reference signal are associated with the same carrier; or, the first reference signal and the second reference signal are associated with different carriers.
- the first reference signal is associated with a first carrier
- the second reference signal is associated with the first carrier
- the first reference signal is associated with a first carrier
- the second reference signal is associated with a second carrier.
- the cross-carrier association method can be applied to the following scenarios: the terminal measures the first reference signal on one carrier to report the beam, but the terminal needs to receive the PDCCH or PUSCH on another carrier.
- the first reference signal is associated with a first carrier
- the first reference signal is associated with a third reference signal of the first carrier
- the third reference signal is associated with the second carrier.
- the downlink control channel PDCCH from the network device is received according to the receiving parameter of the TRS, where the PDCCH and the TRS satisfy the QCL relationship.
- the network device and the terminal can align the use time or the effective time of the terminal to select the beam, that is, the alignment of the received and sent signals on the new beam can be achieved after the beam is switched, so as to better achieve Time-frequency offset estimation and better processing of subsequent signals according to the time-frequency offset estimation results.
- the second set duration is related to the period of the TRS.
- the second set duration may be M times the TRS period. M is a positive integer.
- a second message from the network device is received, where the second message includes the association relationship between the first reference signal and the second reference signal.
- the association relationship can be a QCL relationship or a mapping relationship.
- the signal quality of the TRS is measured, and the signal quality of the TRS is compared with the first reference signal; when the comparison result does not meet the set conditions, a request is sent to the network device Message, the request message is used to request beam measurement.
- the beam can be re-measured to avoid switching beams and worsening the communication quality.
- the second aspect is a time-frequency offset estimation method, which can be implemented by a network device or a chip in the network device.
- the method includes the following steps: receiving a first message from a terminal, the first message including information of a first reference signal, and the information of the first reference signal is used to indicate a first beam selected by the terminal;
- the tracking reference signal TRS is sent to the terminal on the first beam.
- the process of indicating the TRS receiving parameters to the terminal can be omitted. This process usually requires RRC signaling to implement. Therefore, omitting this process can reduce the signaling overhead caused by adjusting the TRS receiving parameters and further reduce the energy consumption of the system.
- the following time sequence when receiving the first message from the terminal and sending the tracking reference signal TRS to the terminal on the first beam, the following time sequence may be used: receiving the first message from the terminal at the first moment The first message starts at the second time and sends the TRS to the terminal on the first beam; wherein the difference between the second time and the first time is a first set duration.
- the first set time period may be reserved for the terminal to determine or adjust the receiving parameter of the second reference signal by detecting the second reference signal.
- the network device and the terminal can align the use time or the effective time of the terminal to select the beam, that is, the alignment of the received and sent signals on the new beam can be achieved after the beam is switched, so as to achieve a better realization Time-frequency offset estimation and better processing of subsequent signals according to the time-frequency offset estimation results.
- the first set duration may be notified to the terminal by the network device, or negotiated in advance, for example, stipulated in an agreement.
- the downlink control channel PDCCH is sent to the terminal on the first beam; wherein the difference between the third moment and the second moment is the second Set the duration.
- the network device and the terminal can align the use time or the effective time of the terminal to select the beam, that is, the alignment of the received and sent signals on the new beam can be achieved after the beam is switched, so as to better achieve Time-frequency offset estimation and better processing of subsequent signals according to the time-frequency offset estimation results.
- the first set duration is related to the period of the first reference signal.
- the first set duration may be N times the period of the second reference signal. N is a positive integer.
- the second set duration is related to the period of the TRS.
- the second set duration may be M times the TRS period. M is a positive integer.
- an embodiment of the present application provides a communication device.
- the communication device can be used to implement the above-mentioned first aspect or any possible design method of the first aspect.
- the communication device can implement each function or step or operation in the above method in the form of a hardware structure, a software module, or a hardware structure plus a software module.
- a communication device may be provided with a function module corresponding to the function or step or operation in the above method to support the communication device to execute the above method.
- the communication device may include a communication module and a processing module coupled with each other, wherein the communication module can be used to support the communication device to communicate, and the processing module can be used for the communication device to perform processing operations, Such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
- the above communication module can be used to perform the sending and/or receiving actions of the terminal in the above method, such as the action of sending information, messages, or signaling from the terminal to the network device, or the receiving of information, message or information from the network device. Signaling action.
- the processing module can be used to perform processing actions of the terminal in the method, for example, it is used to control the communication module to receive and send information, messages or signaling, and to store information.
- the communication device may be a terminal, a device located in the terminal (for example, a chip, or a chip system, or a circuit), or a device that can be matched and used with the terminal.
- an embodiment of the present application provides a communication device.
- the communication device can be used to implement the above-mentioned second aspect or any possible design method of the second aspect.
- the communication device can implement each function or step or operation in the above method in the form of a hardware structure, a software module, or a hardware structure plus a software module.
- a communication device may be provided with a function module corresponding to the function or step or operation in the above method to support the communication device to execute the above method.
- the communication device may include a communication module and a processing module coupled with each other, wherein the communication module can be used to support the communication device to communicate, and the processing module can be used for the communication device to perform processing operations, Such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
- the above communication module can be used to perform the sending and/or receiving actions of the network device in the above method, such as the action of sending information, messages or signaling from the network device to the terminal, or the receiving of information, messages or messages from the terminal. Signaling action.
- the processing module can be used to perform processing actions of the network device in the method, for example, used to control the communication module to receive and send information, messages or signaling, and to store information.
- the communication device may be a network device, or a device located in the network device (for example, a chip, or a chip system, or a circuit), or a device that can be matched and used with the network device.
- an embodiment of the present application provides a communication device, the communication device includes a processor, and when the processor executes a computer program in a memory, as in the first aspect or any possible design of the first aspect The described method is executed.
- an embodiment of the present application provides a communication device, the communication device includes a processor, and when the processor executes a computer program in a memory, as in the second aspect or any possible design of the second aspect The described method is executed.
- an embodiment of the present application provides a communication device.
- the communication device includes a processor and a memory.
- the memory is used to store computer programs or instructions; and the processor is used to execute the computer programs or instructions stored in the memory. Instructions to make the communication device execute the method described in the first aspect or any possible design of the first aspect.
- an embodiment of the present application provides a communication device.
- the communication device includes a processor and a memory, where the memory is used to store computer programs or instructions; the processor is used to execute the computer programs or instructions stored in the memory. Instructions to cause the communication device to execute the method described in the second aspect or any possible design of the second aspect.
- an embodiment of the present application provides a communication device, the communication device includes a processor, a memory, and a communication interface, the communication interface is used to receive signals or send signals; the memory is used to store program codes; The processor is configured to call the program code from the memory to execute the method described in the first aspect or any possible design of the first aspect.
- an embodiment of the present application provides a communication device, the communication device includes a processor, a memory, and a communication interface, the communication interface is used to receive signals or send signals; the memory is used to store program codes; The processor is configured to call the program code from the memory to execute the method described in the second aspect or any possible design of the second aspect.
- an embodiment of the present application provides a device that includes a communication interface and a processor, and the communication interface is used for communication between the device and other devices, for example, data or signal transmission and reception.
- the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be network devices.
- the processor is used to call a set of programs, instructions or data to execute the method described in the first aspect.
- the device may also include a memory for storing programs, instructions or data called by the processor. The memory is coupled with the processor, and when the processor executes instructions or data stored in the memory, the method described in the first aspect can be implemented.
- an embodiment of the present application provides a device that includes a communication interface and a processor, and the communication interface is used for communication between the device and other devices, for example, data or signal transmission and reception.
- the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, and other devices may be terminal devices.
- the processor is used to call a set of programs, instructions or data to execute the method described in the second aspect.
- the device may also include a memory for storing programs, instructions or data called by the processor. The memory is coupled with the processor, and when the processor executes instructions or data stored in the memory, the method described in the second aspect can be implemented.
- an embodiment of the present application also provides a computer-readable storage medium.
- the computer-readable storage medium stores computer-readable instructions.
- the computer-readable instructions run on the computer, the computer Perform the method as described in the first aspect or any one of the possible designs of the first aspect.
- the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the possible designs in the second aspect or the second aspect The method described.
- the embodiments of the present application provide a chip system, which includes a processor and may also include a memory for implementing the above-mentioned first aspect or any one of the possible designs of the first aspect. method.
- the chip system can be composed of chips, or it can include chips and other discrete devices.
- the embodiments of the present application provide a chip system, which includes a processor and may also include a memory, which is used to implement the above-mentioned second aspect or any one of the possible designs of the second aspect. method.
- the chip system can be composed of chips, or it can include chips and other discrete devices.
- an embodiment of the present application provides a system that includes the terminal device described in the third aspect or the fifth aspect, and the network device described in the fourth aspect or the sixth aspect.
- the eighteenth aspect provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the above-mentioned aspects and the methods described in any possible design of the aspects.
- FIG. 1 is a schematic diagram of the architecture of a communication system in an embodiment of the application
- FIG. 2 is a schematic flowchart of a method for receiving and sending a tracking reference signal in an embodiment of the application
- FIG. 3 is a schematic diagram of a sequence of sending and receiving TRS in an embodiment of the application
- FIG. 4 is one of the schematic diagrams of the structure of the communication device in the embodiment of the application.
- FIG. 5 is the second schematic diagram of the structure of the communication device in the embodiment of the application.
- the embodiments of the present application provide a receiving method, a sending method, and a communication device for tracking reference signals.
- the method and the device are based on the same technology and the same or similar concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
- "and/or" describes the association relationship of the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean that there is A alone, and both A and B exist at the same time. There are three cases of B.
- the character "/" generally indicates that the associated objects before and after are in an "or” relationship.
- At least one involved in this application refers to one or more; multiple refers to two or more.
- words such as “first”, “second”, and “third” are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance. Nor can it be understood as indicating or implying order.
- References described in this specification to “one embodiment” or “some embodiments”, etc. mean that one or more embodiments of the present application include a specific feature, structure, or characteristic described in combination with the embodiment. Therefore, the sentences “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc.
- the receiving method, sending method, and device for tracking reference signals provided in the embodiments of the present application can be applied to the fifth generation (5G) communication system, such as 5G new radio (NR), or applied to various future applications.
- 5G fifth generation
- NR new radio
- FIG. 1 shows the architecture of a possible communication system to which the receiving method and sending method of tracking reference signals provided in the embodiments of the present application are applicable.
- the communication system 100 may include a network device 110 and a terminal device 101 to a terminal device 106. It should be understood that the communication system 100 may include more or fewer network devices or terminal devices.
- the network device or terminal device can be hardware, software that is functionally divided, or a combination of the two.
- the terminal device 104 to the terminal device 106 may also form a communication system.
- the terminal device 105 may send downlink data to the terminal device 104 or the terminal device 106.
- the network device and the terminal device can communicate with other devices or network elements.
- the network device 110 may send downlink data to the terminal device 101 to the terminal device 106, and may also receive uplink data sent by the terminal device 101 to the terminal device 106.
- the terminal device 101 to the terminal device 106 may also send uplink data to the network device 110, and may also receive downlink data sent by the network device 110.
- the network device 110 is a node in a radio access network (radio access network, RAN), which may also be referred to as a base station, or a RAN node (or device).
- access network equipment 101 are: next generation nodeB (gNB), next generation evolved nodeB (Ng-eNB), transmission reception point (TRP), Evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver) station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), or wireless fidelity (Wifi) access point (access point, AP) ), or a network device in a 5G communication system, or a network device in a possible future communication system.
- gNB next generation nodeB
- Ng-eNB next generation evolved nodeB
- TRP transmission reception point
- the network equipment may include a centralized unit (CU) and a distributed unit (DU).
- the network device may also include an active antenna unit (AAU).
- CU implements some functions of network equipment, and DU implements some functions of network equipment.
- CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol, PDCP) layer function.
- RRC radio resource control
- PDCP packet data convergence protocol
- the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
- RLC radio link control
- MAC media access control
- PHY physical
- the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
- the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
- the terminal device 101 to the terminal device 106 which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., are a way of providing voice or data to users Connected devices can also be IoT devices.
- the terminal device 101 to the terminal device 106 include a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
- the terminal device 101 to the terminal device 106 may be: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile Internet devices (MID), wearable devices (such as smart watches, smart bracelets, Pedometer, etc.), vehicle-mounted equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control Wireless terminals in (industrial control), smart home equipment (for example, refrigerators, TVs, air conditioners, electric meters, etc.), smart robots, workshop equipment, wireless terminals in self-driving (self-driving), remote medical surgery
- This application uses a terminal to describe.
- the receiving method and sending method of the tracking reference signal provided in the embodiments of the present application will be described in detail below. As an example to better understand the method, firstly, the technical terms that may appear in the embodiments of the present application are introduced.
- Beam The embodiment of the beam in NR can be a spatial domain filter, or a spatial filter, or a spatial parameter (such as spatial reception parameters, and spatial domain filters). Send parameters).
- the beam used to transmit a signal can be called a transmission beam (Tx beam), or a spatial domain transmission filter, a spatial transmission filter, and a spatial domain transmission parameter (spatial domain). parameter) or spatial transmission parameter.
- the beam used to receive the signal can be called the reception beam (Rx beam), or the spatial domain reception filter, the spatial reception filter, and the spatial domain reception parameter (spatial domain). reception parameter) or spatial reception parameter.
- the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
- the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
- the beam may be a wide beam, or a narrow beam, or other types of beams.
- the beam forming technology may be beamforming technology or other technologies.
- the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital or analog beamforming technology, etc.
- Beams generally correspond to resources. For example, when performing beam measurement, network devices use different beams on different resources to send reference signals with different reference signal identifiers. For example, the network device uses beam a to send reference signal 1 on resource A, the identifier of reference signal 1 is identifier 1, and the network device uses beam b to send reference signal 2 of identifier 2 on resource B, and the identifier of reference signal 2 is identifier 2. .
- Beam a corresponds to resource A, and beam b corresponds to resource B. Beam a corresponds to reference signal 1 (or identification 1), and beam 2 corresponds to reference signal 2 (or identification 2).
- the reference signal may generally be a channel status information reference signal (CSI-RS).
- CSI-RS channel status information reference signal
- the terminal compares the quality of different beams by measuring these reference signals, and feeds back the reference signal identifier to notify the selected beam.
- the network device can determine the quality of the beam corresponding to the reference signal identifier according to the reference signal identifier fed back by the terminal.
- the information of the selected beam is also indicated by the resource corresponding to the beam.
- the network device indicates the physical layer downlink shared channel (physical downlink shared channel, PDSCH) beam information of the terminal through the transmission configuration index (TCI) of the downlink control information (DCI).
- TCI transmission configuration index
- DCI downlink control information
- Quasi-co-location The quasi-co-location relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics. For multiple resources with a quasi-co-location relationship, you can use The same or similar communication configuration. For example, if there is a co-location relationship between two antenna ports, then the large-scale characteristics of the channel transmitting one symbol on one port can be inferred from the large-scale characteristics of the channel transmitting one symbol on the other port.
- Large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal device receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver antenna Spatial correlation, main angle of arrival (angel-of-Arrival, AoA), average angle of arrival, expansion of AoA, etc.
- delay spread average delay
- Doppler spread Doppler shift
- average gain e.g., average gain, receiving parameters, terminal device receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver antenna Spatial correlation, main angle of arrival (angel-of-Arrival, AoA), average angle of arrival, expansion of AoA, etc.
- the two signals QCL may mean that the two signals have a QCL relationship, or that the two signals satisfy the QCL relationship.
- QCL type including multiple types, such as type A (type-A), type B (type-B), type C (type-C) or type D (type-D).
- Type-A QCL refers to the average delay, Doppler shift, delay spread and Doppler spread of two signals in the receiving end.
- a parameter QCL that is, the time-frequency offset of the two signals when received is the same.
- type-B QCL refers to the two parameters QCL, Doppler shift and Doppler spread, from the perspective of the receiving end of the two signals.
- type-C QCL refers to the two parameters QCL, which are the average delay and Doppler shift of the two signals from the perspective of the receiving end.
- Type-D QCL refers to the parameter QCL of the spatial reception parameter (spatial Rx parameter) of the two signals from the perspective of the receiving end.
- TRS can be a set of CSI-RS resources (CSI-RS resource set).
- the CSI-RS resource set includes the trs-Info field.
- the trs-Info field is used to indicate that the CSI-RS resource set is used for TRS.
- the receiving method and sending method of the tracking reference signal are as follows.
- the terminal sends a first message to a network device, and the network device receives the first message from the terminal.
- the first message includes information of the first reference signal, and the information of the first reference signal is used to indicate the first beam selected by the terminal.
- the first reference signal may be a CSI-RS, or other types of reference signals, such as a synchronous broadcast signal block (SS/PBCH block, SSB), or a reference signal in the SSB.
- the first reference signal may also be referred to as a beam management reference signal.
- the process of the terminal selecting the first beam can be implemented through the process of beam training.
- the terminal Before sending the first message to the network device, the terminal may receive multiple first reference signals, and the multiple first reference signals may correspond to multiple beams.
- the terminal may select the first reference signal with the largest received power among the plurality of first reference signals.
- the first beam corresponding to the first reference signal with the largest received power is the beam selected and reported by the terminal.
- the terminal may also select the first reference signal according to other methods.
- the first reference signal included in the first message by the terminal may indicate the first beam that the terminal needs to report.
- the process in which the terminal sends the first message to the network device can be understood as a process in which the terminal reports the selected first beam to the network device. After reporting the selected first beam to the network device, the terminal needs to estimate the time-frequency offset on the first beam, so as to use the result of the time-frequency offset estimation to process subsequent signals.
- the terminal's time-frequency offset estimation can be realized by receiving the TRS sent by the network device. Before the terminal receives the TRS, the terminal needs to determine the receiving parameters of the TRS to be able to correctly receive the TRS according to the receiving parameters.
- the network device does not need to notify the terminal of the receiving parameters of the TRS, but the terminal actively adjusts the receiving parameters of the TRS, which is specifically implemented through the following steps.
- the terminal determines a second reference signal associated with the first reference signal.
- the primary synchronization signal primary synchronization signal
- secondary synchronization signal secondary synchronization signal
- physical broadcast channel physical broadcast channel, PBCH
- synchronization signal/broadcast signal block synchronization signal/ PBCH block, SS/PBCH block.
- SS/PBCH block is called SSB.
- the second reference signal may be SSB.
- CSI-RS and SSB are QCL, that is, CSI-RS and SSB have a QCL relationship.
- CSI-RS and SSB have a type-D (type-D) QCL relationship
- CSI-RS and SSB may also have a type-C (type-C) QCL relationship.
- the network device can notify the terminal of the association relationship between the first reference signal and the second reference signal in advance, and the terminal receives the association relationship between the first reference signal and the second reference signal from the network device, and can determine the association relationship with the first reference signal.
- the second reference signal can notify the terminal of the association relationship between the first reference signal and the second reference signal in advance, and the terminal receives the association relationship between the first reference signal and the second reference signal from the network device, and can determine the association relationship with the first reference signal.
- the second reference signal can notify the terminal of the association relationship between the first reference signal and the second reference signal in advance, and the terminal receives the association relationship between the first reference signal and the second reference signal from the network device, and can determine the association relationship with the first reference signal.
- the second reference signal can notify the terminal of the association relationship between the first reference signal and the second reference signal in advance, and the terminal receives the association relationship between the first reference signal and the second reference signal from the network device, and can determine the association relationship with the first reference signal.
- the second reference signal can notify the
- the network device may notify the terminal of the QCL relationship between the CSI-RS and the SSB, and the terminal receives the QCL relationship between the CSI-RS and the SSB from the network device.
- the terminal can determine the relationship with It indicates that the CSI-RS of the first beam has an SSB with a QCL relationship.
- association relationship between the first reference signal and the second reference signal may also be agreed in advance, for example, as stipulated in an agreement.
- the network device sends the TRS to the terminal on the first beam.
- the terminal receives the TRS from the network device according to the receiving parameter of the second reference signal.
- the execution sequence of S202 and S203 is not limited.
- the terminal receives the TRS from the network device according to the receiving parameters of the SSB, and the SSB is used to instruct the terminal to select the SSB of the reported beam.
- the terminal After determining the second reference signal, the terminal measures and receives the second reference signal from the network device.
- the second reference signal is the SSB, and the terminal receives the SSB associated with the CSI-RS from the network device.
- the terminal adjusts or determines the receiving parameter of the second reference signal by measuring and receiving the second reference signal.
- the receiving parameter of the second reference signal determined by the terminal aims to receive the TRS according to the receiving parameter of the second reference signal. Therefore, the terminal can determine which receiving parameters of the second reference signal need to be acquired according to the QCL relationship between the TRS and the second reference signal. Assuming that the second reference signal and the TRS have a QCL relationship of type C, the terminal needs to adjust or determine the type C receiving parameters of the second reference signal, such as parameters such as average delay or Doppler shift.
- the terminal needs to adjust or determine the type D reception parameters of the second reference signal, for example, adjust or determine the reception beam (or spatial reception parameter) of the second reference signal. Adjust to use a narrower and higher gain receiving beam for reception. By measuring and receiving the second reference signal, accurate receiving parameters on the optimal receiving beam corresponding to the second reference signal are obtained.
- the terminal receives the TRS from the network device according to the determined receiving parameters of the second reference signal, such as receiving parameters such as receiving beam, average delay, and Doppler shift.
- the terminal receives the TRS from the network device according to the receiving parameter of the second reference signal.
- the purpose of the terminal determining the receiving parameters of the TRS is to subsequently receive other signals according to the receiving parameters of the TRS, for example, the other signals are PDCCH. Therefore, the terminal can determine which receiving parameters of the TRS need to be acquired according to the QCL relationship between the TRS and the PDCCH. Assuming that TRS and PDCCH have a QCL relationship of Type A and Type D, the terminal needs to determine one or more of the TRS average delay, Doppler shift, delay spread, Doppler spread, or spatial reception parameters. parameter. The terminal receives the PDCCH according to the finally adjusted or determined TRS receiving parameter.
- the terminal when the terminal receives the TRS from the network device according to the receiving parameter of the second reference signal, it may determine the receiving parameter of the TRS according to the receiving parameter of the second reference signal, and according to the determined receiving parameter of the TRS Receive TRS from network equipment.
- the second reference signal and TRS are quasi-co-located QCL, or the second reference signal and TRS have a QCL relationship.
- the second reference signal and the TRS have a QCL relationship of type C, and the terminal determines the average delay and Doppler shift of the TRS according to the average delay and Doppler shift of the second reference signal, and according to the determined TRS Average delay and Doppler shift, and receive TRS from network equipment.
- the second reference signal and the TRS have a QCL relationship of type D, and the terminal determines the receiving beam of the TRS according to the receiving beam of the second reference signal, and receives the TRS from the network device according to the receiving beam of the TRS.
- the terminal can actively adjust the receiving parameters of the TRS without being notified by the network device of the receiving parameters of the TRS, which can save the signaling overhead consumed by the network device notifying the TRS receiving parameters, and save the time delay of the adjustment of the TRS receiving parameters.
- the terminal receives the TRS according to the TRS receiving parameter determined by the receiving parameter of the second reference signal. Or the terminal receives the TRS according to the receiving parameter of the second reference signal, and determines the receiving parameter of the TRS in the process of receiving the TRS.
- the TRS receiving parameter or the receiving parameter of the second reference signal determined according to the receiving parameter of the second reference signal can be considered as the TRS receiving parameter that the terminal actively adjusts after reporting the selected beam.
- S204 The terminal measures the signal quality of the TRS, and compares the signal quality of the first reference signal.
- measuring the signal quality of the TRS may be the layer 1 reference signal received power (L1-RSRP) of the TRS.
- L1-RSRP layer 1 reference signal received power
- the terminal determines that the signal quality of the TRS is less than the first threshold after comparison, or determines that the absolute value of the difference between the signal quality of the TRS and the signal quality of the first reference signal is greater than the second threshold, it means that a channel aging problem has occurred, or that It is possible that the network device did not receive the first message reported by the terminal.
- S205 The terminal sends a request message to the network device for requesting beam measurement, and the network device receives the request message from the terminal.
- the terminal determines not to switch the beam, that is, does not switch to the first beam, but sends a request message to the network device to request the allocation of beam management resources, perform beam measurement or beam training again, and reselect the beam.
- the terminal may also perform the following process.
- the terminal receives the downlink channel and/or downlink signal from the network device according to the TRS receiving parameter.
- TRS has an association relationship with downlink channel/downlink signal, such as QCL relationship.
- the terminal can receive the downlink channel/downlink signal from the network device based on the association relationship and the TRS receiving parameter.
- the downlink channel may include a downlink control channel (physical downlink control channel, PDCCH) or PDSCH.
- the downlink signal may include CSI-RS.
- TRS can have a QCL relationship with PDCCH.
- the terminal can receive the PDCCH from the network device according to the type A and type D receiving parameters of the TRS.
- type-D QCL refers to the spatial reception parameter QCL of the two signals, that is, the receiving beams are the same
- the terminal determines the receiving beam of the PDCCH according to the receiving beam of the TRS.
- type-A QCL refers to the four parameters QCL
- the average delay, Doppler shift, delay spread, and Doppler spread of the two signals from the receiving end that is, the receiving time and frequency offset are the same
- the terminal will be based on the TRS
- the parameters of average delay, Doppler shift, delay spread, and Doppler spread determine the time-frequency offset of the receiving beam, and receive the PDCCH according to the result of the time-frequency offset.
- the terminal may also send an uplink channel and/or an uplink signal to the network device according to the receiving parameters of the TRS.
- TRS may have an association relationship with uplink channels/uplink signals, such as a QCL relationship.
- the terminal may send the uplink channel and/or the uplink signal to the network device based on the association relationship.
- the uplink channel may include a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH).
- the uplink signal may include a sounding reference signal (sounding reference signal) SRS.
- the network device sends PUCCH configuration information to the terminal, where the spatial relation information (spatial relation info, sr-info) field of the PUCCH is configured as a TRS identifier, and the terminal receives the PUCCH configuration information according to
- the receiving parameters of the TRS determine the sending parameters of the PUCCH, and according to the sending parameters of the PUCCH, the PUCCH is sent to the network device.
- the receiving parameter of the TRS may include the receiving beam and/or the average delay
- the transmitting parameter of the PUCCH may include the transmitting beam and/or the transmission timing advance (TA).
- TA transmission timing advance
- the terminal needs to receive the carrier of the TRS from the network device, which may be the same or different from the carrier of the first reference signal. If they are different, the carrier on which the terminal receives the second reference signal and the carrier on which the first reference signal is received may also be different. Based on this, the terminal may have different implementation manners when determining the second reference signal associated with the first reference signal. The details are as follows.
- the first reference signal and the second reference signal are associated with the same carrier, for example, the first reference signal is associated with the first carrier, and the second reference signal is associated with the first carrier.
- the association relationship between the first reference signal and the second reference signal may be based on the same carrier.
- the terminal may determine the second reference signal associated with the first reference signal according to the association relationship.
- the meaning of the reference signal being associated with a carrier may indicate that the reference signal is sent through the carrier.
- that the first reference signal is associated with the first carrier means that the first reference signal is sent through the first carrier, or the first reference signal is sent on the first carrier.
- the first reference signal and the second reference signal are associated with different carriers.
- the terminal determines the association relationship across carriers.
- the first reference signal is associated with the first carrier
- the second reference signal is associated with the second carrier.
- the terminal obtains the first association relationship
- the first association relationship is used to indicate the The association relationship between the first type of reference signal and the second type of reference signal, for example, the first association relationship represents a QCL relationship between multiple CSI-RSs and multiple SSBs on the same carrier.
- the terminal determines a third reference signal associated with the first reference signal according to the first association relationship, where the third reference signal is a reference signal of the second type, for example, the third reference signal is an SSB.
- the third reference signal is associated with the first carrier.
- the third reference signal is the SSB of the first carrier
- the first reference signal is the CSI-RS of the first carrier.
- the terminal may determine the SSB on the first carrier associated with the CSI-RS of the first carrier according to the first association relationship. Since the second reference signal is associated with the second carrier, the terminal also needs to determine the second reference signal on the second carrier.
- the terminal may also obtain a second association relationship, where the second association relationship is used to indicate an association relationship between a reference signal of the second type on the first carrier and a reference signal of the second type on the second carrier.
- the second association relationship represents the association relationship between the SSB of the first carrier and the SSB of the second carrier.
- the terminal determines the second reference signal of the second carrier associated with the third reference signal of the first carrier according to the second association relationship.
- the first reference signal is the CSI-RS of carrier 1
- the second reference signal is the SSB of carrier 2.
- the method for determining the association relationship across carriers is to determine the SSB of carrier 1 associated with the CSI-RS of carrier 1 according to the first association relationship, and determine the SSB of carrier 2 associated with the SSB of carrier 1 according to the second association relationship.
- the scenario of determining the association relationship across carriers may be, for example, that the terminal receives the first reference signal on the first carrier, but needs to receive the data channel or the control channel on the second carrier, and the terminal needs to determine the TRS on the second carrier before it can be based on the first carrier.
- the two-carrier TRS receives parameters to receive the data channel or the control channel on the second carrier.
- Figure 3 illustrates the timing diagram of the terminal and network equipment sending and receiving TRS.
- the terminal sends a first message to the network device at the first moment, and the network device receives the first message from the terminal at the first moment.
- the transmission of the first message from the terminal to the network device requires a certain time delay. Therefore, the time when the network device receives the first message from the terminal may be the time after ⁇ T has passed after the first time.
- the transmission delay can be ignored in the example, and it is considered that the time when the terminal sends the first message is the same as the time when the network device receives the first message.
- the network device sends TRS to the terminal on the first beam.
- the terminal receives the TRS from the network device according to the receiving parameter of the second reference signal.
- the difference between the second moment and the first moment is the first set duration. That is, at a second time after the first set time period has elapsed at the first time, the network device sends the TRS on the first beam, and the terminal receives the TRS from the network device according to the receiving beam of the second reference signal.
- the first set duration is related to the period of the second reference signal.
- the first set duration may be N times the period of the second reference signal.
- N is a positive integer.
- the value of N is 24, and assuming that the second reference signal is SSB, the terminal needs to measure the SSB within the first set time period after the first moment to obtain the receiving parameters of the SSB.
- the receiving parameters are average delay and Doppler shift.
- the terminal needs multiple measurements (for example, 3 times) to obtain accurate receiving parameters.
- the terminal may have multiple receiving beams (for example, 8), each receiving beam requires 3 measurements, so a total of 24 measurements are required to obtain accurate receiving parameters on the optimal receiving beam.
- the first set duration may be notified to the terminal by the network device, or negotiated in advance, for example, stipulated by the agreement.
- the network device may send TRS on the second beam.
- the network device obtains the information of the first beam selected by the terminal from the first message, and starts sending TRS on the first beam from the second moment.
- the terminal determines the second reference signal associated with the first reference signal.
- the terminal measures and receives the second reference signal sent by the network device.
- the network device can send the TRS on the first beam according to the first beam indicated by the first message. It is also possible to wait until the second moment, and send the TRS on the first beam from the second moment.
- the embodiment of the present application may also design a time sequence after the second moment.
- the details are as follows.
- the network device sends the PDCCH to the terminal on the first beam.
- the terminal receives the PDCCH from the network device according to the receiving parameters of the TRS.
- the difference between the third time and the second time is the second set duration.
- the second set duration is related to the cycle of TRS.
- the second set duration is M times the period of TRS, and M is a positive integer.
- the value of M is 24.
- the terminal needs to measure TRS within the second set duration after the second moment to obtain TRS receiving parameters. .
- the terminal needs multiple measurements (for example, 3 times) to obtain accurate receiving parameters. Considering that the terminal may have multiple receiving beams (for example, 8), each receiving beam requires 3 measurements, so a total of 24 measurements are required to obtain accurate receiving parameters on the optimal receiving beam.
- the terminal receives the TRS from the network device according to the receiving parameter of the second reference signal.
- the terminal determines the receiving parameters of the TRS.
- the receiving parameters of the TRS are more refined than the receiving parameters of the second reference signal.
- the second reference signal is SSB
- the receiving beam of TRS is narrower than the receiving beam of SSB.
- the results of time offset and frequency offset determined by measuring TRS are more accurate than the results of time offset and frequency offset determined by measuring SSB.
- the receiving beam determined by measuring TRS is narrower than the receiving beam determined by measuring SSB.
- the expression form of the foregoing time may be a time slot, a symbol, and the like.
- the specific application applies to the first moment, the second moment or the third moment.
- the first set duration or the second set duration may be a period of time slot or a period of symbols in the time domain.
- the terminal can actively adjust the receiving parameters of the TRS, save the signaling overhead caused by the network equipment notifying the TRS to receive the parameters, and further save the energy consumption of the system.
- the network equipment and the terminal can align the use time or the effective time of the terminal selection beam, that is, the alignment of the receiving and sending signals can be realized on the new beam after the beam is switched , So as to better realize the time-frequency offset estimation and better process the subsequent signals according to the time-frequency offset estimation results.
- the network device may also perform parameter configuration related to TRS reception to the terminal.
- the network device sends a message to the terminal, and the message may be an RRC message.
- the terminal receives the message from the network device.
- the message includes the first information.
- the first information may be used to indicate that the TRS receiving method provided in the embodiment of the present application is used to receive the TRS, that is, the terminal may execute a scheme of actively adjusting the TRS according to the first information.
- the network device may also notify the terminal of the TRS receiving parameters through RRC signaling, which consumes more signaling.
- the terminal and the network device may retain these two methods for receiving and sending TRS.
- the network device can instruct the terminal to use which method to receive the TRS through the first information.
- the first information is 1 bit. When the first information is 1, it means that the TRS receiving method provided in the embodiment of this application is used to receive TRS. When the first information is 0, it means that the TRS is obtained through RRC signaling. Receive parameters.
- the first information is used to indicate whether to use the TRS receiving method provided in the embodiment of the present application to receive TRS.
- the first information is 1 bit. When the first information is 1, it means that the TRS receiving method provided in the embodiment of this application is enabled to receive TRS; when the first information is 0, it means that the method provided in the embodiment of this application is not used. TRS receiving method to receive TRS. When the TRS receiving method provided in the embodiments of the present application is not used to receive the TRS, the traditional RRC signaling method can be used to obtain the TRS receiving parameters.
- the message may also carry second information, which is used to indicate that the PDCCH TCI state resource pool of each carrier has only one TCI state.
- This TCI state has a Type A and Type D QCL relationship with TRS.
- the message may also carry third information, which is used to indicate that each carrier has only one TRS, and no QCL is configured for this TRS.
- the message may also carry fourth information, which is used to indicate that a physical downlink shared channel (PDSCH) can be received according to the receiving parameters of the PDCCH.
- PDSCH physical downlink shared channel
- the content indicated by the first information, the second information, the third information, or the fourth information may be indicated by the same information element, or indicated by less than 4 information elements.
- the methods provided in the embodiments of the present application are introduced from the perspective of network equipment, terminal, and interaction between the network equipment and the terminal.
- the network device and the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
- an embodiment of the present application also provides a communication device 400.
- the communication device 400 may be a terminal or a network device, or a device in a terminal or a network device, or capable of interacting with A device that is used by a terminal or a network device.
- the communication device 400 may include modules that perform one-to-one correspondence of the methods/operations/steps/actions performed by the terminal or network equipment in the foregoing method embodiments.
- the modules may be hardware circuits, software, or It is realized by hardware circuit combined with software.
- the device may include a processing module 401 and a communication module 402.
- the communication module can also be called the transceiver module.
- the processing module 401 is used to call the communication module 402 to perform receiving and/or sending functions.
- the communication module 402 may also include a receiving module 402-1 and a sending module 402-2.
- the receiving module 402-1 is used to perform the steps of receiving by a network device or a terminal device in the method embodiment
- the sending module 402-2 is used to perform The step of sending by the network device or the terminal device in the method embodiment.
- the communication module 402 is configured to send a first message to a network device, where the first message includes information of the first reference signal;
- the processing module 401 is configured to determine a second reference signal associated with the first reference signal
- the communication module 402 is configured to receive the TRS from the network device according to the receiving parameter of the second reference signal.
- the processing module 401 and the communication module 402 may also be used to perform other corresponding steps or operations performed by the terminal in the foregoing method embodiment, which will not be repeated here.
- the processing module 401 is used to call the communication module 402 to perform receiving and/or sending functions.
- the processing module 401 calls the receiving module 402-1 to receive a first message from the terminal, the first message includes information of the first reference signal, and the information of the first reference signal is used to indicate the first beam selected by the terminal;
- the module 401 calls the sending module 402-2 to send TRS to the terminal on the first beam.
- the processing module 401 and the communication module 402 may also be used to execute other corresponding steps or operations performed by the network device in the foregoing method embodiment, which will not be repeated here.
- the division of modules in the embodiments of this application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
- the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
- the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
- an apparatus 500 provided by an embodiment of this application is used to implement the functions of the terminal or network device in the foregoing method.
- the device may be a network device, a device in a network device, or a device that can be matched and used with the network device.
- the device may be a terminal, a device in the terminal, or a device that can be matched and used with the terminal.
- the device may be a chip system.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- the apparatus 500 includes at least one processor 520, configured to implement the functions of the terminal or the network device in the method provided in the embodiment of the present application.
- the device 500 may also include a communication interface 510.
- the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, which is used to communicate with other devices through a transmission medium.
- the transceiver may also include a transmitter and a receiver. The transmitter is used to perform the steps sent by the network device or terminal device in the method embodiment; the receiver is used to perform the steps received by the network device or terminal device in the method embodiment.
- the communication interface 510 is used for the device in the device 500 to communicate with other devices.
- the apparatus 500 when the apparatus 500 is a network device, the other device may be a terminal.
- the device 500 when the device 500 is a terminal, the other device may be a network device.
- the processor 520 uses the communication interface 510 to send and receive data, and is used to implement the method described in the foregoing method embodiment.
- the processor 520 when the function of the network device is implemented, the processor 520 is configured to use a communication interface for receiving a first message from a terminal and sending a TRS to the terminal on the first beam.
- the processor 520 is configured to send a first message to the network device using the communication interface 510
- the processor 520 is configured to determine a second reference signal associated with the first reference signal
- the processor 520 is further configured to The tracking reference signal TRS from the network device is received through the communication interface 510 according to the receiving parameter of the second reference signal.
- the processor 520 and the communication interface 510 may also be used to perform other corresponding steps or operations performed by the terminal or the network device in the foregoing method embodiment, which will not be repeated here.
- the device 500 may further include at least one memory 530 for storing program instructions and/or data.
- the memory 530 and the processor 520 are coupled.
- the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
- the processor 520 may cooperate with the memory 530 to operate.
- the processor 520 may execute program instructions stored in the memory 530. At least one of the at least one memory may be included in the processor.
- the embodiment of the present application does not limit the specific connection medium between the aforementioned communication interface 510, the processor 520, and the memory 530.
- the memory 530, the communication interface 520, and the communication interface 510 are connected by a bus 540 in FIG. 5, and the bus is represented by a thick line in FIG. , Is not limited.
- the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used to represent in FIG. 5, but it does not mean that there is only one bus or one type of bus.
- the processor 520 and the memory 530 may be combined into one processing device, and the processor 520 is configured to execute the program code stored in the memory 530 to implement the above-mentioned functions.
- the memory 530 may also be integrated in the processor 520 or independent of the processor 520.
- the processor 520 may be configured to correspond to the processing module 401, and the communication interface 510 corresponds to the communication module 402.
- the processor 520 is an integrated circuit chip with signal processing capability.
- the processor 520 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the The disclosed methods, steps and logic block diagrams.
- the general-purpose processor may be a microprocessor or any conventional processor or the like.
- the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
- the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 520 or instructions in the form of software.
- the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
- the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
- the memory 530 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory).
- a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), etc.
- a volatile memory volatile memory
- RAM random-access memory
- the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
- the memory 530 in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
- an embodiment of the present application further provides a chip, including a processor, for supporting the communication device to implement the functions related to the terminal or network device in the foregoing method embodiment .
- the chip is connected to a memory or the chip includes a memory, and the memory is used to store the necessary program instructions and data of the communication device.
- the embodiment of the present application provides a computer-readable storage medium that stores a computer program, and the computer program includes instructions for executing the foregoing method embodiments.
- the embodiments of the present application provide a computer program product containing instructions.
- the computer program product includes computer program code.
- the computer program code runs on a computer, the computer executes the foregoing method embodiments.
- this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
- the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
- These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
- the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种跟踪参考信号的接收方法、发送方法及通信装置,用以降低跟踪参考信号在调整接收参数时的信令开销。该方法包括:终端向网络设备发送第一消息,网络设备接收来自终端的第一消息,所述第一消息包括第一参考信号的信息,所述第一参考信号的信息用于指示选择的第一波束;终端确定与所述第一参考信号关联的第二参考信号;网络设备在所述第一波束上向所述终端发送跟踪参考信号TRS,终端根据所述第二参考信号的接收参数,接收来自网络设备的TRS。
Description
本申请涉及通信技术领域,特别涉及一种跟踪参考信号的接收方法、发送方法及通信装置。
为了克服高频毫米波路径损耗大的问题,网络设备和终端之间可以使用阵列技术形成高增益的定向波束来进行通信,可以提高天线增益,补偿路损。由于网络设备和终端都可以产生多个波束,所以在采用定向波束进行通信之前,网络设备和终端之间需要进行波束训练。波束训练的目的就是为了在多种可能的收发波束组合中找到合适的收发波束对。波束训练一般通过以下方法实现:一端发送参考信号,另一端对参考信号的接收质量进行测量和反馈。
为了实现正确的接收,除了确定波束方向,终端还需要对信号的时频偏进行估计,以利用对时频偏估计的结果对后续信号处理,例如,补偿时频偏移的处理。通常情况下,终端对信号的时频偏估计是通过跟踪参考信号(tracking reference signal,TRS)来实现的。终端通过接收TRS来估计接收波束上信号的时频偏。
当终端通过波束训练选择新的波束时,需要在更新的波束上接收TRS,以实现对新的接收波束上的时频偏估计。网络设备在接收到终端上报的新的波束后,需要向终端通知新的波束上TRS接收参数的配置,这样终端才能根据该TRS接收参数的配置成功接收TRS。通常网络设备需要通过RRC信令来通知TRS的接收参数的配置。那么终端在每次上报新的波束时,网络设备就需要通过RRC信令来通知TRS的接收参数的配置,这将导致信令的浪费和较大的信令开销。
发明内容
本申请提供一种跟踪参考信号的接收方法、发送方法及通信装置,用以降低接收TRS时的信令开销。
一方面,提供一种跟踪参考信号的接收方法,该方法可以通过终端或终端中的芯片来实现。该方法包括以下步骤:向网络设备发送第一消息,所述第一消息包括第一参考信号的信息,确定与所述第一参考信号关联的第二参考信号;根据所述第二参考信号的接收参数,接收来自网络设备的跟踪参考信号TRS。这样,终端不需要由网络设备通知TRS的接收参数,可以节省网络设备通知TRS接收参数所消耗的信令开销,进一步地,节省了TRS接收参数调整的时延。
可选的,所述第一参考信号的信息用于指示选择的第一波束,终端通过第一参考信号通知网络设备该终端所选择的波束。网络设备可以根据第一参考信号的信息确定终端选择的波束,并在该波束上发送信号。其中,第一参考信号的信息可以是该第一参考信号的标识,例如第一参考信号的ID。
在一个可能的设计中,向网络设备发送第一消息,根据所述第二参考信号的接收参数,接收来自网络设备的TRS,可以按照以下时序实现:在第一时刻向网络设备发送第一消息, 从第二时刻开始,根据所述第二参考信号的接收参数,接收来自网络设备的TRS;其中,所述第二时刻与所述第一时刻的差值为第一设定时长。在第一设定时长内,终端可以通过检测第二参考信号来确定或调整第二参考信号的接收参数。通过第一设定时长的设计,可以使得网络设备与终端能够对齐终端选择波束的使用时间或生效时间,即能够使得在切换波束后在新的波束上实现收发信号的对齐,从而更好的实现时频偏估计以及更好的按照时频偏估计结果对后续信号进行处理。
在一个可能的设计中,所述第一设定时长与所述第二参考信号的周期相关。例如,第一设定时长可以是第二参考信号周期的N倍。N为正整数。
可选的,第一设定时长可以是由网络设备通知给终端的,或者事先商量好的,例如协议规定的。
在一个可能的设计中,所述第一参考信号和所述第二参考信号关联相同的载波;或者,所述第一参考信号和所述第二参考信号关联不同的载波。
例如,所述第一参考信号关联第一载波,所述第二参考信号关联所述第一载波;
或者,所述第一参考信号关联第一载波,所述第二参考信号关联第二载波。通过跨载波的关联方式,能够适用于以下场景:终端在一个载波上测量第一参考信号以上报波束,但是终端需要在另一个载波上接收PDCCH或PUSCH。
在一个可能的设计中,所述第一参考信号关联第一载波、且所述第一参考信号关联所述第一载波的第三参考信号,所述第三参考信号关联第二载波的所述第二参考信号。可以实现跨载波的关联方式,从而使得主动调整TRS的方法能够适用更多的应用场景。
在一个可能的设计中,根据所述TRS的接收参数,接收来自网络设备的下行控制信道PDCCH,其中,所述PDCCH与所述TRS满足QCL关系。
在一个可能的设计中,从第三时刻开始,根据所述TRS的接收参数,接收来自网络设备的PDCCH;其中,所述第三时刻与所述第二时刻的差值为第二设定时长。通过第二设定时长的设计,可以使得网络设备与终端能够对齐终端选择波束的使用时间或生效时间,即能够使得在切换波束后在新的波束上实现收发信号的对齐,从而更好的实现时频偏估计以及更好的按照时频偏估计结果对后续信号进行处理。
在一个可能的设计中,所述第二设定时长与所述TRS的周期相关。例如,第二设定时长可以是TRS周期的M倍。M为正整数。
在一个可能的设计中,接收来自所述网络设备的第二消息,所述第二消息包括所述第一参考信号与所述第二参考信号的关联关系。关联关系可以是QCL关系,或者映射关系。
在一个可能的设计中,测量所述TRS的信号质量,并将所述TRS的信号质量与所述第一参考信号进行比较;在比较结果不满足设定条件时,向所述网络设备发送请求消息,所述请求消息用于请求波束测量。这样,可以在信道老化问题,或者网络设备没有收到终端上报的第一信息的情况下,能够重新测量波束,避免切换波束反而通信质量变的不好。
第二方面,一种时频偏估计方法,该方法可以通过网络设备或网络设备中的芯片来实现。该方法包括以下步骤:接收来自终端的第一消息,所述第一消息包括第一参考信号的信息,所述第一参考信号的信息用于指示所述终端选择的第一波束;在所述第一波束上向所述终端发送跟踪参考信号TRS。可以省略向终端指示TRS接收参数的过程,这个过程通常需要RRC信令来实现,因此省略这个过程能够降低因调整TRS接收参数带来的信令开销,进一步降低系统的能耗。
在一个可能的设计中,在接收来自终端的第一消息和在所述第一波束上向所述终端发送跟踪参考信号TRS时,可以按照以下时序方式:在第一时刻接收来自终端的所述第一消息,从第二时刻开始,在所述第一波束上,向所述终端发送所述TRS;其中,所述第二时刻与所述第一时刻的差值为第一设定时长。可以预留第一设定时长供终端通过检测第二参考信号来确定或调整第二参考信号的接收参数。通过第一设定时长的设计,可以使得网络设备与终端能够对齐终端选择波束的使用时间或生效时间,即能够使得在切换波束后在新的波束上实现收发信号的对齐,从而更好的实现时频偏估计以及更好的按照时频偏估计结果对后续信号进行处理。可选的,第一设定时长可以是由网络设备通知给终端的,或者事先商量好的,例如协议规定的。
在一个可能的设计中,从第三时刻开始,在所述第一波束上,向所述终端发送下行控制信道PDCCH;其中,所述第三时刻与所述第二时刻的差值为第二设定时长。通过第二设定时长的设计,可以使得网络设备与终端能够对齐终端选择波束的使用时间或生效时间,即能够使得在切换波束后在新的波束上实现收发信号的对齐,从而更好的实现时频偏估计以及更好的按照时频偏估计结果对后续信号进行处理。
在一个可能的设计中,所述第一设定时长与所述第一参考信号的周期相关。例如,第一设定时长可以是第二参考信号周期的N倍。N为正整数。
在一个可能的设计中,所述第二设定时长与所述TRS的周期相关。例如,第二设定时长可以是TRS周期的M倍。M为正整数。
第三方面,本申请实施例提供一种通信装置。该通信装置可用于执行上述第一方面或第一方面的任一可能的设计中的方法。该通信装置可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述方法中的各功能或步骤或操作。比如,在通信装置中可以设置与上述方法中的功能或步骤或操作相对应的功能模块来支持所述通信装置执行上述方法。
在通过软件模块实现第三方面所示通信装置时,该通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
以上通信模块可用于执行上述方法中终端的发送和/或接收的动作,如用于执行终端向网络设备发送信息、消息或信令的动作,或用于执行接收来自网络设备的信息、消息或信令的动作。和/或,处理模块可用于执行所述方法中终端的处理动作,如用于控制通信模块进行信息、消息或信令的接收和或发送,以及信息的存储等操作。
示例性的,该通信装置可以是终端,也可以是位于终端中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端匹配使用的装置。
第四方面,本申请实施例提供一种通信装置。该通信装置可用于执行上述第二方面或第二方面的任一可能的设计中的方法。该通信装置可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述方法中的各功能或步骤或操作。比如,在通信装置中可以设置与上述方法中的功能或步骤或操作相对应的功能模块来支持所述通信装置执行上述方法。
在通过软件模块实现第三方面所示通信装置时,该通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装 置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
以上通信模块可用于执行上述方法中网络设备的发送和/或接收的动作,如用于执行网络设备向终端发送信息、消息或信令的动作,或用于执行接收来自终端的信息、消息或信令的动作。和/或,处理模块可用于执行所述方法中网络设备的处理动作,如用于控制通信模块进行信息、消息或信令的接收和或发送,以及信息的存储等操作。
示例性的,该通信装置可以是网络设备,也可以是位于网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。
第五方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序时,如第一方面或第一方面的任一可能的设计中的所述的方法被执行。
第六方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序时,如第二方面或第二方面的任一可能的设计中的所述的方法被执行。
第七方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第一方面或第一方面的任一可能的设计中所述的方法。
第八方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第二方面或第二方面的任一可能的设计中所述的方法。
第九方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面或第一方面的任一可能的设计中所述的方法。
第十方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第二方面或第二方面的任一可能的设计中所述的方法。
第十一方面,本申请实施例提供一种装置,所述装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。处理器用于调用一组程序、指令或数据,执行上述第一方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第一方面描述的方法。
第十二方面,本申请实施例提供一种装置,所述装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为终端设备。处理器用于调用一组程序、指令或数据,执行上述第二方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第二方面描述的方法。
第十三方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得计算机执行如第一方面或第一方面中任一种可能的设计中所述的方法。
第十四方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第二方面或第二方面中任一种可能的设计中所述的方法。
第十五方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十六方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第二方面或第二方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十七方面,本申请实施例提供了一种系统,所述系统包括第三方面或者第五方面所述的终端设备、以及第四方面或第六方面所述的网络设备。
第十八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面和各方面的任一可能的设计中所述的方法。
图1为本申请实施例中通信系统架构示意图;
图2为本申请实施例中跟踪参考信号的接收方法、发送方法流程示意图;
图3为本申请实施例中发送和接收TRS的时序示意图;
图4为本申请实施例中通信装置结构示意图之一;
图5为本申请实施例中通信装置结构示意图之二。
本申请实施例提供一种跟踪参考信号的接收方法、发送方法及通信装置。其中,方法和装置是基于同一技术相同或相似构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供的跟踪参考信号的接收方法、发送方法及装置,可以应用于第五代 (5th generation,5G)通信系统,例如5G新空口(new radio,NR),或应用于未来的各种通信系统。
下面将结合附图,对本申请实施例进行详细描述。
图1示出了本申请实施例提供的跟踪参考信号的接收方法、发送方法适用的一种可能的通信系统的架构,该通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,该通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。此外,终端设备104~终端设备106也可以组成一个通信系统,例如终端设备105可以发送下行数据给终端设备104或终端设备106。网络设备与终端设备之间可以通过其他设备或网元通信。网络设备110可以向终端设备101~终端设备106发送下行数据,也可以接收终端设备101~终端设备106发送的上行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据,也可以接收网络设备110发送的下行数据。
网络设备110为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些接入网设备101的举例为:下一代基站(next generation nodeB,gNB)、下一代演进的基站(next generation evolved nodeB,Ng-eNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或5G通信系统中的网络设备,或者未来可能的通信系统中的网络设备。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和(distributed unit,DU)。网络设备还可以包括有源天线单元(active antenna unit,AAU)。CU实现网络设备的部分功能,DU实现网络设备的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
终端设备101~终端设备106,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备101~终端设备106包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备101~终端设备106可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强 现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。本申请用终端来描述。
以下将对本申请实施例提供的跟踪参考信号的接收方法、发送方法进行详细说明。为例更好的理解该方法,首先对本申请实施例可能出现的技术术语做介绍。
1)波束(beam):波束在NR中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter),或称空间参数(spatial parameter)(如空间接收参数,和空间发送参数)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),也可以称为空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain parameter)或空间发送参数(spatial transmission parameter)。用于接收信号的波束可以称为接收波束(reception beam,Rx beam),也可以称为空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或空间接收参数(spatial reception parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字或者模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备在不同的资源上使用不同的波束发送具有不同参考信号标识的参考信号。例如,网络设备在资源A上使用波束a发送参考信号1,参考信号1的标识为标识1,网络设备在资源B上使用波束b发送标识2的参考信号2,参考信号2的标识为标识2。波束a与资源A对应,波束b与资源B对应。波束a与参考信号1(或标识1)对应,波束2与参考信号2(或标识2)对应。参考信号一般可以是信道状态信息参考信号(channel status information reference signal,CSI-RS)。终端通过测量这些参考信号,比较不同波束的质量,反馈参考信号标识,用以通知选择的波束。网络设备根据终端反馈的参考信号标识,就可以确定与该参考信号标识对应的波束的质量。终端向网络设备上报选择的波束时,所选择的波束的信息也是通过该波束对应的资源来进行指示的。例如网络设备通过下行控制信息(downlink control information,DCI)的传输配置编号(transmission configuration index,TCI),来指示终端的物理层下行共享信道(physical downlink shared channel,PDSCH)波束的信息。PDSCH波束是指用于发送PDSCH的波束。
2)准同位(quasi-co-location,QCL):准同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有准同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口之间具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端 设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-Arrival,AoA),平均到达角,AoA的扩展等。又例如,两个信号具有准同位关系,那么发送这两个信号的天线端口之间具有准同位关系。
本申请实施例中,两个信号QCL可以指两个信号具有QCL关系,或者,两个信号满足QCL关系。
3)QCL类型(type),包括多种类型,例如类型A(type-A)、类型B(type-B)、类型C(type-C)或类型D(type-D)。
可选的,上述几种类型的QCL可以做如下理解。
type-A QCL是指两个信号在接收端看来平均时延(average delay)、多普勒偏移(Doppler shift)、时延扩展(delay spread)和多普勒扩展(Doppler spread)这四个参数QCL,即两个信号在接收时的时频偏相同。
type-B QCL是指两个信号在接收端看来多普勒偏移和多普勒扩展这两个参数QCL。
type-C QCL是指两个信号在接收端看来平均时延和多普勒偏移这两个参数QCL。
type-D QCL是指两个信号在接收端看来空域接收参数(spatial Rx parameter)这个参数QCL。
4)TRS,TRS可以是CSI-RS资源的集合(CSI-RS resource set),该CSI-RS resource set包括trs-Info字段,该trs-Info字段用于表示该CSI-RS resource set是用于TRS的。
如图2所示,本申请实施例提供的跟踪参考信号的接收方法、发送方法如下所述。
S201、终端向网络设备发送第一消息,网络设备接收来自终端的第一消息。
该第一消息包括第一参考信号的信息,第一参考信号的信息用于指示终端选择的第一波束。
其中,第一参考信号可以是CSI-RS,也可以是其它类型的参考信号,例如同步广播信号块(SS/PBCH block,SSB),或者SSB中的参考信号。第一参考信号还可以称为波束管理参考信号。
终端选择第一波束的过程可以通过波束训练的过程实现。
终端向网络设备发送第一消息之前,可能接收多个第一参考信号,多个第一参考信号可以对应多个波束。终端可以选择多个第一参考信号中接收功率最大的第一参考信号。该接收功率最大的第一参考信号对应的第一波束,即为终端选择上报的波束。当然终端还可以根据其他方式选择第一参考信号。总之,终端在第一消息中包括的第一参考信号可以指示该终端需要上报的第一波束。
本步骤终端向网络设备发送第一消息的过程,可以理解为终端向网络设备上报所选择的第一波束的过程。终端在向网络设备上报所选择的第一波束之后,需要进行第一波束上的时频偏估计,以便于利用对时频偏估计的结果对后续信号进行处理。终端进行时频偏估计可以通过接收网络设备发送的TRS来实现。在终端接收TRS之前,终端需要确定TRS的接收参数,才能够按照该接收参数正确接收TRS。本申请实施例中,不需要网络设备通知终端TRS的接收参数,而是终端主动调整TRS的接收参数,具体通过以下步骤实现。
S202、终端确定与第一参考信号关联的第二参考信号。
在NR中,主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS),和物理广播信道(physical broadcast channel,PBCH)被称为同步信号/广播信号块(synchronization signal/PBCH block,SS/PBCH block)。本申请为描述 方便,把SS/PBCH block称为SSB。
第一参考信号为CSI-RS时,第二参考信号可以是SSB。CSI-RS和SSB是QCL的,即CSI-RS与SSB具有QCL关系。通常情况下,CSI-RS和SSB具有类型D(type-D)QCL关系,CSI-RS和SSB还可以具有类型C(type-C)QCL关系。
网络设备可以提前将第一参考信号与第二参考信号的关联关系通知给终端,终端接收来自网络设备的该第一参考信号与第二参考信号的关联关系,可以确定与第一参考信号关联的第二参考信号。
可选的,网络设备可以将CSI-RS与SSB的QCL关系通知给终端,终端接收来自网络设备的该CSI-RS与SSB的QCL关系,根据该CSI-RS与SSB的QCL关系,可以确定与指示第一波束的CSI-RS具有QCL关系的SSB。
可选的,第一参考信号与第二参考信号的关联关系也可以是提前约定好的,例如协议规定的。
S203、网络设备在第一波束上向终端发送TRS。终端根据第二参考信号的接收参数,接收来自网络设备的TRS。
S202和S203的执行顺序不作限定。
可选的,若第一参考信号为SSB,则可以认为第一参考信号即第二参考信号,也可以省略S202,即省略通过第一参考信号关联第二参考信号的步骤。S203中,终端根据SSB的接收参数接收来自网络设备的TRS,该SSB即用于指示终端选择上报的波束的SSB。
终端在确定第二参考信号后,测量和接收来自网络设备的第二参考信号。例如第二参考信号为SSB,终端接收来自网络设备的与CSI-RS关联的SSB。
终端通过测量和接收第二参考信号,调整或确定第二参考信号的接收参数。终端确定的第二参考信号的接收参数,目的在于根据第二参考信号的接收参数来接收TRS。因此,终端可以根据TRS与第二参考信号的QCL关系,来确定具体需要获取第二参考信号的哪些接收参数。假设第二参考信号与TRS具有类型C的QCL关系,则终端需要调整或确定第二参考信号的类型C的接收参数,例如平均时延、或多普勒偏移等参数。假设第二参考信号与TRS具有类型D的QCL关系,则终端需要调整或确定第二参考信号的类型D的接收参数,例如调整或确定第二参考信号的接收波束(或空域接收参数),可以调整到使用更窄的增益更高的接收波束进行接收。通过测量和接收第二参考信号,获得第二参考信号对应的最优接收波束上准确的接收参数。终端根据确定的第二参考信号的接收参数,例如接收波束、平均时延和多普勒偏移这些接收参数,接收来自网络设备的TRS。
终端根据第二参考信号的接收参数,接收来自网络设备的TRS。在测量和接收TRS的过程中,确定TRS的接收参数或者进一步调整TRS的接收参数。类似的,终端确定TRS的接收参数的目的,在于后续根据TRS的接收参数来接收其他信号,例如其他信号为PDCCH。因此,终端可以根据TRS与PDCCH的QCL关系,来确定具体需要获取TRS的哪些接收参数。假设TRS与PDCCH具有类型A和类型D的QCL关系,则终端需要确定TRS的平均时延、多普勒偏移、时延扩展、多普勒扩展或空域接收参数中的一项或多项接收参数。终端根据最终调整好的或确定的TRS的接收参数,来接收PDCCH。
在一种可能的实现方式中,终端在根据第二参考信号的接收参数接收来自网络设备的TRS时,可以根据第二参考信号的接收参数确定TRS的接收参数,并根据确定的TRS的接收参数接收来自网络设备的TRS。例如,第二参考信号与TRS准同位QCL,或者第二 参考信号与TRS具有QCL关系。例如第二参考信号与TRS具有类型C的QCL关系,则终端根据第二参考信号的平均时延和多普勒偏移,确定TRS的平均时延和多普勒偏移,根据确定的TRS的平均时延和多普勒偏移,接收来自网络设备的TRS。例如第二参考信号与TRS具有类型D的QCL关系,则终端根据第二参考信号的接收波束,确定TRS的接收波束,根据TRS的接收波束,接收来自网络设备的TRS。
这样,终端可以主动调整TRS的接收参数,不需要由网络设备通知TRS的接收参数,可以节省网络设备通知TRS接收参数所消耗的信令开销,并节省了TRS接收参数调整的时延。
综上所述,终端根据第二参考信号的接收参数确定的TRS接收参数来接收TRS。或者终端根据第二参考信号的接收参数来接收TRS,并在接收TRS的过程中确定TRS的接收参数。根据第二参考信号的接收参数确定的TRS接收参数或第二参考信号的接收参数,可以认为是终端在上报选择的波束后主动调整的TRS接收参数。
在一种可能的实现方式中,在S203之后,还可能执行以下过程。
S204、终端测量TRS的信号质量,并第一参考信号的信号质量进行比较。
例如测量TRS的信号质量可以是TRS的层一参考信号接收功率(layer 1 reference signal received power,L1-RSRP)。
若终端比较之后确定TRS的信号质量小于第一门限,或者确定TRS的信号质量与第一参考信号的信号质量之间的差的绝对值大于第二门限,则说明出现了信道老化问题,或者说明可能网络设备没有收到终端上报的第一消息。
S205、终端向网络设备发送请求消息,用于请求波束测量,网络设备接收来自终端的该请求消息。
终端根据比较结果,确定不切换波束,即不切换到第一波束,而是向网络设备发送请求消息,请求分配波束管理资源,重新进行波束测量或波束训练,重新选择波束。
在S205之后,返回执行S201。
本申请实施例中,终端在确定调整后的TRS接收参数之后,还可以执行以下过程。
终端根据TRS接收参数,接收来自网络设备的下行信道和/或下行信号。
TRS与下行信道/下行信号具有关联关系,例如QCL关系。终端可以基于该关联关系,根据TRS接收参数,接收来自网络设备的下行信道/下行信号。
下行信道可以包括下行控制信道(physical downlink control channel,PDCCH)、或者PDSCH。下行信号可以包括CSI-RS。
以PDCCH为例,TRS可以与PDCCH具有QCL关系。例如,TRS与PDCCH具有类型A和类型D的QCL关系,则终端可以根据TRS的类型A和类型D的接收参数,接收来自网络设备的PDCCH。假设type-D QCL指两个信号的空间接收参数QCL,即接收波束相同,则终端根据TRS的接收波束确定PDCCH的接收波束。假设type-A QCL指两个信号在接收端看来平均时延、多普勒偏移、时延扩展和多普勒扩展这四个参数QCL,即接收时频偏相同,则终端根据TRS的平均时延、多普勒偏移、时延扩展和多普勒扩展参数确定该接收波束的时频偏,并按照该时频偏的结果来接收PDCCH。
进一步地,终端还可以根据TRS的接收参数,向网络设备发送上行信道和/或上行信号。
类似下行信道/下行信号的接收,TRS可以与上行信道/上行信号具有关联关系,例如 QCL关系。终端可以基于该关联关系,向网络设备发送上行信道和/或上行信号。
上行信道可以包括物理上行控制信道(physical uplink control channel,PUCCH)和物理上行共享信道(physical uplink shared channel,PUSCH)。上行信号可以包括探测参考信号(sounding reference signal)SRS。
以PUCCH为例,网络设备向终端发送PUCCH的配置信息,其中PUCCH的空间关系信息(spatial relation info,sr-info)字段配置为TRS的标识,则终端接收到该PUCCH的配置信息后,可以根据TRS的接收参数确定发PUCCH的送参数,根据PUCCH的发送参数,向网络设备发送PUCCH。其中,TRS的接收参数可以包括接收波束和/或平均时延,PUCCH的发送参数可以包括发送波束和/或发送时间提前量(timing advance,TA)。
本申请实施例中,终端需要接收来自网络设备的TRS的载波,可能与接收第一参考信号的载波是相同或不同的。若不同,则终端接收第二参考信号的载波与接收第一参考信号的载波也可能不同。基于此,终端在确定第一参考信号关联的第二参考信号时,可能有不同的实现方式。具体如下所述。
第一参考信号和第二参考信号关联相同的载波,比如,第一参考信号关联第一载波,第二参考信号关联第一载波。第一参考信号与第二参考信号的关联关系可能是基于相同载波的,这种情况下,终端可以根据该关联关系,确定第一参考信号关联的第二参考信号即可。其中,参考信号关联载波的意思可以指示,该参考信号通过该载波发送。例如,第一参考信号关联第一载波,是指第一参考信号通过第一载波被发送,或第一参考信号在第一载波上被发送。
第一参考信号和第二参考信号关联不同的载波,这种情况可以理解为终端跨载波确定关联关系。比如,第一参考信号关联第一载波,第二参考信号关联第二载波。假设第一参考信号的类型为第一类型(如CSI-RS),第二参考信号的类型为第二类型(如SSB),终端获取第一关联关系,第一关联关系用于表示相同载波上第一类型的参考信号与第二类型的参考信号之间的关联关系,例如,第一关联关系表示相同载波上多个CSI-RS与多个SSB之间的QCL关系。终端根据第一关联关系确定与第一参考信号关联的第三参考信号,其中,第三参考信号是第二类型的参考信号,例如第三参考信号是SSB。第三参考信号关联第一载波,例如,第三参考信号是第一载波的SSB,第一参考信号是第一载波的CSI-RS。终端可以根据第一关联关系确定第一载波的CSI-RS关联的第一载波上的SSB。由于第二参考信号关联第二载波,因此终端还要确定第二载波上的第二参考信号。终端还可以获取第二关联关系,第二关联关系用于表示第一载波上第二类型的参考信号与第二载波上第二类型的参考信号之间的关联关系。例如第二关联关系表示第一载波的SSB与第二载波的SSB之间的关联关系。终端根据第二关联关系确定第一载波的第三参考信号关联的第二载波的第二参考信号。基于上述跨载波确定关联关系的描述,举例来说,第一参考信号为载波1的CSI-RS,第二参考信号为载波2的SSB。则跨载波确定关联关系的方法为,根据第一关联关系确定载波1的CSI-RS关联的载波1的SSB,根据第二关联关系确定载波1的SSB关联的载波2的SSB。
跨载波确定关联关系的场景例如可以是,终端在第一载波上接收第一参考信号,但是需要在第二载波上接收数据信道或控制信道,终端需要确定第二载波上的TRS,才能根据第二载波的TRS接收参数来在第二载波上接收数据信道或控制信道。
图3示意了终端和网络设备发送和接收TRS的时序示意图。
如图3所示,(1)终端在第一时刻向网络设备发送第一消息,网络设备在第一时刻接收来自终端的第一消息。实际应用中,第一消息从终端传输到网络设备需要经过一定的时延,所以,网络设备接收来自终端的第一消息的时间可能是第一时刻之后经过ΔT之后的时刻。为方便对本申请实施例的理解,在举例中可以忽略传输时延,认为终端发送第一消息的时刻与网络设备接收第一消息的时刻相同。
(2)网络设备从第二时刻开始,在第一波束上,向终端发送TRS。终端从第二时刻开始根据第二参考信号的接收参数,接收来自网络设备的TRS。
第二时刻与第一时刻的差值为第一设定时长。即在第一时刻经过第一设定时长后的第二时刻,网络设备在第一波束上发送TRS,终端根据第二参考信号的接收波束接收来自网络设备的TRS。
第一设定时长与第二参考信号的周期相关。例如,第一设定时长可以是第二参考信号周期的N倍。N为正整数。例如N的取值为24,假设第二参考信号为SSB,终端需要在第一时刻后的第一设定时长内测量SSB以获得SSB的接收参数。例如接收参数为平均时延和多普勒偏移。终端需要多次测量(例如3次)才能获得准确的接收参数。考虑到终端可能具有多个接收波束(例如8个),每个接收波束都需要3次测量,因此共需要24次测量才能获得最优接收波束上的准确的接收参数。
第一设定时长可以是由网络设备通知给终端的,或者事先商量好的,例如协议规定的。
具体的,在第二时刻之前,网络设备可能在第二波束上发送TRS。网络设备从第一消息中获取终端选择的第一波束的信息,从第二时刻开始在该第一波束上发送TRS。
终端在第一时刻之后,在第二时刻之前,确定与第一参考信号关联的第二参考信号,终端测量并接收网络设备发送的第二参考信号,在测量接收第二参考信号的过程中,确定第二参考信号的接收参数。网络设备在第一时刻接收到第一消息之后,便可以根据第一消息指示的第一波束,在第一波束上发送TRS。也可以等到第二时刻,从第二时刻开始在第一波束上发送TRS。
可选的,本申请实施例还可以设计第二时刻之后的时序。具体如下所述。
(3)网络设备从第三时刻开始,在第一波束上,向终端发送PDCCH。终端从第三时刻开始,根据TRS的接收参数,接收来自网络设备的PDCCH。
第三时刻与第二时刻的差值为第二设定时长。
第二设定时长与TRS的周期相关。例如,第二设定时长是TRS的周期的M倍,M为正整数,例M的取值为24,终端需要在第二时刻后的第二设定时长内测量TRS以获得TRS的接收参数。终端需要多次测量(例如3次)才能获得准确的接收参数。考虑到终端可能具有多个接收波束(例如8个),每个接收波束都需要3次测量,因此共需要24次测量才能获得最优接收波束上的准确的接收参数。
终端从第二时刻开始,在第三时刻之前,根据第二参考信号的接收参数接收来自网络设备的TRS。在接收TRS的过程中,终端确定TRS的接收参数。TRS的接收参数比第二参考信号的接收参数更精细。例如,第二参考信号为SSB,TRS的接收波束比SSB的接收波束窄。通过测量TRS确定的时偏和频偏的结果要比通过测量SSB确定的时偏和频偏的结果更加准确。通过测量TRS确定的接收波束要比测量SSB确定的接收波束更窄。终端在确定TRS的接收参数时,可能还没有到达第三时刻。终端可以在确定TRS的接收参数时,便开始根据TRS的接收参数接收来自网络设备的PDCCH。
本申请实施例中,上述时刻的表现形式可以是时隙、符号等。具体应用到第一时刻、第二时刻或第三时刻。第一设定时长或第二设定时长可以是时域上的一段时隙或一段符号。
通过上述方法,终端可以主动调整TRS的接收参数,节省网络设备通知TRS接收参数所带来的信令开销,进一步节省系统的能耗。通过网络设备与终端对发送时刻和设定时长的设计,可以使得网络设备与终端能够对齐终端选择波束的使用时间或生效时间,即能够使得在切换波束后在新的波束上实现收发信号的对齐,从而更好的实现时频偏估计以及更好的按照时频偏估计结果对后续信号进行处理。
在一种可能的实现方式中,在S201之前,网络设备还可能对终端进行与TRS接收相关的参数配置。
具体地,网络设备向终端发送消息,该消息可以是RRC消息。终端接收来自网络设备的该消息。该消息中包括第一信息。第一信息可以用于指示使用本申请实施例提供的TRS的接收方法来接收TRS,即终端可以根据第一信息执行主动调整TRS的方案。可选的,网络设备还可以通过RRC信令向终端通知TRS的接收参数,这种方法比较消耗信令。本申请实施例中终端和网络设备可以保留这两种TRS接收发送的方法。网络设备可以通过第一信息指示终端使用哪一种方法来接收TRS。例如,第一信息为1个比特,当第一信息为1时,表示使用本申请实施例提供的TRS的接收方法来接收TRS,当第一信息为0时,表示通过RRC信令获得TRS的接收参数。
或者第一信息用于指示是否开启使用本申请实施例提供的TRS的接收方法来接收TRS。第一信息为1个比特,当第一信息为1时,表示开启使用本申请实施例提供的TRS的接收方法来接收TRS;当第一信息为0时,表示不使用本申请实施例提供的TRS的接收方法来接收TRS。在不使用本申请实施例提供的TRS的接收方法来接收TRS时,可以使用传统观点RRC信令通知的方法来获得TRS接收参数。
该消息还可以携带第二信息,第二信息用于指示每个载波的PDCCH TCI状态资源池只有一个TCI状态。这个TCI状态与TRS具有类型A和类型D的QCL关系。
该消息还可以携带第三信息,第三信息用于指示每个载波只有一个TRS,并且对于该TRS不配置QCL。
该消息还可以携带第四信息,第四信息用于指示可以按照PDCCH的接收参数来接收物理下行共享信道(physical downlink shared channel,PDSCH)。
第一信息、第二信息、第三信息或第四信息所指示的内容可以通过相同的信元来指示,或者通过小于4个的信元来指示。
需要说明的是,本申请中的各个应用场景中的举例仅仅表现了一些可能的实现方式,是为了对本申请的方法更好的理解和说明。本领域技术人员可以根据申请提供的参考信号的指示方法,得到一些演变形式的举例。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图4所示,基于同一技术构思,本申请实施例还提供了一种通信装置400,该通信 装置400可以是终端或网络设备,也可以是终端或网络设备中的装置,或者是能够和终端或网络设备匹配使用的装置。一种设计中,该通信装置400可以包括执行上述方法实施例中终端或网络设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块401和通信模块402。通信模块又可以称为收发模块。处理模块401用于调用通信模块402执行接收和/或发送的功能,当通信模块402被处理模块401调用时,执行终端或网络设备接收和/或发送的功能。进一步地,通信模块402还可以包括接收模块402-1和发送模块402-2,接收模块402-1用于执行方法实施例中网络设备或终端设备接收的步骤,发送模块402-2用于执行方法实施例中网络设备或终端设备发送的步骤。
当用于执行终端执行的方法时:
通信模块402,用于向网络设备发送第一消息,其中,该第一消息包括第一参考信号的信息;
处理模块401,用于确定与第一参考信号关联的第二参考信号;
通信模块402,用于根据第二参考信号的接收参数,接收来自网络设备的TRS。
处理模块401和通信模块402还可以用于执行上述方法实施例终端执行的其它对应的步骤或操作,在此不再一一赘述。
当用于执行网络设备执行的方法时:
处理模块401用于调用通信模块402执行接收和/或发送的功能。
例如,处理模块401调用接收模块402-1,用于接收来自终端的第一消息,第一消息包括第一参考信号的信息,第一参考信号的信息用于指示终端选择的第一波束;处理模块401调用发送模块402-2,用于在第一波束上向终端发送TRS。
处理模块401和通信模块402还可以用于执行上述方法实施例网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图5所示为本申请实施例提供的装置500,用于实现上述方法中终端或网络设备的功能。当实现网络设备的功能时,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。当实现终端的功能时,该装置可以是终端,也可以是终端中的装置,或者是能够和终端匹配使用的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置500包括至少一个处理器520,用于实现本申请实施例提供的方法中终端或网络设备的功能。装置500还可以包括通信接口510。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。进一步地,收发器还可以包括发射器和接收器。其中,发射器用于执行方法实施例中网络设备或终端设备发送的步骤;接收器用于执行方法实施例中网络设备或终端设备接收的步骤。
例如,通信接口510用于装置500中的装置可以和其它设备进行通信。示例性地,装置500是网络设备时,该其它设备可以是终端。装置500是终端时,该其它装置可以是网络设备。处理器520利用通信接口510收发数据,并用于实现上述方法实施例所述的方法。
示例性地,当实现网络设备的功能时,处理器520用于利用通信接口用于接收来自终端的第一消息以及在所述第一波束上向所述终端发送TRS。当实现终端的功能时,处理器520用于利用通信接口510向网络设备发送第一消息,处理器520用于确定与所述第一参考信号关联的第二参考信号,处理器520还用于根据所述第二参考信号的接收参数通过通信接口510接收来自网络设备的跟踪参考信号TRS。
处理器520和通信接口510还可以用于执行上述方法实施例终端或网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
装置500还可以包括至少一个存储器530,用于存储程序指令和/或数据。存储器530和处理器520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器520可能和存储器530协同操作。处理器520可能执行存储器530中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口510、处理器520以及存储器530之间的具体连接介质。本申请实施例在图5中以存储器530、通信接口520以及通信接口510之间通过总线540连接,总线在图5中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。处理器520和存储器530可以合成一个处理装置,处理器520用于执行存储器530中存储的程序代码来实现上述功能。具体实现时,该存储器530也可以集成在处理器520中,或者独立于处理器520。该处理器520可以用于与处理模块401对应,通信接口510与通信模块402对应。
通信装置400和通信装置500具体是芯片或者芯片系统时,通信模块402和通信接口510所输出或接收的可以是基带信号。通信装置400和通信装置500具体是设备时,通信模块402和通信接口510所输出或接收的可以是射频信号。在本申请实施例中,处理器520是一种集成电路芯片,具有信号的处理能力。处理器520可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。在实现过程中,上述方法的各步骤可以通过处理器520中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本申请实施例中,存储器530可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器530还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请上述方法实施例描述的终端所执行的操作和功能中的部分或全部,或网络设备所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
为了实现上述图4或图5所述的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中终端或网络设备所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (36)
- 一种跟踪参考信号的接收方法,其特征在于,包括:向网络设备发送第一消息,所述第一消息包括第一参考信号的信息;确定与所述第一参考信号关联的第二参考信号;根据所述第二参考信号的接收参数,接收来自网络设备的跟踪参考信号TRS。
- 如权利要求1所述的方法,其特征在于,向网络设备发送第一消息,包括:在第一时刻向网络设备发送第一消息;根据所述第二参考信号的接收参数,接收来自网络设备的TRS,包括:从第二时刻开始,根据所述第二参考信号的接收参数,接收来自网络设备的TRS;其中,所述第二时刻与所述第一时刻的差值为第一设定时长。
- 如权利要求2所述的方法,其特征在于,所述第一设定时长与所述第二参考信号的周期相关。
- 如权利要求1~3任一项所述的方法,其特征在于,所述第一参考信号和所述第二参考信号关联相同的载波;或者,所述第一参考信号和所述第二参考信号关联不同的载波。
- 如权利要求4所述的方法,其特征在于,所述第一参考信号关联第一载波、且所述第一参考信号关联所述第一载波的第三参考信号,所述第三参考信号关联第二载波的所述第二参考信号。
- 如权利要求1~5任一项所述的方法,其特征在于,所述方法还包括:根据所述TRS的接收参数,接收来自网络设备的下行控制信道PDCCH,其中,所述PDCCH与所述TRS满足准同位QCL关系。
- 如权利要求6所述的方法,其特征在于,根据所述TRS的接收参数,接收来自网络设备的PDCCH,包括:从第三时刻开始,根据所述TRS的接收参数,接收来自网络设备的PDCCH;其中,所述第三时刻与所述第二时刻的差值为第二设定时长。
- 如权利要求7所述的方法,其特征在于,所述第二设定时长与所述TRS的周期相关。
- 如权利要求1~8任一项所述的方法,其特征在于,所述方法还包括:接收来自所述网络设备的第二消息,所述第二消息包括所述第一参考信号与所述第二参考信号的关联关系。
- 如权利要求1~9任一项所述的方法,其特征在于,所述方法还包括:测量所述TRS的信号质量,并将所述TRS的信号质量与所述第一参考信号进行比较;在比较结果不满足设定条件时,向所述网络设备发送请求消息,所述请求消息用于请求波束测量。
- 一种跟踪参考信号的发送方法,其特征在于,包括:接收来自终端的第一消息,所述第一消息包括第一参考信号的信息,所述第一参考信号的信息用于指示所述终端选择的第一波束;在所述第一波束上向所述终端发送跟踪参考信号TRS。
- 如权利要求11所述的方法,其特征在于,接收来自终端的第一消息,包括:在第一时刻接收来自终端的所述第一消息;在所述第一波束上向所述终端发送跟踪参考信号TRS,包括:从第二时刻开始,在所述第一波束上,向所述终端发送所述TRS;其中,所述第二时刻与所述第一时刻的差值为第一设定时长。
- 如权利要求12所述的方法,其特征在于,所述方法还包括:从第三时刻开始,在所述第一波束上,向所述终端发送下行控制信道PDCCH;其中,所述第三时刻与所述第二时刻的差值为第二设定时长。
- 如权利要求12所述的方法,其特征在于,所述第一设定时长与所述第一参考信号的周期相关。
- 如权利要求13所述的方法,其特征在于,所述第二设定时长与所述TRS的周期相关。
- 一种通信装置,其特征在于,包括:通信模块,用于向网络设备发送第一消息,所述第一消息包括第一参考信号的信息;处理模块,用于确定与所述第一参考信号关联的第二参考信号;所述通信模块,用于根据所述第二参考信号的接收参数,接收来自网络设备的跟踪参考信号TRS。
- 如权利要求16所述的装置,其特征在于,在向网络设备发送第一消息时,所述通信模块用于:在第一时刻向网络设备发送第一消息;在根据所述第二参考信号的接收参数,接收来自网络设备的TRS时,所述通信模块用于:从第二时刻开始,根据所述第二参考信号的接收参数,接收来自网络设备的TRS;其中,所述第二时刻与所述第一时刻的差值为第一设定时长。
- 如权利要求17所述的装置,其特征在于,所述第一设定时长与所述第二参考信号的周期相关。
- 如权利要求16~18任一项所述的装置,其特征在于,所述第一参考信号和所述第二参考信号关联相同的载波;或者,所述第一参考信号和所述第二参考信号关联不同的载波。
- 如权利要求19所述的装置,其特征在于,所述第一参考信号关联第一载波、且所述第一参考信号关联所述第一载波的第三参考信号,所述第三参考信号关联第二载波的所述第二参考信号。
- 如权利要求16~20任一项所述的装置,其特征在于,所述处理模块还用于:根据所述TRS的接收参数,调用所述通信模块接收来自网络设备的下行控制信道PDCCH,其中,所述PDCCH与所述TRS满足准同位QCL关系。
- 如权利要求21所述的装置,其特征在于,在根据所述TRS的接收参数,接收来自网络设备的PDCCH时,所述处理模块用于:从第三时刻开始,根据所述TRS的接收参数,调用所述通信模块接收来自网络设备的PDCCH;其中,所述第三时刻与所述第二时刻的差值为第二设定时长。
- 如权利要求22所述的装置,其特征在于,所述第二设定时长与所述TRS的周期相关。
- 如权利要求16~23任一项所述的装置,其特征在于,所述通信模块还用于:接收来自所述网络设备的第二消息,所述第二消息包括所述第一参考信号与所述第二参考信号的关联关系。
- 如权利要求16~24任一项所述的装置,其特征在于,所述处理模块还用于:测量所述TRS的信号质量,并将所述TRS的信号质量与所述第一参考信号进行比较;在比较结果不满足设定条件时,通过所述通信模块向所述网络设备发送请求消息,所述请求消息用于请求波束测量。
- 一种通信装置,其特征在于,包括:接收模块,用于接收来自终端的第一消息,所述第一消息包括第一参考信号的信息,所述第一参考信号的信息用于指示所述终端选择的第一波束;发送模块,用于在所述第一波束上向所述终端发送跟踪参考信号TRS。
- 如权利要求26所述的装置,其特征在于,在接收来自终端的第一消息时,所述接收模块用于:在第一时刻接收来自终端的所述第一消息;在所述第一波束上向所述终端发送跟踪参考信号TRS时,所述发送模块用于:从第二时刻开始,在所述第一波束上,向所述终端发送所述TRS;其中,所述第二时刻与所述第一时刻的差值为第一设定时长。
- 如权利要求27所述的装置,其特征在于,所述装置还包括,处理模块:用于从第三时刻开始,在所述第一波束上,通过所述发送模块向所述终端发送下行控制信道PDCCH;其中,所述第三时刻与所述第二时刻的差值为第二设定时长。
- 如权利要求27所述的装置,其特征在于,所述第一设定时长与所述第一参考信号的周期相关。
- 如权利要求28所述的装置,其特征在于,所述第二设定时长与所述TRS的周期相关。
- 一种通信装置,其特征在于,包括处理器,用于执行存储器中的计算机程序;当所述处理器执行存储器中的计算机程序时,如权利要求1~10中任一所述的方法被执行;或者,当所述处理器执行存储器中的计算机程序时,如权利要求11~15中任一所述的方法被执行。
- 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1~10中任一所述的方法,或者以使所述通信装置执行如权利要求11~15中任一所述的方法。
- 一种通信装置,其特征在于,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如权利要求1~10中任一所述的方法;或者所述处理器,用于从所述存储器调用所述程序代码执行如权利要求11~15中任一所述的方法。
- 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收计算机程序或指令并传输至所述处理器;所述处理器用于运行所述计算机程序或指令,执行如权利要求1~10中任一所述的方法,或者执行如权利要求11~15中任一所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算 机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求1~15中任一所述的方法被实现。
- 一种计算机程序产品,其特征在于,包括计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求1~15中任一所述的方法被实现。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/122192 WO2021103006A1 (zh) | 2019-11-29 | 2019-11-29 | 一种跟踪参考信号的接收方法、发送方法及通信装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/122192 WO2021103006A1 (zh) | 2019-11-29 | 2019-11-29 | 一种跟踪参考信号的接收方法、发送方法及通信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021103006A1 true WO2021103006A1 (zh) | 2021-06-03 |
Family
ID=76130057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/122192 WO2021103006A1 (zh) | 2019-11-29 | 2019-11-29 | 一种跟踪参考信号的接收方法、发送方法及通信装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021103006A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018195777A1 (zh) * | 2017-04-25 | 2018-11-01 | Oppo广东移动通信有限公司 | 处理信号的方法和设备 |
WO2019047945A1 (en) * | 2017-09-11 | 2019-03-14 | Intel IP Corporation | METHOD AND APPARATUS FOR REFERENCE SIGNAL CONFIGURATION |
CN110447286A (zh) * | 2017-03-24 | 2019-11-12 | 英特尔Ip公司 | 用于新无线电的跟踪参考信号 |
-
2019
- 2019-11-29 WO PCT/CN2019/122192 patent/WO2021103006A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110447286A (zh) * | 2017-03-24 | 2019-11-12 | 英特尔Ip公司 | 用于新无线电的跟踪参考信号 |
WO2018195777A1 (zh) * | 2017-04-25 | 2018-11-01 | Oppo广东移动通信有限公司 | 处理信号的方法和设备 |
WO2019047945A1 (en) * | 2017-09-11 | 2019-03-14 | Intel IP Corporation | METHOD AND APPARATUS FOR REFERENCE SIGNAL CONFIGURATION |
Non-Patent Citations (1)
Title |
---|
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.214, vol. RAN WG1, no. V15.7.0, 28 September 2019 (2019-09-28), pages 1 - 106, XP051785090 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11569949B2 (en) | Communication method and communications apparatus | |
JP7179156B2 (ja) | 信号伝送方法及び通信機器 | |
WO2021159493A1 (zh) | 一种资源配置的方法和装置 | |
WO2020001517A1 (zh) | 一种通信方法及装置 | |
CN111586858B (zh) | 信号传输方法和通信装置 | |
CN114451043A (zh) | 数据传输的方法和装置 | |
WO2021022952A1 (zh) | 信号传输的方法与装置 | |
WO2020221318A1 (zh) | 一种上行波束管理方法及装置 | |
CN111510267A (zh) | 波束指示的方法和通信装置 | |
WO2023011188A1 (zh) | 一种通信方法及装置 | |
EP4087345A1 (en) | Beam pair training method and communication apparatus | |
WO2021196965A1 (zh) | 一种测量间隙的配置方法及装置 | |
WO2023011195A1 (zh) | 一种通信方法及通信装置 | |
US20230247618A1 (en) | Communication method and apparatus | |
WO2020238991A1 (zh) | 一种状态信息发送、接收方法及装置 | |
WO2019191949A1 (zh) | 通信方法、通信装置和系统 | |
WO2023051188A1 (zh) | 分组管理方法和通信装置 | |
EP4383855A1 (en) | Communication method and apparatus | |
WO2021081770A1 (zh) | 一种测量方法及装置 | |
EP4171140A1 (en) | Beam indication method and communication apparatus | |
WO2021103006A1 (zh) | 一种跟踪参考信号的接收方法、发送方法及通信装置 | |
WO2021088038A1 (zh) | 一种参考信号测量方法、资源指示方法及装置 | |
WO2023088114A1 (zh) | 波束恢复方法、波束失败检测方法以及相关装置 | |
US20240284196A1 (en) | Beam usage method and related apparatus | |
WO2023208166A1 (zh) | 一种定时指示的方法及通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19953970 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19953970 Country of ref document: EP Kind code of ref document: A1 |