WO2018196851A1 - 波束失败恢复方法和终端 - Google Patents

波束失败恢复方法和终端 Download PDF

Info

Publication number
WO2018196851A1
WO2018196851A1 PCT/CN2018/084816 CN2018084816W WO2018196851A1 WO 2018196851 A1 WO2018196851 A1 WO 2018196851A1 CN 2018084816 W CN2018084816 W CN 2018084816W WO 2018196851 A1 WO2018196851 A1 WO 2018196851A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
beam failure
rlf
threshold
failure recovery
Prior art date
Application number
PCT/CN2018/084816
Other languages
English (en)
French (fr)
Inventor
杨宇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to ES18789860T priority Critical patent/ES2960358T3/es
Priority to US16/609,091 priority patent/US11202241B2/en
Priority to EP18789860.6A priority patent/EP3618487B1/en
Publication of WO2018196851A1 publication Critical patent/WO2018196851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a beam failure recovery method and a terminal.
  • the high frequency band has a relatively rich idle frequency resource, which can provide greater throughput for data transmission.
  • 3GPP has completed high frequency channel modeling work.
  • the high-frequency signal has a short wavelength. Compared with the low-frequency band, it can arrange more antenna array elements on the same size panel, and use beamforming technology to form a beam with stronger directivity and narrower lobe.
  • the beam failure recovery process is introduced, that is, the terminal monitors the beam failure detection reference signal sent by the base station at the physical layer, and evaluates whether the reference signal quality is satisfied. Beam failure trigger condition. Once the condition is met, the terminal may send a beam failure recovery request to the base station, and based on the beam failure recovery request, the base station determines a new candidate transmit beam for use in control information or data transmission.
  • the beam failure recovery process can enable the communication system to quickly switch to the beam pair link (BPL) to continue transmitting control messages and data, thereby implementing beam failure recovery, and the standby BPL includes the above-mentioned one candidate beam and the new candidate beam.
  • a receive beam
  • the beam failure recovery process of the related art cannot accurately obtain the result of the beam failure recovery, thereby causing the data transmission delay to be too large.
  • the embodiment of the present disclosure provides a beam failure recovery method and a terminal to solve the problem that the beam failure recovery cannot be accurately obtained when the beam failure recovery is performed in the related art, thereby causing a problem that the data transmission delay is too large.
  • an embodiment of the present disclosure provides a beam failure recovery method, which is applied to a terminal, and includes:
  • the beam failure recovery request is sent to the network side device;
  • the beam failure recovery request is continued to be sent to the network side device
  • the related information in the beam failure recovery process includes at least one of the beam failure recovery request and the beam failure recovery duration.
  • an embodiment of the present disclosure provides a terminal, including: a sending module, a receiving module, and a first determining module;
  • a sending module configured to send a beam failure recovery request to the network side device when the quality of the beam-to-link BPL used for the current information transmission meets the preset beam failure triggering condition, if the receiving module is not within the preset duration Receiving the response signaling sent by the network side device, and continuing to send the beam failure recovery request to the network side device;
  • the first determining module is configured to determine that the beam failure recovery process fails when the related information in the beam failure recovery process meets the first preset condition
  • the related information in the beam failure recovery process includes at least one of the beam failure recovery request and the beam failure recovery duration.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to execute the method provided by the first aspect of the embodiments of the present disclosure.
  • an embodiment of the present disclosure provides a terminal, including at least one processing element (or chip) for performing the method of the above first aspect.
  • an embodiment of the present disclosure provides a program for performing the method of the above first aspect when executed by a processor.
  • an embodiment of the present disclosure provides a program product, such as a computer readable storage medium, including the program of the fifth aspect.
  • an embodiment of the present disclosure provides a computer readable storage medium comprising instructions, when executed on a computer, causing a computer to perform the method of beam failure recovery as described in the first aspect.
  • the terminal when the terminal determines that the quality of the BPL used for the current information transmission meets the preset beam failure triggering condition, the terminal sends a beam failure recovery request to the network side device, if the terminal does not receive the preset time period.
  • the terminal continues to send the beam failure recovery request to the network side device, and determines the beam when at least one of the beam failure recovery request and the beam failure recovery duration meets the first preset condition.
  • the failure recovery process fails, so that the terminal can switch to the new cell in time or perform radio link reconstruction or recovery in time to avoid the terminal waiting for the response of the network side device for a long time, reducing the data transmission delay and the power consumption of the terminal, and reducing the power consumption.
  • the overhead of the terminal when the terminal determines that the quality of the BPL used for the current information transmission meets the preset beam failure triggering condition, the terminal sends a beam failure recovery request to the network side device, if the terminal does not receive the preset time period.
  • the network side device sends the response signaling
  • the terminal
  • FIG. 1 is a schematic structural diagram of a beam failure recovery system provided by the present disclosure
  • Embodiment 1 of a beam failure recovery method provided by the present disclosure
  • FIG. 3 is a schematic flowchart diagram of Embodiment 3 of a beam failure recovery method according to the present disclosure
  • FIG. 4 is a schematic flowchart diagram of Embodiment 4 of a beam failure recovery method according to the present disclosure
  • FIG. 5 is a schematic flowchart of Embodiment 5 of a beam failure recovery method according to the present disclosure
  • FIG. 6 is a schematic flowchart diagram of Embodiment 6 of a beam failure recovery method according to the present disclosure
  • FIG. 7 is a schematic flowchart diagram of Embodiment 7 of a beam failure recovery method according to the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of Embodiment 8 of a beam failure recovery method according to the present disclosure.
  • FIG. 9 is a schematic flowchart of Embodiment 9 of a beam failure recovery method according to the present disclosure.
  • Embodiment 10 of a beam failure recovery method provided by the present disclosure
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a terminal provided by the present disclosure.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a terminal provided by the present disclosure.
  • FIG. 13 is a schematic structural diagram of Embodiment 4 of a terminal provided by the present disclosure.
  • FIG. 14 is a schematic structural diagram of Embodiment 5 of a terminal provided by the present disclosure.
  • Embodiment 15 is a schematic structural diagram of Embodiment 6 of a terminal provided by the present disclosure.
  • FIG. 17 is a schematic structural diagram of Embodiment 8 of a terminal provided by the present disclosure.
  • the beam failure recovery method and terminal provided by the embodiments of the present disclosure may be applied to the architecture of the beam failure recovery system shown in FIG. 1 .
  • the system includes: a network side device 01 and a terminal 02.
  • the network side device 01 may be a base station (Base Transceiver Station, BTS for short) in the Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA), or may be A base station (NodeB, NB for short) in Wideband Code Division Multiple Access (WCDMA), or an Evolutionary Node B (eNB or eNodeB) in LTE, or a relay station or access
  • BTS Base Transceiver Station
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • NodeB, NB for short in Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB Evolutionary Node B
  • LTE Long Term Evolutionary Node B
  • the terminal 02 can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the radio link re-establishment process (or the radio link recovery process) in the related art is used, it takes a long time, so the beam failure recovery process is introduced, that is, the terminal is listening to the beam failure detection reference signal sent by the base station.
  • the terminal sends a beam failure recovery request to the base station.
  • the base station determines a new candidate transmit beam, and continues to perform control information or data transmission, so that the complete beam fails to recover.
  • the terminal after the terminal sends a beam failure recovery request to the base station, the terminal is always in a state of waiting for the base station to respond, and it is unable to know whether the base station currently successfully receives the beam failure recovery request, and cannot It is known whether the base station sends a response message, that is, the terminal cannot accurately know the result of the current beam failure recovery, so that the terminal is always in a waiting state, causing the data transmission delay to be too large, and the terminal power consumption is also large.
  • the beam failure recovery method and terminal provided by the present disclosure aim to solve the above technical problems of the related art. That is, the present disclosure determines the recovery situation of the beam failure in combination with at least one of the transmitted beam failure recovery request and the beam failure recovery duration, so that measures can be taken in time, for example, performing radio link recovery, and avoiding the terminal waiting for the network side for a long time.
  • the response of the device reduces the transmission delay of the data and the power consumption of the terminal, reducing the overhead of the terminal.
  • Beam training Currently in academia and industry, the training of analog beams is usually carried out using polling. That is, when there is downlink data transmission after the terminal accesses the cell, the beam training is performed before the downlink data transmission, that is, the array elements in each polarization direction of each antenna panel of the base station are sequentially sequenced to the terminal in the time-division multiplexing manner.
  • Sending a training signal (that is, transmitting a plurality of transmit beams), each of which carries a reference signal, which may be a Cell Reference Signal (CRS) or a Demodulation Reference Signal (Demodulation Reference Signal,
  • the DMRS is hereinafter referred to as a Synchronous Signal (SS), and may also be a Channel State Information Reference Signal (CSI-RS).
  • SS Synchronous Signal
  • CSI-RS Channel State Information Reference Signal
  • the terminal may receive, according to its own receive beam, a reference signal sent by each transmit beam of the base station, and measure received power of the reference signal on the multiple transmit beams.
  • the terminal may notify the network side device by using a beam report by selecting a transmit beam corresponding to the reference signal with the strongest or strongest received power.
  • the terminal may only notify the network side device of the identifier of the transmit beam.
  • the terminal may also notify the receive beam corresponding to each transmit beam of the network side device.
  • the network side device may select one transmit beam from the beam report as the transmit beam used for the current transmission, and the transmit beam and the receive beam corresponding to the transmit beam on the terminal constitute a BPL used for current information transmission.
  • Beam Pair Link Contains one transmit beam and one receive beam.
  • the BPL is used to carry a control channel, such as a Physical Downlink Control Channel (PDCCH), and may also carry a data channel, such as a Physical Downlink Shared Channel (PDSCH), on the BPL.
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the beam pair link BPL is only an example term, and may also be referred to as a beam link or other vocabulary by those skilled in the art.
  • the BPL used for current information transmission refers to the transmit beam and the receive beam used in the process of transmitting control information or data.
  • the currently used BPL is a downlink BPL
  • the downlink BPL includes a transmit beam used when the network side device transmits control information or data, and a receive beam used when the terminal receives data and control information.
  • the BPL used for the current information transmission is an uplink BPL
  • the uplink BPL includes a transmission beam used when the terminal transmits data and control information, and includes a reception used when the network side device receives data and control information. Beam.
  • the BPL used in the current information transmission in the present disclosure is the downlink BPL.
  • the backup BPL may be one of the candidate BPLs of the candidate BPLs carried in the beam failure recovery request sent by the terminal to the network side device when the quality of the BPL used for the current information transmission is poor, and the candidate is determined by the network side device. Which BPL in the BPL is used as the backup BPL) may also be a better quality BPL obtained by the network side device by other means.
  • the identifier of the standby BPL may be carried in the response signaling sent by the network side device to the terminal.
  • FIG. 2 is a schematic flowchart diagram of Embodiment 1 of a beam failure recovery method according to the present disclosure. This embodiment relates to a specific process of determining a beam failure recovery situation after the BPL quality of the current information transmission meets a preset beam failure triggering condition and the related information in the beam failure recovery process.
  • the execution body of the method is a terminal. As shown in FIG. 2, the method includes the following steps:
  • the terminal monitors the quality of the BPL used for the current information transmission in real time, and the BPL is the downlink BPL.
  • the terminal may determine the quality of the BPL used for the current information transmission by detecting a signal to noise ratio of the reference signal on the BPL used for the current information transmission or a received power of the reference signal.
  • the terminal may further determine the quality of the BPL used for the current information transmission by detecting a control channel signal to noise ratio carried on the BPL used for the current information transmission or a received power of the control channel.
  • the terminal may periodically measure the reference signals on the candidate BPLs to obtain the quality of the candidate BPLs for subsequent use. Switch BPL usage when beam recovery.
  • the terminal After the terminal obtains the quality of the BPL used for the current information transmission, it determines whether the quality of the BPL used for the current information transmission meets the preset beam failure trigger condition. If it is satisfied, the terminal initiates the beam failure recovery process, that is, the beam failure recovery process starts from this moment. At the same time, the terminal sends a beam failure recovery request to the network side device. Alternatively, the terminal may send a beam failure recovery request to the network side device after a period of time after the beam failure recovery process is started.
  • the beam failure recovery request may include: a candidate BPL recommended by the terminal, where the candidate BPL may be a BPL other than the BPL used in the current information transmission, or may be a terminal in the beam training beam report. BPL in non-beam reports obtained by other means.
  • the beam failure recovery request may also carry related parameters of restart beam training/beam tracking, types that cause beam failure, such as terminal movement, rotation, beam blocking, and the like.
  • the terminal sends the foregoing beam failure recovery request, which may be sent on a resource configured by the RRC layer signaling, or may be sent on a reserved dedicated resource, where the uplink narrow beam or the width obtained by beam training may be used.
  • Beam transmission can also be performed by uplink beam sweeping (UL beam sweeping) or low-band wireless signal transmission.
  • the preset beam failure triggering condition may include a preset threshold threshold.
  • the terminal When the quality of the BPL used by the terminal for measuring the current information transmission is less than the threshold threshold, the terminal considers that the quality of the BPL used for the current information transmission is poor.
  • the beam failure recovery request may be sent to the network side device to switch to the new standby BPL for data transmission.
  • the terminal When the quality of the BPL used for the current information transmission measured by the terminal is greater than or equal to the threshold, the terminal considers that the quality of the BPL used for the current information transmission is good.
  • the preset beam failure triggering condition may include a preset threshold threshold and specifies a preset number of times that the quality of the BPL used for the current information transmission is continuously less than the threshold threshold, and the current information transmission when the terminal measures multiple times. If the quality of the BPL is less than the threshold, and the number of times the BPL of the current information transmission is less than the threshold is greater than the preset number of times, the terminal considers that the quality of the BPL used for the current information transmission is poor, and may be sent by the network side device. The beam fails to recover the request to switch to the new standby BPL for data transmission. When the quality of the BPL used for the current information transmission measured by the terminal is greater than or equal to the threshold threshold, the terminal considers that the quality of the BPL used for the current information transmission is good.
  • the preset beam failure triggering condition may include a first beam recovery threshold and a second beam recovery threshold that is smaller than the first beam recovery threshold. When the two are equal, the beam failure triggering condition is actually included.
  • the case of the threshold threshold and specifies that the quality of the BPL used for the current information transmission is continuously less than the preset number of times of the second beam recovery threshold.
  • the terminal When the quality of the BPL used for the current information transmission measured by the terminal is smaller than the second beam recovery threshold, and the number of times the BPL quality of the current information transmission used for the multiple measurement is smaller than the second beam recovery threshold is greater than the preset number of times, the terminal considers that the current The quality of the BPL used for information transmission is poor, and a beam failure recovery request can be sent to the network side device to switch to the new standby BPL for data transmission.
  • the foregoing beam failure triggering conditions may have different implementation manners, which improves the diversity of the manner in which the terminal determines whether the quality of the BPL used for the current information transmission meets the beam failure triggering condition.
  • the start time of the beam failure recovery process of the terminal is the time when the terminal determines that the quality of the BPL used for the current information transmission meets the preset beam failure trigger condition, that is, the start time of the beam failure recovery time of the terminal. The moment at which the terminal determines that the quality of the BPL used for the current information transmission meets the preset beam failure trigger condition.
  • the terminal After the terminal sends a beam failure recovery request to the network side device, the terminal waits to receive the response signaling sent by the network side device.
  • the network side device does not receive the beam failure recovery request sent by the terminal. Therefore, the network side does not trigger the response signaling for the beam failure recovery request.
  • the other is that the network side device receives the terminal.
  • the transmitted beam failure recovery request, the network side device also triggers the response signaling for the beam failure recovery request, but the terminal does not successfully receive the response signaling; the other is that the network side device receives the beam failure of the terminal.
  • the recovery request which sends the response signaling, the terminal also successfully received the response signaling for the beam failure recovery request.
  • the response signaling sent by the network side device to the terminal after receiving the beam failure recovery request may include an acknowledgement message for the beam failure recovery request, or include signaling content switched to the standby BPL, or may also be This includes re-routing the signalling content of the beam training/tracking related parameters to find available spare BPL recovery data transmissions.
  • the network side device may use another BPL obtained by beam training different from the BPL used for the current information transmission, or may use a wide beam including the BPL used for the current information transmission, or may also use the downlink more Beam DL beam sweeping, or use low frequency band wireless signal transmission.
  • the network side device does not receive the beam failure recovery request sent by the terminal, the network side device still sends the control channel and the data channel on the BPL used for the current information transmission.
  • the terminal when receiving the response signaling sent by the network side device, may receive the BPL used for the current information transmission, and may also receive the candidate BPL obtained by the beam training and different from the BPL used for the current information transmission, and may also receive It is received on a wide beam including the current BPL, and may be received by multiple beams in turn, or may be received in a low frequency band.
  • This embodiment of the present disclosure does not limit this.
  • the terminal may resume data transmission with the network side device on the standby BPL according to the indication of the signaling content; when the response signaling includes re-beam training Related parameters, the terminal and the network side device may perform beam search according to the relevant parameters, and find a standby BPL to recover data transmission.
  • the terminal does not receive the response signaling sent by the network side device within the preset duration, the terminal continues to send the beam failure recovery request to the network side device, and so on.
  • the terminal if the terminal does not receive the response signaling sent by the network side device within the preset duration, the terminal continues to send the beam failure recovery request to the network side device, which can prevent the terminal from waiting for the primary beam for a long time.
  • the response signaling of the failure recovery request helps to improve the probability that the terminal receives the response signaling.
  • the information about the beam failure recovery process includes: at least one of the beam failure recovery request and the beam recovery duration, where the start time of the beam recovery duration is the quality of the BPL used in the current information transmission. The moment when the beam failure trigger condition is met.
  • the terminal may send one or more beam failure recovery requests to the network side device according to the foregoing descriptions of S101 and S102, and the beam failure recovery time length is the number of times the beam failure recovery request is sent.
  • the increase has been increasing.
  • the terminal may determine whether the beam failure recovery process is successful by using the related information in the beam failure recovery process, and the related information in the beam failure recovery process includes at least one of the beam failure recovery request and the beam failure recovery duration.
  • the terminal determines that the beam failure recovery process fails. For example, it can be determined whether the cutoff time of the beam failure recovery duration meets the first preset condition to determine whether the current beam failure recovery process is successful.
  • the first preset condition may be a cutoff time threshold.
  • the foregoing first preset condition may include at least one of the following: the number of times the beam failure recovery request is sent reaches a first preset number of times, at least one transmission beam The sending duration of the failure recovery request reaches the first preset duration, and the beam failure recovery duration reaches the second preset duration.
  • the terminal determines that the current beam failure recovery process fails; or when the terminal determines that the total transmission time of the at least one transmission beam failure recovery request reaches the first When the preset time is long, the terminal determines that the current beam failure recovery process fails; or when the terminal determines that the beam failure recovery time reaches the second preset duration, the terminal determines that the current beam failure recovery process fails;
  • the combination of any two methods in the first three manners for example, when the terminal determines that the number of times the beam failure recovery request is sent reaches the first preset number of times, and the terminal determines that the beam failure recovery time reaches the second preset duration, the terminal determines The current beam failure recovery process failed.
  • the terminal in the embodiment does not need to wait for the response signaling of the network side device blindly, but sends a beam failure recovery after the beam failure recovery request is sent. If the response signaling of the network side device is not received, the terminal continues to send the beam failure recovery request, and combines at least one of the transmitted beam failure recovery request and the beam failure recovery duration, and the A preset condition is matched or compared to determine the current beam failure recovery situation.
  • the terminal waits for the response of the network side device for a long time, reduces the data transmission delay and the power consumption of the terminal, and reduces the overhead of the terminal.
  • the beam failure recovery method when the terminal determines that the quality of the BPL used for the current information transmission meets the preset beam failure triggering condition, the terminal sends a beam failure recovery request to the network side device, if the terminal does not receive within the preset time period.
  • the terminal continues to send the beam failure recovery request to the network side device, and determines that at least one of the beam failure recovery request and the beam failure recovery duration meets the first preset condition.
  • the beam failure recovery process fails, so that the terminal can switch to the new cell in time or perform radio link reconstruction or recovery in time to avoid the terminal waiting for the response of the network side device for a long time, reducing the data transmission delay and the power consumption of the terminal, and reducing The overhead of the terminal.
  • the terminal may start the beam failure recovery process.
  • This embodiment describes the startup mode of the beam failure recovery process. For details, see the following options:
  • the terminal starts a Beam Recovery (BR) timer, and the timing duration of the BR timer is equal to The second preset duration. That is, once the quality of the BPL used for the current information transmission measured by the terminal meets the preset beam failure trigger condition, the BR timer starts and starts timing, and when the BR timer expires (ie, the beam failure recovery time reaches the second pre- When the duration is set, the terminal determines that the current beam failure recovery process fails. In this optional mode, by setting the BR timer, the terminal can determine whether the beam failure recovery process fails by whether the BR timer expires, and greatly improve the efficiency of the terminal determining whether the beam failure recovery process fails.
  • BR Beam Recovery
  • the number of times of sending the beam failure recovery request in the first preset condition may be counted by using a request counter set in the terminal, that is, when the terminal sends the beam failure recovery request to the network side device for the first time,
  • the request counter is started, and the threshold of the request counter is the first preset number of times.
  • the request counter is incremented by one.
  • the terminal determines that the current beam failure recovery process has failed.
  • the terminal can determine whether the number of beam failure recovery requests reaches the first preset number by using the request counter, to determine whether the beam failure recovery process fails, and greatly improve the terminal determining beam. The efficiency of failure failure recovery process.
  • the sending duration of the multiple beam failure recovery request in the foregoing first preset condition may be determined by using a request timer set in the terminal, that is, when the terminal sends the beam failure recovery to the network side device for the first time.
  • the request timer is started, and the timing of the request timer is the first preset duration.
  • the terminal determines that the current beam failure recovery process fails.
  • the terminal can determine whether the beam failure recovery process fails by whether the request timer expires, and greatly improve the efficiency of the terminal determining whether the beam failure recovery process fails.
  • the foregoing embodiment 2 mainly describes a specific process of determining a beam failure recovery result by the terminal, and the process of the beam failure recovery is mainly performed on the physical layer of the terminal.
  • the following embodiments mainly describe a process of determining whether the RRC layer of the terminal performs radio link recovery or radio link reestablishment based on the above-mentioned beam failure recovery result. This is because, in the related art, when the RRC layer of the terminal determines that the radio link fails, it initiates an RRC re-establishment process. When there is data transmission, the terminal performs beam training again to find a beam suitable for transmission, thereby restoring data transmission. .
  • the inter-layer lacks interoperability, which may cause such a situation to occur: assuming a certain moment The physical layer of the terminal performs the beam failure recovery process, the RRC layer of the terminal determines the radio link failure, and performs the radio link recovery process; after a period of time, the beam failure recovery process of the physical layer of the terminal has succeeded, that is, the terminal has determined that the terminal can be determined.
  • the data transmission is resumed on the standby BRL, but the RRC layer of the terminal does not know the information, and the RRC layer of the terminal continues to perform RRC reconstruction.
  • the RRC reestablishment will interrupt all links and beams at this time, further causing data transmission.
  • the delay is too long or interrupted.
  • the following embodiments are mainly directed to a process of interworking between a physical layer of a terminal and an RRC layer of a terminal, and performing a beam failure recovery process of the physical layer of the terminal and an RRC reestablishment or a radio link recovery process of the RRC layer. Association.
  • FIG. 3 is a schematic flowchart diagram of Embodiment 3 of a beam failure recovery method according to the present disclosure.
  • This embodiment relates to a specific process of associating a beam failure recovery process of a physical layer of a terminal with a radio link recovery process of an RRC layer.
  • the execution body of the method is a terminal. Based on the above embodiment, the method further includes the following steps:
  • the terminal may determine a radio link failure and recovery process of the RRC layer of the initiating terminal.
  • the physical layer of the terminal may notify the RRC layer of the terminal to initiate a radio link failure and recovery process by transmitting a signaling or indication to the RRC layer of the terminal.
  • the physical layer of the terminal notifies the RRC layer of the terminal to start the radio link failure and recovery process by using corresponding signaling or indication.
  • the radio link failure and recovery process includes starting the RRC layer for re-establishment. Therefore, it can prevent the RRC layer from delaying the RRC layer when the RRC layer fails to detect the radio link failure but the physical layer beam has failed. The re-establishment situation has further reduced the delay of data transmission.
  • the radio link failure and recovery process of the terminal are already in the startup state.
  • the radio link failure and recovery process may be initiated prior to the beam failure recovery process of the physical layer of the terminal, or initiated during the beam failure recovery process.
  • the terminal may stop the terminal according to a signaling or indication transmitted by the physical layer of the terminal to the RRC layer of the terminal.
  • the RRC layer has initiated the radio link failure and recovery process, so that after the physical layer beam failure recovery process succeeds, the RRC layer of the terminal blindly performs radio link reconstruction due to the failure to learn the beam recovery success of the physical layer.
  • the recovered beam is interrupted again, causing the data transmission delay to be too long. This step further reduces the data transmission delay by interworking between the physical layer and the RRC layer of the terminal.
  • the beam failure recovery method when the terminal determines that the beam failure recovery process of the physical layer fails, the terminal initiates an RRC layer radio link failure and recovery process; when the terminal determines that the beam failure recovery process of the physical layer is successful, the terminal stops the RRC layer. Wireless link failure and recovery process.
  • the method can prevent the RRC layer from delaying the RRC re-establishment when the RRC layer fails to detect the radio link failure but the physical layer beam recovery has failed, and can avoid the failure of the physical layer beam failure.
  • the RRC layer of the terminal blindly performs radio link re-establishment due to the failure to learn the beam recovery success of the physical layer, and the recovered beam is interrupted again, causing the data transmission delay to be too long, which is greatly reduced. The delay of data transmission.
  • FIG. 4 is a schematic flowchart diagram of Embodiment 4 of a beam failure recovery method according to the present disclosure.
  • This embodiment relates to a specific process of how the RRC layer of the terminal initiates a radio link failure and recovery process.
  • how the RRC layer of the terminal initiates the radio link failure and the recovery process may be implemented by the following steps, including:
  • S301 The terminal controls, according to the physical layer of the terminal, the first message transmitted by the RRC layer to the radio resource of the terminal, and starts a radio link failure RLF process of the RRC layer.
  • the radio link failure and recovery process of the RRC layer of the terminal actually includes two processes, one is a radio link failure (RLF) process, and the radio link failure process is substantially received at the RRC layer of the terminal.
  • RLF radio link failure
  • the duration after receiving the first message is recorded. If the length of time reaches the third preset duration, another process is initiated, that is, a radio link recovery procedure, which is used for RRC re-establishment.
  • the terminal when the terminal determines that the beam failure recovery process is successful, the terminal starts the RLF process of the RRC layer according to the first message transmitted by the physical layer of the terminal to the RRC layer of the terminal.
  • the first message may be an out-of-synchronization indication that the physical layer of the terminal transmits to the RRC layer of the terminal, or may be a direct RLF process start message. Therefore, the physical layer of the terminal can instruct the RRC layer of the terminal to initiate the RLF process in different manners, which improves the diversity of inter-layer communication.
  • the terminal does not need to perform any operation until the delay time after the RLF process is started reaches the third preset duration, and the terminal starts the radio link recovery process to perform RRC reconstruction.
  • the terminal may also measure the synchronization signal of the neighboring cell, the quality of the omnidirectional beam or the wide beam used by the broadcast signal, and the like after the RLF process is started, and the delay duration does not exceed the third preset duration. The data transfer recovery is ready.
  • the terminal when the terminal determines that the beam failure recovery process fails, the terminal starts the RLF process of the RRC layer according to the first message transmitted by the physical layer of the terminal to the RRC layer of the terminal, and delays after starting the RLF process.
  • the duration reaches the third preset duration, the terminal performs RRC reconstruction.
  • the RRC layer of the terminal After the failure of the physical layer beam failure recovery process of the terminal, the RRC layer of the terminal is notified by the first message to prevent the RRC layer from detecting that the radio link fails, but the beam failure recovery process of the physical layer has been In the case of failure, the RRC layer delays the RRC re-establishment, further reducing the delay of data transmission.
  • FIG. 5 is a schematic flowchart diagram of Embodiment 5 of a beam failure recovery method according to the present disclosure.
  • the embodiment relates to a specific process of starting the RLF process of the RRC layer according to the out-of-synchronization indication of the RRC layer transmission of the physical layer of the terminal to the RRC layer of the terminal when the first message is out-of-sync.
  • the foregoing S301 may specifically include the following steps:
  • the physical layer of the terminal transmits the at least one out-of-synchronization indication to the RRC layer of the terminal.
  • the terminal when the terminal measures that the quality of the BPL used for the current information transmission meets the preset beam failure recovery trigger condition (that is, the terminal determines that the quality of the BPL used for the current information transmission is poor, and cannot continue to meet the data transmission requirement), the terminal starts. Beam failure recovery process. After the beam failure recovery process or after the terminal determines that the beam failure recovery process fails, the physical layer of the terminal sends at least one out-of-synchronization indication to the RRC layer of the terminal. For the out-of-synchronization indication in the beam failure recovery process, and after the terminal determines that the beam failure recovery process fails, the physical layer of the terminal sends an out-of-synchronization indication to the RRC layer of the terminal, which may be referred to as the following possible implementation manners:
  • the physical layer of the terminal sends the at least one out-of-synchronization indication to the RRC layer of the terminal in the process of the beam failure recovery, which may include the following two implementation modes: A and B:
  • the terminal transmits at least one out-of-synchronization indication to the RRC layer of the terminal by using a physical layer of the terminal according to the number of times the beam failure recovery request is sent.
  • the terminal may transmit an out-of-synchronization indication to the RRC layer of the terminal in combination with the number of times the beam failure recovery request is sent.
  • the physical layer of the terminal transmits an out-of-synchronization indication to the RRC layer of the terminal.
  • the terminal may send a preset number of beam failure recovery requests. The physical layer of the terminal transmits an out-of-synchronization indication to the RRC layer of the terminal.
  • the B implementation manner is: after the terminal sends the beam failure recovery request, the terminal transmits at least one out-of-synchronization indication to the RRC layer of the terminal by using the physical layer of the terminal according to the quality of the measured BPL.
  • the terminal enters a beam failure recovery process, that is, the terminal sends a beam failure recovery request to the network side device.
  • the physical layer of the terminal continues to perform the quality of the BPL used for the current information transmission.
  • the terminal sends an out-of-synchronization indication to the RRC layer of the terminal every time the quality of such a BPL is measured.
  • the second threshold may be a second beam recovery threshold of the threshold value in the preset beam failure triggering condition, and may also be a gate in a preset RLF triggering condition involved in the following embodiments.
  • the second RLF threshold of the limit may be a second beam recovery threshold of the threshold value in the preset beam failure triggering condition, and may also be a gate in a preset RLF triggering condition involved in the following embodiments. The second RLF threshold of the limit.
  • the threshold value in the preset beam failure triggering condition includes a first beam recovery threshold and a second beam recovery threshold, where the first beam recovery threshold is greater than a second beam recovery threshold, and the threshold value in the preset RLF trigger condition
  • the first RLF threshold and the second RLF threshold are included, and the first RLF threshold is greater than the second RLF threshold.
  • the physical layer of the terminal After the beam failure recovery, the physical layer of the terminal sends the at least one out-of-synchronization indication to the RRC layer of the terminal. Specifically, after determining that the beam failure recovery process fails, the physical layer of the terminal is preset according to the preset. The out-of-synchronization indication sending mechanism transmits at least one out-of-synchronization indication to the RRC layer of the terminal.
  • the physical layer of the terminal after determining that the beam failure recovery process fails, sends the at least one out-of-synchronization indication to the RRC layer of the terminal according to the preset out-of-synchronization indication sending mechanism.
  • the preset out-of-synchronization indication sending mechanism may be that the terminal re-measures the quality of the BPL used for the current information transmission after the beam failure recovery process fails (eg, measuring a reference signal on the BPL used for current information transmission, or synchronizing The received power or signal-to-noise ratio of the signal or broadcast channel), when the quality of the BPL does not satisfy the second threshold, the physical layer of the terminal transmits an out-of-synchronization indication to the RRC layer of the terminal.
  • the preset out-of-synchronization indication sending mechanism may further be that the quality of the other BPL in the beam report of the beam training is measured after the failure of the beam failure recovery process, and the quality of the BPL does not satisfy the foregoing
  • the physical layer of the terminal transmits an out-of-synchronization indication to the RRC layer of the terminal.
  • the preset out-of-synchronization indication sending mechanism may further be: after the failure of the beam failure recovery process, the terminal measures the quality of the wide beam including the BPL used for the current information transmission, and the quality of the wide beam does not satisfy the foregoing.
  • the physical layer of the terminal transmits an out-of-synchronization indication to the RRC layer of the terminal.
  • the physical layer of the terminal can send at least one out-of-synchronization indication to the RRC layer of the terminal by using different triggering manners, which improves the diversity of the out-of-synchronization indication sent by the physical layer of the terminal to the RRC layer of the terminal, which is helpful.
  • the subsequent terminal starts the RLF process according to the number of transmissions of the out-of-synchronization indication.
  • the terminal starts the RLF process, that is, the terminal starts the RLF timer, and the timing duration of the RLF timer is the third preset duration. That is, when the RLF timer starts, it starts timing.
  • the terminal starts a radio link recovery procedure to perform RRC reestablishment.
  • the terminal can compare the number of transmissions of the out-of-synchronization indication with the second preset number to determine whether the terminal starts the RLF process, and the method for determining whether to start the RLF process is simple, and the instruction is implemented by the out-of-step indication.
  • the physical layer of the terminal triggers the RLF process of the RRC layer of the terminal after the number of times of the out-of-synchronization indication is greater than the second preset number, by the at least one out-of-synchronization indication sent to the RRC layer of the terminal.
  • the RLF timer is started. When the timer expires, the RRC layer of the terminal performs radio link recovery.
  • the method achieves interworking between the beam failure recovery of the physical layer and the radio link recovery of the RRC layer of the terminal by the out-of-synchronization indication, and avoids the failure of the terminal RRC layer to detect the failure of the radio link but the beam failure recovery process of the physical layer. In the case where it has failed, the RRC layer delays the RRC reestablishment, which further reduces the delay of data transmission.
  • FIG. 4 and FIG. 5 illustrate a process in which the physical layer of the terminal instructs the RRC layer of the terminal to initiate a radio link failure and recovery process after the terminal determines that the beam failure recovery process of the physical layer of the terminal fails.
  • the following embodiment mainly describes a process in which the physical layer of the terminal instructs the RRC layer of the terminal to stop the initiated radio link failure and recovery process after the terminal determines that the beam failure recovery process of the physical layer of the terminal is successful.
  • a description is given of how the terminal determines the success of the beam failure recovery process. See Embodiment 6 shown in FIG. 6 below.
  • FIG. 6 is a schematic flowchart of Embodiment 6 of a beam failure recovery method according to the present disclosure.
  • This embodiment relates to how a terminal determines a process of a beam failure recovery process.
  • the threshold value in the beam failure triggering condition may include a first beam recovery threshold Q in, BR and a second beam recovery threshold Q out, BR , and the first beam recovery threshold is greater than the second beam recovery threshold.
  • the method further includes the following steps:
  • the terminal periodically or triggers the quality of the BPL used for the current information transmission.
  • the terminal determines that the quality of the BPL of the current information transmission is less than the second beam recovery threshold Q out, the number of BR reaches one.
  • the preset number of times (the preset number of times may be configured by the RRC layer of the terminal)
  • the terminal determines that the quality of the BPL of the current information meets the preset beam failure recovery triggering condition, and the terminal starts the beam failure recovery process, that is, starts the foregoing BR timing.
  • the terminal sends a beam failure recovery request to the network side device, and when the terminal sends the beam failure recovery request to the network side device for the first time, at least one of the request counter and the request timer is started.
  • the terminal After the terminal sends a beam recovery failure request, if the terminal does not receive the response signaling of the network side device within the preset time period after the beam failure recovery request is sent, the terminal continues to send the beam failure recovery request to the network side device. At this time, the request counter is incremented by 1, and the request timer is continuously counted. If the terminal receives the response signaling before the request timer expires or the number of times the terminal fails to send the beam failure recovery request, the terminal receives the response signaling, and the terminal can determine the network side device based on the content of the response signaling. The alternate BPL is selected and the data transfer is resumed on the alternate BPL.
  • the terminal sends the beam failure recovery request to the network side device at least once, which improves the terminal before the request timer is not timed out or before the number of times the terminal sends the beam failure recovery request does not exceed the first preset number of times.
  • the probability of receiving the response signaling thereby further improving the efficiency of the terminal determining the standby BPL.
  • S502 Perform at least one measurement on the quality of the standby BPL.
  • the first threshold may be a first beam recovery threshold of a threshold value in the preset beam failure triggering condition or a first RLF threshold value of a threshold value in a preset RLF triggering condition, where the preset The threshold value in the beam failure triggering condition includes a first beam recovery threshold and a second beam recovery threshold, where the first beam recovery threshold is greater than the second beam recovery threshold, and the threshold value in the preset RLF trigger condition includes An RLF threshold and a second RLF threshold, the first RLF threshold being greater than the second RLF threshold.
  • the threshold value in the preset RLF triggering condition may also include only one RLF threshold, which is actually equivalent to the case where the first RLF threshold is equal to the second RLF threshold, and details are not described herein again.
  • the terminal continues to measure the quality of the standby BPL (for example, by measuring the reference signal on the standby BPL or the received power or signal to noise ratio of the control channel). And if the quality of the standby BPL is greater than the first threshold, the terminal adds 1 to the number of times the quality of the standby BPL is higher than the first threshold. When the number of times that the quality of the standby BPL acquired by the terminal is higher than the first threshold is greater than the fourth preset number of times, the terminal determines that the beam failure recovery process is successful.
  • the terminal may also determine that the current beam failure recovery process is successful.
  • the “acquiring the control information” herein may include: the terminal successfully receiving the control channel information on the standby BPL, and successfully decoding or demodulating the content of the control channel information.
  • the terminal may stop the foregoing BR timer, that is, set the BR timer to zero.
  • FIG. 7 is a schematic flowchart diagram of Embodiment 7 of a beam failure recovery method according to the present disclosure. This embodiment relates to a specific process of how the RRC layer of the terminal stops the radio link failure and recovery process after the terminal determines that the beam failure recovery process is successful.
  • the RRC layer of the terminal stops the radio link failure and recovery process for the foregoing S202, and specifically includes the following steps:
  • S601 The physical layer of the terminal transmits a second message to the RRC layer of the terminal.
  • S602 The RRC layer of the terminal stops the initiated radio link failure RLF process according to the second message, to stop the radio link recovery process.
  • the RLF process is initiated by the terminal, and the RLF timer is started.
  • the RLF timer starts to count.
  • the RRC layer of the terminal performs a radio link recovery process.
  • the upper layer of the terminal sets the RLF timer, so that the terminal determines whether to perform radio link recovery based on whether the RLF timer expires, and simplifies whether the RRC layer of the terminal determines whether to perform radio link recovery, and improves the terminal.
  • the RRC layer determines whether the efficiency of radio link recovery is performed.
  • the start time of the RLF timer is different from the start time of the embodiment shown in FIG. 4 and FIG. 5, and the start time of the RLF timer in FIG. 4 and FIG. 5 is that the beam is started at the terminal.
  • the failure recovery process when the number of out-of-synchronization indications received by the RRC layer of the terminal is greater than the second preset number, the RLF timer is started; the RLF process in this embodiment is started, and the beam failure recovery process is started in parallel.
  • the relationship is specifically:
  • the quality of the BPL used for the current information transmission is met in the terminal period or in real time.
  • the quality of the BPL used for the current information transmission satisfies the preset RLF trigger condition (that is, the quality of the BPL used for the current information transmission is smaller than the threshold in the preset RLF trigger condition.
  • the physical layer of the terminal transmits at least one out-of-synchronization indication to the RRC layer of the terminal, and when the number of transmissions of the out-of-synchronization indication is greater than the second preset number, the terminal
  • the RRC layer starts the RLF process, that is, starts the RLF timer.
  • the terminal also determines whether the quality of the BPL used for the current information transmission meets the preset beam failure recovery trigger condition, and if the quality of the BPL used for the current information transmission satisfies the preset
  • the beam failure recovery trigger condition that is, the quality of the BPL used for the current information transmission is smaller than the second beam recovery threshold Q out, BR in the threshold of the preset beam failure recovery trigger condition
  • the physical layer of the terminal also starts the beam failure.
  • the recovery process starts the BR timer.
  • the start of the BR timer and the start of the RLF timer there is a parallel relationship between the start of the BR timer and the start of the RLF timer, and the two can be started at the same time or at different times, as long as the start time of the RLF timer is before the start time of the BR timer. Or you can start it during the beam failure recovery process.
  • the start of the BR timer and the start timing of the RLF timer depend on the preset beam failure recovery trigger condition and the preset RFL trigger condition.
  • the beam failure recovery triggering condition includes a first beam recovery threshold Q in, BR and a second beam recovery threshold Q out, BR that is smaller than the first beam recovery threshold
  • the preset RLF trigger condition includes the first RLF threshold Q in, RLF and less than the first RLF threshold Q in, the second RLF threshold Q out of the RLF , RLF
  • the start time of the RLF timer is before the start time of the BR timer, or is located in the beam failure recovery process. That is, when the physical layer of the terminal performs beam failure recovery, the RLF timer of the RRC layer of the terminal has started timing, and waits for the RLF timer to expire after performing radio link recovery.
  • the physical layer of the terminal is actually simulated.
  • the RRC layers of the terminal each do their own thing, and there is no interworking between the two.
  • the physical layer of the terminal sends a second message to the RRC layer of the terminal in time to notify the RRC layer of the terminal to stop the initiated RLF process, that is, stop the RLF that is being timed.
  • a timer is used to avoid the radio link recovery of the RRC layer of the terminal, thereby causing the newly recovered beam to be interrupted.
  • the second message may be at least one synchronization indication, or may be a one-time RLF process shutdown message.
  • the physical layer of the terminal may instruct the RRC layer of the terminal to stop the radio link recovery process in a different manner, which not only avoids the radio link recovery of the RRC layer of the terminal, but also recovers. Good beam breaks occur and the diversity of inter-layer interworking is also improved.
  • the terminal stops the specific process of the RLF process that is started. For example, as shown in FIG. 8, the method includes:
  • the physical layer of the terminal transmits the synchronization indication to the RRC layer of the terminal at least once.
  • the terminal may determine the network based on the content of the response signaling.
  • the standby BPL selected by the side device and at least one measurement of the quality of the standby BPL. Each time the standby BPL is measured, if the quality of the standby BPL is greater than the first threshold, the physical layer of the terminal transmits a synchronization indication to the RRC layer of the terminal.
  • the first threshold may be a first beam recovery threshold Q in, or a threshold of a threshold value in the preset beam failure trigger condition, or may be a first RLF threshold Q of a threshold value in a preset RLF trigger condition.
  • the threshold value in the preset beam failure triggering condition includes a first beam recovery threshold and a second beam recovery threshold, where the first beam recovery threshold is greater than the second beam recovery threshold, and the gate in the preset RLF trigger condition
  • the limit includes a first RLF threshold and a second RLF threshold, the first RLF threshold being greater than the second RLF threshold.
  • the physical layer of the terminal can transmit one or more synchronization indications (in-sync) to the RRC of the terminal.
  • the RRC layer of the terminal when the RRC layer of the terminal receives the synchronization indication of the physical layer transmission of the terminal is greater than the third preset number of times, the RRC layer of the terminal stops the currently started RLF process, that is, stops the activated RLF timer. So that the RRC layer of the terminal does not perform the radio link recovery process.
  • the physical layer of the terminal sends a second message to the RRC of the terminal to indicate that the RRC layer of the terminal stops the initiated RLF process, that is, stops the activated.
  • the RLF timer is such that the RRC layer of the terminal does not perform RRC re-establishment, thereby avoiding that the beam has been recovered when the physical layer of the terminal has recovered the beam, but the newly recovered beam is interrupted due to the autonomous radio link recovery of the RRC layer. .
  • the embodiment of the present disclosure reduces the waiting delay of data transmission by interworking between the physical layer of the terminal and the RRC of the terminal.
  • FIG. 9 is a schematic flowchart of Embodiment 9 of a beam failure recovery method provided by the present disclosure.
  • This embodiment relates to a process in which the beam failure recovery process of the physical layer of the terminal and the RLF process of the RRC layer of the terminal are performed serially, that is, the RLF process is started later than the beam failure recovery process of the physical layer of the terminal.
  • the preset beam failure recovery triggering condition includes a first beam recovery threshold Q in, BR and a second beam recovery threshold Q out, BR smaller than the first beam recovery threshold, the preset RLF trigger condition Including Q in, RLF and Q out, RLF less than Q in , RLF .
  • the method comprises the following steps:
  • S801 During downlink data transmission, the terminal monitors the quality of the BPL used for current information transmission.
  • the terminal starts the beam failure recovery process, that is, starts the BR timer.
  • the duration of the BR timer is a first preset duration.
  • the terminal sends a beam failure recovery request to the network side device, and starts at least one of a preset request counter and a request timer when the beam failure recovery request is first sent.
  • the duration of the request timer is a second preset duration.
  • the threshold of the request counter is a first preset number of times.
  • S804 The network side device receives the beam failure recovery request.
  • S805 The network side device sends response signaling to the terminal. Then, S806 or S810 is executed.
  • the network side device receives the beam failure recovery request, and sends the response signaling to the terminal; the other is that the network side device does not receive the same. If the beam fails to recover the request, the terminal does not respond to the signaling.
  • the terminal may receive the response signaling sent by the network side device on the BPL that is used for the current information transmission and the at least one standby BPL.
  • the network side device and the terminal find two or more BPLs of better quality through beam training.
  • a BPL with the best quality as the current information transmission can be determined from these better quality BPLs.
  • serving BPL the remaining candidate BPL (candidate BPL)
  • the alternate BPL may be one of these candidate BPLs.
  • the serving BPL is used for control channel and data channel transmission between the network side device and the terminal, and the candidate BPL is used to resume transmission at the candidate BPL when the serving BPL is blocked or otherwise interrupted.
  • the reference signal can be sent on the candidate BPL for the terminal to periodically measure the quality of the candidate BPL.
  • the terminal When the terminal determines that the beam failure recovery process fails, the terminal only receives the control channel information and the reference signal on the serving BPL, and only needs to measure the downlink reference signal on the backup BPL to obtain the quality of the candidate BPL.
  • the terminal When the terminal determines that the beam failure recovery process fails, the terminal sends a beam failure recovery request to the base station. Whether the transmission of the beam failure recovery request of the terminal is unsuccessful, or the response signaling of the network side device is unsuccessful, the beam recovery abnormality is abnormal. For the terminal, the terminal cannot receive the downlink failure recovery request. Response signaling. Therefore, optionally, the terminal may receive the response signaling sent by the network side device on all BPLs obtained during the beam training.
  • the response signaling may include acknowledgement information of the beam failure recovery request, or related information of the standby BPL, or the control signaling may include control channel information (eg, PDCCH information) and related information of the backup BPL. .
  • the optional receiving mode improves the success rate of receiving response signaling, increases the probability of success of the beam failure recovery process, and the beam failure recovery speed is fast.
  • S807 If at least one of the beam failure recovery request and the beam failure recovery duration meets the first preset condition, determining that the beam failure recovery process fails. After that, S808-S810 is executed.
  • the determining that the beam failure recovery process fails is specifically the following: when the terminal sends the at least one beam failure recovery request, the sending duration is greater than the first preset duration, that is, when the request timer expires, the terminal determines that the beam fails.
  • the recovery process fails.
  • the number of times the terminal sends a beam failure recovery request is greater than the threshold of the request counter, that is, the first preset number of times, the terminal determines that the beam failure recovery process fails.
  • the terminal's BR timer expires the terminal determines the beam failure recovery process. failure.
  • the physical layer of the terminal transmits the at least one out-of-synchronization indication to the RRC layer during the beam failure recovery process.
  • the physical layer of the terminal is preset according to the preset.
  • the out-of-synchronization indication transmission mechanism transmits at least one out-of-synchronization indication to the RRC layer.
  • S813 The terminal performs at least one measurement on the standby BPL.
  • FIG. 9b is a schematic flowchart of Embodiment 10 of a beam failure recovery method provided by the present disclosure.
  • This embodiment relates to a process in which the beam failure recovery process of the physical layer of the terminal and the RLF process of the RRC layer of the terminal are performed in parallel, that is, the initiation of the RLF process is performed in parallel with the start of the beam failure recovery process of the physical layer of the terminal.
  • the preset beam failure recovery triggering condition includes a first beam recovery threshold Q in, BR and a second beam recovery threshold Q out, BR smaller than the first beam recovery threshold, the preset RLF trigger condition A first RLF threshold Q in, RLF and a second RLF threshold Q out, RLF less than the first RLF threshold Q in, RLF are included.
  • the method comprises the following steps:
  • S901 During downlink data transmission, the terminal monitors the quality of the BPL used for current information transmission.
  • the terminal If the quality of the BPL used for the current information transmission is less than the second beam recovery threshold Qout, and the number of BRs is greater than the preset number of times, the terminal starts a beam failure recovery process, that is, starts the BR timer.
  • the duration of the BR timer is a first preset duration.
  • S903 The quality of the BPL used by the terminal for measuring the current information transmission is less than Q out, RLF , and the physical layer of the terminal transmits an out-of-synchronization indication to the RRC layer of the terminal.
  • the terminal starts the RLF process, that is, starts the RLF timer.
  • start time of the last RLF timer may be earlier than the start time of the BR timer, or may be located in the beam failure recovery process.
  • the terminal When the terminal starts the BR timer, the terminal sends a beam failure recovery request to the network side device, and starts at least one of the request counter and the request timer when the beam failure recovery request is first sent.
  • the duration of the request timer is a second preset duration
  • the threshold of the request counter is a first preset number of times.
  • S905 The network side device receives the beam failure recovery request.
  • the network side device does not receive the beam failure recovery request, and the other is that the network side device receives the beam failure recovery request.
  • the specific process refer to the description of the first embodiment.
  • S906 The network side device sends response signaling to the terminal.
  • the network side device receives the beam failure recovery request, and sends the response signaling to the terminal; the other is that the network side device does not receive the beam. If the request is failed, the terminal does not respond to the signaling.
  • the determining that the beam failure recovery process fails is specifically the following: when the terminal sends a beam failure recovery request, the transmission duration is greater than the first preset duration, that is, when the request timer expires, the terminal determines that the beam fails. The recovery process fails. When the number of times the terminal sends a beam failure recovery request is greater than the threshold of the request counter, that is, the first preset number of times, the terminal determines that the beam failure recovery process fails. When the terminal's BR timer expires, the terminal determines the beam failure recovery process. failure.
  • the terminal does not receive the response signaling of the network side device before the request timer expires, or when the number of times the beam failure recovery request is sent is less than the threshold of the request counter, or when the terminal's BR timer expires.
  • the terminal determines that the beam failure recovery process fails.
  • the physical layer of the terminal does not notify the RRC layer of the terminal, that is, the RLF timer of the RRC layer of the terminal continues to be timed until the RLF timer expires, and the terminal performs radio link recovery.
  • S911 If the quality of the standby BPL determined by the terminal is greater than the first threshold, the terminal determines that the beam failure recovery process is successful. Thereafter, S912 is executed.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a terminal provided by the present disclosure.
  • the terminal 100 shown in FIG. 10 includes: a sending module 10, a receiving module 11, and a first determining module 12.
  • the sending module 10 is configured to: if the quality of the beam-to-link BPL that is used for the current information transmission meets the preset beam failure triggering condition, send a beam failure recovery request to the network side device; if the receiving module 11 is in the preset If the response signal sent by the network side device is not received, the beam failure recovery request is sent to the network side device, for example, a periodic transmission mode or an event triggered transmission mode may be adopted;
  • the first determining module 12 is configured to determine that the beam failure recovery process fails if the related information in the beam failure recovery process meets the first preset condition
  • the information about the beam failure recovery process includes: at least one of the beam failure recovery request and the beam failure recovery duration, where the start time of the beam recovery duration is the BPL of the current information transmission. The moment when the quality meets the beam failure trigger condition.
  • the first preset condition includes at least one of the following items:
  • the number of times the beam failure recovery request is sent reaches a first preset number of times
  • the beam failure recovery time reaches a second preset duration.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a terminal provided by the present disclosure.
  • the terminal 100 may further include: at least one of a first startup module 13, a second startup module 14, and a third startup module 15, wherein
  • the first startup module 13 is configured to start a preset beam recovery BR timer if the quality of the BPL used for the current information transmission meets a preset beam failure triggering condition, where the timing duration of the BR timer is equal to the Second preset duration;
  • the second startup module 14 is configured to start a preset request counter when the sending module 10 sends the beam failure recovery request to the network side device for the first time, where the threshold of the request counter is the first preset frequency;
  • the third startup module 15 is configured to start a preset request timer when the sending module 10 sends the beam failure recovery request to the network side device for the first time, and the timing duration of the request timer is equal to the first A preset duration.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of the terminal provided by the present disclosure.
  • the terminal 100 may further include: a fourth startup module 16 and a first stop module 21; wherein
  • the fourth starting module 16 is configured to start a radio link failure and recovery process if it is determined that the beam failure recovery process fails;
  • the first stopping module 21 is configured to stop the radio link failure and recovery process if the beam failure recovery process is determined to be successful.
  • the fourth startup module 16 may include: a first startup unit 161 and a second startup unit 162;
  • the first initiating unit 161 is configured to start a radio link failure RLF process of the RRC layer according to the first message that is sent by the physical layer of the terminal to the RRC layer of the terminal;
  • the second starting unit 162 is configured to start a radio link recovery process if the delay duration after the RLF process is started reaches the third preset duration.
  • the sending module 10 is further configured to: transmit, by using a physical layer of the terminal, the at least one out-of-synchronization indication to the RRC layer of the terminal, where the first starting unit 161 is specifically configured to transmit the out-of-synchronization indication.
  • the number of times is greater than the second predetermined number of times, and the RLF process is initiated.
  • the first starting unit 161 is specifically configured to start an RLF timer, and the timing duration of the RLF timer is the third preset duration.
  • the sending module 10 is further configured to: transmit, by using a physical layer of the terminal, the at least one out-of-synchronization indication to the RRC layer of the terminal, including:
  • the sending module 10 is specifically configured to: transmit, by the physical layer of the terminal, at least one out-of-synchronization indication to the RRC layer of the terminal during a beam failure recovery process; or, after the beam failure recovery process fails, The at least one out-of-synchronization indication is transmitted to the RRC layer of the terminal by the physical layer of the terminal according to a preset out-of-synchronization indication sending mechanism.
  • the sending module 10 is configured to: transmit, by the physical layer of the terminal, the at least one out-of-synchronization indication to the RRC layer of the terminal, including:
  • the sending module 10 is configured to: transmit, by using a physical layer of the terminal, at least one out-of-synchronization indication to the RRC layer of the terminal according to the number of times of sending the beam failure recovery request; or, failing to send the beam After the request is restored, according to the measured quality of the BPL used for the current information transmission, at least one out-of-synchronization indication is transmitted to the RRC layer of the terminal through the physical layer of the terminal.
  • the sending module 10 is further configured to transmit a second message to the RRC layer of the terminal by using a physical layer of the terminal.
  • the first stopping module 21 is specifically configured to stop the initiated radio link failure RLF process according to the second message, to stop the radio link recovery process.
  • the sending module 10 is further configured to: send, by using a physical layer of the terminal, a second message to the RRC layer of the terminal, including:
  • the sending module 10 is configured to transmit, by using a physical layer of the terminal, at least one synchronization indication to an RRC layer of the terminal;
  • the first stopping module 21 is specifically configured to stop the initiated RLF process if the number of transmissions of the synchronization indication is greater than a third preset number of times.
  • the first stopping module 21 is specifically configured to close the activated RLF timer.
  • the terminal provided by the present disclosure may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of Embodiment 4 of the terminal provided by the present disclosure.
  • the terminal 100 may further include: a second determining module 17 and a measuring module 18; optionally, the terminal 100 may further include a fifth starting module 19.
  • the second determining module 17 is configured to determine, according to the response signaling, a standby BPL, if the receiving module 11 receives the response signaling;
  • the measuring module 18 is configured to perform at least one measurement on the quality of the standby BPL;
  • the sending module 10 is configured to: when the quality of the measured standby BPL is greater than the first threshold, transmit a synchronization indication to the RRC layer of the terminal by using a physical layer of the terminal;
  • the first threshold is a first beam recovery threshold of a threshold value in the preset beam failure triggering condition, or a first RLF threshold value of a threshold value in a preset RLF triggering condition, where the The threshold value in the set beam failure triggering condition includes the first beam recovery threshold and the second beam recovery threshold, the first beam recovery threshold is greater than the second beam recovery threshold, and the preset RLF trigger condition
  • the threshold value in the middle includes a first RLF threshold and a second RLF threshold, the first RLF threshold being greater than the second RLF threshold.
  • the sending module 10 is further configured to: before the at least one synchronization indication is sent to the RRC layer of the terminal by the physical layer of the terminal, if the quality of the BPL used in the current information transmission meets a preset RLF trigger And transmitting, by the physical layer of the terminal, the at least one out-of-synchronization indication to the RRC layer of the terminal;
  • the fifth starting module 19 is configured to start the RLF process if the number of transmissions of the out-of-synchronization indication is greater than a second preset number of times.
  • the fifth starting module 19 is specifically configured to start an RLF timer.
  • FIG. 14 is a schematic structural diagram of Embodiment 5 of the terminal provided by the present disclosure.
  • the foregoing first determining module 12 includes: a first determining unit 121, a measuring unit 122, an obtaining unit 123, and a second determining unit 124. among them,
  • the first determining unit 121 is configured to: if the receiving module 11 receives the response signaling, determine the standby BPL based on the response signaling;
  • the measuring unit 122 is configured to perform at least one measurement on the quality of the standby BPL;
  • the obtaining unit 123 is configured to: for each time the standby BPL is measured, and the measured quality of the standby BPL is higher than the first threshold, obtain the number of times that the quality of the standby BPL is higher than the first threshold;
  • the second determining unit 124 is configured to determine that the beam failure recovery process is successful if the number of times that the quality of the standby BPL is higher than the first threshold is greater than the fourth preset number of times;
  • the first threshold is a first beam recovery threshold of a threshold value in the preset beam failure triggering condition, or a first RLF threshold value of a threshold value in a preset RLF triggering condition, where the The threshold value in the set beam failure triggering condition includes the first beam recovery threshold and the second beam recovery threshold, the first beam recovery threshold is greater than the second beam recovery threshold, and the preset RLF trigger condition
  • the threshold value in the middle includes a first RLF threshold and a second RLF threshold, the first RLF threshold being greater than the second RLF threshold.
  • FIG. 15 is a schematic structural diagram of Embodiment 6 of the terminal provided by the present disclosure.
  • the foregoing first determining module 12 includes: a third determining unit 125 and a fourth determining unit 126.
  • the third determining unit 125 is configured to: if the receiving module 11 receives the response signaling, determine the standby BPL according to the response signaling;
  • the fourth determining unit 126 is configured to determine that the beam failure recovery process is successful when the receiving module 11 acquires control channel information on the standby BPL.
  • the device further includes: a second stopping module 20. among them,
  • the second stopping module 20 is configured to stop the BR timer when the first determining module 12 determines that the beam failure recovery process is successful.
  • FIG. 16 is a schematic diagram shown on the basis of FIG. 15, and of course, FIG. 16 can also be based on the structure of FIG.
  • the receiving module 11 is configured to: after the sending module 10 sends a beam failure recovery request to the network side device, receive the network on the BPL and the at least one standby BPL that are used for the current information transmission. Response signaling sent by the side device.
  • the above-mentioned terminals can implement the various processes implemented by the terminal in the method embodiments of FIG. 2 to FIG. 9. To avoid repetition, details are not described herein again.
  • the terminal when the terminal determines that the quality of the BPL used for the current information transmission meets the preset beam failure triggering condition, the terminal sends a beam failure recovery request to the network side device, if the terminal does not receive the preset time period.
  • the terminal continues to send the beam failure recovery request to the network side device, and determines the beam when at least one of the beam failure recovery request and the beam failure recovery duration meets the first preset condition.
  • the failure recovery process fails, so that the terminal can switch to the new cell in time or perform radio link reconstruction or recovery in time to avoid the terminal waiting for the response of the network side device for a long time, reducing the data transmission delay and the power consumption of the terminal, and reducing the power consumption.
  • the overhead of the terminal on the other hand, when the terminal determines that the beam failure recovery process of the physical layer fails, the terminal initiates an RRC layer radio link failure and recovery process; when the terminal determines that the beam failure recovery process of the physical layer is successful, the terminal stops the RRC layer. Wireless link failure and recovery process.
  • the RRC layer delays the recovery process of the physical layer beam failure process, and the RRC layer delays the RRC re-establishment process when the RRC layer fails to detect the radio link failure but the physical layer beam recovery has failed.
  • the RRC of the terminal blindly performs radio link re-establishment due to the failure to learn the beam recovery success of the physical layer, and the recovered beam is interrupted again, causing the data transmission delay to be too long, which greatly reduces the data.
  • the delay of transmission is the delay of transmission.
  • FIG. 17 is a schematic structural diagram of Embodiment 8 of a terminal provided by the present disclosure.
  • the terminal 700 shown in FIG. 17 includes at least one processor 701, a memory 702, at least one network interface 704, and a user interface 703.
  • the various components in terminal 700 are coupled together by a bus system 705.
  • the bus system 705 is used to implement connection communication between these components.
  • the bus system 705 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 705 in FIG.
  • embodiments of the present disclosure further include a transceiver 706, which may be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 703 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 702 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • memory 702 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 7021 and application 7022.
  • the operating system 7021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 7022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 7022.
  • the transceiver 706 is configured to determine, at the processor, the BPL used for the current information transmission. If the quality meets the preset beam failure triggering condition, the device sends a beam failure recovery request to the network side device; if the response signal sent by the network side device is not received within the preset time period, the device continues to the network side device. Sending the beam failure recovery request; the processor 701, configured to determine that the beam failure recovery process fails when the related information in the beam failure recovery process meets the first preset condition;
  • the information about the beam failure recovery process includes: at least one of the beam failure recovery request and the beam failure recovery duration, where the start time of the beam recovery duration is the BPL of the current information transmission. The moment when the quality meets the beam failure trigger condition.
  • Processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in a form of software.
  • the processor 701 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702 and completes the steps of the above method in combination with its hardware.
  • the embodiments described in the embodiments of the present disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described in the embodiments of the present disclosure may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software code can be stored in a memory and executed by the processor 701.
  • the memory can be implemented in the processor 701 or external to the processor 701.
  • the first preset condition includes at least one of the following items:
  • the number of times the beam failure recovery request is sent reaches a first preset number of times
  • the beam failure recovery time reaches a second preset duration.
  • the processor 701 is further configured to: if the quality of the BPL used in the current information transmission meets a preset beam failure triggering condition, start a preset beam recovery BR timer, where the BR timer is The timing duration is equal to the second preset duration.
  • the processor 701 is further configured to: when the transceiver 706 first sends the beam failure recovery request to the network side device, start a preset request counter, where the threshold of the request counter is The first preset number of times.
  • the processor 701 is further configured to: when the transceiver 706 sends the beam failure recovery request to the network side device for the first time, start a preset request timer, and the timing of the request timer The duration is equal to the first preset duration.
  • the processor 701 is further configured to: if the beam failure recovery process fails, start a radio link failure and recovery process; if the beam failure recovery process is determined to be successful, stop the wireless link. Failure and recovery process.
  • the processor 701 is further configured to start the RRC layer according to the first message that is sent by the physical layer of the terminal to the RRC layer of the terminal.
  • the radio link fails the RLF process; when the delay duration after the RLF process is started reaches the third preset duration, the radio link recovery process is initiated.
  • the transceiver 706 is further configured to: transmit, by using a physical layer of the terminal, an at least one out-of-synchronization indication to the RRC layer of the terminal; the processor 701 is further configured to: if the out-of-step indication The number of transmissions is greater than the second predetermined number of times, and the RLF process is initiated.
  • the processor 701 is configured to start the RLF process, including:
  • the processor 701 is configured to start an RLF timer, where a timing duration of the RLF timer is the third preset duration.
  • the transceiver 706 is configured to: transmit, by the physical layer of the terminal, at least one out-of-synchronization indication to the RRC layer of the terminal during a beam failure recovery process; or After the process fails, the physical layer of the terminal transmits the at least one out-of-synchronization indication to the RRC layer of the terminal according to a preset out-of-synchronization indication sending mechanism.
  • the transceiver 706 is configured to: transmit, by using a physical layer of the terminal, at least one out-of-synchronization indication to the RRC layer of the terminal according to the number of transmissions of the beam failure recovery request; or, send After the beam failure recovery request, according to the measured quality of the BPL used for the current information transmission, at least one out-of-synchronization indication is transmitted to the RRC layer of the terminal through the physical layer of the terminal.
  • the transceiver 706 is further configured to: transmit, by using a physical layer of the terminal, a second message to an RRC layer of the terminal; 701. The method further stops, according to the second message, stopping the initiated radio link failure RLF process to stop the radio link recovery process.
  • the transceiver 706 is configured to transmit, by using a physical layer of the terminal, an at least one synchronization indication to an RRC layer of the terminal, where the processor 701 is specifically configured to: if the synchronization indicates the number of transmissions If it is greater than the third preset number, the activated RLF process is stopped.
  • the processor 701 is configured to stop the initiated RLF process, including:
  • the processor 701 is configured to shut down an activated RLF timer.
  • the transceiver 706 is specifically configured to: when receiving the response signaling, determine a standby BPL according to the response signaling, and perform at least one measurement on the quality of the standby BPL;
  • the standby BPL if the measured quality of the standby BPL is greater than the first threshold, the physical layer of the terminal transmits a synchronization indication to the RRC layer of the terminal;
  • the first threshold is a first beam recovery threshold of a threshold value in the preset beam failure triggering condition, or a first RLF threshold value of a threshold value in a preset RLF triggering condition, where the The threshold value in the set beam failure triggering condition includes the first beam recovery threshold and the second beam recovery threshold, the first beam recovery threshold is greater than the second beam recovery threshold, and the preset RLF trigger condition
  • the threshold value in the middle includes a first RLF threshold and a second RLF threshold, the first RLF threshold being greater than the second RLF threshold.
  • the transceiver 706 is further configured to: when the processor 701 determines that the quality of the BPL used by the current information transmission meets a preset RLF triggering condition, the RRC through the physical layer of the terminal to the terminal The layer transmits at least one out-of-synchronization indication; the processor 701 is further configured to start the RLF process if the number of transmissions of the out-of-synchronization indication is greater than a second preset number of times.
  • the processor 701 is configured to start the RLF process, including:
  • the processor 701 is configured to start an RLF timer.
  • the processor 701 is further configured to: if the quality of the standby BPL measured by the transceiver 706 is higher than a first threshold, obtain a number of times that the quality of the standby BPL is higher than a first threshold; If the number of times that the quality of the BPL is higher than the first wave threshold is greater than the fourth predetermined number of times, it is determined that the beam failure recovery process is successful;
  • the first threshold is a first beam recovery threshold of a threshold value in the preset beam failure triggering condition, or a first RLF threshold value of a threshold value in a preset RLF triggering condition, where the The threshold value in the set beam failure triggering condition includes the first beam recovery threshold and the second beam recovery threshold, the first beam recovery threshold is greater than the second beam recovery threshold, and the preset RLF trigger condition
  • the threshold value in the middle includes a first RLF threshold and a second RLF threshold, the first RLF threshold being greater than the second RLF threshold.
  • the processor 701 is further configured to determine that the beam failure recovery process is successful when the transceiver 706 acquires control channel information on the standby BPL.
  • the processor 701 is further configured to stop the BR timer if it is determined that the beam failure recovery process is successful.
  • the transceiver 706 is further configured to receive the response signaling sent by the network side device on the BPL used by the current information transmission and on the at least one standby BPL.
  • the above-mentioned terminals can implement the various processes implemented by the mobile terminal in the foregoing embodiments. To avoid repetition, details are not described herein again.
  • the terminal when the terminal determines that the quality of the BPL used for the current information transmission meets the preset beam failure triggering condition, the terminal sends a beam failure recovery request to the network side device, if the terminal does not receive the preset time period.
  • the terminal continues to send the beam failure recovery request to the network side device, and determines the beam when at least one of the beam failure recovery request and the beam failure recovery duration meets the first preset condition.
  • the failure recovery process fails, so that the terminal can switch to the new cell in time or perform radio link reconstruction or recovery in time to avoid the terminal waiting for the response of the network side device for a long time, reducing the data transmission delay and the power consumption of the terminal, and reducing the power consumption.
  • the overhead of the terminal on the other hand, when the terminal determines that the beam failure recovery process of the physical layer fails, the terminal initiates an RRC layer radio link failure and recovery process; when the terminal determines that the beam failure recovery process of the physical layer is successful, the terminal stops the RRC layer. Wireless link failure and recovery process.
  • the RRC layer delays the recovery process of the physical layer beam failure process, and the RRC layer delays the RRC re-establishment process when the RRC layer fails to detect the radio link failure but the physical layer beam recovery has failed.
  • the RRC of the terminal blindly performs radio link re-establishment due to the failure to learn the beam recovery success of the physical layer, and the recovered beam is interrupted again, causing the data transmission delay to be too long, which greatly reduces the data.
  • the delay of transmission is the delay of transmission.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本公开实施例提供一种波束失败恢复方法和终端。该方法包括:若当前信息传输采用的波束对链路BPL的质量满足预设的波束失败触发条件,向网络侧设备发送波束失败恢复请求;若在预设时长内未接收到所述网络侧设备发送的响应信令,继续向所述网络侧设备发送所述波束失败恢复请求;当波束失败恢复过程中的相关信息满足第一预设条件,则确定波束失败恢复过程失败。

Description

波束失败恢复方法和终端
相关申请的交叉引用
本申请主张在2017年4月28日在中国提交的中国专利申请号No.201710295923.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种波束失败恢复方法和终端。
背景技术
在对第四代移动通信(4G)系统之后的下一代通信系统的研究中,目前欲将通信系统支持的工作频段提升至6GHz以上,最高约达100GHz。高频段具有较为丰富的空闲频率资源,可以为数据传输提供更大的吞吐量。目前3GPP已经完成了高频信道建模工作。高频信号的波长短,同低频段相比,其能够在同样大小的面板上布置更多的天线阵元,利用波束赋形技术形成指向性更强、波瓣更窄的波束。
在高频段通信系统中,由于无线信号的波长较短,较容易发生信号传播被阻挡等情况,导致信号传播中断。如果采用相关技术中的无线链路重建,则耗时较长,因此引入了波束失败恢复过程,即:终端在物理层监听基站下发的波束失败检测参考信号,并评估该参考信号质量是否满足波束失败触发条件。一旦满足该条件,则终端可以向基站发送波束失败恢复请求,基于该波束失败恢复请求,基站确定出新候选发射波束,供控制信息或者数据传输所用。上述波束失败恢复过程能够使得通信系统快速切换到备用波束对链路(beam pair link,简称BPL)上继续传输控制消息和数据,从而实现波束失败恢复,该备用BPL包括上述一个新候选发射波束和一个接收波束。
但是,相关技术的这种波束失败恢复过程,无法准确获知波束失败恢复的结果,从而造成数据的传输时延过大。
发明内容
本公开实施例提供一种波束失败恢复方法和终端,以解决相关技术中在进行波束失败恢复时,无法准确获知波束失败恢复的结果,从而造成数据的传输时延过大的问题。
第一方面,本公开实施例提供了一种波束失败恢复方法,应用于终端,包括:
若当前信息传输采用的波束对链路BPL的质量满足预设的波束失败触发条件,向网络侧设备发送波束失败恢复请求;
若在预设时长内未接收到所述网络侧设备发送的响应信令,继续向所述网络侧设备发送所述波束失败恢复请求;
当波束失败恢复过程中的相关信息满足第一预设条件,则确定波束失败恢复过程失败;
其中,所述波束失败恢复过程中的相关信息包括:所述波束失败恢复请求、波束失败恢复时长中的至少一项。
第二方面,本公开实施例提供了一种终端,包括:发送模块、接收模块和第一确定模块;
发送模块,用于在当前信息传输采用的波束对链路BPL的质量满足预设的波束失败触发条件时,向网络侧设备发送波束失败恢复请求,若所述接收模块在在预设时长内未接收到所述网络侧设备发送的响应信令,继续向所述网络侧设备发送所述波束失败恢复请求;
所述第一确定模块,用于在波束失败恢复过程中的相关信息满足第一预设条件时,确定波束失败恢复过程失败;
其中,所述波束失败恢复过程中的相关信息包括:所述波束失败恢复请求、波束失败恢复时长中的至少一项。
第三方面,本公开实施例提供了一种终端,所述终端包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本公开实施例第一方面提供的方法。
第四方面,本公开实施例提供了一种终端,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第五方面,本公开实施例提供了一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
第六方面,本公开实施例提供了一种程序产品,例如计算机可读存储介质,包括第五方面的程序。
第七方面,本公开实施例提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面所述的波束失败恢复的方法。
这样,本公开实施例中,当终端确定当前信息传输采用的BPL的质量满足预设的波束失败触发条件时,终端向网络侧设备发送波束失败恢复请求,若终端在预设时长内未接收到网络侧设备发送的响应信令时,终端继续向网络侧设备发送所述波束失败恢复请求,并在波束失败恢复请求和波束失败恢复时长中的至少一项满足第一预设条件时,确定波束失败恢复过程失败,从而使得终端能够及时切换至新小区或者及时进行无线链路重建或者恢复,避免终端长时间等待网络侧设备的响应,降低了数据的传输时延和终端的功耗,减少了终端的开销。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开实施例的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开提供的波束失败恢复系统架构示意图;
图2为本公开提供的波束失败恢复方法实施例一的流程示意图;
图3为本公开提供的波束失败恢复方法实施例三的流程示意图;
图4为本公开提供的波束失败恢复方法实施例四的流程示意图;
图5为本公开提供的波束失败恢复方法实施例五的流程示意图;
图6为本公开提供的波束失败恢复方法实施例六的流程示意图;
图7为本公开提供的波束失败恢复方法实施例七的流程示意图;
图8为本公开提供的波束失败恢复方法实施例八的流程示意图;
图9a为本公开提供的波束失败恢复方法实施例九的流程示意图;
图9b为本公开提供的波束失败恢复方法实施例十的流程示意图;
图10为本公开提供的终端实施例一的结构示意图;
图11为本公开提供的终端实施例二的结构示意图;
图12是本公开提供的终端实施例三的结构示意图;
图13为本公开提供的终端实施例四的结构示意图;
图14为本公开提供的终端实施例五的结构示意图;
图15为本公开提供的终端实施例六的结构示意图;
图16为本公开提供的终端实施例七的结构示意图;
图17是本公开提供的终端实施例八的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开实施例一部分实施例,而不是全部的实施例。基于本公开实施例中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开实施例保护的范围。
本公开实施例提供的波束失败恢复方法和终端,可以适用于图1所示的波束失败恢复系统架构示意图。如图1所示,该系统包括:网络侧设备01和终端02。
其中,网络侧设备01可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
终端02可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、 或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
目前,在高频段通信系统中,由于无线信号的波长较短,较容易发生信号传播被阻挡等情况,导致信号传播中断。如果采用相关技术中的无线链路重建过程(或者无线链路恢复过程),则耗时较长,因此引入了波束失败恢复过程,即:终端在监听到基站下发的波束失败检测参考信号的质量满足波束失败触发条件时,终端通过向基站发送波束失败恢复请求,基于该波束失败恢复请求,基站确定出新候选发射波束,继续进行控制信息或者数据传输的,从而完整波束失败恢复。但是,相关技术的这种波束失败恢复过程,当终端向基站发送了波束失败恢复请求后,终端会一直处于等待基站响应的状态,其无法获知基站当前是否成功接收到波束失败恢复请求,也无法获知基站是否发出响应消息,即终端无法准确获知当前波束失败恢复的结果,从而使得终端一直处于等待状态,造成数据的传输时延过大,终端的功耗也较大。
本公开提供的波束失败恢复方法和终端,旨在解决相关技术的如上技术问题。即,本公开结合所发送的波束失败恢复请求和波束失败恢复时长中的至少一项,确定波束失败的恢复情况,从而能够及时采取措施,例如进行无线链路恢复,避免终端长时间等待网络侧设备的响应,降低了数据的传输时延和终端的功耗,减少了终端的开销。
在介绍本公开的具体实施例之前,先对本公开中所涉及的专业术语进行解释:
波束训练:目前在学术界和工业界,通常是使用轮询的方式进行模拟波束的训练。即:当终端接入小区后有下行数据传输时,在下行数据传输前进行波束训练,即基站的每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间依次向终端发送训练信号(即发送多个发射波束),每个模拟波束中承载参考信号,该参考信号可以是小区参考信号(Cell Reference Signal,简称CRS),还可以是解调参考信号(Demodulation Reference Signal,简称DMRS),还可以是同步信号(Synchronous Signal,简称SS),还可以是信道状态信息参考信号(Channel State Information Reference Signal,简称CSI-RS)。可选的,终端可以基于自身的接收波束接收基站的每个发射波束发送的参考信号,测量得到这多个发射波束上的参考信号的接收功率。可选的,终端可以通过选择接收功率最强或者较强的几个参考信号对应的发射波束,将这几个发射波束的标识通过波束报告告知给网络侧设备。可选的,终端可以只告知网络侧设备发射波束的标识即可,可选的,也可以告知网络侧设备的每个发射波束对应的接收波束。在需要进行下行数据传输时,网络侧设备可以从波束报告中选择一个发射波束作为当前传输采用的发射波束,该发射波束和终端上与该发射波束对应的接收波束构成当前信息传输采用的BPL。
波束对链路(Beam Pair Link,简称BPL):包含一个发射波束和一个接收波束。该BPL用于承载控制信道,例如物理下行控制信道(Physical Downlink Control Channel,简称PDCCH),也可在该BPL上承载数据信道,例如物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)。此外,需要说明的是,波束对链路BPL仅为一种示例用词,本领域技术人员也可以称之为波束链路或其他词汇。
当前信息传输采用的BPL:指的是在进行控制信息或者数据的传输过程中,所采用的发射波束和接收波束。在下行信息传输时,当前采用的BPL为下行BPL,该下行BPL中包括供网络侧设备发送控制信息或者数据时采用的发射波束,以及包括供终端接收数据和控制信息时所采用的接收波束。在上行数据传输时,当前信息传输采用的BPL为上行BPL,该上行BPL中包括 供终端发送数据和控制信息时采用的发射波束,以及包括供网络侧设备接收数据和控制信息时所采用的接收波束。本公开中当前信息传输采用的BPL为下行BPL。
备用BPL:该备用BPL可以是当前信息传输采用的BPL的质量较差时,终端在向网络侧设备发送波束失败恢复请求中携带的候选BPL中的一个终端推荐候选BPL,由网络侧设备确定候选BPL中的哪一个BPL作为备用BPL),还可以是网络侧设备通过其他方式获得的一个质量较好的BPL。可选的,备用BPL的标识可以携带在网络侧设备发送给终端的响应信令中。
下面以具体地实施例对本公开的技术方案以及本公开的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本公开的实施例进行描述。
图2为本公开提供的波束失败恢复方法实施例一的流程示意图。本实施例涉及的是终端在当前信息传输采用的BPL的质量满足预设的波束失败触发条件后,结合波束失败恢复过程中的相关信息,确定波束失败恢复情况的具体过程。该方法的执行主体为终端。如图2所示,该方法包括如下步骤:
S101:若当前信息传输采用的波束对链路BPL的质量满足预设的波束失败触发条件,向网络侧设备发送波束失败恢复请求。
具体的,在下行数据传输过程中,终端实时监控当前信息传输采用的BPL的质量,该BPL为下行BPL。可选的,终端可以通过检测当前信息传输采用的BPL上的参考信号的信噪比或者该参考信号的接收功率,来确定当前信息传输采用的BPL的质量。可选的,终端还可以通过检测当前信息传输采用的BPL上承载的控制信道信噪比或者该控制信道的接收功率,来确定当前信息传输采用的BPL的质量。
可选的,对于通过上述波束训练获得的区别于当前信息传输采用的BPL的其它候选BPL,终端可以仅周期性的测量这些候选的BPL上的参考信号,获得这些候选BPL的质量,以做后续波束恢复时切换BPL使用。
当终端获得当前信息传输采用的BPL的质量后,判断当前信息传输采用的BPL的质量是否满足预设的波束失败触发条件。若满足,终端启动波束失 败恢复过程,即波束失败恢复过程从此刻开始计时。与此同时,终端向网络侧设备发送波束失败恢复请求(beam failure recovery request),可选的,终端也可以是在波束失败恢复过程启动之后间隔一段时间后向网络侧设备发送波束失败恢复请求。可选的,该波束失败恢复请求可以包括:终端所推荐的候选BPL,该候选的BPL可以是上述波束训练时波束报告中的除当前信息传输采用的BPL之外的其他BPL,还可以是终端通过其他方式获得的非波束报告中的BPL。可选的,该波束失败恢复请求还可以携带重新启动波束训练/波束跟踪的相关参数、导致波束失败的类型例如终端移动、旋转、波束阻挡等。
可选的,终端发送上述波束失败恢复请求,可以是在RRC层信令配置的资源上发送,或者可以是在预留的专用资源上发送,其可以使用经过波束训练获得的上行窄波束或者宽波束发送,还可以通过上行多波束轮流发射(UL beam sweeping),还可以使用低频段无线信号发射。
可选的,该预设的波束失败触发条件可以包括一个预设的门限阈值,当终端测量的当前信息传输采用的BPL的质量小于该门限阈值,终端认为当前信息传输采用的BPL的质量较差,可以向网络侧设备发送波束失败恢复请求,以切换至新的备用BPL上进行数据传输。当终端测量的当前信息传输采用的BPL的质量大于或者等于该门限阈值,终端认为当前信息传输采用的BPL的质量较好。
可选的,该预设的波束失败触发条件可以包括一个预设的门限阈值且规定了当前信息传输采用的BPL的质量连续小于该门限阈值的预设次数,当终端多次测量的当前信息传输采用的BPL的质量小于该门限阈值,且当前信息传输采用的BPL的质量小于该门限阈值的次数大于上述预设次数,则终端认为当前信息传输采用的BPL的质量较差,可以网络侧设备发送波束失败恢复请求,以切换至新的备用BPL上进行数据传输。当终端测量的当前信息传输采用的BPL的质量大于或者等于该门限阈值,终端认为当前信息传输采用的BPL的质量较好。
可选的,上述预设的波束失败触发条件可以包括第一波束恢复阈值和小于该第一波束恢复阈值的第二波束恢复阈值(当二者相等时,实际上为上述波束失败触发条件包括一个门限阈值的情况),且规定了当前信息传输采用的 BPL的质量连续小于第二波束恢复阈值的预设次数。当终端测量的当前信息传输采用的BPL的质量小于第二波束恢复阈值,且多次测量的当前信息传输采用的BPL的质量小于第二波束恢复阈值的次数大于该预设次数,则终端认为当前信息传输采用的BPL的质量较差,可以向网络侧设备发送波束失败恢复请求,以切换至新的备用BPL上进行数据传输。
由上述描述可知,上述波束失败触发条件可以具有不同的实现方式,提高了终端确定当前信息传输采用的BPL的质量是否满足波束失败触发条件的方式的多样性。
S102:若在预设时长内未接收到所述网络侧设备发送的响应信令,继续向所述网络侧设备发送所述波束失败恢复请求,例如,可以采取周期性发送方式或事件触发式发送方式。
具体的,由上述描述可知,终端的波束失败恢复过程的启动时刻为终端判断当前信息传输采用的BPL的质量满足预设的波束失败触发条件的时刻,即终端的波束失败恢复时长的起始时刻为终端判断当前信息传输采用的BPL的质量满足预设的波束失败触发条件的时刻。
当终端向网络侧设备发送了波束失败恢复请求之后,终端等待接收网络侧设备发送的响应信令。这里存在三种情况,一种是网络侧设备未接收到终端发送的波束失败恢复请求,因此网络侧没有触发发送针对该波束失败恢复请求的响应信令;另一种是网络侧设备接收到了终端发送的波束失败恢复请求,网络侧设备也触发发送了针对该波束失败恢复请求的响应信令,但是终端没有成功接收到该响应信令;再一种是网络侧设备接收到了终端发送的波束失败恢复请求,其发送了响应信令,终端也成功接收到了针对该波束失败恢复请求的响应信令。
需要说明的是,网络侧设备在接收到波束失败恢复请求后向终端发送的响应信令中,可以包括针对波束失败恢复请求的确认消息、或者包括切换至备用BPL的信令内容、或者还可以包括重新进行波束训练/跟踪相关参数的信令内容,以寻找可用的备用BPL恢复数据传输。另外,网络侧设备在发送响应信令时,可以使用通过波束训练获得的区别于当前信息传输所用BPL的其它BPL,或者可以使用包含当前信息传输所用的BPL的宽波束,或者还可以 使用下行多波束轮流发射(DL beam sweeping),或者使用低频段无线信号发射。当然,如果网络侧设备没有接收到终端发送的波束失败恢复请求,则网络侧设备仍在当前信息传输所用BPL上发送控制信道和数据信道。
可选的,终端在接收网络侧设备发送的响应信令时,可以是在当前信息传输所用BPL上接收,还可以通过波束训练获得的区别于当前信息传输所用BPL的候选BPL上接收,还可以是在包含当前BPL的宽波束上接收,还可以是通过多波束轮流接收,还可以是在低频段无线信号接收,本公开实施例对此并不做限制。当响应信令中包含的是备用BPL的标识时,则终端可以根据该信令内容的指示,在备用BPL上与网络侧设备恢复数据传输;当响应信令中包含的是重新做波束训练的相关参数,则终端可以与网络侧设备根据该相关参数,进行波束搜索,寻找备用BPL,以恢复数据传输。
若终端在预设时长内没有接收到网络侧设备发送的响应信令,则终端继续向网络侧设备发送所述波束失败恢复请求,以此类推。
结合上述S202的步骤描述,若终端在预设时长内未接收到网络侧设备发送的响应信令,则终端会继续向网络侧设备发送波束失败恢复请求,其可以避免终端长时间等待针对一次波束失败恢复请求的响应信令,有助于提高终端接收到响应信令的概率。
S103:当波束失败恢复过程中的相关信息满足第一预设条件,则确定波束失败恢复过程失败。
其中,所述波束失败恢复过程中的相关信息包括:所述波束失败恢复请求、波束恢复时长中的至少一项,所述波束恢复时长的起始时刻为所述当前信息传输采用的BPL的质量满足所述波束失败触发条件的时刻。
具体的,在上述波束失败恢复过程中,按照上述S101和S102的描述,终端可能向网络侧设备发送一次或者多次的波束失败恢复请求,上述波束失败恢复时长随着波束失败恢复请求的发送次数的增多而不断增加。终端可以通过上述波束失败恢复过程中的相关信息来确定波束失败恢复过程是否成功,该波束失败恢复过程中的相关信息包括上述波束失败恢复请求和波束失败恢复时长中的至少一个。当上述波束失败恢复过程中的相关信息满足第一一预设条件时,终端确定波束失败恢复过程失败。例如,可以判断上述波束失败 恢复时长的截止时刻是否满足第一预设条件,来确定当前的波束失败恢复过程是否成功,此时该第一预设条件可以为一截止时刻门限值。
在一种可能的实施方式中,可选的,上述第一预设条件可以包括下述各项中的至少一项:上述波束失败恢复请求的发送次数达到第一预设次数、至少一次发送波束失败恢复请求的发送时长达到第一预设时长、上述波束失败恢复时长达到第二预设时长。
也就是说,当终端确定波束失败恢复请求的发送次数达到第一预设次数时,终端确定当前的波束失败恢复过程失败;或者,当终端确定至少一次发送波束失败恢复请求的发送总时长达到第一预设时长时,终端确定当前的波束失败恢复过程失败;或者,当终端确定上述波束失败恢复时长达到第二预设时长时,终端确定当前的波束失败恢复过程失败;可选的,还可以是前三种方式的任意两种方式的结合,例如,当终端确定波束失败恢复请求的发送次数达到第一预设次数、且终端确定上述波束失败恢复时长达到第二预设时长时,终端确定当前的波束失败恢复过程失败。
由上述步骤描述可知,相较于相关技术,本实施例中的终端在发送了波束失败恢复请求之后,终端无需盲目的一直等待网络侧设备的响应信令,而是在发送了一次波束失败恢复请求后的预设时长内,如果没有接收到网络侧设备的响应信令,终端继续发送该波束失败恢复请求,同时结合所发送的波束失败恢复请求和波束失败恢复时长中至少一项,与第一预设条件进行匹配或者对比,确定当前的波束失败恢复情况。当波束失败恢复请求和波束失败恢复时长中的至少一项满足第一预设条件时,确定波束失败恢复过程失败,从而使得终端能够及时切换至新小区或者及时进行无线链路重建或者恢复,避免终端长时间等待网络侧设备的响应,降低了数据的传输时延和终端的功耗,减少了终端的开销。
本公开提供的波束失败恢复方法,当终端确定当前信息传输采用的BPL的质量满足预设的波束失败触发条件时,终端向网络侧设备发送波束失败恢复请求,若终端在预设时长内未接收到网络侧设备发送的响应信令时,终端继续向网络侧设备发送所述波束失败恢复请求,并在波束失败恢复请求和波束失败恢复时长中的至少一项满足第一预设条件时,确定波束失败恢复过程 失败,从而使得终端能够及时切换至新小区或者及时进行无线链路重建或者恢复,避免终端长时间等待网络侧设备的响应,降低了数据的传输时延和终端的功耗,减少了终端的开销。
在上述实施例一的基础上,当终端测量的当前信息传输采用的BPL的质量满足预设的波束失败触发条件时,终端可以启动波束失败恢复过程。本实施例二介绍的是波束失败恢复过程的启动方式,可以参见下述几种可选的方式:
可选的,可以是当终端测量的当前信息传输采用的BPL的质量满足预设的波束失败触发条件时,终端启动波束恢复(Beam Recovery,简称BR)定时器,该BR定时器的定时时长等于所述第二预设时长。也就是说,一旦终端测量的当前信息传输采用的BPL的质量满足预设的波束失败触发条件,BR定时器启动并且开始计时,当该BR定时器超时时(即波束失败恢复时长达到第二预设时长时),终端确定当前的波束失败恢复过程失败。该可选的方式中,通过设定BR定时器,使得终端可以通过该BR定时器是否超时来判断波束失败恢复过程是否失败,大大提高了终端确定波束失败恢复过程是否失败的效率。
可选的,上述第一预设条件中的波束失败恢复请求的发送次数可以通过在终端中设定的请求计数器来计数,即:当终端首次向网络侧设备发送所述波束失败恢复请求时,启动该请求计数器,该请求计数器的门限为所述第一预设次数。这样一旦终端发送了一次波束失败恢复请求,则该请求计数器加1。这样一旦波束失败恢复请求的发送次数达到该请求计数器的门限,则终端确定当前的波束失败恢复过程失败。该可选的方式中,通过设定请求计数器,使得终端可以通过该请求计数器判断波束失败恢复请求的次数是否达到第一预设次数,来判断波束失败恢复过程是否失败,大大提高了终端确定波束失败恢复过程是否失败的效率。
可选的,上述第一预设条件中的多次波束失败恢复请求的发送时长可以通过在终端中设定的请求定时器来定时,即:当终端首次向网络侧设备发送所述波束失败恢复请求时,启动该请求定时器,该请求定时器的定时时长为上述第一预设时长。这样一旦上述至少一次波束失败恢复请求的发送次时长 达到该请求定时器的定时时长时,则终端确定当前的波束失败恢复过程失败。该可选的方式中,通过设定请求定时器,使得终端可以通过该请求定时器是否超时来判断波束失败恢复过程是否失败,大大提高了终端确定波束失败恢复过程是否失败的效率。
综上所述,上述实施例二主要介绍了终端确定波束失败恢复结果的具体过程,该波束失败恢复的过程主要集中在终端的物理层上进行。下述实施例主要介绍基于上述波束失败恢复结果,确定终端的RRC层是否进行无线链路恢复或者无线链路重建的过程。这是因为:在相关技术中,当终端的RRC层判断无线链路失败后,其发起RRC重建过程,当有数据传输时,终端会再次进行波束训练,找到适合传输的波束,从而恢复数据传输。相关技术中RRC层的RRC重建或者无线链路恢复过程和终端的物理层的波束失败恢复过程之间没有关联,层间缺乏互通性,这样就可能会导致这样一种情况发生:假设某一时刻终端的物理层在进行波束失败恢复过程,终端的RRC层确定无线链路失败,进行无线链路恢复过程;当一段时间后,终端的物理层的波束失败恢复过程已经成功,即终端已经确定可以在备用BRL上恢复数据传输,但是终端的RRC层不知道该信息,终端的RRC层继续进行RRC重建,如果按照该场景,RRC重建此时会将所有的链路和波束中断,进一步导致数据传输时延过长或者中断。
因此,下述实施例主要针对的是终端的物理层和终端的RRC层之间的消息互通的过程,将终端的物理层的波束失败恢复过程和RRC层的RRC重建或者无线链路恢复过程进行关联。
图3为本公开提供的波束失败恢复方法实施例三的流程示意图。本实施例涉及的是终端的物理层的波束失败恢复过程和RRC层的无线链路恢复过程进行关联的具体过程。该方法的执行主体为终端。在上述实施例的基础上,该方法还包括如下步骤:
S201:若确定波束失败恢复过程失败,则启动无线链路失败和恢复过程。
具体的,当终端按照上述实施例确定终端的物理层的波束失败恢复过程失败,则终端可以确定启动终端的RRC层的无线链路失败和恢复过程。可选的,终端的物理层可以通过向终端的RRC层传输一信令或者指示,告知终端 的RRC层可以启动无线链路失败和恢复过程。
由该步骤的描述可知,本实施例中,在终端的物理层波束失败恢复过程失败后,终端的物理层通过相应的信令或者指示,通知终端的RRC层启动无线链路失败和恢复过程,该无线链路失败和恢复过程包含启动RRC层进行重建,因此,其可以避免终端RRC层在未检测到无线链路失败、但物理层的波束已经失败的情况下,RRC层迟迟不进行RRC重建的情况发生,进一步降低了数据传输的时延。
S202:若确定波束失败恢复过程成功,则停止无线链路失败和恢复过程。
具体的,该步骤中,终端的无线链路失败和恢复过程已经处于启动状态。该无线链路失败和恢复过程可以是在终端的物理层的波束失败恢复过程之前已经启动,或者,是在波束失败恢复过程中就已经启动。
因此,由该步骤的描述可知,当终端按照上述实施例确定终端的物理层的波束失败恢复过程成功时,终端可以根据终端的物理层向终端的RRC层传输的一信令或者指示,停止终端的RRC层已启动的无线链路失败和恢复过程,从而避免在物理层波束失败恢复过程成功后,终端的RRC层因无法获知物理层的波束恢复成功情况而盲目进行无线链路重建,导致的恢复好的波束再次被中断,使得数据传输时延过长的情况发生。该步骤通过终端的物理层和RRC层的互通,进一步降低了数据的传输时延。
需要时候的是,上述S201和S202之间没有时序关系的限定,二者之间是依据实际的波束失败恢复情况为并列的关系。
本公开提供的波束失败恢复方法,当终端确定物理层的波束失败恢复过程失败时,终端启动RRC层无线链路失败和恢复过程;当终端确定物理层的波束失败恢复过程成功,终端停止RRC层的无线链路失败和恢复过程。该方法不仅可以避免终端RRC层在未检测到无线链路失败、但物理层的波束恢复已经失败的情况下,RRC层迟迟不进行RRC重建的情况发生,还可以避免在物理层波束失败恢复过程成功后,终端的RRC层因无法获知物理层的波束恢复成功情况而盲目进行无线链路重建,导致的恢复好的波束再次被中断,使得数据传输时延过长的情况发生,其大大降低了数据传输的时延。
图4为本公开提供的波束失败恢复方法实施例四的流程示意图。本实施 例涉及的是终端的RRC层如何启动无线链路失败和恢复过程的具体过程。在上述图3所示实施例的基础上,针对上述S201,终端的RRC层如何启动无线链路失败和恢复过程,可以通过下述步骤实现,具体包括:
S301:终端根据所述终端的物理层向所述终端的无线资源控制RRC层传输的第一消息,启动所述RRC层的无线链路失败RLF过程。
具体的,终端的RRC层的无线链路失败和恢复过程,实际上包含了两个过程,一个是无线链路失败(RLF)过程,该无线链路失败过程的实质上在终端的RRC层接收到物理层的第一消息后,记录接收到第一消息后的这一段时长。如果这一段时长达到第三预设时长后,启动另一个过程,即无线链路恢复过程,该无线链路恢复过程用于进行RRC重建。
也就是说,当终端确定波束失败恢复过程成功时,终端根据终端的物理层向终端的RRC层传输的第一消息,启动RRC层的RLF过程。该第一消息可以是终端的物理层向终端的RRC层传输的失步指示,还可以是直接的RLF过程开启消息。由此可知,终端的物理层可以通过不同的方式指示终端的RRC层启动RLF过程,其提高了层间互通的多样性。
针对终端如何根据终端的物理层向终端的RRC层传输的失步指示,启动RRC层的RLF过程,可以参见后面图5所示的实施例五。
S302:若RLF过程启动后的延时时长达到所述第三预设时长时,所述终端启动无线链路恢复过程,所述无线链路恢复过程用于进行RRC重建。
具体的,当终端的RRC层启动了RLF过程后,终端可以无需做任何操作,直至RLF过程启动后的这一段延时时长达到了第三预设时长,终端启动无线链路恢复过程,以进行RRC重建。可选的,终端还可以在RLF过程启动后,且延时时长未超过第三预设时长之前,测量邻小区的同步信号、广播信号所使用的全向波束或宽波束的质量等,以为后续的数据传输恢复做准备。
结合上述S301和S302的描述,当终端确定波束失败恢复过程失败时,终端根据终端的物理层向终端的RRC层传输的第一消息,启动RRC层的RLF过程,并在启动RLF过程后的延时时长达到第三预设时长时,终端进行RRC重建。该方法通过在终端的物理层波束失败恢复过程失败后,通过第一消息,通知终端的RRC层进行重建,避免终端RRC层在未检测到无线链路失败、 但物理层的波束失败恢复过程已经失败的情况下,RRC层迟迟不进行RRC重建的情况发生,进一步降低了数据传输的时延。
图5为本公开提供的波束失败恢复方法实施例五的流程示意图。本实施例涉及的是当第一消息为失步指示(out-of-sync)时,终端如何根据终端的物理层向终端的RRC层传输的失步指示,启动RRC层的RLF过程的具体过程。在上述实施例的基础上,上述S301具体可以包括如下步骤:
S401:终端的物理层向所述终端的RRC层传输至少一次失步指示。
具体的,当终端测量当前信息传输所用的BPL的质量满足预设的波束失败恢复触发条件时(即终端确定当前信息传输所用的BPL的质量较差,无法继续满足数据传输的要求),终端启动波束失败恢复过程。在该波束失败恢复过程中或者在终端确定波束失败恢复过程失败后,终端的物理层会向终端的RRC层发送至少一次失步指示。针对在波束失败恢复过程中发送失步指示,以及,在终端确定波束失败恢复过程失败后,终端的物理层向终端的RRC层发送失步指示,可以参见下述几种可能的实现方式:
(1)针对终端的物理层在波束失败恢复过程中,向终端的RRC层发送至少一次失步指示,具体可以包括下面A和B两种实现方式:
A实现方式:终端根据所述波束失败恢复请求的发送次数,通过所述终端的物理层向所述终端的RRC层传输至少一次失步指示。
该实现方式下,终端可以结合波束失败恢复请求的发送次数,向终端的RRC层传输失步指示。可选的,可以是终端每发送一次波束失败恢复请求,终端的物理层就向终端的RRC层传输一次失步指示;可选的,还可以是终端每发送预设个数个波束失败恢复请求,终端的物理层就向终端的RRC层传输一次失步指示。
B实现方式:终端在发送所述波束失败恢复请求之后,根据测量的当前信息传输采用的BPL的质量,通过所述终端的物理层向所述终端的RRC层传输至少一次失步指示。
该实现方式中,终端进入波束失败恢复过程,即终端会向网络侧设备发送波束失败恢复请求,一旦终端发送了波束失败恢复请求,终端的物理层会继续对当前信息传输采用的BPL的质量进行至少一次测量,若当前信息传输 采用的BPL的质量小于第二阈值,则终端每测量到这样的一个BPL的质量,就会向终端的RRC层发送一次失步指示。可选的,该第二阈值可以是上述预设的波束失败触发条件中的门限值的第二波束恢复阈值,还可以是下述实施例中涉及到的预设的RLF触发条件中的门限值的第二RLF阈值。该预设的波束失败触发条件中的门限值包括第一波束恢复阈值和第二波束恢复阈值,第一波束恢复阈值大于第二波束恢复阈值,该预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,第一RLF阈值大于第二RLF阈值。
(2)针对终端的物理层在波束失败恢复后,向终端的RRC层发送至少一次失步指示,具体为:终端在确定所述波束失败恢复过程失败后,所述终端的物理层按照预设的失步指示发送机制向所述终端的RRC层传输至少一次失步指示。
该实现方式下,终端按照上述实施例一的方式确定波束失败恢复过程失败后,终端的物理层就按照预设的失步指示发送机制向终端的RRC层发送至少一次失步指示。
可选的,该预设的失步指示发送机制可以是终端在波束失败恢复过程失败后,再次测量当前信息传输采用的BPL的质量(例如测量当前信息传输采用的BPL上的参考信号、或者同步信号或者广播信道的接收功率或者信噪比),每测量一次该BPL的质量不满足上述第二阈值时,终端的物理层就向终端的RRC层传输一次失步指示。
可选的,该预设的失步指示发送机制还可以是终端在波束失败恢复过程失败之后,测量波束训练时的波束报告中的其他BPL的质量,每测量一次该BPL的质量不满足上述第二阈值时,终端的物理层就向终端的RRC层传输一次失步指示。
可选的,该预设的失步指示发送机制还可以是终端在波束失败恢复过程失败之后,测量包含当前信息传输采用的BPL的宽波束的质量每测量一次该宽波束的质量不满足上述第二阈值时,终端的物理层就向终端的RRC层传输一次失步指示。
由上述S401的描述可知,终端的物理层可以通过不同的触发方式向终端RRC层发送至少一次失步指示,提高了终端的物理层向终端的RRC层发送 失步指示的多样性,有助于后续终端根据该失步指示的传输次数启动RLF过程。
S402:若所述失步指示的传输次数大于第二预设次数,所述终端启动所述RLF过程。
具体的,当终端的RRC层接收到的失步指示的次数大于第二预设次数时,终端启动RLF过程,即终端启动RLF定时器,该RLF定时器的定时时长为第三预设时长。也就是说,当RLF定时器启动后,其开始计时,当该RLF定时器超时后,终端启动无线链路恢复过程,以进行RRC重建。由该步骤的描述可知,终端可以根据失步指示的传输次数与第二预设次数进行比较,来确定终端是否启动RLF过程,其确定是否启动RLF过程的方式简单,且通过失步指示实现了终端的物理层和RRC层的消息互通的目的。
本公开提供的波束失败恢复方法,终端的物理层通过向终端的RRC层发送的至少一次失步指示,在该失步指示的次数大于第二预设次数后,触发终端的RRC层启动RLF过程,即启动RLF定时器,在该定时器超时时,终端的RRC层进行无线链路恢复。该方法通过失步指示实现了物理层的波束失败恢复和终端的RRC层的无线链路恢复之间的互通,避免终端RRC层在未检测到无线链路失败、但物理层的波束失败恢复过程已经失败的情况下,RRC层迟迟不进行RRC重建的情况发生,进一步降低了数据传输的时延。
综上,上述图4和图5介绍的是在终端确定终端的物理层的波束失败恢复过程失败后,终端的物理层通过第一消息指示终端的RRC层启动无线链路失败和恢复过程的过程。下述实施例主要介绍在终端确定终端的物理层的波束失败恢复过程成功后,终端的物理层通过第二消息指示终端的RRC层停止已启动的无线链路失败和恢复过程的过程。在介绍该过程之前,先对终端如何确定波束失败恢复过程成功的过程进行介绍,参见下述图6所示的实施例六。
图6为本公开提供的波束失败恢复方法实施例六的流程示意图,本实施例涉及的是终端如何确定波束失败恢复过程成功的过程。该实施例中,上述波束失败触发条件中的门限值可以包括第一波束恢复阈值Q in,BR和第二波束恢复阈值Q out,BR,第一波束恢复阈值大于第二波束恢复阈值。在上述图2所 示实施例的基础上,进一步地,在S101之后,该方法还包括如下步骤:
S501:若终端在请求定时器未超时前或者终端发送波束失败恢复请求的次数未超过第一预设次数之前,终端接收到响应信令,则基于所述响应信令,确定备用BPL。
具体的,在下行数据传输时,终端周期性或者触发性的测量当前信息传输采用的BPL的质量,当终端确定当前信息传输的BPL的质量小于第二波束恢复阈值Q out,BR的次数达到一个预设次数(该预设次数可以是终端的RRC层配置的)时,终端确定当前信息传输的BPL的质量满足预设波束失败恢复触发条件,则终端启动波束失败恢复过程,即启动上述BR定时器。波束失败恢复过程启动后,终端向网络侧设备发送波束失败恢复请求,当终端首次向所述网络侧设备发送波束失败恢复请求时启动请求计数器和请求定时器中的至少一个。
当终端发送了一个波束恢复失败请求后,若终端在该波束失败恢复请求发送之后的预设时长内未接收到网络侧设备的响应信令,则终端继续向网络侧设备发送波束失败恢复请求,此时请求计数器加1,请求定时器持续计时。若终端在请求定时器未超时前或者终端发送波束失败恢复请求的次数未超过第一预设次数之前,终端接收到响应信令,终端基于该响应信令中的内容可以确定出网络侧设备所选择的备用BPL,并在该备用BPL上恢复数据传输。
由该步骤的描述可知,终端通过向网络侧设备发送至少一次的波束失败恢复请求,其提高了终端在请求定时器未超时前或者终端发送波束失败恢复请求的次数未超过第一预设次数之前,接收到响应信令的概率,从而进一步提高了终端确定备用BPL的效率。
S502:对所述备用BPL的质量进行至少一次测量。
S503:每测量一次备用BPL,且所测量的备用BPL的质量高于第一阈值,则获取备用BPL的质量高于第一阈值的次数;若所述备用BPL的质量高于第一阈值的次数大于第四预设次数,则确定波束失败恢复过程成功。
其中,该第一阈值可以为上述预设的波束失败触发条件中的门限值的第一波束恢复阈值、或者预设的RLF触发条件中的门限值的第一RLF阈值,上述预设的波束失败触发条件中的门限值包括第一波束恢复阈值和第二波束恢 复阈值,第一波束恢复阈值大于所述第二波束恢复阈值,该预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,所述第一RLF阈值大于所述第二RLF阈值。
可选的,该预设的RLF触发条件中的门限值也可以仅包括一个RLF阈值,实际上相当于上述第一RLF阈值等于第二RLF阈值的情况,这里不再赘述。
具体的,当终端确定出备用BPL,并在备用BPL上恢复数据传输后,终端会继续测量该备用BPL的质量(例如可以通过测量备用BPL上的参考信号或者控制信道的接收功率或者信噪比),如果该备用BPL的质量大于上述第一阈值,则终端将备用BPL的质量高于第一阈值的次数加1。当终端获取的备用BPL的质量高于第一阈值的次数大于第四预设次数时,终端确定波束失败恢复过程成功。
可选的,终端还可以基于该响应信令确定出备用BPL后,如果终端在该备用BPL上获取到控制信道信息,则终端也可以确定当前波束失败恢复过程成功。可选的,这里的“获取到控制信息”可以包括:终端在备用BPL上成功接收到控制信道信息,并成功解码或者解调中该控制信道信息的内容。
另外,当终端确定波束失败恢复过程成功后,终端可以停止上述BR定时器,即将BR定时器置零。
进一步地,当终端确定波束失败恢复过程成功后,终端的物理层可以指示终端的RRC层停止已启动的无线链路失败和恢复过程。图7为本公开提供的波束失败恢复方法实施例七的流程示意图。本实施例涉及的是终端确定波束失败恢复过程成功后,终端的RRC层如何停止无线链路失败和恢复过程的具体过程。在上述图3和图6所示实施例的基础上,针对上述S202,终端的RRC层如何停止无线链路失败和恢复过程,具体包括如下步骤:
S601:终端的物理层向所述终端的RRC层传输第二消息。
S602:终端的RRC层根据所述第二消息,停止已启动的无线链路失败RLF过程,以停止无线链路恢复过程。
具体的,由上述描述可知,终端启动RLF过程,实质上是启动了RLF定时器,该RLF定时器开始计时,当该RLF定时器超时时,终端的RRC层进行无线链路恢复过程。终端的高层通过设定该RLF定时器,使得终端基于 该RLF定时器是否超时,来确定是否进行无线链路恢复,简化了终端的RRC层确定是否进行无线链路恢复的操作,提高了终端的RRC层确定是否进行无线链路恢复的效率。
在本实施例中,该RLF定时器的启动时刻与上述图4和图5中所示实施例的启动时刻不同,上述图4和图5中该RLF定时器的启动时刻是在终端启动了波束失败恢复过程后,在终端的RRC层接收到的失步指示的次数大于第二预设次数时,启动RLF定时器;本实施例的RLF过程启动,与波束失败恢复过程是否启动之间为并行的关系,具体为:
终端周期或者实时采集当前信息传输采用的BPL的质量,当前信息传输采用的BPL的质量满足预设的RLF触发条件(即当前信息传输采用的BPL的质量小于该预设的RLF触发条件中的门限值中的第二RLF阈值Q out,RLF)时,终端的物理层向终端的RRC层传输至少一次失步指示,并且在该失步指示的传输次数大于第二预设次数时,终端的RRC层启动该RLF过程,即启动RLF定时器。与此同时,如上述实施例一中所描述的,终端也会判断当前信息传输采用的BPL的质量是否满足预设的波束失败恢复触发条件,若当前信息传输采用的BPL的质量满足预设的波束失败恢复触发条件(即当前信息传输采用的BPL的质量小于预设的波束失败恢复触发条件的门限值中的第二波束恢复阈值Q out,BR),终端的物理层也会启动波束失败恢复过程,即启动BR定时器。也就是说,BR定时器的启动和RLF定时器的启动之间是并行的关系,二者可以同时启动,也可以在不同时刻启动,只要该RLF定时器的启动时刻位于BR定时器启动时刻之前,或者在波束失败恢复过程中启动即可。该BR定时器的启动和RLF定时器的启动时刻取决于上述预设的波束失败恢复触发条件和预设的RFL触发条件。本实施例中,波束失败恢复触发条件包括第一波束恢复阈值Q in,BR和小于第一波束恢复阈值的第二波束恢复阈值Q out,BR,该预设的RLF触发条件包括第一RLF阈值Q in,RLF和小于第一RLF阈值Q in,RLF的第二RLF阈值Q out,RLF,可选的,这两种条件下的门限值可以相同也可以不同,例如,Q in,BR=Q in,RLF,Q out,BR=Q out,RLF,或Q in,BR<Q in,RLF,Q out,BR>Q out,RLF
综上所述,在本实施例中,RLF定时器的启动时刻位于BR定时器启动时刻之前,或者位于波束失败恢复过程中。即,终端的物理层在进行波束失 败恢复时,终端的RRC层的RLF定时器已经开始计时,以等待该RLF定时器超时后进行无线链路恢复,这里实际上模拟的是终端的物理层和终端的RRC层各自做各自的事情,二者之间没有互通的情况。因此,本实施例中当终端确定波束失败恢复过程成功后,终端的物理层及时向终端的RRC层发送第二消息,以通知终端的RRC层停止已启动的RLF过程,即停止正在计时的RLF定时器,以避免终端的RRC层进行无线链路恢复,从而导致刚恢复好的波束被中断的情况发生。
可选的,该第二消息可以是至少一次的同步指示,还可以是一次的RLF过程关闭消息。由此描述可知,上述S601的步骤中终端的物理层可以通过不同的方式指示终端的RRC层停止进行无线链路恢复过程,其不仅可以避免终端的RRC层进行无线链路恢复,从而导致刚恢复好的波束被中断的情况发生,而且也提高了层间互通的多样性。
当上述第二消息是至少一次的同步指示时,终端停止已启动的RLF过程的具体过程,可以参见图8所示的实施例八,如图8所示,该方法包括:
S701:终端的物理层向终端的RRC层传输至少一次同步指示。
具体的,若终端在请求定时器未超时前或者终端发送波束失败恢复请求的次数未超过第一预设次数之前,终端接收到响应信令,终端基于该响应信令中的内容可以确定出网络侧设备所选择的备用BPL,并对该备用BPL的质量进行至少一次测量。每测量一次备用BPL,若该备用BPL的质量大于上述第一阈值,终端的物理层就向终端的RRC层传输一次同步指示。该第一阈值可以为上述预设的波束失败触发条件中的门限值的第一波束恢复阈值Q in,BR,也可以是预设的RLF触发条件中的门限值的第一RLF阈值Q in,RLF。该预设的波束失败触发条件中的门限值包括第一波束恢复阈值和第二波束恢复阈值,第一波束恢复阈值大于所述第二波束恢复阈值,该预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,该第一RLF阈值大于所述第二RLF阈值。
基于此,终端的物理层就可以向终端的RRC传输一次或者多次的同步指示(in-sync)。
S702:若所述同步指示的传输次数大于第三预设次数,则停止所述终端 已启动的RLF过程。
具体的,当终端的RRC层收到终端的物理层传输的同步指示的次数大于第三预设次数,则终端的RRC层停止当前已启动的RLF过程,即停止上述已启动的RLF定时器,以使得终端的RRC层不进行无线链路恢复过程。
本实施例提供的波束失败恢复方法,在波束失败恢复过程成功后,终端的物理层通过向终端的RRC发送第二消息,以指示终端的RRC层停止已启动的RLF过程,即停止已启动的RLF定时器,从而使得终端的RRC层不进行RRC重建,从而避免在终端的物理层已经恢复好波束,却因RRC层的自主的进行无线链路恢复导致刚恢复好的波束被中断的情况发生。本公开实施例通过终端的物理层和终端的RRC的消息互通,降低了数据传输的等待时延。
为了更便于理解本公开实施例的技术方案,下述通过两个完整的实施例对本公开实施例的过程进行介绍。
图9a为本公开提供的波束失败恢复方法实施例九的流程示意图。本实施例涉及的是终端物理层的波束失败恢复过程和终端的RRC层的RLF过程串行进行的过程,即RLF过程的启动晚于终端物理层的波束失败恢复过程。该实施例中,预设的波束失败恢复触发条件包括第一波束恢复阈值Q in,BR和小于所述第一波束恢复阈值的第二波束恢复阈值Q out,BR,该预设的RLF触发条件包括Q in,RLF和小于Q in,RLF的Q out,RLF。该方法包括如下步骤:
S801:在下行数据传输过程中,终端监控当前信息传输采用的BPL的质量。
S802:若当前信息传输采用的BPL的质量小于第二波束恢复阈值Q out,BR的次数,大于预设次数,则终端启动波束失败恢复过程,即启动BR定时器。该BR定时器的时长为第一预设时长。
S803:终端向网络侧设备发送波束失败恢复请求,并在首次发送波束失败恢复请求时启动预设的请求计数器和请求定时器中的至少一个,该请求定时器的时长为第二预设时长,该请求计数器的门限为第一预设次数。
S804:网络侧设备接收该波束失败恢复请求。
这里存在两种情况,一种是网络侧设备没有接收到波束失败恢复请求,另一种是网络侧设备接收到波束失败恢复请求,具体过程参见上述实施例一 的描述。
S805:网络侧设备向终端发送响应信令。然后,执行S806或者S810。
针对上述S804的两种情况的,对应的,这里也存在两种情况,一种是网络侧设备接收到波束失败恢复请求,向终端发送了响应信令;另一种是网络侧设备没有接收到波束失败恢复请求,则不向终端响应信令。
可选的,当终端向网络侧设备发送了波束失败恢复请求之后,终端可以在当前信息传输采用的BPL上以及至少一个备用BPL上,接收网络侧设备发送的响应信令。例如,网络侧设备和终端通过波束训练,找到两个或者多个质量较好的BPL,可选的,可以从这些质量较好的BPL中确定一个质量最好的作为当前信息传输所采用的BPL(可以称为serving BPL),剩余的作为候选BPL(candidate BPL),备用BPL可以为这些候选BPL中的一个。该serving BPL,用于在网络侧设备和终端间的控制信道和数据信道传输,candidate BPL,用于当serving BPL被阻挡或其它情况而使得传输中断时,在candidate BPL恢复传输。在serving BPL正常使用过程中,candidate BPL上可以发送参考信号,用于终端周期性测量该candidate BPL的质量。
当终端确定发生波束失败恢复过程失败时,终端只在serving BPL上接收控制信道信息以及参考信号,在backup BPL上仅需测量下行参考信号,获得该candidate BPL的质量。
当终端确定波束失败恢复过程失败时,终端向基站发送波束失败恢复请求。无论对于终端的波束失败恢复请求发送不成功,或网络侧设备的响应信令发送不成功,都属于波束恢复异常情况,对终端来说,都是在发送波束失败恢复请求后不能收到来自基站的响应信令。因此,可选的,终端可以在波束训练期间获得的所有BPL上去接收网络侧设备发送的响应信令。可选的,该响应信令中可以包括波束失败恢复请求的确认信息,或者包括备用BPL的相关信息,或者,该响应信令中可以包括控制信道信息(例如PDCCH信息)和备用BPL的相关信息。该可选的接收方式,提高了提高接收响应信令的成功率,增加了波束失败恢复过程成功的可能性,且波束失败恢复速度快。
S806:若终端在预设时长内未接收到网络侧设备发送的针对上述波束失败恢复请求的响应信令,则终端继续向网络侧设备发送波束失败恢复请求。
S807:若波束失败恢复请求和波束失败恢复时长中的至少一项满足第一预设条件,则确定波束失败恢复过程失败。之后,执行S808-S810。
具体的,这里确定波束失败恢复过程失败,具体为下述至少一种情况:当终端发送至少一次波束失败恢复请求的发送时长大于第一预设时长,即请求定时器超时时,终端确定波束失败恢复过程失败;当终端发送波束失败恢复请求的发送次数大于请求计数器的门限即第一预设次数时,终端确定波束失败恢复过程失败;当终端的BR定时器超时时,终端确定波束失败恢复过程失败。
S808:在上述波束恢复失败过程启动后,终端的物理层向终端的RRC层传输失步指示。
可选的,可以是在波束失败恢复过程中,终端的物理层向RRC层传输至少一次失步指示,可选的,还可以是终端确定波束失败恢复过程失败后,终端的物理层按照预设的失步指示发送机制向RRC层传输至少一次失步指示。
S809:若所述失步指示的传输次数大于第二预设次数,终端启动RLF过程,即启动RLF定时器,该RLF定时器的时长为第三预设时长。
S810:当RLF定时器超时时,终端进行无线链路恢复,即进行RRC重建。
S811:当终端在请求定时器超时之前或者波束失败恢复请求的发送次数小于请求计数器的门限时,终端接收到网络侧设备的响应信令,终端基于该响应信令确定备用BPL。然后执行S812或者S813。
S812:若终端在备用BPL上第一次成功获取到控制信道信息,则终端确定波束失败恢复过程成功。
S813:终端对备用BPL进行至少一次的测量。
S814:每测量一次备用BPL,且所测量的备用BPL的质量高于第一阈值,则获取备用BPL的质量高于第一阈值的次数;若备用BPL的质量高于第一阈值的次数大于第四预设次数,则确定波束失败恢复过程成功。
上述S801至S814的具体实现过程,可以参见上述实施例中的描述,在此不再赘述。
图9b为本公开提供的波束失败恢复方法实施例十的流程示意图。本实施 例涉及的是终端物理层的波束失败恢复过程和终端的RRC层的RLF过程并行进行的过程,即RLF过程的启动与终端物理层的波束失败恢复过程启动并行进行。该实施例中,预设的波束失败恢复触发条件包括第一波束恢复阈值Q in,BR和小于所述第一波束恢复阈值的第二波束恢复阈值Q out,BR,该预设的RLF触发条件包括第一RLF阈值Q in,RLF和小于第一RLF阈值Q in,RLF的第二RLF阈值Q out,RLF。该方法包括如下步骤:
S901:在下行数据传输过程中,终端监控当前信息传输采用的BPL的质量。
S902:若当前信息传输采用的BPL的质量小于第二波束恢复阈值Q out,BR的次数大于预设次数,则终端启动波束失败恢复过程,即启动BR定时器。该BR定时器的时长为第一预设时长。
S903:终端每测量一次当前信息传输采用的BPL的质量小于Q out,RLF,则终端的物理层向终端的RRC层传输一次失步指示。当该失步指示的传输次数大于第二预设次数时,终端启动RLF过程,即启动RLF定时器。
需要说明的是,上述S902和S903是并行执行的,最后RLF定时器的启动时刻可以早于BR定时器的启动时刻,还可以位于波束失败恢复过程中。
S904:终端启动BR定时器时,终端向网络侧设备发送波束失败恢复请求,并在首次发送波束失败恢复请求时启动请求计数器和请求定时器中的至少一个。该请求定时器的时长为第二预设时长,该请求计数器的门限为第一预设次数。
S905:网络侧设备接收该波束失败恢复请求。
这里存在两种情况,一种是网络侧设备没有接收到波束失败恢复请求,另一种是网络侧设备接收到波束失败恢复请求,具体过程参见上述实施例一的描述。
S906:网络侧设备向终端发送响应信令。
针对上述S905的两种情况,对应的,这里也存在两种情况,一种是网络侧设备接收到波束失败恢复请求,向终端发送了响应信令;另一种是网络侧设备没有接收到波束失败恢复请求,则不向终端响应信令。
S907:若终端在预设时长内未接收到网络侧设备发送的针对上述波束失 败恢复请求的响应信令,则终端继续向网络侧设备发送波束失败恢复请求。然后执行S908或者S909。
S908:若波束失败恢复请求和波束失败恢复时长中的至少一项满足第一预设条件,则确定波束失败恢复过程失败。
具体的,这里确定波束失败恢复过程失败,具体为下述至少一种情况:当终端多次发送波束失败恢复请求的发送时长大于第一预设时长,即请求定时器超时时,终端确定波束失败恢复过程失败;当终端发送波束失败恢复请求的发送次数大于请求计数器的门限即第一预设次数时,终端确定波束失败恢复过程失败;当终端的BR定时器超时时,终端确定波束失败恢复过程失败。
也就是说,终端在请求定时器超时之前,或者,波束失败恢复请求的发送次数小于请求计数器的门限时,或者,终端的BR定时器超时时,终端仍未接收到网络侧设备的响应信令,终端确定波束失败恢复过程失败。
当终端确定波束失败恢复过程失败时,终端的物理层不通知终端的RRC层,即让终端的RRC层的RLF定时器继续计时,直至该RLF定时器超时,终端进行无线链路恢复。
S909:当终端在请求定时器超时之前或者波束失败恢复请求的发送次数小于请求计数器的门限时,终端接收到网络侧设备的响应信令,终端基于该响应信令确定备用BPL。然后执行S910或者S911。
S910:若终端在备用BPL上第一次成功获取到控制信道信息,则终端确定波束失败恢复过程成功。之后,执行S912。
S911:若终端确定的备用BPL的质量大于第一阈值的次数,大于第四预设次数,终端确定波束失败恢复过程成功。之后,执行S912。
S912:当终端确定波束失败恢复过程成功,并且终端每测量一次备用BPL的质量大于第一阈值,终端的物理层向终端的RRC层传输一次同步指示。
关于第一阈值的介绍,可以参见前述实施例的具体描述。
S913:当终端的RRC层接收到的同步指示的次数大于第三预设次数,终端的RRC层停止终端已启动的RLF过程,即停止上述S903中启动的定时器,以避免终端的RRC层在物理层的波束已经恢复好的情况下进行RRC重建。
上述S901至S913的具体实现过程,可以参见上述实施例中的描述,在此不再赘述。
图10为本公开提供的终端实施例一的结构示意图。如图10所示的终端100,包括:发送模块10、接收模块11和第一确定模块12。
发送模块10,用于若当前信息传输采用的波束对链路BPL的质量满足预设的波束失败触发条件时,则向网络侧设备发送波束失败恢复请求;若所述接收模块11在在预设时长内未接收到所述网络侧设备发送的响应信令,则继续向所述网络侧设备发送所述波束失败恢复请求,例如,可以采取周期性发送方式或事件触发式发送方式;
所述第一确定模块12,用于若波束失败恢复过程中的相关信息满足第一预设条件时,则确定波束失败恢复过程失败;
其中,所述波束失败恢复过程中的相关信息包括:所述波束失败恢复请求、波束失败恢复时长中的至少一项,所述波束恢复时长的起始时刻为所述当前信息传输采用的BPL的质量满足所述波束失败触发条件的时刻。
可选的,所述第一预设条件包括下述各项中的至少一项:
所述波束失败恢复请求的发送次数达到第一预设次数;
至少一次发送波束失败恢复请求的发送时长达到第一预设时长;
所述波束失败恢复时长达到第二预设时长。
在图10的基础上,图11为本公开提供的终端实施例二的结构示意图。可选地,上述终端100还可以包括:第一启动模块13、第二启动模块14和第三启动模块15中的至少一个,其中,
第一启动模块13,用于若所述当前信息传输采用的BPL的质量满足预设的波束失败触发条件,则启动预设的波束恢复BR定时器,所述BR定时器的定时时长等于所述第二预设时长;
第二启动模块14,用于在所述发送模块10首次向所述网络侧设备发送所述波束失败恢复请求时,启动预设的请求计数器,所述请求计数器的门限为所述第一预设次数;
第三启动模块15,用于在所述发送模块10首次向所述网络侧设备发送所述波束失败恢复请求时,启动预设的请求定时器,所述请求定时器的定时 时长等于所述第一预设时长。
在图11的基础上,图12是本公开提供的终端实施例三的结构示意图。可选的,该终端100还可以包括:第四启动模块16和第一停止模块21;其中,
所述第四启动模块16,用于若确定波束失败恢复过程失败,则启动无线链路失败和恢复过程;
所述第一停止模块21,用于若确定波束失败恢复过程成功时,则停止无线链路失败和恢复过程。
在波束失败恢复过程恢复失败时,可选的,继续参见图12所示,所述第四启动模块16,可以包括:第一启动单元161和第二启动单元162;其中,
第一启动单元161,用于根据所述终端的物理层向所述终端的RRC层传输的第一消息,启动所述RRC层的无线链路失败RLF过程;
第二启动单元162,用于若RLF过程启动后的延时时长达到所述第三预设时长,则启动无线链路恢复过程。
进一步地,上述发送模块10,还用于通过终端的物理层向所述终端的RRC层传输至少一次失步指示;则所述第一启动单元161,具体用于若所述失步指示的传输次数大于第二预设次数,则启动所述RLF过程。
更进一步地,所述第一启动单元161,具体用于启动RLF定时器,所述RLF定时器的定时时长为所述第三预设时长。
可选的,上述发送模块10,还用于通过终端的物理层向所述终端的RRC层传输至少一次失步指示,包括:
所述发送模块10,具体用于在波束失败恢复的过程中,通过所述终端的物理层向所述终端的RRC层传输至少一次失步指示;或者,在所述波束失败恢复过程失败后,通过所述终端的物理层按照预设的失步指示发送机制,向所述终端的RRC层传输至少一次失步指示。
可选的,上述发送模块10,具体用于在波束失败恢复的过程中,通过所述终端的物理层向所述终端的RRC层传输至少一次失步指示,包括:
所述发送模块10,具体用于根据所述波束失败恢复请求的发送次数,通过所述终端的物理层,向所述终端的RRC层传输至少一次失步指示;或者, 在发送所述波束失败恢复请求之后,根据测量的当前信息传输采用的BPL的质量,通过所述终端的物理层,向所述终端的RRC层传输至少一次失步指示。
在第一确定模块12确定波束失败恢复过程成功时,可选的,上述发送模块10,还用于通过所述终端的物理层向所述终端的RRC层传输第二消息;
所述第一停止模块21,具体用于根据所述第二消息,停止已启动的无线链路失败RLF过程,以停止无线链路恢复过程。
可选的,所述发送模块10,还用于通过所述终端的物理层向所述终端的RRC层传输第二消息,包括:
所述发送模块10,具体用于通过所述终端的物理层向所述终端的RRC层传输至少一次同步指示;
则所述第一停止模块21,具体用于若所述同步指示的传输次数大于第三预设次数,则停止已启动的RLF过程。
可选的,所述第一停止模块21,具体用于关闭已启动的RLF定时器。
本公开提供的终端,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
在上述图12的基础上,进一步地,图13为本公开提供的终端实施例四的结构示意图。可选的,如图13所示,该终端100还可以包括:第二确定模块17和测量模块18;可选的,该终端100还可以包括第五启动模块19。
所述第二确定模块17,用于若所述接收模块11接收到所述响应信令,则根据所述响应信令,确定备用BPL;
所述测量模块18,用于对所述备用BPL的质量进行至少一次测量;
所述发送模块10,具体用于每测量一次备用BPL,在所测量的备用BPL的质量大于第一阈值时,通过所述终端的物理层向所述终端的RRC层传输一次同步指示;
其中,所述第一阈值为所述预设的波束失败触发条件中的门限值的第一波束恢复阈值、或者预设的RLF触发条件中的门限值的第一RLF阈值,所述预设的波束失败触发条件中的门限值包括所述第一波束恢复阈值和第二波束恢复阈值,所述第一波束恢复阈值大于所述第二波束恢复阈值,所述预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,所述第一RLF 阈值大于所述第二RLF阈值。
可选的,所述发送模块10,还用于在通过终端的物理层向所述终端的RRC层传输至少一次同步指示之前,若所述当前信息传输采用的BPL的质量满足预设的RLF触发条件,则通过所述终端的物理层向所述终端的RRC层传输至少一次失步指示;
所述第五启动模块19,用于若所述失步指示的传输次数大于第二预设次数,则启动所述RLF过程。
可选的,所述第五启动模块19,具体用于启动RLF定时器。
在上述图13的基础上,进一步地,图14为本公开提供的终端实施例五的结构示意图。可选的,如图14所示,上述所述第一确定模块12,包括:第一确定单元121、测量单元122、获取单元123和第二确定单元124。其中,
第一确定单元121,用于若所述接收模块11接收到所述响应信令,则基于所述响应信令,确定备用BPL;
测量单元122,用于对所述备用BPL的质量进行至少一次测量;
获取单元123,用于每测量一次备用BPL,且所测量的备用BPL的质量高于第一阈值,则获取备用BPL的质量高于第一阈值的次数;
第二确定单元124,用于若所述备用BPL的质量高于第一阈值的次数大于第四预设次数,则确定波束失败恢复过程成功;
其中,所述第一阈值为所述预设的波束失败触发条件中的门限值的第一波束恢复阈值、或者预设的RLF触发条件中的门限值的第一RLF阈值,所述预设的波束失败触发条件中的门限值包括所述第一波束恢复阈值和第二波束恢复阈值,所述第一波束恢复阈值大于所述第二波束恢复阈值,所述预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,所述第一RLF阈值大于所述第二RLF阈值。
在上述图13的基础上,进一步地,图15为本公开提供的终端实施例六的结构示意图。可选的,如图15所示,上述所述第一确定模块12,包括:第三确定单元125和第四确定单元126。
第三确定单元125,用于若所述接收模块11接收到所述响应信令,则根据所述响应信令,确定备用BPL;
第四确定单元126,用于在所述接收模块11在所述备用BPL上获取到控制信道信息时,确定波束失败恢复过程成功。
进一步地,在上述图14或者图15所示实施例的基础上,如图16所示的实施例七,所述装置还包括:第二停止模块20。其中,
第二停止模块20,用于在所述第一确定模块12确定波束失败恢复过程成功时,停止所述BR定时器。
需要说明的是,图16是在图15的基础上示出的示意图,当然,图16也可以基于图14的结构上示出。
可选的,上述接收模块11,具体用于在所述发送模块10向网络侧设备发送波束失败恢复请求之后,在所述当前信息传输采用的BPL上以及至少一个备用BPL上,接收所述网络侧设备发送的响应信令。
上述终端能够实现图2至图9的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例提供的终端,当终端确定当前信息传输采用的BPL的质量满足预设的波束失败触发条件时,终端向网络侧设备发送波束失败恢复请求,若终端在预设时长内未接收到网络侧设备发送的响应信令时,终端继续向网络侧设备发送所述波束失败恢复请求,并在波束失败恢复请求和波束失败恢复时长中的至少一项满足第一预设条件时,确定波束失败恢复过程失败,从而使得终端能够及时切换至新小区或者及时进行无线链路重建或者恢复,避免终端长时间等待网络侧设备的响应,降低了数据的传输时延和终端的功耗,减少了终端的开销;另一方面,当终端确定物理层的波束失败恢复过程失败时,终端启动RRC层无线链路失败和恢复过程;当终端确定物理层的波束失败恢复过程成功,终端停止RRC层的无线链路失败和恢复过程。其不仅可以避免终端RRC层在未检测到无线链路失败、但物理层的波束恢复已经失败的情况下,RRC层迟迟不进行RRC重建的情况发生,还可以避免在物理层波束失败恢复过程成功后,终端的RRC因无法获知物理层的波束恢复成功情况而盲目进行无线链路重建,导致的恢复好的波束再次被中断,使得数据传输时延过长的情况发生,其大大降低了数据传输的时延。
图17是本公开提供的终端实施例八的结构示意图。图17所示的终端700 包括:至少一个处理器701、存储器702、至少一个网络接口704和用户接口703。终端700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图17中将各种总线都标为总线系统705。另外,本公开实施例中,还包括收发机706,收发机可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
其中,用户接口703可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器702存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统7021和应用程序7022。
其中,操作系统7021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序7022, 包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序7022中。
在本公开实施例中,通过调用存储器702存储的程序或指令,具体的,可以是应用程序7022中存储的程序或指令,其中,收发机706,用于在处理器确定当前信息传输采用的BPL的质量满足预设的波束失败触发条件时,向网络侧设备发送波束失败恢复请求;若在预设时长内未接收到所述网络侧设备发送的响应信令,则继续向所述网络侧设备发送所述波束失败恢复请求;所述处理器701,用于在波束失败恢复过程中的相关信息满足第一预设条件时,确定波束失败恢复过程失败;
其中,所述波束失败恢复过程中的相关信息包括:所述波束失败恢复请求、波束失败恢复时长中的至少一项,所述波束恢复时长的起始时刻为所述当前信息传输采用的BPL的质量满足所述波束失败触发条件的时刻。
上述本公开实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一 个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器701执行。存储器可以在处理器701中或在处理器701外部实现。
可选地,所述第一预设条件包括下述各项中的至少一项:
所述波束失败恢复请求的发送次数达到第一预设次数;
至少一次发送波束失败恢复请求的发送时长达到第一预设时长;
所述波束失败恢复时长达到第二预设时长。
可选地,所述处理器701,还用于若所述当前信息传输采用的BPL的质量满足预设的波束失败触发条件,则启动预设的波束恢复BR定时器,所述BR定时器的定时时长等于所述第二预设时长。
可选地,所述处理器701,还用于在所述收发机706首次向所述网络侧设备发送所述波束失败恢复请求时,启动预设的请求计数器,所述请求计数器的门限为所述第一预设次数。
可选地,所述处理器701,还用于在所述收发机706首次向所述网络侧设备发送所述波束失败恢复请求时,启动预设的请求定时器,所述请求定时器的定时时长等于所述第一预设时长。
可选地,作为另一个实施例,所述处理器701,还用于若确定波束失败恢复过程失败,则启动无线链路失败和恢复过程;若确定波束失败恢复过程成功,则停止无线链路失败和恢复过程。
可选地,在波束失败恢复过程失败时,作为另一个实施例,所述处理器701,还用于根据终端的物理层向所述终端的RRC层传输的第一消息,启动所述RRC层的无线链路失败RLF过程;在RLF过程启动后的延时时长达到所述第三预设时长时,启动无线链路恢复过程。
可选地,所述收发机706,还用于通过所述终端的物理层向所述终端的 RRC层传输至少一次失步指示;所述处理器701,还用于若所述失步指示的传输次数大于第二预设次数,则启动所述RLF过程。
可选地,所述处理器701,用于启动所述RLF过程,包括:
所述处理器701,用于启动RLF定时器,所述RLF定时器的定时时长为所述第三预设时长。
可选地,所述收发机706,具体用于通过所述终端的物理层在波束失败恢复的过程中,向所述终端的RRC层传输至少一次失步指示;或者,在所述波束失败恢复过程失败后,通过所述终端的物理层按照预设的失步指示发送机制,向所述终端的RRC层传输至少一次失步指示。
可选地,所述收发机706,具体用于根据所述波束失败恢复请求的发送次数,通过所述终端的物理层,向所述终端的RRC层传输至少一次失步指示;或者,在发送所述波束失败恢复请求之后,根据测量的当前信息传输采用的BPL的质量,通过所述终端的物理层,向所述终端的RRC层传输至少一次失步指示。
可选地,在波束失败恢复过程失败时,作为另一个实施例,所述收发机706,还用于通过所述终端的物理层向所述终端的RRC层传输第二消息;所述处理器701,还用于根据所述第二消息,停止已启动的无线链路失败RLF过程,以停止无线链路恢复过程。
可选地,所述收发机706,具体用于通过所述终端的物理层向所述终端的RRC层传输至少一次同步指示;所述处理器701,具体用于若所述同步指示的传输次数大于第三预设次数,则停止已启动的RLF过程。
可选地,所述处理器701,用于停止已启动的RLF过程,包括:
所述处理器701,用于关闭已启动的RLF定时器。
可选地,所述收发机706,具体用于在接收到所述响应信令时,根据所述响应信令,确定备用BPL,并对所述备用BPL的质量进行至少一次测量;每测量一次备用BPL,若所测量的备用BPL的质量大于第一阈值,则所述终端的物理层向所述终端的RRC层传输一次同步指示;
其中,所述第一阈值为所述预设的波束失败触发条件中的门限值的第一波束恢复阈值、或者预设的RLF触发条件中的门限值的第一RLF阈值,所述 预设的波束失败触发条件中的门限值包括所述第一波束恢复阈值和第二波束恢复阈值,所述第一波束恢复阈值大于所述第二波束恢复阈值,所述预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,所述第一RLF阈值大于所述第二RLF阈值。
可选地,所述收发机706,还用于在所述处理器701确定当前信息传输采用的BPL的质量满足预设的RLF触发条件时,通过所述终端的物理层向所述终端的RRC层传输至少一次失步指示;所述处理器701,还用于若所述失步指示的传输次数大于第二预设次数,则启动所述RLF过程。
可选地,所述处理器701,用于启动所述RLF过程,包括:
所述处理器701,用于启动RLF定时器。
可选地,所述处理器701,还用于若所述收发机706所测量的备用BPL的质量高于第一阈值,则获取备用BPL的质量高于第一阈值的次数;若所述备用BPL的质量高于第一波阈值的次数大于第四预设次数,则确定波束失败恢复过程成功;
其中,所述第一阈值为所述预设的波束失败触发条件中的门限值的第一波束恢复阈值、或者预设的RLF触发条件中的门限值的第一RLF阈值,所述预设的波束失败触发条件中的门限值包括所述第一波束恢复阈值和第二波束恢复阈值,所述第一波束恢复阈值大于所述第二波束恢复阈值,所述预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,所述第一RLF阈值大于所述第二RLF阈值。
可选地,所述处理器701,还用于在所述收发机706在备用BPL上获取到控制信道信息时,确定波束失败恢复过程成功。
可选地,所述处理器701,还用于若确定波束失败恢复过程成功,则停止所述BR定时器。
可选地,所述收发机706,还用于在所述当前信息传输采用的BPL上以及至少一个备用BPL上,接收所述网络侧设备发送的响应信令。
上述终端能够实现前述实施例中移动终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例提供的终端,当终端确定当前信息传输采用的BPL的质量 满足预设的波束失败触发条件时,终端向网络侧设备发送波束失败恢复请求,若终端在预设时长内未接收到网络侧设备发送的响应信令时,终端继续向网络侧设备发送所述波束失败恢复请求,并在波束失败恢复请求和波束失败恢复时长中的至少一项满足第一预设条件时,确定波束失败恢复过程失败,从而使得终端能够及时切换至新小区或者及时进行无线链路重建或者恢复,避免终端长时间等待网络侧设备的响应,降低了数据的传输时延和终端的功耗,减少了终端的开销;另一方面,当终端确定物理层的波束失败恢复过程失败时,终端启动RRC层无线链路失败和恢复过程;当终端确定物理层的波束失败恢复过程成功,终端停止RRC层的无线链路失败和恢复过程。其不仅可以避免终端RRC层在未检测到无线链路失败、但物理层的波束恢复已经失败的情况下,RRC层迟迟不进行RRC重建的情况发生,还可以避免在物理层波束失败恢复过程成功后,终端的RRC因无法获知物理层的波束恢复成功情况而盲目进行无线链路重建,导致的恢复好的波束再次被中断,使得数据传输时延过长的情况发生,其大大降低了数据传输的时延。
本领域普通技术人员可以意识到,结合本公开实施例中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (44)

  1. 一种波束失败恢复方法,应用于终端,包括:
    若当前信息传输采用的波束对链路BPL的质量满足预设的波束失败触发条件,则向网络侧设备发送波束失败恢复请求;
    若在预设时长内未接收到所述网络侧设备发送的响应信令,继续向所述网络侧设备发送所述波束失败恢复请求;
    若波束失败恢复过程中的相关信息满足第一预设条件,则确定波束失败恢复过程失败;
    其中,所述波束失败恢复过程中的相关信息包括:所述波束失败恢复请求、波束失败恢复时长中的至少一项。
  2. 根据权利要求1所述的方法,其中,所述第一预设条件包括下述各项中的至少一项:
    所述波束失败恢复请求的发送次数达到第一预设次数;
    至少一次发送波束失败恢复请求的发送时长达到第一预设时长;
    所述波束失败恢复时长达到第二预设时长。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    若所述当前信息传输采用的BPL的质量满足预设的波束失败触发条件,则启动预设的波束恢复BR定时器,所述BR定时器的定时时长等于所述第二预设时长。
  4. 根据权利要求2所述的方法,其中,所述方法还包括:
    当首次向所述网络侧设备发送所述波束失败恢复请求时,启动预设的请求计数器,所述请求计数器的门限为所述第一预设次数。
  5. 根据权利要求2所述的方法,其中,所述方法还包括:
    当首次向所述网络侧设备发送所述波束失败恢复请求时,启动预设的请求定时器,所述请求定时器的定时时长等于所述第一预设时长。
  6. 根据权利要求3所述的方法,其中,所述方法还包括:
    若确定波束失败恢复过程失败,则启动无线链路失败和恢复过程;
    若确定波束失败恢复过程成功,则停止无线链路失败和恢复过程。
  7. 根据权利要求6所述的方法,其中,所述启动无线链路失败和恢复过程,包括:
    根据终端的物理层向所述终端的RRC层传输的第一消息,启动所述RRC层的无线链路失败RLF过程;
    若RLF过程启动后的延时时长达到第三预设时长,则启动无线链路恢复过程。
  8. 根据权利要求7所述的方法,其中,所述根据所述终端的物理层向所述终端的RRC层传输的第一消息,启动所述RRC层的RLF过程,包括:
    所述终端的物理层向所述终端的RRC层传输至少一次失步指示;
    若所述失步指示的传输次数大于第二预设次数,则启动所述RLF过程。
  9. 根据权利要求8所述的方法,其中,所述启动所述RLF过程,包括:
    启动RLF定时器,所述RLF定时器的定时时长为所述第三预设时长。
  10. 根据权利要求8所述的方法,其中,所述终端的物理层向所述终端的RRC层传输至少一次失步指示,包括:
    所述终端的物理层在波束失败恢复的过程中,向所述终端的RRC层传输至少一次失步指示;或者,
    在所述波束失败恢复过程失败后,所述终端的物理层按照预设的失步指示发送机制,向所述终端的RRC层传输至少一次失步指示。
  11. 根据权利要求10所述的方法,其中,所述终端的物理层在波束失败恢复的过程中,向所述终端的RRC层传输至少一次失步指示,包括:
    根据所述波束失败恢复请求的发送次数,通过所述终端的物理层,向所述终端的RRC层传输至少一次失步指示;
    或者,
    在发送所述波束失败恢复请求之后,根据测量的当前信息传输采用的BPL的质量,通过所述终端的物理层,向所述终端的RRC层传输至少一次失步指示。
  12. 根据权利要求6所述的方法,其中,所述停止无线链路失败和恢复过程,包括:
    所述终端的物理层向所述终端的RRC层传输第二消息;
    所述终端的RRC层根据所述第二消息,停止已启动的无线链路失败RLF过程,以停止无线链路恢复过程。
  13. 根据权利要求12所述的方法,其中,所述终端的物理层向所述终端的RRC层传输第二消息,包括:
    所述终端的物理层向所述终端的RRC层传输至少一次同步指示;
    所述终端的RRC层根据所述第二消息,停止已启动的RLF过程,包括:
    若所述同步指示的传输次数大于第三预设次数,则停止已启动的RLF过程。
  14. 根据权利要求13所述的方法,其中,所述停止已启动的RLF过程,包括:
    关闭已启动的RLF定时器。
  15. 根据权利要求13所述的方法,其中,所述终端的物理层向所述终端的RRC层传输至少一次同步指示,包括:
    若接收到所述响应信令,则根据所述响应信令,确定备用BPL;
    对所述备用BPL的质量进行至少一次测量;
    每测量一次备用BPL,若所测量的备用BPL的质量大于第一阈值,则所述终端的物理层向所述终端的RRC层传输一次同步指示;
    其中,所述第一阈值为所述预设的波束失败触发条件中的门限值的第一波束恢复阈值、或者预设的RLF触发条件中的门限值的第一RLF阈值,所述预设的波束失败触发条件中的门限值包括所述第一波束恢复阈值和第二波束恢复阈值,所述第一波束恢复阈值大于所述第二波束恢复阈值,所述预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,所述第一RLF阈值大于所述第二RLF阈值。
  16. 根据权利要求13所述的方法,其中,所述终端的物理层向所述终端的RRC层传输至少一次同步指示之前,所述方法还包括:
    若所述当前信息传输采用的BPL的质量满足预设的RLF触发条件,则所述终端的物理层向所述终端的RRC层传输至少一次失步指示;
    若所述失步指示的传输次数大于第二预设次数,则启动所述RLF过程。
  17. 根据权利要求16所述的方法,其中,启动所述RLF过程,包括:
    启动RLF定时器。
  18. 根据权利要求6所述的方法,其中,所述确定波束失败恢复过程成功,包括:
    若所述终端接收到所述响应信令,则基于所述响应信令,确定备用BPL;
    对所述备用BPL的质量进行至少一次测量;
    每测量一次备用BPL,且所测量的备用BPL的质量高于第一阈值,则获取备用BPL的质量高于第一阈值的次数;
    若所述备用BPL的质量高于第一阈值的次数大于第四预设次数,则确定波束失败恢复过程成功;
    其中,所述第一阈值为所述预设的波束失败触发条件中的门限值的第一波束恢复阈值、或者预设的RLF触发条件中的门限值的第一RLF阈值,所述预设的波束失败触发条件中的门限值包括所述第一波束恢复阈值和第二波束恢复阈值,所述第一波束恢复阈值大于所述第二波束恢复阈值,所述预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,所述第一RLF阈值大于所述第二RLF阈值。
  19. 根据权利要求6所述的方法,其中,所述确定波束失败恢复过程成功,具体包括:
    若所述终端接收到所述响应信令,则根据所述响应信令,确定备用BPL;
    若所述终端在所述备用BPL上获取到控制信道信息,则确定波束失败恢复过程成功。
  20. 根据权利要求18或19所述的方法,其中,所述方法还包括:
    若确定波束失败恢复过程成功,则停止所述BR定时器。
  21. 根据权利要求1所述的方法,其中,所述向网络侧设备发送波束失败恢复请求之后,所述方法还包括:
    在所述当前信息传输采用的BPL上以及至少一个备用BPL上,接收所述网络侧设备发送的响应信令。
  22. 一种终端,包括:发送模块、接收模块和第一确定模块;
    发送模块,用于若当前信息传输采用的波束对链路BPL的质量满足预设的波束失败触发条件,则向网络侧设备发送波束失败恢复请求;若所述接收 模块在在预设时长内未接收到所述网络侧设备发送的响应信令,继续向所述网络侧设备发送所述波束失败恢复请求;
    所述第一确定模块,用于若在波束失败恢复过程中的相关信息满足第一预设条件,则确定波束失败恢复过程失败;
    其中,所述波束失败恢复过程中的相关信息包括:所述波束失败恢复请求、波束失败恢复时长中的至少一项。
  23. 根据权利要求22所述的终端,其中,所述第一预设条件包括下述各项中的至少一项:
    所述波束失败恢复请求的发送次数达到第一预设次数;
    至少一次发送波束失败恢复请求的发送时长达到第一预设时长;
    所述波束失败恢复时长达到第二预设时长。
  24. 根据权利要求23所述的终端,其中,所述终端还包括:
    第一启动模块,用于若所述当前信息传输采用的BPL的质量满足预设的波束失败触发条件,则启动预设的波束恢复BR定时器,所述BR定时器的定时时长等于所述第二预设时长。
  25. 根据权利要求23所述的终端,其中,所述终端还包括:
    第二启动模块,用于当首次向所述网络侧设备发送所述波束失败恢复请求时,启动预设的请求计数器,所述请求计数器的门限为所述第一预设次数。
  26. 根据权利要求23所述的终端,其中,所述终端还包括:
    第三启动模块,用于当首次向所述网络侧设备发送所述波束失败恢复请求时,启动预设的请求定时器,所述请求定时器的定时时长等于所述第一预设时长。
  27. 根据权利要求24所述的终端,其中,所述终端还包括:第四启动模块和第一停止模块;
    所述第四启动模块,用于若确定波束失败恢复过程失败,则启动无线链路失败和恢复过程;
    所述第一停止模块,用于若确定波束失败恢复过程成功,则停止无线链路失败和恢复过程。
  28. 根据权利要求27所述的终端,其中,所述第四启动模块,包括:
    第一启动单元,用于根据所述终端的物理层向所述终端的RRC层传输的第一消息,启动所述RRC层的无线链路失败RLF过程;
    第二启动单元,用于若RLF过程启动后的延时时长达到第三预设时长时,则启动无线链路恢复过程。
  29. 根据权利要求28所述的终端,其中,所述发送模块,还用于通过终端的物理层向所述终端的RRC层传输至少一次失步指示;
    所述第一启动单元,具体用于若所述失步指示的传输次数大于第二预设次数,则启动所述RLF过程。
  30. 根据权利要求29所述的终端,其中,所述第一启动单元,具体用于启动RLF定时器,所述RLF定时器的定时时长为所述第三预设时长。
  31. 根据权利要求29所述的终端,其中,所述发送模块,还用于通过终端的物理层向所述终端的RRC层传输至少一次失步指示,包括:
    所述发送模块,具体用于在波束失败恢复的过程中,通过所述终端的物理层向所述终端的RRC层传输至少一次失步指示;或者,
    在所述波束失败恢复过程失败后,通过所述终端的物理层按照预设的失步指示发送机制,向所述终端的RRC层传输至少一次失步指示。
  32. 根据权利要求31所述的终端,其中,所述发送模块,具体用于在波束失败恢复的过程中,通过所述终端的物理层向所述终端的RRC层传输至少一次失步指示,包括:
    所述发送模块,具体用于根据所述波束失败恢复请求的发送次数,通过所述终端的物理层,向所述终端的RRC层传输至少一次失步指示;
    或者,
    在发送所述波束失败恢复请求之后,根据测量的当前信息传输采用的BPL的质量,通过所述终端的物理层,向所述终端的RRC层传输至少一次失步指示。
  33. 根据权利要求27所述的终端,其中,所述发送模块,还用于通过所述终端的物理层向所述终端的RRC层传输第二消息;
    所述第一停止模块,具体用于根据所述第二消息,停止已启动的无线链路失败RLF过程,以停止无线链路恢复过程。
  34. 根据权利要求33所述的终端,其中,所述发送模块,还用于通过所述终端的物理层向所述终端的RRC层传输第二消息,包括:
    所述发送模块,具体用于通过所述终端的物理层向所述终端的RRC层传输至少一次同步指示;
    所述第一停止模块,具体用于若所述同步指示的传输次数大于第三预设次数,则停止已启动的RLF过程。
  35. 根据权利要求34所述的终端,其中,所述第一停止模块,具体用于关闭已启动的RLF定时器。
  36. 根据权利要求34所述的终端,其中,所述终端还包括:第二确定模块和测量模块;
    所述第二确定模块,用于若接收到所述响应信令,则根据所述响应信令,确定备用BPL;
    所述测量模块,用于对所述备用BPL的质量进行至少一次测量;
    所述发送模块,具体用于在每测量一次备用BPL,在所测量的备用BPL的质量大于第一阈值时,通过所述终端的物理层向所述终端的RRC层传输一次同步指示;
    其中,所述第一阈值为所述预设的波束失败触发条件中的门限值的第一波束恢复阈值、或者预设的RLF触发条件中的门限值的第一RLF阈值,所述预设的波束失败触发条件中的门限值包括所述第一波束恢复阈值和第二波束恢复阈值,所述第一波束恢复阈值大于所述第二波束恢复阈值,所述预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,所述第一RLF阈值大于所述第二RLF阈值。
  37. 根据权利要求34所述的终端,其中,所述终端还包括:第五启动模块;
    所述发送模块,还用于在通过终端的物理层向所述终端的RRC层传输至少一次同步指示之前,若所述当前信息传输采用的BPL的质量满足预设的RLF触发条件,则通过所述终端的物理层向所述终端的RRC层传输至少一次失步指示;
    所述第五启动模块,用于若所述失步指示的传输次数大于第二预设次数, 则启动所述RLF过程。
  38. 根据权利要求37所述的终端,其中,所述第五启动模块,具体用于启动RLF定时器。
  39. 根据权利要求27所述的终端,其中,所述第一确定模块,包括:
    第一确定单元,用于若所述接收模块接收到所述响应信令,则基于所述响应信令,确定备用BPL;
    测量单元,用于对所述备用BPL的质量进行至少一次测量;
    获取单元,用于每测量一次备用BPL,且所测量的备用BPL的质量高于第一阈值,则获取备用BPL的质量高于第一阈值的次数;
    第二确定单元,用于若所述备用BPL的质量高于第一阈值的次数大于第四预设次数,则确定波束失败恢复过程成功;
    其中,所述第一阈值为所述预设的波束失败触发条件中的门限值的第一波束恢复阈值、或者预设的RLF触发条件中的门限值的第一RLF阈值,所述预设的波束失败触发条件中的门限值包括所述第一波束恢复阈值和第二波束恢复阈值,所述第一波束恢复阈值大于所述第二波束恢复阈值,所述预设的RLF触发条件中的门限值包括第一RLF阈值和第二RLF阈值,所述第一RLF阈值大于所述第二RLF阈值。
  40. 根据权利要求27所述的终端,其中,所述第一确定模块,包括:
    第三确定单元,用于若所述接收模块接收到所述响应信令,则根据所述响应信令,确定备用BPL;
    第四确定单元,用于在所述接收模块在所述备用BPL上获取到控制信道信息时,确定波束失败恢复过程成功。
  41. 根据权利要求39或40所述的终端,其中,所述终端还包括:
    第二停止模块,用于若所述第一确定模块确定波束失败恢复过程成功,则停止所述BR定时器。
  42. 根据权利要求22所述的终端,其中,所述接收模块,具体用于在所述发送模块向网络侧设备发送波束失败恢复请求之后,在所述当前信息传输采用的BPL上以及至少一个备用BPL上,接收所述网络侧设备发送的响应信令。
  43. 一种终端,包括:处理器和存储器,其中,所述存储器用于存储程序,所述处理器调用所述存储器存储的程序,以执行如权利要求1至21中任一项所述的波束失败恢复方法中的步骤。
  44. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至21中任一项所述的波束失败恢复方法中的步骤。
PCT/CN2018/084816 2017-04-28 2018-04-27 波束失败恢复方法和终端 WO2018196851A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES18789860T ES2960358T3 (es) 2017-04-28 2018-04-27 Procedimiento y terminal de recuperación de fallo de haz
US16/609,091 US11202241B2 (en) 2017-04-28 2018-04-27 Beam failure recovery method and terminal
EP18789860.6A EP3618487B1 (en) 2017-04-28 2018-04-27 Beam failure recovery method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710295923.8A CN109246732B (zh) 2017-04-28 2017-04-28 波束失败恢复方法和终端
CN201710295923.8 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018196851A1 true WO2018196851A1 (zh) 2018-11-01

Family

ID=63920278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084816 WO2018196851A1 (zh) 2017-04-28 2018-04-27 波束失败恢复方法和终端

Country Status (5)

Country Link
US (1) US11202241B2 (zh)
EP (1) EP3618487B1 (zh)
CN (1) CN109246732B (zh)
ES (1) ES2960358T3 (zh)
WO (1) WO2018196851A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020192566A1 (zh) * 2019-03-26 2020-10-01 华为技术有限公司 波束失败恢复方法和通信装置
WO2020192760A1 (en) * 2019-03-27 2020-10-01 Mediatek Singapore Pte. Ltd. Electronic device and method for beam failure recovery

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187155A1 (en) 2017-04-03 2018-10-11 National Instruments Corporation Wireless communication system that performs measurement based selection of phase tracking reference signal (ptrs) ports
EP3619950A1 (en) 2017-05-04 2020-03-11 Ofinno, LLC Beam-based measurement configuration
CN117880987A (zh) * 2017-05-05 2024-04-12 华为技术有限公司 一种接收波束恢复请求的方法及网络设备
WO2018227464A1 (en) * 2017-06-15 2018-12-20 Motorola Mobility Llc Transmitting a beam recovery request
US10855359B2 (en) * 2017-08-10 2020-12-01 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels
US10887939B2 (en) 2017-08-10 2021-01-05 Comcast Cable Communications, Llc Transmission power control for beam failure recovery requests
US11950287B2 (en) 2017-08-10 2024-04-02 Comcast Cable Communications, Llc Resource configuration of beam failure recovery request transmission
US11337265B2 (en) 2017-08-10 2022-05-17 Comcast Cable Communications, Llc Beam failure recovery request transmission
US10567065B2 (en) * 2017-08-11 2020-02-18 National Instruments Corporation Radio frequency beam management and failure pre-emption
WO2019066546A1 (en) * 2017-09-28 2019-04-04 Lg Electronics Inc. METHOD AND APPARATUS FOR CONFIGURING A RELEASE CAUSE
US10587363B2 (en) 2018-01-04 2020-03-10 Ofinno, Llc Beam failure recovery procedure
US11115892B2 (en) * 2018-02-15 2021-09-07 Ofinno, Llc Beam failure information for radio configuration
US11895695B2 (en) * 2018-02-15 2024-02-06 Qualcomm Incorporated System and method for beam failure recovery request by user equipment
MX2020012794A (es) * 2018-05-28 2021-02-15 Ericsson Telefon Ab L M Manejo de enlaces de pares de haces.
US11219062B2 (en) * 2018-08-09 2022-01-04 Comcast Cable Communications, Llc Channel selection using a listen before talk procedure
WO2020068948A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Beam failure recovery and radio link failure association in fifth generation (5g)-new radio (nr)
KR20200060965A (ko) * 2018-11-23 2020-06-02 삼성전자주식회사 무선 네트워크에서 라디오 링크 페일을 결정하기 위한 전자 장치 및 그에 관한 방법
CN111479284B (zh) * 2019-01-24 2022-02-08 大唐移动通信设备有限公司 波束失败恢复响应的发送方法、监测方法、基站及终端
WO2020164574A1 (en) * 2019-02-15 2020-08-20 FG Innovation Company Limited Methods and apparatuses for beam failure recovery
US11452014B2 (en) 2019-03-08 2022-09-20 Meta Platforms Technologies, Llc Secondary link for AR/VR applications
CN111918416B (zh) * 2019-05-10 2023-10-10 华为技术有限公司 通信方法和通信装置
US11463301B2 (en) 2019-05-10 2022-10-04 Qualcomm Incorporated On-demand beam failure recovery resources
US11456793B2 (en) * 2019-05-24 2022-09-27 Qualcomm Incorporated Beam failure recovery techniques
CN112104395B (zh) * 2019-06-18 2022-03-29 华为技术有限公司 一种波束检测的方法以及波束检测装置
WO2020258279A1 (en) * 2019-06-28 2020-12-30 Zte Corporation Beam failure recovery for secondary cell
CN114097266B (zh) * 2019-07-22 2023-07-04 鸿颖创新有限公司 执行波束故障恢复的方法和相关装置
CN112312423B (zh) * 2019-07-30 2021-11-26 华为技术有限公司 一种波束失败的处理方法及装置
CN112910615B (zh) * 2019-11-19 2022-06-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113452417B (zh) * 2020-03-25 2022-09-09 华为技术有限公司 信号传输方法及装置
CN115668800A (zh) * 2020-05-27 2023-01-31 高通股份有限公司 波束阻塞检测和报告
CN113270848B (zh) * 2021-03-31 2024-03-26 漳州科华技术有限责任公司 一种目标电路的故障保护的触发控制方法、装置、控制器及电源
US11342973B1 (en) * 2021-10-19 2022-05-24 King Faisal University System and method for maintaining link communications in millimeter wave cellular networks
CN117528675A (zh) * 2022-07-29 2024-02-06 维沃移动通信有限公司 波束失败恢复或链路失败恢复方法及终端

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269143B2 (en) 1999-12-31 2007-09-11 Ragula Systems (Fatpipe Networks) Combining routers to increase concurrency and redundancy in external network access
US8479771B2 (en) 2008-11-21 2013-07-09 G-G Distribution And Development Co., Inc. Diverter valve
US8942167B2 (en) 2009-05-14 2015-01-27 Avaya Inc. Methods, apparatus and computer readable medium for seamless internet protocol multicast connectivity in unified networks
US9843465B2 (en) * 2014-11-26 2017-12-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Distributed dynamic configuration of a scalable radio frequency communication system
CN105790886A (zh) * 2014-12-24 2016-07-20 中兴通讯股份有限公司 数据包发送、接收方法、装置、基站及终端
CN107371256B (zh) * 2016-05-12 2020-05-22 华硕电脑股份有限公司 无线通信系统中具有不同传输时间间隔的控制信道的检测的方法、移动装置、存储介质
US11160129B2 (en) * 2016-08-12 2021-10-26 Mediatek Singapore Pte. Ltd. Methods and apparatus for handling of radio link failure detection in HF-NR system
KR20180049772A (ko) * 2016-11-03 2018-05-11 삼성전자주식회사 DSRC/IEEE 802.11p 와 LTE-V2X 공존을 위한 해결방법
AU2017355592A1 (en) * 2016-11-04 2019-05-02 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for handling beam failure
CN106535213A (zh) 2016-11-30 2017-03-22 中国电信股份有限公司常州分公司 一种在室内实现fdd‑lte双流数据传输方式的同层分支交错方法
US11943677B2 (en) * 2017-01-19 2024-03-26 Qualcomm Incorporated Beam selection and radio link failure during beam recovery
US10542545B2 (en) * 2017-02-06 2020-01-21 Mediatek Inc. Beam failure recovery mechanism for multi-beam operation
KR102014802B1 (ko) * 2017-02-06 2019-08-27 엘지전자 주식회사 무선 통신 시스템에서 단말의 무선링크 모니터링 수행 방법 및 이를 지원하는 장치
CN108631889A (zh) * 2017-03-22 2018-10-09 株式会社Ntt都科摩 无线链路失败检测方法和用户设备
US10686505B2 (en) * 2017-03-23 2020-06-16 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery of single/multi-beam pair link (BPL) in multi-beam based system
KR102385546B1 (ko) * 2017-03-23 2022-04-13 가부시키가이샤 엔티티 도코모 유저단말 및 무선 통신 방법
EP3603319B1 (en) * 2017-03-24 2024-10-16 Nokia Technologies Oy Beam-based radio link monitoring
US11134492B2 (en) * 2017-04-12 2021-09-28 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems
WO2019028736A1 (en) * 2017-08-10 2019-02-14 Mediatek Singapore Pte. Ltd. APPARATUS AND MECHANISM FOR TRANSMITTING A REQUEST FOR BEHAVIOR FAULT RECOVERY IN A NR SYSTEM OPERATING WITH MULTIPLE BEAMS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Link Recovery Procedure for Beam Failure", 3GPP TSG RAN WG1 MEETING #88B, R1-1704230, 7 April 2017 (2017-04-07), XP051242382 *
QUALCOMM INCORPORATED, CONSIDERATIONS OF RLM AND RLF IN NR R2-1703563, 7 April 2017 (2017-04-07), pages 1 - 3, XP051245402 *
SAMSUNG: "Discussion on Recovery from Beam Failure", 3GPP TSG RAN WG1 MEETING #88BIS R1-1705343, 7 April 2017 (2017-04-07), XP051243473 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020192566A1 (zh) * 2019-03-26 2020-10-01 华为技术有限公司 波束失败恢复方法和通信装置
CN111756458A (zh) * 2019-03-26 2020-10-09 华为技术有限公司 波束失败恢复方法和通信装置
WO2020192760A1 (en) * 2019-03-27 2020-10-01 Mediatek Singapore Pte. Ltd. Electronic device and method for beam failure recovery
US11363516B2 (en) 2019-03-27 2022-06-14 Mediatek Singapore Pte. Ltd. Electronic device and method for beam failure recovery
US11382020B2 (en) 2019-03-27 2022-07-05 Mediatek Singapore Pte. Ltd. Electronic device and method for beam failure recovery

Also Published As

Publication number Publication date
US20200092785A1 (en) 2020-03-19
ES2960358T3 (es) 2024-03-04
EP3618487B1 (en) 2023-09-13
EP3618487A1 (en) 2020-03-04
EP3618487A4 (en) 2020-05-13
US11202241B2 (en) 2021-12-14
CN109246732A (zh) 2019-01-18
CN109246732B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2018196851A1 (zh) 波束失败恢复方法和终端
WO2018196855A1 (zh) 波束恢复处理方法和终端
US10306495B2 (en) Determining connection states of a mobile wireless device
US11546816B2 (en) Method and apparatus for performing a handover procedure
WO2018228468A1 (zh) 一种无线链路监控方法和装置
WO2019029709A1 (en) ELECTRONIC DEVICE AND METHOD FOR BEAM MANAGEMENT AND BEAM FAILURE RECOVERY
CN111034302A (zh) 用于波束故障恢复的随机接入的方法和设备
KR20230009483A (ko) 핸드오버 방법 및 장치, 단말 장치 및 네트워크 장치
WO2014113919A1 (en) Addressing communication failure in multiple connection systems
WO2014040277A1 (zh) 移动性管理方法、基站和用户设备
WO2022152084A1 (zh) 小区切换方法、装置及存储介质
WO2019140627A1 (zh) 配置信息的接收和发送方法、装置及通信系统
WO2019154318A1 (zh) 波束失败恢复的处理方法及终端设备
US20230131833A1 (en) Communication Method and Terminal Device
CN112291803B (zh) 一种通信方法、终端设备及计算机可读存储介质
CN115868204A (zh) 用于报告cho的时间信息的方法及设备
WO2022083469A1 (zh) 一种mro临界场景的判定方法、装置及设备
US20230362778A1 (en) Methods and apparatuses of a mobility robustness optimization mechanism for a conditional handover procedure
WO2018095257A1 (zh) 一种恢复数据传输的方法、终端和网络侧节点
WO2023184532A1 (en) Method and apparatus for daps failure handling
CN115086980A (zh) 优化配置的方法、装置、设备及可读存储介质
JP2024530017A (ja) Trp関連のビーム障害検出手順およびモビリティシナリオのための方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018789860

Country of ref document: EP

Effective date: 20191128