WO2019192473A1 - 波束失败恢复方法、终端及网络设备 - Google Patents

波束失败恢复方法、终端及网络设备 Download PDF

Info

Publication number
WO2019192473A1
WO2019192473A1 PCT/CN2019/080998 CN2019080998W WO2019192473A1 WO 2019192473 A1 WO2019192473 A1 WO 2019192473A1 CN 2019080998 W CN2019080998 W CN 2019080998W WO 2019192473 A1 WO2019192473 A1 WO 2019192473A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
failure recovery
coreset
terminal
network device
Prior art date
Application number
PCT/CN2019/080998
Other languages
English (en)
French (fr)
Inventor
施源
杨宇
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019192473A1 publication Critical patent/WO2019192473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a beam failure recovery method, a terminal, and a network device.
  • BFR Beam Failure Recovery
  • the terminal After a beam failure occurs, the terminal sends a beam failure recovery request to the network device side (Beam). Failure Recovery Request (BERQ), after receiving the beam failure recovery request, the network device sends a response response message of the corresponding beam failure recovery request.
  • Beam Beam Failure Recovery Request
  • the network device supports configuring the above response information on the CORESET (CORESET-BFR) for BFR or CORESET0, but the terminal cannot determine which CORESET the network device sends the response information on, and if the error is detected, the CORESET terminal will not receive the response.
  • the response message caused the beam failure recovery to fail.
  • the embodiments of the present disclosure provide a beam failure recovery method, a terminal, and a network device, to solve the problem that the terminal cannot determine the beam failure recovery failure caused by monitoring on which CORESET.
  • an embodiment of the present disclosure provides a beam failure recovery method, which is applied to a terminal side, and includes:
  • the target CORESET On the target control resource set CORESET, detecting response information fed back by the network device according to the beam failure recovery request; wherein, the target CORESET includes: at least one of a control resource set CORESET-BFR for beam failure recovery and a CORESET0 with a value of 0 item.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a sending module configured to send a beam failure recovery request to the network device if a beam failure occurs
  • the detecting module is configured to detect response information fed back by the network device according to the beam failure recovery request on the target control resource set CORESET; wherein the target CORESET includes: a control resource set CORESET-BFR for the beam failure recovery and an identifier value of 0. At least one of CORESET0.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes a processor, a memory, and a computer program stored on the memory and operable on the processor, where the computer program is executed by the processor to implement the beam failure recovery method. A step of.
  • an embodiment of the present disclosure provides a beam failure recovery method, which is applied to a network device side, and includes:
  • the response information is fed back on the target control resource set CORESET; wherein the target CORESET includes: at least one of a control resource set CORESET-BFR for beam failure recovery or a CORESET0 with a value of 0 .
  • an embodiment of the present disclosure provides a network device, including:
  • a receiving module configured to receive a beam failure recovery request from the terminal side
  • a feedback module configured to feed back response information on the target control resource set CORESET after receiving the beam failure recovery request; wherein the target CORESET includes: a control resource set CORESET-BFR for beam failure recovery or a CORESET0 with an identifier value of 0 At least one of them.
  • an embodiment of the present disclosure further provides a network device, where the network device includes a processor, a memory, and a computer program stored on the memory and operable on the processor, where the processor implements the beam failure when executing the computer program. The steps to restore the method.
  • an embodiment of the present disclosure provides a computer readable storage medium.
  • the computer readable storage medium stores a computer program, and the computer program is executed by the processor to implement the step of the beam failure recovery method.
  • the terminal in the embodiment of the present disclosure triggers the beam failure recovery process when the beam fails, and the beam failure recovery method provided in the foregoing embodiment can avoid the problem of beam failure recovery failure caused by monitoring the wrong resource, and thus can also Improve the success rate of beam failure recovery.
  • FIG. 1 is a schematic flowchart diagram of a method for recovering a terminal side beam failure according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a module of a terminal according to an embodiment of the present disclosure
  • Figure 3 shows a block diagram of a terminal of an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of a method for recovering a beam failure of a network device side according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a module of a network device according to an embodiment of the present disclosure.
  • Figure 6 shows a block diagram of a network device in accordance with an embodiment of the present disclosure.
  • the beam failure recovery method of the embodiment of the present disclosure is applied to the terminal side. As shown in FIG. 1, the method includes the following steps:
  • Step 11 In the case of a beam failure, a beam failure recovery request is sent to the network device.
  • the terminal measures the Beam Failure Detection Reference Signal (BFD RS) at the physical layer, and determines whether a beam failure event occurs according to the measurement result.
  • the condition that the terminal determines that the beam failure event occurs includes: if it is detected that the metric of the serving control beam meets the preset condition, for example, a block error of the Physical Downlink Control Channel (PDCCH) If the Block Error Ratio (BLER) exceeds the preset threshold, it is determined as a beam failure instance.
  • the physical layer of the terminal reports to the upper layer, such as the Media Access Control (MAC) layer. The reporting process is periodic. Accordingly, if the terminal physical layer determines that no beam failure example has occurred, no indication is sent to the higher layer.
  • the upper layer of the terminal uses a counter to count the indications reported by the physical layer. When the maximum number of network configurations is reached, the terminal determines that a beam failure event has occurred.
  • New candidate beam identification The terminal physical layer measures the candidate beam reference signal (candidate beam RS) to find a new candidate beam. This step is not enforced after the beam failure event occurs, or it can be performed before the beam failure event occurs.
  • the measurement result that meets the preset condition is reported to the upper layer of the terminal.
  • the measurement quality of the candidate beam RS exceeds the received power of the layer-reference signal (Level 1-
  • the preset threshold of the Reference Signal Received Power (L1-RSRP) may be ⁇ beam reference index (L1RSRP), and the higher layer of the terminal selects the candidate beam based on the report of the physical layer.
  • the new one mentioned in the new candidate beam is relative to the current serving beam or the beam failure beam, that is, the terminal detects a candidate beam with better beam quality, if the candidate beam is not current A service beam or a beam that fails a beam can be considered as a new candidate beam.
  • the step of the new candidate beam identification may be before the beam failure detecting step or after the beam failure detecting step, but the step is before step 11.
  • step 11 is performed, that is, transmission of the beam failure recovery request BERQ: the higher layer of the terminal determines the PRACH resource or sequence (resource/sequence) according to the selected candidate beam. If the terminal determines that the trigger condition of the beam failure recovery request is met, the terminal sends the beam failure recovery request to the network device on the non-contention based PRACH. The terminal needs to send a beam failure recovery request according to the number of transmissions configured by the network device and/or a timer.
  • the non-contention PRACH resources and other PRACH resources may be frequency division multiplexing (FDM) or code division multiplexing (CDM), where the preambles of the PRMS of the CDM are required.
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • Step 12 On the target control resource set CORESET, detect response information fed back by the network device according to the beam failure recovery request.
  • Another step of the beam failure recovery mechanism is:
  • the UE monitors the gNB response for the beam failure recovery request (UE monitors gNB response for beam failure recovery request): after receiving the beam failure recovery request sent by the terminal, the network device feeds back response information, where the response information may carry the cell Cell-Radio Network Temporary Identity (C-RNTI), and handover to a new candidate beam, restart beam search, or other indication information.
  • C-RNTI Cell-Radio Network Temporary Identity
  • the physical layer of the terminal sends an indication to the upper layer of the terminal for the upper layer to determine the subsequent radio link failure process.
  • the terminal receives the response information, it is considered that the beam failure recovery is successful.
  • the terminal does not receive the response information, the terminal reselects the random access resource corresponding to the new candidate beam to send a beam failure recovery request.
  • the new candidate beam determined by the terminal may be the same as or different from the candidate beam selected last time. If the terminal receives the response information before the maximum number of transmissions configured by the network device and/or the timer expires, the beam failure recovery is considered successful; if the maximum number of transmissions and/or the timer expires, the terminal does not receive the response information. It is considered that the beam failure recovery fails.
  • the target CORESET monitored by the terminal includes at least one of a control resource set CORESET-BFR for beam failure recovery and a CORESET0 with a value of 0.
  • the following embodiment will further explain the steps of the terminal detecting the response information through the target CORESET in combination with the specific application scenario.
  • the response information of the beam failure recovery that is, the Beam Failure Recovery Random Access Response (BFR RAR) information
  • BFR RAR Beam Failure Recovery Random Access Response
  • the CORESET-BFR uses the beam reported by the terminal, and the CORESET 0 uses the beam of the Synchronization Signal and PBCH Block (SSB) corresponding to the CORESET.
  • SSB Synchronization Signal and PBCH Block
  • the terminal can be instructed to perform monitoring only on CORESET0 by means of signaling indication, wherein the step of signaling indication is independent of the beam failure recovery procedure.
  • the network device and the terminal pre-approve which CORESET the network device uses to transmit the BFR RAR information, and in this period, the terminal only needs to monitor the response information in the agreed CORESET. can.
  • step 12 may include: pre-presetting the time window, according to the pre-predetermined time window The switching period is set, and the response information fed back by the network device according to the beam failure recovery request is detected on the CORESET-BFR and CORESET0 in turn. That is to say, in the preset time window, the terminal detects the BFR RAR information on the CORESET-BFR and the CORESET 0. If the BFR RAR information is detected on the CORESET 0, the terminal can report the candidate after receiving the BFR RAR information. The subsequent information is monitored on the beam. If the terminal does not receive the BFR RAR information in the preset time window on the CORESET-BFR and the CORESET 0, it is determined that the beam failure recovery fails.
  • the network device After receiving the BERQ sent by the terminal, the network device directly configures the response information of the beam failure recovery, that is, the BFR RAR information, on the CORESET-BFR.
  • the terminal can be similar to the scenario 1, and the terminal can be instructed to perform monitoring only on the CORESET BFR by using a signaling indication manner, wherein the signaling indication step is independent of the beam failure recovery process. For example, in a certain period of time, the network device and the terminal pre-approve which CORESET the network device uses to transmit the BFR RAR information, and in this period, the terminal only needs to monitor the response information in the agreed CORESET. can.
  • the terminal and the network device do not agree in advance on which CORESET to send the response information, but the terminal simultaneously monitors CORESET-BFR and CORESET 0 in the preset time window, if the terminal is preset on CORESET-BFR and CORESET 0. If no BFR RAR information is received in the time window, it is determined that the beam failure recovery fails. In the preset time window, if the terminal monitors the BFR RAR information on the CORESET-BFR, the terminal monitors the subsequent information on the candidate beam that is reported after receiving the BFR RAR information.
  • the network device only supports sending the response information through the CORESET BFR. After the network device receives the BERQ sent by the terminal, the response information of the beam failure recovery, that is, the BFR RAR information can be configured only on the CORESET-BFR.
  • Step 12 may include: detecting, on the CORESET-BFR, the response information of the network device according to the beam failure recovery request feedback in the preset time window. That is, the terminal is not allowed to detect CORESET 0 in this scenario, and the network device will not configure BFR RAR information in CORESET 0. If the terminal does not receive the BFR RAR information within a certain period of time on the CORESET BFR, it determines that the beam failure recovery fails. In the preset time window, if the terminal monitors the BFR RAR information on the CORESET-BFR, the terminal monitors the subsequent information on the candidate beam that is reported after receiving the BFR RAR information.
  • the method further includes: if the response information is detected, determining that the beam failure recovery is successful; if the response information is not detected, determining that the beam failure recovery fails. Wherein, when the terminal receives the response information by detecting the target CORESET, it is considered that the beam failure recovery is successful. When the terminal does not receive the response information, the terminal reselects the random access resource corresponding to the new candidate beam to send a beam failure recovery request.
  • the new candidate beam determined by the terminal may be the same as or different from the candidate beam selected last time.
  • the beam failure recovery is considered successful; if the maximum number of transmissions and/or the timer expires, the terminal does not receive the response information. It is considered that the beam failure recovery fails.
  • the quasi co-location type is used to indicate that at least one of a Doppler frequency offset, a Doppler spread, an average delay, a delay spread, and a spatial receive parameter is quasi co-co-located.
  • the method further includes: acquiring transmission configuration indication TCI information of the new candidate beam.
  • the TCI information may indicate QCL information of different QCL types (eg, type A, type B, type C, or type D).
  • the step of acquiring the transmission configuration indication TCI information of the new candidate beam includes the following manners:
  • Manner 2 Receive TCI information of a new candidate beam through CORESET-BFR.
  • the TCI information is used to indicate the target standard co-location type, and the target standard co-location type is different from the quasi-co-location type indicated by the SSB. That is to say, in addition to the SKB information providing the QCL information of type D, the TCI information is allowed to be configured in the CORESET-BFR, and the TCI information is limited to provide only QCL information other than the type D.
  • Manner 3 Receive TCI information of a new candidate beam by using other CORESETs before the beam fails.
  • the TCI information is used to indicate the target standard co-location type, and the target standard co-location type is different from the quasi-co-location type indicated by the SSB. That is to say, in addition to the QCL information of the type D of the SSB information, the CORESET-BFR does not configure the TCI information, and the terminal determines the TCI information corresponding to other CORESETs before the beam failure as the TCI information of the new candidate beam.
  • QCL information other than type D provided by the Tracking Reference Signal (TRS) or other reference signals in the bandwidth portion (BWP) of the CORESET-BFR.
  • TRS Tracking Reference Signal
  • BWP bandwidth portion
  • the terminal sends a beam failure recovery request to the network device when the beam fails, and the beam failure recovery process is triggered.
  • the beam failure recovery method provided by the foregoing embodiment can avoid listening to the wrong resource.
  • the resulting beam failure recovery failure problem can also improve the success rate of beam failure recovery.
  • the terminal 200 of the embodiment of the present disclosure can implement a beam failure recovery request to a network device in the case of a beam failure in the foregoing embodiment, and detect a network device according to the beam on the target control resource set CORESET.
  • the target CORESET includes at least one of a control resource set CORESET-BFR for beam failure recovery and a CORESET0 with a value of 0.
  • the terminal 200 specifically includes the following functional modules:
  • the first sending module 210 is configured to send a beam failure recovery request to the network device if a beam failure occurs;
  • the detecting module 220 is configured to detect, on the target control resource set CORESET, response information fed back by the network device according to the beam failure recovery request, where the target CORESET includes: a control resource set CORESET-BFR and an identifier value of 0 for beam failure recovery. At least one of the CORESET0.
  • the detecting module 220 includes:
  • the first detecting submodule is configured to detect, according to the preset switching period, the response information of the network device according to the beam failure recovery request feedback on the CORESET-BFR and the CORESET0 in a preset time window.
  • the detecting module 220 includes:
  • the second detecting submodule is configured to detect, when the target CORESET includes the CORESET-BFR, the response information fed back by the network device according to the beam failure recovery request on the CORESET-BFR in a preset time window.
  • the terminal 200 further includes:
  • the determining module is configured to determine that the beam failure recovery fails if the response information is not detected.
  • the terminal 200 further includes:
  • the first acquiring module is configured to acquire transmission configuration indication TCI information of the new candidate beam.
  • the first obtaining module includes:
  • a first acquiring submodule configured to acquire TCI information of a new candidate beam by using an SSB when the synchronization signal block SSB is a reference signal of a new candidate beam;
  • a second obtaining submodule configured to receive TCI information of a new candidate beam by using CORESET-BFR, where the TCI information is used to indicate a target standard co-location type, and the standard co-location type is different from the quasi-co-location type indicated by the SSB;
  • a third acquiring submodule configured to receive TCI information of a new candidate beam by using another CORESET before the beam failure, where the TCI information is used to indicate a target standard colocation type, and the standard colocation type is different from the quasi co-location of the SSB indication Types of.
  • the terminal in the embodiment of the present disclosure sends a beam failure recovery request to the network device, triggers a beam failure recovery process, and uses the beam failure recovery method provided in the foregoing embodiment, so as to avoid monitoring the wrong resource.
  • the resulting beam failure recovery failure problem can also improve the success rate of beam failure recovery.
  • FIG. 3 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 30 includes, but is not limited to, a radio frequency unit 31, a network module 32, and an audio output unit 33.
  • the terminal structure shown in FIG. 3 does not constitute a limitation to the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the radio frequency unit 31 is configured to send a beam failure recovery request to the network device in the case that a beam failure occurs;
  • the processor 310 is configured to detect, on the target control resource set CORESET, response information fed back by the network device according to the beam failure recovery request, where the target CORESET includes: a control resource set CORESET-BFR and an identifier value of 0 for beam failure recovery. At least one of CORESET0;
  • the terminal in the embodiment of the present disclosure sends a beam failure recovery request to the network device, triggers a beam failure recovery process, and uses the beam failure recovery method provided in the foregoing embodiment, so that the beam failure caused by monitoring the wrong resource can be avoided.
  • the problem of recovery failure can also improve the success rate of beam failure recovery.
  • the radio frequency unit 31 can be used for receiving and transmitting signals during the transmission and reception of information or during a call, and specifically, receiving downlink data from the base station, and then processing the data to the processor 310; The uplink data is sent to the base station.
  • radio frequency unit 31 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 31 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides the user with wireless broadband Internet access through the network module 32, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 33 can convert the audio data received by the radio frequency unit 31 or the network module 32 or stored in the memory 39 into an audio signal and output as sound. Moreover, the audio output unit 33 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the terminal 30.
  • the audio output unit 33 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 34 is for receiving an audio or video signal.
  • the input unit 34 may include a graphics processing unit (GPU) 341 and a microphone 342 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 36.
  • the image frames processed by the graphics processor 341 may be stored in the memory 39 (or other storage medium) or transmitted via the radio unit 31 or the network module 32.
  • the microphone 342 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 31 in the case of a telephone call mode.
  • Terminal 30 also includes at least one type of sensor 35, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 361 according to the brightness of the ambient light, and the proximity sensor can close the display panel 361 and/or when the terminal 30 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 35 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 36 is for displaying information input by the user or information provided to the user.
  • the display unit 36 can include a display panel 361.
  • the display panel 361 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 37 can be used to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 37 includes a touch panel 371 and other input devices 372.
  • the touch panel 371 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 371 or near the touch panel 371. operating).
  • the touch panel 371 can include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the touch panel 371 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 37 may also include other input devices 372.
  • the other input devices 372 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein.
  • the touch panel 371 can be overlaid on the display panel 361.
  • the touch panel 371 detects a touch operation on or near it, the touch panel 371 transmits to the processor 310 to determine the type of the touch event, and then the processor 310 according to the touch.
  • the type of event provides a corresponding visual output on display panel 361.
  • the touch panel 371 and the display panel 361 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 371 may be integrated with the display panel 361.
  • the input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 38 is an interface in which an external device is connected to the terminal 30.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 38 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 30 or can be used at the terminal 30 and external devices Transfer data between.
  • the memory 39 can be used to store software programs as well as various data.
  • the memory 39 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • the memory 39 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 310 is a control center of the terminal, which connects various parts of the entire terminal by various interfaces and lines, and executes by executing or executing software programs and/or modules stored in the memory 39, and calling data stored in the memory 39.
  • the terminal 's various functions and processing data, so as to monitor the terminal as a whole.
  • the processor 310 may include one or more processing units; preferably, the processor 310 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and performs modulation and demodulation.
  • the processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 310.
  • the terminal 30 may further include a power source 311 (such as a battery) for supplying power to the various components.
  • a power source 311 such as a battery
  • the power source 311 may be logically connected to the processor 310 through the power management system to manage charging, discharging, and power management through the power management system.
  • the terminal 30 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 310, a memory 39, a computer program stored on the memory 39 and executable on the processor 310, and the computer program is implemented by the processor 310.
  • the processes of the foregoing beam failure recovery method embodiments can achieve the same technical effects. To avoid repetition, details are not described herein again.
  • the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • PDA Personal Digital Assistant
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the embodiment of the present disclosure further provides a computer readable storage medium.
  • the computer readable storage medium stores a computer program, where the computer program is executed by the processor to implement various processes of the beam failure recovery method embodiment, and can achieve the same Technical effects, to avoid repetition, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the beam failure recovery method of the embodiment of the present disclosure is applied to the network device side, and may include the following steps:
  • Step 41 Receive a beam failure recovery request from the terminal side.
  • a beam failure recovery mechanism including: beam failure detection, new candidate beam identification, beam failure recovery request BERQ transmission, and terminal monitoring network device based beam failure recovery. Steps such as request response information.
  • the terminal sends the BERQ after detecting the beam failure.
  • Step 42 After receiving the beam failure recovery request, feedback the response information on the target control resource set CORESET.
  • the network device allows the response information to be sent in a dedicated PDCCH on the CORESET-BFR, and may also allow the response information to be sent on CORESET0 with an identity value of zero.
  • the target CORESET for transmitting the response information by the network device includes: at least one of a control resource set CORESET-BFR for beam failure recovery and a CORESET0 with a value of 0. It is worth noting that the network device can pre-negotiate the target CORESET of the feedback response information with the terminal, and can also select the target CORESET independently according to the network performance.
  • the terminal can be monitored by using, but not limited to, the monitoring mode described in the terminal side embodiment.
  • the method may further include: acquiring a new candidate beam from the terminal side; and transmitting, to the terminal, the transmission configuration indication TCI information of the new candidate beam.
  • the quasi co-location type is used to indicate that at least one of a Doppler frequency offset, a Doppler spread, an average delay, a delay spread, and a spatial receive parameter is quasi co-co-located.
  • the step of transmitting the transmission configuration indication TCI information of the new candidate beam to the terminal may include:
  • the TCI information of the new candidate beam is transmitted to the terminal through the SSB; corresponding to the first mode of the terminal side embodiment, details are not described herein again.
  • the TCI information of the new candidate beam is sent to the terminal by using the CORESET-BFR, where the TCI information is used to indicate the target standard co-location type, and the target standard co-location type is different from the quasi-co-location type indicated by the SSB; corresponding to the terminal side
  • the second embodiment of the embodiment is not described here.
  • TCI information of the new candidate beam to the terminal by using another CORESET before the beam failure, where the TCI information is used to indicate the target standard co-location type, and the standard co-location type is different from the quasi-co-location type indicated by the SSB;
  • the third embodiment of the terminal side embodiment is not described herein.
  • the terminal when a beam failure occurs, the terminal sends a beam failure recovery request to the network device, triggers a beam failure recovery process, and the beam failure recovery method provided by the foregoing embodiment can avoid the monitoring error.
  • the problem of beam failure recovery failure caused by resources can also improve the success rate of beam failure recovery.
  • the network device 500 of the embodiment of the present disclosure can implement the method for receiving a beam failure recovery request from the terminal side in the foregoing embodiment, and the method for feeding back the response information on the target control resource set CORESET after receiving the beam failure recovery request.
  • the target CORESET includes at least one of a control resource set CORESET-BFR for beam failure recovery or a CORESET0 with a value of 0.
  • the network device 500 specifically includes the following functional modules:
  • the receiving module 510 is configured to receive a beam failure recovery request from the terminal side
  • the feedback module 520 is configured to: after receiving the beam failure recovery request, feed back response information on the target control resource set CORESET; wherein the target CORESET includes: a control resource set CORESET-BFR for the beam failure recovery or an identifier value of 0. At least one of CORESET0.
  • the network device 500 further includes:
  • a second acquiring module configured to acquire a new candidate beam from the terminal side
  • a second sending module configured to send, to the terminal, a transmission configuration indication TCI information of the new candidate beam.
  • the second sending module includes:
  • a first sending submodule configured to: when the synchronization signal block SSB is a reference signal of a new candidate beam, send TCI information of the new candidate beam to the terminal through the SSB;
  • a second sending submodule configured to send, by using CORESET-BFR, TCI information of a new candidate beam to the terminal, where the TCI information is used to indicate a target standard colocation type, and the standard colocation type is different from the quasi co-location type indicated by the SSB ;
  • a third sending submodule configured to send TCI information of the new candidate beam to the terminal by using another CORESET before the beam failure, where the TCI information is used to indicate the target standard colocation type, and the standard colocation type is different from the SSB indication Co-location type.
  • each module of the above network device and terminal is only a division of logical functions. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. And these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the network device in the embodiment of the present disclosure can avoid the beam failure recovery failure caused by monitoring the wrong resource after the beam failure transmission beam failure recovery request is generated by the terminal.
  • the problem can also improve the success rate of beam failure recovery.
  • an embodiment of the present disclosure further provides a network device, including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • a network device including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • the steps in the beam failure recovery method as described above are implemented.
  • Embodiments of the invention also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the beam failure recovery method as described above.
  • the network device 600 includes an antenna 61, a radio frequency device 62, and a baseband device 63.
  • the antenna 61 is connected to the radio frequency device 62.
  • the radio frequency device 62 receives information via the antenna 61 and transmits the received information to the baseband device 63 for processing.
  • the baseband device 63 processes the information to be transmitted and transmits it to the radio frequency device 62.
  • the radio frequency device 62 processes the received information and transmits it via the antenna 61.
  • the above-described band processing device may be located in the baseband device 63, and the method performed by the network device in the above embodiment may be implemented in the baseband device 63, which includes the processor 64 and the memory 65.
  • the baseband device 63 may include, for example, at least one baseband board on which a plurality of chips are disposed, as shown in FIG. 6, one of which is, for example, a processor 64, connected to the memory 65 to call a program in the memory 65 to execute The network device operation shown in the above method embodiment.
  • the baseband device 63 can also include a network interface 66 for interacting with the radio frequency device 62, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the method performed by the above network device.
  • An integrated circuit such as one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • Memory 65 can be either volatile memory or non-volatile memory, or can include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the network device of the embodiment of the present disclosure further includes: a computer program stored on the memory 65 and operable on the processor 64, and the processor 64 calls a computer program in the memory 65 to execute the method executed by each module shown in FIG. .
  • the computer program is used by the processor 64 to perform: receiving a beam failure recovery request from the terminal side; and after receiving the beam failure recovery request, feeding back the response information on the target control resource set CORESET;
  • the target CORESET includes at least one of a control resource set CORESET-BFR for beam failure recovery or a CORESET0 with a value of 0.
  • the computer program when called by the processor 64, it can be used to: acquire a new candidate beam from the terminal side; and transmit a transmission configuration indication TCI information of the new candidate beam to the terminal.
  • the method can be used to: when the synchronization signal block SSB is a reference signal of a new candidate beam, send TCI information of the new candidate beam to the terminal through the SSB;
  • the TCI information of the new candidate beam is sent to the terminal by using the CORESET-BFR, where the TCI information is used to indicate the target standard co-location type, and the target standard co-location type is different from the quasi-co-location type indicated by the SSB;
  • the TCI information of the new candidate beam is sent to the terminal by other CORESETs before the beam failure, wherein the TCI information is used to indicate the target standard co-location type, and the standard co-location type is different from the quasi-co-location type indicated by the SSB.
  • the network device may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • a base station (NodeB, NB) in the (Wideband Code Division Multiple Access, WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or an access point, or in a future 5G network.
  • the base station or the like is not limited herein.
  • the beam failure recovery method provided by the foregoing embodiment can avoid the problem of beam failure recovery failure caused by monitoring the wrong resource, and thus The success rate of beam failure recovery can be improved.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种波束失败恢复方法、终端及网络设备,其方法包括:在发生波束失败的情况下,向网络设备发送波束失败恢复请求;在目标控制资源集CORESET上,检测网络设备根据波束失败恢复请求反馈的响应信息;其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR和标识值为0的CORESET0中的至少一项。

Description

波束失败恢复方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年4月4日在中国提交的中国专利申请No.201810301253.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种波束失败恢复方法、终端及网络设备。
背景技术
在高频段通信系统中,由于无线信号的波长较短,较容易发生信号传播被阻挡等情况,导致信号传播中断。如果采用相关技术中的无线链路重建,则耗时较长,因此引入了波束失败恢复(Beam Failure Recovery,BFR)机制,在发生波束失败后,终端向网络设备侧发送波束失败恢复请求(Beam Failure Recovery Request,BERQ),网络设备接收到该波束失败恢复请求后,会发送相应的波束失败恢复请求的响应(response)信息。网络设备支持在用于BFR的CORESET(CORESET-BFR)上或CORESET0上配置上述响应信息,但终端无法确定网络设备具体在哪个CORESET上发送响应信息,若监听了错误的CORESET终端将无法收到该响应信息,导致波束失败恢复失败。
发明内容
本公开实施例提供了一种波束失败恢复方法、终端及网络设备,以解决终端无法确定在哪个CORESET上进行监听而导致的波束失败恢复失败问题。
第一方面,本公开实施例提供了一种波束失败恢复方法,应用于终端侧,包括:
在发生波束失败的情况下,向网络设备发送波束失败恢复请求;
在目标控制资源集CORESET上,检测网络设备根据波束失败恢复请求反馈的响应信息;其中,目标CORESET包括:用于波束失败恢复的控制资 源集CORESET-BFR和标识值为0的CORESET0中的至少一项。
第二方面,本公开实施例还提供了一种终端,包括:
发送模块,用于在发生波束失败的情况下,向网络设备发送波束失败恢复请求;
检测模块,用于在目标控制资源集CORESET上,检测网络设备根据波束失败恢复请求反馈的响应信息;其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR和标识值为0的CORESET0中的至少一项。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的波束失败恢复方法的步骤。
第四方面,本公开实施例提供了一种波束失败恢复方法,应用于网络设备侧,包括:
从终端侧接收波束失败恢复请求;
在接收到波束失败恢复请求后,在目标控制资源集CORESET上反馈响应信息;其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR或标识值为0的CORESET0中的至少一项。
第五方面,本公开实施例提供了一种网络设备,包括:
接收模块,用于从终端侧接收波束失败恢复请求;
反馈模块,用于在接收到波束失败恢复请求后,在目标控制资源集CORESET上反馈响应信息;其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR或标识值为0的CORESET0中的至少一项。
第六方面,本公开实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的波束失败恢复方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述的波束失败恢复方法的步骤。
这样,本公开实施例的终端在发生波束失败时,触发波束失败恢复流程, 通过上述实施例提供的波束失败恢复方法,可以避免因监听错误资源而导致的波束失败恢复失败的问题,从而也可以提高波束失败恢复的成功率。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例终端侧波束失败恢复方法的流程示意图;
图2表示本公开实施例终端的模块结构示意图;
图3表示本公开实施例的终端框图;
图4表示本公开实施例网络设备侧波束失败恢复方法的流程示意图;
图5表示本公开实施例网络设备的模块结构示意图;
图6表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本公开实施例的波束失败恢复方法,应用于终端侧,如图1所示,该方 法包括以下步骤:
步骤11:在发生波束失败的情况下,向网络设备发送波束失败恢复请求。
在高频段通信系统中,由于无线信号的波长较短,较容易发生信号传播被阻挡等情况,导致信号传播中断。如果采用传统的无线链路重建流程,耗时较长,因此引入了波束失败恢复机制,包括:
波束失败检测:终端在物理层对波束失败检测参考信号(Beam Failure Detection Reference Signal,BFD RS)进行测量,并根据测量结果来判断是否发生波束失败事件。其中,终端判断发生波束失败事件的条件包括:如果检测出全部服务控制波束(serving control beam)的度量(metric)满足预设条件,例如物理下行控制信道(Physical Downlink Control Channel,PDCCH)的块差错率(Block Error Ratio,BLER)超过预设阈值,则确定为一次波束失败示例(beam failure instance),终端的物理层上报给高层一个指示,如媒体接入控制层(Media Access Control,MAC)层,该上报过程是周期的。相应地,如果终端物理层确定没有发生波束失败示例,则不向高层发送指示。终端的高层使用计数器(counter)对物理层上报的指示进行计数,当达到网络配置的最大次数时,终端确定发生了波束失败事件(beam failure event)。
新候选波束(candidate beam)识别:终端物理层测量候选波束参考信号(candidate beam RS),寻找新候选波束。本步骤不强制在波束失败事件发生之后执行,也可以在波束失败事件发生之前执行。当终端物理层收到来自终端高层的请求、指示或通知时,将满足预设条件的测量结果上报给终端高层,例如:对candidate beam RS的测量质量超过层一参考信号接收功率(Level 1-Reference Signal Received Power,L1-RSRP)的预设门限,其上报内容可以为{波束参考信号索引号(beam RS index),L1-RSRP},终端高层基于物理层的上报来选择候选波束。其中,值得指出的是,新候选波束中所提及的新是相对于当前服务波束或发生波束失败的波束而言的,即终端检测到波束质量较好的候选波束,若该候选波束不是当前服务波束或者发生波束失败的波束,均可将其视为新候选波束。另外,该新候选波束识别的步骤可以在波束失败检测步骤之前,也可以在波束失败检测步骤之后,但该步骤在步骤11之前。
在波束失败检测步骤和新候选波束识别步骤之后,执行步骤11,即波束 失败恢复请求BERQ的发送:终端高层根据所选候选波束来确定PRACH资源或序列(resource/sequence)。如果终端判断满足波束失败恢复请求的触发条件,则终端在基于非竞争的PRACH上向网络设备发送上述波束失败恢复请求。其中,终端需要根据网络设备配置的发送次数和/或定时器(timer)来发送波束失败恢复请求。这里所说的非竞争PRACH资源与其它PRACH资源(如用于初始接入的PRACH资源)可以是频分复用FDM或码分复用CDM的,其中CDM的PRACH的前导码(preambles)要有相同的序列设计。
步骤12:在目标控制资源集CORESET上,检测网络设备根据波束失败恢复请求反馈的响应信息。
具体地,波束失败恢复机制的另一个步骤为:
终端监控网络设备基于波束失败恢复请求的响应信息(UE monitors gNB response for beam failure recovery request):网络设备在接收到终端发送的波束失败恢复请求后,会反馈响应信息,该响应信息中可以携带小区无线网络临时标识(Cell-Radio Network Temporary Identity,C-RNTI),以及切换至新候选波束、重新启动波束搜索、或其它的指示信息等。如果波束失败恢复不成功,则终端物理层向终端高层发送一个指示,供高层确定后续的无线链路失败过程。其中,当终端接收到该响应信息,则认为波束失败恢复成功。当终端没有接收到该响应信息,则终端重新选择新候选波束对应的随机接入资源发送波束失败恢复请求。其中,终端确定的新候选波束可以与上一次选择的候选波束相同或者不同。如果终端在网络设备配置的最大发送次数和/或timer超时前,接收到响应信息,则认为波束失败恢复成功;如果在达到最大发送次数和/或timer超时后,终端都没有收到响应信息,则认为波束失败恢复失败。
由于系统允许网络设备在CORESET-BFR上的专用(dedicated)PDCCH中发送响应信息,也可能允许其在标识值为0的CORESET0上发送该响应信息。为了避免在错误的资源上进行响应信息的监听,终端监听的目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR和标识值为0的CORESET0中的至少一项。
下面本实施例将结合具体应用场景对终端通过目标CORESET检测响应 信息的步骤做进一步说明。
场景一、
当网络设备接收到终端发送的BERQ后,并没有在CORESET-BFR上配置波束失败恢复的响应信息,即波束失败恢复随机接入响应(Beam Failure Recovery Random Access Response,BFR RAR)信息,则在CORESET 0上配置相应的BFR RAR信息,其中CORESET-BFR使用的是终端上报的波束,CORESET 0使用的是与CORESET对应的同步信号块(Synchronization Signal and PBCH Block,SSB)的波束。值得指出的是,CORESET0与SSB之间的对应关系是预先配置的。
在这种场景下,可通过信令指示方式指示终端仅在CORESET0上进行监听,其中,信令指示的步骤独立于波束失败恢复流程。例如,在一定时间周期内,网络设备与终端预先约定好这个周期网络设备采用哪种CORESET进行BFR RAR信息的发送,那么在该周期内,终端仅需在约定好的CORESET进行响应信息的监听即可。
或者,终端与网络设备预先并不约定在哪种CORESET上发送响应信息,那么为了避免因监听错误的资源而导致响应信息检测失败的问题,步骤12可包括:在预设时间窗内,按照预设切换周期,依次在CORESET-BFR和CORESET0上检测网络设备根据波束失败恢复请求反馈的响应信息。也就是说,在预设时间窗内,终端在CORESET-BFR以及CORESET 0上检测BFR RAR信息,若在CORESET 0上监测到BFR RAR信息,则终端在接收BFR RAR信息之后,在其上报的候选波束上监听后续信息。若终端在CORESET-BFR以及CORESET 0上的预设时间窗内均未收到BFR RAR信息,则判断波束失败恢复失败。
场景二、
当网络设备接收到终端发送的BERQ后,直接在CORESET-BFR上配置波束失败恢复的响应信息,即BFR RAR信息。
在该场景下,终端可同场景一类似,可通过信令指示方式指示终端仅在CORESET BFR上进行监听,其中,信令指示的步骤独立于波束失败恢复流程。例如,在一定时间周期内,网络设备与终端预先约定好这个周期网络设 备采用哪种CORESET进行BFR RAR信息的发送,那么在该周期内,终端仅需在约定好的CORESET进行响应信息的监听即可。
或者,终端与网络设备预先并不约定在哪种CORESET上发送响应信息,而是终端在预设时间窗内同时监听CORESET-BFR以及CORESET 0,若终端在CORESET-BFR以及CORESET 0上的预设时间窗内均未收到BFR RAR信息,则判断波束失败恢复失败。在预设时间窗内,若终端在CORESET-BFR上监测到BFR RAR信息,则终端在接收BFR RAR信息之后,在其上报的候选波束上监听后续信息。
场景三、
网络设备仅支持通过CORESET BFR发送响应信息,那么当网络设备接收到终端发送的BERQ后,仅可以在CORESET-BFR上配置波束失败恢复的响应信息,即BFR RAR信息。
在该场景下,终端仅需检测CORESET BFR即可,步骤12可以包括:在预设时间窗内,在CORESET-BFR上检测网络设备根据波束失败恢复请求反馈的响应信息。即,此场景时不允许终端检测CORESET 0,网络设备也不会在CORESET 0里配置BFR RAR信息。若终端在CORESET BFR上的一定时间窗口期内均未收到BFR RAR信息,则判断波束失败恢复失败。在预设时间窗内,若终端在CORESET-BFR上监测到BFR RAR信息,则终端在接收BFR RAR信息之后,在其上报的候选波束上监听后续信息。
步骤12之后,该方法还包括:若检测到响应信息,则确定波束失败恢复成功;若未检测到响应信息,则确定波束失败恢复失败。其中,当终端通过检测目标CORESET接收到该响应信息,则认为波束失败恢复成功。当终端没有接收到该响应信息,则终端重新选择新候选波束对应的随机接入资源发送波束失败恢复请求。其中,终端确定的新候选波束可以与上一次选择的候选波束相同或者不同。如果终端在网络设备配置的最大发送次数和/或timer超时前,接收到响应信息,则认为波束失败恢复成功;如果在达到最大发送次数和/或timer超时后,终端都没有收到响应信息,则认为波束失败恢复失败。
优选地,对于BFR流程中,当SSB作为新候选波束的参考信号,需要给 终端提供所有类型的准共址(quasi co-located,QCL)信息。其中,准共址类型用于指示多普勒频率偏移、多普勒扩展、平均时延、时延扩展和空间接收参数中的至少一项是准共址的。其中,准共址类型为type A时,多普勒频率偏移、多普勒扩展、平均时延和时延扩展为准共址的;准共址类型为type B时,多普勒频率偏移和多普勒扩展为准共址的;准共址类型为type C时,多普勒频率偏移和平均时延为准共址的;准共址类型为type D时,空间接收参数为准共址的。在上述新候选波束识别步骤之后,步骤12之前还包括:获取新候选波束的传输配置指示TCI信息。其中,TCI信息可以指示不同QCL类型(如type A、type B、type C或type D)的QCL信息。
其中,获取新候选波束的传输配置指示TCI信息的步骤包括以下方式:
方式一、当同步信号块SSB为新候选波束的参考信号时,通过SSB获取新候选波束的TCI信息。也就是说,仅当SSB作为新候选波束的参考信号的时候,SSB信号除了可提供type D的QCL信息外,还可提供所有除type D以外的QCL信息。
方式二、通过CORESET-BFR,接收新候选波束的TCI信息。其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于SSB指示的准共址类型。也就是说,除了SSB信息提供type D的QCL信息外,还允许CORESET-BFR中配置TCI信息,并且限制该TCI信息只能提供除type D以外的QCL信息。
方式三、通过波束失败之前的其他CORESET,接收新候选波束的TCI信息。其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于所述SSB指示的准共址类型。也就是说,除了SSB信息提供type D的QCL信息外,CORESET-BFR不配置TCI信息,终端将波束失败之前其他CORESET对应的TCI信息确定为新候选波束的TCI信息。例如在CORESET-BFR所在带宽部分(Bandwidth Part,BWP)的追踪参考信号(Tracking Reference Signal,TRS)或者其他参考信号所提供的除type D以外的QCL信息。
本公开实施例的波束失败恢复方法中,终端在发生波束失败时,向网络设备发送波束失败恢复请求,触发波束失败恢复流程,通过上述实施例提供的波束失败恢复方法可以避免因监听错误资源而导致的波束失败恢复失败的 问题,从而也可以提高波束失败恢复的成功率。
以上实施例介绍了不同场景下的波束失败恢复方法,下面将结合附图对与其对应的终端做进一步介绍。
如图2所示,本公开实施例的终端200,能实现上述实施例中在发生波束失败的情况下,向网络设备发送波束失败恢复请求;在目标控制资源集CORESET上,检测网络设备根据波束失败恢复请求反馈的响应信息方法的细节,并达到相同的效果。其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR和标识值为0的CORESET0中的至少一项,该终端200具体包括以下功能模块:
第一发送模块210,用于在发生波束失败的情况下,向网络设备发送波束失败恢复请求;
检测模块220,用于在目标控制资源集CORESET上,检测网络设备根据波束失败恢复请求反馈的响应信息;其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR和标识值为0的CORESET0中的至少一项。
其中,检测模块220包括:
第一检测子模块,用于在预设时间窗内,按照预设切换周期,依次在CORESET-BFR和CORESET0上检测网络设备根据波束失败恢复请求反馈的响应信息。
其中,检测模块220包括:
第二检测子模块,用于当目标CORESET包括CORESET-BFR时;在预设时间窗内,在CORESET-BFR上检测网络设备根据波束失败恢复请求反馈的响应信息。
其中,终端200还包括:
确定模块,用于若未检测到响应信息,则确定波束失败恢复失败。
其中,终端200还包括:
第一获取模块,用于获取新候选波束的传输配置指示TCI信息。
其中,第一获取模块包括:
第一获取子模块,用于当同步信号块SSB为新候选波束的参考信号时, 通过SSB获取新候选波束的TCI信息;
或者,
第二获取子模块,用于通过CORESET-BFR,接收新候选波束的TCI信息,其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于SSB指示的准共址类型;
或者,
第三获取子模块,用于通过波束失败之前的其他CORESET,接收新候选波束的TCI信息,其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于SSB指示的准共址类型。
值得指出的是,本公开实施例的终端在发生波束失败时,向网络设备发送波束失败恢复请求,触发波束失败恢复流程,通过上述实施例提供的波束失败恢复方法,这样可以避免因监听错误资源而导致的波束失败恢复失败的问题,从而也可以提高了波束失败恢复的成功率。
为了更好的实现上述目的,进一步地,图3为实现本公开各个实施例的一种终端的硬件结构示意图,该终端30包括但不限于:射频单元31、网络模块32、音频输出单元33、输入单元34、传感器35、显示单元36、用户输入单元37、接口单元38、存储器39、处理器310、以及电源311等部件。本领域技术人员可以理解,图3中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元31,用于在发生波束失败的情况下,向网络设备发送波束失败恢复请求;
处理器310,用于在目标控制资源集CORESET上,检测网络设备根据波束失败恢复请求反馈的响应信息;其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR和标识值为0的CORESET0中的至少一项;
本公开实施例的终端在发生波束失败时,向网络设备发送波束失败恢复请求,触发波束失败恢复流程,通过上述实施例提供的波束失败恢复方法, 这样可以避免因监听错误资源而导致的波束失败恢复失败的问题,从而也可以提高波束失败恢复的成功率。
应理解的是,本公开实施例中,射频单元31可用于收发信息或通话过程中,信号的接收和发送,具体地,将来自基站的下行数据接收后,给处理器310处理;另外,将上行的数据发送给基站。通常,射频单元31包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元31还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块32为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元33可以将射频单元31或网络模块32接收的或者在存储器39中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元33还可以提供与终端30执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元33包括扬声器、蜂鸣器以及受话器等。
输入单元34用于接收音频或视频信号。输入单元34可以包括图形处理器(Graphics Processing Unit,GPU)341和麦克风342,图形处理器341对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元36上。经图形处理器341处理后的图像帧可以存储在存储器39(或其它存储介质)中或者经由射频单元31或网络模块32进行发送。麦克风342可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元31发送到移动通信基站的格式输出。
终端30还包括至少一种传感器35,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板361的亮度,接近传感器可在终端30移动到耳边时,关闭显示面板361和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传 感器35还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元36用于显示由用户输入的信息或提供给用户的信息。显示单元36可包括显示面板361,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板361。
用户输入单元37可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元37包括触控面板371以及其他输入设备372。触控面板371,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板371上或在触控面板371附近的操作)。触控面板371可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器310,接收处理器310发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板371。除了触控面板371,用户输入单元37还可以包括其他输入设备372。具体地,其他输入设备372可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步地,触控面板371可覆盖在显示面板361上,当触控面板371检测到在其上或附近的触摸操作后,传送给处理器310以确定触摸事件的类型,随后处理器310根据触摸事件的类型在显示面板361上提供相应的视觉输出。虽然在图3中,触控面板371与显示面板361是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板371与显示面板361集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元38为外部装置与终端30连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元38可以用于接收 来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端30内的一个或多个元件或者可以用于在终端30和外部装置之间传输数据。
存储器39可用于存储软件程序以及各种数据。存储器39可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器39可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器310是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器39内的软件程序和/或模块,以及调用存储在存储器39内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器310可包括一个或多个处理单元;优选地,处理器310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器310中。
终端30还可以包括给各个部件供电的电源311(比如电池),优选地,电源311可以通过电源管理系统与处理器310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端30包括一些未示出的功能模块,在此不再赘述。
优选地,本公开实施例还提供一种终端,包括处理器310,存储器39,存储在存储器39上并可在所述处理器310上运行的计算机程序,该计算机程序被处理器310执行时实现上述波束失败恢复方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍 式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述波束失败恢复方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的波束失败恢复方法,下面本实施例将结合附图对网络设备侧的波束失败恢复方法做进一步介绍。
如图4所示,本公开实施例的波束失败恢复方法,应用于网络设备侧,可以包括以下步骤:
步骤41:从终端侧接收波束失败恢复请求。
在高频段通信系统中,容易出现信号传播中断。如果采用传统的无线链路重建流程,耗时较长,因此引入了波束失败恢复机制,包括:波束失败检测、新候选波束识别、波束失败恢复请求BERQ的发送和终端监控网络设备基于波束失败恢复请求的响应信息等步骤。其中,终端在检测到波束失败后,发送BERQ。
步骤42:在接收到波束失败恢复请求后,在目标控制资源集CORESET上反馈响应信息。
网络设备允许在CORESET-BFR上的专用(dedicated)PDCCH中发送响应信息,也可能允许在标识值为0的CORESET0上发送该响应信息。那么网络设备发送响应信息的目标CORESET包括:用于波束失败恢复的控制资源 集CORESET-BFR和标识值为0的CORESET0中的至少一项。值得指出的是,网络设备可以与终端预先协商反馈响应信息的目标CORESET,也可以根据网络性能等自主选择目标CORESET。相应地,终端可采用但不限于上述终端侧实施例介绍的监听方式进行监听。
优选地,对于BFR流程中,当SSB作为新候选波束的参考信号,需要给终端提供所有类型的准共址(quasi co-located,QCL)信息。相应地,步骤42之前还可以包括:从终端侧获取新候选波束;向终端发送该新候选波束的传输配置指示TCI信息。其中,准共址类型用于指示多普勒频率偏移、多普勒扩展、平均时延、时延扩展和空间接收参数中的至少一项是准共址的。
其中,向终端发送新候选波束的传输配置指示TCI信息的步骤可以包括:
当同步信号块SSB为新候选波束的参考信号时,通过SSB向终端发送新候选波束的TCI信息;对应于上述终端侧实施例的方式一,故在此不再赘述。
或者,通过CORESET-BFR,向终端发送新候选波束的TCI信息,其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于SSB指示的准共址类型;对应于上述终端侧实施例的方式二,故在此不再赘述。
或者,通过波束失败之前的其他CORESET,向终端发送新候选波束的TCI信息,其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于SSB指示的准共址类型;对应于上述终端侧实施例的方式三,故在此不再赘述。
本公开实施例的波束失败恢复方法中,终端在发生波束失败时,向网络设备发送波束失败恢复请求,触发波束失败恢复流程,通过上述实施例提供的波束失败恢复方法,这样可以避免因监听错误资源而导致的波束失败恢复失败的问题,从而也可以提高了波束失败恢复的成功率。
以上实施例分别详细介绍了不同场景下的波束失败恢复方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图5所示,本公开实施例的网络设备500,能实现上述实施例中从终端侧接收波束失败恢复请求;在接收到波束失败恢复请求后,在目标控制资源集CORESET上反馈响应信息方法的细节,并达到相同的效果。其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR或标识 值为0的CORESET0中的至少一项。该网络设备500具体包括以下功能模块:
接收模块510,用于从终端侧接收波束失败恢复请求;
反馈模块520,用于在接收到波束失败恢复请求后,在目标控制资源集CORESET上反馈响应信息;其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR或标识值为0的CORESET0中的至少一项。
其中,网络设备500还包括:
第二获取模块,用于从终端侧获取新候选波束;
第二发送模块,用于向终端发送新候选波束的传输配置指示TCI信息。
其中,第二发送模块包括:
第一发送子模块,用于当同步信号块SSB为新候选波束的参考信号时,通过SSB向终端发送新候选波束的TCI信息;
或者,
第二发送子模块,用于通过CORESET-BFR,向终端发送新候选波束的TCI信息,其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于SSB指示的准共址类型;
或者,
第三发送子模块,用于通过波束失败之前的其他CORESET,向终端发送新候选波束的TCI信息,其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于SSB指示的准共址类型。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以 上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
值得指出的是,本公开实施例的网络设备在终端发生波束失败发送波束失败恢复请求后,通过上述实施例提供的波束失败恢复方法,这样可以避免因监听错误资源而导致的波束失败恢复失败的问题,从而也可以提高了波束失败恢复的成功率。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的波束失败恢复方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的波束失败恢复方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图6所示,该网络设备600包括:天线61、射频装置62、基带装置63。天线61与射频装置62连接。在上行方向上,射频装置62通过天线61接收信息,将接收的信息发送给基带装置63进行处理。在下行方向上,基带装置63对要发送的信息进行处理,并发送给射频装置62,射频装置62对收到的信息进行处理后经过天线61发送出去。
上述频带处理装置可以位于基带装置63中,以上实施例中网络设备执行的方法可以在基带装置63中实现,该基带装置63包括处理器64和存储器65。
基带装置63例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图6所示,其中一个芯片例如为处理器64,与存储器65连接,以调用存储器65中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置63还可以包括网络接口66,用于与射频装置62交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器65可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器65旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器65上并可在处理器64上运行的计算机程序,处理器64调用存储器65中的计算机程序执行图5所示各模块执行的方法。
具体地,计算机程序被处理器64调用时可用于执行:从终端侧接收波束失败恢复请求;在接收到波束失败恢复请求后,在目标控制资源集CORESET 上反馈响应信息;
其中,目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR或标识值为0的CORESET0中的至少一项。
具体地,计算机程序被处理器64调用时可用于执行:从终端侧获取新候选波束;向终端发送新候选波束的传输配置指示TCI信息。
具体地,计算机程序被处理器64调用时可用于执行:当同步信号块SSB为新候选波束的参考信号时,通过SSB向终端发送新候选波束的TCI信息;
或者,
通过CORESET-BFR,向终端发送新候选波束的TCI信息,其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于SSB指示的准共址类型;
或者,
通过波束失败之前的其他CORESET,向终端发送新候选波束的TCI信息,其中,TCI信息用于指示目标准共址类型,目标准共址类型不同于SSB指示的准共址类型。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
本公开实施例中的网络设备在终端发生波束失败发送波束失败恢复请求后,通过上述实施例提供的波束失败恢复方法,这样可以避免因监听错误资源而导致的波束失败恢复失败的问题,从而也可以提高波束失败恢复的成功率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺 序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (14)

  1. 一种波束失败恢复方法,应用于终端侧,包括:
    在发生波束失败的情况下,向网络设备发送波束失败恢复请求;
    在目标控制资源集CORESET上,检测所述网络设备根据所述波束失败恢复请求反馈的响应信息;其中,所述目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR和标识值为0的CORESET0中的至少一项。
  2. 根据权利要求1所述的波束失败恢复方法,其中,在目标控制资源集CORESET上,检测网络设备根据所述波束失败恢复请求反馈的响应信息的步骤,包括:
    在预设时间窗内,按照预设切换周期,依次在CORESET-BFR和CORESET0上检测网络设备根据所述波束失败恢复请求反馈的响应信息。
  3. 根据权利要求1所述的波束失败恢复方法,其中,当所述目标CORESET包括CORESET-BFR时;在目标控制资源集CORESET上,检测网络设备根据所述波束失败恢复请求反馈的响应信息的步骤,包括:
    在预设时间窗内,在CORESET-BFR上检测网络设备根据所述波束失败恢复请求反馈的响应信息。
  4. 根据权利要求1至3任一项所述的波束失败恢复方法,其中,在目标控制资源集CORESET上,检测网络设备根据所述波束失败恢复请求反馈的响应信息的步骤之后,还包括:
    若未检测到所述响应信息,则确定波束失败恢复失败。
  5. 根据权利要求1所述的波束失败恢复方法,其中,在目标控制资源集CORESET上,检测网络设备根据所述波束失败恢复请求反馈的响应信息的步骤之前,还包括:
    获取新候选波束的传输配置指示TCI信息。
  6. 根据权利要求5所述的波束失败恢复方法,其中,获取所述新候选波束的传输配置指示TCI信息的步骤,包括:
    当同步信号块SSB为新候选波束的参考信号时,通过所述SSB获取所述新候选波束的TCI信息;
    或者,
    通过所述CORESET-BFR,接收所述新候选波束的TCI信息,其中,所述TCI信息用于指示目标准共址类型,所述目标准共址类型不同于所述SSB指示的准共址类型;
    或者,
    通过波束失败之前的其他CORESET,接收所述新候选波束的TCI信息,其中,所述TCI信息用于指示目标准共址类型,所述目标准共址类型不同于所述SSB指示的准共址类型。
  7. 一种终端,包括:
    第一发送模块,用于在发生波束失败的情况下,向网络设备发送波束失败恢复请求;
    检测模块,用于在目标控制资源集CORESET上,检测网络设备根据所述波束失败恢复请求反馈的响应信息;其中,所述目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR和标识值为0的CORESET0中的至少一项。
  8. 一种终端,其中,所述终端包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至6中任一项所述的波束失败恢复方法的步骤。
  9. 一种波束失败恢复方法,应用于网络设备侧,包括:
    从终端侧接收波束失败恢复请求;
    在接收到所述波束失败恢复请求后,在目标控制资源集CORESET上反馈响应信息;其中,所述目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR或标识值为0的CORESET0中的至少一项。
  10. 根据权利要求9所述的波束失败恢复方法,其中,在目标控制资源集CORESET上反馈响应信息的步骤之前,还包括:
    从终端侧获取新候选波束;
    向所述终端发送所述新候选波束的传输配置指示TCI信息。
  11. 根据权利要求10所述的波束失败恢复方法,其中,向所述终端发送所述新候选波束的传输配置指示TCI信息的步骤,包括:
    当同步信号块SSB为新候选波束的参考信号时,通过所述SSB向所述终端发送所述新候选波束的TCI信息;
    或者,
    通过所述CORESET-BFR,向所述终端发送所述新候选波束的TCI信息,其中,所述TCI信息用于指示目标准共址类型,所述目标准共址类型不同于所述SSB指示的准共址类型;
    或者,
    通过波束失败之前的其他CORESET,向所述终端发送所述新候选波束的TCI信息,其中,所述TCI信息用于指示目标准共址类型,所述目标准共址类型不同于所述SSB指示的准共址类型。
  12. 一种网络设备,包括:
    接收模块,用于从终端侧接收波束失败恢复请求;
    反馈模块,用于在接收到所述波束失败恢复请求后,在目标控制资源集CORESET上反馈响应信息;其中,所述目标CORESET包括:用于波束失败恢复的控制资源集CORESET-BFR或标识值为0的CORESET0中的至少一项。
  13. 一种网络设备,其中,所述网络设备包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求9至11任一项所述的波束失败恢复方法的步骤。
  14. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6、9至11中任一项所述的波束失败恢复方法的步骤。
PCT/CN2019/080998 2018-04-04 2019-04-02 波束失败恢复方法、终端及网络设备 WO2019192473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810301253.0 2018-04-04
CN201810301253.0A CN110351756B (zh) 2018-04-04 2018-04-04 波束失败恢复方法、终端、网络设备及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2019192473A1 true WO2019192473A1 (zh) 2019-10-10

Family

ID=68099846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080998 WO2019192473A1 (zh) 2018-04-04 2019-04-02 波束失败恢复方法、终端及网络设备

Country Status (2)

Country Link
CN (1) CN110351756B (zh)
WO (1) WO2019192473A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093219A (zh) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 信息的确定、对应关系的确定方法、装置、设备及介质
WO2021088032A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 链路质量监测方法及装置
EP4203337A4 (en) * 2020-08-21 2024-05-01 Beijing Xiaomi Mobile Software Co Ltd METHOD FOR DETERMINING BEAM FAILURE AND APPARATUS, DEVICE AND RECORDING MEDIUM
WO2022141646A1 (zh) * 2021-01-04 2022-07-07 北京小米移动软件有限公司 波束失败检测bfd资源的确定方法、装置及通信设备
CN114667790A (zh) * 2022-02-18 2022-06-24 北京小米移动软件有限公司 资源确定方法、装置、设备及存储介质
CN117528675A (zh) * 2022-07-29 2024-02-06 维沃移动通信有限公司 波束失败恢复或链路失败恢复方法及终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612602A (zh) * 2017-08-28 2018-01-19 清华大学 毫米波通信系统的波束恢复方法及装置
WO2018031327A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Methods and apparatus for efficient power saving in wireless networks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659994A (zh) * 2017-09-05 2018-02-02 宇龙计算机通信科技(深圳)有限公司 资源指示方法、相关设备及通信系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031327A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Methods and apparatus for efficient power saving in wireless networks
CN107612602A (zh) * 2017-08-28 2018-01-19 清华大学 毫米波通信系统的波束恢复方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Offline Discussion Summary for Beam Failure Recovery", 3GPP TSG RAN WG1 MEETING #AH1801 R1-1801223, 26 January 2018 (2018-01-26), XP051385448 *
NOKIA ET AL: "Remaining Details on Beam Recovery", 3GPP TSG-RAN WG1 MEETING #92 R1-1802557, 2 March 2018 (2018-03-02), XP051397329 *

Also Published As

Publication number Publication date
CN110351756A (zh) 2019-10-18
CN110351756B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2019184692A1 (zh) 波束失败处理方法、终端及网络设备
WO2019184716A1 (zh) 波束失败处理方法、终端及网络设备
WO2019192473A1 (zh) 波束失败恢复方法、终端及网络设备
US11910399B2 (en) Method and terminal for receiving PDSCH
WO2019201199A1 (zh) 波束失败检测方法、信息配置方法、终端及网络设备
WO2019157948A1 (zh) 回传路径的转换方法、无线中继、网络侧节点及终端
WO2019141057A1 (zh) 上行功率控制参数配置方法、终端及网络设备
WO2019192472A1 (zh) 信道传输方法、终端及网络设备
WO2019174446A1 (zh) 测量方法、测量配置方法、终端及网络设备
WO2020151743A1 (zh) 随机接入方法及终端
US11606831B2 (en) Radio link recovery method and terminal
WO2019214663A1 (zh) 准共址配置方法、终端及网络设备
WO2019137276A1 (zh) 通信业务过程冲突的处理方法及终端
WO2019179317A1 (zh) 信息传输方法、终端及网络设备
US20210105644A1 (en) Method for determining radio link state and terminal
CN110392427B (zh) 通信流程处理方法及终端
WO2019095900A1 (zh) 非对称频谱的带宽部分bwp切换方法、终端及网络设备
WO2019080656A1 (zh) 丢包率计算方法、网络设备及终端
WO2020088101A1 (zh) 非周期信道状态信息参考信号配置方法、网络设备及终端
WO2019218910A1 (zh) 多载波系统中的波束失败恢复方法及装置
WO2019076170A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
WO2019141182A1 (zh) 波束失败恢复方法及终端
WO2019201144A1 (zh) 非授权频段的信息传输方法、网络设备及终端
WO2019062502A1 (zh) 信息传输方法、终端、网络设备及计算机可读存储介质
CN111263393B (zh) 无线链路监测方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19782256

Country of ref document: EP

Kind code of ref document: A1