WO2019201199A1 - 波束失败检测方法、信息配置方法、终端及网络设备 - Google Patents

波束失败检测方法、信息配置方法、终端及网络设备 Download PDF

Info

Publication number
WO2019201199A1
WO2019201199A1 PCT/CN2019/082659 CN2019082659W WO2019201199A1 WO 2019201199 A1 WO2019201199 A1 WO 2019201199A1 CN 2019082659 W CN2019082659 W CN 2019082659W WO 2019201199 A1 WO2019201199 A1 WO 2019201199A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
beam failure
timer
failure detection
bwp
Prior art date
Application number
PCT/CN2019/082659
Other languages
English (en)
French (fr)
Inventor
吴昱民
杨宇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19787868.9A priority Critical patent/EP3783944B1/en
Priority to JP2020556755A priority patent/JP7074884B2/ja
Priority to ES19787868T priority patent/ES2977059T3/es
Priority to KR1020207032754A priority patent/KR102440533B1/ko
Publication of WO2019201199A1 publication Critical patent/WO2019201199A1/zh
Priority to US17/071,808 priority patent/US11632165B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a beam failure detection method, an information configuration method, a terminal, and a network device.
  • a fifth-generation (5 th Generation, 5G) mobile communication system otherwise known as a new air interface (New Radio, NR) system
  • the high frequency band has a relatively rich idle frequency resource, which can provide greater throughput for data transmission.
  • an uplink transmission rate of 10 Gbps, a high frequency antenna and a larger scale more antenna port MIMO technology will be introduced.
  • the high-frequency signal has a short wavelength. Compared with the low-frequency band, it can arrange more antenna array elements on the same size panel, and use beamforming technology to form a beam with stronger directivity and narrower lobe, large-scale (Massive).
  • MIMO technology uses a large-scale antenna array, which can greatly improve the system band utilization efficiency and support a larger number of access users.
  • the terminal may only support a relatively small working bandwidth (such as 5MHz), while a cell on the network device side will support a relatively large bandwidth (such as 100MHz), and the terminal in the large bandwidth works small.
  • the bandwidth portion is considered to be the Bandwidth Part (BWP).
  • the network device side configurable terminal supports one or more BWPs, and can convert the currently activated BWP by the BWP switching command, that is, activate the new BWP and deactivate the current active BWP.
  • the terminal may also support multiple beams.
  • the terminal maintains only one beam failure detection timer and counter for each cell, and the terminal does not detect which BWP corresponding to the multiple BWPs, or which of the multiple beams generate beam failure.
  • Both control the beam failure detection counter plus 1 for example, the terminal corresponds to beam 1 and beam 2.
  • the terminal detects beam failure of beam 1 for example 4 times.
  • the terminal detects again.
  • the beam 2 beam failure example is performed once, then the terminal control beam failure detection counter counts 5 times and determines that a beam failure event occurs. In fact, the number of beam failures in beam 2 is less, and the beam quality is better.
  • the terminal uses the existing beam failure detection mechanism, which is erroneously determined to be unavailable for both beam 1 and beam 2, and the accuracy of beam failure detection results. Lower.
  • the embodiments of the present disclosure provide a beam failure detection method, an information configuration method, a terminal, and a network device to solve the problem of low accuracy of beam failure detection in the prior art.
  • an embodiment of the present disclosure provides a beam failure detection method, which is applied to a terminal side, and includes:
  • the preset operation is performed on the timer and/or the counter of the beam failure detection corresponding to the target beam according to the configuration information; wherein the target beam is one of the beams supported by the terminal, or the beam corresponding to the bandwidth part BWP supported by the terminal.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a receiving module configured to receive configuration information used for beam failure detection
  • the processing module is configured to perform preset operations on a timer and/or a counter for detecting a beam failure corresponding to the target beam according to the configuration information, where the target beam is one of the beams supported by the terminal, or the bandwidth part BWP supported by the terminal corresponds to Beam.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes a processor, a memory, and a program stored on the memory and executable on the processor, and the step of implementing the beam failure detecting method by the program when the program is executed by the processor .
  • an embodiment of the present disclosure provides an information configuration method, which is applied to a network device side, and includes:
  • the configuration information is used to indicate: a timer and/or a counter for beam failure detection corresponding to the target beam, the target beam is one of the beams supported by the terminal, or the bandwidth supported by the terminal The beam corresponding to part of the BWP.
  • an embodiment of the present disclosure provides a network device, including:
  • a sending module configured to send configuration information for beam failure detection, where the configuration information is used to indicate: a timer and/or a counter for beam failure detection corresponding to the target beam, where the target beam is one of the beams supported by the terminal, Or the beam corresponding to the bandwidth part BWP supported by the terminal.
  • an embodiment of the present disclosure provides a network device, where the network device includes a processor, a memory, and a program stored on the memory and executable on the processor, and the step of implementing the information configuration method described above when the program is executed by the processor.
  • an embodiment of the present disclosure provides a computer readable storage medium, where a program is stored on a computer readable storage medium, and the beam failure detection method is implemented when the program is executed by the processor, or the step of the information configuration method.
  • the beam failure detection timer and/or the counter configured by the network device for the terminal corresponds to the target beam, which can improve the accuracy of the beam failure detection and avoid the resources caused by the misidentification of the available beam. waste.
  • FIG. 1 is a schematic flow chart showing a beam failure detecting method in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a module of a terminal in an embodiment of the present disclosure
  • Figure 3 shows a block diagram of a terminal of an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of an information configuration method in an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a module of a network device according to an embodiment of the present disclosure.
  • Figure 6 shows a block diagram of a network device in accordance with an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a beam failure detection method, which is applied to a terminal side. As shown in FIG. 1, the method includes the following steps 11 and 12.
  • Step 11 Receive configuration information for beam failure detection.
  • the BFR mechanism includes: beam failure detection, new candidate beam identification, beam failure recovery request (BERQ) transmission, and monitoring network device response information based on the beam failure recovery request.
  • the beam failure detection is performed by the terminal measuring the Beam Failure Detection Reference Signal (BFD RS) at the physical layer, and determining whether a beam failure event occurs according to the measurement result.
  • BFD RS Beam Failure Detection Reference Signal
  • the condition that the terminal determines that the beam failure event occurs includes: if it is detected that the metric of the serving control beam meets the preset condition, for example, a block error of the Physical Downlink Control Channel (PDCCH) If the Block Error Ratio (BLER) exceeds the preset threshold, it is determined as a beam failure instance.
  • the physical layer of the terminal reports to the upper layer, such as the Media Access Control (MAC) layer. The reporting process is periodic. Accordingly, if the terminal physical layer determines that no beam failure example has occurred, no indication is sent to the upper layer.
  • the upper layer of the terminal uses a counter to count the indications reported by the physical layer. When the maximum number of network configurations is reached, the terminal determines that a beam failure event has occurred.
  • the configuration information used for beam failure detection includes parameter information involved in the beam failure detection process.
  • the configuration information includes at least: a reference signal configuration of the beam failure detection (such as failure detection resources), a counter configuration for beam failure detection (such as a beam failure Instance Max Count), and is used for Beam failure detection timer, etc.
  • Step 12 Perform preset operations on the timer and/or counter of the beam failure detection corresponding to the target beam according to the configuration information.
  • the target beam is one of the beams supported by the terminal, or the beam corresponding to the bandwidth part BWP supported by the terminal. That is, the timer for beam failure detection in the configuration information corresponds to one of the beams supported by the terminal, or the timer corresponds to the beam corresponding to the BWP supported by the terminal.
  • the counter for beam failure detection in the configuration information corresponds to one of the beams supported by the terminal, or the timer corresponds to the beam corresponding to the BWP supported by the terminal. In this way, the timers and/or timers used for beam failure detection correspond to a smaller number of beams, which can improve the accuracy of beam failure detection and avoid waste of resources caused by the misidentification of available beams.
  • the configuration information may include at least one of the following information:
  • Timer information which is used to indicate the timer configuration of the beam failure detection, such as the maximum number of failure detection examples.
  • Counter information which is used to indicate a counter configuration of beam failure detection, such as a failure detection detection time
  • the BWP identification information corresponding to the timer information is used to indicate the BWP corresponding to the timer information, where one BWP corresponds to an independent timer, and the values of the timers corresponding to different BWPs may be the same or different.
  • the BWP identification information corresponding to the counter information is used to indicate the BWP corresponding to the counter information, wherein one BWP corresponds to an independent counter, and the values of the counters corresponding to different BWPs may be the same or different, that is, different BWPs are corresponding.
  • the maximum number of beam failure detection examples may be the same or different;
  • the beam identification information corresponding to the timer information that is, the beam identifier corresponding to the beam failure detection timer configuration in the beam failure detection configuration information, is used to indicate a beam corresponding to the timer information.
  • One beam corresponds to an independent timer, and the values of timers corresponding to different beams may be the same or different.
  • a beam identification information corresponding to the counter information that is, a beam identifier corresponding to the beam failure detection counter configuration in the beam failure detection configuration information, for indicating a beam corresponding to the counter information.
  • One beam corresponds to an independent counter, and the values of the counters corresponding to different beams may be the same or different. That is, the maximum number of beam failure detection examples corresponding to different beams may be the same or different.
  • the foregoing beam identification information includes at least one of the following:
  • Synchronous Signal Block (SSB) identification information such as an SSB identifier
  • CSI-RS Channel State Information-Reference Signal
  • the spatial relationship between the beams is configured with the identifier information, where the spatial relationship configuration information includes, but is not limited to, a Transmission Configuration Indicator (TCI) or a Quasi-Co Location (QCL) relationship information.
  • TCI Transmission Configuration Indicator
  • QCL Quasi-Co Location
  • the quasi-co-location relationship indicates that at least one of Doppler frequency offset, Doppler spread, average delay, delay spread, and spatial receive parameters between different beams is quasi-co-located.
  • the QCL-Type A is used to indicate that the Doppler frequency offset, the Doppler spread, the average delay, and the delay spread are quasi-co-located or the same;
  • QCL-Type B is used to indicate that the Doppler frequency offset and Doppler spread are quasi-co-located or the same;
  • QCL-Type C is used to indicate that the Doppler frequency offset and the average delay are quasi-co-located or the same ;
  • QCL-Type D is used to indicate that the spatial reception parameters are quasi co-addressed or the same.
  • the BWP indicated by the BWP identifier information is an activated BWP or a deactivated BWP
  • the beam indicated by the beam identification information is a serving beam (or an active beam) or a non-serving beam (or an inactive beam).
  • step 12 may include: when the physical layer detects the target beam-forming beam failure example, the control physical layer sends a beam failure indication information to the upper layer; after receiving the beam failure indication information, the upper layer according to the configuration information, The timer and/or counter of the beam failure detection corresponding to the target beam performs a preset operation.
  • the terminal measures the BFD RS at the physical layer, and determines whether a beam failure event occurs according to the measurement result.
  • the condition that the terminal determines that the beam failure event occurs includes: if it is detected that the metric of the target beam meets a preset condition, for example, the BLER of the PDCCH exceeds a preset threshold, and then determines that it is a failure of the primary beam, and the physical layer of the terminal reports to the upper layer of the beam.
  • the failure indication information the higher layer may be the MAC layer, and the reporting process is periodic. In this way, the upper layer of the terminal uses a counter to count the indication reported by the physical layer, and uses a timer to count.
  • the method for maintaining the timer at a high level includes but is not limited to:
  • Each cell maintains one beam failure detection timer, such as an independent beam failure detection timer for each activated cell;
  • each BWP maintains one beam failure detection timer, for example, each activated (or inactive) BWP corresponds to an independent beam failure detection timer;
  • each beam maintains one beam failure detection timer, such as each service (or non-serving) beam corresponding to an independent beam failure detection timer.
  • Each cell maintains one beam failure detection counter, for example, each activated cell corresponds to an independent beam failure detection counter;
  • each BWP maintains one beam failure detection counter, such as each activated (or inactive) BWP corresponding to an independent beam failure detection counter;
  • each beam maintains 1 beam failure detection counter, such as each service (or non-serving) beam corresponding to an independent beam failure detection counter.
  • each BWP maintains an independent beam failure detection timer, and accordingly, each BWP also maintains 1 Independent beam failure detection counters.
  • the beam failure indication information sent by the physical layer of the terminal to the upper layer includes at least one of the following:
  • the BWP identifier information corresponding to the target beam is used to indicate the BWP identifier corresponding to the target beam in the beam failure example.
  • the beam identification information of the target beam is used to indicate the beam identifier of the target beam example in which the beam failure occurs.
  • the step of performing a preset operation on the timer and/or the counter of the beam failure detection corresponding to the target beam according to the configuration information may include, but is not limited to, the following:
  • the timer corresponding to the target beam is started or restarted.
  • the terminal performs the measurement on the BFD RS at the physical layer. If the metric of the target beam is found to meet the preset condition, for example, the BLER of the PDCCH exceeds the preset threshold, the terminal is determined to be an example of the failure of the primary beam, and the physical layer of the terminal is reported to the upper layer. A beam failure indication message. In this way, the upper layer of the terminal starts or restarts the timer corresponding to the target beam. If the timer expires within a certain period of time, it determines that no beam failure event occurs, and resets the counter corresponding to the target beam, such as setting to a value of 0, or setting Is the maximum value.
  • the beam failure indication information is received. After that, the beam failure detection timer is started or restarted.
  • the beam failure indication information is received. After that, the beam failure detection timer is started or restarted.
  • the counter corresponding to the control target beam is incremented or decremented by one.
  • the terminal measures the BFD RS at the physical layer. If the metric of the target beam is found to meet the preset condition, the terminal determines an example of a beam failure.
  • the physical layer of the terminal reports a beam failure indication message to the upper layer. Assuming that the initial value of the timer is 0, after receiving the beam failure indication information of the physical layer, the upper layer of the control unit increases the counter corresponding to the target beam by one. If the counter reaches the maximum value before the timer corresponding to the target beam expires, A beam failure event is determined; otherwise, a beam failure event is considered to have occurred and the counter is reset.
  • the upper layer of the terminal receives the beam failure indication information of the physical layer, and the counter corresponding to the control target beam is decremented by one. If the timer corresponding to the target beam times out, the counter is 0. , to determine the occurrence of a beam failure event; otherwise, it is considered that no beam failure event has occurred and the counter is reset. After the terminal determines that a beam failure event occurs, the beam failure recovery process is triggered.
  • the configuration information is reconfigured for the network device, that is, the network device is not configured for the first time for the terminal to configure configuration information for beam failure detection, and the reconfiguration process is a configuration update process for beam failure detection, such as deleting or adding One configuration information for beam failure detection, or one or more parameters in the last configuration information.
  • the configuration information can carry only the changed parameters without carrying all the configurations.
  • the configuration information may include at least one of the following information:
  • the deleted or added cell identifier information is used to indicate that the cell corresponding to the beam failure detection configuration is deleted and added, for example, deleting or adding a cell in the same Radio Resource Control (RRC) configuration message.
  • RRC Radio Resource Control
  • the deleted or added BWP identification information is used to indicate that the BWP corresponding to the beam failure detection configuration is deleted and added, for example, deleting or adding the BWP in the same RRC configuration message.
  • the deleted or added beam identification information is used to indicate that the beam deletion corresponding to the beam failure detection configuration is added, for example, deleting or adding a beam in the same RRC configuration message.
  • the indication information of the configuration information is added to indicate that new configuration information is added based on the original configuration information.
  • the update information of the target parameter value in the configuration information is used to indicate the target parameter that needs to be changed in the original configuration information and the target parameter value after the change, such as changing the duration of the timer or the maximum value of the counter.
  • the instruction information for performing the BWP change is used to instruct the terminal to perform the BWP change.
  • the BWP change method includes but is not limited to: BWP switching occurs, that is, one BWP is activated, and another BWP is activated at the same time. Or deactivate the BWP corresponding to a beam failure detection timer. Or activate a BWP corresponding to a beam failure detection timer.
  • the beam change mode includes, but is not limited to, the network device sends a beam identification change indication information indicating the service (or activation) to the terminal, such as indicating a new service (or activation) beam identifier by using a PDCCH or a MAC CE.
  • step 12 includes: performing one of the following operations on the timer for beam failure detection corresponding to the target beam according to the foregoing configuration information (reconfiguration): starting a timer; restarting the timer; and stopping the timer.
  • step 12 may further include: resetting, according to the foregoing configuration information (reconfiguration), a counter of beam failure detection corresponding to the target beam, if set to a value of 0, or set to a maximum value.
  • the beam failure detection timer and/or the counter configured for the terminal correspond to the target beam, which can improve the accuracy of the beam failure detection and prevent the available beam from being misidentified as unavailable. Waste of resources.
  • the terminal 200 of the embodiment of the present disclosure can implement configuration information for receiving beam failure detection in the foregoing embodiment, and perform timer and/or counter for beam failure detection corresponding to the target beam according to the configuration information.
  • the details of the operation method are preset, and the same effect is achieved, wherein the target beam is one of the beams supported by the terminal, or the beam corresponding to the bandwidth portion BWP supported by the terminal.
  • the terminal 200 specifically includes the following functional modules:
  • the receiving module 210 is configured to receive configuration information for beam failure detection.
  • the processing module 220 is configured to perform preset operations on a timer and/or a counter for detecting a beam failure corresponding to the target beam according to the configuration information, where the target beam is one of the beams supported by the terminal, or the bandwidth portion supported by the terminal is BWP. Corresponding beam.
  • the configuration information includes at least one of the following:
  • Beam identification information corresponding to the counter information Beam identification information corresponding to the counter information.
  • the beam identification information includes at least one of the following: a synchronization signal block SSB identification information, a channel state information reference signal CSI-RS identification information, and spatial relationship configuration identification information between the beams.
  • the BWP indicated by the BWP identifier information is an activated BWP or a deactivated BWP, and the beam indicated by the beam identification information is a serving beam or a non-serving beam.
  • the processing module 220 includes:
  • a first processing submodule configured to: when the physical layer detects an example of a beam failure of the target beam, the control physical layer sends a beam failure indication information to the upper layer;
  • the second processing sub-module is configured to perform a preset operation on the timer and/or the counter of the beam failure detection corresponding to the target beam according to the configuration information after receiving the beam failure indication information.
  • the beam failure indication information includes at least one of the following: BWP identification information corresponding to the target beam and beam identification information of the target beam.
  • the processing module 220 further includes:
  • a third processing sub-module configured to start or restart a timer corresponding to the target beam when detecting a beam failure example of the target beam
  • the fourth processing submodule is configured to: when the target beam generating beam failure example is detected, the counter corresponding to the control target beam is incremented or decremented by one.
  • the configuration information includes at least one of the following when the configuration information is reconfigured for the network device:
  • the processing module 220 further includes:
  • the fifth processing submodule is configured to perform one of the following operations on the timer for detecting the beam failure corresponding to the target beam according to the configuration information:
  • the processing module 220 further includes: a sixth processing sub-module, configured to reset a counter of the beam failure detection corresponding to the target beam according to the configuration information.
  • the terminal of the embodiment of the present disclosure has a beam failure detection timer and/or a counter corresponding to the target beam, which can improve the accuracy of the beam failure detection and avoid the waste of resources caused by the misidentification of the available beam. .
  • FIG. 3 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 30 includes, but is not limited to, a radio frequency unit 31, a network module 32, and an audio output unit 33.
  • the terminal structure shown in FIG. 3 does not constitute a limitation to the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the radio frequency unit 31 is configured to receive configuration information used for beam failure detection.
  • the processor 310 is configured to perform preset operations on a timer and/or a counter of the beam failure detection corresponding to the target beam according to the configuration information, where the target beam is one of the beams supported by the terminal, or the bandwidth part supported by the terminal is BWP.
  • the target beam is one of the beams supported by the terminal, or the bandwidth part supported by the terminal is BWP.
  • the terminal of the embodiment of the present disclosure has a beam failure detection timer and/or a counter corresponding to the target beam, which can improve the accuracy of beam failure detection and avoid waste of resources caused by the available beam being misidentified as unavailable.
  • the radio frequency unit 31 can be used for receiving and transmitting signals during the transmission and reception of information or during a call, and specifically, after receiving downlink data from the base station, processing the data to the processor 310; The uplink data is sent to the base station.
  • radio frequency unit 31 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 31 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides the user with wireless broadband Internet access through the network module 32, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 33 can convert the audio data received by the radio frequency unit 31 or the network module 32 or stored in the memory 39 into an audio signal and output as sound. Moreover, the audio output unit 33 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the terminal 30.
  • the audio output unit 33 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 34 is for receiving an audio or video signal.
  • the input unit 34 may include a graphics processing unit (GPU) 341 and a microphone 342 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 36.
  • the image frames processed by the graphics processor 341 may be stored in the memory 39 (or other storage medium) or transmitted via the radio unit 31 or the network module 32.
  • the microphone 342 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 31 in the case of a telephone call mode.
  • Terminal 30 also includes at least one type of sensor 35, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 361 according to the brightness of the ambient light, and the proximity sensor can close the display panel 361 and/or when the terminal 30 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 35 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 36 is for displaying information input by the user or information provided to the user.
  • the display unit 36 can include a display panel 361.
  • the display panel 361 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 37 can be used to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 37 includes a touch panel 371 and other input devices 372.
  • the touch panel 371 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 371 or near the touch panel 371. operating).
  • the touch panel 371 can include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the touch panel 371 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 37 may also include other input devices 372.
  • the other input devices 372 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein.
  • the touch panel 371 can be overlaid on the display panel 361.
  • the touch panel 371 detects a touch operation on or near the touch panel 371, it is transmitted to the processor 310 to determine the type of the touch event, and then the processor 310 according to the touch.
  • the type of event provides a corresponding visual output on display panel 361.
  • the touch panel 371 and the display panel 361 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 371 may be integrated with the display panel 361.
  • the input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 38 is an interface in which an external device is connected to the terminal 30.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 38 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 30 or can be used at the terminal 30 and external devices Transfer data between.
  • the memory 39 can be used to store software programs as well as various data.
  • the memory 39 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • the memory 39 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 310 is a control center of the terminal, which connects various parts of the entire terminal by various interfaces and lines, and executes by executing or executing software programs and/or modules stored in the memory 39, and calling data stored in the memory 39.
  • the processor 310 may include one or more processing units; optionally, the processor 310 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and a modulation solution
  • the processor mainly handles wireless communication. It can be understood that the above modem processor may not be integrated into the processor 310.
  • the terminal 30 may further include a power source 311 (such as a battery) for supplying power to the various components.
  • a power source 311 such as a battery
  • the power source 311 may be logically connected to the processor 310 through the power management system to manage charging, discharging, and power management through the power management system. And other functions.
  • the terminal 30 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 310, a memory 39, a program stored on the memory 39 and executable on the processor 310, and the program is implemented by the processor 310.
  • the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal digital assistant
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the embodiment of the present disclosure further provides a computer readable storage medium.
  • the computer readable storage medium stores a program, where the program is executed by the processor to implement various processes of the beam failure detecting method embodiment, and can achieve the same technical effect. To avoid repetition, we will not repeat them here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the information configuration method of the embodiment of the present disclosure is applied to the network device side, and may include the following steps:
  • Step 41 Send configuration information for beam failure detection.
  • the configuration information is used to indicate: a timer and/or a counter for beam failure detection corresponding to the target beam, the target beam is one of the beams supported by the terminal, or the beam corresponding to the bandwidth portion BWP supported by the terminal. That is, the timer for beam failure detection in the configuration information corresponds to one of the beams supported by the terminal, or the timer corresponds to the beam corresponding to the BWP supported by the terminal.
  • the counter for beam failure detection in the configuration information corresponds to one of the beams supported by the terminal, or the timer corresponds to the beam corresponding to the BWP supported by the terminal. In this way, the timers and/or timers used for beam failure detection correspond to a smaller number of beams, which can improve the accuracy of beam failure detection and avoid waste of resources caused by the misidentification of available beams.
  • the configuration information may include at least one of the following information:
  • Timer information which is used to indicate the timer configuration of the beam failure detection, such as the maximum number of failure detection examples.
  • Counter information which is used to indicate a counter configuration of beam failure detection, such as a failure detection detection time
  • the BWP identification information corresponding to the timer information is used to indicate the BWP corresponding to the timer information, where one BWP corresponds to an independent timer, and the values of the timers corresponding to different BWPs may be the same or different.
  • the BWP identification information corresponding to the counter information is used to indicate the BWP corresponding to the counter information, wherein one BWP corresponds to an independent counter, and the values of the counters corresponding to different BWPs may be the same or different, that is, different BWPs are corresponding.
  • the maximum number of beam failure detection examples may be the same or different;
  • the beam identification information corresponding to the timer information that is, the beam identifier corresponding to the beam failure detection timer configuration in the beam failure detection configuration information, is used to indicate a beam corresponding to the timer information.
  • One beam corresponds to an independent timer, and the values of timers corresponding to different beams may be the same or different.
  • a beam identification information corresponding to the counter information that is, a beam identifier corresponding to the beam failure detection counter configuration in the beam failure detection configuration information, for indicating a beam corresponding to the counter information.
  • One beam corresponds to an independent counter, and the values of the counters corresponding to different beams may be the same or different. That is, the maximum number of beam failure detection examples corresponding to different beams may be the same or different.
  • the foregoing beam identification information includes at least one of the following:
  • Synchronous Signal Block (SSB) identification information such as an SSB identifier
  • CSI-RS Channel State Information-Reference Signal
  • the spatial relationship between the beams is configured with the identifier information, where the spatial relationship configuration information includes, but is not limited to, a Transmission Configuration Indicator (TCI) or a Quasi-Co Location (QCL) relationship information.
  • TCI Transmission Configuration Indicator
  • QCL Quasi-Co Location
  • the quasi-co-location relationship indicates that at least one of Doppler frequency offset, Doppler spread, average delay, delay spread, and spatial receive parameters between different beams is quasi-co-located.
  • the BWP indicated by the BWP identifier information is an activated BWP or a deactivated BWP
  • the beam indicated by the beam identification information is a serving beam (or an active beam) or a non-serving beam (or an inactive beam).
  • the configuration information is reconfigured for the network device, that is, the network device is not configured for the first time for the terminal to configure configuration information for beam failure detection, and the reconfiguration process is a configuration update process for beam failure detection, such as deleting or adding One configuration information for beam failure detection, or one or more parameters in the last configuration information.
  • the configuration information can carry only the changed parameters without carrying all the configurations.
  • the configuration information may include at least one of the following information:
  • the deleted or added cell identifier information is used to indicate that the cell corresponding to the beam failure detection configuration is deleted and added, for example, deleting or adding a cell in the same Radio Resource Control (RRC) configuration message.
  • RRC Radio Resource Control
  • the deleted or added BWP identification information is used to indicate that the BWP corresponding to the beam failure detection configuration is deleted and added, for example, deleting or adding the BWP in the same RRC configuration message.
  • the deleted or added beam identification information is used to indicate that the beam deletion corresponding to the beam failure detection configuration is added, for example, deleting or adding a beam in the same RRC configuration message.
  • the indication information of the configuration information is added to indicate that new configuration information is added based on the original configuration information.
  • the update information of the target parameter value in the configuration information is used to indicate the target parameter that needs to be changed in the original configuration information and the target parameter value after the change, such as changing the duration of the timer or the maximum value of the counter.
  • the instruction information for performing the BWP change is used to instruct the terminal to perform the BWP change.
  • the BWP change method includes but is not limited to: BWP switching occurs, that is, one BWP is activated, and another BWP is activated at the same time. Or deactivate the BWP corresponding to a beam failure detection timer. Or activate a BWP corresponding to a beam failure detection timer.
  • the beam change mode includes, but is not limited to, the network device sends a beam identification change indication information indicating the service (or activation) to the terminal, such as indicating a new service (or activation) beam identifier by using a PDCCH or a MAC CE.
  • the network device can improve the beam failure detection by sending configuration information for beam failure detection to the terminal, where the timer and/or timer indicated by the configuration information corresponds to a smaller number of beams. Accuracy, avoiding wasted resources caused by misidentification of available beams.
  • the network device 500 of the embodiment of the present disclosure can implement the details of the method for sending configuration information for beam failure detection in the foregoing embodiment, and achieve the same effect, wherein the configuration information is used to indicate: The timer and/or counter of the beam failure detection corresponding to the beam, the target beam being one of the beams supported by the terminal, or the beam corresponding to the bandwidth part BWP supported by the terminal.
  • the network device 500 specifically includes the following functional modules:
  • the sending module 510 is configured to send configuration information for beam failure detection, where the configuration information is used to indicate: a timer and/or a counter for beam failure detection corresponding to the target beam, where the target beam is supported by the terminal One of the beams, or a beam corresponding to the bandwidth portion BWP supported by the terminal.
  • the configuration information includes at least one of the following when the configuration information is configured for the initial configuration of the network device:
  • Beam identification information corresponding to the counter information Beam identification information corresponding to the counter information.
  • the beam identification information includes at least one of the following: a synchronization signal block SSB identification information, a channel state information reference signal CSI-RS identification information, and spatial relationship configuration identification information between the beams.
  • the BWP indicated by the BWP identifier information is an activated BWP or a deactivated BWP, and the beam indicated by the beam identification information is a serving beam or a non-serving beam.
  • the configuration information includes at least one of the following when the configuration information is reconfigured by the network device:
  • each module of the above terminal is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors ( A digital signal processor (DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the network device in the embodiment of the present disclosure can improve the beam failure detection by transmitting configuration information for beam failure detection to the terminal, where the timer and/or timer indicated by the configuration information corresponds to a smaller number of beams. Accuracy, avoiding wasted resources caused by misidentification of available beams.
  • an embodiment of the present disclosure further provides a network device, including a processor, a memory, and a program stored on the memory and executable on the processor, when the processor executes the program.
  • the embodiment of the invention further provides a computer readable storage medium having stored thereon a program, the program being executed by the processor to implement the steps of the information configuration method as described above.
  • the network device 600 includes an antenna 61, a radio frequency device 62, and a baseband device 63.
  • the antenna 61 is connected to the radio frequency device 62.
  • the radio frequency device 62 receives information via the antenna 61 and transmits the received information to the baseband device 63 for processing.
  • the baseband device 63 processes the information to be transmitted and transmits it to the radio frequency device 62.
  • the radio frequency device 62 processes the received information and transmits it via the antenna 61.
  • the above-described band processing device may be located in the baseband device 63, and the method performed by the network device in the above embodiment may be implemented in the baseband device 63, which includes the processor 64 and the memory 65.
  • the baseband device 63 may include, for example, at least one baseband board on which a plurality of chips are disposed, as shown in FIG. 6, one of which is, for example, a processor 64, connected to the memory 65 to call a program in the memory 65 to execute The network device operation shown in the above method embodiment.
  • the baseband device 63 can also include a network interface 66 for interacting with the radio frequency device 62, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the method performed by the above network device.
  • An integrated circuit such as one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • Memory 65 can be either volatile memory or non-volatile memory, or can include both volatile and non-volatile memory.
  • the non-volatile memory may be a Read-Only Memory (ROM), a Programmable ROM (Programmable ROM), or an Erasable PROM (EPROM). , electrically erasable programmable read only memory (EEPROM) or flash memory.
  • the volatile memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous).
  • DRAM double data rate synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchlink DRAM
  • DRRAM Direct Memory Bus
  • the network device of the embodiment of the present disclosure further includes a program stored on the memory 65 and executable on the processor 64, and the processor 64 calls a program in the memory 65 to execute the method executed by each module shown in FIG.
  • the program is used by the processor 64 to perform: sending configuration information for beam failure detection; wherein the configuration information is used to indicate: a timer and/or a counter for beam failure detection corresponding to the target beam, the target beam One of the beams supported by the terminal, or the beam corresponding to the bandwidth portion BWP supported by the terminal.
  • the configuration information includes at least one of the following:
  • Beam identification information corresponding to the counter information Beam identification information corresponding to the counter information.
  • the beam identification information includes at least one of the following: a synchronization signal block SSB identification information, a channel state information reference signal CSI-RS identification information, and spatial relationship configuration identification information between the beams.
  • the BWP indicated by the BWP identifier information is an activated BWP or a deactivated BWP, and the beam indicated by the beam identification information is a serving beam or a non-serving beam.
  • the configuration information includes at least one of the following when the configuration information is reconfigured for the network device:
  • the network device may be a Global System of Mobile communication (GSM) or a Code Division Multiple Access (CDMA) base station (Base Transceiver Station, BTS for short) or a wideband code.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB evolved Node B
  • eNodeB evolved Node B
  • a base station or the like in a future 5G network is not limited herein.
  • the network device in the embodiment of the present disclosure can improve the accuracy of beam failure detection by sending configuration information for beam failure detection to the terminal, and the timer and/or timer indicated by the configuration information corresponds to a smaller number of beams. Avoid wasting resources when the available beam is misidentified as unavailable.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Exchanges (AREA)

Abstract

本公开公开了一种波束失败检测方法、信息配置方法、终端及网络设备,其方法包括:接收用于波束失败检测的配置信息;根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作;其中,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。

Description

波束失败检测方法、信息配置方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年4月16日在中国提交的中国专利申请No.201810338768.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种波束失败检测方法、信息配置方法、终端及网络设备。
背景技术
在第五代(5 th Generation,5G)移动通信系统,或称为新空口(New Radio,NR)系统中,支持的工作频段提升至6GHz以上,最高约达100GHz。高频段具有较为丰富的空闲频率资源,可以为数据传输提供更大的吞吐量。为达到下行链路传输速率20Gbps,上行链路传输速率10Gbps的目标,高频天线和更大规模、更多天线端口的MIMO技术将被引入。高频信号的波长短,同低频段相比,能够在同样大小的面板上布置更多的天线阵元,利用波束赋形技术形成指向性更强、波瓣更窄的波束,大规模(Massive)MIMO技术使用大规模天线阵列,能够极大地提升系统频带利用效率,支持更大数量的接入用户。
在高频段通信系统中,由于无线信号的波长较短,较容易发生信号传播被阻挡等情况,导致信号传播中断。如果采用现有技术中的无线链路重建,则耗时较长,因此引入了波束失败恢复(Beam Failure Recovery,BFR)机制。
另外,在5G系统中,终端可能只能支持一个比较小的工作带宽(如5MHz),而网络设备侧的一个小区会支持比较大的带宽(如100MHz),该大带宽中的终端工作的小带宽部分则认为是带宽部分(Bandwidth Part,BWP)。网络设备侧可配置终端支持1个或多个BWP,并可通过BWP切换(switching)命令来变换终端当前激活的BWP,即激活新的BWP并去激活当前的激活BWP。额外的,5G系统中,终端还可能支持多个波束。
而当前波束失败检测过程中,终端对于每一个小区仅维护一个波束失败检测定时器和计数器,那么终端无论检测到多个BWP中哪个BWP对应的波束,或多个波束中哪个波束发生波束失败示例,均会控制波束失败检测计数器加1,例如终端对应波束1和波束2,当波束1工作时,终端检测到波束1发生波束失败示例4次,当切换至波束2工作时,终端又检测到波束2发生波束失败示例1次,那么终端控制波束失败检测计数器计数5次,并确定发生波束失败事件。而实际上波束2发生过波束失败示例次数较少,其波束质量较好,但终端采用现有的波束失败检测机制,会误确定为波束1和波束2均不可用,波束失败检测结果准确率较低。
发明内容
本公开实施例提供了一种波束失败检测方法、信息配置方法、终端及网络设备,以解决现有技术中波束失败检测的准确率低的问题。
第一方面,本公开实施例提供了一种波束失败检测方法,应用于终端侧,包括:
接收用于波束失败检测的配置信息;
根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作;其中,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。
第二方面,本公开实施例还提供了一种终端,包括:
接收模块,用于接收用于波束失败检测的配置信息;
处理模块,用于根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作;其中,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并可在处理器上运行的程序,程序被处理器执行时实现上述的波束失败检测方法的步骤。
第四方面,本公开实施例提供了信息配置方法,应用于网络设备侧,包括:
发送用于波束失败检测的配置信息;其中,配置信息用于指示:与目标波束对应的波束失败检测的定时器和/或计数器,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。
第五方面,本公开实施例提供了网络设备,包括:
发送模块,用于发送用于波束失败检测的配置信息;其中,配置信息用于指示:与目标波束对应的波束失败检测的定时器和/或计数器,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。
第六方面,本公开实施例提供了网络设备,网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的程序,程序被处理器执行时实现上述的信息配置方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有程序,程序被处理器执行时实现上述的波束失败检测方法,或者上述信息配置方法的步骤。
这样,本公开实施例中,网络设备为终端配置的波束失败检测定时器和/或计数器与目标波束对应,可以提高波束失败检测的准确率,避免可用波束被误判为不可用而造成的资源浪费。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例中波束失败检测方法的流程示意图;
图2表示本公开实施例中终端的模块结构示意图;
图3表示本公开实施例的终端框图;
图4表示本公开实施例中信息配置方法的流程示意图;
图5表示本公开实施例中网络设备的模块结构示意图;
图6表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本公开实施例提供了一种波束失败检测方法,应用于终端侧,如图1所示,该方法包括以下步骤11和12。
步骤11:接收用于波束失败检测的配置信息。
在高频段通信系统中,较容易发生信号传播被阻挡等情况,导致信号传播中断。为了快速恢复传输链路,引入了BFR机制。具体地,BFR机制包括:波束失败检测、新候选波束识别、波束失败恢复请求(Beam Failure Recovery request,BERQ)的发送和监控网络设备基于波束失败恢复请求的响应信息。其中,波束失败检测具体为:终端在物理层对波束失败检测参考信号(Beam Failure Detection Reference Signal,BFD RS)进行测量,并根据测量结果来判断是否发生波束失败事件。其中,终端判断发生波束失败事件的条件包括:如果检测出全部服务控制波束(serving control beam)的度量(metric)满足预设条件,例如物理下行控制信道(Physical Downlink Control Channel,PDCCH)的块差错率(Block Error Ratio,BLER)超过预设阈值,则确定为一次波束失败示例(beam failure instance),终端的物理层上报给高层一个指示,如媒体接入控制层(Media Access Control,MAC)层,该上报过程是周期的。相应地,如果终端物理层确定没有发生波束失败示例,则不向高层发 送指示。终端的高层使用计数器(counter)对物理层上报的指示进行计数,当达到网络配置的最大次数时,终端确定发生了波束失败事件(beam failure event)。其中,用于波束失败检测的配置信息包括波束失败检测过程中涉及的参数信息。例如,配置信息至少包括:波束失败检测的参考信号配置(如失败检测资源,failure Detection Resources)、用于波束失败检测的计数器配置(如波束失败示例最大次数,beam Failure Instance Max Count)、用于波束失败检测的定时器配置(beam Failure Detection Timer)等。
步骤12:根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作。
其中,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。也就是说,配置信息中用于波束失败检测的定时器对应于终端支持的波束中的一个,或者该定时器对应于终端支持的BWP对应的波束。配置信息中用于波束失败检测的计数器对应于终端支持的波束中的一个,或者该定时器对应于终端支持的BWP对应的波束。这样,用于波束失败检测的定时器和/或定时器对应更少数量的波束,可以提高波束失败检测的准确率,避免可用波束被误判为不可用而造成的资源浪费。
下面本实施例将结合不同场景对波束失败检测方法做进一步说明。
场景一、当配置信息为网络设备初次配置时,也就是说,网络设备首次为终端配置用于波束失败检测的配置信息时,配置信息可以包括以下信息中的至少一项:
定时器信息,用于指示波束失败检测的定时器配置,如失败检测示例的最大次数;
计数器信息,用于指示波束失败检测的计数器配置,如失败检测检测时间;
与定时器信息对应的BWP标识信息,用于指示与定时器信息对应的BWP,其中,一个BWP对应一个独立的定时器,不同BWP对应的定时器的数值可以相同,也可以不同;
与计数器信息对应的BWP标识信息,用于指示与计数器信息对应的BWP,其中,一个BWP对应一个独立的计数器,不同BWP对应的计数器的 数值可以相同,也可以不同,也就是说,不同BWP对应的波束失败检测示例的最大次数可以相同也可以不同;
与定时器信息对应的波束标识信息,也就是说,与该波束失败检测配置信息中的波束失败检测定时器配置对应的波束标识,用于指示与定时器信息对应的波束。其中,一个波束对应一个独立的定时器,不同波束对应的定时器的数值可以相同,也可以不同;
以及,与计数器信息对应的波束标识信息,也就是说,与该波束失败检测配置信息中的波束失败检测计数器配置对应的波束标识,用于指示与计数器信息对应的波束。其中,一个波束对应一个独立的计数器,不同波束对应的计数器的数值可以相同,也可以不同,也就是说,不同波束对应的波束失败检测示例的最大次数可以相同也可以不同。
其中,上述波束标识信息包括以下至少一项:
同步信号块(Synchronous Signal Block,SSB)标识信息,如SSB标识;
信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)标识信息,如CSI-RS标识;
波束之间的空间关系配置标识信息,其中,空间关系配置信息包括但不限于:传输配置指示信息(Transmission Configuration Indicator,TCI),或准共址(Quasi-co Location,QCL)关系信息。其中,准共址关系指示不同波束之间多普勒频率偏移、多普勒扩展、平均时延、时延扩展和空间接收参数中的至少一项是准共址的。其中,可通过准共址类型进行指示,其中,QCL-Type A用于指示多普勒频率偏移、多普勒扩展、平均时延和时延扩展为准共址的或相同的;QCL-Type B用于指示多普勒频率偏移和多普勒扩展为准共址的或相同的;QCL-Type C用于指示多普勒频率偏移和平均时延为准共址的或相同的;QCL-Type D用于指示空间接收参数为准共址的或相同的。
其中,上述BWP标识信息指示的BWP为激活BWP或去激活BWP,波束标识信息指示的波束为服务波束(或称为激活波束)或非服务波束(或称为非激活波束)。
在该场景下,步骤12可以包括:当物理层检测到目标波束发生波束失败示例时,控制物理层向高层发送一波束失败指示信息;高层在接收到波束失 败指示信息后,根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作。终端在物理层对BFD RS进行测量,并根据测量结果来判断是否发生波束失败事件。其中,终端判断发生波束失败事件的条件包括:如果检测出目标波束的度量满足预设条件,例如PDCCH的BLER超过预设阈值,则确定为一次波束失败示例,终端的物理层上报给高层一个波束失败指示信息,该高层可以是MAC层,且该上报过程是周期的。这样,终端的高层使用计数器(counter)对物理层上报的指示进行计数,使用定时器进行计时。
其中,高层维护定时器的方式包括但不限于:
每个小区维护1个波束失败检测定时器,如每个激活小区对应独立的波束失败检测定时器;
或者,每个BWP维护1个波束失败检测定时器,如每个激活(或非激活)BWP对应独立的波束失败检测定时器;
或者,每个波束维护1个波束失败检测定时器,如每个服务(或非服务)波束对应独立的波束失败检测定时器。
与定时器维护方式类似,高层维护计数器的方式包括但不限于:
每个小区维护1个波束失败检测计数器,如每个激活小区对应独立的波束失败检测计数器;
或者,每个BWP维护1个波束失败检测计数器,如每个激活(或非激活)BWP对应独立的波束失败检测计数器;
或者,每个波束维护1个波束失败检测计数器,如每个服务(或非服务)波束对应独立的波束失败检测计数器。
其中,值得指出的是,终端高层对波束失败检测定时器和波束失败检测计数器的维护方式相同,例如每个BWP维护1个独立的波束失败检测定时器,那么相应地,每个BWP也维护1个独立的波束失败检测计数器。
进一步地,终端的物理层向高层发送的波束失败指示信息包括可以包括以下至少一项:
目标波束对应的BWP标识信息,用于指示发生波束失败示例的目标波束对应的BWP标识;
目标波束的波束标识信息,用于指示发生波束失败的目标波束示例的波束标识。
可选地,在该场景下,根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作的步骤可以包括但不限于如下方式:
当检测到目标波束发生波束失败示例时,启动或重启目标波束对应的定时器。可选地,终端在物理层对BFD RS进行测量,如果检测出目标波束的度量满足预设条件,例如PDCCH的BLER超过预设阈值,则确定为一次波束失败示例,终端的物理层上报给高层一个波束失败指示信息。这样,终端的高层启动或重启目标波束对应的定时器,若在一段时间内定时器超时,则确定未发生波束失败事件,并将目标波束对应的计数器重置,如设置为0值,或设置为最大值。
以一个BWP对应一个独立的定时器为例,当终端高层在波束失败指示信息中确定出的BWP标识信息指示的BWP与波束失败检测定时器对应的BWP相同时,在收到该波束失败指示信息后,启动或重启动该波束失败检测定时器。
以一个波束对应一个独立的定时器为例,当终端高层在波束失败指示信息中确定出的波束标识信息指示的波束与波束失败检测定时器对应的波束相同时,在收到该波束失败指示信息后,启动或重启动该波束失败检测定时器。
另一方面,当检测到目标波束发生波束失败示例时,控制目标波束对应的计数器加一或减一。终端在物理层对BFD RS进行测量,如果检测出目标波束的度量满足预设条件,则确定为一次波束失败示例,终端的物理层上报给高层一个波束失败指示信息。假设定时器的初始值为0,终端的高层在接收到物理层的波束失败指示信息后,控制目标波束对应的计数器加一,若在目标波束对应的定时器超时前,计数器达到最大值,则确定发生波束失败事件;否则认为未发生波束失败事件,并将计数器重置。或者,假设定时器的初始值为最大值,终端的高层在接收到物理层的波束失败指示信息后,控制目标波束对应的计数器减一,若在目标波束对应的定时器超时前,计数器为0,则确定发生波束失败事件;否则认为未发生波束失败事件,并将计数器重置。当终端确定发生波束失败事件后,触发波束失败恢复过程。
以一个BWP对应一个独立的计数器为例,当终端高层在波束失败指示信息中确定出的BWP标识信息指示的BWP与波束失败检测计数器对应的BWP相同时,在收到该波束失败指示信息后,控制该波束失败检测计数器累加或累减。
以一个波束对应一个独立的计数器为例,当终端高层在波束失败指示信息中确定出的波束标识信息指示的波束与波束失败检测计数器对应的波束相同时,在收到该波束失败指示信息后,控制该波束失败检测计数器累加或累减。
场景二、当配置信息为网络设备重新配置时,也就是说,网络设备并非首次为终端配置用于波束失败检测的配置信息,该重新配置过程为波束失败检测的配置更新过程,例如删除或添加某个用于波束失败检测的配置信息,或重新配置上一次配置信息中的1个或多个参数。为了减小资源开销,配置信息中可以仅携带有有变动的参数,而无需携带全部的配置。可选地,配置信息可以包括以下信息中的至少一项:
删除或增加的小区标识信息,用于指示将该波束失败检测配置对应的小区删除再添加,例如,在同1个无线资源控制(Radio Resource Control,RRC)配置消息中删除或添加小区。
删除或增加的BWP标识信息,用于指示将该波束失败检测配置对应的BWP删除再添加,例如,在同1个RRC配置消息中删除或添加BWP。
删除或增加的波束标识信息,用于指示将该波束失败检测配置对应的波束删除再添加,例如,在同1个RRC配置消息中删除或添加波束。
删除配置信息的指示信息,用于指示将原配置信息删除。
增加配置信息的指示信息,用于指示在原配置信息的基础上增加新的配置信息。
配置信息中目标参数值的更新信息,用于指示原配置信息中需要变更的目标参数及变更后的目标参数值,例如更改定时器的时长,或者计数器的最大值等。
进行BWP变更的指示信息,用于指示终端进行BWP变更。其中BWP变更方式包括但不限于:发生BWP切换(switching),即激活1个BWP,并 同时去激活另1个BWP。或者去激活某个波束失败检测定时器对应的BWP。或者激活某个波束失败检测定时器对应的BWP等。
以及,进行波束变更的指示信息,用于指示终端进行波束变更。其中波束变更方式包括但不限于:网络设备向终端发送指示服务(或激活)的波束标识变更指示信息,如通过PDCCH或MAC CE指示新的服务(或激活)的波束标识等。
在该场景下,步骤12包括:根据上述配置信息(重新配置),对目标波束对应的波束失败检测的定时器执行以下操作中的一项:启动定时器;重启定时器;以及停止定时器。
相应地,步骤12还可以包括:根据上述配置信息(重新配置),对目标波束对应的波束失败检测的计数器进行重置,如设置为0值,或设置为最大值。
本公开实施例的波束失败检测方法中,为终端配置的波束失败检测定时器和/或计数器与目标波束对应,可以提高波束失败检测的准确率,避免可用波束被误判为不可用而造成的资源浪费。
以上实施例分别详细介绍了不同场景下的波束失败检测方法,下面本实施例将结合附图对其对应的终端做进一步介绍。
如图2所示,本公开实施例的终端200,能实现上述实施例中接收用于波束失败检测的配置信息;根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作方法的细节,并达到相同的效果,其中,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。该终端200具体包括以下功能模块:
接收模块210,用于接收用于波束失败检测的配置信息;
处理模块220,用于根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作;其中,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。
其中,当配置信息为网络设备初次配置时,配置信息包括以下至少一项:
定时器信息;
计数器信息;
与定时器信息对应的BWP标识信息;
与计数器信息对应的BWP标识信息;
与定时器信息对应的波束标识信息;以及,
与计数器信息对应的波束标识信息。
其中,波束标识信息包括以下至少一项:同步信号块SSB标识信息、信道状态信息参考信号CSI-RS标识信息、波束之间的空间关系配置标识信息。
其中,BWP标识信息指示的BWP为激活BWP或去激活BWP,波束标识信息指示的波束为服务波束或非服务波束。
其中,处理模块220包括:
第一处理子模块,用于当物理层检测到目标波束发生波束失败示例时,控制物理层向高层发送一波束失败指示信息;
第二处理子模块,用于高层在接收到波束失败指示信息后,根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作。
其中,波束失败指示信息包括以下至少一项:目标波束对应的BWP标识信息和目标波束的波束标识信息。
其中,处理模块220还包括:
第三处理子模块,用于当检测到目标波束发生波束失败示例时,启动或重启目标波束对应的定时器;
第四处理子模块,用于当检测到目标波束发生波束失败示例时,控制目标波束对应的计数器加一或减一。
其中,当配置信息为网络设备重新配置时,配置信息包括以下至少一项:
删除或增加的小区标识信息;
删除或增加的BWP标识信息;
删除或增加的波束标识信息;
删除配置信息的指示信息;
增加配置信息的指示信息;
配置信息中目标参数值的更新信息;
进行BWP变更的指示信息;以及
进行波束变更的指示信息。
其中,处理模块220还包括:
第五处理子模块,用于根据配置信息,对目标波束对应的波束失败检测的定时器执行以下操作中的一项:
启动定时器;
重启定时器;以及
停止定时器。
其中,处理模块220还包括:第六处理子模块,用于根据配置信息,对目标波束对应的波束失败检测的计数器进行重置。
值得指出的是,本公开实施例的终端,其波束失败检测定时器和/或计数器与目标波束对应,可以提高波束失败检测的准确率,避免可用波束被误判为不可用而造成的资源浪费。
为了更好的实现上述目的,进一步地,图3为实现本公开各个实施例的一种终端的硬件结构示意图,该终端30包括但不限于:射频单元31、网络模块32、音频输出单元33、输入单元34、传感器35、显示单元36、用户输入单元37、接口单元38、存储器39、处理器310、以及电源311等部件。本领域技术人员可以理解,图3中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元31,用于接收用于波束失败检测的配置信息;
处理器310,用于根据配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作;其中,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束;
本公开实施例的终端,其波束失败检测定时器和/或计数器与目标波束对应,可以提高波束失败检测的准确率,避免可用波束被误判为不可用而造成的资源浪费。
应理解的是,本公开实施例中,射频单元31可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器310处理;另外,将上行的数据发送给基站。通常,射频单元31包括但不限 于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元31还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块32为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元33可以将射频单元31或网络模块32接收的或者在存储器39中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元33还可以提供与终端30执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元33包括扬声器、蜂鸣器以及受话器等。
输入单元34用于接收音频或视频信号。输入单元34可以包括图形处理器(Graphics Processing Unit,GPU)341和麦克风342,图形处理器341对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元36上。经图形处理器341处理后的图像帧可以存储在存储器39(或其它存储介质)中或者经由射频单元31或网络模块32进行发送。麦克风342可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元31发送到移动通信基站的格式输出。
终端30还包括至少一种传感器35,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板361的亮度,接近传感器可在终端30移动到耳边时,关闭显示面板361和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器35还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元36用于显示由用户输入的信息或提供给用户的信息。显示单元36可包括显示面板361,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面 板361。
用户输入单元37可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元37包括触控面板371以及其他输入设备372。触控面板371,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板371上或在触控面板371附近的操作)。触控面板371可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器310,接收处理器310发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板371。除了触控面板371,用户输入单元37还可以包括其他输入设备372。具体地,其他输入设备372可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板371可覆盖在显示面板361上,当触控面板371检测到在其上或附近的触摸操作后,传送给处理器310以确定触摸事件的类型,随后处理器310根据触摸事件的类型在显示面板361上提供相应的视觉输出。虽然在图3中,触控面板371与显示面板361是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板371与显示面板361集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元38为外部装置与终端30连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元38可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端30内的一个或多个元件或者可以用于在终端30和外部装置之间传输数据。
存储器39可用于存储软件程序以及各种数据。存储器39可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可 存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器39可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器310是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器39内的软件程序和/或模块,以及调用存储在存储器39内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器310可包括一个或多个处理单元;可选的,处理器310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器310中。
终端30还可以包括给各个部件供电的电源311(比如电池),可选的,电源311可以通过电源管理系统与处理器310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端30包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器310,存储器39,存储在存储器39上并可在所述处理器310上运行的程序,该程序被处理器310执行时实现上述波束失败检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、 移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有程序,该程序被处理器执行时实现上述波束失败检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的波束失败检测方法,下面本实施例将结合附图对网络设备侧的信息配置方法做进一步介绍。
如图4所示,本公开实施例的信息配置方法,应用于网络设备侧,可以包括以下步骤:
步骤41:发送用于波束失败检测的配置信息。
其中,配置信息用于指示:与目标波束对应的波束失败检测的定时器和/或计数器,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。也就是说,配置信息中用于波束失败检测的定时器对应于终端支持的波束中的一个,或者该定时器对应于终端支持的BWP对应的波束。配置信息中用于波束失败检测的计数器对应于终端支持的波束中的一个,或者该定时器对应于终端支持的BWP对应的波束。这样,用于波束失败检测的定时器和/或定时器对应更少数量的波束,可以提高波束失败检测的准确率,避免可用波束被误判为不可用而造成的资源浪费。
下面本实施例将结合不同场景对信息配置方法做进一步说明。
场景一、当配置信息为网络设备初次配置时,也就是说,网络设备首次为终端配置用于波束失败检测的配置信息时,配置信息可以包括以下信息中的至少一项:
定时器信息,用于指示波束失败检测的定时器配置,如失败检测示例的最大次数;
计数器信息,用于指示波束失败检测的计数器配置,如失败检测检测时间;
与定时器信息对应的BWP标识信息,用于指示与定时器信息对应的BWP,其中,一个BWP对应一个独立的定时器,不同BWP对应的定时器的数值可以相同,也可以不同;
与计数器信息对应的BWP标识信息,用于指示与计数器信息对应的BWP,其中,一个BWP对应一个独立的计数器,不同BWP对应的计数器的数值可以相同,也可以不同,也就是说,不同BWP对应的波束失败检测示例的最大次数可以相同也可以不同;
与定时器信息对应的波束标识信息,也就是说,与该波束失败检测配置信息中的波束失败检测定时器配置对应的波束标识,用于指示与定时器信息对应的波束。其中,一个波束对应一个独立的定时器,不同波束对应的定时器的数值可以相同,也可以不同;
以及,与计数器信息对应的波束标识信息,也就是说,与该波束失败检测配置信息中的波束失败检测计数器配置对应的波束标识,用于指示与计数器信息对应的波束。其中,一个波束对应一个独立的计数器,不同波束对应的计数器的数值可以相同,也可以不同,也就是说,不同波束对应的波束失败检测示例的最大次数可以相同也可以不同。
其中,上述波束标识信息包括以下至少一项:
同步信号块(Synchronous Signal Block,SSB)标识信息,如SSB标识;
信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)标识信息,如CSI-RS标识;
波束之间的空间关系配置标识信息,其中,空间关系配置信息包括但不限于:传输配置指示信息(Transmission Configuration Indicator,TCI),或准共址(Quasi-co Location,QCL)关系信息。其中,准共址关系指示不同波束之间多普勒频率偏移、多普勒扩展、平均时延、时延扩展和空间接收参数中的至少一项是准共址的。
其中,上述BWP标识信息指示的BWP为激活BWP或去激活BWP,波束标识信息指示的波束为服务波束(或称为激活波束)或非服务波束(或称为非激活波束)。
场景二、当配置信息为网络设备重新配置时,也就是说,网络设备并非 首次为终端配置用于波束失败检测的配置信息,该重新配置过程为波束失败检测的配置更新过程,例如删除或添加某个用于波束失败检测的配置信息,或重新配置上一次配置信息中的1个或多个参数。为了减小资源开销,配置信息中可以仅携带有有变动的参数,而无需携带全部的配置。可选地,配置信息可以包括以下信息中的至少一项:
删除或增加的小区标识信息,用于指示将该波束失败检测配置对应的小区删除再添加,例如,在同1个无线资源控制(Radio Resource Control,RRC)配置消息中删除或添加小区。
删除或增加的BWP标识信息,用于指示将该波束失败检测配置对应的BWP删除再添加,例如,在同1个RRC配置消息中删除或添加BWP。
删除或增加的波束标识信息,用于指示将该波束失败检测配置对应的波束删除再添加,例如,在同1个RRC配置消息中删除或添加波束。
删除配置信息的指示信息,用于指示将原配置信息删除。
增加配置信息的指示信息,用于指示在原配置信息的基础上增加新的配置信息。
配置信息中目标参数值的更新信息,用于指示原配置信息中需要变更的目标参数及变更后的目标参数值,例如更改定时器的时长,或者计数器的最大值等。
进行BWP变更的指示信息,用于指示终端进行BWP变更。其中BWP变更方式包括但不限于:发生BWP切换(switching),即激活1个BWP,并同时去激活另1个BWP。或者去激活某个波束失败检测定时器对应的BWP。或者激活某个波束失败检测定时器对应的BWP等。
以及,进行波束变更的指示信息,用于指示终端进行波束变更。其中波束变更方式包括但不限于:网络设备向终端发送指示服务(或激活)的波束标识变更指示信息,如通过PDCCH或MAC CE指示新的服务(或激活)的波束标识等。
本公开实施例的信息配置方法中,网络设备通过向终端发送用于波束失败检测的配置信息,该配置信息指示的定时器和/或定时器对应更少数量的波束,可以提高波束失败检测的准确率,避免可用波束被误判为不可用而造成 的资源浪费。
以上实施例分别详细介绍了不同场景下的信息配置方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图5所示,本公开实施例的网络设备500,能实现上述实施例中发送用于波束失败检测的配置信息方法的细节,并达到相同的效果,其中,配置信息用于指示:与目标波束对应的波束失败检测的定时器和/或计数器,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。该网络设备500具体包括以下功能模块:
发送模块510,用于发送用于波束失败检测的配置信息;其中,所述配置信息用于指示:与目标波束对应的波束失败检测的定时器和/或计数器,所述目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。
其中,当所述配置信息为网络设备初次配置时,所述配置信息包括以下至少一项:
定时器信息;
计数器信息;
与所述定时器信息对应的BWP标识信息;
与所述计数器信息对应的BWP标识信息;
与所述定时器信息对应的波束标识信息;以及,
与所述计数器信息对应的波束标识信息。
其中,波束标识信息包括以下至少一项:同步信号块SSB标识信息、信道状态信息参考信号CSI-RS标识信息、波束之间的空间关系配置标识信息。
其中,BWP标识信息指示的BWP为激活BWP或去激活BWP,波束标识信息指示的波束为服务波束或非服务波束。
其中,当所述配置信息为网络设备重新配置时,所述配置信息包括以下至少一项:
删除或增加的小区标识信息;
删除或增加的BWP标识信息;
删除或增加的波束标识信息;
删除所述配置信息的指示信息;
增加所述配置信息的指示信息;
所述配置信息中目标参数值的更新信息;
进行BWP变更的指示信息;以及
进行波束变更的指示信息。
需要说明的是,应理解以上终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital signal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
值得指出的是,本公开实施例的网络设备通过向终端发送用于波束失败检测的配置信息,该配置信息指示的定时器和/或定时器对应更少数量的波束,可以提高波束失败检测的准确率,避免可用波束被误判为不可用而造成的资源浪费。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该 网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的程序,处理器执行程序时实现如上所述的信息配置方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有程序,程序被处理器执行时实现如上所述的信息配置方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图6所示,该网络设备600包括:天线61、射频装置62、基带装置63。天线61与射频装置62连接。在上行方向上,射频装置62通过天线61接收信息,将接收的信息发送给基带装置63进行处理。在下行方向上,基带装置63对要发送的信息进行处理,并发送给射频装置62,射频装置62对收到的信息进行处理后经过天线61发送出去。
上述频带处理装置可以位于基带装置63中,以上实施例中网络设备执行的方法可以在基带装置63中实现,该基带装置63包括处理器64和存储器65。
基带装置63例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图6所示,其中一个芯片例如为处理器64,与存储器65连接,以调用存储器65中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置63还可以包括网络接口66,用于与射频装置62交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器65可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓 存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DRRAM)。本申请描述的存储器65旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器65上并可在处理器64上运行的程序,处理器64调用存储器65中的程序执行图5所示各模块执行的方法。
具体地,程序被处理器64调用时可用于执行:发送用于波束失败检测的配置信息;其中,配置信息用于指示:与目标波束对应的波束失败检测的定时器和/或计数器,目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。
其中,当配置信息为网络设备初次配置时,配置信息包括以下至少一项:
定时器信息;
计数器信息;
与定时器信息对应的BWP标识信息;
与计数器信息对应的BWP标识信息;
与定时器信息对应的波束标识信息;以及,
与计数器信息对应的波束标识信息。
其中,波束标识信息包括以下至少一项:同步信号块SSB标识信息、信道状态信息参考信号CSI-RS标识信息、波束之间的空间关系配置标识信息。
其中,BWP标识信息指示的BWP为激活BWP或去激活BWP,波束标识信息指示的波束为服务波束或非服务波束。
其中,当配置信息为网络设备重新配置时,配置信息包括以下至少一项:
删除或增加的小区标识信息;
删除或增加的BWP标识信息;
删除或增加的波束标识信息;
删除配置信息的指示信息;
增加配置信息的指示信息;
配置信息中目标参数值的更新信息;
进行BWP变更的指示信息;以及
进行波束变更的指示信息。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
本公开实施例中的网络设备,通过向终端发送用于波束失败检测的配置信息,该配置信息指示的定时器和/或定时器对应更少数量的波束,可以提高波束失败检测的准确率,避免可用波束被误判为不可用而造成的资源浪费。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来 实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (18)

  1. 一种波束失败检测方法,应用于终端侧,包括:
    接收用于波束失败检测的配置信息;
    根据所述配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作;其中,目标波束为所述终端支持的波束中的一个,或者所述终端支持的带宽部分BWP对应的波束。
  2. 根据权利要求1所述的波束失败检测方法,其中,当所述配置信息为网络设备初次配置时,所述配置信息包括以下至少一项:
    定时器信息;
    计数器信息;
    与所述定时器信息对应的BWP标识信息;
    与所述计数器信息对应的BWP标识信息;
    与所述定时器信息对应的波束标识信息;以及,
    与所述计数器信息对应的波束标识信息。
  3. 根据权利要求2所述的波束失败检测方法,其中,所述波束标识信息包括以下至少一项:同步信号块SSB标识信息、信道状态信息参考信号CSI-RS标识信息、波束之间的空间关系配置标识信息。
  4. 根据权利要求2所述的波束失败检测方法,其中,所述BWP标识信息指示的BWP为激活BWP或去激活BWP,所述波束标识信息指示的波束为服务波束或非服务波束。
  5. 根据权利要求1或2所述的波束失败检测方法,其中,根据所述配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作的步骤,包括:
    当物理层检测到目标波束发生波束失败示例时,控制所述物理层向高层发送一波束失败指示信息;
    所述高层在接收到所述波束失败指示信息后,根据所述配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作。
  6. 根据权利要求5所述的波束失败检测方法,其中,所述波束失败指示 信息包括以下至少一项:所述目标波束对应的BWP标识信息和所述目标波束的波束标识信息。
  7. 根据权利要求1或2所述的波束失败检测方法,其中,根据所述配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作的步骤,包括:
    当检测到所述目标波束发生波束失败示例时,启动或重启所述目标波束对应的定时器;
    当检测到所述目标波束发生波束失败示例时,控制所述目标波束对应的计数器加一或减一。
  8. 根据权利要求1所述的波束失败检测方法,其中,当所述配置信息为网络设备重新配置时,所述配置信息包括以下至少一项:
    删除或增加的小区标识信息;
    删除或增加的BWP标识信息;
    删除或增加的波束标识信息;
    删除所述配置信息的指示信息;
    增加所述配置信息的指示信息;
    所述配置信息中目标参数值的更新信息;
    进行BWP变更的指示信息;以及
    进行波束变更的指示信息。
  9. 根据权利要求8所述的波束失败检测方法,其中,根据所述配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作的步骤,包括:
    根据所述配置信息,对所述目标波束对应的波束失败检测的定时器执行以下操作中的一项:
    启动所述定时器;
    重启所述定时器;以及
    停止所述定时器。
  10. 根据权利要求8所述的波束失败检测方法,其中,根据所述配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作的步 骤,包括:
    根据所述配置信息,对所述目标波束对应的波束失败检测的计数器进行重置。
  11. 一种终端,包括:
    接收模块,用于接收用于波束失败检测的配置信息;
    处理模块,用于根据所述配置信息,对目标波束对应的波束失败检测的定时器和/或计数器进行预设操作;其中,目标波束为所述终端支持的波束中的一个,或者所述终端支持的带宽部分BWP对应的波束。
  12. 一种终端,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至10中任一项所述的波束失败检测方法的步骤。
  13. 一种信息配置方法,应用于网络设备侧,包括:
    发送用于波束失败检测的配置信息;其中,所述配置信息用于指示:与目标波束对应的波束失败检测的定时器和/或计数器,所述目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。
  14. 根据权利要求13所述的信息配置方法,其中,当所述配置信息为网络设备初次配置时,所述配置信息包括以下至少一项:
    定时器信息;
    计数器信息;
    与所述定时器信息对应的BWP标识信息;
    与所述计数器信息对应的BWP标识信息;
    与所述定时器信息对应的波束标识信息;以及,
    与所述计数器信息对应的波束标识信息。
  15. 根据权利要求13所述的信息配置方法,其中,当所述配置信息为网络设备重新配置时,所述配置信息包括以下至少一项:
    删除或增加的小区标识信息;
    删除或增加的BWP标识信息;
    删除或增加的波束标识信息;
    删除所述配置信息的指示信息;
    增加所述配置信息的指示信息;
    所述配置信息中目标参数值的更新信息;
    进行BWP变更的指示信息;以及
    进行波束变更的指示信息。
  16. 一种网络设备,包括:
    发送模块,用于发送用于波束失败检测的配置信息;其中,所述配置信息用于指示:与目标波束对应的波束失败检测的定时器和/或计数器,所述目标波束为终端支持的波束中的一个,或者终端支持的带宽部分BWP对应的波束。
  17. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求13至15中任一项所述的信息配置方法的步骤。
  18. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至10中任一项所述的波束失败检测方法,或者如权利要求13至15中任一项所述的信息配置方法的步骤。
PCT/CN2019/082659 2018-04-16 2019-04-15 波束失败检测方法、信息配置方法、终端及网络设备 WO2019201199A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19787868.9A EP3783944B1 (en) 2018-04-16 2019-04-15 Method and terminal for beam failure detection
JP2020556755A JP7074884B2 (ja) 2018-04-16 2019-04-15 ビーム失敗検出方法、情報配置方法、端末及びネットワーク機器
ES19787868T ES2977059T3 (es) 2018-04-16 2019-04-15 Método y terminal para detección de fallo de haz
KR1020207032754A KR102440533B1 (ko) 2018-04-16 2019-04-15 빔 실패 검측 방법, 정보 구성 방법, 단말 및 네트워크 기기
US17/071,808 US11632165B2 (en) 2018-04-16 2020-10-15 Beam failure detection method, information configuration method, terminal and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810338768.8 2018-04-16
CN201810338768.8A CN110392374B (zh) 2018-04-16 2018-04-16 波束失败检测方法、信息配置方法、终端及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/071,808 Continuation US11632165B2 (en) 2018-04-16 2020-10-15 Beam failure detection method, information configuration method, terminal and network device

Publications (1)

Publication Number Publication Date
WO2019201199A1 true WO2019201199A1 (zh) 2019-10-24

Family

ID=68240410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082659 WO2019201199A1 (zh) 2018-04-16 2019-04-15 波束失败检测方法、信息配置方法、终端及网络设备

Country Status (9)

Country Link
US (1) US11632165B2 (zh)
EP (1) EP3783944B1 (zh)
JP (1) JP7074884B2 (zh)
KR (1) KR102440533B1 (zh)
CN (1) CN110392374B (zh)
ES (1) ES2977059T3 (zh)
HU (1) HUE066321T2 (zh)
PT (1) PT3783944T (zh)
WO (1) WO2019201199A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390568A (zh) * 2020-10-22 2022-04-22 联发科技(新加坡)私人有限公司 波束故障恢复方法及用户设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792610B (zh) * 2016-09-29 2022-06-24 日本电气株式会社 无线终端、基站及其方法
CN110324119B (zh) * 2018-03-28 2020-10-27 维沃移动通信有限公司 针对波束失败的配置方法和终端
EP3991506A4 (en) 2019-06-28 2022-10-12 ZTE Corporation BEAM FAILURE RECOVERY FOR SECONDARY CELL
CN112954733A (zh) * 2019-12-10 2021-06-11 夏普株式会社 由用户设备执行的方法及用户设备
WO2021201524A1 (en) * 2020-04-01 2021-10-07 Samsung Electronics Co., Ltd. Method and apparatus for idle mode operation in wireless communication system
WO2021196162A1 (zh) * 2020-04-03 2021-10-07 Oppo广东移动通信有限公司 测量模式转换方法、终端设备和网络设备
CN113497694B (zh) * 2020-04-07 2022-07-01 维沃移动通信有限公司 测量参考信号的方法和终端设备
US11743112B2 (en) * 2020-05-12 2023-08-29 Qualcomm Incorporated UE requested BFD/BFR reference signal
CN115918206A (zh) * 2020-08-04 2023-04-04 苹果公司 跨小区波束故障恢复
CN112491454B (zh) * 2020-11-27 2023-05-23 惠州Tcl移动通信有限公司 通信恢复方法、装置、终端设备及存储介质
US12082283B2 (en) * 2021-04-26 2024-09-03 Qualcomm Incorporated Lower layer beam failure indicators for wireless communications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005858A (zh) * 2015-02-13 2017-08-01 联发科技(新加坡)私人有限公司 MmW系统中间歇性断开的处理

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113895B (zh) * 2015-08-04 2020-10-09 华为技术有限公司 通信方法、网络侧设备和用户设备
US11316798B2 (en) * 2018-02-06 2022-04-26 Apple Inc. Control signaling of beam failure detection
US10659983B2 (en) * 2018-03-09 2020-05-19 FG Innovation Company Limited Beam failure detection and recovery
US11025331B2 (en) * 2018-03-30 2021-06-01 Ofinno, Llc Timing in beam failure recovery procedure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005858A (zh) * 2015-02-13 2017-08-01 联发科技(新加坡)私人有限公司 MmW系统中间歇性断开的处理

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Missing Parts in the Beam Failure Detection and Recovery Procedure", 3GPP TSG-RAN WG2 MEETING #101BIS R2-1804278, 3 April 2018 (2018-04-03), XP051414583 *
OPPO: "The Timer and Counter Maintenance of BFR Procedure", 3GPP TSG-RAN2 #101 BIS R2-1806183, 9 April 2018 (2018-04-09), XP051435761 *
SONY: "Beam Failure Detection and Maintenance", 3GPP TSG-RAN WG2 #101-BIS TDOC R2-1805168, 5 April 2018 (2018-04-05), XP051415206 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390568A (zh) * 2020-10-22 2022-04-22 联发科技(新加坡)私人有限公司 波束故障恢复方法及用户设备

Also Published As

Publication number Publication date
US11632165B2 (en) 2023-04-18
EP3783944A1 (en) 2021-02-24
PT3783944T (pt) 2024-04-02
KR102440533B1 (ko) 2022-09-05
EP3783944A4 (en) 2021-06-09
KR20200142563A (ko) 2020-12-22
ES2977059T3 (es) 2024-08-16
JP7074884B2 (ja) 2022-05-24
JP2021519030A (ja) 2021-08-05
HUE066321T2 (hu) 2024-07-28
EP3783944B1 (en) 2024-03-06
CN110392374A (zh) 2019-10-29
CN110392374B (zh) 2021-01-08
US20210028853A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2019201199A1 (zh) 波束失败检测方法、信息配置方法、终端及网络设备
WO2019184692A1 (zh) 波束失败处理方法、终端及网络设备
US20210211181A1 (en) Method for transmitting beam failure recovery request, terminal device, and network device
WO2019174446A1 (zh) 测量方法、测量配置方法、终端及网络设备
WO2019184716A1 (zh) 波束失败处理方法、终端及网络设备
WO2019192473A1 (zh) 波束失败恢复方法、终端及网络设备
WO2019192472A1 (zh) 信道传输方法、终端及网络设备
WO2019214663A1 (zh) 准共址配置方法、终端及网络设备
WO2019214601A1 (zh) 处理csi处理单元、资源的方法、装置及系统
WO2019095900A1 (zh) 非对称频谱的带宽部分bwp切换方法、终端及网络设备
US20210105644A1 (en) Method for determining radio link state and terminal
WO2020029823A1 (zh) 小区波束失败处理方法、移动通信终端和网络侧设备
WO2019080656A1 (zh) 丢包率计算方法、网络设备及终端
WO2020088101A1 (zh) 非周期信道状态信息参考信号配置方法、网络设备及终端
CN110392427B (zh) 通信流程处理方法及终端
WO2019223684A1 (zh) 测量上报方法、测量配置方法、终端和网络侧设备
WO2019076170A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
JP7177910B2 (ja) ネットワーク通信の状態検出方法、設定方法、端末及びネットワーク機器
WO2021147956A1 (zh) 一种测量上报、配置方法、终端及网络侧设备
CN110011766B (zh) 波束失败检测方法、终端及网络设备
WO2021109954A1 (zh) 波束失败恢复方法、终端及网络侧设备
WO2019062502A1 (zh) 信息传输方法、终端、网络设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207032754

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019787868

Country of ref document: EP

Effective date: 20201116