WO2019192472A1 - 信道传输方法、终端及网络设备 - Google Patents

信道传输方法、终端及网络设备 Download PDF

Info

Publication number
WO2019192472A1
WO2019192472A1 PCT/CN2019/080997 CN2019080997W WO2019192472A1 WO 2019192472 A1 WO2019192472 A1 WO 2019192472A1 CN 2019080997 W CN2019080997 W CN 2019080997W WO 2019192472 A1 WO2019192472 A1 WO 2019192472A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical downlink
coreset0
tci
information
channel
Prior art date
Application number
PCT/CN2019/080997
Other languages
English (en)
French (fr)
Inventor
施源
孙鹏
杨宇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2020554152A priority Critical patent/JP7135101B2/ja
Priority to KR1020207030109A priority patent/KR102622190B1/ko
Priority to ES19781038T priority patent/ES2968701T3/es
Priority to EP19781038.5A priority patent/EP3780812B1/en
Publication of WO2019192472A1 publication Critical patent/WO2019192472A1/zh
Priority to US17/039,693 priority patent/US11337221B2/en
Priority to US17/716,893 priority patent/US11641662B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a channel transmission method, a terminal, and a network device.
  • a terminal receives a PDCCH common search space and various parameters configured by a network device, where a transmission control indication (Transmission Control)
  • the indicator, TCI) state parameter includes multiple TCI states of the PDCCH, and the network device can activate one of the TCI states by using a Medium Access Control (MAC) layer control element (CE).
  • MAC Medium Access Control
  • CE Medium Access Control
  • DMRS Demodulation Reference Signal
  • SSB Synchronization Signal and PBCH Block
  • the terminal before the terminal receives the TCI of the upper layer configuration and receives the activation information, the terminal assumes that the DMRS port of the PDSCH and the SSB of the initial access configuration are QCL.
  • the TCI of the SSB of the initial access configuration is pre-configured and fixed.
  • the terminal Before a certain TCI state of the PDCCH or the PDSCH is activated, the terminal considers that the DMRS port of the PDCCH or the PDSCH and the SSB are QCL, so that the terminal cannot be flexible according to network performance. Work can cause system performance to drop.
  • the embodiments of the present disclosure provide a channel transmission method, a terminal, and a network device, to solve the problem that the DMRS port and the SSB quasi-co-location of the PDCCH or the PDSCH cannot be flexibly operated according to the network performance, and the system performance is degraded.
  • an embodiment of the present disclosure provides a channel transmission method, which is applied to a terminal side, and includes:
  • the physical downlink channel is received according to the target TCI state information, where the physical downlink channel includes at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a first acquiring module configured to acquire a target transmission configuration indication TCI state information of a control resource set CORESET0 with an identifier value of 0;
  • the first receiving module is configured to receive a physical downlink channel according to the target TCI state information when the preset condition is met, where the physical downlink channel includes at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes a processor, a memory, and a computer program stored on the memory and operable on the processor, where the computer program is executed by the processor to implement the channel transmission method. step.
  • an embodiment of the present disclosure provides a channel transmission method, which is applied to a network device side, and includes:
  • the physical downlink channel is sent according to the target TCI state information, where the physical downlink channel includes at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • an embodiment of the present disclosure provides a network device, including:
  • a configuration module configured to configure a target transmission configuration indication TCI status information for a control resource set CORESET0 with an identifier value of 0;
  • a first sending module configured to send, according to the target TCI status information, a physical downlink channel, where the physical downlink channel includes: at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • an embodiment of the present disclosure further provides a network device, where the network device includes a processor, a memory, and a computer program stored on the memory and operable on the processor, where the processor implements the channel transmission when executing the computer program. The steps of the method.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the steps of the channel transmission method are implemented.
  • the network device and the terminal in the embodiment of the present disclosure can transmit the physical downlink channel according to the TCI state information of the CORESET0 when the preset condition is met, so that the flexibility of the physical downlink channel transmission can be improved, thereby improving system performance.
  • FIG. 1 is a schematic flowchart diagram of a channel transmission method on a terminal side according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a module of a terminal according to an embodiment of the present disclosure
  • Figure 3 shows a block diagram of a terminal of an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of a channel transmission method on a network device side according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a module of a network device according to an embodiment of the present disclosure.
  • Figure 6 shows a block diagram of a network device in accordance with an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a channel transmission method, which is applied to a terminal. As shown in FIG. 1, the method includes the following steps:
  • Step 11 Acquire a target transmission configuration indication TCI status information of the control resource set CORESET0 whose identification value is 0.
  • the identifier value may be an Id value or an index value of the CORESET.
  • CORESET0 can be configured according to the information of the Master System Information Block (MIB) and the Serving Cell Config Common carried in the SSB. Specifically, the MIB includes 8 bits, and a pre-defined table is selected according to the subcarrier spacing of the SSB and the CORESET0. Each table contains 16 index values (0-15), and one of the 0-15s is selected by 4 bits in the 8 bits. Index value. The different index values correspond to the frequency domain length of the CORESET, the frequency domain position relative to the SSB, and the time domain length, that is, the 4 bits also indicate the frequency domain length of the CORESET, and the frequency domain position relative to the SSB. Information such as the length of the domain.
  • each table may also contain 16 index values (0-15), and the 16 index values are selected by the remaining 4bits indications. One of them to determine the position of the first symbol in the CORESET time domain and other information.
  • Step 12 When the preset condition is met, the physical downlink channel is received according to the target TCI status information.
  • the physical downlink channel includes at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type0-PDCCH common search space This type of search space is defined for the PDCCH corresponding to Remaining Minimum System Information (RMSI).
  • the downlink information (Downlink Control Information, DCI) format (format) carried in the PDCCH detected in the search space carries the wireless network temporary identifier (System Information Radio Network) of the system information corresponding to the primary cell (Primary Cell, Pcell). Temporary Identity, SI-RNTI) Cyclic Redundancy Check (CRC) climb.
  • DCI Downlink Control Information
  • SI-RNTI System Information Radio Network
  • CRC Cyclic Redundancy Check
  • Type0A-PDCCH common search space. This type of search space is defined for PDCCH corresponding to other System Information (OSI).
  • OSI System Information
  • the DCI format carried in the PDCCH detected in the search space carries the CRC climb of the SI-RNTI corresponding to the primary cell Pcell.
  • Type1-PDCCH common search space which is defined for a normal PDCCH (or called a normal PDCCH).
  • the DCI format carried in the PDCCH detected in the search space carries the Radio Access Temporary Identity (RA-RNTI) of the random access corresponding to the Pcell of the primary cell, and the temporary identifier of the wireless network of the temporary cell ( CRC climb of the Temporary Cell Radio Network Temporary Identity (TC-RNTI) or the Cell Radio Network Temporary Identity (C-RNTI).
  • RA-RNTI Radio Access Temporary Identity
  • CRC Cell Radio Network Temporary Identity
  • C-RNTI Cell Radio Network Temporary Identity
  • the Type2-PDCCH common search space the DCI format carried in the PDCCH detected in the search space carries the CRC climb of the Paging Radio Network Temporary Identity (P-RNTI) corresponding to the primary cell Pcell. .
  • P-RNTI Paging Radio Network Temporary Identity
  • the PDCCH in the physical downlink channel is received according to the TCI state information of the CORESET0, which may be the PDCCH corresponding to the Type1-PDCCH common search space.
  • the step 12 may include: determining that the physical downlink channel and the CORESET0 are quasi-co-located QCL when the preset condition is met; and receiving the physical downlink channel according to the target TCI state information when the physical downlink channel is co-located with the CORESET0.
  • the preset condition is met, it is determined that the physical downlink channel and CORESET0 are quasi-co-located.
  • the quasi-co-location relationship between the physical downlink channel and CORESET0 is also referred to as a default quasi-co-location relationship
  • the preset condition refers to A condition that satisfies a default quasi-co-location relationship, which may be predefined or configured by a network device.
  • the foregoing preset condition may include at least one of the following:
  • the physical downlink channel is pre-defined and CORESET0 is QCL. That is, the predefined physical downlink channel and CORESET0 are QCL relationships.
  • the terminal may assume that the DMRS port of the PDCCH in the Type1-PDCCH common search space and the PDSCH indicated by the PDCCH are in a QCL relationship with CORESET0.
  • the configuration information of the at least two TCI states corresponding to the physical downlink channel is received, and the activation information for the at least two TCI states is not received.
  • the CORESET configuration carries more than one (ie, two or more) TCI states information, and before the MAC layer CE activates one of the TCI states, the terminal assumes that the PDCCH in the CORESET is received.
  • the DMRS port of the PDCCH is in a QCL relationship with CORESET0.
  • the terminal assumes that the PDSCH DMRS port and CORESET0 are in QCL relationship during the PDSCH reception in the CORESET.
  • the terminal when the terminal receives the configuration information indicating that the PDCCH only corresponds to one TCI state, if the activation information for the TCI state is not received, the terminal may adopt the default QCL relationship instead of using the default QCL relationship.
  • the TCI state performs reception of the PDCCH.
  • the PDSCH when the terminal receives the configuration information indicating that the PDSCH only corresponds to one TCI state, if the activation information for the TCI state is not received, the PDSCH can be received only by the TCI state of the CORESET0 by using the default QCL relationship. .
  • receiving the configuration information of the at least two TCI states corresponding to the physical downlink channel, and not receiving the activation information for the at least two TCI states includes:
  • Scenario 1 Receive configuration information of at least two TCI states configured for the physical downlink channel for the first time, and do not receive activation information for at least two TCI states.
  • the terminal assumes that it is within a DMRS port group of the PDSCH on the serving cell.
  • the antenna port is COCL0 with CORESET0.
  • the PDCCH can be similar to the PDCCH, and therefore will not be described again.
  • the terminal when the terminal receives the TCI state configuration information of the upper layer for the first time, the configuration information indicates that the PDSCH only has one TCI state, and if the activation information for the TCI state is not received, The terminal may also assume that the antenna port in a DMRS port group of the PDSCH on the serving cell is in QCL relationship with CORESET0.
  • Scenario 2 Receive configuration information of at least two TCI states reconfigured for the physical downlink channel, and do not receive activation information for at least two TCI states.
  • the terminal assumes an antenna port in a DMRS port group of the PDSCH on the serving cell. It is QCL relationship with CORESET0.
  • the PDCCH can be similar to the PDCCH, and therefore will not be described again.
  • the terminal when the terminal receives the TCI state configuration information of the high layer reconfiguration, and the configuration information indicates that the PDSCH only has one TCI state, if the activation information for the TCI state is not received, the terminal It can also be assumed that the antenna port in one DMRS port group of the PDSCH on the serving cell is in QCL relationship with CORESET0.
  • the terminal when the terminal receives the configuration information of the at least two TCI states that are reconfigured for the physical downlink channel, and does not receive the activation information for the at least two TCI states, the terminal is based on the last activated TCI state. , receiving a physical downlink channel. Taking the PDSCH as an example, after the terminal receives the high-level reconfiguration of the TCI state configuration information, and before receiving the MAC layer CE to activate the corresponding multiple TCI states, the terminal directly uses the TCI state that is activated (validated) before reconfiguration.
  • step 11 includes but is not limited to the following:
  • the RRC signaling is controlled by the radio resource other than the main system information block MIB, and the target TCI state information of the CORESET0 is obtained.
  • the RRC signaling includes: a first parameter field indicating an identifier value of CORESET0, and a second parameter field indicating a TCI state corresponding to CORESET0.
  • the method is that the system allows the network device to configure the TCI state of the CORESET0 and indicate to the terminal by using other RRC signalings other than the MIB information after the initial access. Specifically, after the initial access, the network device indicates the TCI status information of the terminal CORESET0 by using other RRC signaling than the MIB information.
  • the method of configuring may include configuring TCI states information of CORESET0 by limiting parameter rules in the high layer signaling parameter CORESET field.
  • the reference signal of the TCI state indicated by the second parameter field is the synchronization signal block SSB.
  • the index of the SSB corresponding to the different TCI states is different. That is to say, when the value of the control Resource SetId is equal to 0, the reference signal in the indicated TCI states is only SSB, that is, CORESET 0 is only QCL relationship with the SSB, and only the SSB index is different between the multiple TCI states.
  • the terminal monitors the SSB according to the index of the SSB in the activated TCI state, and monitors the PDCCH search space of the CORESET 0 corresponding to the SSB to receive the PDCCH.
  • Rule 2 High-level signaling parameters In the Control Resource Set field, when the control resource SetId value is equal to 0, other parameter fields can take effect, except for the second parameter field. However, you need to limit the configuration information indicated by other parameter fields and MIB. The configuration information is exactly the same. That is to say, the RRC signaling further includes: other parameter fields for indicating other parameters of CORESET0, and other parameters indicated by other parameter fields are the same as those indicated by the MIB for CORESET0.
  • the terminal controls the RRC signaling by using the radio resource other than the main system information block MIB to obtain the target TCI status information of the CORESET0.
  • the step may include: detecting RRC signaling other than the transmission MIB; determining target TCI state information of CORESET0 according to the first parameter domain and the second parameter domain; and ignoring other parameter domains in the RRC signaling.
  • the step of the terminal acquiring the target TCI status information of the CORESET0 by using the RRC signaling other than the MIB may include: transmitting the RRC signaling by using the MIB.
  • Method 2 Calculate the receiving quality of the SSB according to the received synchronization signal block SSB; determine the CORESET corresponding to the SSB as a new CORESET0 when the receiving quality of the SSB is higher than the receiving quality of the target SSB corresponding to the CORESET0; acquire a new CORESET0 Target TCI status information.
  • the mode system allows the terminal to autonomously switch the index value of the SSB and monitor the PDCCH common search space of the corresponding CORESET0.
  • the SSB mentioned herein may be an SSB of a serving cell or an SSB of a target cell in a cell handover process.
  • the second mode will be further described in conjunction with the serving cell SSB or the target cell SSB.
  • the system may not allow the serving cell to configure the TCI state information of the CORESET0, and does not allow the UE-specfic search space to be associated with the CORESET0, that is, the information on the CORESET0 is not specifically told to the terminal. It is all limited to broadcast information.
  • the system allows the terminal to autonomously switch the QCL relationship between the CORESET0 and the SSB with high signal quality according to the received SSB signal quality, that is, the terminal calculates the SSB signal quality according to the received SSB, and if the current SSB is detected, The reference signal received power (RSRP) of the signal is higher than the RSRP of the SSB signal corresponding to the monitored CORESET0, then the terminal can autonomously switch to the SSB with higher signal quality and listen to the CORESET 0 corresponding to the SSB.
  • the physical downlink channel is received according to the TCI status information of the new CORESET0.
  • the system does not allow the target cell to configure the TCI information of CORESET0, and does not allow the UE-specfic search space to be associated with CORESET 0.
  • the system allows the terminal to internally switch the QCL relationship between the CORESET0 and the SSB with high signal quality within the SSB set of the target cell according to the received SSB signal quality, that is, the terminal is inside the target cell SSB set. According to the received SSB, the quality of the SSB signal is calculated.
  • the terminal autonomously switches to the SSB with the higher signal quality, and listens to the CORESET0 corresponding to the SSB. .
  • the physical downlink channel is received according to the TCI status information of the new CORESET0.
  • the network downlink channel when the network device and the terminal meet the preset condition, the network downlink channel can be transmitted according to the TCI state information of the CORESET0, so that the flexibility of the physical downlink channel transmission can be improved, thereby improving system performance.
  • the terminal 200 of the embodiment of the present disclosure can implement the target transmission configuration indication TCI state information of the control resource set CORESET0 with the identifier value of 0 in the foregoing embodiment; and when the preset condition is met, according to the target TCI state.
  • Information the details of the method of receiving the physical downlink channel, and achieve the same effect.
  • the physical downlink channel includes at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • the terminal 200 specifically includes the following functional modules:
  • the first obtaining module 210 is configured to acquire target transmission configuration indication TCI state information of the control resource set CORESET0 with an identifier value of 0;
  • the first receiving module 220 is configured to receive a physical downlink channel according to the target TCI state information when the preset condition is met, where the physical downlink channel includes at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • the first receiving module 220 includes:
  • a first determining submodule configured to determine, when the preset condition is met, that the physical downlink channel and the CORESET0 are quasi-co-located QCL;
  • the first receiving submodule is configured to receive the physical downlink channel according to the target TCI state information when the physical downlink channel is co-located with the CORESET0.
  • the preset condition includes at least one of the following:
  • the configuration information of the at least two TCI states corresponding to the physical downlink channel is received, and the activation information for the at least two TCI states is not received.
  • the receiving the configuration information of the at least two TCI states corresponding to the physical downlink channel, and not receiving the activation information for the at least two TCI states includes:
  • Configuration information of at least two TCI states reconfigured for the physical downlink channel is received, and activation information for at least two TCI states is not received.
  • the terminal 200 further includes:
  • a second receiving module configured to receive, according to the last activated TCI state, when receiving configuration information of at least two TCI states that are reconfigured for the physical downlink channel, and not receiving activation information for the at least two TCI states Physical downlink channel.
  • the first obtaining module 210 includes:
  • a first acquiring submodule configured to obtain, by using a radio resource control RRC signaling other than the main system information block MIB, the target TCI state information of the CORESET0, where the RRC signaling includes: a first parameter indicating an identifier value of the CORESET0 A field, and a second parameter field indicating a TCI state corresponding to CORESET0.
  • RRC signaling includes: a first parameter indicating an identifier value of the CORESET0 A field, and a second parameter field indicating a TCI state corresponding to CORESET0.
  • the RRC signaling further includes: other parameter fields for indicating other parameters of CORESET0, and other parameters indicated by other parameter fields are the same as those indicated by the MIB for CORESET0.
  • the obtaining submodule includes:
  • a detecting unit configured to detect RRC signaling outside the transmission MIB
  • a determining unit configured to determine target TCI state information of CORESET0 according to the first parameter domain and the second parameter domain;
  • a processing module for ignoring other parameter fields in the RRC signaling.
  • the first obtaining module further includes:
  • a second receiving submodule configured to: when the TCI status indicated by the second parameter field is at least two, receive, by the medium access medium MAC layer control unit CE, activation information for activating a TCI state of COREST0;
  • a second determining submodule configured to determine target TCI state information from the at least two TCI states according to the activation information.
  • the reference signal of the TCI state indicated by the second parameter field is the synchronization signal block SSB.
  • the second parameter field indicates that the TCI state is at least two, the index numbers of the SSBs corresponding to different TCI states are different.
  • the first obtaining module 210 further includes:
  • a calculation submodule configured to calculate a reception quality of the SSB according to the received synchronization signal block SSB;
  • a third determining submodule configured to determine a CORESET corresponding to the SSB as a new CORESET0 when the receiving quality of the SSB is higher than the receiving quality of the target SSB corresponding to the CORESET0;
  • the second obtaining submodule is configured to acquire the target TCI status information of the new CORESET0.
  • the SSB is the SSB of the serving cell or the SSB of the target cell.
  • the network device and the terminal in the embodiments of the present disclosure can transmit the physical downlink channel according to the TCI state information of the CORESET0 when the preset condition is met, so that the flexibility of the physical downlink channel transmission can be improved, thereby improving the system performance.
  • FIG. 3 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 30 includes, but is not limited to, a radio frequency unit 31, a network module 32, and an audio output unit 33.
  • the terminal structure shown in FIG. 3 does not constitute a limitation to the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the radio frequency unit 31 is configured to perform, under the control of the processor 310, acquiring the target transmission configuration indication TCI status information of the control resource set CORESET0 with the identifier value of 0;
  • the physical downlink channel includes: at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH;
  • the physical downlink channel can be transmitted according to the TCI state information of the CORESET0, so that the flexibility of the physical downlink channel transmission can be improved, thereby improving the system performance.
  • the radio frequency unit 31 can be used for receiving and transmitting signals during the transmission and reception of information or during a call, and specifically, after receiving downlink data from the base station, processing the data to the processor 310; The uplink data is sent to the base station.
  • radio frequency unit 31 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 31 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides the user with wireless broadband Internet access through the network module 32, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 33 can convert the audio data received by the radio frequency unit 31 or the network module 32 or stored in the memory 39 into an audio signal and output as sound. Moreover, the audio output unit 33 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the terminal 30.
  • the audio output unit 33 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 34 is for receiving an audio or video signal.
  • the input unit 34 may include a graphics processing unit (GPU) 341 and a microphone 342 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 36.
  • the image frames processed by the graphics processor 341 may be stored in the memory 39 (or other storage medium) or transmitted via the radio unit 31 or the network module 32.
  • the microphone 342 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 31 in the case of a telephone call mode.
  • Terminal 30 also includes at least one type of sensor 35, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 361 according to the brightness of the ambient light, and the proximity sensor can close the display panel 361 and/or when the terminal 30 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 35 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 36 is for displaying information input by the user or information provided to the user.
  • the display unit 36 can include a display panel 361.
  • the display panel 361 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 37 can be used to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 37 includes a touch panel 371 and other input devices 372.
  • the touch panel 371 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 371 or near the touch panel 371. operating).
  • the touch panel 371 can include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the touch panel 371 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 37 may also include other input devices 372.
  • the other input devices 372 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein.
  • the touch panel 371 can be overlaid on the display panel 361.
  • the touch panel 371 detects a touch operation on or near the touch panel 371, it is transmitted to the processor 310 to determine the type of the touch event, and then the processor 310 according to the touch.
  • the type of event provides a corresponding visual output on display panel 361.
  • the touch panel 371 and the display panel 361 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 371 may be integrated with the display panel 361.
  • the input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 38 is an interface in which an external device is connected to the terminal 30.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 38 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 30 or can be used at the terminal 30 and external devices Transfer data between.
  • the memory 39 can be used to store software programs as well as various data.
  • the memory 39 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • the memory 39 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 310 is a control center of the terminal, which connects various parts of the entire terminal by various interfaces and lines, and executes by executing or executing software programs and/or modules stored in the memory 39, and calling data stored in the memory 39.
  • the terminal 's various functions and processing data, so as to monitor the terminal as a whole.
  • the processor 310 may include one or more processing units; preferably, the processor 310 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and performs modulation and demodulation.
  • the processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 310.
  • the terminal 30 may further include a power source 311 (such as a battery) for supplying power to the respective components.
  • a power source 311 such as a battery
  • the power source 311 may be logically connected to the processor 310 through the power management system to manage charging, discharging, and power management through the power management system.
  • the terminal 30 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 310, a memory 39, a computer program stored on the memory 39 and executable on the processor 310, and the computer program is implemented by the processor 310.
  • the processes of the foregoing channel transmission method embodiments can achieve the same technical effects. To avoid repetition, details are not described herein again.
  • the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal digital assistant
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the embodiment of the present disclosure further provides a computer readable storage medium.
  • the computer readable storage medium stores a computer program, which is executed by the processor to implement various processes of the foregoing channel transmission method embodiment, and can achieve the same technology. The effect, to avoid repetition, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the channel transmission method of the embodiment of the present disclosure is applied to the network device side, and may include the following steps:
  • Step 41 Configure the target transmission configuration indication TCI status information for the control resource set CORESET0 with the identifier value of 0.
  • the CORESET0 can be configured according to the information of the Master System Information Block (MIB) and the Serving Cell Config Common information carried by the SSB.
  • MIB Master System Information Block
  • the frequency domain length of CORESET0, the frequency domain position relative to the SSB, the time domain length, the location of the first symbol in the time domain, and other information can be configured through the MIB and the serving cell common configuration information.
  • Step 42 When the preset condition is met, the physical downlink channel is sent according to the target TCI status information.
  • the physical downlink channel includes at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • the step 42 may include: determining that the physical downlink channel and the CORESET0 are quasi-co-located QCL when the preset condition is met; and when the physical downlink channel is co-located with the CORESET0, transmitting the physical downlink channel according to the target TCI status information.
  • the preset condition it is determined that the physical downlink channel and CORESET0 are quasi-co-located.
  • the quasi-co-location relationship between the physical downlink channel and CORESET0 is also referred to as a default quasi-co-location relationship
  • the preset condition refers to A condition that satisfies a default quasi-co-location relationship, which may be predefined or configured by a network device.
  • the foregoing preset condition may include but is not limited to at least one of the following:
  • the physical downlink channel is pre-defined and CORESET0 is QCL; that is, the predefined physical downlink channel and CORESET0 are QCL relationships.
  • the configuration information of at least two TCI states corresponding to the physical downlink channel has been transmitted, but the activation information for at least two TCI states has not been transmitted.
  • the network device is configured by a higher layer CORESER, the CORESET configuration carries more than one TCI states information, and before the MAC layer CE activates one of the TCI states, the network device assumes that the physical downlink channel in the CORESET is transmitted during the corresponding
  • the DMRS port is COCL0 with CORESET0. It should be noted that, for the PDCCH, when the configuration information indicates that the PDCCH only corresponds to one TCI state, the network device may directly adopt the TCI state to perform PDCCH transmission without adopting a default QCL relationship.
  • the network device For the PDSCH, when the configuration information indicates that the PDSCH only corresponds to one TCI state, the network device needs to send the activation information to the terminal. If the activation information for the TCI state is not sent, only the default QCL relationship may be adopted, and the CORESET0 is adopted.
  • the TCI state performs PDSCH transmission.
  • the configuration information of the at least two TCI states corresponding to the physical downlink channel has been sent, but the activation information for the at least two TCI states is not sent:
  • the configuration information of the at least two TCI states configured for the physical downlink channel is sent, but the activation information for the at least two TCI states is not sent.
  • the scenario corresponds to scenario 1 of the terminal side embodiment, and details are not described herein again.
  • the network device when the configuration information of the at least two TCI states configured to be re-configured for the physical downlink channel has been sent, but the activation information for the at least two TCI states is not sent, the network device according to the last activated TCI state, Send a physical downlink channel.
  • the network device after the network device sends the high-level reconfiguration TCI state configuration information, before the MAC layer CE is sent to activate the corresponding multiple TCI states, the network device directly uses the TCI state that is activated (validated) before reconfiguration.
  • the configuration of the target TCI status information of CORESET0 can also be performed by: controlling the RRC signaling by transmitting radio resources other than the main system information block MIB to configure the target for CORESET0. TCI status information.
  • the RRC signaling includes: a first parameter field indicating an identifier value of CORESET0, and a second parameter field indicating a TCI state corresponding to CORESET0. The method is that the system allows the network device to configure the TCI state of the CORESET0 and indicate to the terminal by using other RRC signalings other than the MIB information after the initial access.
  • the network device indicates the TCI status information of the terminal CORESET0 through other RRC signaling than the MIB information.
  • the method of configuring may include configuring TCI states information of CORESET0 by limiting parameter rules in the high layer signaling parameter CORESET field.
  • the RRC signaling further includes: other parameter fields for indicating other parameters of CORESET0, and other parameters indicated by other parameter fields are the same as those indicated by the MIB for CORESET0.
  • the rules for limiting the parameters are the same as those described in the terminal side embodiment, and therefore are not described here.
  • the reference signal of the TCI state indicated by the second parameter field is the synchronization signal block SSB.
  • the second parameter field indicates that the TCI state is at least two, the index numbers of the SSBs corresponding to different TCI states are different. That is to say, when the value of the control Resource SetId is equal to 0, the reference signal in the indicated TCI states is only SSB, that is, CORESET 0 is only QCL relationship with the SSB, and only the SSB index is different between the multiple TCI states.
  • the step of configuring the target TCI status information for the CORESET0 further comprises: sending, by the medium access medium MAC layer control unit CE, a target for indicating COREST0 to the terminal Activation information of TCI status information. That is to say, when the TCI states information contains a plurality of values, the activation of the TCI state is activated by the normal MAC layer CE.
  • the network downlink channel when the network device and the terminal satisfy the preset condition, the network downlink channel can be transmitted according to the TCI state information of the CORESET0, so that the flexibility of the physical downlink channel transmission can be improved, thereby improving System performance.
  • the network device 500 of the embodiment of the present disclosure can implement the target transmission configuration indication TCI state information for the control resource set CORESET0 with the identifier value of 0 in the foregoing embodiment; when the preset condition is met, according to the target TCI
  • the network device 500 specifically includes the following functional modules:
  • the configuration module 510 is configured to configure a target transmission configuration indication TCI status information for the control resource set CORESET0 with an identifier value of 0;
  • the first sending module 520 is configured to: when the preset condition is met, send the physical downlink channel according to the target TCI state information; where the physical downlink channel includes at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • the first sending module 520 includes:
  • the first sending submodule is configured to send the physical downlink channel according to the target TCI state information when the physical downlink channel is co-located with the CORESET0.
  • the preset condition includes at least one of the following:
  • the configuration information of at least two TCI states corresponding to the physical downlink channel has been transmitted, but the activation information for at least two TCI states is not transmitted.
  • the configuration information of the at least two TCI states corresponding to the physical downlink channel is sent, but the activation information for the at least two TCI states is not sent, including:
  • the configuration information of at least two TCI states configured for the physical downlink channel for the first time has been transmitted, but the activation information for at least two TCI states is not transmitted;
  • the configuration information of at least two TCI states reconfigured for the physical downlink channel has been transmitted, but the activation information for at least two TCI states is not transmitted.
  • the network device 500 further includes:
  • a second sending module configured to: when the configuration information of the at least two TCI states that are reconfigured for the physical downlink channel has been sent, but the activation information for the at least two TCI states is not sent, send the physical according to the last activated TCI state Downstream channel.
  • the configuration module 510 includes:
  • a first configuration submodule configured to configure RRC signaling by using a radio resource other than the main system information block MIB to configure target TCI status information for the CORESET0, where the RRC signaling includes: a first parameter indicating an identifier value of the CORESET0 A field, and a second parameter field indicating a TCI state corresponding to CORESET0.
  • the RRC signaling further includes: other parameter fields for indicating other parameters of CORESET0, and other parameters indicated by other parameter fields are the same as those indicated by the MIB for CORESET0.
  • the network device 500 further includes:
  • a third sending module configured to send, by the medium access medium MAC layer control unit CE, activation information for indicating target TCI status information of COREST0 to the terminal.
  • the reference signal of the TCI state indicated by the second parameter field is the synchronization signal block SSB.
  • the second parameter field indicates that the TCI state is at least two, the index numbers of the SSBs corresponding to different TCI states are different.
  • each module of the above network device and terminal is only a division of logical functions. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. And these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors ( A digital signal processor (DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the network device and the terminal in the embodiments of the present disclosure can transmit the physical downlink channel according to the TCI state information of the CORESET0 when the preset condition is met, so that the flexibility of the physical downlink channel transmission can be improved, thereby improving the system performance.
  • an embodiment of the present disclosure further provides a network device, including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • a network device including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • the steps in the channel transmission method as described above are implemented.
  • Embodiments of the invention also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the channel transmission method as described above.
  • the network device 600 includes an antenna 61, a radio frequency device 62, and a baseband device 63.
  • the antenna 61 is connected to the radio frequency device 62.
  • the radio frequency device 62 receives information via the antenna 61 and transmits the received information to the baseband device 63 for processing.
  • the baseband device 63 processes the information to be transmitted and transmits it to the radio frequency device 62.
  • the radio frequency device 62 processes the received information and transmits it via the antenna 61.
  • the above-described band processing device may be located in the baseband device 63, and the method performed by the network device in the above embodiment may be implemented in the baseband device 63, which includes the processor 64 and the memory 65.
  • the baseband device 63 may include, for example, at least one baseband board on which a plurality of chips are disposed, as shown in FIG. 6, one of which is, for example, a processor 64, connected to the memory 65 to call a program in the memory 65 to execute The network device operation shown in the above method embodiment.
  • the baseband device 63 can also include a network interface 66 for interacting with the radio frequency device 62, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the method performed by the above network device.
  • An integrated circuit such as one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • Memory 65 can be either volatile memory or non-volatile memory, or can include both volatile and non-volatile memory.
  • the non-volatile memory may be a Read-Only Memory (ROM), a Programmable ROM (Programmable ROM), or an Erasable PROM (EPROM). , electrically erasable programmable read only memory (EEPROM) or flash memory.
  • the volatile memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous).
  • DRAM double data rate synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchlink DRAM
  • DRRAM Direct Memory Bus
  • the network device of the embodiment of the present disclosure further includes: a computer program stored on the memory 65 and operable on the processor 64, and the processor 64 calls a computer program in the memory 65 to execute the method executed by each module shown in FIG. .
  • the computer program is used by the processor 64 to perform: configuring the target transmission configuration indication TCI status information for the control resource set CORESET0 with the identifier value of 0;
  • the physical downlink channel is sent according to the target TCI state information, where the physical downlink channel includes at least one of a physical downlink control channel PDCCH and a physical downlink shared channel PDSCH.
  • the method can be used to: determine that the physical downlink channel and the CORESET0 are quasi-co-located QCL when the preset condition is met;
  • the physical downlink channel is transmitted according to the target TCI status information.
  • the preset condition includes at least one of the following:
  • the configuration information of at least two TCI states corresponding to the physical downlink channel has been transmitted, but the activation information for at least two TCI states is not transmitted.
  • the configuration information of the at least two TCI states corresponding to the physical downlink channel is sent, but the activation information for the at least two TCI states is not sent, including:
  • the configuration information of at least two TCI states configured for the physical downlink channel for the first time has been transmitted, but the activation information for at least two TCI states is not transmitted;
  • the configuration information of at least two TCI states reconfigured for the physical downlink channel has been transmitted, but the activation information for at least two TCI states is not transmitted.
  • the computer program when the computer program is called by the processor 64, it can be used to perform: when the configuration information of at least two TCI states configured to be re-configured for the physical downlink channel has been transmitted, but the activation information for the at least two TCI states is not sent, according to the above The physical downlink channel is transmitted in an activated TCI state.
  • the TC signaling can be configured to perform the target TCI status information for the CORESET0 by transmitting the RRC signaling of the radio resource other than the main system information block MIB; wherein the RRC signaling includes: indicating CORESET0 The first parameter field of the identity value and the second parameter field indicating the TCI state corresponding to CORESET0.
  • the RRC signaling further includes: other parameter fields for indicating other parameters of CORESET0, and other parameters indicated by other parameter fields are the same as those indicated by the MIB for CORESET0.
  • the computer program when called by the processor 64, it can be used to execute: by the medium access medium MAC layer control unit CE, the activation information for indicating the target TCI status information of COREST0 is sent to the terminal.
  • the reference signal of the TCI state indicated by the second parameter field is the synchronization signal block SSB.
  • the second parameter field indicates that the TCI state is at least two, the index numbers of the SSBs corresponding to different TCI states are different.
  • the network device may be a Global System of Mobile communication (GSM) or a Code Division Multiple Access (CDMA) base station (Base Transceiver Station, BTS for short) or a wideband code.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB evolved Node B
  • eNodeB evolved Node B
  • a base station or the like in a future 5G network is not limited herein.
  • the physical downlink channel can be transmitted according to the TCI state information of the CORESET0, so that the flexibility of the physical downlink channel transmission can be improved, thereby improving the system performance.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信道传输方法、终端及网络设备,其方法包括:获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息;在满足预设条件时,根据目标TCI状态信息,接收物理下行信道;其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。

Description

信道传输方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年4月4日在中国提交的中国专利申请号No.201810302205.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信道传输方法、终端及网络设备。
背景技术
在移动通信系统中,对于物理下行控制信道(Physical Downlink Control Channel,PDCCH),终端会接收PDCCH公共搜索空间(common search space),以及网络设备配置的各种参数,其中,传输控制指示(Transmission Control indicator,TCI)状态(state)参数中包括PDCCH的多个TCI状态,网络设备可通过媒体访问介质(Medium Access Control,MAC)层控制单元(Control Element,CE)激活其中一个TCI状态之前,终端假设上述PDCCH的解调参考信号(De-Modulation Reference Signal,DMRS)端口与初始接入配置的同步信号块(Synchronization Signal and PBCH Block,SSB)是准共址(quasi co-located,QCL)的。相应地,对于物理下行共享信道(Physical Downlink Share Channel,PDSCH),终端接收到高层配置的TCI和接收到激活信息之前,终端假设上述PDSCH的DMRS端口与初始接入配置的SSB是QCL的。由于初始接入配置的SSB的TCI是预先配置且固定不变的,在激活PDCCH或PDSCH的某种TCI状态之前,终端认为PDCCH或PDSCH的DMRS端口与SSB为QCL,这样终端不能根据网络性能灵活工作,会导致系统性能下降。
发明内容
本公开实施例提供了一种信道传输方法、终端及网络设备,以解决PDCCH或PDSCH的DMRS端口与SSB准共址,终端不能根据网络性能灵活工作,而导 致的系统性能下降的问题。
第一方面,本公开实施例提供了一种信道传输方法,应用于终端侧,包括:
获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息;
在满足预设条件时,根据目标TCI状态信息,接收物理下行信道;其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
第二方面,本公开实施例还提供了一种终端,包括:
第一获取模块,用于获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息;
第一接收模块,用于在满足预设条件时,根据目标TCI状态信息,接收物理下行信道;其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的信道传输方法的步骤。
第四方面,本公开实施例提供了一种信道传输方法,应用于网络设备侧,包括:
为标识值为0的控制资源集CORESET0配置目标传输配置指示TCI状态信息;
在满足预设条件时,根据目标TCI状态信息,发送物理下行信道;其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
第五方面,本公开实施例提供了一种网络设备,包括:
配置模块,用于为标识值为0的控制资源集CORESET0配置目标传输配置指示TCI状态信息;
第一发送模块,用于在满足预设条件时,根据目标TCI状态信息,发送物理下行信道;其中,物理下行信道包括:物理下行控制信道PDCCH和物理 下行共享信道PDSCH中的至少一种。
第六方面,本公开实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的信道传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述的信道传输方法的步骤。
这样,本公开实施例的网络设备和终端在满足预设条件时,可以根据CORESET0的TCI状态信息,传输物理下行信道,这样可以提高物理下行信道传输的灵活性,进而提高系统性能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例终端侧的信道传输方法的流程示意图;
图2表示本公开实施例终端的模块结构示意图;
图3表示本公开实施例的终端框图;
图4表示本公开实施例网络设备侧的信道传输方法的流程示意图;
图5表示本公开实施例网络设备的模块结构示意图;
图6表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别 类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本公开实施例提供了一种信道传输方法,应用于终端,如图1所示,该方法包括以下步骤:
步骤11:获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息。
其中,标识值可以是CORESET的Id值或索引值。CORESET0可以根据SSB所携带的主系统信息块(Master System Information Block,MIB)信息和服务小区公共配置(Serving Cell Config Common)信息中配置的。具体地,MIB中包含8bit,根据SSB与CORESET0的子载波间隔选择预先定义的一个表格,每个表格包含16个索引值(0-15),通过8bit中的4bits指示选择0-15中的一个索引值。其中,不同索引值对应CORESET的频域长度、相对于SSB的频域位置以及时域长度等信息,也就是说,这4bit也表明了CORESET的频域长度、相对于SSB的频域位置以及时域长度等信息。
进一步地,根据上述4bits指示的索引值对应的复用(multiplexing)参数、第一频率范围(Frequency Range 1,FR1)、第二频率范围(Frequency Range 2,FR2)、子载波间隔(Sub-Carrier Spacing,SCS)和CORESET0的子载波间隔等,并依此选择预先定义的另一个表格,每个表格也可以包含16个索引值(0-15),通过剩余的4bits指示选择这16个索引值中的一个,以此确定CORESET时域第一个符号的位置以及其他信息等。
步骤12:在满足预设条件时,根据目标TCI状态信息,接收物理下行信道。
其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。以PDCCH为例,系统定义了4种不同类型的PDCCH 搜索空间(Search space):
1、Type0-PDCCH公共搜索空间,这类搜索空间是为剩余最小系统信息(Remaining Minimum System Information,RMSI)对应的PDCCH定义的。在该类搜索空间检测到的PDCCH中承载的下行控制信息(Downlink Control Information,DCI)格式(format)携带有主小区(Primary Cell,Pcell)对应的系统信息的无线网络临时标识(System Information Radio Network Temporary Identity,SI-RNTI)的循环冗余校验(Cyclic Redundancy Check,CRC)的爬升。
2、Type0A-PDCCH公共搜索空间,这类搜索空间是为其他系统信息(Other System Information,OSI)对应的PDCCH定义的。在该类搜索空间检测到的PDCCH中承载的DCI format携带有主小区Pcell对应的SI-RNTI的CRC爬升。
3、Type1-PDCCH公共搜索空间,这类搜索空间是为普通PDCCH(或称为正常PDCCH)定义的。在该类搜索空间检测到的PDCCH中承载的DCI format携带有主小区Pcell对应的随机接入的无线网络临时标识(Radom Access Radio Network Temporary Identity,RA-RNTI)、临时小区的无线网络临时标识(Temporary Cell Radio Network Temporary Identity,TC-RNTI)或小区的无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI)的CRC爬升。
4、Type2-PDCCH公共搜索空间,在该类搜索空间检测到的PDCCH中承载的DCI format携带有主小区Pcell对应的寻呼无线网络临时标识(Paging Radio Network Temporary Identity,P-RNTI)的CRC爬升。
值得指出的是,根据CORESET0的TCI状态信息接收物理下行信道中的PDCCH,可以是Type1-PDCCH公共搜索空间对应的PDCCH。
其中,步骤12可以包括:在满足预设条件时,确定物理下行信道与CORESET0为准共址QCL的;当物理下行信道与CORESET0准共址时,根据目标TCI状态信息,接收物理下行信道。在满足预设条件时,确定物理下行信道与CORESET0为准共址QCL的,这里所说的物理下行信道与CORESET0的准共址关系又可称为默认准共址关系,预设条件指的是满足默认准共址关系的条件,该预设条件可以是预先定义的或者由网络设备配置下来。
优选地,上述预设条件可以包括以下至少一项:
预先定义物理下行信道与CORESET0为QCL的。也就是说,预先定义物理下行信道与CORESET0是QCL关系。例如,终端可以假设Type1-PDCCH公共搜索空间中的PDCCH的DMRS端口,以及该PDCCH指示的PDSCH,与CORESET0是QCL关系。
接收到物理下行信道对应的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息。例如,终端接收到的高层的CORESER配置,该CORESET配置携带了超过一个(即两个及以上)TCI states信息,并且在MAC层CE激活其中一个TCI state之前,终端假设该CORESET中的PDCCH接收的过程中,PDCCH的DMRS端口与CORESET0是QCL关系。或终端假设该CORESET中的PDSCH接收的过程中,PDSCH的DMRS端口与CORESET0是QCL关系。其中,值得指出的是,对于PDCCH,当终端接收到配置信息指示PDCCH仅对应的一个TCI状态时,若未接收到针对该TCI状态的激活信息,可以不采用默认QCL关系的方式,而直接采用该TCI状态进行PDCCH的接收。而对于PDSCH,当终端接收到配置信息指示PDSCH仅对应的一个TCI状态时,若未接收到针对该TCI状态的激活信息,仅可以采用默认QCL关系的方式,通过CORESET0的TCI状态进行PDSCH的接收。
进一步地,接收到物理下行信道对应的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息包括:
场景一、接收到首次为物理下行信道配置的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息。以PDSCH为例,终端第一次接收到高层的TCI state配置信息后,以及在收到MAC层CE激活相应的多个TCI states之前,终端假设在服务小区上的PDSCH的一个DMRS端口组内的天线端口与CORESET0是QCL关系。其中,对于PDCCH可以采用与此相似的方式,故不再赘述。另外,值得指出的是,对于PDSCH,当终端第一次接收到高层的TCI state配置信息后,该配置信息指示PDSCH仅对应的一个TCI状态时,若未接收到针对该TCI状态的激活信息,终端亦可以假设在服务小区上的PDSCH的一个DMRS端口组内的天线端口与CORESET0是QCL关系。
或者,
场景二、接收到重新为物理下行信道配置的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息。以PDSCH为例,终端接收到高层重新配置TCI state配置信息后,以及在收到MAC层CE激活相应的多个TCI states之前,终端假设在服务小区上的PDSCH的一个DMRS端口组内的天线端口与CORESET0是QCL关系。其中,对于PDCCH可以采用与此相似的方式,故不再赘述。另外,值得指出的是,对于PDSCH,当终端接收到高层重新配置的TCI state配置信息后,该配置信息指示PDSCH仅对应的一个TCI状态时,若未接收到针对该TCI状态的激活信息,终端亦可以假设在服务小区上的PDSCH的一个DMRS端口组内的天线端口与CORESET0是QCL关系。
另一种实施例中,当终端接收到重新为物理下行信道配置的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息时,终端根据上一次激活的TCI状态,接收物理下行信道。以PDSCH为例,终端接收到高层重新配置TCI state配置信息后,以及在收到MAC层CE激活相应的多个TCI states之前,终端直接使用重新配置之前激活(生效)的TCI state。
以上介绍了如何确定物理下行信道与CORESET0的默认准共址关系,下面将进一步介绍如何确定CORESET0的TCI状态信息。可选地,步骤11包括但不限于以下方式:
方式一、通过传输主系统信息块MIB之外的无线资源控制RRC信令,获取CORESET0的目标TCI状态信息。其中,RRC信令中包括:指示CORESET0的标识值的第一参数域,以及指示CORESET0对应的TCI状态的第二参数域。
其中,该方式为系统允许网络设备在初始接入后,通过除MIB信息外的其他RRC信令对CORESET0的TCI state进行配置并指示给终端。具体地,初始接入后,网络设备通过除MIB信息外的其他RRC信令指示终端CORESET0的TCI状态信息。优选地配置方法可以包括:通过限制高层信令参数CORESET字段中的参数规则来配置CORESET0的TCI states信息。
上述限制参数的规则可以是:
规则一、高层信令参数Control Resource Set字段中对于control Resource SetId值等于0(即第一参数域指示CORESET的标识值为0)时, 仅只有第二参数域(如tci-States PDCCH字段)生效,其他参数域跳过不配置或不生效。
其中,第二参数域指示的TCI状态的参考信号为同步信号块SSB,其中,当第二参数域指示TCI状态为至少两个时,不同TCI状态所对应的SSB的索引号(index)不同。也就是说,对control Resource SetId值等于0时,其指示的TCI states中的参考信号仅为SSB,即CORESET 0仅与SSB是QCL关系,多个TCI state之间只有SSB的index不同。相应地,终端根据接收到激活的TCI state中的SSB的index来监测该SSB,以及监测该SSB对应的CORESET 0的PDCCH搜索空间,以接收PDCCH。
或者,
规则二、高层信令参数Control Resource Set字段中对于control Resource SetId值等于0时,除第二参数域生效外,其他参数域也可以生效,但需要限制其他参数域所指示的配置信息与MIB中的配置信息完全相同。也就是说,RRC信令还包括:用于指示CORESET0的其他参数的其他参数域,其他参数域所指示的其他参数与MIB对于CORESET0所指示参数相同。
对于以上规则,尤其是规则一,当第二参数域指示的TCI状态为至少两个时,终端通过传输主系统信息块MIB之外的无线资源控制RRC信令,获取CORESET0的目标TCI状态信息的步骤可以包括:检测传输MIB之外的RRC信令;根据第一参数域和第二参数域,确定CORESET0的目标TCI状态信息;以及,忽略RRC信令中的其他参数域。
进一步地,当第二参数域指示的TCI状态为至少两个时,终端通过传输MIB之外的RRC信令,获取CORESET0的目标TCI状态信息的步骤可以包括:通过传输MIB之外的RRC信令接收CORESET0的至少两个TCI状态信息,并通过媒体访问介质MAC层控制单元CE,接收用于激活COREST0的TCI状态的激活信息;根据该激活信息,从至少两个TCI状态中确定目标TCI状态信息。也就是说,当tci-States PDCCH字段包含多个值时,通过正常的MAC层CE激活TCI state的规则进行激活。
方式二、根据接收到的同步信号块SSB,计算SSB的接收质量;当SSB的接收质量高于CORESET0对应的目标SSB的接收质量时,将SSB对应的 CORESET确定为新的CORESET0;获取新的CORESET0的目标TCI状态信息。
该方式系统允许终端自主切换SSB的索引值,并监测相对应的CORESET0的PDCCH公共搜索空间。其中,这里所说的SSB可以是服务小区的SSB,或者是小区切换过程中目标小区的SSB。下面本实施例将结合服务小区SSB或是目标小区SSB对方式二做进一步说明。
以服务小区为例,系统可以不允许服务小区对CORESET0的TCI状态信息进行配置,并且不允许终端专用搜索空间(UE-specfic search space)关联到CORESET0上,即CORESET0上没有专门告诉终端的信息,其全部限定在广播信息上。进一步地,在初始接入后,系统允许终端根据接收的SSB信号质量,自主切换CORESET0与信号质量高的SSB的QCL关系,即终端根据接收的SSB,计算其SSB信号质量,若监测到当前SSB信号的参考信号接收功率(Reference Signal Received Power,RSRP)高于监测的CORESET0对应的SSB信号的RSRP,那么终端可以自主切换到信号质量较高的SSB上,并监听该SSB对应的CORESET 0。在切换到新的CORESET0上后,根据新的CORESET0的TCI状态信息进行物理下行信道的接收。
以小区切换为例,系统不允许目标小区对CORESET0的TCI信息进行配置,并且不允许UE-specfic search space关联到CORESET 0上。在小区切换时,系统允许终端在目标小区的SSB集合内部,根据接收的SSB信号质量,在该集合内部自主切换CORESET0与信号质量高的SSB的QCL关系,即终端在目标小区SSB集合的内部,根据所接收的SSB,计算其SSB信号质量,若监测到当前SSB信号的RSRP高于监测的CORESET0对应的SSB的RSRP,终端自主切换到信号质量较高的SSB上,并监听该SSB对应的CORESET0。在切换到新的CORESET0上后,根据新的CORESET0的TCI状态信息进行物理下行信道的接收。
本公开实施例的信道传输方法中,网络设备和终端在满足预设条件时,可以根据CORESET0的TCI状态信息,传输物理下行信道,这样可以提高物理下行信道传输的灵活性,进而提高系统性能。
以上实施例介绍了不同场景下的信道传输方法,下面将结合附图对与其对应的终端做进一步介绍。
如图2所示,本公开实施例的终端200,能实现上述实施例中获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息;在满足预设条件时,根据目标TCI状态信息,接收物理下行信道方法的细节,并达到相同的效果。其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。终端200具体包括以下功能模块:
第一获取模块210,用于获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息;
第一接收模块220,用于在满足预设条件时,根据目标TCI状态信息,接收物理下行信道;其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
其中,第一接收模块220包括:
第一确定子模块,用于在满足预设条件时,确定物理下行信道与CORESET0为准共址QCL的;
第一接收子模块,用于当物理下行信道与CORESET0准共址时,根据目标TCI状态信息,接收物理下行信道。
其中,预设条件包括以下至少一项:
预先定义物理下行信道与CORESET0为QCL的;
接收到物理下行信道对应的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息。
其中,接收到物理下行信道对应的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息包括:
接收到首次为物理下行信道配置的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息;
或者,
接收到重新为物理下行信道配置的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息。
其中,终端200还包括:
第二接收模块,用于当接收到重新为物理下行信道配置的至少两个TCI状态的配置信息,且未接收到对于至少两个TCI状态的激活信息时,根据上 一次激活的TCI状态,接收物理下行信道。
其中,第一获取模块210包括:
第一获取子模块,用于通过传输主系统信息块MIB之外的无线资源控制RRC信令,获取CORESET0的目标TCI状态信息;其中,RRC信令中包括:指示CORESET0的标识值的第一参数域,以及指示CORESET0对应的TCI状态的第二参数域。
其中,RRC信令还包括:用于指示CORESET0的其他参数的其他参数域,其他参数域所指示的其他参数与MIB对于CORESET0所指示参数相同。
其中,获取子模块包括:
检测单元,用于检测传输MIB之外的RRC信令;
确定单元,用于根据第一参数域和第二参数域,确定CORESET0的目标TCI状态信息;以及,
处理模块,用于忽略RRC信令中的其他参数域。
其中,第一获取模块还包括:
第二接收子模块,用于当第二参数域指示的TCI状态为至少两个时,通过媒体访问介质MAC层控制单元CE,接收用于激活COREST0的TCI状态的激活信息;
第二确定子模块,用于根据激活信息,从至少两个TCI状态中确定目标TCI状态信息。
其中,第二参数域指示的TCI状态的参考信号为同步信号块SSB,其中,当第二参数域指示TCI状态为至少两个时,不同TCI状态所对应的SSB的索引号不同。
其中,第一获取模块210还包括:
计算子模块,用于根据接收到的同步信号块SSB,计算SSB的接收质量;
第三确定子模块,用于当SSB的接收质量高于CORESET0对应的目标SSB的接收质量时,将SSB对应的CORESET确定为新的CORESET0;
第二获取子模块,用于获取新的CORESET0的目标TCI状态信息。
其中,SSB为服务小区的SSB,或者为目标小区的SSB。
值得指出的是,本公开实施例的网络设备和终端在满足预设条件时,可 以根据CORESET0的TCI状态信息,传输物理下行信道,这样可以提高物理下行信道传输的灵活性,进而提高系统性能。
为了更好的实现上述目的,进一步地,图3为实现本公开各个实施例的一种终端的硬件结构示意图,该终端30包括但不限于:射频单元31、网络模块32、音频输出单元33、输入单元34、传感器35、显示单元36、用户输入单元37、接口单元38、存储器39、处理器310、以及电源311等部件。本领域技术人员可以理解,图3中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元31,用于在处理器310的控制下执行以下步骤:获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息;
在满足预设条件时,根据目标TCI状态信息,接收物理下行信道;其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种;
本公开实施例的网络设备和终端在满足预设条件时,可以根据CORESET0的TCI状态信息,传输物理下行信道,这样可以提高物理下行信道传输的灵活性,进而提高系统性能。
应理解的是,本公开实施例中,射频单元31可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器310处理;另外,将上行的数据发送给基站。通常,射频单元31包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元31还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块32为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元33可以将射频单元31或网络模块32接收的或者在存储器39中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元33还可以提供与终端30执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元33包括扬声器、蜂鸣器以及受 话器等。
输入单元34用于接收音频或视频信号。输入单元34可以包括图形处理器(Graphics Processing Unit,GPU)341和麦克风342,图形处理器341对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元36上。经图形处理器341处理后的图像帧可以存储在存储器39(或其它存储介质)中或者经由射频单元31或网络模块32进行发送。麦克风342可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元31发送到移动通信基站的格式输出。
终端30还包括至少一种传感器35,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板361的亮度,接近传感器可在终端30移动到耳边时,关闭显示面板361和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器35还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元36用于显示由用户输入的信息或提供给用户的信息。显示单元36可包括显示面板361,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板361。
用户输入单元37可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元37包括触控面板371以及其他输入设备372。触控面板371,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板371上或在触控面板371附近的操作)。触控面板371可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸 方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器310,接收处理器310发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板371。除了触控面板371,用户输入单元37还可以包括其他输入设备372。具体地,其他输入设备372可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板371可覆盖在显示面板361上,当触控面板371检测到在其上或附近的触摸操作后,传送给处理器310以确定触摸事件的类型,随后处理器310根据触摸事件的类型在显示面板361上提供相应的视觉输出。虽然在图3中,触控面板371与显示面板361是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板371与显示面板361集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元38为外部装置与终端30连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元38可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端30内的一个或多个元件或者可以用于在终端30和外部装置之间传输数据。
存储器39可用于存储软件程序以及各种数据。存储器39可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器39可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器310是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器39内的软件程序和/或模块,以及调用存储在存储器39内的数据,执行终端的各种功能和处理数据,从而对终端 进行整体监控。处理器310可包括一个或多个处理单元;优选的,处理器310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器310中。
终端30还可以包括给各个部件供电的电源311(比如电池),优选的,电源311可以通过电源管理系统与处理器310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端30包括一些未示出的功能模块,在此不再赘述。
优选的,本公开实施例还提供一种终端,包括处理器310,存储器39,存储在存储器39上并可在所述处理器310上运行的计算机程序,该计算机程序被处理器310执行时实现上述信道传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信道传输方法实 施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的信道传输方法,下面本实施例将结合附图对网络设备侧的信道传输方法做进一步介绍。
如图4所示,本公开实施例的信道传输方法,应用于网络设备侧,可以包括以下步骤:
步骤41:为标识值为0的控制资源集CORESET0配置目标传输配置指示TCI状态信息。
其中,CORESET0可以根据SSB所携带的主系统信息块(Master System Information Block,MIB)信息和服务小区公共配置(Serving Cell Config Common)信息中配置的。例如CORESET0的频域长度、相对于SSB的频域位置、时域长度、时域第一个符号的位置以及其他信息等信息,可通过MIB和服务小区公共配置信息进行配置。
步骤42:在满足预设条件时,根据目标TCI状态信息,发送物理下行信道。
其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
优选地,步骤42可以包括:在满足预设条件时,确定物理下行信道与CORESET0为准共址QCL的;当物理下行信道与CORESET0准共址时,根据目标TCI状态信息,发送物理下行信道。在满足预设条件时,确定物理下行信道与CORESET0为准共址QCL的,这里所说的物理下行信道与CORESET0的准共址关系又可称为默认准共址关系,预设条件指的是满足默认准共址关系的条件,该预设条件可以是预先定义的或者由网络设备配置下来。
优选地,上述预设条件可以包括但不限于以下至少一项:
预先定义物理下行信道与CORESET0为QCL的;也就是说,预先定义物理下行信道与CORESET0是QCL关系。
已发送物理下行信道对应的至少两个TCI状态的配置信息,但未发送对 于至少两个TCI状态的激活信息。例如,网络设备通过高层的CORESER配置,该CORESET配置携带了超过一个TCI states信息,并且在MAC层CE激活其中一个TCI state之前,网络设备假设该CORESET中的物理下行信道发送过程中,其对应的DMRS端口与CORESET0是QCL关系。其中,值得指出的是,对于PDCCH,当配置信息指示PDCCH仅对应的一个TCI状态时,网络设备可以不采用默认QCL关系的方式,而直接采用该TCI状态进行PDCCH的发送。而对于PDSCH,当配置信息指示PDSCH仅对应的一个TCI状态时,网络设备需要向终端发送激活信息,若未发送针对该TCI状态的激活信息时,仅可以采用默认QCL关系的方式,通过CORESET0的TCI状态进行PDSCH的发送。
进一步地,已发送物理下行信道对应的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息包括:
已发送首次为物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息;该场景对应终端侧实施例的场景一,故在此不再赘述。
或者,已发送重新为物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息。该场景对应终端侧实施例的场景二,故在此不再赘述。
另一种实施例中,当已发送重新为物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息时,网络设备根据上一次激活的TCI状态,发送物理下行信道。以PDSCH为例,网络设备发送高层重新配置TCI state配置信息后,还未发送MAC层CE以激活相应的多个TCI states之前,网络设备直接使用重新配置之前激活(生效)的TCI state。
除了通过MIB和服务小区公共配置来配置CORESET0之外,还可通过以下方式进行CORESET0的目标TCI状态信息的配置:通过传输主系统信息块MIB之外的无线资源控制RRC信令,为CORESET0配置目标TCI状态信息。其中,RRC信令中包括:指示CORESET0的标识值的第一参数域,以及指示CORESET0对应的TCI状态的第二参数域。其中,该方式为系统允许网络设备在初始接入后,通过除MIB信息外的其他RRC信令对CORESET0的TCI state进行配置并指示给终端。具体地,初始接入后,网络设备通过除MIB信息外的其他RRC 信令指示终端CORESET0的TCI状态信息。优选地配置方法可以包括:通过限制高层信令参数CORESET字段中的参数规则来配置CORESET0的TCI states信息。其中,RRC信令还包括:用于指示CORESET0的其他参数的其他参数域,其他参数域所指示的其他参数与MIB对于CORESET0所指示参数相同。其中,限制参数的规则与终端侧实施例说明的一致,故在此不再赘述。
其中,第二参数域指示的TCI状态的参考信号为同步信号块SSB,其中,当第二参数域指示TCI状态为至少两个时,不同TCI状态所对应的SSB的索引号不同。也就是说,对control Resource SetId值等于0时,其指示的TCI states中的参考信号仅为SSB,即CORESET 0仅与SSB是QCL关系,多个TCI state之间只有SSB的index不同。
进一步地,当第二参数域指示的TCI状态为至少两个时,为CORESET0配置目标TCI状态信息的步骤之后还包括:通过媒体访问介质MAC层控制单元CE,向终端发送用于指示COREST0的目标TCI状态信息的激活信息。也就是说,当TCI states信息包含多个值时,通过正常的MAC层CE激活TCI state的规则进行激活。
基于以上,本公开实施例的信道传输方法中,网络设备和终端在满足预设条件时,可以根据CORESET0的TCI状态信息,传输物理下行信道,这样可以提高物理下行信道传输的灵活性,进而提高系统性能。
以上实施例分别详细介绍了不同场景下的信道传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图5所示,本公开实施例的网络设备500,能实现上述实施例中为标识值为0的控制资源集CORESET0配置目标传输配置指示TCI状态信息;在满足预设条件时,根据目标TCI状态信息,发送物理下行信道方法的细节,并达到相同的效果,其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。该网络设备500具体包括以下功能模块:
配置模块510,用于为标识值为0的控制资源集CORESET0配置目标传输配置指示TCI状态信息;
第一发送模块520,用于在满足预设条件时,根据目标TCI状态信息, 发送物理下行信道;其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
其中,第一发送模块520包括:
确定子模块,用于在满足预设条件时,确定物理下行信道与CORESET0为准共址QCL的;
第一发送子模块,用于当物理下行信道与CORESET0准共址时,根据目标TCI状态信息,发送物理下行信道。
其中,预设条件包括以下至少一项:
预先定义物理下行信道与CORESET0为QCL的;
已发送物理下行信道对应的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息。
其中,已发送物理下行信道对应的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息,包括:
已发送首次为物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息;
或者,
已发送重新为物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息。
其中,网络设备500还包括:
第二发送模块,用于当已发送重新为物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息时,根据上一次激活的TCI状态,发送物理下行信道。
其中,配置模块510包括:
第一配置子模块,用于通过传输主系统信息块MIB之外的无线资源控制RRC信令,为CORESET0配置目标TCI状态信息;其中,RRC信令中包括:指示CORESET0的标识值的第一参数域,以及指示CORESET0对应的TCI状态的第二参数域。
其中,RRC信令还包括:用于指示CORESET0的其他参数的其他参数域,其他参数域所指示的其他参数与MIB对于CORESET0所指示参数相同。
其中,网络设备500还包括:
第三发送模块,用于通过媒体访问介质MAC层控制单元CE,向终端发送用于指示COREST0的目标TCI状态信息的激活信息。
其中,第二参数域指示的TCI状态的参考信号为同步信号块SSB,其中,当第二参数域指示TCI状态为至少两个时,不同TCI状态所对应的SSB的索引号不同。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital signal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
值得指出的是,本公开实施例的网络设备和终端在满足预设条件时,可以根据CORESET0的TCI状态信息,传输物理下行信道,这样可以提高物理下 行信道传输的灵活性,进而提高系统性能。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的信道传输方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的信道传输方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图6所示,该网络设备600包括:天线61、射频装置62、基带装置63。天线61与射频装置62连接。在上行方向上,射频装置62通过天线61接收信息,将接收的信息发送给基带装置63进行处理。在下行方向上,基带装置63对要发送的信息进行处理,并发送给射频装置62,射频装置62对收到的信息进行处理后经过天线61发送出去。
上述频带处理装置可以位于基带装置63中,以上实施例中网络设备执行的方法可以在基带装置63中实现,该基带装置63包括处理器64和存储器65。
基带装置63例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图6所示,其中一个芯片例如为处理器64,与存储器65连接,以调用存储器65中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置63还可以包括网络接口66,用于与射频装置62交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器65可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only  Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DRRAM)。本申请描述的存储器65旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器65上并可在处理器64上运行的计算机程序,处理器64调用存储器65中的计算机程序执行图5所示各模块执行的方法。
具体地,计算机程序被处理器64调用时可用于执行:为标识值为0的控制资源集CORESET0配置目标传输配置指示TCI状态信息;
在满足预设条件时,根据目标TCI状态信息,发送物理下行信道;其中,物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
具体地,计算机程序被处理器64调用时可用于执行:在满足预设条件时,确定物理下行信道与CORESET0为准共址QCL的;
当物理下行信道与CORESET0准共址时,根据目标TCI状态信息,发送物理下行信道。
其中,预设条件包括以下至少一项:
预先定义物理下行信道与CORESET0为QCL的;
已发送物理下行信道对应的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息。
其中,已发送物理下行信道对应的至少两个TCI状态的配置信息,但未 发送对于至少两个TCI状态的激活信息,包括:
已发送首次为物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息;
或者,
已发送重新为物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息。
具体地,计算机程序被处理器64调用时可用于执行:当已发送重新为物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于至少两个TCI状态的激活信息时,根据上一次激活的TCI状态,发送物理下行信道。
具体地,计算机程序被处理器64调用时可用于执行:通过传输主系统信息块MIB之外的无线资源控制RRC信令,为CORESET0配置目标TCI状态信息;其中,RRC信令中包括:指示CORESET0的标识值的第一参数域,以及指示CORESET0对应的TCI状态的第二参数域。
其中,RRC信令还包括:用于指示CORESET0的其他参数的其他参数域,其他参数域所指示的其他参数与MIB对于CORESET0所指示参数相同。
具体地,计算机程序被处理器64调用时可用于执行:通过媒体访问介质MAC层控制单元CE,向终端发送用于指示COREST0的目标TCI状态信息的激活信息。
其中,第二参数域指示的TCI状态的参考信号为同步信号块SSB,其中,当第二参数域指示TCI状态为至少两个时,不同TCI状态所对应的SSB的索引号不同。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
本公开实施例中的网络设备和终端在满足预设条件时,可以根据 CORESET0的TCI状态信息,传输物理下行信道,这样可以提高物理下行信道传输的灵活性,进而提高系统性能。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网 络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (26)

  1. 一种信道传输方法,应用于终端侧,包括:
    获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息;
    在满足预设条件时,根据所述目标TCI状态信息,接收物理下行信道;其中,所述物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
  2. 根据权利要求1所述的信道传输方法,其中,在满足预设条件时,根据所述目标TCI状态信息,接收物理下行信道的步骤,包括:
    在满足所述预设条件时,确定所述物理下行信道与所述CORESET0为准共址QCL的;
    当所述物理下行信道与所述CORESET0准共址时,根据所述目标TCI状态信息,接收所述物理下行信道。
  3. 根据权利要求1或2所述的信道传输方法,其中,所述预设条件包括以下至少一项:
    预先定义所述物理下行信道与所述CORESET0为QCL的;
    接收到所述物理下行信道对应的至少两个TCI状态的配置信息,且未接收到对于所述至少两个TCI状态的激活信息。
  4. 根据权利要求3所述的信道传输方法,其中,接收到所述物理下行信道对应的至少两个TCI状态的配置信息,且未接收到对于所述至少两个TCI状态的激活信息包括:
    接收到首次为所述物理下行信道配置的至少两个TCI状态的配置信息,且未接收到对于所述至少两个TCI状态的激活信息;
    或者,
    接收到重新为所述物理下行信道配置的至少两个TCI状态的配置信息,且未接收到对于所述至少两个TCI状态的激活信息。
  5. 根据权利要求4所述的信道传输方法,还包括:
    当接收到重新为所述物理下行信道配置的至少两个TCI状态的配置信息, 且未接收到对于所述至少两个TCI状态的激活信息时,根据上一次激活的TCI状态,接收物理下行信道。
  6. 根据权利要求1所述的信道传输方法,其中,获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息的步骤,包括:
    通过承载主系统信息块MIB之外的无线资源控制RRC信令,获取所述CORESET0的所述目标TCI状态信息;其中,所述RRC信令中包括:指示所述CORESET0的标识值的第一参数域,以及指示所述CORESET0对应的TCI状态的第二参数域。
  7. 根据权利要求6所述的信道传输方法,其中,所述RRC信令还包括:用于指示所述CORESET0的其他参数的其他参数域,所述其他参数域所指示的其他参数与所述MIB对于所述CORESET0所指示参数相同。
  8. 根据权利要求7所述的信道传输方法,其中,通过传输主系统信息块MIB之外的无线资源控制RRC信令,获取所述CORESET0的所述目标TCI状态信息的步骤,包括:
    检测传输MIB之外的RRC信令;
    根据所述第一参数域和所述第二参数域,确定所述CORESET0的所述目标TCI状态信息;以及,
    忽略所述RRC信令中的所述其他参数域。
  9. 根据权利要求6所述的信道传输方法,其中,当所述第二参数域指示的TCI状态为至少两个时,获取所述CORESET0的所述目标TCI状态信息的步骤,还包括:
    通过媒体访问介质MAC层控制单元CE,接收用于激活所述COREST0的TCI状态的激活信息;
    根据所述激活信息,从所述至少两个TCI状态中确定所述目标TCI状态信息。
  10. 根据权利要求6所述的信道传输方法,其中,所述第二参数域指示的TCI状态的参考信号为同步信号块SSB,其中,不同TCI状态所对应的SSB的索引号不同。
  11. 根据权利要求1所述的信道传输方法,其中,获取标识值为0的控 制资源集CORESET0的目标传输配置指示TCI状态信息的步骤,包括:
    根据接收到的同步信号块SSB,计算所述SSB的接收质量;
    当所述SSB的接收质量高于所述CORESET0对应的目标SSB的接收质量时,将所述SSB对应的CORESET确定为新的CORESET0;
    获取所述新的CORESET0的所述目标TCI状态信息。
  12. 根据权利要求11所述的信道传输方法,其中,所述SSB为服务小区的SSB,或者为目标小区的SSB。
  13. 一种终端,包括:
    第一获取模块,用于获取标识值为0的控制资源集CORESET0的目标传输配置指示TCI状态信息;
    第一接收模块,用于在满足预设条件时,根据所述目标TCI状态信息,接收物理下行信道;其中,所述物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
  14. 一种终端,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12中任一项所述的信道传输方法的步骤。
  15. 一种信道传输方法,应用于网络设备侧,包括:
    为标识值为0的控制资源集CORESET0配置目标传输配置指示TCI状态信息;
    在满足预设条件时,根据所述目标TCI状态信息,发送物理下行信道;其中,所述物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
  16. 根据权利要求15所述的信道传输方法,其中,在满足预设条件时,根据所述目标TCI状态信息,发送物理下行信道的步骤,包括:
    在满足所述预设条件时,确定所述物理下行信道与所述CORESET0为准共址QCL的;
    当所述物理下行信道与所述CORESET0准共址时,根据所述目标TCI状态信息,发送所述物理下行信道。
  17. 根据权利要求15或16所述的信道传输方法,其中,所述预设条件 包括以下至少一项:
    预先定义所述物理下行信道与所述CORESET0为QCL的;
    已发送所述物理下行信道对应的至少两个TCI状态的配置信息,但未发送对于所述至少两个TCI状态的激活信息。
  18. 根据权利要求17所述的信道传输方法,其中,已发送所述物理下行信道对应的至少两个TCI状态的配置信息,但未发送对于所述至少两个TCI状态的激活信息,包括:
    已发送首次为所述物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于所述至少两个TCI状态的激活信息;
    或者,
    已发送重新为所述物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于所述至少两个TCI状态的激活信息。
  19. 根据权利要求18所述的信道传输方法,还包括:
    当已发送重新为所述物理下行信道配置的至少两个TCI状态的配置信息,但未发送对于所述至少两个TCI状态的激活信息时,根据上一次激活的TCI状态,发送物理下行信道。
  20. 根据权利要求15所述的信道传输方法,其中,为标识值为0的控制资源集CORESET0配置目标传输配置指示TCI状态信息的步骤,包括:
    通过承载主系统信息块MIB之外的无线资源控制RRC信令,为所述CORESET0配置所述目标TCI状态信息;其中,所述RRC信令中包括:指示所述CORESET0的标识值的第一参数域,以及指示所述CORESET0对应的TCI状态的第二参数域。
  21. 根据权利要求20所述的信道传输方法,其中,所述RRC信令还包括:用于指示所述CORESET0的其他参数的其他参数域,所述其他参数域所指示的其他参数与所述MIB对于所述CORESET0所指示参数相同。
  22. 根据权利要求20所述的信道传输方法,其中,为所述CORESET0配置所述目标TCI状态信息的步骤之后,还包括:
    通过媒体访问介质MAC层控制单元CE,向终端发送用于指示所述COREST0的目标TCI状态信息的激活信息。
  23. 根据权利要求20所述的信道传输方法,其中,所述第二参数域指示的TCI状态的参考信号为同步信号块SSB,其中,不同TCI状态所对应的SSB的索引号不同。
  24. 一种网络设备,包括:
    配置模块,用于为标识值为0的控制资源集CORESET0配置目标传输配置指示TCI状态信息;
    第一发送模块,用于在满足预设条件时,根据所述目标TCI状态信息,发送物理下行信道;其中,所述物理下行信道包括:物理下行控制信道PDCCH和物理下行共享信道PDSCH中的至少一种。
  25. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求15至23任一项所述的信道传输方法的步骤。
  26. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12、15至23中任一项所述的信道传输方法的步骤。
PCT/CN2019/080997 2018-04-04 2019-04-02 信道传输方法、终端及网络设备 WO2019192472A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020554152A JP7135101B2 (ja) 2018-04-04 2019-04-02 チャネル伝送方法、端末及びネットワーク機器
KR1020207030109A KR102622190B1 (ko) 2018-04-04 2019-04-02 채널 전송 방법, 단말 및 네트워크 기기
ES19781038T ES2968701T3 (es) 2018-04-04 2019-04-02 Método de transmisión de canal, terminal y dispositivo de red
EP19781038.5A EP3780812B1 (en) 2018-04-04 2019-04-02 Channel transmission method, terminal and network device
US17/039,693 US11337221B2 (en) 2018-04-04 2020-09-30 Channel transmission method, terminal and network device
US17/716,893 US11641662B2 (en) 2018-04-04 2022-04-08 Channel transmission method, terminal, network device, and non-transitory computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810302205.3A CN110351850B (zh) 2018-04-04 2018-04-04 信道传输方法、终端及网络设备
CN201810302205.3 2018-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/039,693 Continuation US11337221B2 (en) 2018-04-04 2020-09-30 Channel transmission method, terminal and network device

Publications (1)

Publication Number Publication Date
WO2019192472A1 true WO2019192472A1 (zh) 2019-10-10

Family

ID=68099853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080997 WO2019192472A1 (zh) 2018-04-04 2019-04-02 信道传输方法、终端及网络设备

Country Status (8)

Country Link
US (2) US11337221B2 (zh)
EP (1) EP3780812B1 (zh)
JP (1) JP7135101B2 (zh)
KR (1) KR102622190B1 (zh)
CN (2) CN115209548A (zh)
ES (1) ES2968701T3 (zh)
PT (1) PT3780812T (zh)
WO (1) WO2019192472A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145997A1 (en) * 2020-01-16 2021-07-22 Qualcomm Incorporated Signaling for configuring downlink transmissions
CN114616895A (zh) * 2019-10-25 2022-06-10 高通股份有限公司 用于探通参考信号或上行链路控制信道波束的默认空间关系确定

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020019216A1 (zh) * 2018-07-25 2020-01-30 北京小米移动软件有限公司 传输配置方法及装置
CN114124330A (zh) * 2019-02-14 2022-03-01 华为技术有限公司 一种状态配置方法和设备
WO2021088039A1 (zh) * 2019-11-08 2021-05-14 Oppo广东移动通信有限公司 通信方法和通信装置
WO2021087991A1 (en) * 2019-11-08 2021-05-14 Qualcomm Incorporated Transmission configuration indicator state updates for multiple component carriers
CN114071759B (zh) * 2019-12-17 2023-08-22 Oppo广东移动通信有限公司 激活或去激活传输配置指示状态的方法和装置
WO2021182837A1 (ko) * 2020-03-10 2021-09-16 엘지전자 주식회사 무선 통신 시스템에서 pdcch 송수신 방법 및 장치
US20230133947A1 (en) * 2020-04-08 2023-05-04 Apple Inc. Ultra-Reliable Low Latency Communication (URLLC) Scheme Selection
CN113518460B (zh) * 2020-04-09 2022-08-12 展讯半导体(南京)有限公司 处理物理信道传输的方法、装置、设备及存储介质
CN113950006B (zh) * 2020-07-17 2024-01-23 维沃移动通信有限公司 业务传输方法、终端及网络侧设备
CN113677028B (zh) * 2021-08-20 2023-09-29 哲库科技(北京)有限公司 Pdcch监测方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016794A1 (en) * 2016-07-18 2018-01-25 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
CN107659994A (zh) * 2017-09-05 2018-02-02 宇龙计算机通信科技(深圳)有限公司 资源指示方法、相关设备及通信系统
WO2018030864A1 (en) * 2016-08-11 2018-02-15 Samsung Electronics Co., Ltd. Method and apparatus of data transmission in next generation cellular networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945447B (zh) 2013-01-18 2019-11-08 北京三星通信技术研究有限公司 一种进行下行信道特性参数测量的方法及用户设备
US10193677B2 (en) 2015-04-03 2019-01-29 Lg Electronics Inc. Method for receiving downlink signal by means of unlicensed band in wireless communication system and device for same
US10708942B2 (en) * 2017-02-09 2020-07-07 Qualcomm Incorporated Control resources reuse for data transmission in wireless communication
CN111278092B (zh) * 2019-04-26 2021-06-08 维沃移动通信有限公司 一种信道监听方法、终端及网络设备
US11445456B2 (en) * 2019-07-03 2022-09-13 Samsung Electronics Co., Ltd. Method and apparatus for RMSI reception for low cost UEs in NR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016794A1 (en) * 2016-07-18 2018-01-25 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
WO2018030864A1 (en) * 2016-08-11 2018-02-15 Samsung Electronics Co., Ltd. Method and apparatus of data transmission in next generation cellular networks
CN107659994A (zh) * 2017-09-05 2018-02-02 宇龙计算机通信科技(深圳)有限公司 资源指示方法、相关设备及通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780812A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114616895A (zh) * 2019-10-25 2022-06-10 高通股份有限公司 用于探通参考信号或上行链路控制信道波束的默认空间关系确定
US11425701B2 (en) * 2019-10-25 2022-08-23 Qualcomm Incorporated Default spatial relation determination for a sounding reference signal or an uplink control channel beam
CN114616895B (zh) * 2019-10-25 2024-04-19 高通股份有限公司 用于探通参考信号或上行链路控制信道波束的默认空间关系确定
WO2021145997A1 (en) * 2020-01-16 2021-07-22 Qualcomm Incorporated Signaling for configuring downlink transmissions
US11751174B2 (en) 2020-01-16 2023-09-05 Qualcomm Incorporated Signaling for configuring downlink transmissions

Also Published As

Publication number Publication date
PT3780812T (pt) 2024-01-08
EP3780812B1 (en) 2023-12-20
ES2968701T3 (es) 2024-05-13
EP3780812A4 (en) 2021-05-26
US20220232571A1 (en) 2022-07-21
JP2021520129A (ja) 2021-08-12
CN110351850A (zh) 2019-10-18
KR102622190B1 (ko) 2024-01-05
CN115209548A (zh) 2022-10-18
US20210022144A1 (en) 2021-01-21
US11641662B2 (en) 2023-05-02
EP3780812A1 (en) 2021-02-17
US11337221B2 (en) 2022-05-17
JP7135101B2 (ja) 2022-09-12
KR20200135829A (ko) 2020-12-03
CN110351850B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2019192472A1 (zh) 信道传输方法、终端及网络设备
WO2019141057A1 (zh) 上行功率控制参数配置方法、终端及网络设备
WO2019184692A1 (zh) 波束失败处理方法、终端及网络设备
CN111106907B (zh) 传输配置指示tci状态的指示方法及终端
US20210377890A1 (en) Measurement processing method, parameter configuration method, terminal, and network device
WO2020001380A1 (zh) 定位参考信号传输方法、终端及网络设备
WO2019214663A1 (zh) 准共址配置方法、终端及网络设备
WO2019076171A1 (zh) 非授权频段下的信息传输方法、终端及网络设备
WO2019174446A1 (zh) 测量方法、测量配置方法、终端及网络设备
WO2019072077A1 (zh) 解调参考信号传输方法、网络设备及终端
WO2019214664A1 (zh) 传输资源指示方法、网络设备及终端
WO2020151743A1 (zh) 随机接入方法及终端
WO2019076169A1 (zh) 同步信号块的处理方法、同步信号块的指示方法及装置
WO2019095900A1 (zh) 非对称频谱的带宽部分bwp切换方法、终端及网络设备
US11963146B2 (en) Method and device for detecting slot format indication, and method and device for configuring slot format indication
WO2019192473A1 (zh) 波束失败恢复方法、终端及网络设备
WO2019076170A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
WO2020038241A1 (zh) 功率控制方法、终端及网络设备
WO2019201144A1 (zh) 非授权频段的信息传输方法、网络设备及终端
WO2019242633A1 (zh) 测量间隔的处理方法、终端及网络节点
WO2019062502A1 (zh) 信息传输方法、终端、网络设备及计算机可读存储介质
JP7325503B2 (ja) 電力ヘッドルーム報告方法及び端末機器
WO2020011081A1 (zh) 信息传输方法、网络设备及终端
WO2021147765A1 (zh) 旁链路参考信号处理方法及装置、通信设备
WO2020015679A1 (zh) Csi上报方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207030109

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019781038

Country of ref document: EP

Effective date: 20201104