WO2019095900A1 - 非对称频谱的带宽部分bwp切换方法、终端及网络设备 - Google Patents

非对称频谱的带宽部分bwp切换方法、终端及网络设备 Download PDF

Info

Publication number
WO2019095900A1
WO2019095900A1 PCT/CN2018/109808 CN2018109808W WO2019095900A1 WO 2019095900 A1 WO2019095900 A1 WO 2019095900A1 CN 2018109808 W CN2018109808 W CN 2018109808W WO 2019095900 A1 WO2019095900 A1 WO 2019095900A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
value
bwp
terminal
pusch
Prior art date
Application number
PCT/CN2018/109808
Other languages
English (en)
French (fr)
Inventor
姜蕾
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020227028163A priority Critical patent/KR20220120707A/ko
Priority to KR1020207016451A priority patent/KR20200088377A/ko
Priority to ES18878580T priority patent/ES2935890T3/es
Priority to US16/652,248 priority patent/US11363510B2/en
Priority to EP18878580.2A priority patent/EP3713346B1/en
Priority to JP2020522860A priority patent/JP7072061B2/ja
Publication of WO2019095900A1 publication Critical patent/WO2019095900A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a bandwidth portion BWP switching method, a terminal, and a network device of an asymmetric spectrum.
  • 5G fifth-generation
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type of Communication
  • uRLLC Ultra Reliable & Low Latency Communication
  • subcarrier spacing NR system no longer conventional fourth generation (4 th Generation, 4G) mobile communication system (or referred to as a long term evolution (Long Time Evolution, LTE) system
  • 4G fourth generation
  • LTE Long Time Evolution
  • the system can support multiple subcarrier spacings, and different subcarrier spacings can be applied to different scenarios.
  • a relatively large subcarrier spacing can be configured for a high frequency band and a large bandwidth.
  • a large subcarrier spacing corresponds to a small symbol length in the time domain, which can meet the requirements of low latency services.
  • the channel bandwidth of each carrier can reach up to 400MHz, but considering the terminal capability, the maximum bandwidth supported by the terminal may be less than 400MHz, and the terminal can work in multiple small bandwidth parts (bandwidth part). , BWP).
  • Each bandwidth portion corresponds to a numerical configuration (Numerology), a bandwidth, and a frequency location.
  • the network device configures the terminal with up to four Downlink bandwidth parts (DL BWPs) and up to four uplink bandwidth parts ( Uplink bandwidth part, UL BWP).
  • the network device configures at most four downlink/upstream bandwidth partial pairs (DL/UL BWP pairs) for each terminal, where each DL/UL BWP pair is used.
  • the center carrier frequency of DL BWP and UL BWP is the same.
  • each terminal is configured with a default DL BWP or a default DL/UL BWP pair.
  • the default DL BWP or the default DL/UL BWP pair is usually a relatively small bandwidth BWP.
  • the terminal When the terminal does not receive data for a long time or detects a Physical Downlink Control Channel (PDCCH), the terminal switches from the current active BWP to the default DL BWP or the default DL through a timer. /UL BWP pair for power saving.
  • PDCCH Physical Downlink Control Channel
  • the terminal When the terminal switches from the current active BWP to another DL BWP different from the default DL BWP, the terminal starts timer counting, and when the terminal successfully demodulates the downlink control information of the physical downlink shared channel (Physical Downlink Share Channel, PDSCH) (Downlink Control Information, DCI), the terminal restarts the timer and sets the timer to the initial value. When the timer expires, the terminal switches to the default DL BWP.
  • PDSCH Physical Downlink Share Channel
  • DCI Downlink Control Information
  • the terminal switches to the default DL BWP.
  • each DL BWP is paired with one UL BWP, and the corresponding UL BWP also needs to be switched together when the DL BWP is switched.
  • the Physical Downlink Share Channel (PDSCH) is scheduled in advance, that is, the uplink grant (UL grant) is transmitted in K slots before data transmission. Then, since the terminal may not have downlink data scheduling for a period of time, the timer timeout needs to be switched to the default DL BWP, and the UL BWP also needs to be switched together. However, when the delay K does not arrive and the timer expires, if the UL BWP is switched along with the DL BWP, the uplink scheduling cannot be performed.
  • PDSCH Physical Downlink Share Channel
  • an embodiment of the present disclosure provides a BWP switching method for a bandwidth portion of an asymmetric spectrum, which is applied to a terminal side, and includes:
  • the timer is reset according to the detected second DCI of the scheduled physical uplink shared channel PUSCH;
  • the current bandwidth portion BWP is switched to the default BWP.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a reset module configured to reset a timer according to the detected second DCI of the scheduled physical uplink shared channel (PUSCH) when the first downlink control information DCI of the physical downlink shared channel (PDSCH) is not detected;
  • the first switching module is configured to switch the current bandwidth portion BWP to the default BWP when the reset timer expires.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor to implement the asymmetric spectrum.
  • the step of the bandwidth part BWP switching method is a third aspect.
  • an embodiment of the present disclosure provides a bandwidth part BWP switching method for an asymmetric spectrum, which is applied to a network device side, and includes:
  • the next PUSCH will be transmitted. Dispatched to the default bandwidth portion of the terminal, BWP.
  • an embodiment of the present disclosure provides a network device, including:
  • a scheduling module configured to: if the first downlink control information DCI for scheduling the physical downlink shared channel PDSCH and the second DCI for scheduling the physical uplink shared channel PUSCH are not sent to the terminal in a consecutive preset number of time domain transmission units, The next PUSCH is scheduled to the default bandwidth portion BWP of the terminal.
  • an embodiment of the present disclosure further provides a network device, where the network device includes a processor, a memory, and a computer program stored on the memory and operable on the processor, and the processor implements the asymmetric process when executing the computer program.
  • the bandwidth portion of the spectrum is a step of the BWP switching method.
  • an embodiment of the present disclosure provides a computer readable storage medium, where a computer program is stored on a computer readable storage medium, and the step of implementing the bandwidth portion BWP switching method of the asymmetric spectrum when the computer program is executed by the processor .
  • FIG. 1 is a schematic flowchart diagram of a BWP switching method for a bandwidth portion of an asymmetric spectrum on a terminal side according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing a BWP switching in an embodiment of the present disclosure
  • FIG. 3 is a block diagram showing a terminal of an embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a terminal of an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart diagram of a bandwidth part BWP switching method of an asymmetric spectrum on a network device side according to an embodiment of the present disclosure
  • FIG. 6 is a block diagram showing a network device of an embodiment of the present disclosure.
  • Figure 7 shows a block diagram of a network device in accordance with an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a BWP switching method for a bandwidth portion of an asymmetric spectrum, which is applied to a terminal side, and specifically includes the following steps:
  • Step 11 When the first downlink control information DCI for scheduling the physical downlink shared channel PDSCH is not detected, the timer is reset according to the detected second DCI of the scheduled physical uplink shared channel PUSCH.
  • the first DCI and the second DCI are transmitted through the PDCCH.
  • the terminal When detecting the first DCI for scheduling the PDSCH, the terminal resets the timer. Specifically, when detecting the first DCI for scheduling the PDSCH, the terminal restores the timer to the initial value, that is, restarts the timer. When the terminal does not detect the first DCI for scheduling the PDSCH, the timer continues to count (the timer is incremented or decremented by one). If the terminal does not detect the first DCI and the second DCI during the period from the start of the timer to the timer timeout, the terminal will switch from the current BWP to the default BWP to achieve the power saving effect. As shown in FIG.
  • the time domain transmission unit includes one of a subframe, a slot, a mini-slot, and a time domain transmission symbol (OFDM symbol), where a slot is taken as an example.
  • the terminal detects the second DCI in the first slot, if the traditional BWP switching mechanism is adopted, the uplink scheduling corresponding to the second DCI detected by the terminal will become an invalid scheduling, and the embodiment of the present disclosure is in this scenario.
  • the timer is reset, and the specific reset value may be determined according to the time when the second DCI is detected, the relationship between the initial value of the timer, the current value, and the timeout value, and the waiting time and the transmission duration of the PUSCH to avoid the uplink scheduling failure. .
  • Step 12 When the reset timer expires, the current bandwidth portion BWP is switched to the default BWP.
  • the timer of the terminal will time out in the second slot. If the terminal detects the second DCI in the first slot, the timer is reset. When the PUSCH transmission is completed and reset. When the timer expires, the terminal switches from the current BWP to the default BWP. The terminal resets the timer to prevent the uplink scheduling failure corresponding to the second DCI from being detected during the timer period. After the timer is reset, the uplink scheduling corresponding to the second DCI is guaranteed to be completed. After the timer expires, the timer is reset. The current BWP is switched to the default BWP to ensure normal uplink transmission of the terminal on the current BWP.
  • the terminal further determines whether the timer needs to be reset according to the relationship between the difference between the current value of the timer and the timer timeout value and the waiting time and the transmission duration of the PUSCH when the second DCI is detected.
  • the step 11 specifically includes: when the second DCI is detected, if the difference between the current value of the timer and the timer timeout value is less than the waiting time and the transmission duration of the PUSCH, the timer is reset.
  • the terminal needs to reset the timer.
  • the timer does not need to be reset.
  • the timer is timed from the current value to the timeout value, the normal transmission of the PUSCH scheduled by the second DCI can be satisfied, and the terminal does not need to reset the timer.
  • the step of resetting the timer may be specifically implemented as follows:
  • Manner 1 The current value of the timer is returned to the first preset number of time domain transmission units.
  • the first preset number is a smaller one of the first value and the second value, where the first value is the difference between the current value of the timer and the initial value of the timer, and the second value is the waiting time and the transmission duration of the PUSCH.
  • the duration (M+N) eliminates the need to reset the timer; if t is less than (M+N), the timer needs to be reset.
  • the timer can be directly reset to the initial value, that is, the timer is restarted, and the timer can be directly retracted by min ⁇ M+N, T-t ⁇ .
  • the current value of the timer is t′, and the timer is from small to large. If the T-t′ is greater than or equal to (M+N), the timer does not need to be reset. If -t' is less than (M+N), you need to reset the timer.
  • the timer can be directly reset to the initial value, that is, the timer is restarted, and the timer can be directly retracted by min ⁇ M+N, t' ⁇ .
  • the first preset quantity is greater than or equal to a difference between the second value and the third value, where the second value is the number of time domain transmission units included in the waiting and transmission duration of the PUSCH, and the third value is the current value and timing of the timer.
  • the duration (M+N) eliminates the need to reset the timer; if t is less than (M+N), the timer needs to be reset.
  • the timer may be backed off by at least (M+N-t) time domain transmission units.
  • the current value of the timer is t′, and the timer is from small to large. If the T-t′ is greater than or equal to (M+N), the timer does not need to be reset. If -t' is less than (M+N), you need to reset the timer.
  • the timer may be backed off by at least (M+N-T+t') time domain transmission units.
  • the terminal continues to detect the first DCI and the second DCI.
  • the timer is restored to the initial value, that is, the timer is restarted.
  • the timer continues to count (the timer is incremented or decremented by one). Further, when the first DCI is not detected but the second DCI is detected, the timer reset is performed in the above manner.
  • the second preset number is greater than or equal to the difference between the second value and the third value
  • the second value is the number of time domain transmission units included in the waiting and transmission duration of the PUSCH
  • the third value is the current value and timing of the timer. The difference between the differences in the timeout values. After the timer expires, if the terminal has uplink data that has been scheduled but not transmitted, the terminal may wait for the second preset number of time domain transmission units on the basis of the timeout timer, and then switch from the current BWP to the default BWP. To ensure the normal transmission of the uplink data that has been scheduled.
  • the second preset number is determined by the difference between the waiting and transmission duration (M+N) of the PUSCH and the time when the second DCI is detected (ie, the current value of the timer) to the timer timeout value.
  • M+N the waiting and transmission duration
  • the meaning here is that the terminal only considers the uplink scheduling before the timer expires when performing the BWP handover, and does not consider the uplink scheduling that occurs during the waiting period after the timer expires. Specifically, the terminal does not detect any information sent by the network device after the timer expires, and includes the first DCI and the second DCI.
  • the second value is: the number of time domain transmission units between the second DCI and the scheduled PUSCH (ie, the scheduling waiting time M of the PUSCH), and the number of time domain transmission units occupied by the PUSCH (ie, The sum of the transmission time lengths of the PUSCH, N).
  • the bandwidth portion BWP switching method of the asymmetric spectrum of the embodiment of the present disclosure further includes: when the first DCI is not detected, and when the second DCI is detected, if the second DCI is detected to indicate that the PUSCH is mapped to the default BWP, the timing is The timer continues to count and when the timer expires, the current bandwidth portion BWP is switched to the default BWP.
  • the terminal does not detect the first DCI but detects the second DCI during the timer period, it is necessary to determine whether the BWP mapped by the PUSCH of the second DCI is the current BWP or the default BWP.
  • the BWP may determine whether the timer needs to be reset according to the above embodiment.
  • the terminal can guarantee the normal transmission of the scheduled uplink data regardless of whether the uplink scheduling is mapped to the current BWP or the default BWP.
  • the terminal performs timer reset according to the first DCI of the scheduling PDSCH and the second DCI of the scheduling PUSCH to avoid the uplink scheduling ambiguity caused by the BWP handover. It can ensure the normal uplink transmission of the terminal during the BWP handover process.
  • the terminal 300 of the embodiment of the present disclosure can implement the physical uplink shared channel PUSCH according to the detected scheduling when the first downlink control information DCI for scheduling the physical downlink shared channel PDSCH is not detected in the foregoing embodiment.
  • the second DCI resets the timer; when the reset timer expires, the current bandwidth portion BWP is switched to the details of the default BWP method, and the same effect is achieved.
  • the terminal 300 specifically includes the following functional modules:
  • the resetting module 310 is configured to reset a timer according to the detected second DCI of the scheduled physical uplink shared channel (PUSCH) when the first downlink control information (DCI) of the physical downlink shared channel (PDSCH) is not detected;
  • the first switching module 320 is configured to switch the current bandwidth portion BWP to the default BWP when the reset timer expires.
  • the reset module 310 includes:
  • the first reset submodule is configured to reset the timer if the difference between the current value of the timer and the timer timeout value is less than the waiting period and the transmission duration of the PUSCH when the second DCI is detected.
  • the reset module 310 further includes:
  • a second reset submodule configured to roll back a current value of the timer to the first preset number of time domain transmission units, where the first preset number is a first value and a second value, and the first value is a current timer
  • the difference between the value and the initial value of the timer, the second value is the number of time domain transmission units included in the waiting and transmission duration of the PUSCH; or, the first preset number is greater than or equal to the difference between the second value and the third value
  • the third value is the difference between the current value of the timer and the timer timeout value.
  • the reset module 310 further includes:
  • a third reset submodule configured to: when the timer expires, roll back the timer timeout value by a second preset number of time domain transmission units; wherein the second preset number is greater than or equal to the second value and the second The difference between the three values, the second value is the number of time domain transmission units included in the waiting and transmission duration of the PUSCH, and the third value is the difference between the current value of the timer and the timer timeout value.
  • the second value is a sum of a time domain transmission unit between the second DCI and the scheduled PUSCH, and a sum of the number of time domain transmission units occupied by the PUSCH.
  • the time domain transmission unit includes one of a subframe, a slot slot, a minislot mini-slot, and a time domain transmission symbol.
  • the terminal 300 further includes:
  • a timing module configured to: if the second DCI is detected to indicate that the PUSCH is mapped to the default BWP, the timer continues to be timed;
  • the second switching module is configured to switch the current bandwidth portion BWP to the default BWP when the timer expires.
  • the terminal in the embodiment of the present disclosure performs timer reset according to the first DCI of the scheduling PDSCH and the second DCI of the scheduling PUSCH, to avoid the uplink scheduling ambiguity caused by the BWP handover, and the terminal can be guaranteed to be in the BWP. Normal upstream transmission during handover.
  • the terminal 40 includes, but is not limited to, a radio frequency unit 41, a network module 42, and an audio output unit 43, Input unit 44, sensor 45, display unit 46, user input unit 47, interface unit 48, memory 49, processor 410, and power supply 411 are components. It will be understood by those skilled in the art that the terminal structure shown in FIG. 4 does not constitute a limitation to the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the radio frequency unit 41 is configured to send and receive data under the control of the processor 410.
  • the processor 410 is configured to: when the first downlink control information DCI for scheduling the physical downlink shared channel (PDSCH) is not detected, reset the timer according to the detected second DCI of the scheduled physical uplink shared channel (PUSCH); When the timer expires, the current bandwidth part BWP is switched to the default BWP;
  • the terminal of the embodiment of the present disclosure performs timer reset according to the first DCI of the scheduling PDSCH and the second DCI of the scheduling PUSCH to avoid the uplink scheduling ambiguity caused by the BWP handover, and can ensure that the terminal is normal during the BWP handover process. Uplink transmission.
  • the radio frequency unit 41 can be used for receiving and transmitting signals during the transmission and reception of information or during a call, and specifically, after receiving downlink data from the base station, processing the data to the processor 410; The uplink data is sent to the base station.
  • radio frequency unit 41 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 41 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides the user with wireless broadband Internet access through the network module 42, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 43 can convert the audio data received by the radio frequency unit 41 or the network module 42 or stored in the memory 49 into an audio signal and output as sound. Moreover, the audio output unit 43 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the terminal 40.
  • the audio output unit 43 includes a speaker, a buzzer, a receiver, and the like.
  • the Input unit 44 is for receiving audio or video signals.
  • the input unit 44 may include a graphics processing unit (GPU) 441 and a microphone 442 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 46.
  • the image frames processed by the graphics processor 441 may be stored in the memory 49 (or other storage medium) or transmitted via the radio unit 41 or the network module 42.
  • the microphone 442 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 41 in the case of a telephone call mode.
  • Terminal 40 also includes at least one type of sensor 45, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 461 according to the brightness of the ambient light, and the proximity sensor can close the display panel 461 and/or when the terminal 40 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 45 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 46 is for displaying information input by the user or information provided to the user.
  • the display unit 46 can include a display panel 461.
  • the display panel 461 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 47 can be used to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 47 includes a touch panel 471 and other input devices 472.
  • the touch panel 471 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 471 or near the touch panel 471. operating).
  • the touch panel 471 can include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 410 receives the commands from the processor 410 and executes them.
  • the touch panel 471 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 47 may also include other input devices 472.
  • the other input devices 472 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein.
  • the touch panel 471 can be overlaid on the display panel 461.
  • the touch panel 471 detects a touch operation on or near it, the touch panel 471 transmits to the processor 410 to determine the type of the touch event, and then the processor 410 according to the touch.
  • the type of event provides a corresponding visual output on display panel 461.
  • the touch panel 471 and the display panel 461 are two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 471 may be integrated with the display panel 461.
  • the input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 48 is an interface in which an external device is connected to the terminal 40.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • Interface unit 48 may be operable to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more components within terminal 40 or may be used at terminal 40 and external device Transfer data between.
  • the memory 49 can be used to store software programs as well as various data.
  • the memory 49 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • the memory 89 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 410 is a control center of the terminal, which connects various parts of the entire terminal by various interfaces and lines, and executes by executing or executing software programs and/or modules stored in the memory 49, and calling data stored in the memory 49.
  • the processor 410 may include one or more processing units; optionally, the processor 410 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and a modulation solution
  • the processor mainly handles wireless communication. It can be understood that the above modem processor may not be integrated into the processor 410.
  • the terminal 40 may further include a power source 411 (such as a battery) for supplying power to the various components.
  • a power source 411 such as a battery
  • the power source 411 may be logically connected to the processor 410 through the power management system to manage charging, discharging, and power management through the power management system. And other functions.
  • the terminal 40 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 410, a memory 49, a computer program stored on the memory 49 and executable on the processor 410, when the computer program is executed by the processor 410.
  • the processes of the embodiment of the bandwidth part BWP switching method of the asymmetric spectrum are implemented, and the same technical effects can be achieved. To avoid repetition, details are not described herein again.
  • the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • PDA Personal Digital Assistant
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements various processes of the bandwidth portion BWP switching method embodiment of the asymmetric spectrum. And can achieve the same technical effect, in order to avoid repetition, no longer repeat here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the above embodiment introduces the bandwidth part BWP switching method of the asymmetric spectrum of the present disclosure from the terminal side.
  • the following embodiment will further introduce the bandwidth part BWP switching method of the asymmetric spectrum on the network device side with reference to the accompanying drawings.
  • the bandwidth part BWP switching method of the asymmetric spectrum of the embodiment of the present disclosure is applied to the network device side, and specifically includes the following steps:
  • Step 51 If the first downlink control information DCI for scheduling the physical downlink shared channel PDSCH and the second DCI for scheduling the physical uplink shared channel PUSCH are not sent to the terminal in a consecutive preset number of time domain transmission units, then The primary PUSCH is scheduled to the default bandwidth portion BWP of the terminal.
  • the preset number may be a predefined value of the protocol or the network device, or may be a difference between the number of time domain transmission units included in the timer of the terminal and the number of time domain transmission units included in the waiting period and the transmission duration of the PUSCH.
  • the timer includes T time domain transmission units
  • the waiting transmission duration of the PUSCH is (M+N), where the number of time domain transmission units included in the waiting period of the PUSCH includes: the scheduled PUSCH and the detected PDCCH.
  • the sum of the number of time domain transmission units (ie, the scheduling delay M of the PUSCH) and the number of time domain transmission units occupied by the PUSCH ie, the transmission duration N of the PUSCH).
  • the time domain transmission unit includes one of a subframe, a slot slot, a minislot mini-slot, and a time domain transmission symbol. This embodiment takes a slot as an example.
  • Step 51 includes: after the terminal is switched from the current BWP to the default BWP, sending, by using the default BWP, the second DCI to the terminal to schedule the next PUSCH to the default BWP; here, the network device has no downlink scheduling in the TMN slots. If there is no uplink scheduling, if the uplink scheduling needs to be performed in the last M+N slots of the timer, the network device will no longer schedule the PUSCH in the subsequent M+N slots, but after the terminal timer expires, the default is passed. BWP is scheduled.
  • the step 51 includes: sending, by the current BWP, the second DCI to the terminal to schedule the next PUSCH to the default BWP; here, the network device has neither downlink scheduling nor uplink scheduling in the TMN slots, if the timer is in the timer Upstream scheduling is required in the last M+N slots. Although the network equipment schedules the PUSCH in the following M+N slots, the PUSCH is scheduled to the default BWP.
  • the network device when the network device does not send the first DCI for scheduling the PDSCH and the second DCI for scheduling the PUSCH to the terminal, the network device will The next PUSCH is scheduled to the default BWP of the terminal to avoid the uplink scheduling ambiguity caused by the BWP handover, and the normal uplink transmission of the terminal during the BWP handover process can be ensured.
  • the network device 600 of the embodiment of the present disclosure can implement the first downlink control of not scheduling the physical downlink shared channel PDSCH to the terminal in the consecutive preset number of time domain transmission units in the foregoing embodiment.
  • the next PUSCH is scheduled to the details of the method on the default bandwidth part BWP of the terminal, and the same effect is achieved.
  • the network device 600 specifically includes the following functional modules:
  • the scheduling module 610 is configured to: if the first downlink control information DCI for scheduling the physical downlink shared channel PDSCH and the second DCI for scheduling the physical uplink shared channel PUSCH are not sent to the terminal in a consecutive preset number of time domain transmission units, Then, the next PUSCH is scheduled to the default bandwidth part BWP of the terminal.
  • the preset number is the difference between the number of time domain transmission units included in the timer of the terminal and the number of time domain transmission units included in the waiting and transmission duration of the PUSCH.
  • the scheduling module 610 includes:
  • a first scheduling sub-module configured to: after the terminal is switched from the current BWP to the default BWP, send, by using a default BWP, the second DCI that is scheduled to the next PUSCH to the default BWP;
  • a second scheduling submodule configured to send, by using the current BWP, the second DCI that is scheduled to the next PUSCH to the default BWP.
  • the time domain transmission unit includes one of a subframe, a slot slot, a minislot mini-slot, and a time domain transmission symbol.
  • the network device of the embodiment of the present disclosure schedules the next PUSCH to the terminal when the consecutive preset number of time domain transmission units do not send the first DCI of the scheduling PDSCH and the second DCI of the scheduling PUSCH to the terminal.
  • the default BWP is used to avoid the uplink scheduling ambiguity caused by the BWP handover, which ensures the normal uplink transmission of the terminal during the BWP handover.
  • each module of the above network device and terminal is only a division of logical functions. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. And these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors, or One or more digital signal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs), and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • an embodiment of the present disclosure further provides a network device, including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • the steps in the bandwidth portion BWP switching method of the asymmetric spectrum as described above are implemented.
  • the disclosed embodiments also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the bandwidth portion BWP switching method of the asymmetric spectrum as described above.
  • the network device 700 includes an antenna 71, a radio frequency device 72, and a baseband device 73.
  • the antenna 71 is connected to the radio frequency device 72.
  • the radio frequency device 72 receives information through the antenna 71 and transmits the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be transmitted and transmits it to the radio frequency device 72.
  • the radio frequency device 72 processes the received information and transmits it via the antenna 71.
  • the above-described band processing device may be located in the baseband device 73, and the method performed by the network device in the above embodiment may be implemented in the baseband device 73, which includes the processor 74 and the memory 75.
  • the baseband device 73 may include, for example, at least one baseband board having a plurality of chips disposed thereon, as shown in FIG. 7, one of which is, for example, a processor 74, coupled to the memory 75 to invoke a program in the memory 75 to execute The network device operation shown in the above method embodiment.
  • the baseband device 73 can also include a network interface 76 for interacting with the radio frequency device 72, such as a common public radio interface (CPRI).
  • a network interface 76 for interacting with the radio frequency device 72, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the method performed by the above network device.
  • Integrated circuits such as one or more microprocessors, or one or more DSPs, or one or more field programmable gate array FPGAs.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • Memory 75 can be either volatile memory or non-volatile memory, or can include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Link DRAM
  • DRRAM direct memory bus random access memory
  • the network device of the embodiment of the present disclosure further includes: a computer program stored on the memory 75 and operable on the processor 74, and the processor 74 calls a computer program in the memory 75 to execute the method executed by each module shown in FIG. .
  • the method can be used to: if the terminal is in a preset number of time domain transmission units, the first downlink control information DCI for scheduling the physical downlink shared channel PDSCH and the scheduling physical uplink are not sent to the terminal.
  • the second DCI of the shared channel PUSCH is shared, the next PUSCH is scheduled to the default bandwidth portion BWP of the terminal.
  • the preset number is the difference between the number of time domain transmission units included in the timer of the terminal and the number of time domain transmission units included in the waiting and transmission duration of the PUSCH.
  • the computer program is used by the processor 74 to perform: when the terminal is switched from the current BWP to the default BWP, the default BWP is sent to the terminal to send the next PUSCH to the second DCI on the default BWP;
  • the second DCI on the default BSCH is scheduled to be transmitted to the terminal by the current BWP.
  • the time domain transmission unit includes one of a subframe, a slot slot, a minislot mini-slot, and a time domain transmission symbol.
  • the network device may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • a base station (NodeB, NB) in the (Wideband Code Division Multiple Access, WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or an access point, or in a future 5G network.
  • the base station or the like is not limited herein.
  • the network device when the consecutive preset number of time domain transmission units do not send the first DCI for scheduling the PDSCH and the second DCI for scheduling the PUSCH to the terminal, the network device schedules the next PUSCH to the default BWP of the terminal.
  • the terminal can ensure normal uplink transmission during the BWP handover process.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种非对称频谱的带宽部分BWP切换方法、终端及网络设备,其方法包括:在未检测到调度物理下行共享信道PDSCH的第一下行控制信息DCI时,根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器;当重置后的定时器超时,则将当前带宽部分BWP切换至默认BWP。

Description

非对称频谱的带宽部分BWP切换方法、终端及网络设备
相关申请的交叉引用
本申请主张在2017年11月14日在中国提交的中国专利申请号No.201711122345.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种非对称频谱的带宽部分BWP切换方法、终端及网络设备。
背景技术
与以往的移动通信系统相比,未来第五代(5 th Generation,5G)移动通信系统,或称为新空口(New Radio,NR)系统,需要适应更加多样化的场景和业务需求。5G的主要场景包括移动宽带增强(Enhance Mobile Broadband,eMBB)、大规模物联网(massive Machine Type of Communication,mMTC)、超高可靠超低时延通信(ultra Reliable&Low Latency Communication,uRLLC),这些场景对系统提出了高可靠、低时延、大带宽、广覆盖等要求。为了满足不同需求的业务和不同的应用场景,NR系统的子载波间隔不再与传统第四代(4 th Generation,4G)移动通信系统(或称为长期演进型(Long Time Evolution,LTE)系统)采用单一的15kHz相同,系统可以支持多种子载波间隔,不同的子载波间隔可以适用于不同的场景。例如对于高频段大带宽可以配置相对大一些的子载波间隔,此外,大的子载波间隔在时域对应于小的符号长度,可以满足低时延业务的要求。
在NR系统中,每个载波的信道带宽(channel bandwidth)最大可达到400MHz,但是考虑到终端能力,终端所支持的最大带宽可能小于400MHz,且终端可以工作在多个小的带宽部分(bandwidth part,BWP)上。每个带宽部分对应于一个数值配置(Numerology)、带宽(bandwidth)和频域位置(frequency location)。对于频分双工(Frequency Division Duplexing,FDD)系统或对称频谱(paired spectrum)系统中,网络设备为终端配置至多四个下 行带宽部分(Downlink bandwidth part,DL BWP)和至多四个上行带宽部分(Uplink bandwidth part,UL BWP)。对于时分双工(Time Division Duplexing,TDD)系统或非对称频谱系统中,网络设备为终端配置至多四个下行/上行带宽部分对(DL/UL BWP pair),其中每个DL/UL BWP pair中DL BWP和UL BWP的中心载频是一样的。其中,值得指出的是,每个终端配置有一个默认(default)DL BWP或默认DL/UL BWP pair,一般地,默认DL BWP或默认DL/UL BWP pair通常是相对小带宽的BWP。当终端长时间没有收到数据或检测到物理下行控制信道(Physical Downlink Control Channel,PDCCH)时,终端会通过一个定时器(timer)从当前的激活(active)BWP切换至默认DL BWP或默认DL/UL BWP pair,从而达到省电的效果。
当终端从当前的激活BWP切换到另外一个不同于默认DL BWP的DL BWP时,终端开始定时器计时,当终端成功解调到调度物理下行共享信道(Physical Downlink Share Channel,PDSCH)的下行控制信息(Downlink Control Information,DCI)时,终端重新开始计时器计时,将定时器设置为初始值。当定时器超时(timer expires)时,终端切换到默认DL BWP。对于非对称频谱系统,每一个DL BWP都和一个UL BWP配对,当DL BWP切换时对应的UL BWP也需要一起切换。但是由于物理上行共享信道(Physical Downlink Share Channel,PDSCH)是提前调度的,即上行授权(UL grant)会在数据传输前K个时隙(slot)进行发送。那么,由于终端可能在一段时间内没有下行数据调度,因此定时器超时需要切换至默认DL BWP上,这时UL BWP也需要一起切换。但是当时延K未到达而定时器超时,若UL BWP跟着DL BWP一起切换,会导致上行调度无法进行。
发明内容
第一方面,本公开实施例提供了一种非对称频谱的带宽部分BWP切换方法,应用于终端侧,包括:
在未检测到调度物理下行共享信道PDSCH的第一下行控制信息DCI时,根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器;
当重置后的定时器超时时,则将当前带宽部分BWP切换至默认BWP。
第二方面,本公开实施例还提供了一种终端,包括:
重置模块,用于在未检测到调度物理下行共享信道PDSCH的第一下行控制信息DCI时,根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器;
第一切换模块,用于当重置后的定时器超时时,则将当前带宽部分BWP切换至默认BWP。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的非对称频谱的带宽部分BWP切换方法的步骤。
第四方面,本公开实施例提供了一种非对称频谱的带宽部分BWP切换方法,应用于网络设备侧,包括:
若在连续预设数量的时域传输单元内,未向终端发送调度物理下行共享信道PDSCH的第一下行控制信息DCI和调度物理上行共享信道PUSCH的第二DCI时,则将下一次的PUSCH调度至终端的默认带宽部分BWP上。
第五方面,本公开实施例提供了一种网络设备,包括:
调度模块,用于若在连续预设数量的时域传输单元内,未向终端发送调度物理下行共享信道PDSCH的第一下行控制信息DCI和调度物理上行共享信道PUSCH的第二DCI时,则将下一次的PUSCH调度至终端的默认带宽部分BWP上。
第六方面,本公开实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的非对称频谱的带宽部分BWP切换方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述的非对称频谱的带宽部分BWP切换方法的步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅 仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例终端侧的非对称频谱的带宽部分BWP切换方法的流程示意图;
图2表示本公开实施例中BWP切换示意图;
图3表示本公开实施例终端的模块示意图;
图4表示本公开实施例的终端框图;
图5表示本公开实施例网络设备侧的非对称频谱的带宽部分BWP切换方法的流程示意图;
图6表示本公开实施例网络设备的模块示意图;
图7表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1所示,本公开实施例提供了一种非对称频谱的带宽部分BWP切换方法,应用于终端侧,具体包括以下步骤:
步骤11:在未检测到调度物理下行共享信道PDSCH的第一下行控制信息DCI时,根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置 定时器。
其中,第一DCI和第二DCI通过PDCCH进行传输。终端在检测到调度PDSCH的第一DCI时,重置定时器,具体地,终端在检测到调度PDSCH的第一DCI时,将定时器恢复至初始值,即重新开始计时器计时。终端在未检测到调度PDSCH的第一DCI时,定时器继续计时(定时器加一或减一)。若终端在定时器开始计时到定时器超时期间,均未检测到第一DCI和第二DCI,那么终端将从当前BWP切换至默认BWP,以达到省电的效果。如图2所示,假设终端的定时器将在第二个时域传输单元(如slot)超时,若终端在第一个slot和第二slot内均未检测到第一DCI和第二DCI,那么终端在第二个slot后进行切换(retuning),由当前BWP切换至默认BWP,其中,当前BWP为终端所对应的BWP中除默认BWP之外的其他BWP中的一个。其中,时域传输单元包括:子帧、时隙(slot)、微时隙(mini-slot)和时域传输符号(OFDM符号)中的一项,这里以slot为例。若终端在第一个slot内检测到第二DCI,这时若采用传统的BWP切换机制,终端检测到的第二DCI对应的上行调度将成为无效调度,而本公开实施例在这种场景下对定时器进行重置,具体重置数值可根据检测到第二DCI的时间,定时器初始值、当前值和超时值之间的关系,以及PUSCH的等待及传输时长确定,以避免上行调度失败。
步骤12:当重置后的定时器超时时,则将当前带宽部分BWP切换至默认BWP。
其中,如图2所示,终端的定时器将在第二个slot超时,若终端在第一个slot内检测到第二DCI,这时将定时器重置,当PUSCH传输完成且重置后的定时器超时时,终端由当前BWP切换至默认BWP。终端重置定时器以避免定时器计时期间检测到第二DCI对应的上行调度失败的问题,重置定时器后,能够保证第二DCI对应的上行调度已传输完成,在定时器超时后再将当前BWP切换至默认BWP,保证终端在当前BWP上正常的上行传输。
其中,终端进一步根据检测到第二DCI时,定时器当前值与定时器超时值的差值与PUSCH的等待及传输时长的关系,确定是否需要重置定时器。具体地,步骤11具体包括:在检测到第二DCI时,若定时器当前值与定时器超时值的差值小于PUSCH的等待及传输时长,则重置定时器。这里是说, 当定时器从当前值计时至超时值,无法满足第二DCI调度的PUSCH的正常传输时,终端需要重置定时器。进一步地,在检测到第二DCI时,若定时器当前值与定时器超时值的差值大于或等于PUSCH的等待及传输时长时,则无需重置定时器。这里是说,当定时器从当前值计时至超时值,可以满足第二DCI调度的PUSCH的正常传输时,终端无需重置定时器。
具体地,若需要重置定时器,那么重置定时器的步骤具体可参照以下方式实现:
方式一、将定时器当前值回退第一预设数量个时域传输单元。
其中,第一预设数量为第一值和第二值中的较小值,其中第一值为定时器当前值与定时器初始值的差值,第二值为PUSCH的等待及传输时长所包含时域传输单元数量。其中,假设定时器包含T个时域传输单元,若检测到调度PUSCH的第二DCI时定时器当前值为t,且定时器为从大到小计时,若t大于或等于PUSCH的等待及传输时长(M+N),则无需重置定时器;若t小于(M+N),则需要重置定时器。具体地,可以将定时器直接重置为初始值,即重新开始计时器计时,亦可以直接将定时器回退min{M+N,T-t}。或者,检测到调度PUSCH的第二DCI时定时器当前值为t',且定时器为从小到大计时,若T-t'大于或等于(M+N),则无需重置定时器,T-t'小于(M+N),则需要重置定时器。具体地,可以将定时器直接重置为初始值,即重新开始计时器计时,亦可以直接将定时器回退min{M+N,t'}。
或者,第一预设数量大于或等于第二值与第三值的差值,其中第二值为PUSCH的等待及传输时长所包含时域传输单元数量,第三值为定时器当前值与定时器超时值的差值。其中,假设定时器包含T个时域传输单元,若检测到调度PUSCH的第二DCI时定时器当前值为t,且定时器为从大到小计时,若t大于或等于PUSCH的等待及传输时长(M+N),则无需重置定时器;若t小于(M+N),则需要重置定时器。具体地,可以将定时器回退至少(M+N-t)个时域传输单元。或者,检测到调度PUSCH的第二DCI时定时器当前值为t',且定时器为从小到大计时,若T-t'大于或等于(M+N),则无需重置定时器,T-t'小于(M+N),则需要重置定时器。具体地,可以将定时器回退至少(M+N-T+t')个时域传输单元。
其中,值得指出的是,当定时器重置后,终端继续检测第一DCI和第二DCI,在检测到第一DCI时,将定时器恢复至初始值,即重新开始计时器计时,在未检测到第一DCI时,定时器继续计时(定时器加一或减一)。进一步地,在未检测到第一DCI但检测到第二DCI时,按照上述方式一进行定时器重置。
方式二、在定时器超时时,将定时器超时值回退第二预设数量个时域传输单元数量。
其中,第二预设数量大于或等于第二值与第三值的差值,第二值为PUSCH的等待及传输时长所包含的时域传输单元数量,第三值为定时器当前值与定时器超时值的差值之差。当定时器超时后,若终端还有已经调度但未传输的上行数据,终端可在超时定时器的基础上等待第二预设数量的时域传输单元后,再由当前BWP切换至默认BWP,以保证已经调度的上行数据的正常传输。其中,第二预设数量由PUSCH的等待及传输时长(M+N),以及检测到第二DCI的时刻(即定时器当前值)到定时器超时值的差值确定。这里的意思是终端在进行BWP切换时仅考虑定时器超时前的上行调度,而不考虑定时器超时后等待期间发生的上行调度。具体地,终端在定时器超时后不再检测网络设备发送的任何信息,这里包括第一DCI和第二DCI。
其中值得指出的是,上述第二值为:第二DCI与调度的PUSCH之间间隔的时域传输单元数量(即PUSCH的调度等待时间M),以及PUSCH所占用的时域传输单元数量(即PUSCH的传输时长N)的和值。例如,对于LTE单子帧的调度,上行调度时延为K=4,即相当于M=3,N=1。
进一步地,本公开实施例的非对称频谱的带宽部分BWP切换方法还包括:未检测到第一DCI、且检测到第二DCI时,若检测到第二DCI指示PUSCH映射至默认BWP,则定时器继续计时,并当定时器超时时,将当前带宽部分BWP切换至默认BWP。这里是说,若在定时器计时期间,终端未检测到第一DCI,但检测到了第二DCI,这时需要确定第二DCI调度的PUSCH所映射的BWP是当前BWP还是默认BWP,若为当前BWP可根据上述实施例确定是否需要重置定时器,若为默认BWP那么在定时器超时后直接由当前BWP切换至默认BWP。这样,无论上行调度映射至当前BWP还是默认BWP 上,终端均可保证已调度的上行数据的正常传输。
本公开实施例的非对称频谱的带宽部分BWP切换方法中,终端根据调度PDSCH的第一DCI和调度PUSCH的第二DCI联合确定进行定时器重置,以避免因BWP切换造成的上行调度模糊问题,可保证终端在BWP切换过程中正常的上行传输。
以上实施例分别详细介绍了不同场景下的非对称频谱的带宽部分BWP切换方法,下面本实施例将结合附图对其对应的终端做进一步介绍。
如图3所示,本公开实施例的终端300,能实现上述实施例中在未检测到调度物理下行共享信道PDSCH的第一下行控制信息DCI时,根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器;当重置后的定时器超时,则将当前带宽部分BWP切换至默认BWP方法的细节,并达到相同的效果,该终端300具体包括以下功能模块:
重置模块310,用于在未检测到调度物理下行共享信道PDSCH的第一下行控制信息DCI时,根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器;
第一切换模块320,用于当重置后的定时器超时时,则将当前带宽部分BWP切换至默认BWP。
其中,重置模块310包括:
第一重置子模块,用于在检测到第二DCI时,若定时器当前值与定时器超时值的差值小于PUSCH的等待及传输时长,则重置定时器。
其中,重置模块310还包括:
第二重置子模块,用于将定时器当前值回退第一预设数量个时域传输单元;其中,第一预设数量为第一值和第二值,第一值为定时器当前值与定时器初始值的差值,第二值为PUSCH的等待及传输时长所包含时域传输单元数量;或者,第一预设数量大于或等于第二值与第三值的差值,第三值为定时器当前值与定时器超时值的差值。
其中,重置模块310还包括:
第三重置子模块,用于在定时器超时时,则将定时器超时值回退第二预设数量个时域传输单元数量;其中,第二预设数量大于或等于第二值与第三 值的差值,第二值为PUSCH的等待及传输时长所包含的时域传输单元数量,第三值为定时器当前值与定时器超时值的差值。
其中,第二值为:第二DCI与调度的PUSCH之间间隔的时域传输单元数量,以及PUSCH所占用的时域传输单元数量的和值。
其中,时域传输单元包括:子帧、时隙slot、微时隙mini-slot和时域传输符号中的一项。
其中,终端300还包括:
计时模块,用于若检测到第二DCI指示PUSCH映射至默认BWP,则定时器继续计时;
第二切换模块,用于当定时器超时时,将当前带宽部分BWP切换至默认BWP。
值得指出的是,本公开实施例的终端根据调度PDSCH的第一DCI和调度PUSCH的第二DCI联合确定进行定时器重置,以避免因BWP切换造成的上行调度模糊问题,可保证终端在BWP切换过程中正常的上行传输。
为了更好的实现上述目的,进一步地,图4为实现本公开各个实施例的一种终端的硬件结构示意图,该终端40包括但不限于:射频单元41、网络模块42、音频输出单元43、输入单元44、传感器45、显示单元46、用户输入单元47、接口单元48、存储器49、处理器410、以及电源411等部件。本领域技术人员可以理解,图4中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元41,用于在处理器410的控制下收发数据;
处理器410,用于在未检测到调度物理下行共享信道PDSCH的第一下行控制信息DCI时,根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器;当重置后的定时器超时时,则将当前带宽部分BWP切换至默认BWP;
本公开实施例的终端根据调度PDSCH的第一DCI和调度PUSCH的第二DCI联合确定进行定时器重置,以避免因BWP切换造成的上行调度模糊问题, 可保证终端在BWP切换过程中正常的上行传输。
应理解的是,本公开实施例中,射频单元41可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器410处理;另外,将上行的数据发送给基站。通常,射频单元41包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元41还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块42为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元43可以将射频单元41或网络模块42接收的或者在存储器49中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元43还可以提供与终端40执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元43包括扬声器、蜂鸣器以及受话器等。
输入单元44用于接收音频或视频信号。输入单元44可以包括图形处理器(Graphics Processing Unit,GPU)441和麦克风442,图形处理器441对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元46上。经图形处理器441处理后的图像帧可以存储在存储器49(或其它存储介质)中或者经由射频单元41或网络模块42进行发送。麦克风442可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元41发送到移动通信基站的格式输出。
终端40还包括至少一种传感器45,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板461的亮度,接近传感器可在终端40移动到耳边时,关闭显示面板461和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器45还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀 螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元46用于显示由用户输入的信息或提供给用户的信息。显示单元46可包括显示面板461,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板461。
用户输入单元47可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元47包括触控面板471以及其他输入设备472。触控面板471,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板471上或在触控面板471附近的操作)。触控面板471可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器410,接收处理器410发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板471。除了触控面板471,用户输入单元47还可以包括其他输入设备472。具体地,其他输入设备472可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板471可覆盖在显示面板461上,当触控面板471检测到在其上或附近的触摸操作后,传送给处理器410以确定触摸事件的类型,随后处理器410根据触摸事件的类型在显示面板461上提供相应的视觉输出。虽然在图4中,触控面板471与显示面板461是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板471与显示面板461集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元48为外部装置与终端40连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元48可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端 40内的一个或多个元件或者可以用于在终端40和外部装置之间传输数据。
存储器49可用于存储软件程序以及各种数据。存储器49可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器89可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器410是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器49内的软件程序和/或模块,以及调用存储在存储器49内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器410可包括一个或多个处理单元;可选的,处理器410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
终端40还可以包括给各个部件供电的电源411(比如电池),可选的,电源411可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端40包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器410,存储器49,存储在存储器49上并可在所述处理器410上运行的计算机程序,该计算机程序被处理器410执行时实现上述非对称频谱的带宽部分BWP切换方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal  Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述非对称频谱的带宽部分BWP切换方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的非对称频谱的带宽部分BWP切换方法,下面本实施例将结合附图对网络设备侧的非对称频谱的带宽部分BWP切换方法做进一步介绍。
如图5所示,本公开实施例的非对称频谱的带宽部分BWP切换方法,应用于网络设备侧,具体包括以下步骤:
步骤51:若在连续预设数量的时域传输单元内,未向终端发送调度物理下行共享信道PDSCH的第一下行控制信息DCI和调度物理上行共享信道PUSCH的第二DCI时,则将下一次的PUSCH调度至终端的默认带宽部分BWP上。
其中,预设数量可以是协议或网络设备预先定义的值,亦可以是终端的定时器所包含时域传输单元的数量与PUSCH的等待及传输时长所包含的时域传输单元数量的差值。具体地,假设定时器包含T个时域传输单元,PUSCH的等待传输时长为(M+N),其中,PUSCH的等待时长所包含的时域传输单元数量包括:调度的PUSCH与检测到的PDCCH之间间隔的时域传输单元数量(即PUSCH的调度时延M),以及PUSCH所占用的时域传输单元数量(即PUSCH的传输时长N)的和值。也就是说,网络设备在T-M-N个slot内既没 有下行调度有没有上行调度,若在定时器最后的M+N个slot内需要进行上行调度,这时网络设备可直接将PUSCH调度至默认BWP上,以保证终端定时器超时后即使由当前BWP切换至默认BWP后,仍可通过默认BWP传输已调度的PUSCH。值得指出的是,由于当前BWP与默认BWP的数值配置Numerology可能不同,这是需要考虑PUSCH的最小调度时延M。其中,时域传输单元包括:子帧、时隙slot、微时隙mini-slot和时域传输符号中的一项,本实施例以slot为例。
具体地,网络设备将下一次PUSCH调度至默认BWP上既可通过当前BWP调度又可通过默认BWP调度。步骤51包括:当终端由当前BWP切换至默认BWP后,通过默认BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI;这里是说,网络设备在T-M-N个slot内既没有下行调度有没有上行调度,若在定时器最后的M+N个slot内需要进行上行调度,网络设备将不再在后面的M+N个slot里面调度PUSCH,而是在终端定时器超时后,通过默认BWP进行调度。或者,步骤51包括:通过当前BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI;这里是说,网络设备在T-M-N个slot内既没有下行调度有没有上行调度,若在定时器最后的M+N个slot内需要进行上行调度,网络设备虽然在后面的M+N个slot里面调度PUSCH,但是将该PUSCH调度至默认BWP上。
本公开实施例的非对称频谱的带宽部分BWP切换方法中,网络设备在连续预设数量的时域传输单元未向终端发送调度PDSCH的第一DCI和调度PUSCH的第二DCI时,网络设备将下一个PUSCH调度至终端默认BWP上,以避免因BWP切换造成的上行调度模糊问题,可保证终端在BWP切换过程中正常的上行传输。
以上实施例介绍了不同场景下的非对称频谱的带宽部分BWP切换方法,下面将结合附图对与其对应的网络设备做进一步介绍。
如图6所示,本公开实施例的网络设备600,能实现上述实施例中若在连续预设数量的时域传输单元内,未向终端发送调度物理下行共享信道PDSCH的第一下行控制信息DCI和调度物理上行共享信道PUSCH的第二DCI时,则将下一次的PUSCH调度至终端的默认带宽部分BWP上方法的细 节,并达到相同的效果,该网络设备600具体包括以下功能模块:
调度模块610,用于若在连续预设数量的时域传输单元内,未向终端发送调度物理下行共享信道PDSCH的第一下行控制信息DCI和调度物理上行共享信道PUSCH的第二DCI时,则将下一次的PUSCH调度至终端的默认带宽部分BWP上。
其中,预设数量为终端的定时器所包含时域传输单元的数量与PUSCH的等待及传输时长所包含的时域传输单元数量的差值。
其中,调度模块610包括:
第一调度子模块,用于当终端由当前BWP切换至默认BWP后,通过默认BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI;
或者,
第二调度子模块,用于通过当前BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI。
其中,时域传输单元包括:子帧、时隙slot、微时隙mini-slot和时域传输符号中的一项。
值得指出的是,本公开实施例的网络设备在连续预设数量的时域传输单元未向终端发送调度PDSCH的第一DCI和调度PUSCH的第二DCI时,网络设备将下一个PUSCH调度至终端默认BWP上,以避免因BWP切换造成的上行调度模糊问题,可保证终端在BWP切换过程中正常的上行传输。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以 上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器,或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的非对称频谱的带宽部分BWP切换方法中的步骤。公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的非对称频谱的带宽部分BWP切换方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图7所示,该网络设备700包括:天线71、射频装置72、基带装置73。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络设备执行的方法可以在基带装置73中实现,该基带装置73包括处理器74和存储器75。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器74,与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置73还可以包括网络接口76,用于与射频装置72交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器,或,一个或多个DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器75可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器75旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器75上并可在处理器74上运行的计算机程序,处理器74调用存储器75中的计算机程序执行图6所示各模块执行的方法。
具体地,计算机程序被处理器74调用时可用于执行:若在连续预设数量的时域传输单元内,未向终端发送调度物理下行共享信道PDSCH的第一下行控制信息DCI和调度物理上行共享信道PUSCH的第二DCI时,则将下一次的PUSCH调度至终端的默认带宽部分BWP上。
其中,预设数量为终端的定时器所包含时域传输单元的数量与PUSCH 的等待及传输时长所包含的时域传输单元数量的差值。
具体地,计算机程序被处理器74调用时可用于执行:当终端由当前BWP切换至默认BWP后,通过默认BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI;
或者,
通过当前BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI。
其中,时域传输单元包括:子帧、时隙slot、微时隙mini-slot和时域传输符号中的一项。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
本公开实施例中的网络设备,在连续预设数量的时域传输单元未向终端发送调度PDSCH的第一DCI和调度PUSCH的第二DCI时,网络设备将下一个PUSCH调度至终端默认BWP上,以避免因BWP切换造成的上行调度模糊问题,可保证终端在BWP切换过程中正常的上行传输。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例 如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以做出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (25)

  1. 一种非对称频谱的带宽部分BWP切换方法,应用于终端侧,包括:
    在未检测到调度物理下行共享信道PDSCH的第一下行控制信息DCI时,根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器;
    当重置后的定时器超时时,则将当前带宽部分BWP切换至默认BWP。
  2. 根据权利要求1所述的非对称频谱的带宽部分BWP切换方法,其中,所述根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器的步骤,包括:
    在检测到所述第二DCI时,若定时器当前值与定时器超时值的差值小于PUSCH的等待及传输时长,则重置所述定时器。
  3. 根据权利要求1所述的非对称频谱的带宽部分BWP切换方法,其中,所述重置定时器的步骤,包括:
    将定时器当前值回退第一预设数量个时域传输单元;其中,所述第一预设数量为第一值和第二值中的较小值,所述第一值为定时器当前值与定时器初始值的差值,所述第二值为PUSCH的等待及传输时长所包含时域传输单元数量;或者,所述第一预设数量大于或等于所述第二值与第三值的差值,所述第三值为定时器当前值与定时器超时值的差值。
  4. 根据权利要求1所述的非对称频谱的带宽部分BWP切换方法,其中,所述重置定时器的步骤,包括:
    在所述定时器超时时,将定时器超时值回退第二预设数量个时域传输单元数量;其中,所述第二预设数量大于或等于第二值与第三值的差值,所述第二值为PUSCH的等待及传输时长所包含的时域传输单元数量,所述第三值为定时器当前值与定时器超时值的差值。
  5. 根据权利要求3或4所述的非对称频谱的带宽部分BWP切换方法,其中,所述第二值为:所述第二DCI与调度的所述PUSCH之间间隔的时域传输单元数量,以及所述PUSCH所占用的时域传输单元数量的和值。
  6. 根据权利要求3所述的非对称频谱的带宽部分BWP切换方法,其中,所述时域传输单元包括:子帧、时隙slot、微时隙mini-slot和时域传输符号 中的一项。
  7. 根据权利要求1所述的非对称频谱的带宽部分BWP切换方法,其中,所述根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器的步骤,包括:
    若检测到所述第二DCI指示所述PUSCH映射至默认BWP,则所述定时器继续计时;
    所述定时器继续计时的步骤之后,还包括:
    当所述定时器超时时,将当前带宽部分BWP切换至默认BWP。
  8. 一种终端,包括:
    重置模块,用于在未检测到调度物理下行共享信道PDSCH的第一下行控制信息DCI时,根据检测到的调度物理上行共享信道PUSCH的第二DCI,重置定时器;
    第一切换模块,用于当重置后的定时器超时时,则将当前带宽部分BWP切换至默认BWP。
  9. 根据权利要求8所述的终端,其中,所述重置模块包括:
    第一重置子模块,用于在检测到所述第二DCI时,若定时器当前值与定时器超时值的差值小于PUSCH的等待及传输时长,则重置所述定时器。
  10. 根据权利要求8所述的终端,其中,所述重置模块还包括:
    第二重置子模块,用于将定时器当前值回退第一预设数量个时域传输单元;其中,所述第一预设数量为第一值和第二值中的较小值,所述第一值为定时器当前值与定时器初始值的差值,所述第二值为PUSCH的等待及传输时长所包含时域传输单元数量;或者,所述第一预设数量大于或等于所述第二值与第三值的差值,所述第三值为定时器当前值与定时器超时值的差值。
  11. 根据权利要求8所述的终端,其中,所述重置模块还包括:
    第三重置子模块,用于在所述定时器超时时,则将定时器超时值回退第二预设数量个时域传输单元数量;其中,所述第二预设数量大于或等于第二值与第三值的差值,所述第二值为PUSCH的等待及传输时长所包含的时域传输单元数量,所述第三值为定时器当前值与定时器超时值的差值。
  12. 根据权利要求10或11所述的终端,其中,所述第二值为:所述第 二DCI与调度的所述PUSCH之间间隔的时域传输单元数量,以及所述PUSCH所占用的时域传输单元数量的和值。
  13. 根据权利要求10所述的终端,其中,所述时域传输单元包括:子帧、时隙slot、微时隙mini-slot和时域传输符号中的一项。
  14. 根据权利要求8所述的终端,还包括:
    计时模块,用于若检测到所述第二DCI指示所述PUSCH映射至默认BWP,则所述定时器继续计时;
    第二切换模块,用于当所述定时器超时时,将当前带宽部分BWP切换至默认BWP。
  15. 一种终端,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的非对称频谱的带宽部分BWP切换方法的步骤。
  16. 一种非对称频谱的带宽部分BWP切换方法,应用于网络设备侧,包括:
    若在连续预设数量的时域传输单元内,未向终端发送调度物理下行共享信道PDSCH的第一下行控制信息DCI和调度物理上行共享信道PUSCH的第二DCI时,则将下一次的PUSCH调度至所述终端的默认带宽部分BWP上。
  17. 根据权利要求16所述的非对称频谱的带宽部分BWP切换方法,其中,所述预设数量为终端的定时器所包含时域传输单元的数量与PUSCH的等待及传输时长所包含的时域传输单元数量的差值。
  18. 根据权利要求16所述的非对称频谱的带宽部分BWP切换方法,其中,所述将下一次的PUSCH调度至所述终端的默认带宽部分BWP上步骤,包括:
    当所述终端由当前BWP切换至默认BWP后,通过默认BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI;
    或者,
    通过当前BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI。
  19. 根据权利要求16所述的非对称频谱的带宽部分BWP切换方法,其 中,所述时域传输单元包括:子帧、时隙slot、微时隙mini-slot和时域传输符号中的一项。
  20. 一种网络设备,包括:
    调度模块,用于若在连续预设数量的时域传输单元内,未向终端发送调度物理下行共享信道PDSCH的第一下行控制信息DCI和调度物理上行共享信道PUSCH的第二DCI时,则将下一次的PUSCH调度至所述终端的默认带宽部分BWP上。
  21. 根据权利要求20所述的网络设备,其中,所述预设数量为终端的定时器所包含时域传输单元的数量与PUSCH的等待及传输时长所包含的时域传输单元数量的差值。
  22. 根据权利要求20所述的网络设备,其中,所述调度模块包括:
    第一调度子模块,用于当所述终端由当前BWP切换至默认BWP后,通过默认BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI;
    或者,
    第二调度子模块,用于通过当前BWP向终端发送将下一次PUSCH调度至默认BWP上的第二DCI。
  23. 根据权利要求20所述的网络设备,其中,所述时域传输单元包括:子帧、时隙slot、微时隙mini-slot和时域传输符号中的一项。
  24. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求16至19任一项所述的非对称频谱的带宽部分BWP切换方法的步骤。
  25. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7、或16至19中任一项所述的非对称频谱的带宽部分BWP切换方法的步骤。
PCT/CN2018/109808 2017-11-14 2018-10-11 非对称频谱的带宽部分bwp切换方法、终端及网络设备 WO2019095900A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227028163A KR20220120707A (ko) 2017-11-14 2018-10-11 비대칭 스펙트럼의 대역폭 부분(bwp) 스위칭 방법, 단말 및 네트워크 기기
KR1020207016451A KR20200088377A (ko) 2017-11-14 2018-10-11 비대칭 스펙트럼의 대역폭 부분(bwp) 스위칭 방법, 단말 및 네트워크 기기
ES18878580T ES2935890T3 (es) 2017-11-14 2018-10-11 Método de conmutación de ancho de banda en espectro no emparejado, equipo de usuario y dispositivo de red
US16/652,248 US11363510B2 (en) 2017-11-14 2018-10-11 Method of bandwidth part switching in unpaired spectrum, user equipment and network device
EP18878580.2A EP3713346B1 (en) 2017-11-14 2018-10-11 Method of bandwidth switching in unpaired spectrum, user equipment and network device.
JP2020522860A JP7072061B2 (ja) 2017-11-14 2018-10-11 非対称スペクトラムのbwp切り替え方法、端末およびネットワーク機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711122345.4 2017-11-14
CN201711122345.4A CN109788559B (zh) 2017-11-14 2017-11-14 非对称频谱的带宽部分bwp切换方法、终端及网络设备

Publications (1)

Publication Number Publication Date
WO2019095900A1 true WO2019095900A1 (zh) 2019-05-23

Family

ID=66494504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109808 WO2019095900A1 (zh) 2017-11-14 2018-10-11 非对称频谱的带宽部分bwp切换方法、终端及网络设备

Country Status (9)

Country Link
US (1) US11363510B2 (zh)
EP (1) EP3713346B1 (zh)
JP (1) JP7072061B2 (zh)
KR (2) KR20220120707A (zh)
CN (1) CN109788559B (zh)
ES (1) ES2935890T3 (zh)
HU (1) HUE061035T2 (zh)
PT (1) PT3713346T (zh)
WO (1) WO2019095900A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3060845A1 (en) 2018-11-01 2020-05-01 Comcast Cable Communications, Llc Beam failure recovery in carrier aggregation
WO2020248280A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
CN111836408B (zh) * 2019-08-28 2022-09-16 维沃移动通信有限公司 一种模式切换方法、终端和网络设备
CN112583550B (zh) * 2019-09-29 2021-11-12 大唐移动通信设备有限公司 一种信道传输方法、终端及基站
CN110677887B (zh) * 2019-10-14 2024-02-09 中兴通讯股份有限公司 切换方法、切换指示方法、装置、终端、服务节点及介质
CN111343724B (zh) * 2020-04-20 2023-07-18 Oppo广东移动通信有限公司 Bwp转换方法、装置、终端及存储介质
CN111629442B (zh) * 2020-05-27 2022-09-27 展讯通信(上海)有限公司 Bwp误切换的处理方法及装置、存储介质、终端
CN112600633B (zh) * 2020-12-15 2023-04-07 Oppo广东移动通信有限公司 一种切换bwp的方法及终端设备
CN112911649B (zh) * 2021-01-15 2023-03-14 中国信息通信研究院 一种下行部分带宽切换方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104938011A (zh) * 2013-01-28 2015-09-23 高通股份有限公司 用于利用重配置定时器来更新tdd配置的方法和装置
CN105099634A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
WO2015185256A1 (en) * 2014-06-05 2015-12-10 Sony Corporation Communications device, infrastructure equipment, mobile communications network and methods
CN106961731A (zh) * 2016-01-08 2017-07-18 夏普株式会社 上行传输子载波带宽指示方法和选择方法、以及基站和用户设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164416B (zh) * 2011-05-03 2014-04-16 电信科学技术研究院 一种数据传输的方法、系统和设备
KR20140022711A (ko) 2012-08-14 2014-02-25 삼성전자주식회사 이동통신 시스템에서 핸드 오버를 수행하는 방법 및 장치
JP7033603B2 (ja) * 2017-02-02 2022-03-10 コンヴィーダ ワイヤレス, エルエルシー スイープされる下りリンクビームでページングブロックを伝送するための装置
TWI683589B (zh) * 2017-08-18 2020-01-21 華碩電腦股份有限公司 無線通訊系統中隨機存取配置的方法和設備
US10750453B2 (en) * 2017-09-07 2020-08-18 Ofinno, Llc Sounding reference signal transmission for uplink beam management
US10873934B2 (en) * 2017-09-28 2020-12-22 Ofinno, Llc Pre-emption indication in a wireless device
EP3611866A1 (en) * 2017-10-26 2020-02-19 Ofinno, LLC Reference signal received power report
HUE058109T2 (hu) * 2017-11-09 2022-07-28 Beijing Xiaomi Mobile Software Co Ltd Eljárás és berendezés vezeték nélküli eszközök képességein alapuló kommunikációhoz

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104938011A (zh) * 2013-01-28 2015-09-23 高通股份有限公司 用于利用重配置定时器来更新tdd配置的方法和装置
CN105099634A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
WO2015185256A1 (en) * 2014-06-05 2015-12-10 Sony Corporation Communications device, infrastructure equipment, mobile communications network and methods
CN106961731A (zh) * 2016-01-08 2017-07-18 夏普株式会社 上行传输子载波带宽指示方法和选择方法、以及基站和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3713346A4 *

Also Published As

Publication number Publication date
EP3713346A1 (en) 2020-09-23
JP7072061B2 (ja) 2022-05-19
EP3713346A4 (en) 2020-11-25
US20200245207A1 (en) 2020-07-30
US11363510B2 (en) 2022-06-14
PT3713346T (pt) 2023-01-16
ES2935890T3 (es) 2023-03-13
CN109788559A (zh) 2019-05-21
EP3713346B1 (en) 2022-12-21
JP2021500810A (ja) 2021-01-07
CN109788559B (zh) 2021-01-08
KR20220120707A (ko) 2022-08-30
HUE061035T2 (hu) 2023-05-28
KR20200088377A (ko) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2019095900A1 (zh) 非对称频谱的带宽部分bwp切换方法、终端及网络设备
US11800513B2 (en) Method of information transmission in unlicensed band, terminal, and network device
US11764933B2 (en) Information transmission method, terminal, and network device
WO2019179261A1 (zh) 信息传输方法、终端及网络设备
US20210360736A1 (en) Discontinuous reception drx configuration method and terminal
WO2019184692A1 (zh) 波束失败处理方法、终端及网络设备
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
WO2020015723A1 (zh) 信道检测指示方法、终端及网络设备
WO2019192472A1 (zh) 信道传输方法、终端及网络设备
WO2019214663A1 (zh) 准共址配置方法、终端及网络设备
WO2019154269A1 (zh) 信息检测方法、信息传输方法、终端及网络设备
WO2019072077A1 (zh) 解调参考信号传输方法、网络设备及终端
WO2019137276A1 (zh) 通信业务过程冲突的处理方法及终端
WO2019214664A1 (zh) 传输资源指示方法、网络设备及终端
WO2019076170A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
WO2019174446A1 (zh) 测量方法、测量配置方法、终端及网络设备
WO2020200098A1 (zh) 随机接入过程的信息传输方法及终端
WO2019192473A1 (zh) 波束失败恢复方法、终端及网络设备
WO2020088101A1 (zh) 非周期信道状态信息参考信号配置方法、网络设备及终端
JP7208265B2 (ja) リソース要求方法及びユーザ装置
WO2019201144A1 (zh) 非授权频段的信息传输方法、网络设备及终端
WO2020156073A1 (zh) 非授权频段的信息传输方法、终端及网络设备
WO2019214420A1 (zh) 业务调度方法、终端及网络设备
WO2019196896A1 (zh) 资源调度方法、信息传输方法、网络设备及终端
WO2019062502A1 (zh) 信息传输方法、终端、网络设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207016451

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018878580

Country of ref document: EP

Effective date: 20200615