WO2020200098A1 - 随机接入过程的信息传输方法及终端 - Google Patents

随机接入过程的信息传输方法及终端 Download PDF

Info

Publication number
WO2020200098A1
WO2020200098A1 PCT/CN2020/081697 CN2020081697W WO2020200098A1 WO 2020200098 A1 WO2020200098 A1 WO 2020200098A1 CN 2020081697 W CN2020081697 W CN 2020081697W WO 2020200098 A1 WO2020200098 A1 WO 2020200098A1
Authority
WO
WIPO (PCT)
Prior art keywords
prach resource
unit
random access
mapping relationship
puo
Prior art date
Application number
PCT/CN2020/081697
Other languages
English (en)
French (fr)
Inventor
沈晓冬
孙鹏
陈晓航
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2021558003A priority Critical patent/JP7408681B2/ja
Priority to EP20784981.1A priority patent/EP3952569A4/en
Priority to BR112021019521A priority patent/BR112021019521A2/pt
Publication of WO2020200098A1 publication Critical patent/WO2020200098A1/zh
Priority to US17/488,679 priority patent/US20220022268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an information transmission method and terminal of a random access process.
  • 5G mobile communication system or as a new air interface (New Radio, NR) system needs to adapt to a variety of scenes and business needs
  • the system includes a main scene NR Enhanced Mobile Broadband (enhanced Mobile Broadband , EMBB) communications, large-scale Internet of Things (massive Machine Type Communications, mMTC) communications and ultra-reliable and ultra-low latency communications (Ultra-Reliable and Low Latency Communications, URLLC).
  • EMBB enhanced Mobile Broadband
  • mMTC massive Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • the terminal In the uplink transmission mode, if the terminal needs to send uplink data, it must first obtain the uplink timing synchronization through the random access process, that is, obtain the uplink timing advance (TA) information from the network device. After the uplink synchronization is obtained, the terminal can pass Dynamic scheduling or semi-persistent scheduling to send uplink data. When the uplink data packet is small, in order to reduce the consumption of resources and power, the terminal can send uplink data in an asynchronous state.
  • TA uplink timing advance
  • the terminal In the random access process, such as the non-competitive random access process or the competitive random access process, the terminal is also in an asynchronous state when sending the preamble, and a cyclic prefix (CP) needs to be added to the preamble.
  • CP cyclic prefix
  • Guard guard interval
  • a terminal When a terminal sends uplink data in an asynchronous state, such as when the terminal sends a Physical Uplink Share Channel (PUSCH) in an asynchronous state, in the non-contention random access process, that is, 2-step ) In the Physical Random Access Channel (PRACH), when the terminal initiates random access, it sends a random access message carrying PUSCH, or message A (Message A, msgA).
  • PRACH Physical Random Access Channel
  • the terminal sends a random access message carrying PUSCH, or message A (Message A, msgA).
  • the msgA received by the network device corresponds to PRACH and PUSCH at the same time, and the network device needs to blindly detect all possible PRACH and PUSCH transmission positions, which is complicated to process.
  • the embodiments of the present disclosure provide an information transmission method and terminal in a random access process, so as to solve the problem of high processing complexity of network equipment in the random access process in related technologies.
  • the embodiments of the present disclosure provide an information transmission method of a random access process, which is applied to the terminal side, and includes:
  • the random access message is sent on the random access resources, where the random access resources include PUSCH resources and PRACH resources.
  • the embodiments of the present disclosure also provide a terminal, including:
  • the first obtaining module is configured to obtain the mapping relationship between the interleaving unit in the physical random access channel PRACH resource and the physical uplink shared channel PUSCH resource, and the interleaving unit includes at least one PRACH resource unit;
  • the sending module is used to send random access messages on random access resources according to the mapping relationship, where the random access resources include PUSCH resources and PRACH resources.
  • inventions of the present disclosure provide a terminal.
  • the terminal includes a processor, a memory, and a computer program stored in the memory and running on the processor.
  • the computer program is executed by the processor to implement the aforementioned random access process. The steps of the information transmission method.
  • the embodiments of the present disclosure provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the information transmission method of the random access process described above are realized.
  • the terminal obtains the mapping relationship between the interleaving unit in the physical random access channel PRACH resource and the physical uplink shared channel PUSCH resource, and sends random access on the random access resource according to the mapping relationship.
  • the random access resources include PUSCH resources and PRACH resources, so the network device does not need to perform blind detection on all possible PRACH resources and transmission positions on the PUSCH resources during the random access process, thereby reducing processing complexity.
  • Figure 1 shows a block diagram of a mobile communication system to which the embodiments of the present disclosure can be applied;
  • FIG. 2 shows a schematic flowchart of an information transmission method of a random access process according to an embodiment of the present disclosure
  • FIG. 3 shows the first schematic diagram of the mapping relationship between PRACH resource units and PUSCH resource units in an embodiment of the present disclosure
  • FIG. 4 shows a second schematic diagram of the mapping relationship between PRACH resource units and PUSCH resource units in an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of a module structure of a terminal according to an embodiment of the present disclosure
  • Fig. 6 shows a block diagram of a terminal according to an embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division multiple access
  • SC-FDMA Single Carrier Frequency Division multiple access
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA Universal Terrestrial Radio Access
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • GSM Global System for Mobile Communication
  • OFDMA system can realize such as ultra mobile broadband (Ultra Mobile Broadband, UMB), evolved UTRA (Evolution-UTRA, E-UTRA), IEEE802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM And other radio technology.
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE (such as LTE-A) are new UMTS versions that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the technology described in this article can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the following description describes the NR system for exemplary purposes, and NR terminology is used in most of the description below, although these techniques can also be applied to applications other than NR system applications.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • vehicle-mounted equipment it should be noted that the specific type of terminal 11 is not limited in the embodiments of the present disclosure .
  • the network device 12 may be a base station or a core network, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, Or other access points, etc.), where the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (Basic Service Set) Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or in the field
  • B Basic Service Set
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Node B Evolved Node B
  • eNB Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or in the field
  • the base station may communicate with the terminal 11 under the control of the base station controller.
  • the base station controller may be a part of a core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may directly or indirectly communicate with each other through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operations on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can simultaneously transmit modulated signals on these multiple carriers. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (for example, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station can wirelessly communicate with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point can be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, macro base stations, micro base stations, or pico base stations).
  • the base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies.
  • the base stations can be associated with the same or different access networks or operator deployments.
  • the coverage areas of different base stations may overlap.
  • the communication link in a wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 11 to the network device 12), or for carrying a downlink (Downlink, DL) Transmission (for example, from the network device 12 to the terminal 11) downlink.
  • Uplink, UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can use licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • the information transmission method of the random access process in the embodiment of the present disclosure is applied to a terminal. As shown in FIG. 2, the method includes the following steps:
  • Step 21 Obtain the mapping relationship between the interleaving unit in the physical random access channel PRACH resource and the physical uplink shared channel PUSCH resource.
  • the interleaving unit includes at least one PRACH resource unit.
  • the interlace unit is a resource unit obtained after the PRACH resource is interlaced.
  • An interlace unit may include at least one PRACH resource unit, and the PRACH resource unit may have a smaller resource granularity than the interlace unit.
  • the mapping relationship between the interleaving unit of the PRACH resource and the PUSCH resource may be agreed upon by a protocol or configured by a network device.
  • the PRACH resource may be determined by the terminal by receiving system information, and the system information includes PRACH configuration information, for example: the number of SSBs sent by the network device in each synchronization signal block (Synchronization Signal and PBCH Block, SSB) transmission cycle for
  • PRACH Occasion, RO The number factor of random access channel opportunities (PRACH Occasion, RO) associated with each SSB is N, which represents the number of SSBs corresponding to each RO, that is, ssb-perRACH-Occasion, with the value ⁇ 1/8,1/4 ,1/2,1,2,4,8,16 ⁇ ;
  • the number of preambles associated with each RO is P, which means the number of preambles corresponding to the RO associated with each SSB, namely CB-preambles -per-SSB*max(1, SSB-per-rach-occasion).
  • the number of ROs after a round of mapping between SSB and PRACH is The number of ROs in an association cycle is R, and the number of preambles associated with each RO is P.
  • the correlation period is an integer multiple of the PRACH configuration period
  • one SSB is associated with at least one RO in one correlation period
  • the number of ROs in one correlation period R is an integer multiple of R′.
  • Step 22 Send a random access message on random access resources according to the preset mapping relationship, where the random access resources include PUSCH resources and PRACH resources.
  • random access resources are used for random access procedures, and random access resources include PUSCH resources and PRACH resources.
  • PRACH resources are used to transmit random access preambles
  • PUSCH resources are used to transmit random access-related information or uplink data.
  • the network device determines the PUSCH resource and PRACH resource on the random access resource according to the same understanding as the terminal, so that the network device can quickly detect and demodulate the random access message (msgA) on the random access resource to ensure random access
  • the entry process proceeds normally.
  • the transmission position of the interleaving unit of the PRACH resource can be determined according to the transmission position of the PUSCH resource, or according to the transmission position of the interleaving unit of the PRACH resource
  • the network equipment can avoid blind detection of all possible PRACH resources and the transmission position of the PUSCH resource according to the same understanding, thereby reducing processing complexity and improving processing efficiency.
  • step 21 before step 21, it further includes: acquiring an interleaving interval; and dividing the PRACH resource into at least one interleaving unit according to the interleaving interval.
  • the interleaving interval can be configured by the network device, that is, the interleaving interval is configurable. Alternatively, the interleaving interval may be agreed upon by the protocol, and optionally, the interleaving interval may be 1 or N*R by default.
  • mapping relationship between the interleaving unit of the PRACH resource and the PUSCH resource in the embodiment of the present disclosure may include but is not limited to the following two types:
  • the first mapping relationship may be: the mapping relationship between the PRACH resource unit and the PUO in the interleaving unit in the PRACH resource group (or referred to as the RO group).
  • the mapping relationship between the interleaving unit and the PUO is mapped in the order of the interleaving unit number and the PUO number.
  • the PRACH resource in an association period can be divided into one or more PRACH resource groups.
  • the PRACH resource group is in an association period.
  • An association period includes at least one PRACH resource group.
  • a PRACH resource group includes the corresponding PRACH resource group.
  • At least one random access channel opportunity RO, and one RO corresponds to at least one PRACH resource unit.
  • the interleaving unit can be across ROs or the same RO. That is, one interleaving unit may include multiple PRACH resource units in different ROs, or one interleaving unit may include multiple PRACH resource units in the same RO.
  • the PUSCH resource unit is used to distinguish users.
  • one PUSCH resource unit can be used to distinguish one user.
  • the PUSCH resource unit is determined according to at least one related parameter of the PUO (or referred to as a user distinguishing factor). The more related parameter items, the more PUSCH resource units that the PUO can divide and the more users that can be distinguished.
  • the relevant parameters include but are not limited to: at least one of port information of the PUO's demodulation reference signal (De-Modulation Reference Signal, DMRS) and the PUO's scrambling ID (scrambling ID).
  • DMRS De-Modulation Reference Signal
  • scrambling ID scrambling ID
  • the second mapping relationship may be: the mapping relationship between the PRACH resource unit in the interleaving unit in the PRACH resource grouping and the PUSCH resource unit in the PUO.
  • the PRACH resource in an association period can be divided into one or more PRACH resource groups.
  • the PRACH resource group is in an association period.
  • An association period includes at least one PRACH resource group.
  • a PRACH resource group includes the corresponding PRACH resource group.
  • At least one random access channel opportunity RO, and one RO corresponds to at least one PRACH resource unit.
  • the interleaving unit can be across ROs or the same RO. That is, one interleaving unit may include multiple PRACH resource units in different ROs, or one interleaving unit may include multiple PRACH resource units in the same RO.
  • one PRACH resource unit may correspond to one random access preamble in one RO.
  • the PRACH resource grouping can be determined by but not limited to one of the following methods:
  • Grouping mode 1 All ROs in every T time domain units are divided into a PRACH resource group, and T is a positive integer.
  • the network device configuration or protocol stipulates that all ROs in every T time domain units are a group in time, and the time domain units can be symbols, time slots, subframes, frames, etc.
  • Grouping method 2 According to the order of RO numbers, each M RO is divided into a PRACH resource group.
  • the network device configuration or protocol stipulates the number M of ROs in each PRACH resource grouping, and grouping is performed according to the number M from the front to the back according to the RO number.
  • Grouping mode 3 According to the number of groups P in an association period, all ROs in an association period are divided into P PRACH resource groups.
  • the network device configuration or protocol stipulates the number of groups P for dividing PRACH resource groups in an association period, and the terminal can divide all ROs in an association period into P PRACH resource groups based on implementation.
  • Grouping method 4 All ROs in the association period are divided into one PRACH resource group.
  • the terminal divides all ROs in the association period into one PRACH resource group by default, that is, one association period is one PRACH resource group.
  • the terminal may also perform grouping by defaulting to the default values in the above grouping method 1, 2, or 3.
  • the mapping relationship in an association period, is mapped in the order of the PRACH resource group number and the PUO number.
  • the mapping relationship between the PRACH resource unit and the PUO in the interleaving unit is mapped in the order of the PRACH resource group number and the PUO number, that is, according to the PRACH resource group number from smallest to The PUO is mapped sequentially, that is, after the PRACH resource units of the interleaving unit in a group of PRACH resource groups are mapped, the PRACH resource units in the next group of PRACH resource groups are mapped.
  • the mapping relationship between the PRACH resource unit in the interleaving unit and the PUSCH resource unit of the PUO is mapped according to the order of the PRACH resource group number and the PUO number, that is, according to the PRACH resource grouping
  • the PUSCH resource units in the PUO are sequentially mapped from small to large, that is, after the PRACH resource units of the interleaving units in one group of PRACH resource groups are mapped, the PRACH resource units in the next group of PRACH resource groups are mapped.
  • the mapping relationship is mapped in the order of interleaving unit number and PUO number.
  • the mapping relationship between the PRACH resource units in the interleaving unit and the PUO is mapped in the order of the interleaving unit number and the PUO number, that is, according to the interleaving unit number from small to large.
  • the PUO performs sequential mapping, that is, after the PRACH resource unit of one interleaving unit is mapped, the PRACH resource unit in the next interleaving unit is mapped.
  • the mapping relationship between the PRACH resource unit in the interleaving unit and the PUSCH resource unit of the PUO is mapped in the order of the interleaving unit number and the PUO number, that is, according to the interleaving unit number
  • the PUSCH resource units in the PUO are sequentially mapped from small to large, that is, after the PRACH resource units of one interleaving unit are mapped, the PRACH resource units in the next interleaving unit are mapped.
  • the mapping relationship between the PRACH resource unit in the interleaving unit and the PUSCH resource unit in the PUO may also be mapped in the order of the interleaving unit number and the PUSCH resource unit number. That is, the PUSCH resource units in the PUO are sequentially mapped according to the interleaving unit number and the PUSCH resource number from small to large, that is, after the PRACH resource unit of one interleaving unit is mapped, the PRACH resource unit in the next interleaving unit is mapped.
  • the mapping relationship is mapped in the order of PRACH resource unit number and PUO number.
  • the mapping relationship between PRACH resource units and PUOs is mapped in the order of PRACH resource unit numbers and PUO numbers, that is, PUOs are sequentially mapped according to the PRACH resource unit numbers from small to large Mapping, that is, after one PRACH resource unit is mapped, the next PRACH resource unit is mapped.
  • the mapping relationship between the PRACH resource unit and the PUSCH resource unit of the PUO is mapped in the order of the PRACH resource unit number and the PUO number, that is, according to the PRACH resource unit number from small to large
  • the PUSCH resource units in PUO are mapped sequentially, that is, after one PRACH resource unit is mapped, the next PRACH resource unit is mapped.
  • the mapping relationship between the PRACH resource unit and the PUSCH resource unit in the PUO is mapped in the order of the PRACH resource unit number and the PUSCH resource unit number. That is, the PUSCH resource units in the PUO are sequentially mapped according to the PRACH resource unit number and the PUSCH resource number from small to large, that is, after one PRACH resource unit is mapped, the next PRACH resource unit is mapped.
  • the PRACH resource number in this PRACH resource group is P*r0, P*r0+1, whil,P*(r0+M-1)+P-1.
  • the interleaving interval is x
  • the total is divided into x interleaving groups, and the interleaving is numbered.
  • RO0, RO1, RO2, and RO3 are 4 configured ROs in an associated period, and each RO is configured with 4 preambles.
  • PUO0, PUO1, PUO2, and PUO3 are the 4 PUOs configured in this associated cycle, and each PUO is configured with 4 DMRS ports.
  • 4 ROs in an association period are divided into 2 PRACH resource groups.
  • PRACH resource group 1 includes RO0 and RO1
  • PRACH resource group 2 includes RO2 and RO3.
  • Each RO is configured with 4 preambles, preamble 0, preamble 1, preamble 2, and preamble 3.
  • the PRACH resource units included in the first PRACH resource group include: (RO0, preamble 0), (RO0, preamble 1), (RO0, preamble 2), (RO0, preamble 3), (RO1, preamble Code 0), (RO1, preamble 1), (RO1, preamble 2) and (RO1, preamble 3).
  • interleaving unit 1 includes: (RO0, preamble 0), (RO0, preamble 2), (RO1, preamble 0) and (RO1, preamble 2);
  • interleaving unit 2 includes (RO0) , Preamble 1), (RO0, preamble 3), (RO1, preamble 1) and (RO1, preamble 3).
  • the mapping relationship between PRACH resource units and PUSCH resource units is mapped to PUO numbers in PUSCH resources in the order of PRACH resource group number, interleaving unit number, and PRACH resource unit number from small to large.
  • the large PUSCH resource unit number is from small to large PUSCH resource unit.
  • the mapping relationship between the PRACH resource unit in PRACH resource group 1 and the PUSCH resource unit of PUO is: the PRACH resource unit in interleaving unit 1 is sequentially mapped to the 4 PUSCH resource units in PUO0, and the interleaving
  • the PRACH resource units in unit 2 are sequentially mapped to the 4 PUSCH resource units in PUO1.
  • the mapping relationship between the PRACH resource units in the PRACH resource group 2 and the PUSCH resource units of PUO is: the PRACH resource units in the interleaving unit 3 are sequentially mapped to the 4 PUSCH resource units in PUO2, and the PRACH resource in the interleaving unit 4 The units are sequentially mapped to the 4 PUSCH resource units in PUO3.
  • PUO can be independently configured, and the mapping relationship between PRACH resource units and PUO can be sequentially mapped.
  • the PUO may also be configured relative to the RO, that is, there is a corresponding relationship between the RO and the PUO.
  • the mapping relationship between the interleaving unit and the PUSCH resource is: the mapping relationship between the interleaving unit and the PUSCH resource corresponding to the PRACH resource.
  • the interleaving unit of the PRACH resource can only be mapped to the PUSCH resource corresponding to the PRACH resource.
  • the mapping relationship between the interleaving unit and the PUSCH resource is: the mapping relationship between the interleaving unit in the PRACH resource group and the PUSCH resource in the corresponding PUSCH group.
  • the corresponding PUSCH group is a group composed of PUSCH resources corresponding to PRACH resources in the PRACH resource group. That is to say, the interleaving unit in a PRACH resource group can only be mapped to the PUSCH resource corresponding to the PRACH resource in the PRACH resource group.
  • the mapping manner of interleaving units and PUSCH resources can also be implemented by the above-mentioned embodiments. Among them, it is worth pointing out that when the PRACH resource unit contained in a PRACH resource group is smaller than the PUSCH resource unit, the PUSCH resource unit that is not mapped to is no longer used.
  • RO0, RO1, RO2, and RO3 are 4 configured ROs of an association period, and each RO is configured with 4 preambles.
  • PUO0, PUO1, PUO2, and PUO3 are the 4 PUOs configured in this associated cycle, and each PUO is configured with 5 DMRS ports; among them, RO0, RO1, RO2, and RO3 correspond to PUO0, PUO1, PUO2, and PUO3, respectively.
  • the 4 ROs in an association period are divided into 2 PRACH resource groups.
  • PRACH resource group 1 includes RO0 and RO1
  • PRACH resource group 2 includes RO2 and RO3.
  • Each RO is configured with 4 preambles, preamble 0, preamble 1, preamble 2, and preamble 3.
  • the PRACH resource units included in the first PRACH resource group include: (RO0, preamble 0), (RO0, preamble 1), (RO0, preamble 2), (RO0, preamble 3), (RO1, preamble Code 0), (RO1, preamble 1), (RO1, preamble 2) and (RO1, preamble 3).
  • interleaving unit 1 includes: (RO0, preamble 0), (RO0, preamble 2), (RO1, preamble 0) and (RO1, preamble 2);
  • interleaving unit 2 includes (RO0) , Preamble 1), (RO0, preamble 3), (RO1, preamble 1) and (RO1, preamble 3).
  • PRACH resource group 1 corresponds to PUO0 and PUO1
  • PRACH resource group 2 corresponds to PUO
  • the mapping relationship between PRACH resource units and PUSCH resource units is mapped to PUO numbers in PUSCH resources in the order of PRACH resource group number, interleaving unit number, and PRACH resource unit number from small to large.
  • the large PUSCH resource unit number is from small to large PUSCH resource unit.
  • the mapping relationship between the PRACH resource units in PRACH resource group 1 and the PUSCH resource units of PUO is: the PRACH resource units in interleaving unit 1 are sequentially mapped to 4 PUSCH resource units in PUO0, and the interleaving The PRACH resource units in unit 2 are sequentially mapped to the last PUSCH resource unit of PUO0 and the 3 PUSCH resource units in PUO1, and the remaining 2 PUSCH resource units are no longer used.
  • the mapping relationship between the PRACH resource units in the PRACH resource group 2 and the PUSCH resource units of PUO is: the PRACH resource units in the interleaving unit 3 are sequentially mapped to the 4 PUSCH resource units in PUO2, and the PRACH resource in the interleaving unit 4 The units are sequentially mapped to the last PUSCH resource unit of PUO2 and the 3 PUSCH resource units in PUO3, and the remaining 2 PUSCH resource units are no longer used.
  • PRACH resource units of one RO can be mapped to PUSCH resource units corresponding to other ROs in the same group.
  • the PRACH resource units in one interleaving unit can also be mapped to PUSCH resource units of different PUOs.
  • the terminal obtains the mapping relationship between the interleaving unit in the physical random access channel PRACH resource and the physical uplink shared channel PUSCH resource, and according to the mapping relationship, connects randomly Random access messages are sent on incoming resources, where random access resources include PUSCH resources and PRACH resources, so the network device does not need to blindly detect all possible PRACH resources and transmission positions on PUSCH resources during the random access process , Reduce processing complexity.
  • the terminal 500 of the embodiment of the present disclosure can realize the mapping relationship between the interleaving unit in the physical random access channel PRACH resource and the physical uplink shared channel PUSCH resource obtained in the foregoing embodiment, and the interleaving unit includes at least one PRACH resource unit; according to the mapping relationship, the random access message is sent on the random access resource, where the random access resource includes the PUSCH resource and the details of the PRACH resource method, and achieves the same effect.
  • the terminal 500 specifically includes the following functional modules :
  • the first obtaining module 510 is configured to obtain a mapping relationship between an interleaving unit in a physical random access channel PRACH resource and a physical uplink shared channel PUSCH resource, and the interleaving unit includes at least one PRACH resource unit;
  • the sending module 520 is configured to send random access messages on random access resources according to the mapping relationship, where the random access resources include PUSCH resources and PRACH resources.
  • the terminal 500 further includes:
  • the second acquiring module is used to acquire the interleaving interval
  • the dividing module is used to divide the PRACH resource into at least one interleaving unit according to the interleaving interval.
  • mapping relationship includes:
  • the second mapping relationship between the PRACH resource unit in the interleaving unit and the PUSCH resource unit in the PUO corresponding to the PUSCH resource is the second mapping relationship between the PRACH resource unit in the interleaving unit and the PUSCH resource unit in the PUO corresponding to the PUSCH resource.
  • the PUSCH resource unit is determined according to at least one related parameter of PUO.
  • the relevant parameters include: at least one of the port information of the demodulation reference signal DMRS of the PUO and the scrambling code identifier of the PUO.
  • the first mapping relationship includes:
  • mapping relationship between the PRACH resource unit and the PUO in the interleaving unit in the PRACH resource grouping is the mapping relationship between the PRACH resource unit and the PUO in the interleaving unit in the PRACH resource grouping.
  • the mapping relationship between the interleaving unit and the PUO is mapped in the order of the interleaving unit number and the PUO number.
  • the second mapping relationship includes:
  • mapping relationship between the PRACH resource unit in the interleaving unit in the PRACH resource grouping and the PUSCH resource unit in the PUO is the mapping relationship between the PRACH resource unit in the interleaving unit in the PRACH resource grouping and the PUSCH resource unit in the PUO.
  • the mapping relationship between the PRACH resource unit in the interleaving unit and the PUSCH resource unit in the PUO is mapped in the order of the interleaving unit number and the PUSCH resource unit number.
  • the mapping relationship between the PRACH resource unit and the PUSCH resource unit in the PUO is mapped in the order of the PRACH resource unit number and the PUSCH resource unit number.
  • the PRACH resource grouping is in an association period, an association period includes at least one PRACH resource group, one PRACH resource group includes at least one random access channel opportunity RO corresponding to the PRACH resource, and one RO corresponds to at least one PRACH resource unit.
  • one PRACH resource unit corresponds to one random access preamble in one RO.
  • the PRACH resource grouping is determined in one of the following ways:
  • each M RO is divided into a PRACH resource group
  • T, M and P are all positive integers.
  • the mapping relationship is mapped in the order of the PRACH resource group number and the PUO number.
  • the mapping relationship between the interleaving unit and the PUSCH resource is: the mapping relationship between the interleaving unit and the PUSCH resource corresponding to the PRACH resource.
  • the terminal embodiment of the present disclosure corresponds to the above method embodiment.
  • the implementation of the above method embodiment and the technical effects achieved are all applicable to the embodiment of the terminal.
  • the terminal of the embodiment of the present disclosure obtains The mapping relationship between the interleaving unit in the physical random access channel PRACH resource and the physical uplink shared channel PUSCH resource, and according to the mapping relationship, the random access message is sent on the random access resource, where the random access resource includes the PUSCH resource And PRACH resources, the network device does not need to perform blind detection on all possible PRACH resources and transmission positions on PUSCH resources during the random access process, thereby reducing processing complexity.
  • the division of the above network equipment and the various modules of the terminal is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or one or more Field Programmable Gate Array (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 6 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present disclosure.
  • the terminal 60 includes but is not limited to: a radio frequency unit 61, a network module 62, an audio output unit 63, Input unit 64, sensor 65, display unit 66, user input unit 67, interface unit 68, memory 69, processor 610, power supply 611 and other components.
  • a radio frequency unit 61 includes but is not limited to: a radio frequency unit 61, a network module 62, an audio output unit 63, Input unit 64, sensor 65, display unit 66, user input unit 67, interface unit 68, memory 69, processor 610, power supply 611 and other components.
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminal
  • the radio frequency unit 61 is used to obtain the mapping relationship between the interleaving unit in the physical random access channel PRACH resource and the physical uplink shared channel PUSCH resource.
  • the interleaving unit includes at least one PRACH resource unit; according to the mapping relationship, the random access The random access message is sent on the resource, where the random access resource includes PUSCH resource and PRACH resource;
  • the processor 610 is configured to control the radio frequency unit 61 to send and receive data;
  • the terminal of the embodiment of the present disclosure obtains the mapping relationship between the interleaving unit in the physical random access channel PRACH resource and the physical uplink shared channel PUSCH resource, and sends a random access message on the random access resource according to the mapping relationship, where , Random access resources include PUSCH resources and PRACH resources, so the network device does not need to perform blind detection on all possible PRACH resources and transmission positions on PUSCH resources during random access, thereby reducing processing complexity.
  • the radio frequency unit 61 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 610; Uplink data is sent to the base station.
  • the radio frequency unit 61 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 61 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 62, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 63 can convert the audio data received by the radio frequency unit 61 or the network module 62 or stored in the memory 69 into an audio signal and output it as sound. Moreover, the audio output unit 63 may also provide audio output related to a specific function performed by the terminal 60 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 63 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 64 is used to receive audio or video signals.
  • the input unit 64 may include a graphics processing unit (GPU) 641 and a microphone 642.
  • the graphics processor 641 responds to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 66.
  • the image frames processed by the graphics processor 641 may be stored in the memory 69 (or other storage medium) or sent via the radio frequency unit 61 or the network module 62.
  • the microphone 642 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 61 for output in the case of a telephone call mode.
  • the terminal 60 also includes at least one sensor 65, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 661 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 661 and/or when the terminal 60 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensors 65 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 66 is used to display information input by the user or information provided to the user.
  • the display unit 66 may include a display panel 661, and the display panel 661 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 67 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 67 includes a touch panel 671 and other input devices 672.
  • the touch panel 671 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 671 or near the touch panel 671. operating).
  • the touch panel 671 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 610, the command sent by the processor 610 is received and executed.
  • the touch panel 671 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 67 may also include other input devices 672.
  • other input devices 672 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 671 may be covered on the display panel 661.
  • the touch panel 671 detects a touch operation on or near it, it transmits it to the processor 610 to determine the type of the touch event, and then the processor 610 responds to the touch The type of event provides corresponding visual output on the display panel 661.
  • the touch panel 671 and the display panel 661 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 671 and the display panel 661 may be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 68 is an interface for connecting an external device and the terminal 60.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 68 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 60 or may be used to communicate between the terminal 60 and the external device. Transfer data between.
  • the memory 69 can be used to store software programs and various data.
  • the memory 69 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 69 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 610 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 69, and calling data stored in the memory 69. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the terminal 60 may also include a power supply 611 (such as a battery) for supplying power to various components.
  • a power supply 611 such as a battery
  • the power supply 611 may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 60 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 610, a memory 69, a computer program stored on the memory 69 and running on the processor 610, and when the computer program is executed by the processor 610
  • a terminal including a processor 610, a memory 69, a computer program stored on the memory 69 and running on the processor 610, and when the computer program is executed by the processor 610
  • the terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connection function, or other processing equipment connected to a wireless modem .
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • Wireless terminals can also be called systems, subscriber units (Subscriber Unit), subscriber stations (Subscriber Station), mobile stations (Mobile Station), mobile stations (Mobile), remote stations (Remote Station), remote terminals (Remote Terminal), The access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), and user equipment (User Device or User Equipment) are not limited here.
  • the embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of the information transmission method embodiment of the random access process is realized, and To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above series of processing can naturally be performed in a time sequence in the order of description, but do not necessarily need to be performed in a time sequence, and some steps can be performed in parallel or independently of each other.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种随机接入过程的信息传输方法及终端,该方法包括:获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,交织单元包括至少一个PRACH资源单元;根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源。

Description

随机接入过程的信息传输方法及终端
相关申请的交叉引用
本申请主张在2019年3月29日在中国提交的中国专利申请No.201910253175.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种随机接入过程的信息传输方法及终端。
背景技术
第五代(5 th Generation,5G)移动通信系统,或者称为新空口(New Radio,NR)系统,需要适应多样化的场景和业务需求,NR系统的主要场景包括移动宽带增强(enhanced Mobile Broadband,eMBB)通信、大规模物联网(massive Machine Type Communications,mMTC)通信和超高可靠超低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)。这些场景对系统提出了高可靠、低时延、大带宽和广覆盖等要求。对于周期出现且数据包小大固定的业务,为了减少下行控制信令的开销,网络设备可采用半静态调度的方式,持续分配一定的资源,用于周期业务的传输。
在上行传输模式下,终端如果需要发送上行数据,首先要通过随机接入过程获取上行定时同步,即从网络设备获得上行定时提前(Timing Advance,TA)信息,在取得上行同步后,终端可以通过动态调度或半静态调度发送上行数据。当上行数据包较小时,为减少资源和电量的消耗,终端可在非同步状态下发送上行数据。
在随机接入过程中,如非竞争的随机接入过程或竞争的随机接入过程,终端发送前导码(preamble)时也处于非同步状态,需要在preamble中添加循环前缀(Cyclic prefix,CP)来抵消传输延迟带来的影响,不同终端之间存在保护间隔(Guard)来降低干扰。
终端在非同步状态下发送上行数据时,如终端在非同步状态下发送物理 上行共享信道(Physical Uplink Share Channel,PUSCH)时,在非竞争的随机接入过程中,即2步(2-step)物理随机接入信道(Physical Random Access Channel,PRACH)中,终端在发起随机接入时,会发送携带PUSCH的随机接入消息,或称为消息A(Message A,msgA)。这种情况下,网络设备接收到的msgA同时对应有PRACH和PUSCH,网络设备需要对所有可能的PRACH和PUSCH传输位置进行盲检测,处理复杂高。
发明内容
本公开实施例提供了一种随机接入过程的信息传输方法及终端,以解决相关技术在随机接入过程中网络设备的处理复杂度高的问题。
第一方面,本公开实施例提供了一种随机接入过程的信息传输方法,应用于终端侧,包括:
获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,交织单元包括至少一个PRACH资源单元;
根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源。
第二方面,本公开实施例还提供了一种终端,包括:
第一获取模块,用于获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,交织单元包括至少一个PRACH资源单元;
发送模块,用于根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的随机接入过程的信息传输方法的步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述的随机接入过程的信息传输方法的步骤。
这样,本公开实施例中,终端通过获取物理随机接入信道PRACH资源 中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,并根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源,那么网络设备在随机接入过程中,无需对所有可能的PRACH资源和PUSCH资源上的传输位置都进行盲检测,降低处理复杂度。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例可应用的一种移动通信系统框图;
图2表示本公开实施例的随机接入过程的信息传输方法的流程示意图;
图3表示本公开实施例PRACH资源单元与PUSCH资源单元之间的映射关系示意图一;
图4表示本公开实施例PRACH资源单元与PUSCH资源单元之间的映射关系示意图二;
图5表示本公开实施例终端的模块结构示意图;
图6表示本公开实施例的终端框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以 及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。 可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可 以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开实施例的随机接入过程的信息传输方法,应用于终端,如图2所示,该方法包括以下步骤:
步骤21:获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,交织单元包括至少一个PRACH资源单元。
其中,交织单元(interlace)是PRACH资源经过交织处理后得到的资源单元,一个交织单元中可以包括至少一个PRACH资源单元,PRACH资源单元可以是比交织单元更小的资源粒度。PRACH资源的交织单元与PUSCH资源之间的映射关系可以是协议约定的,也可以是网络设备配置的。
其中,PRACH资源可以是终端通过接收系统信息确定的,系统信息中包括PRACH的配置信息,例如:网络设备在每个同步信号块(Synchronization Signal and PBCH Block,SSB)发送周期中发送的SSB个数为
Figure PCTCN2020081697-appb-000001
每个SSB关联的随机接入信道机会(PRACH Occasion,RO)个数因子为N,表示每个RO对应的SSB个数,即ssb-perRACH-Occasion,取值为{1/8,1/4,1/2,1,2,4,8,16};每个RO关联的前导码(preamble)个数为P,表示每个SSB关联的RO所对应的前导码个数,即CB-preambles-per-SSB*max(1, SSB-per-rach-occasion)。那么,SSB和PRACH进行一轮映射后的RO个数为
Figure PCTCN2020081697-appb-000002
一个关联(association)周期的RO个数为R,每个RO关联的前导码个数为P。对一个关联周期映射的RO进行编号r(r=0,1,2,…,R-1),对每一个RO中的前导码进行编号p(p=0,1,2,…,P),因此(r,p)代表一个PRACH资源单元,按照先前导码后RO对资源单元进行编号,即rp=P*r+p。其中,关联周期为PRACH配置周期的整数倍,在一个关联周期中一个SSB至少关联了一个RO,一个关联周期内的RO个数R是R’的整数倍。
步骤22:根据预设映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源。
其中,随机接入资源用于随机接入过程,随机接入资源包括PUSCH资源和PRACH资源。PRACH资源用于传输随机接入前导码,PUSCH资源用于传输与随机接入有关的信息或上行数据。相应地,网络设备根据与终端相同的理解确定随机接入资源上的PUSCH资源和PRACH资源,这样网络设备可在随机接入资源上快速检测和解调随机接入消息(msgA),保证随机接入过程的正常进行。
这样,本公开实施例中,根据PRACH资源中交织单元与PUSCH资源之间的映射关系,可以根据PUSCH资源的传输位置确定PRACH资源的交织单元的传输位置,或者根据PRACH资源的交织单元的传输位置确定PUSCH资源的传输位置,网络设备按照相同理解,可避免对所有可能的PRACH资源和PUSCH资源的传输位置进行盲检测,进而降低处理复杂度,提高处理效率。
在一些实施例中,步骤21之前还包括:获取交织间隔;按照交织间隔,将PRACH资源划分为至少一个交织单元。交织间隔可以是网络设备配置下来的,即交织间隔可配置。或者,交织间隔可以是协议约定的,可选地,交织间隔可以默认为1或N*R。
可选地,本公开实施例中PRACH资源的交织单元与PUSCH资源之间的映射关系可以包括但不限于以下两种:
一、交织单元中的PRACH资源单元与PUSCH资源对应的物理上行共享信道机会(PUSCH Occasion,PUO)之间的第一映射关系。
其中,第一映射关系可以是:PRACH资源分组(或称为RO分组)中的交织单元中的PRACH资源单元与PUO之间的映射关系。
可选地,在一个PRACH资源分组内,交织单元与PUO之间的映射关系是按照交织单元编号和PUO编号顺序映射的。其中,一个关联周期内的PRACH资源可划分为一个或多个PRACH资源分组,PRACH资源分组是一个关联周期中的,一个关联周期包括至少一个PRACH资源分组,一个PRACH资源分组包括与PRACH资源对应的至少一个随机接入信道机会RO,一个RO对应至少一个PRACH资源单元。其中,值得指出的是,交织单元可以是跨RO的,也可以是同RO的。也就是说,一个交织单元可以包括多个不同RO内的PRACH资源单元,或者,一个交织单元可以包括同一个RO内的多个PRACH资源单元。
二、交织单元中的PRACH资源单元与PUSCH资源对应的PUO中的PUSCH资源单元之间的第二映射关系
其中,PUSCH资源单元用于区分用户,可选地,一个PUSCH资源单元可用于区分一个用户。PUSCH资源单元是根据PUO的至少一项相关参数(或称为用户区分因子)确定的,相关参数的项数越多,PUO可划分的PUSCH资源单元越多,可区分的用户也就越多。
可选地,相关参数包括但不限于:PUO的解调参考信号(De-Modulation Reference Signal,DMRS)的端口(port)信息和PUO的扰码标识(scrambling ID)中的至少一项。例如,配置每一个PUO可划分的PUSCH资源单元,即一个PUO可区分的总用户数K,有以下方式:
1、单参数相关,以DMRS端口信息为例,如果配置DMRS端口数为D,则K=D;
2、多参数相关,以DMRS端口信息和扰码标识为例,如果配置DMRS端口数目为D,扰码标识的数目为S,则K=S*D。对一个PUO可划分的PUSCH资源单元进行编号k(k=1,2,…,K-1),对于多参数相关情况可约定一种编号规则,例如先DMRS端口后扰码标识。
假设一个关联周期内所有配置的有效PUSCH occasion按照先频域后时域的顺序进行编号u(u=0,1,2,……,U-1),其中U为该关联周期内PUO的个 数。这时一个关联周期内,PUSCH资源单元为(u,k),按照先相关参数后PUO的顺序进行编号,即uk=K*u+k。
其中,第二映射关系可以是:PRACH资源分组中的交织单元中的PRACH资源单元与PUO中的PUSCH资源单元之间的映射关系。
其中,一个关联周期内的PRACH资源可划分为一个或多个PRACH资源分组,PRACH资源分组是一个关联周期中的,一个关联周期包括至少一个PRACH资源分组,一个PRACH资源分组包括与PRACH资源对应的至少一个随机接入信道机会RO,一个RO对应至少一个PRACH资源单元。其中,值得指出的是,交织单元可以是跨RO的,也可以是同RO的。也就是说,一个交织单元可以包括多个不同RO内的PRACH资源单元,或者,一个交织单元可以包括同一个RO内的多个PRACH资源单元。
本公开实施例中,一个PRACH资源单元可对应一个RO中的一个随机接入前导码。
以上第一映射关系和第二映射关系中,PRACH资源分组可以通过但不限于以下方式中的一种来确定:
分组方式一、将每T个时域单元中的所有RO划分为一个PRACH资源分组,T为正整数。
网络设备配置或协议约定时间上每T个时域单元中所有的RO为一组,时域单元可以是符号(symbol)、时隙(slot)、子帧(subframe)和帧(frame)等。
分组方式二、按照RO编号顺序,每M个RO划分为一个PRACH资源分组。
网络设备配置或协议约定每个PRACH资源分组中的RO个数M,按照RO编号从前往后按照该个数M进行分组。
分组方式三、按照一个关联周期的分组数P,将一个关联周期内的所有RO划分为P个PRACH资源分组。
网络设备配置或协议约定一个关联周期划分PRACH资源分组的分组数P,终端可基于实现将一个关联周期内的所有RO划分为P个PRACH资源分组。
分组方式四、将关联周期内的所有RO划分为一个PRACH资源分组。
在网络设备未配置与分组相关的配置信息时,终端默认将关联周期内的所有RO划分为一个PRACH资源分组,即一个关联周期为一个PRACH资源分组。
另外,在网络设备未配置与分组相关的配置信息时,终端还可默认上述分组方式一、二或三中的默认值进行分组。
在一些实施例中,在一个关联周期内,映射关系是按照PRACH资源分组编号和PUO编号顺序映射的。以第一映射关系为例,在一个关联周期内,交织单元中的PRACH资源单元和PUO之间的映射关系是按照PRACH资源分组编号和PUO编号顺序映射的,即按照PRACH资源分组的编号从小到大对PUO进行顺序映射,即一组PRACH资源分组中的交织单元的PRACH资源单元映射完之后,再映射下一组PRACH资源分组中的PRACH资源单元。以第二映射关系为例,在一个关联周期内,交织单元中的PRACH资源单元和PUO的PUSCH资源单元之间的映射关系是按照PRACH资源分组编号和PUO编号顺序映射的,即按照PRACH资源分组的编号从小到大对PUO内的PUSCH资源单元进行顺序映射,即一组PRACH资源分组中的交织单元的PRACH资源单元映射完之后,再映射下一组PRACH资源分组中的PRACH资源单元。
在一些实施例中,在一个PRACH资源分组内,映射关系是按照交织单元编号和PUO编号顺序映射的。以第一映射关系为例,在一个PRACH资源分组内,交织单元中的PRACH资源单元和PUO之间的映射关系是按照交织单元编号和PUO编号顺序映射的,即按照交织单元编号从小到大对PUO进行顺序映射,即一个交织单元的PRACH资源单元映射完之后,再映射下一个交织单元中的PRACH资源单元。以第二映射关系为例,在一个PRACH资源分组内,交织单元中的PRACH资源单元和PUO的PUSCH资源单元之间的映射关系是按照交织单元编号和PUO编号顺序映射的,即按照交织单元编号从小到大对PUO内的PUSCH资源单元进行顺序映射,即一个交织单元的PRACH资源单元映射完之后,再映射下一个交织单元中的PRACH资源单元。
进一步地,在一个PRACH资源分组内,交织单元中的PRACH资源单元 与PUO中的PUSCH资源单元之间的映射关系还可以是按照交织单元编号和PUSCH资源单元编号顺序映射的。即按照交织单元编号和PUSCH资源编号从小到大对PUO内的PUSCH资源单元进行顺序映射,即一个交织单元的PRACH资源单元映射完之后,再映射下一个交织单元中的PRACH资源单元。
在一些实施例中,在一个交织单元内,映射关系是按照PRACH资源单元编号和PUO编号顺序映射的。以第一映射关系为例,在一个交织单元中,PRACH资源单元和PUO之间的映射关系是按照PRACH资源单元编号和PUO编号顺序映射的,即按照PRACH资源单元编号从小到大对PUO进行顺序映射,即一个PRACH资源单元映射完之后,再映射下一个PRACH资源单元。以第二映射关系为例,在一个交织单元中,PRACH资源单元和PUO的PUSCH资源单元之间的映射关系是按照PRACH资源单元编号和PUO编号顺序映射的,即按照PRACH资源单元编号从小到大对PUO内的PUSCH资源单元进行顺序映射,即一个PRACH资源单元映射完之后,再映射下一个PRACH资源单元。
进一步地,在一个交织单元内,PRACH资源单元与PUO中的PUSCH资源单元之间的映射关系是按照PRACH资源单元编号和PUSCH资源单元编号顺序映射的。即按照PRACH资源单元编号和PUSCH资源编号从小到大对PUO内的PUSCH资源单元进行顺序映射,即一个PRACH资源单元映射完之后,再映射下一个PRACH资源单元。
其中,值得指出的是,一个关联周期内所包含的PRACH资源单元小于PUSCH资源单元时,没有映射到的PUSCH资源单元不再使用。
假设一个PRACH资源分组中包含的RO个数为M,并且每个RO的编号为r0,r0+1,…r0+M-1,则在这个PRACH资源分组中的PRACH资源编号为P*r0,P*r0+1,……,P*(r0+M-1)+P-1。对这M*P个PRACH资源单元进行交织单元分组,假设交织间隔为x,则一共划分为x个交织分组,并对交织进行编号。例如RO0、RO1、RO2和RO3为一个关联周期的4个配置的RO,每个RO配置有4个前导码。PUO0、PUO1、PUO2和PUO3是这个关联周期配置的4个PUO,每个PUO配置有4个DMRS端口。如图3所示,一个关联周期的4个RO分为2个PRACH资源分组,PRACH资源分组1包括:RO0 和RO1,PRACH资源分组2包括:RO2和RO3。每个RO配置有4个前导码,前导码0、前导码1、前导码2和前导码3。那么第一PRACH资源分组中包括的PRACH资源单元包括:(RO0,前导码0)、(RO0,前导码1)、(RO0,前导码2)、(RO0,前导码3)、(RO1,前导码0)、(RO1,前导码1)、(RO1,前导码2)和(RO1,前导码3)。假设交织间隔为2,那么交织单元1包括:(RO0,前导码0)、(RO0,前导码2)、(RO1,前导码0)和(RO1,前导码2);交织单元2包括(RO0,前导码1)、(RO0,前导码3)、(RO1,前导码1)和(RO1,前导码3)。这个关联周期内的PUSCH资源单元包括:(PUO0,DMRS=0)、(PUO0,DMRS=1)、(PUO0,DMRS=2)、(PUO0,DMRS=3)、(PUO1,DMRS=0)、(PUO1,DMRS=1)、(PUO1,DMRS=2)、(PUO1,DMRS=3)、(PUO2,DMRS=0)、(PUO2,DMRS=1)、(PUO2,DMRS=2)、(PUO2,DMRS=3)、(PUO3,DMRS=0)、(PUO3,DMRS=1)、(PUO3,DMRS=2)和(PUO3,DMRS=3)。
以第二映射关系为例,PRACH资源单元与PUSCH资源单元之间的映射关系,按照PRACH资源分组编号、交织单元编号、PRACH资源单元编号从小到大的顺序依次映射至PUSCH资源中PUO编号从小到大的PUSCH资源单元编号从小到大的PUSCH资源单元上。如图3所示,PRACH资源分组1中的PRACH资源单元与PUO的PUSCH资源单元之间的映射关系为:交织单元1中的PRACH资源单元依次映射至PUO0中的4个PUSCH资源单元上,交织单元2中的PRACH资源单元依次映射至PUO1中的4个PUSCH资源单元上。PRACH资源分组2中的PRACH资源单元与PUO的PUSCH资源单元之间的映射关系为:交织单元3中的PRACH资源单元依次映射至PUO2中的4个PUSCH资源单元上,交织单元4中的PRACH资源单元依次映射至PUO3中的4个PUSCH资源单元上。
值得指出的是,PUO可以是独立配置的,那么PRACH资源单元与PUO的映射关系可以是顺序映射的。此外,PUO还可以是相对于RO配置的,即RO与PUO之间具有对应关系。在该情况下,交织单元与PUSCH资源之间的映射关系为:交织单元与PRACH资源对应的PUSCH资源之间的映射关系。也就是说,PRACH资源的交织单元只能映射至该PRACH资源对应的PUSCH 资源上。可选地,交织单元与PUSCH资源之间的映射关系为:PRACH资源分组内的交织单元与对应PUSCH分组内PUSCH资源之间的映射关系。对应PUSCH分组为该PRACH资源分组内PRACH资源对应的PUSCH资源组成的分组。也就是说,一个PRACH资源分组内的交织单元只能映射至与该PRACH资源分组中PRACH资源对应的PUSCH资源上。在每组对应的PRACH资源和PUSCH资源中,交织单元与PUSCH资源的映射方式亦可通过上述实施例实现。其中,值得指出的是,一个PRACH资源分组内所包含的PRACH资源单元小于PUSCH资源单元时,没有映射到的PUSCH资源单元不再使用。
假设RO0、RO1、RO2和RO3为一个关联周期的4个配置的RO,每个RO配置有4个前导码。PUO0、PUO1、PUO2和PUO3是这个关联周期配置的4个PUO,每个PUO配置有5个DMRS端口;其中,RO0、RO1、RO2和RO3分别对应PUO0、PUO1、PUO2和PUO3。如图4所示,一个关联周期的4个RO分为2个PRACH资源分组,PRACH资源分组1包括:RO0和RO1,PRACH资源分组2包括:RO2和RO3。每个RO配置有4个前导码,前导码0、前导码1、前导码2和前导码3。那么第一PRACH资源分组中包括的PRACH资源单元包括:(RO0,前导码0)、(RO0,前导码1)、(RO0,前导码2)、(RO0,前导码3)、(RO1,前导码0)、(RO1,前导码1)、(RO1,前导码2)和(RO1,前导码3)。假设交织间隔为2,那么交织单元1包括:(RO0,前导码0)、(RO0,前导码2)、(RO1,前导码0)和(RO1,前导码2);交织单元2包括(RO0,前导码1)、(RO0,前导码3)、(RO1,前导码1)和(RO1,前导码3)。这个关联周期内的PUSCH资源单元包括:(PUO0,DMRS=0)、(PUO0,DMRS=1)、(PUO0,DMRS=2)、(PUO0,DMRS=3)、(PUO0,DMRS=4)、(PUO1,DMRS=0)、(PUO1,DMRS=1)、(PUO1,DMRS=2)、(PUO1,DMRS=3)、(PUO1,DMRS=4)、(PUO2,DMRS=0)、(PUO2,DMRS=1)、(PUO2,DMRS=2)、(PUO2,DMRS=3)、(PUO2,DMRS=4)、(PUO3,DMRS=0)、(PUO3,DMRS=1)、(PUO3,DMRS=2)、(PUO3,DMRS=3)和(PUO3,DMRS=4)。其中,PRACH资源分组1对应PUO0和PUO1,PRACH资源分组2对应PUO2和PUO3。
以第二映射关系为例,PRACH资源单元与PUSCH资源单元之间的映射关系,按照PRACH资源分组编号、交织单元编号、PRACH资源单元编号从小到大的顺序依次映射至PUSCH资源中PUO编号从小到大的PUSCH资源单元编号从小到大的PUSCH资源单元上。如图4所示,PRACH资源分组1中的PRACH资源单元与PUO的PUSCH资源单元之间的映射关系为:交织单元1中的PRACH资源单元依次映射至PUO0中的4个PUSCH资源单元上,交织单元2中的PRACH资源单元依次映射至PUO0的最后一个PUSCH资源单元以及PUO1中的3个PUSCH资源单元上,剩余的2个PUSCH资源单元不再使用。PRACH资源分组2中的PRACH资源单元与PUO的PUSCH资源单元之间的映射关系为:交织单元3中的PRACH资源单元依次映射至PUO2中的4个PUSCH资源单元上,交织单元4中的PRACH资源单元依次映射至PUO2的最后一个PUSCH资源单元以及PUO3中的3个PUSCH资源单元上,剩余的2个PUSCH资源单元不再使用。
值得指出的是,在一个PRACH资源分组中,一个RO的PRACH资源单元可以映射至同组内其他RO对应的PUSCH资源单元上。一个交织单元中的PRACH资源单元也可以映射至不同PUO的PUSCH资源单元上。
本公开实施例的随机接入过程的信息传输方法中,终端通过获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,并根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源,那么网络设备在随机接入过程中,无需对所有可能的PRACH资源和PUSCH资源上的传输位置都进行盲检测,降低处理复杂度。
以上实施例介绍了不同场景下的随机接入过程的信息传输方法,下面将结合附图对与其对应的终端做进一步介绍。
如图5所示,本公开实施例的终端500,能实现上述实施例中获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,交织单元包括至少一个PRACH资源单元;根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源方法的细节,并达到相同的效果,该终端500具体包括以 下功能模块:
第一获取模块510,用于获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,交织单元包括至少一个PRACH资源单元;
发送模块520,用于根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源。
可选地,终端500还包括:
第二获取模块,用于获取交织间隔;
划分模块,用于按照交织间隔,将PRACH资源划分为至少一个交织单元。
可选地,映射关系包括:
交织单元中的PRACH资源单元与PUSCH资源对应的物理上行共享信道机会PUO之间的第一映射关系;
或者,
交织单元中的PRACH资源单元与PUSCH资源对应的PUO中的PUSCH资源单元之间的第二映射关系。
可选地,PUSCH资源单元是根据PUO的至少一项相关参数确定的。
可选地,相关参数包括:PUO的解调参考信号DMRS的端口信息和PUO的扰码标识中的至少一项。
可选地,第一映射关系包括:
PRACH资源分组中的交织单元中的PRACH资源单元与PUO之间的映射关系。
可选地,在一个PRACH资源分组内,交织单元与PUO之间的映射关系是按照交织单元编号和PUO编号顺序映射的。
可选地,第二映射关系包括:
PRACH资源分组中的交织单元中的PRACH资源单元与PUO中的PUSCH资源单元之间的映射关系。
可选地,在一个PRACH资源分组内,交织单元中的PRACH资源单元与PUO中的PUSCH资源单元之间的映射关系是按照交织单元编号和PUSCH 资源单元编号顺序映射的。
可选地,在一个交织单元内,PRACH资源单元与PUO中的PUSCH资源单元之间的映射关系是按照PRACH资源单元编号和PUSCH资源单元编号顺序映射的。
可选地,PRACH资源分组是一个关联周期中的,一个关联周期包括至少一个PRACH资源分组,一个PRACH资源分组包括与PRACH资源对应的至少一个随机接入信道机会RO,一个RO对应至少一个PRACH资源单元。
可选地,一个PRACH资源单元对应一个RO中的一个随机接入前导码。
可选地,PRACH资源分组是通过以下方式中的一种确定的:
将每T个时域单元中的所有RO划分为一个PRACH资源分组;
按照RO编号顺序,每M个RO划分为一个PRACH资源分组;
按照一个关联周期的分组数P,将一个关联周期内的所有RO划分为P个PRACH资源分组;
将关联周期内的所有RO划分为一个PRACH资源分组;
其中,T、M和P均为正整数。
可选地,在一个关联周期内,映射关系是按照PRACH资源分组编号和PUO编号顺序映射的。
可选地,交织单元与PUSCH资源之间的映射关系为:交织单元与PRACH资源对应的PUSCH资源之间的映射关系。
值得指出的是,本公开的终端实施例是与上述方法实施例对应的,上述方法实施例的实现方式及其达到的技术效果均适用于该终端的实施例,本公开实施例的终端通过获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,并根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源,那么网络设备在随机接入过程中,无需对所有可能的PRACH资源和PUSCH资源上的传输位置都进行盲检测,降低处理复杂度。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现; 也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,进一步地,图6为实现本公开各个实施例的一种终端的硬件结构示意图,该终端60包括但不限于:射频单元61、网络模块62、音频输出单元63、输入单元64、传感器65、显示单元66、用户输入单元67、接口单元68、存储器69、处理器610、以及电源611等部件。本领域技术人员可以理解,图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元61,用于获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,交织单元包括至少一个PRACH资源单元;根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源;
处理器610,用于控制射频单元61收发数据;
本公开实施例的终端通过获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,并根据映射关系,在随机接入资源上发送随机接入消息,其中,随机接入资源包括PUSCH资源和PRACH资源,那么网络设备在随机接入过程中,无需对所有可能的PRACH资源和PUSCH资源上的传输位置都进行盲检测,降低处理复杂度。
应理解的是,本公开实施例中,射频单元61可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器610处理;另外,将上行的数据发送给基站。通常,射频单元61包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元61还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块62为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元63可以将射频单元61或网络模块62接收的或者在存储器69中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元63还可以提供与终端60执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元63包括扬声器、蜂鸣器以及受话器等。
输入单元64用于接收音频或视频信号。输入单元64可以包括图形处理器(Graphics Processing Unit,GPU)641和麦克风642,图形处理器641对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元66上。经图形处理器641处理后的图像帧可以存储在存储器69(或其它存储介质)中或者经由射频单元61或网络模块62进行发送。麦克风642可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元61发送到移动通信基站的格式输出。
终端60还包括至少一种传感器65,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板661的亮度,接近传感器可 在终端60移动到耳边时,关闭显示面板661和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器65还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元66用于显示由用户输入的信息或提供给用户的信息。显示单元66可包括显示面板661,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板661。
用户输入单元67可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元67包括触控面板671以及其他输入设备672。触控面板671,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板671上或在触控面板671附近的操作)。触控面板671可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板671。除了触控面板671,用户输入单元67还可以包括其他输入设备672。具体地,其他输入设备672可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板671可覆盖在显示面板661上,当触控面板671检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板661上提供相应的视觉输出。虽然在图6中,触控面板671与显示面板661是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板671与显示面板661集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元68为外部装置与终端60连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元68可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端60内的一个或多个元件或者可以用于在终端60和外部装置之间传输数据。
存储器69可用于存储软件程序以及各种数据。存储器69可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器69可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器69内的软件程序和/或模块,以及调用存储在存储器69内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器610可包括一个或多个处理单元;可选地,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
终端60还可以包括给各个部件供电的电源611(比如电池),可选地,电源611可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端60包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种终端,包括处理器610,存储器69,存储在存储器69上并可在所述处理器610上运行的计算机程序,该计算机程序被处理器610执行时实现上述随机接入过程的信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无 线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述随机接入过程的信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的 划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一 组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选的实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (32)

  1. 一种随机接入过程的信息传输方法,应用于终端侧,包括:
    获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,所述交织单元包括至少一个PRACH资源单元;
    根据所述映射关系,在随机接入资源上发送随机接入消息,其中,所述随机接入资源包括所述PUSCH资源和所述PRACH资源。
  2. 根据权利要求1所述的随机接入过程的信息传输方法,其中,获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系的步骤之前,还包括:
    获取交织间隔;
    按照所述交织间隔,将所述PRACH资源划分为至少一个交织单元。
  3. 根据权利要求1所述的随机接入过程的信息传输方法,其中,所述映射关系包括:
    所述交织单元中的PRACH资源单元与所述PUSCH资源对应的物理上行共享信道机会PUO之间的第一映射关系;
    或者,
    所述交织单元中的PRACH资源单元与所述PUSCH资源对应的PUO中的PUSCH资源单元之间的第二映射关系。
  4. 根据权利要求3所述的随机接入过程的信息传输方法,其中,所述PUSCH资源单元是根据所述PUO的至少一项相关参数确定的。
  5. 根据权利要求4所述的随机接入过程的信息传输方法,其中,所述相关参数包括:所述PUO的解调参考信号DMRS的端口信息和所述PUO的扰码标识中的至少一项。
  6. 根据权利要求3所述的随机接入过程的信息传输方法,其中,所述第一映射关系包括:
    PRACH资源分组中的交织单元中的PRACH资源单元与所述PUO之间的映射关系。
  7. 根据权利要求6所述的随机接入过程的信息传输方法,其中,在一个 PRACH资源分组内,所述交织单元与所述PUO之间的映射关系是按照交织单元编号和PUO编号顺序映射的。
  8. 根据权利要求3所述的随机接入过程的信息传输方法,其中,所述第二映射关系包括:
    PRACH资源分组中的交织单元中的PRACH资源单元与所述PUO中的PUSCH资源单元之间的映射关系。
  9. 根据权利要求8所述的随机接入过程的信息传输方法,其中,在一个PRACH资源分组内,所述交织单元中的PRACH资源单元与所述PUO中的PUSCH资源单元之间的映射关系是按照交织单元编号和PUSCH资源单元编号顺序映射的。
  10. 根据权利要求9所述的随机接入过程的信息传输方法,其中,在一个交织单元内,所述PRACH资源单元与所述PUO中的PUSCH资源单元之间的映射关系是按照PRACH资源单元编号和PUSCH资源单元编号顺序映射的。
  11. 根据权利要求6或8所述的随机接入过程的信息传输方法,其中,所述PRACH资源分组是一个关联周期中的,一个关联周期包括至少一个PRACH资源分组,一个PRACH资源分组包括与所述PRACH资源对应的至少一个随机接入信道机会RO,一个RO对应至少一个PRACH资源单元。
  12. 根据权利要求11所述的随机接入过程的信息传输方法,其中,一个PRACH资源单元对应一个RO中的一个随机接入前导码。
  13. 根据权利要求6或8所述的随机接入过程的信息传输方法,其中,所述PRACH资源分组是通过以下方式中的一种确定的:
    将每T个时域单元中的所有RO划分为一个PRACH资源分组;
    按照RO编号顺序,每M个RO划分为一个PRACH资源分组;
    按照一个关联周期的分组数P,将一个关联周期内的所有RO划分为P个PRACH资源分组;
    将关联周期内的所有RO划分为一个PRACH资源分组;
    其中,T、M和P均为正整数。
  14. 根据权利要求6或8所述的随机接入过程的信息传输方法,其中, 在一个关联周期内,所述映射关系是按照PRACH资源分组编号和PUO编号顺序映射的。
  15. 根据权利要求1至10任一项所述的随机接入过程的信息传输方法,其中,所述交织单元与所述PUSCH资源之间的映射关系为:所述交织单元与所述PRACH资源对应的PUSCH资源之间的映射关系。
  16. 一种终端,包括:
    第一获取模块,用于获取物理随机接入信道PRACH资源中的交织单元与物理上行共享信道PUSCH资源之间的映射关系,所述交织单元包括至少一个PRACH资源单元;
    发送模块,用于根据所述映射关系,在随机接入资源上发送随机接入消息,其中,所述随机接入资源包括所述PUSCH资源和所述PRACH资源。
  17. 根据权利要求16所述的终端,还包括:
    第二获取模块,用于获取交织间隔;
    划分模块,用于按照所述交织间隔,将所述PRACH资源划分为至少一个交织单元。
  18. 根据权利要求16所述的终端,其中,所述映射关系包括:
    所述交织单元中的PRACH资源单元与所述PUSCH资源对应的物理上行共享信道机会PUO之间的第一映射关系;
    或者,
    所述交织单元中的PRACH资源单元与所述PUSCH资源对应的PUO中的PUSCH资源单元之间的第二映射关系。
  19. 根据权利要求18所述的终端,其中,所述PUSCH资源单元是根据所述PUO的至少一项相关参数确定的。
  20. 根据权利要求19所述的终端,其中,所述相关参数包括:所述PUO的解调参考信号DMRS的端口信息和所述PUO的扰码标识中的至少一项。
  21. 根据权利要求18所述的终端,其中,所述第一映射关系包括:
    PRACH资源分组中的交织单元中的PRACH资源单元与所述PUO之间的映射关系。
  22. 根据权利要求21所述的终端,其中,在一个PRACH资源分组内, 所述交织单元与所述PUO之间的映射关系是按照交织单元编号和PUO编号顺序映射的。
  23. 根据权利要求18所述的终端,其中,所述第二映射关系包括:
    PRACH资源分组中的交织单元中的PRACH资源单元与所述PUO中的PUSCH资源单元之间的映射关系。
  24. 根据权利要求23所述的终端,其中,在一个PRACH资源分组内,所述交织单元中的PRACH资源单元与所述PUO中的PUSCH资源单元之间的映射关系是按照交织单元编号和PUSCH资源单元编号顺序映射的。
  25. 根据权利要求24所述的终端,其中,在一个交织单元内,所述PRACH资源单元与所述PUO中的PUSCH资源单元之间的映射关系是按照PRACH资源单元编号和PUSCH资源单元编号顺序映射的。
  26. 根据权利要求21或23所述的终端,其中,所述PRACH资源分组是一个关联周期中的,一个关联周期包括至少一个PRACH资源分组,一个PRACH资源分组包括与所述PRACH资源对应的至少一个随机接入信道机会RO,一个RO对应至少一个PRACH资源单元。
  27. 根据权利要求26所述的终端,其中,一个PRACH资源单元对应一个RO中的一个随机接入前导码。
  28. 根据权利要求21或23所述的终端,其中,所述PRACH资源分组是通过以下方式中的一种确定的:
    将每T个时域单元中的所有RO划分为一个PRACH资源分组;
    按照RO编号顺序,每M个RO划分为一个PRACH资源分组;
    按照一个关联周期的分组数P,将一个关联周期内的所有RO划分为P个PRACH资源分组;
    将关联周期内的所有RO划分为一个PRACH资源分组;
    其中,T、M和P均为正整数。
  29. 根据权利要求21或23所述的终端,其中,在一个关联周期内,所述映射关系是按照PRACH资源分组编号和PUO编号顺序映射的。
  30. 根据权利要求16至25任一项所述的终端,其中,所述交织单元与所述PUSCH资源之间的映射关系为:所述交织单元与所述PRACH资源对应 的PUSCH资源之间的映射关系。
  31. 一种终端,包括:处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至15中任一项所述的随机接入过程的信息传输方法的步骤。
  32. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至15中任一项所述的随机接入过程的信息传输方法的步骤。
PCT/CN2020/081697 2019-03-29 2020-03-27 随机接入过程的信息传输方法及终端 WO2020200098A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021558003A JP7408681B2 (ja) 2019-03-29 2020-03-27 ランダムアクセスプロセスの情報伝送方法及び端末
EP20784981.1A EP3952569A4 (en) 2019-03-29 2020-03-27 INFORMATION TRANSMISSION METHOD FOR DIRECT ACCESS METHOD AND TERMINAL
BR112021019521A BR112021019521A2 (pt) 2019-03-29 2020-03-27 Método de transmissão de informações para procedimento de acesso aleatório e terminal.
US17/488,679 US20220022268A1 (en) 2019-03-29 2021-09-29 Information transmission method for random access procedure and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253175.6 2019-03-29
CN201910253175.6A CN111278156B (zh) 2019-03-29 2019-03-29 随机接入过程的信息传输方法及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/488,679 Continuation US20220022268A1 (en) 2019-03-29 2021-09-29 Information transmission method for random access procedure and terminal

Publications (1)

Publication Number Publication Date
WO2020200098A1 true WO2020200098A1 (zh) 2020-10-08

Family

ID=71003081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081697 WO2020200098A1 (zh) 2019-03-29 2020-03-27 随机接入过程的信息传输方法及终端

Country Status (6)

Country Link
US (1) US20220022268A1 (zh)
EP (1) EP3952569A4 (zh)
JP (1) JP7408681B2 (zh)
CN (2) CN114531737A (zh)
BR (1) BR112021019521A2 (zh)
WO (1) WO2020200098A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115515250A (zh) * 2021-06-07 2022-12-23 维沃移动通信有限公司 传输处理方法、终端及网络侧设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102622889B1 (ko) * 2019-02-15 2024-01-09 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
EP3926995B1 (en) * 2019-03-29 2023-10-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource configuration method, device, and storage medium
EP3957107A4 (en) * 2019-04-18 2022-11-09 ZTE Corporation METHOD AND APPARATUS FOR RANDOM ACCESS PROCEDURE
US11825514B2 (en) * 2020-04-21 2023-11-21 Qualcomm Incorporated Repetitive random access transmissions
CN111710060B (zh) * 2020-06-28 2021-05-07 上海悟景信息科技有限公司 基于车联网的用于大数据分析的乘车人员信息传输方法及系统
CN116528385A (zh) * 2022-01-20 2023-08-01 展讯半导体(南京)有限公司 随机接入方法、通信装置以及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106576341A (zh) * 2014-08-04 2017-04-19 高通股份有限公司 使用共享射频频带来配置上行链路信道传输的技术
WO2017151187A1 (en) * 2016-03-02 2017-09-08 Intel IP Corporation Low latency prach design in unlicensed spectrum
CN109479318A (zh) * 2016-07-21 2019-03-15 高通股份有限公司 共享射频谱段中上行链路的通信技术

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425973B2 (en) * 2015-11-25 2019-09-24 Qualcomm Incorporated Random access channel signaling on a shared communication medium
EP3410811B1 (en) * 2016-01-29 2021-05-26 LG Electronics Inc. Method and apparatus for performing random access procedure
US11122566B2 (en) * 2017-07-20 2021-09-14 Qualcomm Incorporated Waveform design based on power spectral density (PSD) parameters
US11057939B2 (en) * 2018-04-06 2021-07-06 Apple Inc. Apparatus, system, and method for preambles for unlicensed access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106576341A (zh) * 2014-08-04 2017-04-19 高通股份有限公司 使用共享射频频带来配置上行链路信道传输的技术
WO2017151187A1 (en) * 2016-03-02 2017-09-08 Intel IP Corporation Low latency prach design in unlicensed spectrum
CN109479318A (zh) * 2016-07-21 2019-03-15 高通股份有限公司 共享射频谱段中上行链路的通信技术

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Physical layer design of UL signals and channels for NR unlicensed operation", 3GPP TSG RAN WG1 MEETING #95 R1-1812559, 3 November 2018 (2018-11-03), XP051478789, DOI: 20200608143244A *
QUALCOMM INC.: "UL signals and channels for NR-U", 3GPP TSG RAN WG1 MEETING #95 R1-1813412, 3 November 2018 (2018-11-03), XP051479734, DOI: 20200608142816A *
See also references of EP3952569A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115515250A (zh) * 2021-06-07 2022-12-23 维沃移动通信有限公司 传输处理方法、终端及网络侧设备

Also Published As

Publication number Publication date
US20220022268A1 (en) 2022-01-20
EP3952569A1 (en) 2022-02-09
JP2022527793A (ja) 2022-06-06
JP7408681B2 (ja) 2024-01-05
BR112021019521A2 (pt) 2021-12-07
CN111278156B (zh) 2022-02-15
CN114531737A (zh) 2022-05-24
EP3952569A4 (en) 2022-06-08
CN111278156A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2020200098A1 (zh) 随机接入过程的信息传输方法及终端
WO2020147817A1 (zh) 随机接入过程的信息传输方法及终端
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
WO2019072077A1 (zh) 解调参考信号传输方法、网络设备及终端
US11601902B2 (en) Synchronization signal block transmission method, network device, and terminal
WO2019214664A1 (zh) 传输资源指示方法、网络设备及终端
WO2020147816A1 (zh) 随机接入传输方法及终端
WO2021088705A1 (zh) 定位参考信号的配置方法及装置
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
WO2020147827A1 (zh) 随机接入传输方法及终端
WO2020125360A1 (zh) 非授权频段信息传输方法、终端及网络设备
US11991756B2 (en) Random access transmission method and terminal
US11800556B2 (en) Information transmission method, network device, and terminal
WO2020147826A1 (zh) 随机接入传输方法及终端
WO2021147765A1 (zh) 旁链路参考信号处理方法及装置、通信设备
WO2021104283A1 (zh) 资源确定方法及装置、通信设备
WO2019214459A1 (zh) 信息传输方法、网络设备及终端
WO2021208938A1 (zh) 确定数据传输层数的方法及装置、通信设备
WO2021204151A1 (zh) 监测数量的确定方法及装置、通信设备
WO2021088783A1 (zh) 物理下行控制信道的检测方法及装置
WO2020007314A1 (zh) 信息传输方法、网络设备及终端
WO2020134222A1 (zh) 信息传输方法、终端及网络设备
WO2020029797A1 (zh) 确定方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021019521

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020784981

Country of ref document: EP

Effective date: 20211029

ENP Entry into the national phase

Ref document number: 112021019521

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210929