WO2019214459A1 - 信息传输方法、网络设备及终端 - Google Patents

信息传输方法、网络设备及终端 Download PDF

Info

Publication number
WO2019214459A1
WO2019214459A1 PCT/CN2019/084496 CN2019084496W WO2019214459A1 WO 2019214459 A1 WO2019214459 A1 WO 2019214459A1 CN 2019084496 W CN2019084496 W CN 2019084496W WO 2019214459 A1 WO2019214459 A1 WO 2019214459A1
Authority
WO
WIPO (PCT)
Prior art keywords
target transmission
transmission bandwidth
interlace
resource blocks
blocks included
Prior art date
Application number
PCT/CN2019/084496
Other languages
English (en)
French (fr)
Inventor
姜蕾
鲁智
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019214459A1 publication Critical patent/WO2019214459A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to an information transmission method, a network device, and a terminal.
  • an enhanced license Assisted Access (eLAA), or an unlicensed band
  • eLAA can be used as a supplement to a licensed band to help operators expand services.
  • the unlicensed band can operate in the 5 GHz, 37 GHz and 60 GHz bands.
  • the large bandwidth (80MHz or 100MHz) of the unlicensed band can reduce the implementation complexity of network devices and terminals.
  • Unlicensed bands are used because the unlicensed bands are shared by multiple radio access technologies (RATs), such as WiFi, radar, and Long Term Evolution License Assisted Access (LTE-LAA).
  • RATs radio access technologies
  • LTE-LAA Long Term Evolution License Assisted Access
  • LBT Listen Before Talk
  • MCOT Maximum Channel Occupancy Time
  • occupied bandwidth OCB
  • other rules Among them, for the 5 GHz band, the OCB should be greater than or equal to 80% of the nominal channel bandwidth. For the 60 GHz band, the OCB should be greater than or equal to 70% of the nominal channel bandwidth.
  • an interlaced resource block is introduced in the eLAA system.
  • RB resource block
  • 100 RBs on a bandwidth of 20 MHz are evenly divided into 10 interlaces, each interlace containing 10 equal intervals.
  • Physical Resource Block (PRB) as shown in FIG. 1, interlace 0 includes RB0, 10, 20, ..., 90, and interlace 1 includes RB1, 11, 21, ..., 91, interlace 2 RB2, 12, 22, ..., 92 are included, interlace 3 includes RB3, 13, 23, ..., 93, and so on, and interlace 9 includes RB9, 19, 29, ..., 99.
  • the terminal can be assigned to one or more interlaces at the time of scheduling.
  • the maximum channel bandwidth of each carrier is 400 MHz.
  • the maximum bandwidth supported by the terminal can be less than 400 MHz, and the terminal can work on multiple small bandwidth parts (BWPs).
  • Each bandwidth portion corresponds to a numerical configuration (Numerology), bandwidth, frequency location.
  • Different subcarrier spacings are introduced in the NR system, and there are a maximum of 275 RBs on each component carrier. Considering the guard interval at both ends and the different subcarrier spacing, the maximum number of RBs in the different bandwidths is RB. As shown in Table 1 and Table 2:
  • the number of RBs of the largest transmission bandwidth, N RB is no longer always an integer multiple of 10. For example, for a 15 kHz subcarrier spacing, the number of RBs available for a 20 MHz bandwidth is 106, and for a 30 kHz subcarrier spacing, the number of RBs available for a 50 MHz bandwidth is 133.
  • the BWP may be any subcarrier spacing of any bandwidth, and the number of RBs per BWP varies with bandwidth and subcarrier spacing, so the interlace structure of the eLAA system is no longer applicable to bandwidth. In a scenario or system in which the subcarrier spacing is flexibly configured, this may result in poor resource allocation flexibility of these scenarios or systems, resulting in low resource utilization.
  • Some embodiments of the present disclosure provide an information transmission method, a network device, and a terminal, to solve the problem that the bandwidth or sub-carrier interval flexible configuration scenario or system has poor resource allocation flexibility and low utilization rate.
  • some embodiments of the present disclosure provide an information transmission method, including:
  • the interleaving includes at least two frequency domain non-contiguous resource block sets, the number of interlaces included in the target transmission bandwidth or the number of resource blocks included in the interleaving and the target transmission bandwidth Contains the number of resource blocks that are related.
  • some embodiments of the present disclosure further provide a communication device, where the communication device is a network device or a terminal, including:
  • a sending module configured to send information on at least one interlace on a target transmission bandwidth; where the interleaving includes at least two frequency domain non-contiguous resource block sets, the number of interlaces included in the target transmission bandwidth or the number of resource blocks included in the interlace It is related to the number of resource blocks included in the target transmission bandwidth.
  • some embodiments of the present disclosure provide a network device including a processor, a memory, and a computer program stored on the memory and executable on the processor, the processor executing the computer program The steps of implementing the above information transmission method.
  • some embodiments of the present disclosure provide a terminal that includes a processor, a memory, and a computer program stored on the memory and executable on the processor, the processor being implemented by the processor The steps of the above information transmission method.
  • some embodiments of the present disclosure provide a computer readable storage medium having a computer program stored thereon, the processor implementing the steps of the information transmission method described above when the computer program is executed by the processor .
  • some embodiments of the present disclosure can improve the flexibility of resource allocation and improve resource utilization through the foregoing technical solutions.
  • Figure 1 is a schematic diagram showing the interleaved structure of the eLAA system
  • FIG. 2 shows a block diagram of a wireless communication system to which some embodiments of the present disclosure may be applied;
  • FIG. 3 is a flow chart showing an information transmission method of some embodiments of the present disclosure.
  • FIG. 4 is a schematic flowchart diagram of a method for transmitting information on a network device side according to some embodiments of the present disclosure
  • FIG. 5 is a schematic flowchart diagram of a method for transmitting information on a terminal side according to some embodiments of the present disclosure
  • Figure 6 shows a schematic diagram 1 of an interlaced structure in some embodiments of the present disclosure
  • Figure 7 shows a schematic diagram 2 of an interlaced structure in some embodiments of the present disclosure
  • Figure 8 shows a schematic diagram 3 of an interlaced structure in some embodiments of the present disclosure
  • Figure 9 shows a schematic diagram 4 of an interlaced structure in some embodiments of the present disclosure.
  • Figure 10 shows a schematic diagram 5 of an interleaved structure in some embodiments of the present disclosure
  • Figure 11 shows a schematic diagram 6 of an interlaced structure in some embodiments of the present disclosure
  • FIG. 12 is a block diagram showing the structure of a communication device of some embodiments of the present disclosure.
  • FIG. 13 is a block diagram showing the structure of a network device of some embodiments of the present disclosure.
  • FIG. 14 is a block diagram showing the structure of a terminal of some embodiments of the present disclosure.
  • Figure 15 shows a block diagram of a network device of some embodiments of the present disclosure
  • Figure 16 shows a block diagram of a terminal of some embodiments of the present disclosure.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency Single-carrier Frequency-Division Multiple Access
  • a CDMA system can implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • a TDMA system can implement a radio technology such as Global System for Mobile Communication (GSM).
  • GSM Global System for Mobile Communication
  • the OFDMA system can implement such as Ultra Mobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM. And other radio technologies.
  • UMB Ultra Mobile Broadband
  • Evolved UTRA Evolved UTRA
  • E-UTRA Evolved UTRA
  • IEEE 802.11 Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS).
  • UMTS Universal Mobile Telecommunications System
  • LTE and more advanced LTE such as LTE-A
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein can be used with both the systems and radio technologies mentioned above, as well as other systems and radio technologies.
  • the following description describes the NR system for illustrative purposes, and uses NR terminology in much of the description below, although these techniques are also applicable to applications other than NR system applications.
  • FIG. 2 illustrates a block diagram of a wireless communication system to which some embodiments of the present disclosure may be applied.
  • the wireless communication system includes a terminal 21 and a network device 22.
  • the terminal 21 may also be referred to as a terminal device or a user equipment (User Equipment, UE).
  • the terminal 21 may be a mobile phone, a tablet personal computer, a laptop computer, or a personal digital assistant (Personal Digital Assistant).
  • Terminal side device such as a PDA), a mobile Internet device (MID), a wearable device, or an in-vehicle device. It should be noted that the terminal 21 is not limited in some embodiments of the present disclosure. Specific type.
  • the network device 22 may be a base station or a core network, where the foregoing base station may be a base station of 5G or later (eg, gNB, 5G NR NB, etc.), or a base station in other communication systems (eg, an eNB, a WLAN access point, Or other access points, etc., wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service set (Basic) Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, or in the field
  • the base station is not limited to a specific technical vocabulary as long as the same technical effect is achieved. It should be noted that in some embodiments of the present disclosure, only the base station in the NR system is taken as an example
  • the base station can communicate with the terminal 21 under the control of the base station controller, which in various examples can be part of the core network or certain base stations. Some base stations can communicate with the core network via control information or user data through the backhaul. In some examples, some of these base stations may communicate with each other directly or indirectly through a backhaul link, which may be a wired or wireless communication link.
  • a wireless communication system can support operation on multiple carriers (waveform signals of different frequencies).
  • a multi-carrier transmitter can simultaneously transmit modulated signals on the multiple carriers. For example, each communication link can be a multi-carrier signal that is modulated according to various radio technologies. Each modulated signal can be transmitted on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, and the like.
  • the base station can communicate wirelessly with terminal 21 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of the access point can be divided into sectors that form only a part of the coverage area.
  • a wireless communication system can include different types of base stations (e.g., macro base stations, micro base stations, or pico base stations). The base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies. The base stations can be associated with the same or different access network or carrier deployments. The coverage areas of different base stations (including coverage areas of the same or different types of base stations, coverage areas using the same or different radio technologies, or coverage areas belonging to the same or different access networks) may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying an Uplink (UL) transmission (e.g., from the terminal 21 to the network device 22), or for carrying a downlink (Downlink, DL).
  • UL Uplink
  • Downlink Downlink
  • the downlink of the transmission (e.g., from network device 22 to terminal 21).
  • UL transmissions may also be referred to as reverse link transmissions, while DL transmissions may also be referred to as forward link transmissions.
  • the downlink transmission can be performed using a licensed band, an unlicensed band, or both.
  • uplink transmissions can be performed using licensed bands, unlicensed bands, or both.
  • Some embodiments of the present disclosure provide an information transmission method, which is applied to a communication device, which may be a network device (such as a base station), or may be a terminal.
  • the information transmission method includes the following, as shown in FIG. step:
  • Step 31 Send information on at least one interlace on the target transmission bandwidth.
  • the interlace includes at least two resource block non-contiguous resource block sets, and the number of interlaces included in the target transmission bandwidth or the number of resource blocks included in the interleave is related to the number of resource blocks included in the target transmission bandwidth.
  • the foregoing target transmission bandwidth may include, but is not limited to, a bandwidth part BWP, a transmission subband, a transmission bandwidth, a maximum transmission bandwidth under a system bandwidth, and the like, and a target transmission bandwidth or a subcarrier spacing of a target transmission bandwidth is different, and the target The number of resource blocks included in the transmission bandwidth is different.
  • the number of resource blocks included in the target transmission bandwidth in this embodiment refers to the total number of resource blocks included in the target transmission bandwidth.
  • the at least one interlace may be a frequency domain resource allocated for the information to be sent. If the information to be transmitted is uplink information, the at least one interlace may be an uplink grant frequency domain resource or an uplink unlicensed frequency domain resource scheduled by the base station.
  • the sending information is downlink information, and at least one interlace is a downlink authorized frequency domain resource or a downlink unlicensed frequency domain resource. Wherein, one interlace includes at least two resource block sets that are not consecutive in the frequency domain.
  • the number of interlaces included in the above target transmission bandwidth refers to the maximum number of interlaces included in the target transmission bandwidth.
  • the maximum number of interlaces included may indicate that the target transmission bandwidth is allocated to a maximum of several terminals, and the number of interlaces included in the target transmission bandwidth is related to the number of resource blocks included in the target transmission bandwidth. That is to say, the number of interlaces included in the target transmission bandwidth is no longer fixed, but can be changed according to the number of resource blocks included in the target transmission bandwidth to adapt to different bandwidth or sub-carrier spacing scenarios, so that resource allocation is more Flexible, which in turn increases resource utilization.
  • the number of resource blocks included in the foregoing interleave refers to the total number of resource blocks included in one interleave, and the number of resource blocks included in one interleave may also be related to the number of resource blocks included in the target transmission bandwidth. That is to say, the number of resource blocks included in one interlace is no longer fixed, but can be changed according to the number of resource blocks included in the target transmission bandwidth to adapt to different bandwidth or sub-carrier spacing scenarios, so that resource allocation is more Flexible, which in turn increases resource utilization.
  • the information sent on the at least one interlace may include, but is not limited to, the following: control information, data information, information carried by various reference signals, information carried by the control channel, information carried by the data channel, and the like.
  • the information transmission method of some embodiments of the present disclosure may be performed on the network device side or the terminal side. As shown in FIG. 4 , the information transmission method of some embodiments of the present disclosure may include the following steps:
  • Step 41 The network device selects an interleaved interleaving structure.
  • the foregoing interleaving structure includes at least: a maximum number of interlaces included in the target transmission bandwidth, and a total number of resource blocks included in one interlace.
  • the corresponding interleaving structure may be different under different bandwidths or sub-carrier spacings, and then the optional interleaving structure may be more than one type, and the network device may select an interleaving structure according to requirements. Used for resource allocation or information transfer.
  • Step 42 Send information on at least one interlace on the target transmission bandwidth according to the selected interleaving structure.
  • the network device After selecting the interleaving structure, the network device transmits downlink information on at least one interlace that satisfies the selected interleaving structure on the target transmission bandwidth.
  • the downlink information may include, but is not limited to, downlink control information, downlink data information, information carried by various downlink reference signals, information carried by a downlink control channel, information carried by a downlink data channel, and the like.
  • the information transmission method of some embodiments of the present disclosure may include the following steps:
  • Step 51 The terminal receives information related to the interleaving structure from the network device side.
  • the above interleaving structure includes at least one of a maximum number of interlaces included in the target transmission bandwidth and a total number of resource blocks included in one interlace.
  • the corresponding interleaving structure may be different under different bandwidths or sub-carrier spacings, and then the optional interleaving structure may be more than one type, and the network device may select an interleaving structure according to requirements. Used for resource allocation or information transfer. After selecting the used interleaving structure, the network device sends the related information of the interleaving structure to the terminal.
  • the information related to the interleaving structure may include, but is not limited to, at least one of the following: a maximum number of interlaces included in the target transmission bandwidth, a total number of resource blocks included in one interlace, a starting position of the interlace, and interleaving. End position, interleaved index number (or interleaved number), interleaved interval, and the like.
  • Step 51 can be implemented as follows:
  • the terminal receives Radio Resource Control (RRC) signaling from the network device side, where the RRC signaling carries information related to the interleaving structure.
  • RRC Radio Resource Control
  • the network device may notify the terminal of the interleaving structure of the BWP.
  • Step 52 Determine an interleaving structure according to the foregoing information, and send information on at least one interlace on the target transmission bandwidth according to the determined interleaving structure.
  • the terminal determines the used interleaving structure according to the information related to the interleaving structure, and transmits the uplink information on at least one interlace satisfying the determined interleaving structure on the target transmission bandwidth.
  • the foregoing uplink information may include, but is not limited to, uplink control information, uplink data information, information carried by various uplink reference signals, information carried by an uplink control channel, information carried by an uplink data channel, and the like.
  • the number of fixed interlaces in the scenario that is, the maximum number of interlaces included in the target transmission bandwidth is fixed.
  • the number of RBs used for transmission in the target transmission bandwidth may be limited to an integer multiple of the interlace, and the resource blocks other than the interlace within the target transmission bandwidth are guard intervals.
  • the target transmission bandwidth is 20 MHz
  • the number of interlaces included is M (for example, 10)
  • the number of RBs included in each interlace is equal to: the number of resource blocks included in the target transmission bandwidth divided by the target transmission bandwidth.
  • the number of interleaved numbers is rounded down to the quotient, which can be expressed as floor(N RB /M), where the floor function is rounded down, N RB is the number of resource blocks included in the target transmission bandwidth, and M is the target transmission bandwidth.
  • the number of RBs transmitted is limited to 100, and the remaining 6 RBs are used for inter-band guard intervals. As shown in FIG.
  • interlace 0 includes RB0, 10, 20, ..., 90
  • interlace 1 includes RB1, 11, 21, ..., 91
  • interlace 2 includes RB2, 12, 22, ..., 92
  • the interlace 3 includes RB3, 13, 23, ..., 93, and so on.
  • the interlace 9 includes RBs 9, 19, 29, ..., 99, and the terminal can be assigned to one or more interlaces at the time of scheduling.
  • RB100-105 acts as an inter-band guard interval.
  • interlace 0 includes RB6, 16, 26, ..., 96
  • interlace 1 includes RB7, 17, 27, ..., 97
  • interlace 2 includes RB8, 18, 28, ..., 98
  • interlace 3 contains RB9, 19, 29, ..., 99, and so on
  • interlace 9 contains RBs 15, 25, 35, ..., 105, which is not shown in the figure.
  • the RBs serving as the guard interval in the target transmission bandwidth may also be located on both sides of the RB for transmission, for example, RB0-2 and RB103-105 are used as inter-band guard intervals, and other RBs are divided into 10 interlaces, and the example is shown in the figure. Not shown.
  • the OCB requirements of the unlicensed bands may not be met.
  • the number of resource blocks included in the target transmission resource is greater than the first threshold, determining that the number of interlaces included in the target transmission bandwidth is a first value; the number of resource blocks included in the target transmission resource is less than or equal to At the first threshold, it is determined that the number of interlaces included in the target transmission bandwidth is the second value. Wherein the second value is less than the first value.
  • the target transmission bandwidth includes 10 interlaces; the resources included in the target transmission resource When the number of blocks is less than or equal to 50, it is determined that the target transmission bandwidth includes 5 interlaces.
  • the target transmission bandwidth is 20 MHz and the subcarrier spacing is 30 kHz.
  • the total number of resource blocks included in the target transmission bandwidth is 51, which is greater than 50, and the number of interlaces included in the target transmission bandwidth is determined to be 10
  • the number of RBs included in each interlace is equal to: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth, expressed as floor(N RB /M).
  • interlace 0 includes RB0, 10, 20, 30, 40, interlace 1 includes RB1, 11, 21, 31, 41, interlace 2 includes RB2, 12, 22, 32, 42, and interlace 3 includes RB3, 13, 23, 33, 43, and so on, the interleaving 9 comprises RBs 9, 19, 29, 39, 49, which can be assigned to one or more interlaces during scheduling.
  • the RB50 serves as an inter-band guard interval.
  • interlace 0 includes RB1, 11, 21, 31, 41
  • interlace 1 includes RB2, 12, 22, 32, 42
  • interlace 2 includes RB3, 13, 23, 33, 43
  • interlace 3 RB4, 14, 24, 34, 44 are included, and so on
  • the interlace 9 includes RBs 10, 20, 30, 40, 50, which is not shown in the figure.
  • the target transmission bandwidth is 20 MHz, and the subcarrier spacing is 60 kHz.
  • the total number of resource blocks included in the target transmission bandwidth is 24, less than 50, and the number of interlaces included in the target transmission bandwidth is determined to be 5
  • the number of RBs included in each interlace is equal to: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth, expressed as floor(N RB /5).
  • the interlace 0 includes RB0, 5, 10, 15, the interlace 1 includes RB1, 6, 11, 16, the interlace 2 includes RB2, 7, 12, 17, and the interlace 3 includes RB3, 8, 13, 18, Interlace 4 contains RBs 4, 9, 14, 19, which can be assigned to one or more interlaces at the time of scheduling.
  • RB20-23 acts as an inter-band guard interval.
  • interlace 0 includes RB4, 9, 14, 19, interlace 1 includes RB5, 10, 15, 20, interlace 2 includes RB6, 11, 16, 21, and interlace 3 includes RB7, 12 17, 22, the interlace 4 comprises RBs 8, 13, 18, 23, an example of which is not shown in the figure.
  • the first threshold value is 50, the first value is 10, and the second value is 5 as an example.
  • the first threshold, the first value, and the second value may be actual. The embodiment does not limit this as needed.
  • the above embodiment uses the number of RBs used for transmission to be an integer multiple of the total number of interlaces, where the RB used for transmission is a frequency.
  • the domain is contiguous, and the remaining RBs on one side or both sides of the RB for transmission serve as guard intervals.
  • the interleaving structure in the scenario may also be in the following form: the target transmission bandwidth includes a first number of first interlaces, and a second quantity, in order to further improve resource utilization, in order to further improve resource utilization.
  • the second interlace wherein the number of resource blocks included in one first interlace is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth, which can be expressed as ceil (N RB /M), where the ceil function is rounded up, N RB is the number of resource blocks included in the target transmission bandwidth, and M is the number of interlaces included in the target transmission bandwidth.
  • the number of resource blocks included in a second interlace is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth, which can be expressed as floor(N RB /M), The floor function is rounded down, N RB is the number of resource blocks included in the target transmission bandwidth, and M is the number of interlaces included in the target transmission bandwidth.
  • the number of resource blocks included in the interleave is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth, which can represent It is ceil(N RB /M), where the ceil function is rounded up, N RB is the number of resource blocks included in the target transmission bandwidth, and M is the number of interlaces included in the target transmission bandwidth.
  • the number of resource blocks included in the interleave is: the number of resource blocks included in the target transmission bandwidth divided by the number of interlaces included in the target transmission bandwidth. It can be expressed as floor(N RB /M), where the floor function is rounded down, N RB is the number of resource blocks included in the target transmission bandwidth, and M is the number of interlaces included in the target transmission bandwidth.
  • the second threshold is less than or equal to the number of resource blocks included in the target transmission bandwidth divided by the remainder of the number of interlaces included in the target transmission bandwidth, that is, the second threshold is less than or equal to N RB mod M.
  • N RB mod M When the second threshold is less than N RB mod M , most of the RBs included in the target transmission bandwidth are used for transmission, and the remaining small RBs are used for inter-band spacing or other effects.
  • the second threshold is equal to N RB mod M , all RBs included in the target transmission bandwidth are used for transmission. For example, in FR1, the target transmission bandwidth is 20 MHz, and the subcarrier spacing is 15 kHz.
  • interlace 0 includes RB0, 10, 20, ..., 90, 100
  • interlace 1 includes RB1, 11, 21, ..., 91, 101
  • interlace 2 includes RB2, 12, 22, ..., 92 102
  • interlace 3 includes RB3, 13, 23, ..., 93, 103, and so on
  • interlace 5 includes RB5, 15, 25, ..., 95, 105.
  • the interlace 7 includes RBs 7, 17, 27, . . .
  • the interlace 8 includes RBs 8, 18, 28, . . . , 98, and the interlaces 9 include RBs 9, 19, 29, . In this way, all RBs in the target transmission bandwidth are used for transmission, which can improve resource utilization efficiency.
  • the number of resource blocks included in the interleave is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth. It can be expressed as ceil(N RB /M), where the ceil function is rounded up, N RB is the number of resource blocks included in the target transmission bandwidth, and M is the number of interlaces included in the target transmission bandwidth. Or, when the index number of the interlace is less than the third threshold, the number of resource blocks included in the interleave is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth. Expressed as floor(N RB /M), where the floor function is rounded down, N RB is the number of resource blocks included in the target transmission bandwidth, and M is the number of interlaces included in the target transmission bandwidth.
  • the third threshold is greater than or equal to M-(N RB mod M), where N RB is the number of resource blocks included in the target transmission bandwidth, and M is the number of interlaces included in the target transmission bandwidth.
  • N RB is the number of resource blocks included in the target transmission bandwidth
  • M is the number of interlaces included in the target transmission bandwidth.
  • Scenario 2 When the number of resource blocks included in each interlace is fixed, the number of interlaces included in the target transmission bandwidth is determined according to the number of resource blocks included in the interleave and the number of resource blocks included in the target transmission bandwidth.
  • the scenario fixes the number of RBs included in each interlace.
  • the number of RBs used for transmission in the target transmission bandwidth can be limited to an integer multiple of the number of RBs included in each interlace.
  • the outer resource block is the guard interval.
  • the number of interlaces included in the target transmission bandwidth is: the quotient of the number of resource blocks included in the target transmission bandwidth divided by the number of resource blocks included in the interlace, which can be expressed as floor(N RB /N), where The floor function is rounded down, N RB is the number of resource blocks included in the target transmission bandwidth, and N is the number of RBs included in one interlace.
  • N RB is the number of resource blocks included in the target transmission bandwidth
  • N is the number of RBs included in one interlace.
  • the target transmission bandwidth is 20 MHz
  • the subcarrier spacing is 30 kHz.
  • the target transmission bandwidth includes 51 RBs.
  • interlace 0 includes RB0, 5, 10, ..., 45, interlace 1 includes RB1, 6, 11, 16, ..., 46, and interlace 2 includes RB2, 7, 12, 17, . . . . , 47, Interlace 3 includes RB3, 8, 13, 18, ..., 48, and Interlace 4 includes RB4, 9, 14, 19, ..., 49, and RB50 is used as an inter-band guard interval.
  • interlace 0 includes RB1, 6, 11, 16, ..., 46
  • interlace 1 includes RB2, 7, 12, 17, ..., 47
  • interlace 2 includes RB3, 8, 13, 18, ..., 48
  • interlace 3 comprises RB4, 9, 14, 19, ..., 49
  • interlace 4 comprises RB5, 10, 15, 20, ..., 50, the example is not in the figure show.
  • an interlace includes at least a resource block set that is discontinuous in a frequency domain, wherein one resource block set may include one resource block, that is, any two resource blocks in one interlace are discontinuous, as described above.
  • the illustrated interleaved structure is this way.
  • one resource block set may include at least two resource blocks that are consecutive in the frequency domain, that is, one interlace may include resource blocks that are continuous in the frequency domain.
  • the target transmission bandwidth is 20 MHz
  • the subcarrier spacing is 30 kHz.
  • the target transmission bandwidth includes 51 RBs, assuming that the target transmission bandwidth has 5 interlaces, and each interlace includes 10 RB, then the resource mapping in the target transmission resource may be as shown in FIG. 10.
  • One interlace includes 10 resource block sets that are discontinuous in the frequency domain, where one resource block set includes one resource block, and interlace 0 includes RB0, 5, 10, ..., 45, interlace 1 comprises RB1, 6, 11, 16, ..., 46, interlace 2 comprises RB2, 7, 12, 17, ..., 47, and interlace 3 comprises RB3, 8, 13 18, ..., 48, the interlace 4 includes RB4, 9, 14, 19, ..., 49, and the RB 50 serves as an inter-band guard interval.
  • an interlace includes five resource block sets that are discontinuous in the frequency domain, wherein one resource block set includes two resource blocks that are consecutive in the frequency domain, and the interlace 0 includes RB0, 1, 10, and 11.
  • interlace 1 includes RB2, 3, 12, 13, ..., 42, 43, interlace 2 includes RB4, 5, 14, 15, ..., 44, 45, and interlace 3 includes RB6, 7 16, 17, 17, ..., 46, 47, the interlace 4 includes RB8, 9, 18, 19, ..., 48, 49, and the RB 50 serves as an inter-band guard interval.
  • the network device or the terminal performs information transmission by adopting an interleaving structure suitable for different transmission bandwidths, thereby improving resource allocation flexibility and improving resource utilization.
  • the communication device 1200 of some embodiments of the present disclosure can implement the details of the method for transmitting information on at least one interlace on a target transmission bandwidth in the foregoing embodiment, and achieve the same effect, wherein the interleaving includes at least Two frequency domain non-contiguous resource block sets, the number of interlaces included in the target transmission bandwidth or the number of resource blocks included in the interleave is related to the number of resource blocks included in the target transmission bandwidth.
  • the communication device 1200 specifically includes the following functional modules:
  • the sending module 1210 is configured to send information on at least one interlace on the target transmission bandwidth, where the interlace includes at least two frequency domain non-contiguous resource block sets, where the target transmission bandwidth includes the number of interlaces or the interleaved resource blocks.
  • the number is related to the number of resource blocks included in the target transmission bandwidth.
  • the number of resource blocks included in the interleave is determined according to the number of interlaces included in the target transmission bandwidth and the number of resource blocks included in the target transmission bandwidth.
  • determining that the number of interlaces included in the target transmission bandwidth is a second value, wherein the second value is smaller than the first value.
  • the number of resource blocks included in the interlace is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth.
  • the number of resource blocks included in the interleave is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth.
  • the number of resource blocks included in the interleave is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth.
  • the second threshold is less than or equal to the number of resource blocks included in the target transmission bandwidth divided by the remainder of the number of interlaces included in the target transmission bandwidth.
  • the number of interlaces included in the target transmission bandwidth is determined according to the number of resource blocks included in the interleave and the number of resource blocks included in the target transmission bandwidth.
  • the number of interlaces included in the target transmission bandwidth is a quotient of the number of resource blocks included in the target transmission bandwidth divided by the number of resource blocks included in the interlace.
  • the resource block except the interlace in the target transmission bandwidth is a guard interval.
  • the resource block set includes at least two resource blocks that are consecutive in the frequency domain, or the resource block set includes one resource block.
  • the method further includes: a selecting module 1320, configured to select an interleaving structure of the network device.
  • the method further includes: a receiving module 1420, configured to receive information related to the interleaving structure from the network device side.
  • the receiving module 1420 includes:
  • the receiving submodule is configured to receive radio resource control RRC signaling from the network device side, where the RRC signaling carries information related to the interleaving structure.
  • the communication device of some embodiments of the present disclosure can improve the flexibility of resource allocation and improve resource utilization through the foregoing solution.
  • each module of the above network device and terminal is only a division of logical functions. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. And these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors ( A digital signal processor (DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • an embodiment of the present disclosure further provides a network device, including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • a network device including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • Some embodiments of the present disclosure also provide a computer readable storage medium having stored thereon a computer program, the processor implementing the steps of the information transmission method as described above when executed by a processor .
  • the computer readable storage medium referred to in the present disclosure may be a volatile computer readable storage medium or a nonvolatile computer readable storage medium.
  • the network device 1500 includes an antenna 151, a radio frequency device 152, and a baseband device 153.
  • the antenna 151 is connected to the radio frequency device 152.
  • the radio frequency device 152 receives information through the antenna 151, and transmits the received information to the baseband device 153 for processing.
  • the baseband device 153 processes the information to be transmitted and transmits it to the radio frequency device 152.
  • the radio frequency device 152 processes the received information and transmits it via the antenna 151.
  • the above-described band processing device may be located in the baseband device 153, and the method performed by the network device in the above embodiment may be implemented in the baseband device 153, which includes the processor 154 and the memory 155.
  • the baseband device 153 may include, for example, at least one baseband board on which a plurality of chips are disposed, as shown in FIG. 15, one of which is, for example, a processor 154, connected to the memory 155 to call a program in the memory 155 to execute The network device operation shown in the above method embodiment.
  • the baseband device 153 may further include a network interface 156 for interacting with the radio frequency device 152, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the method performed by the above network device.
  • An integrated circuit such as one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • Memory 155 can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory may be a Read-Only Memory (ROM), a Programmable ROM (Programmable ROM), or an Erasable PROM (EPROM). , electrically erasable programmable read only memory (EEPROM) or flash memory.
  • the volatile memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous).
  • DRAM double data rate synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchlink DRAM
  • DRRAM Direct Memory Bus
  • the network device of some embodiments of the present disclosure further includes a computer program stored on the memory 155 and executable on the processor 154, and the processor 154 calls a computer program in the memory 155 to execute the execution of each module shown in FIG. Methods.
  • the method can be used to: transmit information on at least one interlace on the target transmission bandwidth; wherein the interleaving includes at least two resource block non-contiguous resource block sets, and the target transmission bandwidth includes the interlace
  • the number or number of resource blocks included in the interleaving is related to the number of resource blocks included in the target transmission bandwidth.
  • the number of resource blocks included in the interleave is determined according to the number of interlaces included in the target transmission bandwidth and the number of resource blocks included in the target transmission bandwidth.
  • determining that the number of interlaces included in the target transmission bandwidth is a second value, wherein the second value is smaller than the first value.
  • the number of resource blocks included in the interlace is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth.
  • the number of resource blocks included in the interleave is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth.
  • the number of resource blocks included in the interleave is: the number of resource blocks included in the target transmission bandwidth divided by the quotient of the number of interlaces included in the target transmission bandwidth.
  • the second threshold is less than or equal to the number of resource blocks included in the target transmission bandwidth divided by the remainder of the number of interlaces included in the target transmission bandwidth.
  • the number of interlaces included in the target transmission bandwidth is determined according to the number of resource blocks included in the interleave and the number of resource blocks included in the target transmission bandwidth.
  • the number of interlaces included in the target transmission bandwidth is a quotient of the number of resource blocks included in the target transmission bandwidth divided by the number of resource blocks included in the interlace.
  • the resource block except the interlace in the target transmission bandwidth is a guard interval.
  • the computer program when called by the processor 154, it can be used to perform: an interleaving structure in which the network device selects interleaving.
  • the resource block set includes at least two resource blocks that are consecutive in the frequency domain, or the resource block set includes one resource block.
  • the network device in some embodiments of the present disclosure can improve the flexibility of resource allocation and improve resource utilization through the foregoing technical solutions.
  • FIG. 16 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 160 includes, but is not limited to, a radio frequency unit 161, a network module 162, and an audio output unit 163.
  • the terminal structure shown in FIG. 16 does not constitute a limitation of the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet, a notebook, a palmtop, an in-vehicle terminal, a wearable device, a pedometer, and the like.
  • the radio frequency unit 161 is configured to send information on at least one interlace on the target transmission bandwidth, where the interlace includes at least two non-contiguous resource block sets in the frequency domain, and the target transmission bandwidth includes the number of interlaces or resources included in the interlace.
  • the number of blocks is related to the number of resource blocks included in the target transmission bandwidth;
  • the processor 1610 is configured to control the radio frequency power supply 161 to send and receive data.
  • the terminal of some embodiments of the present disclosure can improve the flexibility of resource allocation and improve resource utilization by the above solution.
  • the radio frequency unit 161 may be configured to receive and transmit signals during or after receiving or transmitting information, and specifically, after receiving downlink data from the base station, processing the processor 1610; Send the uplink data to the base station.
  • radio frequency unit 161 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 161 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides the user with wireless broadband Internet access through the network module 162, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 163 can convert the audio data received by the radio frequency unit 161 or the network module 162 or stored in the memory 169 into an audio signal and output as a sound. Moreover, the audio output unit 163 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the terminal 160.
  • the audio output unit 163 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 164 is for receiving an audio or video signal.
  • the input unit 164 may include a graphics processing unit (GPU) 1641 and a microphone 1642 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 166.
  • the image frames processed by the graphics processor 1641 may be stored in the memory 169 (or other storage medium) or transmitted via the radio unit 161 or the network module 162.
  • the microphone 1642 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 161 in the case of a telephone call mode.
  • Terminal 160 also includes at least one type of sensor 165, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 1661 according to the brightness of the ambient light, and the proximity sensor can close the display panel 1661 and/or when the terminal 160 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 165 may also include a fingerprint sensor, a pressure sensor, an iris sensor, a molecular sensor, a gyroscope, a barometer, a hygrometer, a thermometer, an infrared Sensors, etc., will not be described here.
  • the display unit 166 is for displaying information input by the user or information provided to the user.
  • the display unit 166 can include a display panel 1661.
  • the display panel 1661 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • User input unit 167 can be used to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 167 includes a touch panel 1671 and other input devices 1672.
  • the touch panel 1671 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1671 or near the touch panel 1671. operating).
  • the touch panel 1671 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1610 receives commands from the processor 1610 and executes them.
  • the touch panel 1671 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 167 may also include other input devices 1672.
  • other input devices 1672 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein.
  • the touch panel 1671 can be overlaid on the display panel 1661. After the touch panel 1671 detects a touch operation thereon or nearby, the touch panel 1671 transmits to the processor 1610 to determine the type of the touch event, and then the processor 1610 according to the touch. The type of event provides a corresponding visual output on display panel 1661.
  • the touch panel 1671 and the display panel 1661 are used as two independent components to implement the input and output functions of the terminal in FIG. 16, in some embodiments, the touch panel 1671 and the display panel 1661 may be integrated. The input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 168 is an interface in which an external device is connected to the terminal 160.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 168 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 160 or can be used at the terminal 160 and external devices Transfer data between.
  • Memory 169 can be used to store software programs as well as various data.
  • the memory 169 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 169 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 1610 is a control center of the terminal, which connects various parts of the entire terminal using various interfaces and lines, and executes by executing or executing software programs and/or modules stored in the memory 169, and calling data stored in the memory 169.
  • the processor 1610 can include one or more processing units; optionally, the processor 1610 can integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and a modulation solution
  • the processor mainly handles wireless communication. It will be appreciated that the above described modem processor may also not be integrated into the processor 1610.
  • the terminal 160 can also include a power source 1611 (such as a battery) for powering various components.
  • a power source 1611 such as a battery
  • the power source 1611 can be logically coupled to the processor 1610 through a power management system to manage charging, discharging, and power management through the power management system. And other functions.
  • terminal 160 includes some functional modules not shown, and details are not described herein again.
  • some embodiments of the present disclosure further provide a terminal, including a processor 1610, a memory 169, a computer program stored on the memory 169 and executable on the processor 1610, the computer program being processed by the processor 1610.
  • the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal digital assistant
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • Some embodiments of the present disclosure further provide a computer readable storage medium having a computer program stored thereon, the computer program being executed by a processor to implement various processes of the foregoing information transmission method embodiment, and achieving the same The technical effect, in order to avoid duplication, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信息传输方法、网络设备及终端。该方法包括:在目标传输带宽上的至少一个交织上发送信息;其中,交织包括至少两个频域非连续的资源块集,目标传输带宽所包含交织的数目或交织所包含资源块的数目与目标传输带宽所包含资源块的数目相关。

Description

信息传输方法、网络设备及终端
相关申请的交叉引用
本申请主张在2018年5月8日在中国提交的中国专利申请号No.201810430835.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息传输方法、网络设备及终端。
背景技术
在移动通信系统中,增强授权频谱辅助接入(enhance License Assisted Access,eLAA),或称为非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充,以帮助运营商对服务进行扩容。为了与新空口(New Radio,NR)系统部署保持一致,并尽可能的最大化基于NR系统的非授权接入,非授权频段可以工作在5GHz、37GHz和60GHz频段。非授权频段的大带宽(80MHz或者100MHz)能够减小网络设备和终端的实施复杂度。由于非授权频段由多种无线接入技术(Radio Access Technology,RATs)共用,例如WiFi、雷达、长期演进授权频谱辅助接入(Long Term Evolution License Assisted Access,LTE-LAA)等,因此非授权频段在使用时必须符合某些规定(regulation)以保证所有设备可以公平的使用该资源,例如先听后说(Listen Before Talk,LBT),最大信道占用时间(Maximum Channel Occupancy Time,MCOT),占用带宽(occupied channel bandwidth,OCB)等规则。其中,对于5GHz频段,OCB要大于等于80%的标称信道带宽(nominal channel bandwidth),对于60GHz频段,OCB要大于等于70%的标称信道带宽。
为了满足OCB要求,在eLAA系统中引入了交织的(interlaced)资源块(Resource Block,RB),例如在20MHz的带宽上的100个RB被均匀分成10个交织,每个交织包含10个等间隔的物理资源块(Physical Resource Block,PRB),如图1所示,交织0包含RB0、10、20、...、90,交织1包含RB1、 11、21、...、91,交织2包含RB2、12、22、...、92,交织3包含RB3、13、23、...、93,依次类推,交织9包含RB9、19、29、...、99。在调度时终端可以被分配给一个或多个交织。
在NR系统中,每个载波最大的信道带宽(channel bandwidth)是400MHz。但是考虑到终端能力,终端支持的最大带宽可以小于400MHz,且终端可以工作在多个小的带宽部分(bandwidth part,BWP)上。每个带宽部分对应于一个数值配置(Numerology)、带宽、频率位置(frequency location)。且在NR系统中引入了不同的子载波间隔,每个合成载波(component carrier)上最多275个RB,考虑到两端的保护间隔、不同子载波间隔,不同带宽下最大的传输带宽的RB个数如表1和表2所示:
表1
Figure PCTCN2019084496-appb-000001
表2
Figure PCTCN2019084496-appb-000002
在不同带宽下,最大的传输带宽的RB个数N RB不再一直是10的整数倍。例如对于15kHz子载波间隔,20MHz带宽可用的RB数是106,对于30kHz子载波间隔,50MHz带宽可用的RB数是133。此外,考虑到BWP配置,BWP可能会是任意带宽任意子载波间隔,每个BWP上个RB个数会随着带宽和子载波间隔变化,因此eLAA系统的交织结构(interlace structure)不再适用于带宽或子载波间隔灵活配置的场景或系统中,这就可能导致这些场景或系统的资源分配灵活性差,从而导致资源利用率低。
发明内容
本公开的一些实施例提供了一种信息传输方法、网络设备及终端,以解决带宽或子载波间隔灵活配置的场景或系统的资源分配灵活性差,利用率低的问题。
第一方面,本公开的一些实施例提供了一种信息传输方法,包括:
在目标传输带宽上的至少一个交织上发送信息;其中,交织包括至少两个频域非连续的资源块集,目标传输带宽所包含交织的数目或交织所包含资源块的数目与目标传输带宽所包含资源块的数目相关。
第二方面,本公开的一些实施例还提供了一种通信设备,该通信设备为网络设备或终端,包括:
发送模块,用于在目标传输带宽上的至少一个交织上发送信息;其中,交织包括至少两个频域非连续的资源块集,目标传输带宽所包含交织的数目或交织所包含资源块的数目与目标传输带宽所包含资源块的数目相关。
第三方面,本公开的一些实施例提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时所述处理器实现上述的信息传输方法的步骤。
第四方面,本公开的一些实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时所述处理器实现上述的信息传输方法的步骤。
第五方面,本公开的一些实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时所述处理器实现上述的信息传输方法的步骤。
这样,本公开的一些实施例通过上述技术方案,可以提高资源分配的灵活性,提高资源利用率。
附图说明
为了更清楚地说明本公开的一些实施例的技术方案,下面将对本公开的一些实施例的描述中所需要使用的附图作简单地介绍。显而易见地,下面描 述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示eLAA系统下交织结构的示意图;
图2表示本公开的一些实施例可应用的无线通信系统的框图;
图3表示本公开的一些实施例的信息传输方法的流程示意图;
图4表示本公开的一些实施例的网络设备侧的信息传输方法的流程示意图;
图5表示本公开的一些实施例终端侧的信息传输方法的流程示意图;
图6表示本公开的一些实施例中交织结构的示意图一;
图7表示本公开的一些实施例中交织结构的示意图二;
图8表示本公开的一些实施例中交织结构的示意图三;
图9表示本公开的一些实施例中交织结构的示意图四;
图10表示本公开的一些实施例中交织结构的示意图五;
图11表示本公开的一些实施例中交织结构的示意图六;
图12表示本公开的一些实施例的通信设备的模块结构示意图;
图13表示本公开的一些实施例的网络设备的模块结构示意图;
图14表示本公开的一些实施例的终端的模块结构示意图;
图15表示本公开的一些实施例的网络设备框图;以及
图16表示本公开的一些实施例的终端框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例。然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们 的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。 可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图2,图2示出本公开的一些实施例可应用的无线通信系统的框图。无线通信系统包括终端21和网络设备22。其中,终端21也可以称作终端设备或者用户终端(User Equipment,UE),终端21可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端21的具体类型。网络设备22可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开的一些实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端21通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端21进行无线通信。每个基站可 以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端21到网络设备22)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备22到终端21)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开的一些实施例提供了一种信息传输方法,应用于通信设备,该通信设备可以是网络设备(如基站),也可以是终端,其中,如图3所示,该信息传输方法包括以下步骤:
步骤31:在目标传输带宽上的至少一个交织上发送信息。其中,交织包括至少两个频域非连续的资源块集,目标传输带宽所包含交织的数目或交织所包含资源块的数目与目标传输带宽所包含资源块的数目相关。
上述目标传输带宽可以包括但不限于:带宽部分BWP、传输子带(subband)、传输带宽(band)、系统带宽下的最大传输带宽等,目标传输带宽或目标传输带宽的子载波间隔不同,目标传输带宽所包含的资源块的数目不同。其中,本实施例所说的目标传输带宽所包含资源块的数目指的是目标传输带宽所包含资源块的总数目。
上述至少一个交织可以是为待发送信息分配的频域资源,若待发送信息为上行信息,那么至少一个交织可以是基站为终端调度的上行授权频域资源或上行非授权频域资源,若待发送信息为下行信息,那么至少一个交织是下行授权频域资源或下行非授权频域资源。其中,一个交织包括至少两个频域非连续的资源块集。
上述目标传输带宽所包含交织的数目指的是目标传输带宽所包含交织的最大数目。目标传输带宽为上行传输带宽时,其包含的交织的最大数目可以表示目标传输带宽最多分配给几个终端,目标传输带宽所包含交织的数目与目标传输带宽所包含资源块的数目相关。也就是说,目标传输带宽所包含交织的数目不再固定不变,而是可根据目标传输带宽所包含的资源块数目变化,以适应不同带宽或子载波间隔可变的场景,使得资源分配更加灵活,进而提高资源的利用率。
另外,上述交织所包含资源块的数目指的是一个交织所包含资源块的总数目,一个交织所包含资源块的数目也可以与目标传输带宽所包含资源块的数目相关。也就是说,一个交织所包含资源块的数目不再固定不变,而是可根据目标传输带宽所包含的资源块数目变化,以适应不同带宽或子载波间隔可变的场景,使得资源分配更加灵活,进而提高资源的利用率。
上述在至少一个交织上发送的信息可以包括但不限于以下几种:控制信息、数据信息、各种参考信号携带的信息、控制信道承载的信息、数据信道承载的信息等。
其中,本公开的一些实施例的信息传输方法可发生在网络设备侧或终端侧,以网络设备为例,如图4所示,本公开的一些实施例的信息传输方法可以包括以下步骤:
步骤41:网络设备选择交织的交织结构。
上述交织结构至少包括:目标传输带宽所包含交织的最大数目,以及一个交织所包含资源块的总数目。为了适应不同带宽或子载波间隔可变的场景,不同带宽或子载波间隔下对应的交织结构可以不同,那么可选的交织结构不止一种,那么网络设备可以根据需要选择某一种交织结构,用于资源分配或信息传输。
步骤42:根据选择的交织结构,在目标传输带宽上的至少一个交织上发送信息。
网络设备在选择好交织结构后,在目标传输带宽上的至少一个满足被选择的交织结构的交织上发送下行信息。上述下行信息可以包括但不限于:下行控制信息、下行数据信息、各种下行参考信号携带的信息、下行控制信道 承载的信息、下行数据信道承载的信息等。
其中,以终端为例,如图5所示,本公开的一些实施例的信息传输方法可以包括以下步骤:
步骤51:终端从网络设备侧接收与交织结构相关的信息。
上述交织结构包括目标传输带宽所包含交织的最大数目,以及一个交织所包含资源块的总数目的至少一项。为了适应不同带宽或子载波间隔可变的场景,不同带宽或子载波间隔下对应的交织结构可以不同,那么可选的交织结构不止一种,那么网络设备可以根据需要选择某一种交织结构,用于资源分配或信息传输。网络设备在选择了使用的交织结构后,将该交织结构的相关的信息发送给终端。其中,与交织结构相关的信息可以包括但不限于以下几种中的至少一项:目标传输带宽所包含交织的最大数目、一个交织所包含资源块的总数目、交织的起始位置、交织的结束位置、交织的索引号(或称为交织编号)、交织的间隔等。
其中,步骤51可参照以下方式实现:终端从网络设备侧接收无线资源控制(Radio Resource Control,RRC)信令,该RRC信令携带有与交织结构相关的信息。例如网络设备可以在RRC配置BWP时,将该BWP的交织结构一并通知给终端。
步骤52:根据上述信息确定交织结构,并根据确定的交织结构,在目标传输带宽上的至少一个交织上发送信息。
终端根据与交织结构相关的信息确定使用的交织结构,在目标传输带宽上的至少一个满足确定的交织结构的交织上发送上行信息。上述上行信息可以包括但不限于:上行控制信息、上行数据信息、各种上行参考信号携带的信息、上行控制信道承载的信息、上行数据信道承载的信息等。
下面本实施例将结合具体应用场景和附图,对不同交织结构做进一步说明。
场景一、当目标传输带宽所包含交织的数目固定时,交织所包含资源块的数目是根据目标传输带宽所包含交织的数目和目标传输带宽所包含资源块的数目确定的。
该场景固定交织的个数,即目标传输带宽所包含交织的最大数目固定。 在该场景下可以将目标传输带宽中用于传输的RB数限定为交织的整数倍,目标传输带宽内除交织之外的资源块为保护间隔。例如在FR1下,目标传输带宽为20MHz,其包含交织的数目为M(如10)个,那么每个交织包含的RB数等于:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值,可表示为floor(N RB/M),其中,floor函数为向下取整,N RB为目标传输带宽所包含资源块的数目,M为目标传输带宽所包含交织的数目。以15kHz的子载波间隔为例,由表1可知,该目标传输带宽包含的资源块的总数为106,那么每个交织包含floor(106/10)=10个RB,将目标传输带宽中用于传输的RB数限制为100,其余的6个RB用来做频带间保护间隔。如图6所示,交织0包含RB0、10、20、...、90,交织1包含RB1、11、21、...、91,交织2包含RB2、12、22、...、92,交织3包含RB3、13、23、...、93,依次类推,交织9包含RB9、19、29、...、99,在调度时终端可以被分配给一个或多个交织。另外,RB100-105作为带间保护间隔。或者,RB0-5作为带间保护间隔,交织0包含RB6、16、26、...、96,交织1包含RB7、17、27、...、97,交织2包含RB8、18、28、...、98,交织3包含RB9、19、29、...、99,依次类推,交织9包含RB15、25、35、...、105,该示例在图中未示出。或者,目标传输带宽中作为保护间隔的RB还可以位于用于传输的RB的两侧,例如RB0-2、RB103-105作为带间保护间隔,其他RB划分为10个交织,该示例在图中未示出。
考虑到有的传输带宽包含的资源块总数目较少,若采用与包含资源块总数目多的传输带宽相同的交织结构,可能无法满足非授权频段的OCB要求。本公开的一些实施例中,当目标传输资源所包含资源块的数目大于第一阈值时,确定目标传输带宽所包含交织的数目为第一值;目标传输资源所包含资源块的数目小于或等于第一阈值时,确定目标传输带宽所包含交织的数目为第二值。其中,第二值小于第一值。以第一阈值为50、第一值为10、第二值为5为例,当目标传输资源所包含资源块的数目大于50时,确定目标传输带宽包含10个交织;目标传输资源所包含资源块的数目小于或等于50时,确定目标传输带宽包含5个交织。
例如在FR1下,目标传输带宽为20MHz、子载波间隔为30kHz,由表1 可知,该目标传输带宽包含的资源块的总数为51,大于50,那么该目标传输带宽包含的交织数确定为10个,那么每个交织包含的RB数等于:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值,表示为floor(N RB/M)。该目标传输带宽包含的资源块的总数为51,那么每个交织包含floor(51/10)=5个RB,将目标传输带宽中用于传输的RB数限制为50,其余的1个RB用来做频带间保护间隔。如图7所示,交织0包含RB0、10、20、30、40,交织1包含RB1、11、21、31、41,交织2包含RB2、12、22、32、42,交织3包含RB3、13、23、33、43,依次类推,交织9包含RB9、19、29、39、49,在调度时终端可以被分配给一个或多个交织。另外,RB50作为带间保护间隔。或者,RB0作为带间保护间隔,交织0包含RB1、11、21、31、41,交织1包含RB2、12、22、32、42,交织2包含RB3、13、23、33、43,交织3包含RB4、14、24、34、44,依次类推,交织9包含RB10、20、30、40、50,该示例在图中未示出。
例如在FR1下,目标传输带宽为20MHz、子载波间隔为60kHz,由表1可知,该目标传输带宽包含的资源块的总数为24,小于50,那么该目标传输带宽包含的交织数确定为5个,那么每个交织包含的RB数等于:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值,表示为floor(N RB/5)。该目标传输带宽包含的资源块的总数为24,那么每个交织包含floor(24/5)=4个RB,将目标传输带宽中用于传输的RB数限制为20,其余的4个RB用来做频带间保护间隔。如图8所示,交织0包含RB0、5、10、15,交织1包含RB1、6、11、16,交织2包含RB2、7、12、17,交织3包含RB3、8、13、18,交织4包含RB4、9、14、19,在调度时终端可以被分配给一个或多个交织。另外,RB20-23作为带间保护间隔。或者,RB0-3作为带间保护间隔,交织0包含RB4、9、14、19,交织1包含RB5、10、15、20,交织2包含RB6、11、16、21,交织3包含RB7、12、17、22,交织4包含RB8、13、18、23,该示例在图中未示出。
其中,值得指出的是,本实施例仅以第一阈值为50、第一值为10、第二值为5为例作为示例性说明,第一阈值、第一值和第二值可依据实际需要而定,本实施例并不对此作出限定。
由于目标传输带宽所包含的资源块的总数目不一定是包含交织总数的整数倍,上述实施例采用将用于传输的RB数限定在交织总数的整数倍,其中,用于传输的RB为频域连续的,位于用于传输的RB单侧或两侧的其余RB作为保护间隔。由于传输带宽划分资源块时考虑了带间保护间隔,为了进一步提高资源利用率,该场景下的交织结构还可以为以下形式:目标传输带宽中包括第一数量个第一交织,以及第二数量个第二交织,其中,一个第一交织所包含的资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向上取整的商值,可表示为ceil(N RB/M),其中,ceil函数为向上取整,N RB为目标传输带宽所包含资源块的数目,M为目标传输带宽所包含交织的数目。一个第二交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值,可表示为floor(N RB/M),其中,floor函数为向下取整,N RB为目标传输带宽所包含资源块的数目,M为目标传输带宽所包含交织的数目。
例如,当交织的索引号小于第二阈值时,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向上取整的商值,可表示为ceil(N RB/M),其中,ceil函数为向上取整,N RB为目标传输带宽所包含资源块的数目,M为目标传输带宽所包含交织的数目。或者,当交织的索引号大于或等于第二阈值时,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值,可表示为floor(N RB/M),其中,floor函数为向下取整,N RB为目标传输带宽所包含资源块的数目,M为目标传输带宽所包含交织的数目。
其中,第二阈值小于或等于目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目的余数,即第二阈值小于或等于N RB mod M。当第二阈值小于N RB mod M时,目标传输带宽中包含的大部分RB均被用于传输,剩余的小部分RB被用于带间间隔或其他作用。当第二阈值等于N RB mod M时,目标传输带宽中包含的所有RB均被用于传输。例如在FR1下,目标传输带宽为20MHz,子载波间隔为15KHz,由表1可知,目标传输带宽包含的RB数目为106个,其包含交织的数目为10个,那么第二阈值小于或等于(106mod 10)=6,以第二阈值为6为例,对于索引号小于6的交织0-5,每 个交织包含的RB数等于:ceil(106/10)=11个RB,如图9所示,交织0包含RB0、10、20、...、90、100,交织1包含RB1、11、21、...、91、101,交织2包含RB2、12、22、...、92、102,交织3包含RB3、13、23、...、93、103,依次类推,交织5包含RB5、15、25、...、95、105。另外,对于索引号大于或等于6的RB6-9,每个交织包含的RB数等于:floor(106/10)=10个RB,如图9所示,交织6包含RB6、16、26、...、96,交织7包含RB7、17、27、...、97,交织8包含RB8、18、28、...、98,交织9包含RB9、19、29、...、99。这样目标传输带宽中的所有RB均用于传输,可提高资源使用效率。
或者,当交织的索引号大于或等于第三阈值时,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向上取整的商值,可表示为ceil(N RB/M),其中,ceil函数为向上取整,N RB为目标传输带宽所包含资源块的数目,M为目标传输带宽所包含交织的数目。或者,当交织的索引号小于第三阈值时,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值,可表示为floor(N RB/M),其中,floor函数为向下取整,N RB为目标传输带宽所包含资源块的数目,M为目标传输带宽所包含交织的数目。
其中,第三阈值大于或等于M-(N RB mod M),其中,N RB为目标传输带宽所包含资源块的数目,M为目标传输带宽所包含交织的数目。当第三阈值大于M-(N RB mod M)时,目标传输带宽中包含的大部分RB均被用于传输,剩余的小部分RB被用于带间间隔或其他作用。当第三阈值等于M-(N RB mod M)时,目标传输带宽中包含的所有RB均被用于传输。
以上介绍了目标传输带宽中包含交织数目固定的场景,下面本实施例将进一步结合附图介绍另一种场景。
场景二、当每个交织所包含资源块的数目固定时,目标传输带宽所包含交织的数目是根据交织所包含资源块的数目和目标传输带宽所包含资源块的数目确定的。
该场景固定每个交织所包含RB的个数,在该场景下可以将目标传输带宽中用于传输的RB数限定为每个交织所包含RB个数的整数倍,目标传输带 宽内除交织之外的资源块为保护间隔。
其中,目标传输带宽所包含交织的数目为:目标传输带宽所包含资源块的数目除以交织所包含资源块的数目向下取整的商值,可以表示为floor(N RB/N),其中,floor函数为向下取整,N RB为目标传输带宽所包含资源块的数目,N为一个交织所包含RB的数目。例如在FR1下,目标传输带宽为20MHz,子载波间隔为30KHz,由表1可知,该目标传输带宽所包含的RB数为51,假设一个交织包括10个RB,那么该目标传输带宽包含floor(51/10)=5个交织,将目标传输带宽中用于传输的RB数限制为50,其余的1个RB用来做频带间保护间隔。如图10所示,交织0包含RB0、5、10、...、45,交织1包含RB1、6、11、16、...、46,交织2包含RB2、7、12、17、...、47,交织3包含RB3、8、13、18、...、48,交织4包含RB4、9、14、19、...、49,另外RB50作为带间保护间隔。或者,RB0作为带间保护间隔,交织0包含RB1、6、11、16、...、46,交织1包含RB2、7、12、17、...、47,交织2包含RB3、8、13、18、...、48,交织3包含RB4、9、14、19、...、49,交织4包含RB5、10、15、20、...、50,该示例在图中未示出。
其中,值得指出的是,一个交织包括至少连个频域不连续的资源块集,其中,一个资源块集可以包括一个资源块,即一个交织中的任两个资源块均不连续,以上作为示例说明的交织结构均为该方式。此外,一个资源块集可以包括至少两个频域连续的资源块,也就是说,一个交织中可能包括频域连续的资源块。例如在FR1下,目标传输带宽为20MHz,子载波间隔为30KHz,由表1可知,该目标传输带宽所包含的RB数为51,假设该目标传输带宽有5个交织,每个交织包含10个RB,那么该目标传输资源中的资源映射可以为图10所示,一个交织包括10个频域不连续的资源块集,其中,一个资源块集包括一个资源块,交织0包含RB0、5、10、...、45,交织1包含RB1、6、11、16、...、46,交织2包含RB2、7、12、17、...、47,交织3包含RB3、8、13、18、...、48,交织4包含RB4、9、14、19、...、49,另外RB50作为带间保护间隔。或者,如图11所示,一个交织包括5个频域不连续的资源块集,其中,一个资源块集包括两个频域连续的资源块,交织0包含RB0、1、10、11...、40、41,交织1包含RB2、3、12、13、...、42、43,交织2包含 RB4、5、14、15、...、44、45,交织3包含RB6、7、16、17、...、46、47,交织4包含RB8、9、18、19、...、48、49,另外RB50作为带间保护间隔。
值得指出的是,本公开的一些实施例所涉及到的RB号和交织号均以从0起编作为示例说明,从其他数值起编的实施例均适用于本公开的一些实施例中,上述信息传输方法中,网络设备或终端通过采用适用于不同传输带宽的交织结构进行信息传输,可提高资源分配的灵活性,提高资源利用率。
以上实施例分别详细介绍了不同场景下的信息传输方法,下面本实施例将结合附图对其对应的通信设备做进一步介绍。
如图12所示,本公开的一些实施例的通信设备1200,能实现上述实施例中在目标传输带宽上的至少一个交织上发送信息方法的细节,并达到相同的效果,其中,交织包括至少两个频域非连续的资源块集,目标传输带宽所包含交织的数目或交织所包含资源块的数目与目标传输带宽所包含资源块的数目相关。该通信设备1200具体包括以下功能模块:
发送模块1210,用于在目标传输带宽上的至少一个交织上发送信息;其中,交织包括至少两个频域非连续的资源块集,目标传输带宽所包含交织的数目或交织所包含资源块的数目与目标传输带宽所包含资源块的数目相关。
其中,当目标传输带宽所包含交织的数目固定时,交织所包含资源块的数目是根据目标传输带宽所包含交织的数目和目标传输带宽所包含资源块的数目确定的。
其中,当目标传输资源所包含资源块的数目大于第一阈值时,确定目标传输带宽所包含交织的数目为第一值;
目标传输资源所包含资源块的数目小于或等于第一阈值时,确定目标传输带宽所包含交织的数目为第二值,其中,第二值小于第一值。
其中,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值。
其中,当交织的索引号小于第二阈值时,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向上取整的商值;
或者,
当交织的索引号大于或等于第二阈值时,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值。
其中,第二阈值小于或等于目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目的余数。
其中,当交织所包含资源块的数目固定时,目标传输带宽所包含交织的数目是根据交织所包含资源块的数目和目标传输带宽所包含资源块的数目确定的。
其中,目标传输带宽所包含交织的数目为:目标传输带宽所包含资源块的数目除以交织所包含资源块的数目向下取整的商值。
其中,目标传输带宽内除交织之外的资源块为保护间隔。
其中,资源块集包括至少两个频域连续的资源块,或者,资源块集包括一个资源块。
其中,如图13所示,当通信设备为网络设备1300时,除了包括发送模块1310外,还包括:选择模块1320,用于网络设备选择交织的交织结构。
和/或,
其中,如图14所示,当通信设备为终端1400时,除了包括发送模块1410外,还包括:接收模块1420,用于终端从网络设备侧接收与交织结构相关的信息。
其中,接收模块1420包括:
接收子模块,用于从网络设备侧接收无线资源控制RRC信令,RRC信令携带有与交织结构相关的信息。
其中,本公开的一些实施例的通信设备通过上述方案可以提高资源分配的灵活性,提高资源利用率。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的 处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital signal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的信息传输方法中的步骤。
本公开的一些实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时所述处理器实现如上所述的信息传输方法的步骤。
本公开中提到的计算机可读存储介质可以是易失性的计算机可读存储介质或非易失性的计算机可读存储介质。
具体地,本公开的实施例还提供了一种网络设备。如图15所示,该网络设备1500包括:天线151、射频装置152、基带装置153。天线151与射频装置152连接。在上行方向上,射频装置152通过天线151接收信息,将接收的信息发送给基带装置153进行处理。在下行方向上,基带装置153对要发送的信息进行处理,并发送给射频装置152,射频装置152对收到的信息进行处理后经过天线151发送出去。
上述频带处理装置可以位于基带装置153中,以上实施例中网络设备执行的方法可以在基带装置153中实现,该基带装置153包括处理器154和存储器155。
基带装置153例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为处理器154,与存储器155连接,以调用存储器155中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置153还可以包括网络接口156,用于与射频装置152交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器155可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DRRAM)。本申请描述的存储器155旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开的一些实施例的网络设备还包括:存储在存储器155上 并可在处理器154上运行的计算机程序,处理器154调用存储器155中的计算机程序执行图14所示各模块执行的方法。
具体地,计算机程序被处理器154调用时可用于执行:在目标传输带宽上的至少一个交织上发送信息;其中,交织包括至少两个频域非连续的资源块集,目标传输带宽所包含交织的数目或交织所包含资源块的数目与目标传输带宽所包含资源块的数目相关。
其中,当目标传输带宽所包含交织的数目固定时,交织所包含资源块的数目是根据目标传输带宽所包含交织的数目和目标传输带宽所包含资源块的数目确定的。
其中,当目标传输资源所包含资源块的数目大于第一阈值时,确定目标传输带宽所包含交织的数目为第一值;
目标传输资源所包含资源块的数目小于或等于第一阈值时,确定目标传输带宽所包含交织的数目为第二值,其中,第二值小于第一值。
其中,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值。
其中,当交织的索引号小于第二阈值时,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向上取整的商值;
或者,
当交织的索引号大于或等于第二阈值时,交织所包含资源块的数目为:目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目向下取整的商值。
其中,第二阈值小于或等于目标传输带宽所包含资源块的数目除以目标传输带宽所包含交织的数目的余数。
其中,当交织所包含资源块的数目固定时,目标传输带宽所包含交织的数目是根据交织所包含资源块的数目和目标传输带宽所包含资源块的数目确定的。
其中,目标传输带宽所包含交织的数目为:目标传输带宽所包含资源块的数目除以交织所包含资源块的数目向下取整的商值。
其中,目标传输带宽内除交织之外的资源块为保护间隔。
具体地,计算机程序被处理器154调用时可用于执行:网络设备选择交织的交织结构。
其中,资源块集包括至少两个频域连续的资源块,或者,资源块集包括一个资源块。
本公开的一些实施例中的网络设备通过上述技术方案,可以提高资源分配的灵活性,提高资源利用率。
为了更好的实现上述目的,进一步地,图16为实现本公开各个实施例的一种终端的硬件结构示意图,该终端160包括但不限于:射频单元161、网络模块162、音频输出单元163、输入单元164、传感器165、显示单元166、用户输入单元167、接口单元168、存储器169、处理器1610、以及电源1611等部件。本领域技术人员可以理解,图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元161,用于在目标传输带宽上的至少一个交织上发送信息;其中,交织包括至少两个频域非连续的资源块集,目标传输带宽所包含交织的数目或交织所包含资源块的数目与目标传输带宽所包含资源块的数目相关;
处理器1610,用于控制射频电源161收发数据;
本公开的一些实施例的终端通过上述方案可以提高资源分配的灵活性,提高资源利用率。
应理解的是,本公开的一些实施例中,射频单元161可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1610处理;另外,将上行的数据发送给基站。通常,射频单元161包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元161还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块162为用户提供了无线的宽带互联网访问,如帮助用 户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元163可以将射频单元161或网络模块162接收的或者在存储器169中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元163还可以提供与终端160执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元163包括扬声器、蜂鸣器以及受话器等。
输入单元164用于接收音频或视频信号。输入单元164可以包括图形处理器(Graphics Processing Unit,GPU)1641和麦克风1642,图形处理器1641对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元166上。经图形处理器1641处理后的图像帧可以存储在存储器169(或其它存储介质)中或者经由射频单元161或网络模块162进行发送。麦克风1642可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元161发送到移动通信基站的格式输出。
终端160还包括至少一种传感器165,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1661的亮度,接近传感器可在终端160移动到耳边时,关闭显示面板1661和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器165还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元166用于显示由用户输入的信息或提供给用户的信息。显示单元166可包括显示面板1661,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1661。
用户输入单元167可用于接收输入的数字或字符信息,以及产生与终端 的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元167包括触控面板1671以及其他输入设备1672。触控面板1671,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1671上或在触控面板1671附近的操作)。触控面板1671可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1610,接收处理器1610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1671。除了触控面板1671,用户输入单元167还可以包括其他输入设备1672。具体地,其他输入设备1672可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1671可覆盖在显示面板1661上,当触控面板1671检测到在其上或附近的触摸操作后,传送给处理器1610以确定触摸事件的类型,随后处理器1610根据触摸事件的类型在显示面板1661上提供相应的视觉输出。虽然在图16中,触控面板1671与显示面板1661是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板1671与显示面板1661集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元168为外部装置与终端160连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元168可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端160内的一个或多个元件或者可以用于在终端160和外部装置之间传输数据。
存储器169可用于存储软件程序以及各种数据。存储器169可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区 可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器169可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器169内的软件程序和/或模块,以及调用存储在存储器169内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1610可包括一个或多个处理单元;可选的,处理器1610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
终端160还可以包括给各个部件供电的电源1611(比如电池),可选的,电源1611可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端160包括一些未示出的功能模块,在此不再赘述。
可选的,本公开的一些实施例还提供一种终端,包括处理器1610,存储器169,存储在存储器169上并可在所述处理器1610上运行的计算机程序,该计算机程序被处理器1610执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber  Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执 行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (20)

  1. 一种信息传输方法,包括:
    在目标传输带宽上的至少一个交织上发送信息;其中,所述交织包括至少两个频域非连续的资源块集,所述目标传输带宽所包含交织的数目或所述交织所包含资源块的数目与所述目标传输带宽所包含资源块的数目相关。
  2. 根据权利要求1所述的信息传输方法,其中,当所述目标传输带宽所包含交织的数目固定时,所述交织所包含资源块的数目是根据所述目标传输带宽所包含交织的数目和所述目标传输带宽所包含资源块的数目确定的。
  3. 根据权利要求2所述的信息传输方法,其中,当所述目标传输资源所包含资源块的数目大于第一阈值时,确定所述目标传输带宽所包含交织的数目为第一值;
    所述目标传输资源所包含资源块的数目小于或等于所述第一阈值时,确定所述目标传输带宽所包含交织的数目为第二值,其中,所述第二值小于第一值。
  4. 根据权利要求2所述的信息传输方法,其中,所述交织所包含资源块的数目为:所述目标传输带宽所包含资源块的数目除以所述目标传输带宽所包含交织的数目向下取整的商值。
  5. 根据权利要求2所述的信息传输方法,其中,当所述交织的索引号小于第二阈值时,所述交织所包含资源块的数目为:所述目标传输带宽所包含资源块的数目除以所述目标传输带宽所包含交织的数目向上取整的商值;
    或者,
    当所述交织的索引号大于或等于第二阈值时,所述交织所包含资源块的数目为:所述目标传输带宽所包含资源块的数目除以所述目标传输带宽所包含交织的数目向下取整的商值。
  6. 根据权利要求5所述的信息传输方法,其中,所述第二阈值小于或等于所述目标传输带宽所包含资源块的数目除以所述目标传输带宽所包含交织的数目的余数。
  7. 根据权利要求1所述的信息传输方法,其中,当所述交织所包含资源 块的数目固定时,所述目标传输带宽所包含交织的数目是根据所述交织所包含资源块的数目和所述目标传输带宽所包含资源块的数目确定的。
  8. 根据权利要求7所述的信息传输方法,其中,所述目标传输带宽所包含交织的数目为:所述目标传输带宽所包含资源块的数目除以所述交织所包含资源块的数目向下取整的商值。
  9. 根据权利要求4或8所述的信息传输方法,其中,所述目标传输带宽内除所述交织之外的资源块为保护间隔。
  10. 根据权利要求1所述的信息传输方法,应用于网络设备,其中,在目标传输带宽上的至少一个交织上发送信息的步骤之前,所述方法还包括:
    网络设备选择所述交织的交织结构。
  11. 根据权利要求1所述的信息传输方法,应用于终端,其中,在目标传输带宽上的至少一个交织上发送信息的步骤之前,还包括:
    终端从所述网络设备侧接收与所述交织结构相关的信息。
  12. 根据权利要求11所述的信息传输方法,其中,终端从所述网络设备侧接收与所述交织结构相关的信息的步骤,包括:
    所述终端从所述网络设备侧接收无线资源控制RRC信令,所述RRC信令携带有与所述交织结构相关的信息。
  13. 根据权利要求1所述的信息传输方法,其中,所述资源块集包括至少两个频域连续的资源块,或者,所述资源块集包括一个资源块。
  14. 一种通信设备,所述通信设备为网络设备或终端,包括:
    发送模块,用于在目标传输带宽上的至少一个交织上发送信息;其中,所述交织包括至少两个频域非连续的资源块集,所述目标传输带宽所包含交织的数目或所述交织所包含资源块的数目与所述目标传输带宽所包含资源块的数目相关。
  15. 根据权利要求14所述的通信设备,其中,当所述通信设备为网络设备时,所述通信设备还包括:
    选择模块,用于选择所述交织的交织结构。
  16. 根据权利要求14所述的通信设备,其中,当所述通信设备为终端时,所述通信设备还包括:
    接收模块,用于从所述网络设备侧接收与所述交织结构相关的信息。
  17. 根据权利要求16所述的通信设备,其中,所述接收模块包括:
    接收子模块,用于从所述网络设备侧接收无线资源控制RRC信令,所述RRC信令携带有与所述交织结构相关的信息。
  18. 一种网络设备,包括:
    处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至13任一项所述的信息传输方法的步骤。
  19. 一种终端,包括:
    处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现如权利要求1至13中任一项所述的信息传输方法的步骤。
  20. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时所述处理器实现如权利要求1至13中任一项所述的信息传输方法的步骤。
PCT/CN2019/084496 2018-05-08 2019-04-26 信息传输方法、网络设备及终端 WO2019214459A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810430835.9A CN110460406B (zh) 2018-05-08 2018-05-08 一种信息传输方法、网络设备及终端
CN201810430835.9 2018-05-08

Publications (1)

Publication Number Publication Date
WO2019214459A1 true WO2019214459A1 (zh) 2019-11-14

Family

ID=68468413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084496 WO2019214459A1 (zh) 2018-05-08 2019-04-26 信息传输方法、网络设备及终端

Country Status (2)

Country Link
CN (1) CN110460406B (zh)
WO (1) WO2019214459A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630340B (zh) * 2021-06-22 2024-04-05 北京邮电大学 分配带宽资源的方法、装置、电子设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098414A1 (en) * 2015-12-07 2017-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Uplink control channel configuration for unlicensed carriers
WO2017133699A1 (en) * 2016-02-05 2017-08-10 Mediatek Inc. Peak to average power ratio reduction in elaa
CN107409417A (zh) * 2014-11-06 2017-11-28 高通股份有限公司 用于未许可频谱中的传输的频带占用技术

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10568081B2 (en) * 2016-03-21 2020-02-18 Samsung Electronics Co., Ltd. Scheduling uplink transmissions
WO2017166270A1 (en) * 2016-04-01 2017-10-05 Lenovo Innovations Limited (Hong Kong) Carrier determination for a device
US10506662B2 (en) * 2016-05-10 2019-12-10 Qualcomm Incorporated Internet-of-Things design for unlicensed spectrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107409417A (zh) * 2014-11-06 2017-11-28 高通股份有限公司 用于未许可频谱中的传输的频带占用技术
WO2017098414A1 (en) * 2015-12-07 2017-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Uplink control channel configuration for unlicensed carriers
WO2017133699A1 (en) * 2016-02-05 2017-08-10 Mediatek Inc. Peak to average power ratio reduction in elaa

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Numerology and wideband operation in NR unlicensed", 3GPP TSG RAN WG1 MEETING #92BIS R1-1803677, 20 April 2018 (2018-04-20), XP051412955 *

Also Published As

Publication number Publication date
CN110460406A (zh) 2019-11-15
CN110460406B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
JP7466462B2 (ja) 情報伝送方法、端末及びネットワーク機器
JP7369782B2 (ja) ハイブリッド自動再送要求harqフィードバック方法、端末及びネットワーク機器
US11463214B2 (en) Quasi co-location configuration method, terminal, and network device
CN110971322B (zh) 一种信息传输方法、网络设备及终端
WO2019072077A1 (zh) 解调参考信号传输方法、网络设备及终端
WO2019076171A1 (zh) 非授权频段下的信息传输方法、终端及网络设备
WO2019214664A1 (zh) 传输资源指示方法、网络设备及终端
JP7408681B2 (ja) ランダムアクセスプロセスの情報伝送方法及び端末
WO2019238111A1 (zh) 同步信号块的传输方法、网络设备及终端
CN113225832B (zh) 非授权频段的数据传输方法及装置、通信设备
WO2020011096A1 (zh) 上行传输方法及终端
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
US20210314779A1 (en) Information transmission method in unlicensed band, terminal, and network device
WO2019201144A1 (zh) 非授权频段的信息传输方法、网络设备及终端
CN110545582B (zh) 一种随机接入资源确定方法及终端
JP7221408B2 (ja) 非許可周波数帯域の上りリンク伝送方法、端末及びネットワーク機器
WO2020151706A1 (zh) 随机接入传输方法及终端
WO2019242568A1 (zh) 功率分配方法及终端
WO2019214459A1 (zh) 信息传输方法、网络设备及终端
US20220279570A1 (en) Resource determining method, resource determining apparatus, and communications device
CN111315015B (zh) 非授权频段信息传输方法、终端及网络设备
RU2785440C1 (ru) Способ передачи произвольного доступа и оконечное устройство
CN113543158B (zh) 确定数据传输层数的方法及装置、通信设备
WO2021204151A1 (zh) 监测数量的确定方法及装置、通信设备
WO2020007314A1 (zh) 信息传输方法、网络设备及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799291

Country of ref document: EP

Kind code of ref document: A1