WO2020007314A1 - 信息传输方法、网络设备及终端 - Google Patents

信息传输方法、网络设备及终端 Download PDF

Info

Publication number
WO2020007314A1
WO2020007314A1 PCT/CN2019/094517 CN2019094517W WO2020007314A1 WO 2020007314 A1 WO2020007314 A1 WO 2020007314A1 CN 2019094517 W CN2019094517 W CN 2019094517W WO 2020007314 A1 WO2020007314 A1 WO 2020007314A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
ptrs
terminal
transmission method
information transmission
Prior art date
Application number
PCT/CN2019/094517
Other languages
English (en)
French (fr)
Inventor
陈晓航
孙鹏
鲁智
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19830447.9A priority Critical patent/EP3820214A4/en
Priority to SG11202012410SA priority patent/SG11202012410SA/en
Priority to JP2021500141A priority patent/JP7113956B2/ja
Priority to KR1020217001587A priority patent/KR102591425B1/ko
Publication of WO2020007314A1 publication Critical patent/WO2020007314A1/zh
Priority to US17/121,031 priority patent/US11637674B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an information transmission method, a network device, and a terminal.
  • the fifth generation (5G) mobile communication system can adapt to more diverse scenarios and business needs. Its main scenarios include: enhanced mobile broadband (eMBB) communication Large-scale Internet of Things (Machine, Type, and Communications) (mMTC), Ultra-Reliable and Low-Latency Communications (URLLC). These scenarios require high reliability, low latency, large bandwidth, and wide coverage of the system.
  • eMBB enhanced mobile broadband
  • mMTC Large-scale Internet of Things
  • URLLC Ultra-Reliable and Low-Latency Communications
  • the NR system also supports a semi-static scheduling (configured grant) uplink transmission method, which can reduce the signaling interaction process, thereby reducing the power consumption of the terminal.
  • a terminal performs non-orthogonal uplink transmission
  • multiple different terminals can reuse the same transmission resources.
  • the network device needs to distinguish the uplink signals of different terminals.
  • different terminals may use different multiple access (MA) identities, and the MA identities include, but are not limited to, demodulation reference signals (De-Modulation Reference Signals, DMRS). If different DMRSs are configured for different terminals for transmission, although data conflicts between terminals can be avoided, it is difficult to support simultaneous transmission by a large number of terminals.
  • DMRS Demodulation Reference Signals
  • Some embodiments of the present disclosure provide an information transmission method, network device, and terminal to solve the problem that non-orthogonal uplink transmission is difficult to support simultaneous transmission by a large number of terminals.
  • some embodiments of the present disclosure provide an information transmission method applied to a network device side, including:
  • the uplink signal includes a target demodulation reference signal DMRS
  • the terminal corresponds to at least two demodulation reference signal DMRS identifiers, and the target DMRS is one of the DMRSs indicated by the at least two DMRS identifiers.
  • some embodiments of the present disclosure further provide a network device, including:
  • a first receiving module configured to receive an uplink signal, where the uplink signal includes a target demodulation reference signal DMRS;
  • a processing module configured to determine uplink data of the terminal according to the target DMRS in the uplink signal
  • the terminal corresponds to at least two demodulation reference signal DMRS identifiers, and the target DMRS is one of the DMRSs indicated by the at least two DMRS identifiers.
  • some embodiments of the present disclosure provide a network device.
  • the network device includes a processor, a memory, and a computer program stored in the memory and executable on the processor.
  • the processor implements the foregoing information when the computer program is executed. Steps of the transfer method.
  • some embodiments of the present disclosure provide an information transmission method applied to a terminal side, including:
  • the target DMRS is used to send uplink data on multiple access resources; wherein the target DMRS is one of the DMRS indicated by at least two DMRS identifiers.
  • some embodiments of the present disclosure provide a terminal, including:
  • a second receiving module configured to receive at least two demodulation reference signals DMRS identifiers
  • a sending module is configured to use the target DMRS to send uplink data in a multiple access resource.
  • the target DMRS is one of the DMRS indicated by at least two DMRS identifiers.
  • some embodiments of the present disclosure further provide a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • some embodiments of the present disclosure provide an information transmission method, which is applied to a terminal side and includes:
  • some embodiments of the present disclosure provide a terminal, including:
  • a receiving module configured to receive at least two phase tracking reference signals PTRS configuration parameters
  • a selection module is configured to select one of candidate PTRSs corresponding to at least two PTRS configuration parameters for transmission.
  • some embodiments of the present disclosure provide a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor implements the foregoing information transmission method when the computer program is executed. A step of.
  • some embodiments of the present disclosure provide an information transmission method applied to a network device side, including:
  • some embodiments of the present disclosure provide a network device, including:
  • a configuration module configured to configure at least two phase tracking reference signal PTRS configuration parameters for the terminal.
  • some embodiments of the present disclosure provide a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program implements the foregoing when the processor executes the computer program. Steps of information transmission method.
  • some embodiments of the present disclosure provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the information transmission on the terminal side or the network device side is implemented. Method steps.
  • some embodiments of the present disclosure can increase the DMRS capacity by adopting the above technical solution, thereby reducing the probability of collision of reference signals for non-orthogonal uplink transmission, and can also support a large number of terminals transmitting simultaneously.
  • FIG. 1 shows a block diagram of a mobile communication system applicable to some embodiments of the present disclosure
  • FIG. 2 is a first schematic flowchart of an information transmission method on a network device side according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram illustrating a mapping relationship between a DMRS and a DMRS scrambled ID according to some embodiments of the present disclosure
  • FIG. 4 is a first schematic structural diagram of a module of a network device according to some embodiments of the present disclosure
  • FIG. 5 shows a first flowchart of a method for transmitting information on a terminal side according to some embodiments of the present disclosure
  • FIG. 6 is a first schematic structural diagram of a module of a terminal according to some embodiments of the present disclosure.
  • FIG. 7 shows a second flowchart of an information transmission method on the terminal side according to some embodiments of the present disclosure
  • FIG. 8 illustrates a second module structure diagram of a terminal according to some embodiments of the present disclosure
  • FIG. 9 shows a second flowchart of an information transmission method on a network device side according to some embodiments of the present disclosure.
  • FIG. 10 shows a second schematic diagram of a module structure of a network device according to some embodiments of the present disclosure
  • FIG. 11 shows a block diagram of a network device according to some embodiments of the present disclosure.
  • FIG. 12 illustrates a terminal block diagram of some embodiments of the present disclosure.
  • LTE Long Time Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier
  • system and “network” are often used interchangeably.
  • a CDMA system can implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA), and the like.
  • UTRA includes Wideband CDMA (Wideband Code Division Multiple Access) and other CDMA variants.
  • the TDMA system can implement a radio technology such as Global System for Mobile (Communication, GSM).
  • OFDMA system can implement such as Ultra Mobile Broadband (UMB), Evolution UTRA (Evolution-UTRA, E-UTRA), IEEE802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM And other radio technologies.
  • UMB Ultra Mobile Broadband
  • Evolution-UTRA Evolution UTRA
  • E-UTRA Evolution UTRA
  • IEEE802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM And other radio technologies.
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE (such as LTE-A) are new UMTS versions using E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described herein can be used for both the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the following description describes the NR system for example purposes and uses NR terminology in much of the description below, although these techniques can also be applied to applications other than NR system applications.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be called a terminal device or a user terminal (User), and the terminal 11 may be a mobile phone, a tablet computer (laptop computer), a laptop computer (laptop computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • terminal equipment such as vehicle-mounted equipment
  • the network device 12 may be a base station or a core network, where the above base stations may be 5G and later versions of base stations (for example, gNB, 5G, NR, NB, etc.), or base stations in other communication systems (for example, eNB, WLAN access point, Or other access points, etc.), where the base station can be referred to as Node B, evolved Node B, access point, Base Transceiver Station (BTS), radio base station, radio transceiver, basic service set (Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, or in the field
  • BSS Basic Service Set
  • ESS Extended Service Set
  • eNB Evolved Node B
  • the base station is not limited to a specific technical vocabulary. It should be noted that, in some embodiments of the present disclosure, only the base station in the NR system is taken as an example, but it is not
  • the base station may communicate with the terminal 11 under the control of a base station controller.
  • the base station controller may be part of the core network or some base stations.
  • Some base stations can communicate control information or user data with the core network through the backhaul.
  • some of these base stations may communicate with each other directly or indirectly through a backhaul link, which may be a wired or wireless communication link.
  • Wireless communication systems can support operation on multiple carriers (waveform signals of different frequencies).
  • Multi-carrier transmitters can transmit modulated signals on these multiple carriers simultaneously.
  • each communication link may be a multi-carrier signal modulated according to various radio technologies.
  • Each modulated signal can be sent on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station may perform wireless communication with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, a macro base station, a pico base station, or a pico base station). Base stations can also utilize different radio technologies, such as cellular or WLAN radio access technologies. Base stations can be associated with the same or different access networks or operator deployments. The coverage areas of different base stations (including the coverage areas of the same or different types of base stations, the coverage areas using the same or different radio technologies, or the coverage areas belonging to the same or different access networks) may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 11 to the network device 12), or a bearer for downlink (Downlink, DL) Downlink for transmission (for example, from network device 12 to terminal 11).
  • UL transmissions may also be referred to as reverse link transmissions, and DL transmissions may also be referred to as forward link transmissions.
  • Downlink transmissions can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmissions can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • Some embodiments of the present disclosure provide an information transmission method applied to a network device side. As shown in FIG. 2, the method includes the following steps:
  • Step 21 Receive an uplink signal, where the uplink signal includes a target demodulation reference signal DMRS.
  • the uplink signal mentioned herein refers to an uplink non-orthogonal transmission signal. Specifically, this step may be: receiving an uplink signal sent by a terminal in a non-orthogonal transmission mode.
  • the uplink signal is transmitted on multiple access resources, and the uplink signal may include: a preamble and data based on the MA identifier (signature), or include the preamble, DMRS, and data based on the MA identifier, or include DMRS and MA-based data.
  • the preamble includes a cyclic prefix, a preamble sequence, and a guard interval.
  • Step 22 Determine uplink data of the terminal according to the target DMRS.
  • the terminal corresponds to at least two demodulation reference signal DMRS identifiers, and the target DMRS is one of the DMRSs indicated by the at least two DMRS identifiers.
  • the method further includes: configuring at least two DMRS identifiers for the terminal, that is, the network device configures at least two DMRS identifiers for one terminal, so that the terminal can start from at least two when performing non-orthogonal uplink transmission. Choose one of the DMRS identifiers, and use the DMRS indicated by the selected DMRS identifier for uplink non-orthogonal transmission. It is worth pointing out that there may be overlap between the DMRS configured by the network device for different terminals.
  • the network device is configured with DMRS1, DMRS2, DMRS3, and DMRS4 for terminal 1, and DMRS2, DMRS3, and DMRS5 for the terminal.
  • DMRS1, DMRS2, DMRS3, and DMRS4 for terminal 1
  • DMRS2, DMRS3, and DMRS5 for the terminal.
  • the DMRS identifier includes: DMRS configuration parameters and / or DMRS scrambling information. In the following, some embodiments of the present disclosure will be further described with respect to DMRS configuration parameters and DMRS scrambling information, respectively.
  • the DMRS configuration parameters include at least one of the following:
  • the number of the DMRS configuration is used to distinguish different DMRS configurations.
  • the number of the DMRS configuration mentioned here can be the DMRS index number maintained by the system.
  • the system's DMRS pool includes: DMRS index1 ⁇ M, and the network device configures the terminal with DMRS index3, then the number of the DMRS configuration is 3.
  • the number of the DMRS configuration is the DMRS serial number configured by the network device for the terminal.
  • the DMRS pool of the system includes: DMRS index 1 to M, and the network device configures the terminal with DMRS index 3, 4, and 5, then the number of the DMRS configuration is 1, 2 and 3.
  • DMRS time domain location such as the time domain symbol where the DMRS is located
  • the correspondence relationship between the DMRS and the preamble wherein the indication manner of the correspondence relationship referred to herein may be an explicit instruction or an implicit instruction.
  • a preamble sequence or a preamble index corresponding to the DMRS configuration can be directly indicated in the DMRS configuration parameter; using an implicit indication as an example, the relationship with the DMRS configuration can be determined through a predefined association formula. Corresponding preamble sequence or preamble index.
  • the correspondence between DMRS and phase tracking reference signal is similar to the way of indicating the correspondence between DMRS and preamble.
  • the way of indicating the correspondence between DMRS and phase tracking reference signal PTRS can be an explicit indication or Can be an implicit indication.
  • the PTRS parameter or the number of the PTRS configuration parameter corresponding to the DMRS configuration can be directly indicated in the DMRS configuration parameter; taking the implicit indication as an example, the relationship with the DMRS can be determined through a predefined association relationship formula Configure the corresponding PTRS parameter or the number of the PTRS configuration parameter.
  • the DMRS bandwidth is predefined or configured by network equipment, and the DMRS bandwidth is greater than or equal to the bandwidth of the multiple-access resource where the uplink data is located.
  • the default DMRS bandwidth is the same as the bandwidth of the multiple access resource, that is, the DMRS bandwidth is the same as the data bandwidth.
  • the DMRS bandwidth is configured by the network device, in order to ensure the channel estimation performance when multiple users are multiplexed, the DMRS bandwidth can be greater than the bandwidth of the multiple access resources, so that a longer DMRS sequence can be adopted, which enhances the Orthogonality of DMRS.
  • DMRS transmission power where the DMRS transmission power is the same as the power of the terminal ’s uplink data channel in the same resource element RE, that is, the power of the DMRS and the data on the same RE are the same.
  • the DMRS is related to the data transmission bandwidth
  • DMRS and data have the same power on the same RE; and when the bandwidth of DMRS is greater than the bandwidth of data transmission, the transmission power of DMRS and data are the same, that is, the power of DMRS and data on the same RE are different.
  • the DMRS transmission power corresponding to each DMRS port is individually configured.
  • the DMRS can adopt a power boosting method, and then the power boosting can be configured based on each DMRS port. Specifically, when the bandwidth of the DMRS and the data transmission is the same, and the DMRS is not frequency-division multiplexed with the data in the same OFDM symbol, the DMRS can perform power boost.
  • the DMRS scrambling information includes at least two DMRS scrambling identities (ie, scrambling IDs) corresponding to the DMRS.
  • One of the DMRS identifiers corresponds to one DMRS, that is, the network device configures at least two DMRSs for the terminal, and the two DMRSs correspond to at least two DMRS scrambled IDs.
  • the corresponding relationship between the DMRS and the DMRS scrambled IDs is shown in Figure 3.
  • one DMRS corresponds to one DMRS scrambled ID, such as DMRS index0 corresponds to DMRS scrambled ID0, DMRS index1 corresponds to DMRS scrambled ID1, ..., and DMRS index1 corresponds to DMRS scrambled ID.
  • DMRS index0 corresponds to DMRS scrambled ID0
  • DMRS index1 corresponds to DMRS scrambled ID1
  • DMRS index1 corresponds to DMRS scrambled ID.
  • k n mod L
  • n is the number of DMRS
  • L is the number of DMRS scrambled IDs.
  • the correspondence between DMRS and DMRS scrambling ID is that one DMRS corresponds to at least two DMRS scrambling IDs, and the terminal can randomly select one of the at least two DMRS scrambling IDs to scramble the DMRS, so that even if different terminals use the same DMRS, but because the DMRS scrambling ID used is different, no signal collision will occur.
  • the network device can configure all DMRS scrambling IDs as an optional set for each DMRS, that is, the DMRS scrambling IDs of DMRS0 to n all include DMRS scrambling IDs 0 to k. This scenario can also be understood There is no correspondence between DMRS and DMRS scrambling ID.
  • the target DMRS and uplink data are time-division multiplexed in some embodiments of the present disclosure. It is worth noting that on one OFDM symbol, the DMRS does not perform frequency-division multiplexing with uplink data.
  • the target DMRS corresponds to DMRS configuration parameters and / or DMRS scrambling information, that is, the DMRS corresponding to the DMRS configuration parameters and the uplink data of the terminal are time-division multiplexed, and the DMRS corresponding to the DMRS scrambling ID is related to the uplink of the terminal.
  • the data is time-division multiplexed.
  • the DMRS corresponding to the DMRS configuration parameter and the DMRS scrambling ID is time-division multiplexed with the uplink data of the terminal.
  • the method may further include: configuring PTRS configuration parameters for the terminal.
  • the network device may configure at least two PTRSs for the terminal, and one PTRS configuration parameter corresponds to one DMRS identifier.
  • the PTRS configuration parameters include at least one of the following:
  • the number of the PTRS configuration is used to distinguish different PTRS configurations.
  • the number of the PTRS configuration mentioned here can be the PTRS index number maintained by the system.
  • the system's PTRS pool includes: PTRS index1 to N, and the network device configures the terminal with PTRS index3, then the number of the PTMRS configuration is 3.
  • the PTRS configuration number is the PTRS serial number configured by the network device for the terminal.
  • the PTRS pool of the system includes: DMRS index1 ⁇ N, and the network device configures PTRS index 3, 4, and 5 for the terminal, then the PTRS configuration number is 1, 2 and 3;
  • PTRS time-frequency domain position such as the time-domain symbol where the PTRS is located, and the subcarrier where the PTRS is located;
  • PTRS time-frequency domain density that is, PTRS time-domain density and / or frequency-domain density
  • the correspondence relationship between the PTRS and the preamble wherein the indication manner of the correspondence relationship mentioned herein may be an explicit instruction or an implicit instruction.
  • the preamble sequence or preamble index corresponding to the PTRS configuration can be directly indicated in the PTRS configuration parameters;
  • the pre-defined association relationship can be used to determine the preamble sequence or index.
  • the correspondence between PTRS and DMRS is similar to the way of indicating the correspondence between PTRS and preamble.
  • the way of indicating the correspondence between PTRS and DMRS can be explicit or implicit. Taking an explicit indication as an example, the number of a DMRS configuration parameter corresponding to the PTRS configuration can be directly indicated in the PTRS configuration parameter; taking an implicit indication as an example, the correspondence corresponding to the PTRS configuration can be determined through a predefined association relationship formula The number of DMRS configuration parameters;
  • the network device of some embodiments of the present disclosure configures the terminal with at least two DMRS identities.
  • the terminal can select one of the at least two DMRS identities. In this way, the terminal can select more DMRSs, which increases the DMRS capacity to a certain extent, thereby reducing The probability of collision of non-orthogonal uplink transmitted reference signals can also support the simultaneous transmission of a large number of terminals.
  • the network device 400 of some embodiments of the present disclosure can implement receiving uplink signals in the embodiments; according to the target demodulation reference signal DMRS in the uplink signals, determine the details of the uplink data method of the terminal and achieve the same
  • the terminal device corresponds to at least two demodulation reference signal DMRS identifiers, and the target DMRS is one of the DMRSs indicated by the at least two DMRS identifiers.
  • the network device 400 specifically includes the following functional modules:
  • a first receiving module 410 configured to receive an uplink signal, where the uplink signal includes a target demodulation reference signal DMRS;
  • a processing module 420 configured to determine uplink data of the terminal according to the target DMRS
  • the terminal corresponds to at least two demodulation reference signal DMRS identifiers, and the target DMRS is one of the DMRSs indicated by the at least two DMRS identifiers.
  • the network device 400 further includes:
  • the first configuration module is configured to configure at least two DMRS identifiers for the terminal.
  • the DMRS identifier includes: DMRS configuration parameters and / or DMRS scrambling information.
  • the DMRS configuration parameters include at least one of a DMRS configuration number, a DMRS port number, a DMRS time domain location, a correspondence between DMRS and a preamble, a correspondence between DMRS and a phase tracking reference signal PTRS, a DMRS bandwidth, and a DMRS transmission power. item.
  • the DMRS bandwidth is predefined or configured by a network device, and the DMRS bandwidth is greater than or equal to the bandwidth of a multiple-access resource where uplink data is located.
  • the DMRS transmission power is the same as the power of the uplink data channel of the terminal in the same resource element RE,
  • the DMRS transmission power corresponding to each DMRS port is individually configured.
  • the DMRS scrambling information includes: at least two DMRS scrambling identification IDs corresponding to the DMRS.
  • the target DMRS is time-division multiplexed with the uplink data, and the target DMRS corresponds to DMRS configuration parameters and / or DMRS scrambling information.
  • the network equipment also includes:
  • the second configuration module is configured to configure PTRS configuration parameters for the terminal.
  • one PTRS configuration parameter corresponds to one DMRS identifier.
  • the PTRS configuration parameters include at least one of a PTRS configuration number, a PTRS port number, a PTRS time-frequency domain position, a PTRS time-frequency domain density, a correspondence relationship between PTRS and a preamble, a correspondence relationship between PTRS and DMRS, and PTRS transmission power. item.
  • the network device of some embodiments of the present disclosure configures the terminal with at least two DMRS identities, and the terminal can choose one of the at least two DMRS identities.
  • the terminal can choose more DMRSs and increase DMRS to some extent Capacity, thereby reducing the probability of collision of non-orthogonal uplink transmitted reference signals, and can also support simultaneous transmission by a large number of terminals.
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program.
  • the steps in the information transmission method as described above are implemented.
  • An embodiment of the invention also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the information transmission method described above.
  • Some embodiments of the present disclosure provide an information transmission method applied to a terminal side. As shown in FIG. 5, the method includes the following steps:
  • Step 51 Receive at least two demodulation reference signals DMRS identification.
  • the network device configures at least two DMRS identifiers for one terminal. It is worth pointing out that there may be overlap between the DMRS configured by the network device for different terminals. For example, the network device configures DMRS1, DMRS2, DMRS3, and DMRS4 for terminal 1. DMRS2, DMRS3, and DMRS5 are configured for the terminal. By configuring at least two DMRS identifiers for one terminal, the selection of DMRS can be made more flexible, the capacity of DMRS can be increased, and the probability of selecting the same DMRS between multiple terminals is reduced.
  • Step 52 Use the target DMRS to send uplink data on the multiple access resources.
  • the target DMRS is one of the DMRS indicated by the at least two DMRS identifiers, that is, when the terminal performs non-orthogonal uplink transmission, the terminal may select one of the at least two DMRS identifiers, and use the DMRS indicated by the selected DMRS identifier. Perform uplink non-orthogonal transmission.
  • the DMRS identifier includes: DMRS configuration parameters and / or DMRS scrambling information.
  • the DMRS configuration parameters include: the number of the DMRS configuration, the DMRS port number, the position of the DMRS time domain, the correspondence between the DMRS and the preamble, the correspondence between the DMRS and the phase tracking reference signal PTRS, at least one of the DMRS bandwidth and the DMRS transmission power One item.
  • the DMRS bandwidth is predefined or configured by a network device, and the DMRS bandwidth is greater than or equal to the bandwidth of the multi-access resource.
  • the DMRS transmission power is the same as the power of the uplink data channel of the terminal in the same resource element RE, and / or the DMRS transmission power corresponding to each DMRS port is configured separately.
  • the DMRS scrambling information includes: at least two DMRS scrambling identification IDs corresponding to the DMRS.
  • the target DMRS is time-division multiplexed with the uplink data, and the target DMRS corresponds to DMRS configuration parameters and / or DMRS scrambling information.
  • this terminal-side embodiment corresponds to the above-mentioned information transmission method on the network device side, and the above-mentioned various implementation methods on the network device side can be adaptively applied to the terminal embodiment, for example, the terminal correctly receives The information is the same as the information sent by the network device, so it will not be repeated here.
  • the terminal selects one of at least two DMRS identifiers configured by the network device for non-orthogonal uplink transmission.
  • the number of optional DMRS is increased, and the DMRS capacity is increased to a certain extent, thereby reducing
  • the probability of collision of non-orthogonal uplink transmitted reference signals can also support the simultaneous transmission of a large number of terminals.
  • the terminal 600 in some embodiments of the present disclosure can implement receiving the at least two demodulation reference signals DMRS identifiers in the above embodiments; details of a method for transmitting uplink data in a multiple access resource using a target DMRS, And achieve the same effect; wherein the target DMRS is one of at least two DMRSs indicated by the DMRS identifier, and the terminal 600 specifically includes the following functional modules:
  • a second receiving module 610 configured to receive at least two demodulation reference signals DMRS identifiers
  • the sending module 620 is configured to use the target DMRS to send uplink data on the multiple access resources.
  • the target DMRS is one of the DMRS indicated by the at least two DMRS identifiers.
  • the DMRS identifier includes: DMRS configuration parameters and / or DMRS scrambling information.
  • the DMRS configuration parameters include at least one of a DMRS configuration number, a DMRS port number, a DMRS time domain location, a correspondence between DMRS and a preamble, a correspondence between DMRS and a phase tracking reference signal PTRS, a DMRS bandwidth, and a DMRS transmission power. item.
  • the DMRS bandwidth is predefined or configured by a network device, and the DMRS bandwidth is greater than or equal to the bandwidth of the multi-access resource.
  • the DMRS transmission power is the same as the power of the uplink data channel of the terminal in the same resource element RE,
  • the DMRS transmission power corresponding to each DMRS port is individually configured.
  • the DMRS scrambling information includes: at least two DMRS scrambling identification IDs corresponding to the DMRS.
  • the target DMRS is time-division multiplexed with the uplink data, and the target DMRS corresponds to DMRS configuration parameters and / or DMRS scrambling information.
  • the terminal selects one of at least two DMRS identifiers configured by the network device for non-orthogonal uplink transmission.
  • the number of optional DMRS increases, which increases the DMRS capacity to a certain extent, thereby reducing
  • the probability of collision of non-orthogonal uplink transmitted reference signals can also support the simultaneous transmission of a large number of terminals.
  • higher-order modulations such as 16QAM, 64QAM, and 256QAM are often used.
  • higher-order modulation is often susceptible to phase noise.
  • the higher the modulation order the more sensitive it is to phase noise.
  • the frequency offset of the terminal will cause the performance of the channel estimation to decrease.
  • the transmitting end needs to send a reference signal known to the receiving end, such as PTRS, but the related art does not provide a configuration method for PTRS in a non-orthogonal uplink transmission scenario.
  • Some embodiments of the present disclosure provide an information transmission method applied to a terminal side. As shown in FIG. 7, the method includes the following steps:
  • Step 71 Receive at least two phase tracking reference signals PTRS configuration parameters.
  • the terminal receives at least two PTRS configuration parameters configured by the network device.
  • Step 72 Select one of the candidate PTRSs corresponding to at least two PTRS configuration parameters to send.
  • the terminal selects one of at least two PTRS configuration parameters configured for the network device, and sends the PTRS corresponding to the selected PTRS configuration parameter, so that the receiving end can estimate the phase noise according to the PTRS, and then perform corresponding phase compensation.
  • the frequency domain density of PTRS depends on the system bandwidth.
  • PRBs physical resource blocks
  • MCS Modulation Coding Scheme
  • one PTRS symbol can be inserted every one or several symbols.
  • the PTRS configuration parameters include at least one of the following:
  • the number of the PTRS configuration is used to distinguish different PTRS configurations.
  • the number of the PTRS configuration mentioned here can be the PTRS index number maintained by the system.
  • the system's PTRS pool includes: PTRS index1 to N, and the network device configures the terminal with PTRS index3, then the number of the PTMRS configuration is 3.
  • the PTRS configuration number is the PTRS serial number configured by the network device for the terminal.
  • the PTRS pool of the system includes: DMRS index1 ⁇ N, and the network device configures PTRS index 3, 4, and 5 for the terminal, then the PTRS configuration number is 1, 2 and 3;
  • PTRS time-frequency domain position such as the time-domain symbol where the PTRS is located, and the subcarrier where the PTRS is located;
  • PTRS time-frequency domain density that is, PTRS time-domain density and / or frequency-domain density
  • the correspondence relationship between the PTRS and the preamble wherein the indication manner of the correspondence relationship mentioned herein may be an explicit instruction or an implicit instruction.
  • the preamble sequence or preamble index corresponding to the PTRS configuration can be directly indicated in the PTRS configuration parameters;
  • the pre-defined association relationship can be used to determine the preamble sequence or index.
  • the correspondence between PTRS and DMRS is similar to the way of indicating the correspondence between PTRS and preamble.
  • the way of indicating the correspondence between PTRS and DMRS can be explicit or implicit. Taking an explicit indication as an example, the number of a DMRS configuration parameter corresponding to the PTRS configuration can be directly indicated in the PTRS configuration parameter; taking an implicit indication as an example, the correspondence corresponding to the PTRS configuration can be determined through a predefined association relationship formula The number of DMRS configuration parameters;
  • the method further includes: obtaining a transmission resource of the DMRS; and determining a target transmission resource of the PTRS according to the transmission resource and the correspondence between the PTRS and the DMRS.
  • the terminal selects one of the candidate PTRSs corresponding to at least two PTRS configuration parameters configured by the network device for transmission, and the non-orthogonal uplink transmission is removed.
  • the influence of medium phase noise and frequency offset on transmission performance improves transmission performance.
  • the terminal 800 in some embodiments of the present disclosure can implement the method of receiving at least two phase tracking reference signals PTRS configuration parameters in the embodiment and selecting one of the candidate PTRSs corresponding to the at least two PTRS configuration parameters for transmission. Details and achieve the same effect, the terminal 800 specifically includes the following functional modules:
  • a receiving module 810 configured to receive at least two phase tracking reference signals PTRS configuration parameters
  • a selecting module 820 is configured to select one of candidate PTRSs corresponding to at least two PTRS configuration parameters for transmission.
  • PTRS configuration parameters include: PTRS configuration number, PTRS port number, PTRS time-frequency domain position, PTRS time-frequency domain density, correspondence between PTRS and preamble, correspondence between PTRS and demodulation reference signal DMRS, and PTRS transmission power At least one of.
  • the terminal 800 further includes:
  • An acquisition module for acquiring transmission resources of the DMRS An acquisition module for acquiring transmission resources of the DMRS
  • a determining module is configured to determine a target transmission resource of the PTRS according to a transmission resource and a corresponding relationship between the PTRS and the DMRS.
  • the terminal of some embodiments of the present disclosure selects one of the candidate PTRSs corresponding to at least two PTRS configuration parameters configured by the network device for transmission, which removes the influence of phase noise and frequency offset on transmission performance in non-orthogonal uplink transmission, and improves the transmission performance. Transmission performance.
  • the information transmission method of some embodiments of the present disclosure which is applied to a terminal, includes the following steps:
  • Step 91 Configure at least two phase tracking reference signal PTRS configuration parameters for the terminal.
  • the terminal selects one of at least two PTRS configuration parameters configured for the network device, and sends the PTRS corresponding to the selected PTRS configuration parameter, so that the receiving end can estimate the phase noise according to the PTRS, and then perform corresponding phase compensation.
  • the frequency domain density of PTRS depends on the system bandwidth.
  • one PTRS subcarrier can be inserted at one or several PRB intervals.
  • the time domain density is related to the MCS of the data symbol.
  • one PTRS symbol can be inserted at one or several symbols interval. It is worth pointing out that the embodiments on the network device side correspond to the embodiments on the terminal side, and various implementations of the embodiments on the terminal are applicable to the embodiments on the network device.
  • the PTRS configuration parameters include at least one of a PTRS configuration number, a PTRS port number, a PTRS time-frequency domain position, a PTRS time-frequency domain density, a correspondence relationship between PTRS and a preamble, a correspondence relationship between PTRS and DMRS, and PTRS transmission power. item.
  • the network device configures at least two PTRS configuration parameters for the terminal, so that the terminal can select one of the candidate PTRSs corresponding to the at least two PTRS configuration parameters configured by the network device to send, removing The influence of phase noise and frequency offset on transmission performance in non-orthogonal uplink transmission improves transmission performance.
  • the network device 1000 in some embodiments of the present disclosure can implement the details of the method for configuring at least two phase tracking reference signals PTRS configuration parameters for a terminal in the above embodiments, and achieve the same effect.
  • the network device 1000 Specifically includes the following functional modules:
  • a configuration module 1010 is configured to configure at least two phase tracking reference signal PTRS configuration parameters for a terminal.
  • the PTRS configuration parameters include at least one of a PTRS configuration number, a PTRS port number, a PTRS time-frequency domain position, a PTRS time-frequency domain density, a correspondence relationship between PTRS and a preamble, a correspondence relationship between PTRS and DMRS, and PTRS transmission power item.
  • the network device of some embodiments of the present disclosure configures the terminal with at least two PTRS configuration parameters, so that the terminal can select one of the candidate PTRSs corresponding to the at least two PTRS configuration parameters configured by the network device to transmit, reducing non- The influence of phase noise and frequency offset on transmission performance in orthogonal uplink transmission improves transmission performance.
  • each module of the above network equipment and terminal is only a division of logical functions. In actual implementation, it may be fully or partially integrated into a physical entity, or it may be physically separated. And these modules can all be implemented in the form of software through processing element calls; they can also be implemented in hardware; all modules can be implemented in the form of software called by processing elements, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or may be integrated and implemented in a chip of the above-mentioned device. In addition, it may also be stored in the memory of the above-mentioned device in the form of a program code, and may be processed by a certain processing element of the above-mentioned device.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuits, ASIC for short), or one or more microprocessors ( Digital Signal Processor (DSP for short), or one or more Field Programmable Gate Array (FPGA).
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a Central Processing Unit (Central Processing Unit) or other processor that can call program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the network device 1100 includes: an antenna 111, a radio frequency device 112, and a baseband device 113.
  • the antenna 111 is connected to the radio frequency device 112.
  • the radio frequency device 112 receives information through the antenna 111 and sends the received information to the baseband device 113 for processing.
  • the baseband device 113 processes the information to be transmitted and sends it to the radio frequency device 112.
  • the radio frequency device 112 processes the received information and sends it out via the antenna 111.
  • the above-mentioned frequency band processing device may be located in the baseband device 113.
  • the method performed by the network device in the above embodiments may be implemented in the baseband device 113.
  • the baseband device 113 includes a processor 114 and a memory 115.
  • the baseband device 113 may include, for example, at least one baseband board.
  • a plurality of chips are provided on the baseband board, as shown in FIG. 11.
  • One of the chips is, for example, the processor 114 and is connected to the memory 115 to call a program in the memory 115 and execute The network device operations shown in the above method embodiments are operated.
  • the baseband device 113 may further include a network interface 116 for exchanging information with the radio frequency device 112.
  • the interface is, for example, a common public radio interface (CPRI).
  • the processor here may be a processor or a collective name for multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the methods performed by the above network devices.
  • Integrated circuits such as: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • the memory 115 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), or an erasable programmable read-only memory (EPROM). Electrically erasable programmable read-only memory (Electrically EPROM, EEPROM for short) or flash memory.
  • the volatile memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM for short
  • Synchronous Dynamic Random Access Memory for short
  • Synchlink DRAM SLDRAM for short
  • Direct Memory Bus Random Access Memory Direct RAMbus RAM, DRRAM for short
  • the memory 115 described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • the network device of some embodiments of the present disclosure further includes a computer program stored in the memory 115 and executable on the processor 114.
  • the processor 114 calls the computer program in the memory 115 to execute each of the programs shown in FIG. 5 or 10 The method that the module executes.
  • the processor 114 calls the computer program in the memory 115 to execute the method executed by each module shown in FIG. 6, the same technical effect can be achieved.
  • the computer program can be used to perform: receiving an uplink signal;
  • the uplink data of the terminal is determined according to the target demodulation reference signal DMRS in the uplink signal, where the terminal corresponds to at least two demodulation reference signals DMRS identifiers, and the target DMRS is one of the DMRSs indicated by the at least two DMRS identifiers.
  • the processor 114 calls the computer program in the memory 115 to execute the method executed by each module shown in FIG. 8, the same technical effect can be achieved.
  • the computer program can be used to execute: configure at least the terminal Two phase tracking reference signal PTRS configuration parameters.
  • the network device may be a Global System (Global System) of Mobile Communication (referred to as GSM) or a Code Division Multiple Access (Code Division Multiple Access (referred to as CDMA)) base station (Base Transceiver Station (BTS)) or a broadband code
  • GSM Global System
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • NodeB, NB in Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FIG. 12 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 120 includes, but is not limited to, a radio frequency unit 121, a network module 122, an audio output unit 123, The input unit 124, the sensor 125, the display unit 126, the user input unit 127, the interface unit 128, the memory 129, the processor 1210, and the power source 1211 and other components.
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or some components may be combined, or different components may be arranged.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the radio frequency unit 121 is configured to receive an uplink signal; the processor 1210 is configured to determine uplink data of a terminal according to a target demodulation reference signal DMRS in the uplink signal; wherein the terminal corresponds to at least two demodulation reference signals DMRS identifiers,
  • the target DMRS is one of the DMRS indicated by the at least two DMRS identifiers.
  • the radio frequency unit 121 is configured to receive at least two demodulation reference signal DMRS identifiers; the processor 1210 is configured to use the target DMRS to send uplink data on multiple access resources; where the target DMRS is at least two DMRS identifier indications One of the DMRS;
  • the radio frequency unit 121 may be used to receive and send signals during the process of transmitting and receiving information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 1210; To send the uplink data to the base station.
  • the radio frequency unit 121 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 121 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 122, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 123 may convert audio data received by the radio frequency unit 121 or the network module 122 or stored in the memory 129 into audio signals and output them as sound. Also, the audio output unit 123 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 120.
  • the audio output unit 123 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 124 is configured to receive an audio or video signal.
  • the input unit 124 may include a graphics processing unit (GPU) 1241 and a microphone 1242.
  • the graphics processor 1241 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on the display unit 126.
  • the image frames processed by the graphics processor 1241 may be stored in the memory 129 (or other storage medium) or transmitted via the radio frequency unit 121 or the network module 122.
  • the microphone 1242 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 121 in the case of a telephone call mode.
  • the terminal 120 further includes at least one sensor 125, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1261 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1261 and / or when the terminal 120 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the attitude of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 125 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 126 is configured to display information input by the user or information provided to the user.
  • the display unit 126 may include a display panel 1261.
  • the display panel 1261 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 127 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 127 includes a touch panel 1271 and other input devices 1272.
  • Touch panel 1271 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses a finger, a stylus or any suitable object or accessory on the touch panel 1271 or near the touch panel 1271 operating).
  • the touch panel 1271 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it
  • the processor 1210 receives a command sent by the processor 1210 and executes the command.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 1271.
  • the user input unit 127 may also include other input devices 1272.
  • the other input devices 1272 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which are not described herein again.
  • the touch panel 1271 may be overlaid on the display panel 1261. After the touch panel 1271 detects a touch operation on or near the touch panel 1271, it is transmitted to the processor 1210 to determine the type of the touch event. The processor 1210 then The type of event provides corresponding visual output on the display panel 1261.
  • the touch panel 1271 and the display panel 1261 are implemented as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 1271 and the display panel 1261 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 128 is an interface for connecting an external device with the terminal 120.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 128 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 120 or may be used to communicate between the terminal 120 and an external device. Transfer data.
  • the memory 129 may be used to store software programs and various data.
  • the memory 129 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required for at least one function; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 129 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1210 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal.
  • the processor 1210 executes or executes software programs and / or modules stored in the memory 129 and calls data stored in the memory 129 to execute.
  • Various functions and processing data of the terminal so as to monitor the terminal as a whole.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1210.
  • the terminal 120 may further include a power source 1211 (such as a battery) for supplying power to various components.
  • a power source 1211 such as a battery
  • the power source 1211 may be logically connected to the processor 1210 through a power management system, thereby implementing management of charging, discharging, and power consumption management through a power management system. And other functions.
  • the terminal 120 includes some functional modules that are not shown, and details are not described herein again.
  • some embodiments of the present disclosure further provide a terminal, including a processor 1210 and a memory 129, and a computer program stored on the memory 129 and executable on the processor 1210.
  • the computer program is processed by the processor 1210.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and / or other business data connectivity to the user, a handheld device with a wireless connection function, or other processing equipment connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or a "cellular" phone) and a mobile terminal with a mobile terminal.
  • Computers for example, can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange languages and / or data with a wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless terminal can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a mobile station, a remote station, a remote terminal,
  • the access terminal Access terminal
  • user terminal User terminal
  • user agent User agent
  • user equipment User Equipment
  • Some embodiments of the present disclosure also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the processes of the foregoing information transmission method embodiments are implemented, and can achieve the same Technical effects, in order to avoid repetition, will not repeat them here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to related technologies or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be disassembled and / or recombined. These decompositions and / or recombinations should be considered as equivalent solutions of the present disclosure.
  • the steps for performing the above-mentioned series of processes can be naturally performed in chronological order according to the order of description, but need not necessarily be performed in chronological order, and certain steps may be performed in parallel or independently of each other.
  • it is able to understand all or any steps or components of the methods and devices of the present disclosure and may be implemented in hardware, firmware in any computing device (including a processor, a storage medium, etc.) or a network of computing devices.
  • Software, or a combination thereof which can be achieved by a person of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product including a program code that implements the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future. It should also be noted that, in the apparatus and method of the present disclosure, it is obvious that each component or each step can be disassembled and / or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种信息传输方法、网络设备及终端,其方法包括:接收上行信号;根据上行信号中的目标解调参考信号DMRS,确定终端的上行数据;其中,终端对应至少两个解调参考信号DMRS标识,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。

Description

信息传输方法、网络设备及终端
相关申请的交叉引用
本申请主张在2018年07月06日在中国提交的中国专利申请号No.201810739059.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息传输方法、网络设备及终端。
背景技术
第五代(5th Generation,5G)移动通信系统或称为新空口(New Radio,NR)可适应更加多样化的场景和业务需求,其主要场景包括:移动宽带增强(enhanced Mobile Broadband,eMBB)通信、大规模物联网(massive Machine Type Communications,mMTC)、超高可靠超低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)。这些场景对系统提出了高可靠、低时延、大带宽、广覆盖等要求。
为了提高系统的容量和资源利用率,多个终端可以在相同的资源上通过非正交的方式进行传输。此外,NR系统还支持半静态调度(configured grant)的上行传输方式,可以减少信令交互流程,从而能够降低终端的功耗。终端在进行非正交上行传输时,多个不同终端可复用相同的传输资源,这时网络设备需要区分出不同终端的上行信号。对于数据传输,不同终端可采用不同的多址接入(Multiple Access,MA)标识,MA标识包括但不限于解调参考信号(De-Modulation Reference Signal,DMRS)。若分别为不同终端配置不同的DMRS进行传输,虽然可以避免终端之间的数据冲突,但难以支持大量终端同时传输。
发明内容
本公开的一些实施例提供了一种信息传输方法、网络设备及终端,以解 决非正交上行传输难以支持大量终端同时传输的问题。
第一方面,本公开的一些实施例提供了一种信息传输方法,应用于网络设备侧,包括:
接收上行信号,其中上行信号中包含目标解调参考信号DMRS;
根据上行信号中的目标DMRS,确定终端的上行数据;
其中,终端对应至少两个解调参考信号DMRS标识,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。
第二方面,本公开的一些实施例还提供了一种网络设备,包括:
第一接收模块,用于接收上行信号,其中上行信号中包含目标解调参考信号DMRS;
处理模块,用于根据上行信号中的目标DMRS,确定终端的上行数据;
其中,终端对应至少两个解调参考信号DMRS标识,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。
第三方面,本公开的一些实施例提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的信息传输方法的步骤。
第四方面,本公开的一些实施例提供了一种信息传输方法,应用于终端侧,包括:
接收至少两个解调参考信号DMRS标识;
采用目标DMRS,在多址接入资源发送上行数据;其中,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。
第五方面,本公开的一些实施例提供了一种终端,包括:
第二接收模块,用于接收至少两个解调参考信号DMRS标识;
发送模块,用于采用目标DMRS,在多址接入资源发送上行数据;其中,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。
第六方面,本公开的一些实施例还提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时上述的信息传输方法的步骤。
第七方面,本公开的一些实施例提供了一种信息传输方法,应用于终端 侧,包括:
接收至少两个相位跟踪参考信号PTRS配置参数;
从至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送。
第八方面,本公开的一些实施例提供了一种终端,包括:
接收模块,用于接收至少两个相位跟踪参考信号PTRS配置参数;
选择模块,用于从至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送。
第九方面,本公开的一些实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的信息传输方法的步骤。
第十方面,本公开的一些实施例提供了一种信息传输方法,应用于网络设备侧,包括:
为终端配置至少两个相位跟踪参考信号PTRS配置参数。
第十一方面,本公开的一些实施例提供了一种网络设备,包括:
配置模块,用于为终端配置至少两个相位跟踪参考信号PTRS配置参数。
第十二方面,本公开的一些实施例提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的信息传输方法的步骤。
第十三方面,本公开的一些实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述终端侧或网络设备侧的信息传输方法的步骤。
这样,本公开的一些实施例通过采用上述技术方案,可以增加DMRS容量,从而降低非正交上行传输的参考信号发生碰撞的概率,还可支持大量终端同时进行传输。
附图说明
为了更清楚地说明本公开的一些实施例的技术方案,下面将对本公开的一些实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在 不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开的一些实施例可应用的一种移动通信系统框图;
图2表示本公开的一些实施例网络设备侧的信息传输方法的流程示意图一;
图3表示本公开的一些实施例DMRS与DMRS加扰ID的映射关系示意图;
图4表示本公开的一些实施例的网络设备的模块结构示意图一;
图5表示本公开的一些实施例终端侧的信息传输方法的流程示意图一;
图6表示本公开的一些实施例的终端的模块结构示意图一;
图7表示本公开的一些实施例终端侧的信息传输方法的流程示意图二;
图8表示本公开的一些实施例的终端的模块结构示意图二;
图9表示本公开的一些实施例网络设备侧的信息传输方法的流程示意图二;
图10表示本公开的一些实施例的网络设备的模块结构示意图二;
图11表示本公开的一些实施例的网络设备框图;
图12表示本公开的一些实施例的终端框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备 固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步 骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开的一些实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开的一些实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝 或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开的一些实施例提供了一种信息传输方法,应用于网络设备侧,如图2所示,该方法包括以下步骤:
步骤21:接收上行信号,其中,上行信号中包含目标解调参考信号DMRS。
这里所说的上行信号指的是上行非正交传输信号,具体地,该步骤可以是:接收处于非正交传输模式下的终端发送的上行信号。该上行信号是在多址接入资源上传输的,该上行信号可以是:包括前导码与基于MA标识(signature)的数据,或,包括前导码、DMRS与基于MA标识的数据,或,包括DMRS与基于MA标识的数据。其中,上述前导码包括循环前缀、前导码序列、保护间隔。
步骤22:根据目标DMRS,确定终端的上行数据。
其中,该终端对应至少两个解调参考信号DMRS标识,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。进一步地,在步骤21之前还包括:为终端配置至少两个DMRS标识,也就是说,网络设备为一个终端配置至少两个DMRS标识,这样终端在进行非正交上行传输时,可以从至少两个DMRS标识中选择一个,采用选择的DMRS标识指示的DMRS进行上行非正交传输。值得指出的是,网络设备为不同终端配置的DMRS之间可以有重叠,例如网络设备为终端1配置了DMRS1、DMRS2、DMRS3和DMRS4,为终端配置了DMRS2、DMRS3和DMRS5。通过为一个终端配置至少两个DMRS标识,可以使得DMRS的选择更加灵活,增加了DMRS的容量,多 个终端之间选择相同DMRS的几率降低。
其中,上述DMRS标识包括:DMRS配置参数和/或DMRS加扰信息。下面将分别就DMRS配置参数和DMRS加扰信息对本公开的一些实施例做进一步说明。
其中,DMRS配置参数包括以下中的至少一项:
DMRS配置的编号,其中,DMRS配置的编号用于区分不同的DMRS配置。这里所说的DMRS配置的编号可以是系统维护的DMRS索引号(index),例如系统的DMRS池中包括:DMRS index1~M,网络设备为终端配置了DMRS index3,那么该DMRS配置的编号即为3。或者该DMRS配置的编号是网络设备为终端配置的DMRS序号,例如系统的DMRS池中包括:DMRS index1~M,网络设备为终端配置了DMRS index3、4和5,那么该DMRS配置的编号即为1、2和3。
DMRS端口(port)号;
DMRS时域位置,如DMRS所在的时域符号;
DMRS与前导码的对应关系,其中,这里所说的对应关系的指示方式可以是显式指示也可以是隐式指示。以显式指示为例,可在DMRS配置参数中直接指示与该DMRS配置相对应的前导码序列或前导码索引;以隐式指示为例,可通过预定义的关联关系式确定与该DMRS配置相对应的前导码序列或前导码索引。
DMRS与相位跟踪参考信号(Phase tracking reference signal,PTRS)的对应关系,与DMRS与前导码的对应关系的指示方式类似,DMRS与相位跟踪参考信号PTRS的对应关系的指示方式可以是显式指示也可以是隐式指示。以显式指示为例,可在DMRS配置参数中直接指示与该DMRS配置相对应的PTRS参数或PTRS配置参数的编号;以隐式指示为例,可通过预定义的关联关系式确定与该DMRS配置相对应的PTRS的参数或PTRS配置参数的编号。
DMRS带宽;其中,DMRS带宽是预定义或网络设备配置的,DMRS带宽大于或等于上行数据所在多址接入资源的带宽。可选地,若DMRS带宽是预定义的,则默认DMRS带宽与多址接入资源的带宽相同,即DMRS的带宽与数据带宽相同。若DMRS带宽是网络设备配置的,为保证在多用户复用时 的信道估计性能,DMRS带宽可大于多址接入资源的带宽,从而可采用较长的DMRS序列,增强了不同用户之间的DMRS的正交性。
以及,DMRS传输功率,其中,DMRS传输功率与终端的上行数据信道在相同资源元素RE中的功率相同,即DMRS与数据在相同RE上的功率相同,具体地,当DMRS与数据传输的带宽相同时,DMRS与数据在相同的RE上功率相同;而当DMRS的带宽大于数据传输的带宽时,DMRS的发送功率与数据的发送功率保持一致,即DMRS与数据在相同RE上的功率不相同。和/或,每个DMRS端口对应的DMRS传输功率是单独配置的,例如DMRS可以采用功率提升(power boosting)方式,那么Power boosting可以是基于每个DMRS端口配置的。具体地,当DMRS与数据传输的带宽相同时,且DMRS在同一个OFDM符号不与数据频分复用时,DMRS可以进行功率提升。
以上介绍了DMRS配置参数的相关实施例,下面本实施例将进一步介绍DMRS标识包括DMRS加扰信息相关的实施例。
DMRS加扰信息包括与DMRS对应的至少两个DMRS加扰标识(即加扰ID)。其中一个DMRS标识对应一个DMRS,也就是说,网络设备为终端配置至少两个DMRS,这两个DMRS对应至少两个DMRS加扰ID,那么DMRS与DMRS加扰ID的对应关系包括如图3所示的,一个DMRS对应一个DMRS加扰ID,如DMRS index0对应DMRS加扰ID0、DMRS index1对应DMRS加扰ID1、...、DMRS index n对应DMRS加扰ID n。其中,k=n mod L,n为DMRS的数量,L为DMRS加扰ID的数量。或者,DMRS与DMRS加扰ID的对应关系为一个DMRS对应至少两个DMRS加扰ID,终端可以从这至少两个DMRS加扰ID中随机选择一个对DMRS进行加扰,这样即使不同终端采用相同的DMRS,但由于采用的DMRS加扰ID不同,也不会发生信号的碰撞。其中,值得指出的是,网络设备可以为每个DMRS都配置全部DMRS加扰ID作为可选集合,即DMRS0~n的DMRS加扰ID均包括DMRS加扰ID0~k,这种场景亦可理解为DMRS与DMRS加扰ID无对应关系。
本公开的一些实施例的目标DMRS与上行数据(终端的上行数据)时分复用,值得指出的是,在一个OFDM符号上,DMRS不与上行数据进行频分复用。该目标DMRS是与DMRS配置参数和/或DMRS加扰信息对应的,也 就是说,DMRS配置参数对应的DMRS与终端的上行数据是时分复用的,DMRS加扰ID对应的DMRS与终端的上行数据是时分复用的,DMRS配置参数和DMRS加扰ID对应的DMRS与终端的上行数据是时分复用的。
进一步地,在步骤21之前,该方法还可以包括:为终端配置PTRS配置参数。具体地,网络设备可为终端配置至少两个PTRS,一个PTRS配置参数对应一个DMRS标识。
具体地,PTRS配置参数包括以下中的至少一项:
PTRS配置的编号,其中,PTRS配置的编号用于区分不同的PTRS配置。这里所说的PTRS配置的编号可以是系统维护的PTRS索引号(index),例如系统的PTRS池中包括:PTRS index1~N,网络设备为终端配置了PTRS index3,那么该PTMRS配置的编号即为3。或者该PTRS配置的编号是网络设备为终端配置的PTRS序号,例如系统的PTRS池中包括:DMRS index1~N,网络设备为终端配置了PTRS index3、4和5,那么该PTRS配置的编号即为1、2和3;
PTRS端口号;
PTRS时频域位置,如PTRS所在的时域符号、PTRS所在的子载波;
PTRS时频域密度,即PTRS的时域密度和/或频域密度;
PTRS与前导码的对应关系,其中,这里所说的对应关系的指示方式可以是显式指示也可以是隐式指示。以显式指示为例,可在PTRS配置参数中直接指示与该PTRS配置相对应的前导码序列或前导码索引;以隐式指示为例,可通过预定义的关联关系式确定与该PTRS配置相对应的前导码序列或前导码索引;
PTRS与DMRS的对应关系,与PTRS与前导码的对应关系的指示方式类似,PTRS与DMRS的对应关系的指示方式可以是显式指示也可以是隐式指示。以显式指示为例,可在PTRS配置参数中直接指示与该PTRS配置相对应的DMRS配置参数的编号;以隐式指示为例,可通过预定义的关联关系式确定与该PTRS配置相对应的DMRS配置参数的编号;
以及PTRS传输功率。
本公开的一些实施例的网络设备为终端配置至少两个DMRS标识,终端 可从这至少两个DMRS标识中选择一个,这样终端可选的DMRS增多,一定程度上增加了DMRS容量,从而降低了非正交上行传输的参考信号发生碰撞的概率,还可支持大量终端同时进行传输。
以上实施例分别详细介绍了不同场景下的信息传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图4所示,本公开的一些实施例的网络设备400,能实现实施例中接收上行信号;根据上行信号中的目标解调参考信号DMRS,确定终端的上行数据方法的细节,并达到相同的效果;其中,终端对应至少两个解调参考信号DMRS标识,目标DMRS为至少两个DMRS标识指示的DMRS中的一个,该网络设备400具体包括以下功能模块:
第一接收模块410,用于接收上行信号,其中上行信号中包含目标解调参考信号DMRS;
处理模块420,用于根据目标DMRS,确定终端的上行数据;
其中,终端对应至少两个解调参考信号DMRS标识,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。
其中,网络设备400还包括:
第一配置模块,用于为终端配置至少两个DMRS标识。
其中,DMRS标识包括:DMRS配置参数和/或DMRS加扰信息。
其中,DMRS配置参数包括:DMRS配置的编号、DMRS端口号、DMRS时域位置、DMRS与前导码的对应关系、DMRS与相位跟踪参考信号PTRS的对应关系、DMRS带宽和DMRS传输功率中的至少一项。
其中,DMRS带宽是预定义或网络设备配置的,DMRS带宽大于或等于上行数据所在多址接入资源的带宽。
其中,DMRS传输功率与终端的上行数据信道在相同资源元素RE中的功率相同,
和/或,
每个DMRS端口对应的DMRS传输功率是单独配置的。
其中,DMRS加扰信息包括:与DMRS对应的至少两个DMRS加扰标识ID。
其中,目标DMRS与上行数据时分复用,其中,目标DMRS是与DMRS配置参数和/或DMRS加扰信息对应的。
其中,网络设备还包括:
第二配置模块,用于为终端配置PTRS配置参数。
其中,一个PTRS配置参数对应一个DMRS标识。
其中,PTRS配置参数包括:PTRS配置的编号、PTRS端口号、PTRS时频域位置、PTRS时频域密度、PTRS与前导码的对应关系、PTRS与DMRS的对应关系和PTRS传输功率中的至少一项。
值得指出的是,本公开的一些实施例的网络设备为终端配置至少两个DMRS标识,终端可从这至少两个DMRS标识中选择一个,这样终端可选的DMRS增多,一定程度上增加了DMRS容量,从而降低了非正交上行传输的参考信号发生碰撞的概率,还可支持大量终端同时进行传输。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的信息传输方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的信息传输方法的步骤。
以上实施例从网络设备侧介绍了本公开的信息传输方法,下面本实施例将结合附图对终端侧的信息传输方法做进一步介绍。
本公开的一些实施例提供了一种信息传输方法,应用于终端侧,如图5所示,该方法包括以下步骤:
步骤51:接收至少两个解调参考信号DMRS标识。
也就是说,网络设备为一个终端配置至少两个DMRS标识,值得指出的是,网络设备为不同终端配置的DMRS之间可以有重叠,例如网络设备为终端1配置了DMRS1、DMRS2、DMRS3和DMRS4,为终端配置了DMRS2、DMRS3和DMRS5。通过为一个终端配置至少两个DMRS标识,可以使得DMRS的选择更加灵活,增加了DMRS的容量,多个终端之间选择相同DMRS的几率降低。
步骤52:采用目标DMRS,在多址接入资源发送上行数据。
其中,目标DMRS为至少两个DMRS标识指示的DMRS中的一个,也就是说,终端在进行非正交上行传输时,可以从至少两个DMRS标识中选择一个,采用选择的DMRS标识指示的DMRS进行上行非正交传输。
其中,DMRS标识包括:DMRS配置参数和/或DMRS加扰信息。
进一步地,DMRS配置参数包括:DMRS配置的编号、DMRS端口号、DMRS时域位置、DMRS与前导码的对应关系、DMRS与相位跟踪参考信号PTRS的对应关系、DMRS带宽和DMRS传输功率中的至少一项。
其中,DMRS带宽是预定义或网络设备配置的,DMRS带宽大于或等于多址接入资源的带宽。
其中,DMRS传输功率与终端的上行数据信道在相同资源元素RE中的功率相同,和/或,每个DMRS端口对应的DMRS传输功率是单独配置的。
另一方面,DMRS加扰信息包括:与DMRS对应的至少两个DMRS加扰标识ID。
其中,目标DMRS与上行数据时分复用,其中,目标DMRS是与DMRS配置参数和/或DMRS加扰信息对应的。
值得指出的是,该终端侧实施例是与上述网络设备侧的信息传输方法对应的,上述网络设备侧的各种实现方式均可适应性应用于终端的实施例中,例如终端正确接收到的信息与网络设备发送的信息一致等,故在此不再赘述。
本公开的一些实施例的信息传输方法中,终端在网络设备配置的至少两个DMRS标识中选择一个进行非正交上行传输,可选的DMRS增多,一定程度上增加了DMRS容量,从而降低了非正交上行传输的参考信号发生碰撞的概率,还可支持大量终端同时进行传输。
以上实施例介绍了不同场景下的信息传输方法,下面将结合附图对与其对应的终端做进一步介绍。
如图6所示,本公开的一些实施例的终端600,能实现上述实施例中接收至少两个解调参考信号DMRS标识;采用目标DMRS,在多址接入资源发送上行数据方法的细节,并达到相同的效果;其中,目标DMRS为至少两个DMRS标识指示的DMRS中的一个,该终端600具体包括以下功能模块:
第二接收模块610,用于接收至少两个解调参考信号DMRS标识;
发送模块620,用于采用目标DMRS,在多址接入资源发送上行数据;其中,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。
其中,DMRS标识包括:DMRS配置参数和/或DMRS加扰信息。
其中,DMRS配置参数包括:DMRS配置的编号、DMRS端口号、DMRS时域位置、DMRS与前导码的对应关系、DMRS与相位跟踪参考信号PTRS的对应关系、DMRS带宽和DMRS传输功率中的至少一项。
其中,DMRS带宽是预定义或网络设备配置的,DMRS带宽大于或等于多址接入资源的带宽。
其中,DMRS传输功率与终端的上行数据信道在相同资源元素RE中的功率相同,
和/或,
每个DMRS端口对应的DMRS传输功率是单独配置的。
其中,DMRS加扰信息包括:与DMRS对应的至少两个DMRS加扰标识ID。
其中,目标DMRS与上行数据时分复用,其中,目标DMRS是与DMRS配置参数和/或DMRS加扰信息对应的。
值得指出的是,本公开的一些实施例的终端在网络设备配置的至少两个DMRS标识中选择一个进行非正交上行传输,可选的DMRS增多,一定程度上增加了DMRS容量,从而降低了非正交上行传输的参考信号发生碰撞的概率,还可支持大量终端同时进行传输。
在本公开的另一实施例中,为了提高传输的有效性,往往会使用高阶调制,如16QAM、64QAM和256QAM等。然而,高阶调制往往容易受到相位噪声的影响。而且调制阶数越高,对相位噪声越敏感。除此之外,终端的频偏会导致信道估计的性能下降。为了除去相位噪声以及弥补频偏带来的影响,发送端需要发送接收端已知的参考信号,如PTRS,但是相关技术中并没有提供非正交上行传输场景PTRS的配置方式。
本公开的一些实施例提供了一种信息传输方法,应用于终端侧,如图7所示,该方法包括以下步骤:
步骤71:接收至少两个相位跟踪参考信号PTRS配置参数。
这里是说,终端接收网络设备为其配置的至少两个PTRS配置参数。
步骤72:从至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送。
终端从网络设备为其配置的至少两个PTRS配置参数中选择一个,将被选择的PTRS配置参数对应的PTRS进行发送,这样接收端可以根据该PTRS对相位噪声进行估计,然后进行相应的相位补偿。通常PTRS的频域密度取决于系统带宽,例如可以每间隔一个或几个物理资源块(Physical Resource block,PRB)插入一个PTRS子载波;时域密度与数据符号的调制编码方式(Modulation Coding Scheme,MCS)有关,例如可以每间隔一个或几个符号插入一个PTRS符号。
具体地,PTRS配置参数包括以下中的至少一项:
PTRS配置的编号,其中,PTRS配置的编号用于区分不同的PTRS配置。这里所说的PTRS配置的编号可以是系统维护的PTRS索引号(index),例如系统的PTRS池中包括:PTRS index1~N,网络设备为终端配置了PTRS index3,那么该PTMRS配置的编号即为3。或者该PTRS配置的编号是网络设备为终端配置的PTRS序号,例如系统的PTRS池中包括:DMRS index1~N,网络设备为终端配置了PTRS index3、4和5,那么该PTRS配置的编号即为1、2和3;
PTRS端口号;
PTRS时频域位置,如PTRS所在的时域符号、PTRS所在的子载波;
PTRS时频域密度,即PTRS的时域密度和/或频域密度;
PTRS与前导码的对应关系,其中,这里所说的对应关系的指示方式可以是显式指示也可以是隐式指示。以显式指示为例,可在PTRS配置参数中直接指示与该PTRS配置相对应的前导码序列或前导码索引;以隐式指示为例,可通过预定义的关联关系式确定与该PTRS配置相对应的前导码序列或前导码索引;
PTRS与DMRS的对应关系,与PTRS与前导码的对应关系的指示方式类似,PTRS与DMRS的对应关系的指示方式可以是显式指示也可以是隐式 指示。以显式指示为例,可在PTRS配置参数中直接指示与该PTRS配置相对应的DMRS配置参数的编号;以隐式指示为例,可通过预定义的关联关系式确定与该PTRS配置相对应的DMRS配置参数的编号;
以及PTRS传输功率。
当PTRS配置参数包括PTRS与DMRS的对应关系时,步骤71之前还包括:获取DMRS的传输资源;根据该传输资源以及PTRS与DMRS的对应关系,确定PTRS的目标传输资源。
本公开的一些实施例的信息传输方法中,在非正交上行传输场景下,终端在网络设备配置的至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送,去除了非正交上行传输中相位噪声以及频偏对传输性能的影响,提高了传输性能。
以上实施例分别详细介绍了不同场景下的信息传输方法,下面本实施例将结合附图对其对应的终端做进一步介绍。
如图8所示,本公开的一些实施例的终端800,能实现实施例中接收至少两个相位跟踪参考信号PTRS配置参数从至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送方法的细节,并达到相同的效果,该终端800具体包括以下功能模块:
接收模块810,用于接收至少两个相位跟踪参考信号PTRS配置参数;
选择模块820,用于从至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送。
其中,PTRS配置参数包括:PTRS配置的编号、PTRS端口号、PTRS时频域位置、PTRS时频域密度、PTRS与前导码的对应关系、PTRS与解调参考信号DMRS的对应关系和PTRS传输功率中的至少一项。
其中,当PTRS配置参数包括PTRS与DMRS的对应关系时,终端800还包括:
获取模块,用于获取DMRS的传输资源;
确定模块,用于根据传输资源以及PTRS与DMRS的对应关系,确定PTRS的目标传输资源。
本公开的一些实施例的终端在网络设备配置的至少两个PTRS配置参数 对应的候选PTRS中选择一个进行发送,去除了非正交上行传输中相位噪声以及频偏对传输性能的影响,提高了传输性能。
以上实施例从终端侧介绍了本发明的信息传输方法,下面本实施例将结合附图对网络设备侧的信息传输方法做进一步介绍。
如图9所示,本公开的一些实施例的信息传输方法,应用于终端,包括以下步骤:
步骤91:为终端配置至少两个相位跟踪参考信号PTRS配置参数。
终端从网络设备为其配置的至少两个PTRS配置参数中选择一个,将被选择的PTRS配置参数对应的PTRS进行发送,这样接收端可以根据该PTRS对相位噪声进行估计,然后进行相应的相位补偿。通常PTRS的频域密度取决于系统带宽,例如可以每间隔一个或几个PRB插入一个PTRS子载波;时域密度与数据符号的MCS有关,例如可以每间隔一个或几个符号插入一个PTRS符号。值得指出的是,本网络设备侧的实施例均与上述终端侧的实施例相对应,上述终端的实施例的各种实现方式均适用于网络设备的实施例中。
其中,PTRS配置参数包括:PTRS配置的编号、PTRS端口号、PTRS时频域位置、PTRS时频域密度、PTRS与前导码的对应关系、PTRS与DMRS的对应关系和PTRS传输功率中的至少一项。
本公开的一些实施例的信息传输方法中,网络设备为终端配置至少两个PTRS配置参数,这样终端可在网络设备配置的至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送,去除了非正交上行传输中相位噪声以及频偏对传输性能的影响,提高了传输性能。
以上实施例介绍了不同场景下的信息传输方法,下面将结合附图对与其对应的网络设备做进一步介绍。
如图10所示,本公开的一些实施例的网络设备1000,能实现上述实施例中为终端配置至少两个相位跟踪参考信号PTRS配置参数方法的细节,并达到相同的效果,该网络设备1000具体包括以下功能模块:
配置模块1010,用于为终端配置至少两个相位跟踪参考信号PTRS配置参数。其中,PTRS配置参数包括:PTRS配置的编号、PTRS端口号、PTRS时频域位置、PTRS时频域密度、PTRS与前导码的对应关系、PTRS与DMRS 的对应关系和PTRS传输功率中的至少一项。
值得指出的是,本公开的一些实施例的网络设备为终端配置至少两个PTRS配置参数,这样终端可在网络设备配置的至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送,降低非正交上行传输中相位噪声以及频偏对传输性能的影响,提高了传输性能。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital signal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
具体地,本公开的实施例还提供了一种网络设备。如图11所示,该网络设备1100包括:天线111、射频装置112、基带装置113。天线111与射频装置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发送给基带装置113进行处理。在下行方向上,基带装置113对要发 送的信息进行处理,并发送给射频装置112,射频装置112对收到的信息进行处理后经过天线111发送出去。
上述频带处理装置可以位于基带装置113中,以上实施例中网络设备执行的方法可以在基带装置113中实现,该基带装置113包括处理器114和存储器115。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为处理器114,与存储器115连接,以调用存储器115中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置113还可以包括网络接口116,用于与射频装置112交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器115可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DRRAM)。本申请描述的存储器115旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开的一些实施例的网络设备还包括:存储在存储器115上并可在处理器114上运行的计算机程序,处理器114调用存储器115中的计算机程序执行图5或10所示各模块执行的方法。
具体地,当处理器114调用存储器115中的计算机程序执行图6所示各模块执行的方法时,可达到与其相同的技术效果,计算机程序被处理器114调用时可用于执行:接收上行信号;根据上行信号中的目标解调参考信号DMRS,确定终端的上行数据;其中,该终端对应至少两个解调参考信号DMRS标识,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。
具体地,当处理器114调用存储器115中的计算机程序执行图8所示各模块执行的方法时,可达到与其相同的技术效果,计算机程序被处理器114调用时可用于执行:为终端配置至少两个相位跟踪参考信号PTRS配置参数。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
为了更好的实现上述目的,进一步地,图12为实现本公开各个实施例的一种终端的硬件结构示意图,该终端120包括但不限于:射频单元121、网络模块122、音频输出单元123、输入单元124、传感器125、显示单元126、用户输入单元127、接口单元128、存储器129、处理器1210、以及电源1211等部件。本领域技术人员可以理解,图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元121,用于接收上行信号;处理器1210,用于根据上行信号中的目标解调参考信号DMRS,确定终端的上行数据;其中,终端对应 至少两个解调参考信号DMRS标识,目标DMRS为至少两个DMRS标识指示的DMRS中的一个。
或者,射频单元121,用于接收至少两个解调参考信号DMRS标识;处理器1210,用于采用目标DMRS,在多址接入资源发送上行数据;其中,目标DMRS为至少两个DMRS标识指示的DMRS中的一个;
应理解的是,本公开的一些实施例中,射频单元121可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1210处理;另外,将上行的数据发送给基站。通常,射频单元121包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元121还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块122为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元123可以将射频单元121或网络模块122接收的或者在存储器129中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元123还可以提供与终端120执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元123包括扬声器、蜂鸣器以及受话器等。
输入单元124用于接收音频或视频信号。输入单元124可以包括图形处理器(Graphics Processing Unit,GPU)1241和麦克风1242,图形处理器1241对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元126上。经图形处理器1241处理后的图像帧可以存储在存储器129(或其它存储介质)中或者经由射频单元121或网络模块122进行发送。麦克风1242可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元121发送到移动通信基站的格式输出。
终端120还包括至少一种传感器125,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环 境光传感器可根据环境光线的明暗来调节显示面板1261的亮度,接近传感器可在终端120移动到耳边时,关闭显示面板1261和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器125还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元126用于显示由用户输入的信息或提供给用户的信息。显示单元126可包括显示面板1261,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1261。
用户输入单元127可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元127包括触控面板1271以及其他输入设备1272。触控面板1271,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1271上或在触控面板1271附近的操作)。触控面板1271可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1210,接收处理器1210发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1271。除了触控面板1271,用户输入单元127还可以包括其他输入设备1272。具体地,其他输入设备1272可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1271可覆盖在显示面板1261上,当触控面板1271检测到在其上或附近的触摸操作后,传送给处理器1210以确定触摸事件的类型,随后处理器1210根据触摸事件的类型在显示面板1261上提供相应的视觉输出。虽然在图12中,触控面板1271与显示面板1261是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板 1271与显示面板1261集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元128为外部装置与终端120连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元128可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端120内的一个或多个元件或者可以用于在终端120和外部装置之间传输数据。
存储器129可用于存储软件程序以及各种数据。存储器129可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器129可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1210是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器129内的软件程序和/或模块,以及调用存储在存储器129内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1210可包括一个或多个处理单元;可选的,处理器1210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
终端120还可以包括给各个部件供电的电源1211(比如电池),可选的,电源1211可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端120包括一些未示出的功能模块,在此不再赘述。
可选的,本公开的一些实施例还提供一种终端,包括处理器1210,存储器129,存储在存储器129上并可在所述处理器1210上运行的计算机程序,该计算机程序被处理器1210执行时实现上述信息传输方法实施例的各个过 程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应 过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质 等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (32)

  1. 一种信息传输方法,应用于网络设备侧,包括:
    接收上行信号,其中所述上行信号中包含目标解调参考信号(DMRS);
    根据所述目标DMRS,确定终端的上行数据;
    其中,所述终端对应至少两个解调参考信号DMRS标识,所述目标DMRS为所述至少两个DMRS标识指示的DMRS中的一个。
  2. 根据权利要求1所述的信息传输方法,其中,接收上行信号的步骤之前,还包括:
    为所述终端配置至少两个DMRS标识。
  3. 根据权利要求1所述的信息传输方法,其中,所述DMRS标识包括:DMRS配置参数和/或DMRS加扰信息。
  4. 根据权利要求3所述的信息传输方法,其中,所述DMRS配置参数包括:DMRS配置的编号、DMRS端口号、DMRS时域位置、DMRS与前导码的对应关系、DMRS与相位跟踪参考信号(PTRS)的对应关系、DMRS带宽和DMRS传输功率中的至少一项。
  5. 根据权利要求4所述的信息传输方法,其中,所述DMRS带宽是预定义或网络设备配置的,所述DMRS带宽大于或等于所述上行数据所在多址接入资源的带宽。
  6. 根据权利要求4所述的信息传输方法,其中,
    所述DMRS传输功率与所述终端的上行数据信道在相同资源元素(RE)中的功率相同,
    和/或,
    每个DMRS端口对应的所述DMRS传输功率是单独配置的。
  7. 根据权利要求3所述的信息传输方法,其中,所述DMRS加扰信息包括:与DMRS对应的至少两个DMRS加扰标识(ID)。
  8. 根据权利要求3所述的信息传输方法,其中,目标DMRS与所述上行数据时分复用,其中,所述目标DMRS是与所述DMRS配置参数和/或所述DMRS加扰信息对应的。
  9. 根据权利要求1所述的信息传输方法,其中,接收上行信号的步骤之前,还包括:
    为所述终端配置PTRS配置参数。
  10. 根据权利要求9所述的信息传输方法,其中,一个PTRS配置参数对应一个DMRS标识。
  11. 根据权利要求9所述的信息传输方法,其中,所述PTRS配置参数包括:PTRS配置的编号、PTRS端口号、PTRS时频域位置、PTRS时频域密度、PTRS与前导码的对应关系、PTRS与DMRS的对应关系和PTRS传输功率中的至少一项。
  12. 一种网络设备,包括:
    第一接收模块,用于接收上行信号,其中所述上行信号中包含目标解调参考信号(DMRS);
    处理模块,用于根据所述目标DMRS,确定终端的上行数据;
    其中,所述终端对应至少两个解调参考信号DMRS标识,所述目标DMRS为所述至少两个DMRS标识指示的DMRS中的一个。
  13. 一种网络设备,所述网络设备包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至11任一项所述的信息传输方法的步骤。
  14. 一种信息传输方法,应用于终端侧,包括:
    接收至少两个解调参考信号(DMRS)标识;
    采用目标DMRS,在多址接入资源发送上行数据;其中,所述目标DMRS为所述至少两个DMRS标识指示的DMRS中的一个。
  15. 根据权利要求14所述的信息传输方法,其中,所述DMRS标识包括:DMRS配置参数和/或DMRS加扰信息。
  16. 根据权利要求15所述的信息传输方法,其中,所述DMRS配置参数包括:DMRS配置的编号、DMRS端口号、DMRS时域位置、DMRS与前导码的对应关系、DMRS与相位跟踪参考信号(PTRS)的对应关系、DMRS带宽和DMRS传输功率中的至少一项。
  17. 根据权利要求16所述的信息传输方法,其中,所述DMRS带宽是 预定义或网络设备配置的,所述DMRS带宽大于或等于所述多址接入资源的带宽。
  18. 根据权利要求16所述的信息传输方法,其中,
    所述DMRS传输功率与所述终端的上行数据信道在相同资源元素RE中的功率相同,
    和/或,
    每个DMRS端口对应的所述DMRS传输功率是单独配置的。
  19. 根据权利要求15所述的信息传输方法,其中,所述DMRS加扰信息包括:与DMRS对应的至少两个DMRS加扰标识(ID)。
  20. 根据权利要求15所述的信息传输方法,其中,目标DMRS与所述上行数据时分复用,其中,所述目标DMRS是与所述DMRS配置参数和/或所述DMRS加扰信息对应的。
  21. 一种终端,包括:
    第二接收模块,用于接收至少两个解调参考信号(DMRS)标识;
    发送模块,用于采用目标DMRS,在多址接入资源发送上行数据;其中,所述目标DMRS为所述至少两个DMRS标识指示的DMRS中的一个。
  22. 一种终端,所述终端包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求14至20中任一项所述的信息传输方法的步骤。
  23. 一种信息传输方法,应用于终端侧,包括:
    接收至少两个相位跟踪参考信号(PTRS)配置参数;
    从所述至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送。
  24. 根据权利要求23所述的信息传输方法,其中,所述PTRS配置参数包括:PTRS配置的编号、PTRS端口号、PTRS时频域位置、PTRS时频域密度、PTRS与前导码的对应关系、PTRS与解调参考信号(DMRS)的对应关系和PTRS传输功率中的至少一项。
  25. 根据权利要求24所述的信息传输方法,其中,当所述PTRS配置参数包括PTRS与DMRS的对应关系时,接收至少两个相位跟踪参考信号PTRS配置参数的步骤之前,还包括:
    获取DMRS的传输资源;
    根据所述传输资源以及PTRS与DMRS的对应关系,确定所述PTRS的目标传输资源。
  26. 一种终端,包括:
    接收模块,用于接收至少两个相位跟踪参考信号(PTRS)配置参数;
    选择模块,用于从所述至少两个PTRS配置参数对应的候选PTRS中选择一个进行发送。
  27. 一种终端,所述终端包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求23至25任一项所述的信息传输方法的步骤。
  28. 一种信息传输方法,应用于网络设备侧,包括:
    为终端配置至少两个相位跟踪参考信号(PTRS)配置参数。
  29. 根据权利要求28所述的信息传输方法,其中,所述PTRS配置参数包括:PTRS配置的编号、PTRS端口号、PTRS时频域位置、PTRS时频域密度、PTRS与前导码的对应关系、PTRS与DMRS的对应关系和PTRS传输功率中的至少一项。
  30. 一种网络设备,包括:
    配置模块,用于为终端配置至少两个相位跟踪参考信号(PTRS)配置参数。
  31. 一种网络设备,所述网络设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求28或29所述的信息传输方法的步骤。
  32. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11、14至20、23至25、28至29中任一项所述的信息传输方法的步骤。
PCT/CN2019/094517 2018-07-06 2019-07-03 信息传输方法、网络设备及终端 WO2020007314A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19830447.9A EP3820214A4 (en) 2018-07-06 2019-07-03 INFORMATION TRANSFER PROCEDURE, NETWORK DEVICE AND TERMINAL DEVICE
SG11202012410SA SG11202012410SA (en) 2018-07-06 2019-07-03 Information transmission method, network device and terminal
JP2021500141A JP7113956B2 (ja) 2018-07-06 2019-07-03 情報伝送方法、ネットワーク機器及び端末
KR1020217001587A KR102591425B1 (ko) 2018-07-06 2019-07-03 정보 전송 방법, 네트워크 기기 및 단말
US17/121,031 US11637674B2 (en) 2018-07-06 2020-12-14 Information transmission method, network device and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810739059.0A CN110690951A (zh) 2018-07-06 2018-07-06 一种信息传输方法、网络设备及终端
CN201810739059.0 2018-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/121,031 Continuation US11637674B2 (en) 2018-07-06 2020-12-14 Information transmission method, network device and terminal

Publications (1)

Publication Number Publication Date
WO2020007314A1 true WO2020007314A1 (zh) 2020-01-09

Family

ID=69060595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094517 WO2020007314A1 (zh) 2018-07-06 2019-07-03 信息传输方法、网络设备及终端

Country Status (7)

Country Link
US (1) US11637674B2 (zh)
EP (1) EP3820214A4 (zh)
JP (1) JP7113956B2 (zh)
KR (1) KR102591425B1 (zh)
CN (1) CN110690951A (zh)
SG (1) SG11202012410SA (zh)
WO (1) WO2020007314A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404854A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统
CN107734656A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 通信方法、用户设备及基站
CN108112080A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信息处理方法、通信设备及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031052B2 (en) * 2008-07-14 2015-05-12 Lg Electronics Inc. Uplink transmission control method in system supporting an uplink multiple access transmission mode
CN102498734B (zh) * 2009-07-15 2015-04-15 黑莓有限公司 从多个信道估算技术之中进行选择
WO2011016806A1 (en) * 2009-08-05 2011-02-10 Andrew Llc System and method for hybrid location in a umts network
CN102148659B (zh) * 2010-02-10 2018-01-30 中兴通讯股份有限公司 解调参考信号的发送功率配置方法及装置
CN102811107B (zh) * 2011-06-03 2016-03-30 华为技术有限公司 导频序列配置方法和网络设备
WO2018031770A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Methods, devices and systems for grant-less uplink multiple access
JP2020109882A (ja) * 2017-04-27 2020-07-16 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
JP7027706B2 (ja) * 2017-06-15 2022-03-02 ソニーグループ株式会社 送信装置、受信装置、送信方法、受信方法及び記録媒体
US20200396047A1 (en) * 2017-11-13 2020-12-17 Nec Corporation Methods and apparatuses for demodulation reference signal configuration
CN110324129B (zh) * 2018-03-30 2020-09-22 维沃移动通信有限公司 一种上行传输方法及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404854A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统
CN107734656A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 通信方法、用户设备及基站
CN108112080A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信息处理方法、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Issues on PT -RS Design", RL-1806724, 25 May 2018 (2018-05-25), XP051441926 *

Also Published As

Publication number Publication date
CN110690951A (zh) 2020-01-14
KR20210022070A (ko) 2021-03-02
SG11202012410SA (en) 2021-01-28
EP3820214A1 (en) 2021-05-12
US11637674B2 (en) 2023-04-25
KR102591425B1 (ko) 2023-10-19
EP3820214A4 (en) 2021-08-04
JP7113956B2 (ja) 2022-08-05
US20210099266A1 (en) 2021-04-01
JP2021530167A (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
CN111106907B (zh) 传输配置指示tci状态的指示方法及终端
US11601902B2 (en) Synchronization signal block transmission method, network device, and terminal
WO2019072077A1 (zh) 解调参考信号传输方法、网络设备及终端
WO2020200098A1 (zh) 随机接入过程的信息传输方法及终端
AU2019371949B2 (en) Information transmission method and communication device
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
WO2020011096A1 (zh) 上行传输方法及终端
US11800556B2 (en) Information transmission method, network device, and terminal
WO2020147827A1 (zh) 随机接入传输方法及终端
US11991756B2 (en) Random access transmission method and terminal
WO2020147826A1 (zh) 随机接入传输方法及终端
WO2019242568A1 (zh) 功率分配方法及终端
WO2021104283A1 (zh) 资源确定方法及装置、通信设备
WO2021147765A1 (zh) 旁链路参考信号处理方法及装置、通信设备
WO2020007314A1 (zh) 信息传输方法、网络设备及终端
WO2019214459A1 (zh) 信息传输方法、网络设备及终端
CN113543158B (zh) 确定数据传输层数的方法及装置、通信设备
WO2021204151A1 (zh) 监测数量的确定方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001587

Country of ref document: KR

Kind code of ref document: A