WO2021104283A1 - 资源确定方法及装置、通信设备 - Google Patents

资源确定方法及装置、通信设备 Download PDF

Info

Publication number
WO2021104283A1
WO2021104283A1 PCT/CN2020/131339 CN2020131339W WO2021104283A1 WO 2021104283 A1 WO2021104283 A1 WO 2021104283A1 CN 2020131339 W CN2020131339 W CN 2020131339W WO 2021104283 A1 WO2021104283 A1 WO 2021104283A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset value
ack
uci
harq
pusch
Prior art date
Application number
PCT/CN2020/131339
Other languages
English (en)
French (fr)
Inventor
李娜
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022527228A priority Critical patent/JP7401670B2/ja
Priority to EP20892869.7A priority patent/EP4068669A4/en
Priority to KR1020227022223A priority patent/KR20220110246A/ko
Priority to BR112022009824A priority patent/BR112022009824A2/pt
Publication of WO2021104283A1 publication Critical patent/WO2021104283A1/zh
Priority to US17/742,216 priority patent/US20220279570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to the field of communication technology, in particular to a method and device for determining resources, and communication equipment.
  • NR New Radio
  • NR supports the uplink semi-static configuration grant (CG) transmission mode, reducing the signaling interaction process and ensuring low-latency requirements .
  • CG-PUSCH configured grant PUSCH
  • UCI Uplink Control Information
  • the terminal User Equipment, UE
  • the terminal does not support simultaneous transmission of the Physical Uplink Control Channel (PUCCH) and PUSCH channels
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Control Channel
  • the UE will multiplex the UCI on the PUCCH on the PUSCH for transmission.
  • RE resource Element
  • the embodiment of the present invention provides a resource determination method and device, and communication equipment, which can enable the network side equipment to correctly decode CG-UCI and HARQ-ACK, and improve the effectiveness of communication.
  • an embodiment of the present invention provides a method for determining a resource, which is applied to a terminal, and includes:
  • the hybrid automatic repeat request confirms that HARQ-ACK is multiplexed for transmission on the CG-PUSCH of the configured authorized uplink physical shared channel
  • the number of resources occupied by the joint coding of the configured authorized uplink control information CG-UCI and HARQ-ACK is determined according to the offset value
  • the offset value is determined by the first offset value and/or the second offset value
  • the first offset value is the offset value corresponding to HARQ-ACK
  • the second offset value is CG-UCI The corresponding offset value.
  • an embodiment of the present invention provides a method for determining a resource, which is applied to a network side device, and includes:
  • the hybrid automatic repeat request confirms that HARQ-ACK is multiplexed for transmission on the CG-PUSCH of the configured authorized uplink physical shared channel
  • the number of resources occupied by the joint coding of the configured authorized uplink control information CG-UCI and HARQ-ACK is determined according to the offset value
  • the offset value is determined by the first offset value and/or the second offset value
  • the first offset value is the offset value corresponding to HARQ-ACK
  • the second offset value is CG-UCI The corresponding offset value.
  • an embodiment of the present invention also provides a resource determining device, which is applied to a terminal, and includes:
  • the processing module is used to determine the CG-UCI and HARQ-ACK joint coding of the configured authorized uplink control information according to the offset value when the hybrid automatic repeat request confirmation HARQ-ACK is multiplexed on the configured authorized uplink physical shared channel CG-PUSCH for transmission
  • the number of resources occupied, the offset value is determined by the first offset value and/or the second offset value, the first offset value is the offset value corresponding to HARQ-ACK, and the second offset
  • the value is the offset value corresponding to CG-UCI.
  • an embodiment of the present invention provides a resource determining device, which is applied to a network side device, and includes:
  • the processing module is used to determine the CG-UCI and HARQ-ACK joint coding of the configured authorized uplink control information according to the offset value when the hybrid automatic repeat request confirmation HARQ-ACK is multiplexed on the configured authorized uplink physical shared channel CG-PUSCH for transmission
  • the number of resources occupied, the offset value is determined by the first offset value and/or the second offset value, the first offset value is the offset value corresponding to HARQ-ACK, and the second offset
  • the value is the offset value corresponding to CG-UCI.
  • an embodiment of the present invention also provides a communication device.
  • the communication device includes a processor, a memory, and a computer program stored on the memory and running on the processor, and the processor executes all The computer program implements the steps of the resource determination method described above.
  • an embodiment of the present invention provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the resource determination method described above are implemented .
  • the terminal and the network side device can determine an offset according to the first offset value corresponding to HARQ-ACK and the second offset value corresponding to CG-UCI According to the offset value, the number of resources occupied by the joint coding of CG-UCI and HARQ-ACK is determined, so that the network-side device can correctly decode CG-UCI and HARQ-ACK and improve the effectiveness of communication.
  • Fig. 1 shows a block diagram of a mobile communication system to which an embodiment of the present invention can be applied
  • FIG. 2 shows a schematic flowchart of a method for determining a resource of a terminal according to an embodiment of the present invention
  • FIG. 3 shows a schematic flowchart of a method for determining a resource of a network side device according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of the module structure of a terminal according to an embodiment of the present invention
  • Figure 5 shows a block diagram of a terminal according to an embodiment of the present invention
  • FIG. 6 shows a schematic diagram of a module structure of a network side device according to an embodiment of the present invention
  • Fig. 7 shows a block diagram of a network side device according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier Frequency-Division Multiple Access
  • the terms "system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • the OFDMA system can implement radios such as UltraMobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc. technology.
  • UMB UltraMobile Broadband
  • Evolved UTRA Evolved UTRA
  • E-UTRA Evolution-UTRA
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE such as LTE-A
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project" (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described in this article can be used for the systems and radio technologies mentioned above, as well as other systems and radio technologies.
  • the following description describes the NR system for exemplary purposes, and NR terminology is used in most of the following description, although these techniques can also be applied to applications other than NR system applications.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA Mobile Internet Device
  • MID Wearable Device
  • WAUable Device Wearable Device
  • in-vehicle device and other terminal-side devices. It should be noted that the specific type of terminal 11 is not limited in the embodiment of the present invention. .
  • the network side device 12 may be a base station or a core network, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point) , Or other access points, etc.), or a location server (for example: E-SMLC or LMF (Location Manager Function)), where the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (Base Transceiver Station, BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home B Node, home evolved Node B, WLAN access point, WiFi node, or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in this In the embodiment of the invention,
  • the base station may communicate with the terminal 11 under the control of the base station controller.
  • the base station controller may be a part of a core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may directly or indirectly communicate with each other through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operations on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can simultaneously transmit modulated signals on these multiple carriers. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (for example, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station may perform wireless communication with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its corresponding coverage area. The coverage area of an access point can be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, a macro base station, a micro base station, or a pico base station).
  • the base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies.
  • the base stations can be associated with the same or different access networks or operator deployments.
  • the coverage areas of different base stations may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (UL) transmission (for example, from the terminal 11 to the network side device 12), or for carrying a downlink (Downlink, DL) transmission. )
  • the downlink of transmission (for example, from the network side device 12 to the terminal 11).
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can use licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • NR supports the uplink semi-static configured grant (CG) transmission method to reduce signaling interaction procedures and ensure low-latency requirements.
  • the resources transmitted by the configured grant can be semi-statically configured through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the UE can use the configured grant uplink physical shared channel (Physical Uplink Shared Channel). Channel, PUSCH) to send data.
  • uplink physical shared channel Physical Uplink Shared Channel
  • Channel, PUSCH Physical Uplink Shared Channel
  • CG-PUSCH configured grant PUSCH
  • UCI Uplink Control Information
  • CG-UCI Uplink Control Information
  • Hybrid Automatic Repeat Request Hybrid
  • HARQ Automatic Repeat reQuest
  • ID new data indicator
  • NDI new Data Indicator
  • RV redundancy version
  • the UE side determines the above parameters and transmits them to the CG-PUSCH
  • the base station the base station decodes the CG-PUSCH according to these parameters.
  • UCI includes HARQ-acknowledgement (ACK), channel state information (Channel State Information, CSI), and CSI may include CSI part 1 and CSI part 2.
  • ACK HARQ-acknowledgement
  • CSI Channel State Information
  • CSI Channel State Information
  • the number of REs occupied by UCI is not only related to the number of UCI bits, but also depends on the parameter offset value betaOffset (Downlink Control Information (DCI) indication after RRC configuration or RRC configuration) and alpha (RRC configuration) .
  • betaOffset Downlink Control Information (DCI) indication after RRC configuration or RRC configuration
  • RRC configuration alpha
  • CG-PUSCH In NR (NR in Unlicensed Spectrum, NRU) working in unlicensed spectrum, CG-PUSCH must also transmit CG-UCI.
  • a new RRC parameter For example, betaOffsetCG-UCI-r16
  • adopt a method for determining related HARQ-ACK resources such as RRC configuration or RRC configuration candidate value set, and activate DCI to indicate one of the values.
  • the number of separately encoded information may be up to four: CG-UCI , HARQ-ACK, CSI part1 and CSI part2, which increase the complexity of UE implementation.
  • the NRU limits the number of UCI separately encoded on CG PUSCH to no more than three at most.
  • CG-PUSCH configured-grant PUSCH
  • UCI including HARQ-ACK and/or CSI must be transmitted on the configured-grant PUSCH.
  • HARQ-ACK is not multiplexed on CG-PUSCH
  • CG-UCI is coded separately
  • HARQ-ACK is multiplexed on CG-PUSCH
  • CG-UCI and HARQ-ACK are coded jointly.
  • the RRC parameter or DCI indication configures or indicates the offset value corresponding to CG-UCI, and the offset value corresponding to HARQ-ACK.
  • the offset value used can be determined by the offset value corresponding to CG-UCI and the offset value corresponding to HARQ-ACK, and then the CG-UCI can be determined according to the determined offset value.
  • the number of REs occupied during the joint coding of UCI and HARQ-ACK which in turn enables the network side equipment to correctly decode CG-UCI and HARQ-ACK, thereby improving the effectiveness of communication.
  • the embodiment of the present invention provides a method for determining a resource, which is applied to a terminal, as shown in FIG. 2, including:
  • Step 101 When the hybrid automatic repeat request confirms that HARQ-ACK is multiplexed for transmission on the configured authorized uplink physical shared channel CG-PUSCH, the offset value is used to determine the occupied by the combined coding of the configured authorized uplink control information CG-UCI and HARQ-ACK The offset value is determined by the first offset value and the second offset value, the first offset value is the offset value corresponding to HARQ-ACK, and the second offset value is CG- The offset value corresponding to UCI.
  • the terminal and the network side device can determine a deviation according to the first offset value corresponding to HARQ-ACK and the second offset value corresponding to CG-UCI According to the offset value, the number of resources occupied by the joint coding of CG-UCI and HARQ-ACK is determined, so that the network side device can correctly decode CG-UCI and HARQ-ACK, and improve the effectiveness of communication.
  • the offset value adopts any one of the following:
  • Second offset value the maximum value of the first offset value and the second offset value
  • the weighted average of the first offset value and the second offset value is the weighted average of the first offset value and the second offset value.
  • the offset value adopts the average value of the first offset value and the second offset value
  • the offset value among them Is the offset value corresponding to CG-UCI
  • the weighted average value is obtained after weighting according to the number of HARQ-ACK bits and the number of CG-UCI bits.
  • O CG-UCI and O HARQ-ACK respectively represent the number of bits of CG-UCI and HARQ-ACK.
  • the first offset value is configured through radio resource control RRC signaling; or the first offset value is indicated through Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the second offset value is configured through RRC signaling
  • the second offset value is indicated by DCI.
  • the embodiment of the present invention also provides a method for determining a resource, which is applied to a network side device, as shown in FIG. 3, including:
  • Step 201 When the hybrid automatic repeat request confirms that HARQ-ACK is multiplexed for transmission on the configured authorized uplink physical shared channel CG-PUSCH, the offset value is used to determine the occupied by the combined coding of the configured authorized uplink control information CG-UCI and HARQ-ACK The offset value is determined by the first offset value and the second offset value, the first offset value is the offset value corresponding to HARQ-ACK, and the second offset value is CG- The offset value corresponding to UCI.
  • the terminal and the network side device can determine a deviation according to the first offset value corresponding to HARQ-ACK and the second offset value corresponding to CG-UCI According to the offset value, the number of resources occupied by the joint coding of CG-UCI and HARQ-ACK is determined, so that the network side device can correctly decode CG-UCI and HARQ-ACK, and improve the effectiveness of communication.
  • the offset value adopts any one of the following:
  • Second offset value the maximum value of the first offset value and the second offset value
  • the weighted average of the first offset value and the second offset value is the weighted average of the first offset value and the second offset value.
  • the offset value adopts the average value of the first offset value and the second offset value
  • the offset value among them Is the offset value corresponding to CG-UCI
  • the weighted average value is obtained by weighting according to the number of HARQ-ACK bits and the number of CG-UCI bits.
  • O CG-UCI and O HARQ-ACK respectively represent the number of bits of CG-UCI and HARQ-ACK.
  • the first offset value is configured through radio resource control RRC signaling; or the first offset value is indicated through Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the second offset value is configured through RRC signaling
  • the second offset value is indicated by DCI.
  • the offset value (betaoffset) of the CG-PUSCH in the NRU is configured as follows.
  • the offset value BetaOffsets can be configured by RRC signaling or indicated by DCI.
  • RRC signaling configures the offsets of CG-UCI, HARQ-ACK, CSI part 1 and part 2 respectively.
  • the index (index) corresponding to the shift value is shown in Table 1 to Table 3.
  • Table 1 is the mapping relationship between the offset value of the CG-UCI and the index configured by the higher layer.
  • Is index is the mapping relationship between the offset value of HARQ-ACK and index configured by the higher layer, where, Is index; where These are the HARQ-ACK offset index corresponding to different HARQ-ACK bit numbers (less than or equal to 2 bits, greater than 2 bits, and less than or equal to 11 bits, greater than 11 bits, respectively).
  • Table 3 shows the offset of CSI configured by higher layers. The mapping relationship between shift value and index, where, and Respectively represent the offset value of CSI part 1 and the offset value of CSI part 2. or or CSI part 1 is less than or equal to 11 bits, CSI part 1 is greater than 11 bits, CSI part 2 is less than or equal to 11 bits, and CSI part 2 is greater than the index corresponding to 11 bits.
  • the mapping table of CG-UCI and HARQ-ACK may be the same.
  • RRC configures a combination of 4 offset values, and each code point corresponding to the betaoffset indicator field in DCI indicates CG-UCI, HARQ-ACK, CSI part 1.
  • the combination of offset values of CSI part 2 as shown in Table 4 below.
  • '00' is the first offset value index configured by the high layer
  • '01' is the second offset value index configured by the high layer
  • '10' is the third offset value index configured by the high layer
  • the fourth offset value index configured for the upper layer, the offset value index can indicate the combination of offset values.
  • NRU when HARQ-ACK is transmitted on CG-PUSCH, HARQ-ACK and CG-UCI are jointly coded and mapped.
  • the number of coded modulation symbols per layer Q′ ACK+CG-UCI is determined by the following formula:
  • O ACK + O CG-UCI O ACK + O CG-UCI ;
  • O ACK represents the number of HARQ-ACK bits
  • O CG-UCI represents the number of bits of CG-UCI
  • the offset value corresponding to HARQ-ACK According to the number of HARQ-ACK bits, corresponding to different offset index, namely Any of the above It may be an offset value index determined only according to the number of HARQ-ACK bits, or it may be an offset value index determined according to the sum of the number of HARQ-ACK and CG-UCI bits.
  • the number of HARQ-ACK bits is 2 and the number of CG-UCI bits is 10 bits, if any of the above Is the offset index determined only according to the number of HARQ-ACK bits, that is then Is the offset index corresponding to the 2-bit HARQ-ACK, namely Corresponding value; if it is the offset value index determined according to the sum of HARQ-ACK and CG-UCI bits, that is then Is the offset index corresponding to the 12-bit HARQ-ACK, namely The corresponding value.
  • C UL-SCH represents the number of uplink shared channel (UL-SCH) code blocks for PUSCH transmission
  • DMRS Demodulation Reference Signal
  • ⁇ Parameters configured by high-level parameters, such as scaling
  • l 0 is the symbol index where CG-UCI and HARQ-ACK start to be mapped, that is, in PUSCH transmission, after the first DMRS symbol, the symbol index of the first OFDM symbol that does not carry the DMRS.
  • CG-UCI is coded separately during PUSCH transmission, and the betaoffset corresponding to CG-UCI is used, that is To determine the number of CG-UCI modulation symbols transmitted on each layer on CG-PUSCH, it is determined by the following formula:
  • the terminal 300 of the embodiment of the present invention includes a resource determination device, which can implement the resource determination method in the foregoing embodiment and achieve the same effect.
  • the terminal 300 specifically includes the following functional modules:
  • the processing module 310 is configured to determine the combination of CG-UCI and HARQ-ACK for configuring authorized uplink control information according to the offset value when the hybrid automatic repeat request confirmation HARQ-ACK is multiplexed on the configured authorized uplink physical shared channel CG-PUSCH for transmission
  • the number of resources occupied by encoding, the offset value is determined by the first offset value and the second offset value, the first offset value is the offset value corresponding to HARQ-ACK, and the second offset value Is the offset value corresponding to CG-UCI.
  • the terminal may determine an offset value according to the first offset value corresponding to HARQ-ACK and the second offset value corresponding to CG-UCI, and The number of resources occupied by the joint coding of CG-UCI and HARQ-ACK is determined according to the offset value, so that the network side device can correctly decode CG-UCI and HARQ-ACK, and the effectiveness of communication is improved.
  • the offset value adopts any one of the following:
  • Second offset value the maximum value of the first offset value and the second offset value
  • the weighted average of the first offset value and the second offset value is the weighted average of the first offset value and the second offset value.
  • the offset value adopts the average value of the first offset value and the second offset value
  • the offset value among them Is the offset value corresponding to CG-UCI
  • the weighted average value is obtained by weighting according to the number of HARQ-ACK bits and the number of CG-UCI bits.
  • O CG-UCI and O HARQ-ACK respectively represent the number of bits of CG-UCI and HARQ-ACK.
  • the first offset value is configured through radio resource control RRC signaling; or the first offset value is indicated through Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the second offset value is configured through RRC signaling
  • the second offset value is indicated by DCI.
  • FIG. 5 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present invention.
  • the terminal 40 includes but is not limited to: a radio frequency unit 41, a network module 42, an audio output unit 43, The input unit 44, the sensor 45, the display unit 46, the user input unit 47, the interface unit 48, the memory 49, the processor 410, and the power supply 411 and other components.
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, a pedometer, and the like.
  • the processor 410 is configured to determine the configuration authorized uplink control information CG-UCI and HARQ- according to the offset value when the HARQ-ACK is multiplexed for transmission on the configured authorized uplink physical shared channel CG-PUSCH when the hybrid automatic repeat request confirms that the HARQ-ACK is multiplexed on the configured authorized uplink physical shared channel CG-PUSCH.
  • the number of resources occupied by ACK joint coding, the offset value is determined by the first offset value and the second offset value, the first offset value is the offset value corresponding to HARQ-ACK, and the second offset value
  • the shift value is the shift value corresponding to CG-UCI.
  • the radio frequency unit 41 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 410; Uplink data is sent to the base station.
  • the radio frequency unit 41 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 41 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 42, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 43 may convert the audio data received by the radio frequency unit 41 or the network module 42 or stored in the memory 49 into an audio signal and output it as sound. Moreover, the audio output unit 43 may also provide audio output related to a specific function performed by the terminal 40 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 43 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 44 is used to receive audio or video signals.
  • the input unit 44 may include a graphics processing unit (GPU) 441 and a microphone 442.
  • the graphics processor 441 is configured to monitor still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 46.
  • the image frame processed by the graphics processor 441 may be stored in the memory 49 (or other storage medium) or sent via the radio frequency unit 41 or the network module 42.
  • the microphone 442 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 41 for output in the case of a telephone call mode.
  • the terminal 40 also includes at least one sensor 45, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 461 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 461 and/or when the terminal 40 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensors 45 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 46 is used to display information input by the user or information provided to the user.
  • the display unit 46 may include a display panel 461, and the display panel 461 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 47 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 47 includes a touch panel 471 and other input devices 472.
  • the touch panel 471 also known as the touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 471 or near the touch panel 471. operating).
  • the touch panel 471 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 410, the command sent by the processor 410 is received and executed.
  • the touch panel 471 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 47 may also include other input devices 472.
  • other input devices 472 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 471 may be covered on the display panel 461.
  • the touch panel 471 detects a touch operation on or near it, it transmits it to the processor 410 to determine the type of the touch event, and then the processor 410 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 461.
  • the touch panel 471 and the display panel 461 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 471 and the display panel 461 may be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 48 is an interface for connecting an external device to the terminal 40.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 48 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 40 or may be used to communicate between the terminal 40 and the external device. Transfer data between.
  • the memory 49 can be used to store software programs and various data.
  • the memory 49 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 49 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 410 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 49 and calling data stored in the memory 49. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 410 may include one or more processing units; preferably, the processor 410 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 410.
  • the terminal 40 may also include a power source 411 (such as a battery) for supplying power to various components.
  • a power source 411 such as a battery
  • the power source 411 may be logically connected to the processor 410 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 40 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention further provides a terminal, including a processor 410, a memory 49, a computer program stored on the memory 49 and running on the processor 410, and the computer program is implemented when the processor 410 is executed.
  • a terminal including a processor 410, a memory 49, a computer program stored on the memory 49 and running on the processor 410, and the computer program is implemented when the processor 410 is executed.
  • the terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connection function, or other processing equipment connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal can also be called system, subscriber unit (Subscriber Unit), subscriber station (Subscriber Station), mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), remote terminal (Remote Terminal), connection The access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), and user equipment (User Device or User Equipment) are not limited here.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned terminal-side resource determination method embodiment is realized, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the network side device 600 of the embodiment of the present invention includes a resource determination device, which can implement the resource determination method in the foregoing embodiment and achieve the same effect.
  • the network side device 600 specifically includes the following functional modules:
  • the processing module 610 is configured to determine the combination of the CG-UCI and HARQ-ACK configuration authorized uplink control information according to the offset value when the hybrid automatic repeat request confirmation HARQ-ACK is multiplexed for transmission on the configured authorized uplink physical shared channel CG-PUSCH
  • the number of resources occupied by encoding, the offset value is determined by the first offset value and the second offset value, the first offset value is the offset value corresponding to HARQ-ACK, and the second offset value Is the offset value corresponding to CG-UCI.
  • the network side device may determine an offset value according to the first offset value corresponding to HARQ-ACK and the second offset value corresponding to CG-UCI , And determine the number of resources occupied by the joint coding of CG-UCI and HARQ-ACK according to the offset value, so that the network side device can correctly decode CG-UCI and HARQ-ACK and improve the effectiveness of communication.
  • the offset value adopts any one of the following:
  • Second offset value the maximum value of the first offset value and the second offset value
  • the weighted average of the first offset value and the second offset value is the weighted average of the first offset value and the second offset value.
  • the offset value adopts the average value of the first offset value and the second offset value
  • the offset value among them Is the offset value corresponding to CG-UCI
  • the weighted average value is obtained by weighting according to the number of HARQ-ACK bits and the number of CG-UCI bits.
  • O CG-UCI and O HARQ-ACK respectively represent the number of bits of CG-UCI and HARQ-ACK.
  • the first offset value is configured through radio resource control RRC signaling; or the first offset value is indicated through Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the second offset value is configured through RRC signaling
  • the second offset value is indicated by DCI.
  • the division of the above network side devices and the various modules of the terminal is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the receiving module may be a separately established processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or one or more Field Programmable Gate Array (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • inventions of the present invention also provide a network-side device.
  • the network-side device includes a processor, a memory, and a computer program that is stored in the memory and can run on the processor.
  • the processor executes
  • the computer program implements the steps in the method for determining resources as described above, and can achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • the embodiment of the present invention also provides a network side device.
  • the network side equipment 700 includes: an antenna 71, a radio frequency device 72, and a baseband device 73.
  • the antenna 71 is connected to the radio frequency device 72.
  • the radio frequency device 72 receives information through the antenna 71, and sends the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72, and the radio frequency device 72 processes the received information and sends it out via the antenna 71.
  • the foregoing frequency band processing apparatus may be located in the baseband apparatus 73, and the method executed by the network-side device in the above embodiment may be implemented in the baseband apparatus 73.
  • the baseband apparatus 73 includes a processor 74 and a memory 75.
  • the baseband device 73 may include, for example, at least one baseband board, and multiple chips are arranged on the baseband board, as shown in FIG. 7, one of the chips is, for example, a processor 74, which is connected to a memory 75 to call programs in the memory 75 and execute The network side device shown in the above method embodiment operates.
  • the baseband device 73 may further include a network interface 76 for exchanging information with the radio frequency device 72, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here can be a single processor, or a collective term for multiple processing elements.
  • the processor can be a CPU or an ASIC, or it can be configured to implement one or the other of the methods executed by the network-side device above.
  • Multiple integrated circuits such as: one or more microprocessors DSP, or, one or more field programmable gate array FPGAs, etc.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • the memory 75 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-OnlyMemory, ROM), programmable read-only memory (ProgrammableROM, PROM), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable Programming read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM Double data rate synchronous dynamic random access memory
  • DoubleDataRateSDRAM DDRSDRAM
  • EnhancedSDRAM ESDRAM
  • SynchlinkDRAM SLDRAM
  • DirectRambusRAM Direct memory bus random access memory
  • the memory 75 described in this application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the network-side device of the embodiment of the present invention further includes: a computer program stored in the memory 75 and capable of running on the processor 74, and the processor 74 calls the computer program in the memory 75 to execute the operations performed by each module shown in FIG. method.
  • the computer program when the computer program is called by the processor 74, it can be used to determine the configuration authorized uplink control information CG according to the offset value when the hybrid automatic repeat request confirmation HARQ-ACK is multiplexed for transmission on the configured authorized uplink physical shared channel CG-PUSCH.
  • the offset value is determined by the first offset value and the second offset value, and the first offset value is the offset value corresponding to HARQ-ACK,
  • the second offset value is an offset value corresponding to CG-UCI.
  • the embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the resource determination method applied to the network side device as described above are implemented , And can achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network-side device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • each component or each step can be decomposed and/or recombined.
  • These decomposition and/or recombination should be regarded as equivalent solutions of the present invention.
  • the steps of performing the above series of processing can naturally be performed in a chronological order in the order of description, but do not necessarily need to be performed in a chronological order, and some steps can be performed in parallel or independently of each other.
  • a person of ordinary skill in the art can understand that all or any of the steps or components of the method and device of the present invention can be used in any computing device (including a processor, storage medium, etc.) or a network of computing devices, using hardware and firmware. , Software, or a combination of them, this can be achieved by those of ordinary skill in the art using their basic programming skills after reading the description of the present invention.
  • the purpose of the present invention can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present invention can also be achieved only by providing a program product containing program code for realizing the method or device.
  • a program product also constitutes the present invention
  • a storage medium storing such a program product also constitutes the present invention.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present invention, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例公开了一种资源确定方法及装置、通信设备,资源确定方法,应用于终端,包括:在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和/或第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。

Description

资源确定方法及装置、通信设备
相关申请的交叉引用
本申请主张在2019年11月29日在中国提交的中国专利申请No.201911205264.X的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种资源确定方法及装置、通信设备。
背景技术
在新空口(New Radio,NR)中,针对低时延业务或者周期业务的需求,NR支持上行半静态的配置授权(configured grant,CG)传输方式,减少信令交互流程,保证低时延要求。为了在非授权频段更好地支持configuredgrant PUSCH(CG-PUSCH)传输,引入了在CG-PUSCH上携带上行控制信息(Uplink Control Information,UCI),即CG-UCI。
相关协议中,由于终端(User Equipment,UE)不支持同时传输物理上行控制信道(Physical Uplink Control Channel,PUCCH)和PUSCH两个信道,因此当PUCCH和PUSCH在时域上部分或全部重叠的时候,如果满足一定的时间要求,UE会将PUCCH上的UCI复用在PUSCH上传输。为了能够正确解码PUSCH上的数据和UCI,需要按照一定的规则确定UCI所占用的资源元素(Resource Element,RE)数目和RE位置。
发明内容
本发明实施例提供了一种资源确定方法及装置、通信设备,能够使得网络侧设备正确解码CG-UCI和HARQ-ACK,提高通信的有效性。
第一方面,本发明实施例提供了一种资源确定方法,应用于终端,包括:
在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和 HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和/或第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
第二方面,本发明实施例提供了一种资源确定方法,应用于网络侧设备,包括:
在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和/或第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
第三方面,本发明实施例还提供了一种资源确定装置,应用于终端,包括:
处理模块,用于在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和/或第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
第四方面,本发明实施例提供了一种资源确定装置,应用于网络侧设备,包括:
处理模块,用于在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和/或第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
第五方面,本发明实施例还提供了一种通信设备,所述通信设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的资源确定方法的步骤。
第六方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如 上所述的资源确定方法的步骤。
上述方案中,在HARQ-ACK复用在CG-PUSCH上传输时,终端和网络侧设备可以根据HARQ-ACK对应的第一偏移值和CG-UCI对应的第二偏移值确定一偏移值,并根据该偏移值确定CG-UCI和HARQ-ACK联合编码所占用的资源数目,从而能够使得网络侧设备正确解码CG-UCI和HARQ-ACK,提高通信的有效性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1表示本发明实施例可应用的一种移动通信系统框图;
图2表示本发明实施例终端的资源确定方法的流程示意图;
图3表示本发明实施例网络侧设备的资源确定方法的流程示意图;
图4表示本发明实施例终端的模块结构示意图;
图5表示本发明实施例的终端框图;
图6表示本发明实施例网络侧设备的模块结构示意图;
图7表示本发明实施例的网络侧设备框图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及 他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。 可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本发明实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本发明实施例中并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),或者为位置服务器(例如:E-SMLC或LMF(Location Manager Function)),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本发明实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络侧设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络侧设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
在NR中,针对低时延业务或者周期业务的需求,NR支持上行半静态的配置授权(configured grant,CG)传输方式,减少信令交互流程,保证低时延要求。本发明实施例中,Configured grant传输的资源可通过无线资源控制(Radio Resource Control,RRC)信令半静态地配置,当业务数据到来时,UE可在configured grant的上行物理共享信道(Physical Uplink Shared Channel,PUSCH)上发送数据。为了在非授权频段更好地支持configuredgrant PUSCH(CG-PUSCH)传输,引入了在CG-PUSCH上携带上行控制信息(Uplink Control Information,UCI),即CG-UCI,例如混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)标识(Identity,ID),新数据指示(New Data Indicator,NDI),冗余版本(Redundancy Version,RV)等信息,即UE端确定以上参数,并在CG-PUSCH传输给基站,基站根据这些参数解码CG-PUSCH。
本发明实施例中,由于UE不支持同时传输物理上行控制信道(Physical Uplink Control Channel,PUCCH)和PUSCH两个信道,因此当PUCCH和 PUSCH在时域上部分或全部重叠的时候,如果满足一定的时间要求,UE会将PUCCH上的UCI复用在PUSCH上传输。其中UCI包括HARQ-确认(ACK)、信道状态信息(Channel State Information,CSI),CSI可以包括CSI part 1和CSI part 2。UCI在PUSCH上传输时,不同的UCI类型(HARQ-ACK,CSI part 1,CSI part 2)分别编码。同时为了能够正确解码PUSCH上的数据和UCI,需要按照一定的规则确定UCI所占用的资源元素(Resource Element,RE)数目和RE位置。其中UCI所占用的RE数目除了与UCI的比特数有关,还取决于参数偏移值betaOffset(RRC配置或RRC配置后,激活下行控制信息(Downlink Control Information,DCI)指示)和alpha(RRC配置)。
在工作于非授权频谱的NR(NR in Unlicensed Spectrum,NRU)中由于CG-PUSCH还必须传输CG-UCI,为了控制CG-UCI在CG-PUSCH上传输占用的RE数,引入新的RRC参数(如betaOffsetCG-UCI-r16)并采用相关HARQ-ACK资源确定的方式,例如RRC配置或者RRC配置候选值集合,激活DCI指示其中一个值。如果按照复用不同的UCI(包括HARQ-ACK,CSI part 1和CSI part 2)在CG-PUSCH上传输,且不同的信息分别编码,则分别编码的信息个数可能最多4个:CG-UCI,HARQ-ACK,CSI part1和CSI part2,进而增加了UE实现复杂度。为了不增加UE实现复杂度,NRU中限制CG PUSCH上分别编码的UCI的数目最多不超出三种。当HARQ-ACK PUCCH和CG-PUSCH时域资源重叠时,RRC参数(如cg-CG-UCI-Multiplexing)配置是否复用HARQ-ACK在CG-PUSCH上传输,RRC配置复用时,HARQ-ACK复用在CG-PUSCH上传输时,CG-UCI和HARQ-ACK联合编码(如cg-CG-UCI-Multiplexing=‘enable’),并按照相关HARQ-ACK的映射方式复用在CG-PUSCH,否则PUSCH跳过(即不传输CG-PUSCH),传输HARQ-ACK PUCCH。
在NRU中,当configured-grant PUSCH(CG-PUSCH)与PUCCH重叠时,configured-grant PUSCH上不仅要传输CG-UCI,还有可能传输包括HARQ-ACK和/或CSI在内的UCI。当CG-PUSCH上不复用HARQ-ACK时,CG-UCI单独编码,当HARQ-ACK复用在CG-PUSCH上时,CG-UCI和HARQ-ACK联合编码。
本发明实施例中,RRC参数或DCI指示中配置或指示CG-UCI对应的偏移值,HARQ-ACK对应的偏移值。当CG-UCI和HARQ-ACK联合编码时,可以由CG-UCI对应的偏移值和HARQ-ACK对应的偏移值确定所使用的偏移值,进而根据所确定的偏移值确定CG-UCI和HARQ-ACK联合编码时占用的RE数目,进而使得网络侧设备正确解码CG-UCI和HARQ-ACK,提高通信的有效性。
下面结合附图对本发明实施例进行详细说明。
本发明实施例提供一种资源确定方法,应用于终端,如图2所示,包括:
步骤101:在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
本实施例中,在HARQ-ACK复用在CG-PUSCH上传输时,终端和网络侧设备可以根据HARQ-ACK对应的第一偏移值和CG-UCI对应的第二偏移值确定一偏移值,并根据该偏移值确定CG-UCI和HARQ-ACK联合编码所占用的资源数目,从而能够使得网络侧设备正确解码CG-UCI和HARQ-ACK,提高通信的有效性。
可选地,所述偏移值采用以下任一种:
第一偏移值;
第二偏移值;第一偏移值和第二偏移值中的最大值;
第一偏移值和第二偏移值中的最小值;
第一偏移值和第二偏移值的平均值;
第一偏移值和第二偏移值的加权平均值。
其中,在偏移值采用第一偏移值和第二偏移值的平均值时,偏移值
Figure PCTCN2020131339-appb-000001
其中,
Figure PCTCN2020131339-appb-000002
为CG-UCI对应的偏移值,
Figure PCTCN2020131339-appb-000003
为HARQ-ACK对应的偏移值。
在偏移值采用第一偏移值和第二偏移值的加权平均值时,所述加权平均 值为根据HARQ-ACK的比特数和CG-UCI的比特数进行加权后得到。
Figure PCTCN2020131339-appb-000004
Figure PCTCN2020131339-appb-000005
其中O CG-UCI,O HARQ-ACK分别表示CG-UCI和HARQ-ACK的比特数。
本发明的示例性实施例中,所述第一偏移值为通过无线资源控制RRC信令配置;或所述第一偏移值为通过下行控制信息(Downlink Control Information,DCI)指示。
本发明的示例性实施例中,所述第二偏移值为通过RRC信令配置;或
所述第二偏移值为通过DCI指示。
本发明实施例还提供了一种资源确定方法,应用于网络侧设备,如图3所示,包括:
步骤201:在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
本实施例中,在HARQ-ACK复用在CG-PUSCH上传输时,终端和网络侧设备可以根据HARQ-ACK对应的第一偏移值和CG-UCI对应的第二偏移值确定一偏移值,并根据该偏移值确定CG-UCI和HARQ-ACK联合编码所占用的资源数目,从而能够使得网络侧设备正确解码CG-UCI和HARQ-ACK,提高通信的有效性。
可选地,所述偏移值采用以下任一种:
第一偏移值;
第二偏移值;第一偏移值和第二偏移值中的最大值;
第一偏移值和第二偏移值中的最小值;
第一偏移值和第二偏移值的平均值;
第一偏移值和第二偏移值的加权平均值。
其中,在偏移值采用第一偏移值和第二偏移值的平均值时,偏移值
Figure PCTCN2020131339-appb-000006
其中,
Figure PCTCN2020131339-appb-000007
为CG-UCI对应的偏移 值,
Figure PCTCN2020131339-appb-000008
为HARQ-ACK对应的偏移值。
在偏移值采用第一偏移值和第二偏移值的加权平均值时,所述加权平均值为根据HARQ-ACK的比特数和CG-UCI的比特数进行加权后得到。
Figure PCTCN2020131339-appb-000009
Figure PCTCN2020131339-appb-000010
其中O CG-UCI,O HARQ-ACK分别表示CG-UCI和HARQ-ACK的比特数。
本发明的示例性实施例中,所述第一偏移值为通过无线资源控制RRC信令配置;或所述第一偏移值为通过下行控制信息(Downlink Control Information,DCI)指示。
本发明的示例性实施例中,所述第二偏移值为通过RRC信令配置;或
所述第二偏移值为通过DCI指示。
本发明的一具体实施例中,NRU中CG-PUSCH的偏移值(betaoffset)配置如下。
Figure PCTCN2020131339-appb-000011
Figure PCTCN2020131339-appb-000012
其中,偏移值BetaOffsets可以是由RRC信令配置或由DCI指示的,当BetaOffsets是由RRC信令配置时,RRC信令分别配置CG-UCI,HARQ-ACK,CSI part 1和part 2的偏移值对应的索引(index),如表1-表3所示,其中,表1为高层配置的CG-UCI的偏移值与index的映射关系,其中,
Figure PCTCN2020131339-appb-000013
为index;表2为高层配置的HARQ-ACK的偏移值与index的映射关系,其中,
Figure PCTCN2020131339-appb-000014
为index;其中
Figure PCTCN2020131339-appb-000015
分别是对应不同HARQ-ACK比特数时(分别为小于等于2比特、大于2比特且小于等于11比特、大于11比特)的HARQ-ACK的偏移值索引,表3为高层配置的CSI的偏移值与index的映射关系,其中,
Figure PCTCN2020131339-appb-000016
and
Figure PCTCN2020131339-appb-000017
分别表示CSI part 1的偏移值,CSI part 2的偏移值。
Figure PCTCN2020131339-appb-000018
or
Figure PCTCN2020131339-appb-000019
or
Figure PCTCN2020131339-appb-000020
分别表示CSI part 1小于等于11比特,CSI part 1大于11比特,CSI part 2小于等于11比特,CSI part 2大于11比特对应的index。或者,CG-UCI和HARQ-ACK的映射表可以相同。
表1
Figure PCTCN2020131339-appb-000021
Figure PCTCN2020131339-appb-000022
表2
Figure PCTCN2020131339-appb-000023
表3
Figure PCTCN2020131339-appb-000024
当偏移值是由DCI指示时,RRC配置4个偏移值的组合,DCI中的betaoffset指示(indicator)域对应的每个代码点(code point)指示CG-UCI, HARQ-ACK,CSI part 1,CSI part 2的偏移值的组合,如下表4所示。
表4
Figure PCTCN2020131339-appb-000025
其中,'00'为高层配置的第一个偏移值索引,'01'为高层配置的第二个偏移值索引,'10'为高层配置的第三个偏移值索引,'11'为高层配置的第四个偏移值索引,通过偏移值索引可以指示偏移值的组合。
NRU中,当HARQ-ACK在CG-PUSCH上传输时,HARQ-ACK和CG-UCI联合编码映射。对于CG-UCI和HARQ-ACK传输,每层的编码调制符号(coded modulation symbols per layer)数Q′ ACK+CG-UCI通过如下公式确定:
Figure PCTCN2020131339-appb-000026
O ACK+O CG-UCI;O ACK表示HARQ-ACK的比特数,O CG-UCI表示CG-UCI的比特数,L ACK+CG-UCI表示HARQ-ACK和CG-UCI的循环冗余校验(Cyclic Redundancy Check,CRC)的比特数,例如如果O ACK+CG-UCI≥360,L ACK+CG-UCI=11,否则L ACK+CG-UCI表示按照相关协议确定CG-UCI和HARQ-ACK的循环冗余校验CRC加扰比特数。
其中,
Figure PCTCN2020131339-appb-000027
表示CG-UCI和HARQ-ACK联合编码对应的偏移值,采用以下任一方式确定:
Figure PCTCN2020131339-appb-000028
Figure PCTCN2020131339-appb-000029
Figure PCTCN2020131339-appb-000030
Figure PCTCN2020131339-appb-000031
Figure PCTCN2020131339-appb-000032
Figure PCTCN2020131339-appb-000033
值得注意的是,如前所述,HARQ-ACK对应的偏移值
Figure PCTCN2020131339-appb-000034
是根据的HARQ-ACK比特数,分别对应不同的偏移值索引即
Figure PCTCN2020131339-appb-000035
Figure PCTCN2020131339-appb-000036
上述任一方式中的
Figure PCTCN2020131339-appb-000037
可以是只根据HARQ-ACK比特数确定的偏移值索引,也可以是根据HARQ-ACK和CG-UCI的比特数总和确定的偏移值索引。如HARQ-ACK的比特数为2,CG-UCI的比特数为10比特,则如果上述任一方式中的
Figure PCTCN2020131339-appb-000038
是只根据HARQ-ACK比特数确定的偏移值索引即
Figure PCTCN2020131339-appb-000039
Figure PCTCN2020131339-appb-000040
是2比特HARQ-ACK对应的偏移值索引即
Figure PCTCN2020131339-appb-000041
对应的值;如果是根据HARQ-ACK和CG-UCI的比特数总和确定的偏移值索引即
Figure PCTCN2020131339-appb-000042
Figure PCTCN2020131339-appb-000043
是12比特HARQ-ACK对应的偏移值索引即
Figure PCTCN2020131339-appb-000044
对应的值。
上述公式中,C UL-SCH表示PUSCH传输的上行共享信道(UL-SCH)码块数;
如果调度PUSCH传输的DCI格式包括CBGTI字段,该字段指示UE不应发送第r码块,K r=0;否则,K r是PUSCH传输的UL-SCH的第r码块大小;
Figure PCTCN2020131339-appb-000045
是PUSCH传输的调度带宽,表示调度的子载波个数;
Figure PCTCN2020131339-appb-000046
是在PUSCH传输中OFDM符号l中,携带相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)的子载波的数目;
Figure PCTCN2020131339-appb-000047
是可以用于在OFDM符号l中可以用来传输UCI的资源元素的数目,其中,
Figure PCTCN2020131339-appb-000048
在PUSCH传输中,
Figure PCTCN2020131339-appb-000049
是PUSCH的OFDM符号的总数,包括用于解调参考信号(Demodulation Reference Signal,DMRS)的所有OFDM符号;
对于任何携带PUSCH的DMRS的OFDM符号,
Figure PCTCN2020131339-appb-000050
对于不携带PUSCH的DMRS的任何OFDM符号,
Figure PCTCN2020131339-appb-000051
α由高层参数配置的参数,如scaling;
l 0是CG-UCI和HARQ-ACK开始映射的符号索引,即在PUSCH传输中, 在第一DMRS符号之后,不携带DMRS的第一OFDM符号的符号索引。
本发明的另一具体实施例中,RRC配置了允许HARQ-ACK复用在CG-PSCH上,如cg-CG-UCI-Multiplexing=’enable’,在某个传输位置,如果CG-PUSCH上没有复用HARQ-ACK时,CG-UCI在PUSCH传输时单独编码,且使用CG-UCI对应的betaoffset,即
Figure PCTCN2020131339-appb-000052
确定CG-PUSCH上每层上传输的CG-UCI的调制符号数,通过如下公式确定:
Figure PCTCN2020131339-appb-000053
Figure PCTCN2020131339-appb-000054
其中
Figure PCTCN2020131339-appb-000055
如图4所示,本发明实施例的终端300,包括资源确定装置,能实现上述实施例中资源确定方法,并达到相同的效果,该终端300具体包括以下功能模块:
处理模块310,用于在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
本实施例中,在HARQ-ACK复用在CG-PUSCH上传输时,终端可以根据HARQ-ACK对应的第一偏移值和CG-UCI对应的第二偏移值确定一偏移值,并根据该偏移值确定CG-UCI和HARQ-ACK联合编码所占用的资源数目,从而能够使得网络侧设备正确解码CG-UCI和HARQ-ACK,提高通信的 有效性。
可选地,所述偏移值采用以下任一种:
第一偏移值;
第二偏移值;第一偏移值和第二偏移值中的最大值;
第一偏移值和第二偏移值中的最小值;
第一偏移值和第二偏移值的平均值;
第一偏移值和第二偏移值的加权平均值。
其中,在偏移值采用第一偏移值和第二偏移值的平均值时,偏移值
Figure PCTCN2020131339-appb-000056
其中,
Figure PCTCN2020131339-appb-000057
为CG-UCI对应的偏移值,
Figure PCTCN2020131339-appb-000058
为HARQ-ACK对应的偏移值。
在偏移值采用第一偏移值和第二偏移值的加权平均值时,所述加权平均值为根据HARQ-ACK的比特数和CG-UCI的比特数进行加权后得到。
Figure PCTCN2020131339-appb-000059
Figure PCTCN2020131339-appb-000060
其中O CG-UCI,O HARQ-ACK分别表示CG-UCI和HARQ-ACK的比特数。
本发明的示例性实施例中,所述第一偏移值为通过无线资源控制RRC信令配置;或所述第一偏移值为通过下行控制信息(Downlink Control Information,DCI)指示。
本发明的示例性实施例中,所述第二偏移值为通过RRC信令配置;或
所述第二偏移值为通过DCI指示。
为了更好的实现上述目的,进一步地,图5为实现本发明各个实施例的一种终端的硬件结构示意图,该终端40包括但不限于:射频单元41、网络模块42、音频输出单元43、输入单元44、传感器45、显示单元46、用户输入单元47、接口单元48、存储器49、处理器410、以及电源411等部件。本领域技术人员可以理解,图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器410,用于在混合自动重传请求确认HARQ-ACK复用在配 置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
应理解的是,本发明实施例中,射频单元41可用于收发信息或通话过程中,信号的接收和发送,具体地,将来自基站的下行数据接收后,给处理器410处理;另外,将上行的数据发送给基站。通常,射频单元41包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元41还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块42为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元43可以将射频单元41或网络模块42接收的或者在存储器49中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元43还可以提供与终端40执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元43包括扬声器、蜂鸣器以及受话器等。
输入单元44用于接收音频或视频信号。输入单元44可以包括图形处理器(Graphics Processing Unit,GPU)441和麦克风442,图形处理器441对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元46上。经图形处理器441处理后的图像帧可以存储在存储器49(或其它存储介质)中或者经由射频单元41或网络模块42进行发送。麦克风442可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元41发送到移动通信基站的格式输出。
终端40还包括至少一种传感器45,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板461的亮度,接近传感器可在终端40移动到耳边时,关闭显示面板461和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检 测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器45还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元46用于显示由用户输入的信息或提供给用户的信息。显示单元46可包括显示面板461,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板461。
用户输入单元47可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元47包括触控面板471以及其他输入设备472。触控面板471,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板471上或在触控面板471附近的操作)。触控面板471可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器410,接收处理器410发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板471。除了触控面板471,用户输入单元47还可以包括其他输入设备472。具体地,其他输入设备472可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步地,触控面板471可覆盖在显示面板461上,当触控面板471检测到在其上或附近的触摸操作后,传送给处理器410以确定触摸事件的类型,随后处理器410根据触摸事件的类型在显示面板461上提供相应的视觉输出。虽然在图5中,触控面板471与显示面板461是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板471与显示面板461集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元48为外部装置与终端40连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数 据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元48可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端40内的一个或多个元件或者可以用于在终端40和外部装置之间传输数据。
存储器49可用于存储软件程序以及各种数据。存储器49可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器49可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器410是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器49内的软件程序和/或模块,以及调用存储在存储器49内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器410可包括一个或多个处理单元;优选地,处理器410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
终端40还可以包括给各个部件供电的电源411(比如电池),优选地,电源411可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端40包括一些未示出的功能模块,在此不再赘述。
优选地,本发明实施例还提供一种终端,包括处理器410,存储器49,存储在存储器49上并可在所述处理器410上运行的计算机程序,该计算机程序被处理器410执行时实现上述资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称 为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述终端侧的资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
如图6所示,本发明实施例的网络侧设备600,包括资源确定装置,能实现上述实施例中资源确定方法,并达到相同的效果,该网络侧设备600具体包括以下功能模块:
处理模块610,用于在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
本实施例中,在HARQ-ACK复用在CG-PUSCH上传输时,网络侧设备可以根据HARQ-ACK对应的第一偏移值和CG-UCI对应的第二偏移值确定一偏移值,并根据该偏移值确定CG-UCI和HARQ-ACK联合编码所占用的资源数目,从而能够使得网络侧设备正确解码CG-UCI和HARQ-ACK,提高通信的有效性。
可选地,所述偏移值采用以下任一种:
第一偏移值;
第二偏移值;第一偏移值和第二偏移值中的最大值;
第一偏移值和第二偏移值中的最小值;
第一偏移值和第二偏移值的平均值;
第一偏移值和第二偏移值的加权平均值。
其中,在偏移值采用第一偏移值和第二偏移值的平均值时,偏移值
Figure PCTCN2020131339-appb-000061
其中,
Figure PCTCN2020131339-appb-000062
为CG-UCI对应的偏移值,
Figure PCTCN2020131339-appb-000063
为HARQ-ACK对应的偏移值。
在偏移值采用第一偏移值和第二偏移值的加权平均值时,所述加权平均值为根据HARQ-ACK的比特数和CG-UCI的比特数进行加权后得到。
Figure PCTCN2020131339-appb-000064
Figure PCTCN2020131339-appb-000065
其中O CG-UCI,O HARQ-ACK分别表示CG-UCI和HARQ-ACK的比特数。
本发明的示例性实施例中,所述第一偏移值为通过无线资源控制RRC信令配置;或所述第一偏移值为通过下行控制信息(Downlink Control Information,DCI)指示。
本发明的示例性实施例中,所述第二偏移值为通过RRC信令配置;或
所述第二偏移值为通过DCI指示。
需要说明的是,应理解以上网络侧设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,接收模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式 的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,本发明的实施例还提供了一种网络侧设备,该网络侧设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的资源确定方法中的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本发明的实施例还提供了一种网络侧设备。如图7所示,该网络侧设备700包括:天线71、射频装置72、基带装置73。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络侧设备执行的方法可以在基带装置73中实现,该基带装置73包括处理器74和存储器75。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器74,与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置73还可以包括网络接口76,用于与射频装置72交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络侧设备 所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器75可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(RandomAccessMemory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(StaticRAM,SRAM)、动态随机存取存储器(DynamicRAM,DRAM)、同步动态随机存取存储器(SynchronousDRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(DoubleDataRateSDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(EnhancedSDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(DirectRambusRAM,DRRAM)。本申请描述的存储器75旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本发明实施例的网络侧设备还包括:存储在存储器75上并可在处理器74上运行的计算机程序,处理器74调用存储器75中的计算机程序执行图6所示各模块执行的方法。
具体地,计算机程序被处理器74调用时可用于在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的应用于网络侧设备的资源确定方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储 程序代码的介质。
此外,需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本发明的说明的情况下运用他们的基本编程技能就能实现的。
因此,本发明的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本发明的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本发明,并且存储有这样的程序产品的存储介质也构成本发明。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (16)

  1. 一种资源确定方法,应用于终端,其特征在于,包括:
    在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和/或第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
  2. 根据权利要求1所述的资源确定方法,其中,所述偏移值采用以下任一种:
    第一偏移值;
    第二偏移值;
    第一偏移值和第二偏移值中的最大值;
    第一偏移值和第二偏移值中的最小值;
    第一偏移值和第二偏移值的平均值;
    第一偏移值和第二偏移值的加权平均值。
  3. 根据权利要求1所述的资源确定方法,其中,所述CG-UCI和HARQ-ACK联合编码对应的偏移值
    Figure PCTCN2020131339-appb-100001
    采用以下方式确定:
    Figure PCTCN2020131339-appb-100002
    其中,
    Figure PCTCN2020131339-appb-100003
    是根据HARQ-ACK和CG-UCI的比特数总和确定的偏移值。
  4. 根据权利要求1或3所述的资源确定方法,其中,
    所述第一偏移值为通过无线资源控制RRC信令配置;或
    所述第一偏移值为通过下行控制信息DCI指示。
  5. 根据权利要求1所述的资源确定方法,其中,对于CG-UCI和HARQ-ACK传输,每层的编码调制符号数Q′ ACK+CG-UCI通过如下公式确定:
    Figure PCTCN2020131339-appb-100004
    其中,O ACK+CG-UCI表示HARQ-ACK和CG-UCI的比特数总和,L ACK+CG-UCI表示 HARQ-ACK和CG-UCI的循环冗余校验CRC的比特数,
    Figure PCTCN2020131339-appb-100005
    表示CG-UCI和HARQ-ACK联合编码对应的偏移值;C UL-SCH表示PUSCH传输的上行共享信道UL-SCH码块数,Kr表示PUSCH传输的UL-SCH的第r码块大小,
    Figure PCTCN2020131339-appb-100006
    表示PUSCH传输的调度带宽,
    Figure PCTCN2020131339-appb-100007
    表示在PUSCH传输中OFDM符号l中携带相位跟踪参考信号PTRS的子载波的数目,
    Figure PCTCN2020131339-appb-100008
    表示在OFDM符号l中可以用来传输UCI的资源元素的数目,
    Figure PCTCN2020131339-appb-100009
  6. 根据权利要求2所述的资源确定方法,其中,所述加权平均值为根据HARQ-ACK的比特数和CG-UCI的比特数进行加权后得到。
  7. 一种资源确定方法,应用于网络侧设备,其特征在于,包括:
    在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和/或第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
  8. 根据权利要求7所述的资源确定方法,其中,所述偏移值采用以下任一种:
    第一偏移值;
    第二偏移值;
    第一偏移值和第二偏移值中的最大值;
    第一偏移值和第二偏移值中的最小值;
    第一偏移值和第二偏移值的平均值;
    第一偏移值和第二偏移值的加权平均值。
  9. 根据权利要求8所述的资源确定方法,其中,所述加权平均值为根据HARQ-ACK的比特数和CG-UCI的比特数进行加权后得到。
  10. 一种资源确定装置,应用于终端,其特征在于,包括:
    处理模块,用于在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和/或第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移 值,所述第二偏移值为CG-UCI对应的偏移值。
  11. 根据权利要求10所述的资源确定装置,其中,所述CG-UCI和HARQ-ACK联合编码对应的偏移值
    Figure PCTCN2020131339-appb-100010
    被配置为通过如下公式确定:
    Figure PCTCN2020131339-appb-100011
    其中,
    Figure PCTCN2020131339-appb-100012
    是根据HARQ-ACK和CG-UCI的比特数总和确定的偏移值。
  12. 根据权利要求10或11所述的资源确定装置,其中,
    所述第一偏移值为通过无线资源控制RRC信令配置;或
    所述第一偏移值为通过下行控制信息DCI指示。
  13. 根据权利要求10所述的资源确定装置,其中,对于CG-UCI和HARQ-ACK传输,每层的编码调制符号数Q′ ACK+CG-UCI通过如下公式确定:
    Figure PCTCN2020131339-appb-100013
    其中,O ACK+CG-UCI表示HARQ-ACK和CG-UCI的比特数总和,L ACK+CG-UCI表示HARQ-ACK和CG-UCI的循环冗余校验CRC的比特数,
    Figure PCTCN2020131339-appb-100014
    表示CG-UCI和HARQ-ACK联合编码对应的偏移值;C UL-SCH表示PUSCH传输的上行共享信道(UL-SCH)码块数,Kr表示PUSCH传输的UL-SCH的第r码块大小,
    Figure PCTCN2020131339-appb-100015
    表示PUSCH传输的调度带宽,
    Figure PCTCN2020131339-appb-100016
    表示在PUSCH传输中OFDM符号l中携带相位跟踪参考信号PTRS的子载波的数目,
    Figure PCTCN2020131339-appb-100017
    表示在OFDM符号l中可以用来传输UCI的资源元素的数目,
    Figure PCTCN2020131339-appb-100018
  14. 一种资源确定装置,应用于网络侧设备,其特征在于,包括:
    处理模块,用于在混合自动重传请求确认HARQ-ACK复用在配置授权上行物理共享信道CG-PUSCH上传输时,根据偏移值确定配置授权上行控制信息CG-UCI和HARQ-ACK联合编码所占用的资源数目,所述偏移值由第一偏移值和/或第二偏移值决定,所述第一偏移值为HARQ-ACK对应的偏移值,所述第二偏移值为CG-UCI对应的偏移值。
  15. 一种通信设备,其特征在于,所述通信设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至9任一项所述的资源确定方法的步骤。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的资源确定方法的步骤。
PCT/CN2020/131339 2019-11-29 2020-11-25 资源确定方法及装置、通信设备 WO2021104283A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022527228A JP7401670B2 (ja) 2019-11-29 2020-11-25 リソース決定方法及び装置、通信機器
EP20892869.7A EP4068669A4 (en) 2019-11-29 2020-11-25 RESOURCE DETERMINATION METHOD, DEVICE AND COMMUNICATION DEVICE
KR1020227022223A KR20220110246A (ko) 2019-11-29 2020-11-25 자원 결정 방법 및 장치, 통신 장치
BR112022009824A BR112022009824A2 (pt) 2019-11-29 2020-11-25 Método de determinação de recurso, aparelho de determinação de recurso e dispositivo de comunicações.
US17/742,216 US20220279570A1 (en) 2019-11-29 2022-05-11 Resource determining method, resource determining apparatus, and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911205264.XA CN112887067B (zh) 2019-11-29 2019-11-29 资源确定方法及装置、通信设备
CN201911205264.X 2019-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/742,216 Continuation US20220279570A1 (en) 2019-11-29 2022-05-11 Resource determining method, resource determining apparatus, and communications device

Publications (1)

Publication Number Publication Date
WO2021104283A1 true WO2021104283A1 (zh) 2021-06-03

Family

ID=76039304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131339 WO2021104283A1 (zh) 2019-11-29 2020-11-25 资源确定方法及装置、通信设备

Country Status (7)

Country Link
US (1) US20220279570A1 (zh)
EP (1) EP4068669A4 (zh)
JP (1) JP7401670B2 (zh)
KR (1) KR20220110246A (zh)
CN (1) CN112887067B (zh)
BR (1) BR112022009824A2 (zh)
WO (1) WO2021104283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016325A1 (en) * 2022-07-22 2024-01-25 Lenovo (Beijing) Limited Methods and apparatuses for uplink transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163855A1 (en) * 2015-04-09 2016-10-13 Samsung Electronics Co., Ltd. Method for multiplexing uplink information
CN110063039A (zh) * 2016-12-09 2019-07-26 三星电子株式会社 在物理上行链路数据信道中复用控制信息

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438883B2 (en) * 2012-04-09 2016-09-06 Intel Corporation Quality of experience reporting for combined unicast-multicast/broadcast streaming of media content
EP3697148A4 (en) 2017-10-10 2021-06-23 NTT DoCoMo, Inc. USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
KR102201265B1 (ko) 2017-11-15 2021-01-11 엘지전자 주식회사 무선 통신 시스템에서 장치의 상향링크 제어 정보 전송/수신 방법 및 장치
CN109996337B (zh) * 2017-12-29 2021-06-29 大唐移动通信设备有限公司 一种上行控制信息的传输方法及装置
CN110061805B (zh) * 2018-06-06 2020-09-29 中国信息通信研究院 一种上行数据信道多业务uci复用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163855A1 (en) * 2015-04-09 2016-10-13 Samsung Electronics Co., Ltd. Method for multiplexing uplink information
CN110063039A (zh) * 2016-12-09 2019-07-26 三星电子株式会社 在物理上行链路数据信道中复用控制信息

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.212, vol. RAN WG1, no. V16.3.0, 1 October 2020 (2020-10-01), pages 1 - 152, XP051961277 *
LG ELECTRONICS: "Discussion on configured grant for NR-U", 3GPP DRAFT; R1-1912392, vol. RAN WG1, 22 November 2019 (2019-11-22), Reno, USA, pages 1 - 9, XP051823398 *
LG ELECTRONICS: "Remaining issues of configured grant for NR-U", 3GPP DRAFT; R1-2000666, 6 March 2020 (2020-03-06), pages 1 - 6, XP051852997 *
LG ELECTRONICS: "Remaining issues of configured grant for NR-U", 3GPP DRAFT; R1-2000666, vol. RAN WG1, 14 February 2020 (2020-02-14), pages 1 - 6, XP051852997 *
LG ELECTRONICS: "Remaining issues of configured grant for NR-U", 3GPP DRAFT; R1-2001938, vol. RAN WG1, 10 April 2020 (2020-04-10), pages 1 - 3, XP051873375 *
See also references of EP4068669A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016325A1 (en) * 2022-07-22 2024-01-25 Lenovo (Beijing) Limited Methods and apparatuses for uplink transmission

Also Published As

Publication number Publication date
CN112887067A (zh) 2021-06-01
BR112022009824A2 (pt) 2022-08-02
EP4068669A1 (en) 2022-10-05
JP7401670B2 (ja) 2023-12-19
CN112887067B (zh) 2022-06-24
JP2023501565A (ja) 2023-01-18
US20220279570A1 (en) 2022-09-01
EP4068669A4 (en) 2023-01-18
KR20220110246A (ko) 2022-08-05

Similar Documents

Publication Publication Date Title
JP7466462B2 (ja) 情報伝送方法、端末及びネットワーク機器
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
WO2020147817A1 (zh) 随机接入过程的信息传输方法及终端
WO2020011181A1 (zh) 信道检测指示方法、终端及网络设备
WO2020200098A1 (zh) 随机接入过程的信息传输方法及终端
WO2021147761A1 (zh) 上行传输处理方法及装置、终端
CN111148125B (zh) 下行信息的监听方法、配置方法、终端及网络设备
WO2019238111A1 (zh) 同步信号块的传输方法、网络设备及终端
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
US20210377982A1 (en) Method for uplink transmission in unlicensed band, terminal, and network device
US11991756B2 (en) Random access transmission method and terminal
WO2021063358A1 (zh) Harq反馈方式的指示、确定方法及装置
WO2021104283A1 (zh) 资源确定方法及装置、通信设备
WO2019242568A1 (zh) 功率分配方法及终端
WO2021147765A1 (zh) 旁链路参考信号处理方法及装置、通信设备
WO2019214459A1 (zh) 信息传输方法、网络设备及终端
WO2021208938A1 (zh) 确定数据传输层数的方法及装置、通信设备
CN113452488B (zh) 传输节点的配置方法及装置、通信设备
WO2020007314A1 (zh) 信息传输方法、网络设备及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527228

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022009824

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227022223

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020892869

Country of ref document: EP

Effective date: 20220629

ENP Entry into the national phase

Ref document number: 112022009824

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220519