WO2020029797A1 - 确定方法、终端及网络设备 - Google Patents

确定方法、终端及网络设备 Download PDF

Info

Publication number
WO2020029797A1
WO2020029797A1 PCT/CN2019/097427 CN2019097427W WO2020029797A1 WO 2020029797 A1 WO2020029797 A1 WO 2020029797A1 CN 2019097427 W CN2019097427 W CN 2019097427W WO 2020029797 A1 WO2020029797 A1 WO 2020029797A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate transmission
terminal
information
period
transmission opportunity
Prior art date
Application number
PCT/CN2019/097427
Other languages
English (en)
French (fr)
Inventor
陈晓航
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810904371.0A external-priority patent/CN110831172A/zh
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to AU2019316839A priority Critical patent/AU2019316839B2/en
Priority to RU2021105607A priority patent/RU2765682C1/ru
Priority to EP19846781.3A priority patent/EP3836679A4/en
Priority to JP2021506480A priority patent/JP7124204B2/ja
Priority to KR1020217006846A priority patent/KR102750975B1/ko
Priority to SG11202100615SA priority patent/SG11202100615SA/en
Priority to CA3107136A priority patent/CA3107136A1/en
Publication of WO2020029797A1 publication Critical patent/WO2020029797A1/zh
Priority to US17/167,038 priority patent/US12177873B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a determination method, a terminal, and a network device.
  • unlicensed bands can be used as supplements to licensed bands to help operators expand service capacity.
  • unlicensed bands can work in 5GHz, 37GHz, and 60GHz bands.
  • a network device is configured with a semi-static scheduling resource for a user equipment (UE)
  • the UE uses the semi-static scheduling resource to access the unlicensed frequency band.
  • the UE needs to listen to the unlicensed band channel before the semi-statically scheduled transmission opportunity (that is, the transmission time of the uplink channel and time domain resources) arrives. If the listening result is busy, the UE needs to wait for the next semi-statically scheduled transmission opportunity and listen to the unlicensed band channel before transmission; if the listening result is idle, the UE can immediately The transmission opportunity performs uplink transmission.
  • the semi-statically scheduled transmission opportunity that is, the transmission time of the uplink channel and time domain resources
  • the UE has only one transmission opportunity for semi-static scheduling in a semi-static scheduling period. Therefore, when the listening result is busy, the UE cannot perform uplink transmission in the current semi-static scheduling period. As a result, the delay of uplink transmission is increased.
  • Embodiments of the present invention provide a determination method, a terminal, and a network device to solve a problem of uplink transmission delay in a related art when a UE uses semi-static scheduling for uplink transmission in an unlicensed band.
  • an embodiment of the present invention provides a determining method, which is applied to a terminal, and the method includes:
  • first information is used to indicate M candidate transmission opportunities for uplink data channels in a first period, and the first period is a period of semi-static scheduling resources on an unlicensed frequency band , M is a positive integer greater than or equal to 2;
  • M candidate transmission opportunities of the uplink data channel in the first period are determined.
  • an embodiment of the present invention provides a determining method, which is applied to a network device.
  • the method includes:
  • an embodiment of the present invention provides a terminal, including:
  • a receiving module configured to receive first information from a network device; wherein the first information is used to indicate M candidate transmission opportunities of an uplink data channel in a first period, and the first period is semi-static on an unlicensed frequency band
  • M is a positive integer greater than or equal to 2;
  • a determining module configured to determine, according to the first information received by the receiving module, M candidate transmission opportunities of an uplink data channel in the first period.
  • an embodiment of the present invention provides a network device, including:
  • a sending module configured to send first information to the terminal; wherein the first information is used to indicate M candidate transmission opportunities for uplink data channels in the first period, where M is a positive integer greater than or equal to 2; One cycle is one cycle of semi-static scheduling resources on the unlicensed band; the first information is used to instruct the terminal to determine M candidate transmission opportunities for uplink data channels in the first cycle according to the first information .
  • an embodiment of the present invention provides a terminal, including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, Implementing the steps of the determining method as described in the first aspect.
  • an embodiment of the present invention provides a network device, including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • a network device including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • an embodiment of the present invention provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the determining method are implemented.
  • the terminal may directly determine multiple candidate transmissions of the uplink data channel in a period of semi-static scheduling resources on the unlicensed frequency band based on the first information. opportunity. Compared with the semi-static scheduling resource in the related art, there is only one candidate transmission opportunity in one cycle. In the embodiment of the present invention, the terminal can have multiple transmission opportunities for uplink transmission in one cycle, thereby reducing the delay of uplink transmission. The occurrence probability can improve communication efficiency and efficiency.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is one of the schematic flowcharts of a determining method according to an embodiment of the present invention
  • FIG. 3 is one of the schematic diagrams of candidate transmission opportunities in a period P provided by an embodiment of the present invention.
  • FIG. 4 is a second schematic diagram of a candidate transmission opportunity in a period P provided by an embodiment of the present invention.
  • FIG. 5 is a third schematic diagram of a candidate transmission opportunity in a period P provided by an embodiment of the present invention.
  • FIG. 6 is a second schematic flowchart of a determining method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 8 is one of the schematic structural diagrams of a network device according to an embodiment of the present invention.
  • FIG. 9 is a second schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 10 is a second schematic structural diagram of a network device according to an embodiment of the present invention.
  • the technical solution provided in this application can be applied to various communication systems, for example, a 5G communication system, a future evolution system, or a variety of communication convergence systems.
  • M2M machine-to-machine
  • eMBB enhanced mobile Internet
  • ultra-high reliability and ultra-low-latency communication ultra Reliable & Low Latency (Communication, uRLLC)
  • Massive Machine Type Communication (mMTC) Massive Machine Type Communication
  • These scenarios include, but are not limited to, scenarios such as communication between a terminal and a terminal, or communication between a network device and a network device, or communication between a network device and a terminal.
  • FIG. 1 shows a schematic diagram of a possible structure of a communication system according to an embodiment of the present invention.
  • the communication system includes at least one network device 100 (only one is shown in FIG. 1) and one or more terminals 200 to which each network device 100 is connected.
  • the network device 100 may be a base station, a core network device, a transmission and reception node (Transmission and Reception Point, TRP), a relay station, or an access point.
  • the network device 100 may be a Global System for Mobile Communication (GSM) or a Code Division Multiple Access (CDMA) network, or a base transceiver station (BTS), or a broadband NB (NodeB) in Wideband Code Division Multiple Access (WCDMA) can also be eNB or eNodeB (evolutional NodeB) in LTE.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • BTS base transceiver station
  • NodeB broadband NB
  • WCDMA Wideband Code Division Multiple Access
  • the network device 100 may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario.
  • the network device 100 may also be a network device in a 5G communication system or a network device in a future evolved network.
  • the wording does not constitute a limitation on this
  • the terminal 200 may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and / or other business data connectivity to the user, a handheld device with a wireless communication function, a computing device, or other processing connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • it can be a portable, compact, handheld, computer-built or vehicle-mounted mobile device that exchanges language and / or data with the wireless access network, as well as personal communication service (PCS) phones, cordless phones , Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistants (PDAs) and other devices.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDAs Personal Digital Assistants
  • Wireless terminals can also be mobile devices, user devices ( User (Equipment, UE), UE terminal, access terminal, wireless communication equipment, terminal unit, terminal station, mobile station, mobile station, remote station, remote station, remote terminal Terminal), Subscriber Unit, Subscriber Station, User Agent (User Agent), terminal device, etc.
  • FIG. 1 illustrates that the terminal is a mobile phone.
  • the words “first” and “second” are used to distinguish the same or similar items having substantially the same functions or functions.
  • the skilled person can understand that the words “first” and “second” do not limit the quantity and execution order.
  • FIG. 2 is a schematic flowchart of a determination method according to an embodiment of the present invention. As shown in FIG. 2, the determination method may include:
  • Step 201 The network device sends the first information to the terminal.
  • the opposite terminal receives the first information from the network device.
  • the network device in the embodiment of the present invention may be a network device in the communication system shown in FIG. 1, for example, a base station; the terminal in the embodiment of the present invention may be a terminal in the communication system shown in FIG. 1.
  • the above-mentioned first information is used to indicate M candidate transmission opportunities of uplink data channels in a first period.
  • the above-mentioned first period is a period of semi-static scheduling resources on an unlicensed band, and M is A positive integer greater than or equal to 2.
  • the foregoing first information is used to instruct the terminal to determine M candidate transmission opportunities of the uplink data channel in the first period according to the first information.
  • the candidate transmission opportunity of the uplink data channel in the embodiment of the present invention is the transmission period of the uplink data channel.
  • the above uplink data channel may be a physical uplink shared channel (Physical Uplink, Shared Channel, PUSCH).
  • Physical Uplink, Shared Channel PUSCH
  • the above-mentioned first information may be configuration information sent by the network device to the terminal, and the configuration information is used to configure a semi-static scheduling resource.
  • the above-mentioned first information is used to indicate at least one of the following: a first time position of each candidate transmission opportunity in the first cycle or a first time in the first cycle
  • the above first candidate transmission opportunity is the first of the M candidate transmission opportunities in the first period in the time domain
  • the above-mentioned time domain resource length set includes at least one time domain resource length, and the at least one time The domain resource length is used to indicate the time domain resource length of each candidate transmission opportunity.
  • the time window length corresponding to the M candidate transmission opportunities is used to characterize a total time window length of all candidate transmission opportunities in the first period, and the time window length includes the M candidate transmission opportunities.
  • the time window length includes the M candidate transmission opportunities.
  • four candidate transmission opportunities are configured in the period P in FIG. 3 (that is, candidate transmission opportunities 1, 2, 3, and 4 in FIG. 3).
  • the terminal can determine the period P in accordance with the time window length. Candidate transmission opportunities.
  • the length of the time window is less than or equal to the duration of the first period.
  • the terminal may default to the time length of the first period as the time window length.
  • the terminal can determine the number M of candidate transmission opportunities within the time window length and each candidate transmission opportunity by using the time window length.
  • the above-mentioned first information includes at least one of the following: a first period duration, a first time position of each candidate transmission opportunity in the first period, or a first candidate transmission in the first period The first time position of the opportunity, the aforementioned time window length, and the time domain resource length set.
  • the above first information is a first identifier
  • the first identifier is used to indicate a start position and a time domain resource length of one or more candidate transmission opportunities in an information table, or one or more The start position and end position of each candidate transmission opportunity, or the end position and time domain resource length of one or more candidate transmission opportunities; wherein, the above information table includes the start position and time of at least one candidate transmission opportunity Domain resource length.
  • the foregoing information table may be predefined, or may be configured by a network device to a terminal.
  • the start position or the end position of the candidate transmission opportunity may be an offset from a reference point, and the offset and the length of the time domain resource are multiplexed in a subframe or a time slot or orthogonal frequency division ( Orthogonal Frequency Division Multiplexing (OFDM) symbols are granularity.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the above-mentioned time domain resource length set mainly includes the following three cases:
  • the first type if the number of time domain resource lengths in the above time domain resource length set is 1, it indicates that the time domain resource lengths of the above M candidate transmission opportunities are the same.
  • the second type If the number of time domain resource lengths in the above time domain resource length set is M, it indicates that the time domain resource length set includes the time domain of each candidate transmission opportunity among the above M candidate transmission opportunities. Resource length. It should be noted that each time domain resource length in the above M time domain resource lengths corresponds to a candidate transmission opportunity, and the M time domain resource lengths may be the same, may be different, or may be partially the same. The present invention This is not limited.
  • the third type If the number of time domain resource lengths in the above time domain resource length set is N, and N is a value greater than 1 and less than M, it indicates that some of the above M candidate transmission opportunities are The time domain resource lengths are the same, or it indicates that each candidate transmission opportunity may have N time domain resource lengths.
  • the above-mentioned M candidate transmission opportunities are continuous or equally spaced in the time domain.
  • the above-mentioned M candidate transmission opportunities are located in an uplink time slot / subframe / symbol.
  • the slot / subframe / symbol format is divided into downlink (DL), uplink (UL), and flexible.
  • DL downlink
  • UL uplink
  • flexible flexible
  • the slot / subframe / symbol format can be configured by network equipment. Or it indicates that the slot / subframe / symbol direction is DL or UL. If there is no indication, the slot / subframe / symbol keeps the Flexible format.
  • all M candidate transmission opportunities are located on UL slots / subframes / symbols, that is, the terminal excludes DL slots / subframes / symbols and Flexible slots / subsidiaries when determining candidate transmission opportunities Frame / symbol.
  • the M candidate transmission opportunities may be located on UL slots / subframes / symbols or Flexible slots / subframes / symbols, that is, the UE excludes DL slots / subframes when determining candidate transmission opportunities /symbol.
  • the terminal when determining a candidate transmission opportunity, determines M candidate transmission opportunities according to a time sequence, that is, DL time slots / subframes / symbols or Flexible time slots / subframes / symbols are not excluded. If all or part of the time domain resources of any candidate transmission opportunity in the transmission opportunity are DL, the terminal needs to abandon the candidate transmission opportunity. At this time, the candidate transmission opportunity in a period may be less than M.
  • the terminal when determining a candidate transmission opportunity, determines M candidate transmission opportunities according to a time sequence, that is, DL time slots / subframes / symbols or Flexible time slots / subframes / symbols are not excluded. All or part of the time domain resources of any candidate transmission opportunity in the transmission opportunity are DL or Flexible, and the terminal needs to abandon the candidate transmission opportunity. At this time, the candidate transmission opportunity in a period may be less than M.
  • the foregoing value M may be directly configured by a network device, or may be calculated by the terminal according to the first information.
  • the above-mentioned numerical value M is a scenario calculated by the terminal according to the first information, and specific implementations are described by using the following two examples.
  • Example 1 Assume that the start position of the nth candidate transmission opportunity in the period P is located at the Kth OFDM symbol after the end position of the n-1th candidate transmission opportunity, that is, the time between two adjacent candidate transmission opportunities
  • the domain interval is K-1
  • the time domain resource length of each candidate transmission opportunity in the period P is L OFDM symbols.
  • the starting position of the first candidate transmission opportunity is the S-th OFDM symbol of the period duration.
  • Example 2 Assume that the start position of the nth candidate transmission opportunity in the period P is located at the Kth OFDM symbol after the end position of the n-1th candidate transmission opportunity, that is, the time between two adjacent candidate transmission opportunities
  • the domain interval is K-1
  • the time domain resource length of each candidate transmission opportunity in the period P is L OFDM symbols.
  • the time window length of all candidate transmission opportunities in the period P is T.
  • Step 202 The terminal determines M candidate transmission opportunities of the uplink data channel in the first period according to the first information.
  • step 202 specifically includes the following step 202a or step 202b:
  • Step 202a When the first information is used to indicate: the first time position of each candidate transmission opportunity, the terminal determines each candidate according to the first time position of each candidate transmission opportunity and the corresponding time domain resource length. Transmission opportunity.
  • the terminal may directly determine each of the candidate transmission opportunities according to the first time position of each candidate transmission opportunity and the corresponding time domain resource length.
  • Candidate transmission opportunities if the above M candidate transmission opportunities are spaced in the time domain, the terminal needs to determine each of the candidate transmission opportunities based on the first time position of each candidate transmission opportunity and the corresponding time domain resource length and the interval length Candidate transmission opportunity.
  • Step 202b In the case where the first information is used to indicate: the first time position of the first candidate transmission opportunity, each of them is determined according to the first time position of the first candidate transmission opportunity and the corresponding time domain resource length. Candidate transmission opportunity.
  • the terminal may determine the other candidate transmission opportunities other than the first candidate transmission opportunity according to the first time position of the first candidate transmission opportunity and the time domain resource length of each candidate transmission opportunity. The first time position of the candidate transmission opportunity, and then, according to the first time position of each candidate transmission opportunity and the corresponding time domain resource length, each candidate transmission opportunity is determined.
  • the terminal may determine each candidate according to the first time position of the first candidate transmission opportunity and the corresponding time domain resource length. Transmission opportunity; if the above M candidate transmission opportunities are spaced in the time domain, the terminal needs to determine each of them based on the first time position of the first candidate transmission opportunity, and the corresponding time domain resource length and the interval length. Candidate transmission opportunity.
  • the above-mentioned first information is used to indicate: the duration of the first cycle, the first time position of each candidate transmission opportunity in the first cycle, or the first candidate transmission in the first cycle
  • the time domain resource lengths of the M candidate transmission opportunities are the same, and each candidate transmission opportunity is continuous in the time domain; or,
  • the candidate transmission opportunities have the same time domain resource length, and any two adjacent candidate transmission opportunities have the same interval in the time domain.
  • the interval size is X time slots or symbols, and X is a positive integer greater than 0.
  • the above-mentioned first information is used to indicate: the duration of the first cycle, the first time position of each candidate transmission opportunity in the first cycle, or the first candidate transmission in the first cycle
  • the above-mentioned M 1 candidate transmission opportunities are continuous in the time domain
  • the M 2 candidate transmission opportunities are continuous in the time domain
  • the above-mentioned M j candidate transmission opportunities are continuous in the time domain.
  • any of the above M 1 candidate transmission opportunity two adjacent candidate transmission opportunity equal intervals in the time domain
  • any of the above M 2 candidate transmission opportunity two adjacent candidate transmission opportunity time domain The interval is the same, and any two adjacent candidate transmission opportunities among the M j candidate transmission opportunities described above are the same in the time domain.
  • the above-mentioned interval size is X time slots or symbols, and X is a positive integer greater than 0.
  • the offset of the period P can be used to indicate the starting position of the first candidate transmission opportunity.
  • the terminal is configured with a period in the network device.
  • the time domain resource lengths of the four candidate transmission opportunities in FIG. 4 are the same, and the terminal may The starting position of each candidate transmission opportunity and the time domain resource length determine each candidate transmission opportunity in the period P (ie, the candidate transmission opportunities 1, 2, 3, and 4 in FIG. 4).
  • the terminal obtains 4 candidate transmission opportunities according to L 1 (that is, candidate transmission opportunities 1, 2, 3, and 4 in (a) of FIG. 5). As shown in (a) of FIG. 5, these 4 candidate transmission opportunities Opportunities have the same length of time domain resources and are continuous in the time domain; as shown in (b) in FIG. 5, the terminal obtains 2 candidate transmission opportunities according to L 2 (that is, the candidate transmission opportunities 5 in (a) in FIG. 5, 6) As shown in FIG. 5 (b), the time domain resource lengths of the two candidate transmission opportunities are the same and continuous in the time domain. At this time, there are 6 candidate transmission opportunities in the period P, that is, the above-mentioned candidate transmission opportunities 1 to 6.
  • the method further includes:
  • Step 203 The terminal sends an uplink data channel on the first candidate transmission opportunity.
  • the network device receives an uplink data channel sent by the terminal on the first candidate transmission opportunity.
  • the listening result of the terminal listening to the semi-static scheduling resource is idle; the first candidate transmission opportunity is at least one of the M candidate transmission opportunities.
  • Candidate transmission opportunity that is, the terminal may send an uplink data channel on one or more candidate transmission opportunities in a period; the above uplink data channel carries uplink control information (Uplink Control Information, UCI).
  • UCI Uplink Control Information
  • the UCI is used to indicate a start time and / or an end time of the uplink data channel.
  • each candidate transmission opportunity sends an uplink data channel
  • each uplink data channel sent includes UCI.
  • the terminal before the terminal executes step 203, the terminal performs a listening avoidance mechanism (Listen BeforeTalk, LBT). Specifically, before the terminal performs uplink transmission, it needs to perform LBT to listen on an unlicensed band channel When the listening result is idle, the terminal needs to perform uplink transmission immediately, that is, the candidate transmission opportunity after the listening result is idle after the unlicensed band channel is listening is the available candidate transmission opportunity. At this time, the terminal may A first candidate transmission opportunity is selected from these available candidate transmission opportunities. Of course, when the listening result is busy, the terminal cannot perform uplink transmission. At this time, the terminal will continue to listen on the unlicensed frequency band channel, and can not perform uplink transmission until the listening result is idle before the candidate transmission opportunity arrives.
  • LBT listening avoidance mechanism
  • the aforementioned UCI is mapped on the OFDM symbol of the uplink data channel starting with the first OFDM symbol; wherein, the aforementioned first OFDM symbol is a signal carrying a demodulation reference signal DMRS.
  • the Xth OFDM symbol after the first consecutive OFDM symbol set, or the first OFDM symbol is the Zth OFDM symbol before the first consecutive OFDM symbol set of DMRS, and X, Z are positive greater than or equal to 1 Integer. It should be noted that X and Z are predefined or configured by the network device for the terminal. X and Z may be the same or different.
  • the terminal may map UCI to corresponding time-frequency resources in a frequency-domain-first or time-domain-first manner. Specifically, but not limited to the following mapping methods:
  • Method 1 In a case where the uplink data channel includes an additional DMRS, UCI starts mapping from the OFDM symbols after the front-loaded DMRS in the uplink data channel.
  • Method 2 If the terminal is configured to perform frequency hopping on the uplink data channel, the terminal segments the UCI according to the number of frequency hops, and then the uplink data channel carries a UCI segment in each hop of the uplink data channel.
  • step 203 specifically includes the following steps:
  • Step 203a The terminal performs frequency hopping on the uplink data channel.
  • each hop of the uplink data channel carries a UCI segment, and each hop carries a different UCI segment; the aforementioned UCI is composed of N + 1 segments of UCI segments, N is the number of frequency hopping, and N is greater than or A positive integer equal to 1.
  • the terminal when the network device configures or instructs the terminal to enable frequency hopping, the terminal performs frequency hopping of the uplink data channel.
  • the UCI segment carried by the uplink data channel for each hop is mapped on the OFDM symbol after the Yth symbol after the first continuous OFDM symbol set carrying the DMRS in a frequency domain first or time domain first manner.
  • the above-mentioned Y is predefined or configured by a network device for a terminal.
  • the above-mentioned Y may be the same as X or different.
  • the terminal may directly determine a plurality of uplink data channels in a period of semi-static scheduling resources on the unlicensed frequency band according to the first information.
  • Candidate transmission opportunity Compared with only one candidate transmission opportunity in a period of semi-static scheduling resources in the related art, in the embodiment of the present invention, the terminal can have multiple transmission opportunities for uplink transmission in a period, thereby reducing the delay of uplink transmission. Appearance probability, improve communication efficiency and efficiency.
  • an embodiment of the present invention provides a terminal 300.
  • the terminal 300 includes: a receiving module 301 and a determining module 302, where:
  • the receiving module 301 is configured to receive first information sent by a network device, where the first information is used to indicate M candidate transmission opportunities of an uplink data channel in a first period, and the first period is on an unlicensed frequency band.
  • M is a positive integer greater than or equal to two.
  • the determining module 302 is configured to determine M candidate transmission opportunities of the uplink data channel in the first period according to the first information received by the receiving module 301.
  • the above-mentioned first information is specifically used to indicate at least one of the following: the first time position of each candidate transmission opportunity in the first period or the first time of the first candidate transmission opportunity in the first period Time position, the time window length and the time domain resource length set corresponding to the M candidate transmission opportunities, where the first time position includes at least one of the following: a start position and an end position; and the above time domain resource length set It includes at least one time domain resource length, and the at least one time domain resource length is used to indicate the time domain resource length of each candidate transmission opportunity.
  • the above M candidate transmission opportunities are continuous or equally spaced in the time domain.
  • the above-mentioned M candidate transmission opportunities are located in an uplink time slot / subframe / symbol.
  • the foregoing determining module 302 is specifically configured to: when the first information received by the receiving module 301 is used to indicate: the first time position of each of the candidate transmission opportunities, according to the first time position of each candidate transmission opportunity A time position and the corresponding time domain resource length to determine each candidate transmission opportunity; or, when the first information received by the receiving module 301 is used to indicate: the first time position of the first candidate transmission opportunity described above , Determining each candidate transmission opportunity according to the first time position of the first candidate transmission opportunity and the corresponding time domain resource length.
  • the terminal 300 further includes: a sending module 303, where:
  • the sending module 303 is configured to send an uplink data channel on the first candidate transmission opportunity; before the first candidate transmission opportunity, the monitoring result of the terminal 300 listening on the semi-static scheduling resource is idle; the above-mentioned first candidate The transmission opportunity is at least one candidate transmission opportunity among the M candidate transmission opportunities; the above-mentioned uplink data channel bears UCI.
  • the above UCI is mapped on the OFDM symbol of the uplink data channel starting with the first OFDM symbol; wherein the above-mentioned first OFDM symbol is after the first consecutive OFDM symbol set carrying the demodulation reference signal DMRS
  • the Xth OFDM symbol, or the first OFDM symbol described above is the Zth OFDM symbol before the first set of consecutive OFDM symbols;
  • X, Z are predefined or configured by the network device for the terminal, X, Z Is a positive integer greater than or equal to 1.
  • the terminal after receiving the first information sent by the network device, the terminal can directly determine a plurality of uplink data channels in a period of semi-static scheduling resources on the unlicensed band based on the first information. Candidate transmission opportunity. Compared with only one candidate transmission opportunity in a period of semi-static scheduling resources in the related art, in the embodiment of the present invention, the terminal can have multiple transmission opportunities for uplink transmission in a period, thereby reducing the delay of uplink transmission. Appearance probability, improve communication efficiency and efficiency.
  • the terminal provided by the embodiment of the present invention can implement the content shown in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the network device 400 includes: a sending module 401, where:
  • the sending module 401 is configured to send first information to the terminal.
  • the foregoing first information is used to indicate M candidate transmission opportunities of the uplink data channel in the first period, where M is a positive integer greater than or equal to 2;
  • the first period is one period of semi-static scheduling resources on the unlicensed frequency band; the above-mentioned first information is used to instruct the terminal to determine M candidate transmission opportunities of the uplink data channel in the first period according to the first information.
  • the foregoing first information is used to indicate at least one of the following: a first time position of each candidate transmission opportunity in the first period or a first time of the first candidate transmission opportunity in the first period Position, the time window length and the time domain resource length set corresponding to the above M candidate transmission opportunities; wherein, the first time position includes at least one of the following: a start position and an end position; and the above time domain resource length set includes At least one time domain resource length.
  • the at least one time domain resource length is used to indicate the time domain resource length of each candidate transmission opportunity.
  • the above M candidate transmission opportunities are continuous or equally spaced in the time domain.
  • the above-mentioned M candidate transmission opportunities are located in an uplink time slot / subframe / symbol.
  • the network device 400 further includes: a receiving module 402, where:
  • the receiving module 402 is configured to receive an uplink data channel sent by the terminal on the first candidate transmission opportunity. Before the first candidate transmission opportunity, the monitoring result of the terminal listening on the semi-static scheduling resource is idle. A candidate transmission opportunity is at least one candidate transmission opportunity among the M candidate transmission opportunities; the above-mentioned uplink data channel carries UCI.
  • the above UCI is mapped on the OFDM symbol of the uplink data channel starting with the first OFDM symbol; wherein the above-mentioned first OFDM symbol is after the first consecutive OFDM symbol set carrying the demodulation reference signal DMRS
  • the Xth OFDM symbol, or the first OFDM symbol described above is the Zth OFDM symbol before the first set of consecutive OFDM symbols;
  • X, Z are predefined or configured by the network device for the terminal, X, Z Is a positive integer greater than or equal to 1.
  • the network device sends the first information to the terminal, so that the terminal can directly determine multiple candidates for uplink data channels in a period of semi-static scheduling resources on the unlicensed frequency band based on the first information. Transmission opportunity.
  • the terminal can have multiple transmission opportunities for uplink transmission in a period, thereby reducing the delay of uplink transmission. Appearance probability, improve communication efficiency and efficiency.
  • the network device provided in this embodiment of the present invention can implement the content shown in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present invention.
  • the terminal 100 includes, but is not limited to, a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, The user input unit 107, the interface unit 108, the memory 109, the processor 110, and the power supply 111 and other components.
  • the terminal 100 may include more or fewer components than shown in the figure, or some components may be combined, or different components. Layout.
  • the terminal 100 includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, and a pedometer.
  • the radio frequency unit 101 is configured to receive first information sent by a network device.
  • the first information is used to indicate M candidate transmission opportunities of an uplink data channel in the first period, where M is a positive number greater than or equal to 2.
  • the first period is one period of semi-static scheduling resources on the unlicensed band;
  • the processor 110 is configured to determine M candidate transmission opportunities of the uplink data channel in the first period according to the first information received by the radio frequency unit 101 .
  • the terminal after receiving the first information sent by the network device, the terminal can directly determine a plurality of uplink data channels in a period of semi-static scheduling resources on the unlicensed band based on the first information. Candidate transmission opportunity. Compared with only one candidate transmission opportunity in a period of semi-static scheduling resources in the related art, in the embodiment of the present invention, the terminal can have multiple transmission opportunities for uplink transmission in a period, thereby reducing the delay of uplink transmission. Appearance probability, improve communication efficiency and efficiency.
  • the radio frequency unit 101 may be used to receive and send signals during the transmission and reception of information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 110; The uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with a network and other devices through a wireless communication system.
  • the terminal 100 provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 103 may convert audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into audio signals and output them as sound. Moreover, the audio output unit 103 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 100.
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used for receiving audio or video signals.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on the display unit 106.
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or transmitted via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 101 in the case of a telephone call mode and output.
  • the terminal 100 further includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1061 and / when the terminal 100 moves to the ear. Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 105 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 106 is configured to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be configured to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal 100.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • Touch panel 1071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 1071 or near touch panel 1071 operating).
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it
  • the processor 110 receives and executes a command sent by the processor 110.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 1071.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 1071 may be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near the touch panel 1071, the touch panel 1071 transmits the touch operation to the processor 110 to determine the type of the touch event.
  • the type of event provides a corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are implemented as two independent components to implement the input and output functions of the terminal 100, in some embodiments, the touch panel 1071 and the display panel 1061 may be integrated.
  • the implementation of the input and output functions of the terminal 100 is not specifically limited here.
  • the interface unit 108 is an interface through which an external device is connected to the terminal 100.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 108 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 100 or may be used to communicate between the terminal 100 and an external device. Transfer data.
  • the memory 109 may be used to store software programs and various data.
  • the memory 109 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 109 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is a control center of the terminal 100, and uses various interfaces and lines to connect various parts of the entire terminal 100. By running or executing software programs and / or modules stored in the memory 109, and calling data stored in the memory 109, , Execute various functions of the terminal 100 and process data, so as to monitor the terminal 100 as a whole.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the terminal 100 may further include a power source 111 (such as a battery) for supplying power to various components.
  • a power source 111 such as a battery
  • the power source 111 may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system And other functions.
  • the terminal 100 includes some functional modules that are not shown, and details are not described herein again.
  • FIG. 10 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present invention.
  • the network device 800 includes a processor 801, a transceiver 802, a memory 803, a user interface 804, and a bus interface.
  • the transceiver 802 is configured to send first information to the terminal.
  • the first information is used to indicate M candidate transmission opportunities of the uplink data channel in the first period, where M is a positive integer greater than or equal to 2.
  • the above-mentioned first period is a period of semi-static scheduling resources on the unlicensed frequency band; the above-mentioned first information is used to instruct the terminal to determine M candidate transmission opportunities of uplink data channels in the first period according to the first information .
  • the network device sends the first information to the terminal, so that the terminal can directly determine multiple candidates for uplink data channels in a period of semi-static scheduling resources on the unlicensed frequency band based on the first information. Transmission opportunity.
  • the terminal can have multiple transmission opportunities for uplink transmission in a period, thereby reducing the delay of uplink transmission. Appearance probability, improve communication efficiency and efficiency.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together. .
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 802 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the user interface 804 may also be an interface capable of externally connecting and connecting the required devices.
  • the connected devices include, but are not limited to, a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 may store data used by the processor 801 when performing operations.
  • the network device 800 also includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present invention further provides a terminal, including a processor, a memory, and a computer program stored in the memory and executable on the processor.
  • a terminal including a processor, a memory, and a computer program stored in the memory and executable on the processor.
  • the computer program is executed by the processor, the foregoing method embodiment is implemented.
  • the process of determining the method can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present invention further provides a network device, including a processor, a memory, and a computer program stored in the memory and executable on the processor.
  • a network device including a processor, a memory, and a computer program stored in the memory and executable on the processor.
  • the computer program is executed by the processor, the method embodiment is implemented.
  • the process of determining the method shown can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present invention also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the process of implementing the determination method shown in the foregoing method embodiments can achieve the same Technical effects, in order to avoid repetition, will not repeat them here.
  • a computer-readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种确定方法、终端及网络设备,涉及通信技术领域,以解决相关技术中的UE在非授权频带采用半静态调度进行上行传输过程中,存在的上行传输时延问题。该方法包括:从网络设备接收第一信息;其中,该第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,第一周期为非授权频段上半静态调度资源的一个周期,M为大于或等于2的正整数;根据第一信息,确定该第一周期内的上行数据信道的M个候选传输机会。

Description

确定方法、终端及网络设备
本申请要求于2018年08月07日提交国家知识产权局、申请号为201810893011.5、发明名称为“确定方法、终端及网络设备”和于2018年08月09日提交国家知识产权局、申请号为201810904371.0、发明名称为“确定方法、终端及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种确定方法、终端及网络设备。
背景技术
在未来通信系统中,非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充帮助运营商对服务进行扩容,其中,非授权频段可以工作在5GHz,37GHz以及60GHz频段。
在相关技术中,如果网络设备为用户设备(User Equipment,UE)配置了半静态调度资源,UE在非授权频段进行上行传输时,UE会采用半静态调度资源接入非授权频段,此时,UE需要在半静态调度的传输机会(即上行信道的传输时刻和时域资源)到来之前对非授权频段信道进行侦听。如果侦听结果为忙碌,则UE需要等待接下来的半静态调度的传输机会,并在传输之前对非授权频段信道进行侦听;如果侦听结果为空闲,则UE可以立即在半静态调度的传输机会进行上行传输。
然而,由于相关技术中,UE在一个半静态调度周期内仅有一个半静态调度的传输机会,因此,当侦听结果为忙碌,则会导致UE无法在当前半静态调度周期内进行上行传输,从而增加了上行传输的时延。
发明内容
本发明实施例提供一种确定方法、终端及网络设备,以解决相关技术中的UE在非授权频带采用半静态调度进行上行传输过程中,存在的上行传输时延问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本发明实施例提供了一种确定方法,应用于终端,该方法包括:
从网络设备接收第一信息;其中,所述第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,所述第一周期为非授权频段上半静态调度资源的一个周期,M为大于或等于2的正整数;
根据所述第一信息,确定所述第一周期内的上行数据信道的M个候选传输机会。
第二方面,本发明实施例提供了一种确定方法,应用于网络设备,该方法包括:
向终端发送第一信息;其中,所述第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,M为大于或等于2的正整数;所述第一周期为非授权频段上半静态调度资源的一个周期;所述第一信息用于指示所述终端根据所述第一信息,确定所述第一周期内的上行数据信道的M个候选传输机会。
第三方面,本发明实施例提供了一种终端,包括:
接收模块,用于从网络设备接收第一信息;其中,所述第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,所述第一周期为非授权频段上半静态调度资源的一个周期,M为大于或等于2的正整数;
确定模块,用于根据所述接收模块接收到的所述第一信息,确定所述第一周期内的上行数据信道的M个候选传输机会。
第四方面,本发明实施例提供了一种网络设备,包括:
发送模块,用于向终端发送第一信息;其中,所述第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,M为大于或等于2的正整数;所述第一周期为非授权频段上半静态调度资源的一个周期;所述第一信息用于指示所述终端根据所述第一信息,确定所述第一周期内的上行数据信道的M个候选传输机会。
第五方面,本发明实施例提供了一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的确定方法的步骤。
第六方面,本发明实施例提供一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的确定方法的步骤。
第七方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上述确定方法的步骤。
在本发明实施例中,终端在接收到网络设备发送的第一信息后,可以直接根据该第一信息确定出非授权频段上半静态调度资源的一个周期内的上行数据信道的多个候选传输机会。相比于相关技术中半静态调度资源的一个周期内仅有一个候选传输机会,本发明实施例中终端在一个周期内能够有多次传输机会进行上行传输,从而可以降低上行传输的时延的出现概率,可以提高通信效率以及效能。
附图说明
图1为本发明实施例所涉及的通信系统的结构示意图;
图2为本发明实施例提供的一种确定方法的流程示意图之一;
图3为本发明实施例提供的周期P内的候选传输机会的示意图之一;
图4为本发明实施例提供的周期P内的候选传输机会的示意图之二;
图5为本发明实施例提供的周期P内的候选传输机会的示意图之三;
图6为本发明实施例提供的一种确定方法的流程示意图之二;
图7为本发明实施例提供的一种终端的结构示意图之一;
图8为本发明实施例提供的一种网络设备的结构示意图之一;
图9为本发明实施例提供的一种终端的结构示意图之二;
图10为本发明实施例提供的一种网络设备的结构示意图之二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地 描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供的技术方案可以应用于各种通信系统,例如,5G通信系统,未来演进系统或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(Machine to Machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance Mobile Broadband,eMBB)、超高可靠性与超低时延通信(ultra Reliable&Low Latency Communication,uRLLC)以及海量物联网通信(Massive Machine Type Communication,mMTC)等场景。这些场景包括但不限于:终端与终端之间的通信,或网络设备与网络设备之间的通信,或网络设备与终端间的通信等场景中。本发明实施例可以应用于与5G通信系统中的网络设备与终端之间的通信,或终端与终端之间的通信,或网络设备与网络设备之间的通信。
图1示出了本发明实施例所涉及的通信系统的一种可能的结构示意图。如图1所示,该通信系统包括至少一个网络设备100(图1中仅示出一个)以及每个网络设备100所连接的一个或多个终端200。
其中,上述的网络设备100可以为基站、核心网设备、发射接收节点(Transmission and Reception Point,TRP)、中继站或接入点等。网络设备100可以是全球移动通信系统(Global System for Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。网络设备100还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。网络设备100还可以是5G通信系统中的网络设备或未来演进网络中的网络设备。然用词并不构成对本申请的限制。
终端200可以为无线终端也可以为有线终端,该无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端或者未来演进的PLMN网络中的终端等。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,以及个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备,无线终端也可以为移动设备、用户设备(User Equipment,UE)、UE终端、接入终端、无线通信设备、终端单元、终端站、移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远方站、远程终端(Remote Terminal)、订户单元(Subscriber Unit)、订户站(Subscriber Station)、用户代理(User Agent)、终端装置等。作为一种实例,在本发明实施例中,图1以终端是手机为例示出。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示 前后关联对象是一种“相除”的关系。如果不加说明,本文中的“多个”是指两个或两个以上。
为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了“第一”、“第二”等字样对功能或作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
需要说明的是,本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
图2示出了本发明实施例提供的一种确定方法的流程示意图,如图2所示,该确定方法可以包括:
步骤201:网络设备向终端发送第一信息。
相应的,对端终端从网络设备接收第一信息。
本发明实施例中的网络设备可以为图1所示通信系统中的网络设备,例如,基站;本发明实施例中的终端可以为图1所示的通信系统中的终端。
在本发明实施例中,上述的第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,上述的第一周期为非授权频段上半静态调度资源的一个周期,M为大于或等于2的正整数。上述的第一信息用于指示终端根据该第一信息,确定第一周期内的上行数据信道的M个候选传输机会。需要说明的是,本发明实施例中的上行数据信道的候选传输机会即该上行数据信道的传输时段。
示例性的,上述的上行数据信道可以为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
在本发明实施例中,上述的第一信息可以为网络设备向终端发送的配置信息,该配置信息用于配置半静态调度资源。
可选的,在本发明实施例中,上述的第一信息用于指示以下至少一项:该第一周期内的每个候选传输机会的第一时间位置或该第一周期内的第一个候选传输机会的第一时间位置,上述的M个候选传输机会对应的时间窗长(即上述的M个候选传输机会分布在该时间窗长对应的时间段内)以及时域资源长度集;其中,上述的第一个候选传输机会为该第一周期内的M个候选传输机会在时域中的第一个;上述的时域资源长度集包括至少一个时域资源长度,上述的至少一个时域资源长度用于指示每个候选传输机会的时域资源长度。
其中,上述的M个候选传输机会对应的时间窗长用于表征该第一周期内的所有候选传输时机的总的时间窗长,上述的时间窗长包含上述的M个候选传输机会。如图3所示,图3中的周期P内配置了4个候选传输机会(即图3中的候选传输机会1、2、3、4),终端可以根据时间窗长,确定出周期P内的各个候选传输机会。
需要说明的是,上述的时间窗长小于或等于第一周期时长。此外,若上述的第一信息未直接指示时间窗长,则终端可以默认以第一周期时长为该时间窗长。
在一种示例中,当上述的第一信息用于指示一个时间窗长T时,终端可以该时间窗长确定出该时间窗长内的候选传输机会的数量M以及各个候选传输机会。
在一种示例中,上述的第一信息包括以下至少一项:第一周期时长,该第一周期内的每个候选传输机会的第一时间位置或该第一周期内的第一个候选传输机会的第一时间位 置,上述的时间窗长以及时域资源长度集。
在一种示例中,上述的第一信息为第一标识,该第一标识用于指示一个信息表中的一个或多个候选传输机会的起始位置和时域资源长度,或者,一个或多个候选传输机会的起始位置和结束位置,或者,一个或多个候选传输机会的结束位置和时域资源长度;其中,上述的信息表中包括了至少一个候选传输机会的起始位置和时域资源长度。示例性的,上述的信息表可以是预定义的,也可以是网络设备配置给终端的。
示例性的,上述的候选传输机会的起始位置或结束位置可以为相对于参考点的偏移量,偏移量和时域资源长度是以子帧或时隙或正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号为粒度。需要说明的是,上述的参考点可以为时隙或子帧的边界。
示例性的,上述的时域资源长度集主要包含以下三种情况:
第一种:若上述的时域资源长度集中的时域资源长度的个数为1,则表明上述的M个候选传输机会的时域资源长度相同。
第二种:若上述的时域资源长度集中的时域资源长度的个数为M个,则表明该时域资源长度集包含了上述的M个候选传输机会中每个候选传输机会的时域资源长度。应注意的是,上述的M个时域资源长度中的每个时域资源长度对应一个候选传输机会,且这M个时域资源长度可以相同,也可以不相同,也可以部分相同,本发明对此不作限定。
第三种:若上述的时域资源长度集中的时域资源长度的个数为N,且N为大于1且小于M的值,则表明上述的M个候选传输机会中的部分候选传输机会的时域资源长度相同,或者,表明每个候选传输机会可能有N个时域资源长度。
进一步可选的,在本发明实施例中,上述的M个候选传输机会在时域上是连续的或等间隔的。
进一步可选的,在本发明实施例中,上述的M个候选传输机会位于上行时隙/子帧/符号。
在TDD系统中,时隙/子帧/符号的格式分为下行(DL)、上行(UL)和灵活(Flexible),在时隙/子帧/符号的格式为Flexible时,可以由网络设备配置或指示时隙/子帧/符号方向为DL或UL,如果没有指示,则该时隙/子帧/符号保持Flexible的格式。
一种可能的实现方式,M个候选传输机会全部位于UL时隙/子帧/符号上,即终端在确定候选传输机会时,排除掉DL时隙/子帧/符号,以及Flexible时隙/子帧/符号。
一种可能的实现方式,M个候选传输机会可以位于UL时隙/子帧/符号或Flexible时隙/子帧/符号上,即UE在确定候选传输机会时,排除掉DL时隙/子帧/符号。
一种可能的实现方式,终端在确定候选传输机会时,依据时间顺序确定M个候选传输机会,即不排除DL时隙/子帧/符号或Flexible时隙/子帧/符号,如果M个候选传输机会中任意一个候选传输机会的全部或部分时域资源为DL,则终端需放弃该候选传输机会,这时候一个周期内的候选传输机会可能会小于M。
一种可能的实现方式,终端在确定候选传输机会时,依据时间顺序确定M个候选传输机会,即不排除DL时隙/子帧/符号或Flexible时隙/子帧/符号,如果M个候选传输机会中任意一个候选传输机会的全部或部分时域资源为DL或Flexible,则终端需放弃该候选传输机会,这时候一个周期内的候选传输机会可能会小于M。
在本发明实施例中,上述的数值M可以为网络设备直接配置的,也可以是终端根据该 第一信息计算出的。
对于上述的数值M是终端根据该第一信息计算出的场景,具体实现以下述两种示例来进行说明。
示例1:假设周期P内的第n个候选传输机会的起始位置位于第n-1个候选传输机会的结束位置后的第K个OFDM符号处,即相邻两个候选传输机会间的时域间隔为K-1,且周期P内的每个候选传输机会的时域资源长度为L个OFDM符号,第一个候选传输机会的起始位置为该周期时长的第S个OFDM符号,此时,周期P内的候选传输机会的个数M可以根据以下公式计算:M=floor((P–S–1)/(L+K–1)),S>=1,K>=0。
示例2:假设周期P内的第n个候选传输机会的起始位置位于第n-1个候选传输机会的结束位置后的第K个OFDM符号处,即相邻两个候选传输机会间的时域间隔为K-1,且周期P内的每个候选传输机会的时域资源长度为L个OFDM符号,同时,该周期P内的所有候选传输时机的时间窗长为T,此时,周期P内的候选传输机会的个数M可以根据以下公式计算:M=floor((T)/(L+K–1)),S>=1,K>=0。
步骤202:终端根据第一信息,确定第一周期内的上行数据信道的M个候选传输机会。
可选的,在本发明实施例中,上述的步骤202具体包括如下步骤202a或步骤202b:
步骤202a:在第一信息用于指示:每个候选传输机会的第一时间位置的情况下,终端根据每个候选传输机会的第一时间位置以及对应的时域资源长度,确定出每个候选传输机会。
在本发明实施例中,若上述的M个候选传输机会在时域上是连续的,则终端可以直接根据每个候选传输机会的第一时间位置以及对应的时域资源长度,确定出每个候选传输机会;若上述的M个候选传输机会在时域上是间隔的,则终端需要根据每个候选传输机会的第一时间位置以及对应的时域资源长度和该间隔长度,确定出每个候选传输机会。
步骤202b:在第一信息用于指示:第一个候选传输机会的第一时间位置的情况下,根据第一个候选传输机会的第一时间位置以及对应的时域资源长度,确定出每个候选传输机会。
在本发明实施例中,终端可以根据第一候选传输机会的第一时间位置以及每个候选传输机会的时域资源长度,确定出M个候选传输机会中除第一个候选传输机会以外的其他候选传输机会的第一时间位置,然后,根据每个候选传输机会的第一时间位置以及对应的时域资源长度,确定出每个候选传输机会。
在本发明实施例中,若上述的M个候选传输机会在时域上是连续的,终端可以根据第一个候选传输机会的第一时间位置以及对应的时域资源长度,确定出每个候选传输机会;若上述的M个候选传输机会在时域上是间隔的,则终端需要根据第一个候选传输机会的第一时间位置以及对应的时域资源长度和该间隔长度,确定出每个候选传输机会。
在本发明实施例中,在上述的第一信息用于指示:第一周期时长,该第一周期内的每个候选传输机会的第一时间位置或者该第一周期内的第一个候选传输机会的第一时间位置,以及1个时域资源长度的情况下,上述的M个候选传输机会的时域资源长度相同,且各个候选传输机会在时域上是连续的;或者,上述的M个候选传输机会的 时域资源长度相同,且任意两个相邻的候选传输机会在时域上间隔相同,间隔大小为X个时隙或符号,X为大于0的正整数。
在本发明实施例中,在上述的第一信息用于指示:第一周期时长,该第一周期内的每个候选传输机会的第一时间位置或者该第一周期内的第一个候选传输机会的第一时间位置,以及N个时域资源长度(即L 1,L 2,……,L N)的情况下,终端根据上述的N个时域资源长度中的L 1,确定出M 1个候选传输机会;然后,根据N个时域资源长度中的L 2,确定得到M 2个候选传输机会;以此类推,直到确定出M个候选传输机会,M=M 1+M 2+……M j,即终端根据N个时域资源长度中的L j后,累计确定出M个候选传输机会,其中,j大于或等于1,且小于或等于N。
其中,上述的M 1个候选传输机会在时域上是连续的,M 2个候选传输机会在时域上是连续的,上述的M j个候选传输机会在时域上是连续的。
或者,上述的M 1个候选传输机会中的任意两个相邻的候选传输机会在时域上间隔相同,上述M 2个候选传输机会中的任意两个相邻的候选传输机会在时域上间隔相同,上述的M j个候选传输机会中的任意两个相邻的候选传输机会在时域上间隔相同,上述的间隔大小为X个时隙或符号,X为大于0的正整数。
如图4所示的周期P内的上行数据信道的候选传输机会示意图可知,可以使用周期P内的偏移量来指示第一个候选传输机会的起始位置,在网络设备为终端配置了周期P内的第一个候选传输机会的起始位置以及一个时域资源长度的情况下,如图4所示,图4中的4个候选传输机会的时域资源长度相同,终端可以根据第一个候选传输机会的起始位置和该时域资源长度,确定周期P内各个候选传输机会(即图4中的候选传输机会1、2、3、4)。
如图5所示的周期P的上行数据信道的候选传输机会示意图可知,在终端配置了周期P内的两个时域资源长度L 1和L 2的情况下,如图5中的(a)所示,终端根据L 1得到4个候选传输机会(即图5中的(a)中候选传输机会1、2、3、4),如图5中的(a)可知,这4个候选传输机会的时域资源长度相同,且时域上连续;如图5中的(b)所示,终端根据L 2得到2个候选传输机会(即图5中的(a)中候选传输机会5、6),如图5中的(b)可知,这2个候选传输机会的时域资源长度相同,且时域上连续。此时,该周期P内的候选传输机会为6个,即上述的候选传输机会1至6。
可选的,在本发明实施例中,如图6所示,在步骤202之后,或终端执行步骤202的过程中,该方法还包括:
步骤203:终端在第一候选传输机会上发送上行数据信道。
相应的,网络设备接收终端在第一候选传输机会上发送的上行数据信道。
在本发明实施例中,在第一候选传输机会之前,终端对半静态调度资源进行侦听的侦听结果为空闲;上述的第一候选传输机会为上述的M个候选传输机会中的至少一个候选传输机会,即终端可以在一个周期内的一个或多个候选传输机会上发送上行数据信道;上述的上行数据信道上承载有上行控制信息(Uplink Control Information,UCI)。其中,上述的UCI用于指示上述的上行数据信道的起始时刻和/或结束时刻。
需要说明的是,当终端在一个周期内的多个候选传输机会上发送上行数据信道时,每个候选传输机会发送一个上行数据信道,且每次发送的上行数据信道都包含UCI。
在本发明实施例中,终端在执行步骤203之前,会进行侦听避让机制(Listen  BeforeTalk,LBT),具体的,在终端进行上行传输之前,需要先做LBT,对非授权频段信道进行侦听,当侦听结果为空闲,则终端需要马上进行上行传输,也就是说,非授权频段信道进行侦听之后侦听结果为空闲后的候选传输机会即为可用的候选传输机会,此时终端可从这些可用的候选传输机会中选择出第一候选传输机会。当然,当侦听结果为忙时,终端不能进行上行传输,此时,终端会继续对非授权频段信道进行侦听,直到候选传输机会到来之前侦听结果为空闲,才能进行上行传输。
可选的,在本发明实施例中,上述的UCI映射在该上行数据信道的以第一OFDM符号为起始的OFDM符号上;其中,上述的第一OFDM符号为承载解调参考信号DMRS的第一个连续OFDM符号集合后的第X个OFDM符号,或者,上述的第一OFDM符号为DMRS的第一个连续OFDM符号集合前第Z个OFDM符号,X,Z为大于或等于1的正整数。应注意的是,X,Z为预定义的或网络设备为终端配置的,X与Z可以相同,也可以不同。
在本发明实施例中,终端可以以频域优先或时域优先的方式将UCI映射至相应的时频资源上。具体可以但不限于以下映射方式:
方式1:在上述的上行数据信道中包含附加(Additional)DMRS的情况下,UCI从上述的上行数据信道中的承载前置(Front-loaded)DMRS后的OFDM符号开始映射。
方式2:如果终端配置了对上行数据信道进行跳频,则终端根据跳频次数,将UCI进行分段,然后,在该上行数据信道的每一跳中该上行数据信道承载一段UCI片段。
示例性的,上述的步骤203具体包括如下步骤:
步骤203a:终端对该上行数据信道进行跳频。
其中,在上述上行数据信道的每一跳中承载一段UCI片段,且每一跳承载的UCI片段不同;上述的UCI是由N+1段UCI片段组成,N为跳频次数,N为大于或等于1的正整数。
示例性的,当网络设备配置或指示终端启用跳频时,终端进行上行数据信道的跳频。
示例性的,每一跳该上行数据信道承载的UCI片段以频域优先或时域优先的方式映射在该承载DMRS的第一个连续OFDM符号集合后的第Y个符号之后的OFDM符号上。其中,上述的Y是预定义的或网络设备为终端配置的,上述的Y可以与X相同,也可以不相同。
本发明实施例提供的确定方法,终端在接收到网络设备发送的第一信息后,可以直接根据该第一信息确定出非授权频段上半静态调度资源的一个周期内的上行数据信道的多个候选传输机会。相比于相关技术中半静态调度资源的一个周期内仅有一个候选传输机会,本发明实施例中终端在一个周期内能够有多次传输机会进行上行传输,从而降低了上行传输的时延的出现概率,提高通信效率以及效能。
如图7所示,本发明实施例提供一种终端300,该终端300包括:接收模块301和确定模块302,其中:
接收模块301,用于接收网络设备发送的第一信息;其中,上述的第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,上述的第一周期为非授权频段上半静态调度资源的一个周期,M为大于或等于2的正整数。
确定模块302,用于根据接收模块301接收到的第一信息,确定该第一周期内的 上行数据信道的M个候选传输机会。
可选的,上述的第一信息具体用于指示以下至少一项:该第一周期内的每个候选传输机会的第一时间位置或该第一周期内的第一个候选传输机会的第一时间位置,上述的M个候选传输机会对应的时间窗长以及时域资源长度集;其中,上述的第一时间位置包括以下至少一项:起始位置和结束位置;上述的时域资源长度集包括至少一个时域资源长度,上述的至少一个时域资源长度用于指示每个候选传输机会的时域资源长度。
可选的,上述的M个候选传输机会在时域上是连续的或等间隔的。
可选的,上述的M个候选传输机会位于上行时隙/子帧/符号。
可选的,上述的确定模块302具体用于:在接收模块301接收到的第一信息用于指示:上述每个候选传输机会的第一时间位置的情况下,根据每个候选传输机会的第一时间位置以及对应的时域资源长度,确定出每个候选传输机会;或者,在接收模块301接收到的第一信息用于指示:上述第一个候选传输机会的第一时间位置的情况下,根据第一个候选传输机会的第一时间位置以及对应的时域资源长度,确定出每个候选传输机会。
可选的,如图7所示,该终端300还包括:发送模块303,其中:
发送模块303,用于在第一候选传输机会上发送上行数据信道;其中,在第一候选传输机会之前,终端300对半静态调度资源进行侦听的侦听结果为空闲;上述的第一候选传输机会为M个候选传输机会中的至少一个候选传输机会;上述的上行数据信道上承载有UCI。
可选的,上述的UCI映射在上行数据信道的以第一OFDM符号为起始的OFDM符号上;其中,上述的第一OFDM符号为承载解调参考信号DMRS的第一个连续OFDM符号集合后的第X个OFDM符号,或者,上述的第一OFDM符号为该第一个连续OFDM符号集合前的第Z个OFDM符号;X,Z为预定义的或网络设备为终端配置的,X,Z为大于或等于1的正整数。
可选的,上述的发送模块303具体用于:对上行数据信道进行跳频;其中,在上行数据信道的每一跳中承载一段UCI片段;UCI是由N+1段UCI片段组成,N为跳频次数。
本发明实施例提供的终端,该终端在接收到网络设备发送的第一信息后,可以直接根据该第一信息确定出非授权频段上半静态调度资源的一个周期内的上行数据信道的多个候选传输机会。相比于相关技术中半静态调度资源的一个周期内仅有一个候选传输机会,本发明实施例中终端在一个周期内能够有多次传输机会进行上行传输,从而降低了上行传输的时延的出现概率,提高通信效率以及效能。
本发明实施例提供的终端能够实现上述方法实施例中所示内容,为避免重复,此处不再赘述。
如图8所示,本发明实施例的一种网络设备,该网络设备400包括:发送模块401,其中:
发送模块401,用于向终端发送第一信息;其中,上述的第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,M为大于或等于2的正整数;上述的第 一周期为非授权频段上半静态调度资源的一个周期;上述的第一信息用于指示终端根据第一信息,确定第一周期内的上行数据信道的M个候选传输机会。
可选的,上述的第一信息用于指示以下至少一项:该第一周期内的每个候选传输机会的第一时间位置或该第一周期内的第一个候选传输机会的第一时间位置,上述的M个候选传输机会对应的时间窗长以及时域资源长度集;其中,上述的第一时间位置包括以下至少一项:起始位置和结束位置;上述的时域资源长度集包括至少一个时域资源长度,上述的至少一个时域资源长度用于指示每个候选传输机会的时域资源长度。
可选的,上述的M个候选传输机会在时域上是连续的或等间隔的。
可选的,上述的M个候选传输机会位于上行时隙/子帧/符号。
可选的,如图8所示,该网络设备400还包括:接收模块402,其中:
接收模块402,用于接收终端在第一候选传输机会上发送的上行数据信道;其中,在第一候选传输机会之前,终端对半静态调度资源进行侦听的侦听结果为空闲;上述的第一候选传输机会为M个候选传输机会中的至少一个候选传输机会;上述的上行数据信道上承载有UCI。
可选的,上述的UCI映射在上行数据信道的以第一OFDM符号为起始的OFDM符号上;其中,上述的第一OFDM符号为承载解调参考信号DMRS的第一个连续OFDM符号集合后的第X个OFDM符号,或者,上述的第一OFDM符号为该第一个连续OFDM符号集合前的第Z个OFDM符号;X,Z为预定义的或网络设备为终端配置的,X,Z为大于或等于1的正整数。
本发明实施例提供的网络设备,网络设备通过向终端发送第一信息,使得终端可以直接根据该第一信息确定出非授权频段上半静态调度资源的一个周期内的上行数据信道的多个候选传输机会。相比于相关技术中半静态调度资源的一个周期内仅有一个候选传输机会,本发明实施例中终端在一个周期内能够有多次传输机会进行上行传输,从而降低了上行传输的时延的出现概率,提高通信效率以及效能。
本发明实施例提供的网络设备能够实现上述方法实施例所示内容,为避免重复,此处不再赘述。
图9为实现本发明各个实施例的一种终端的硬件结构示意图,该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图9中示出的终端100的结构并不构成对终端的限定,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端100包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元101,用于接收网络设备发送的第一信息;其中,上述的第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,M为大于或等于2的正整数,第一周期为非授权频段上半静态调度资源的一个周期;处理器110,用于根据射频单元101接收的第一信息,确定该第一周期内的上行数据信道的M个候选传输机会。
本发明实施例提供的终端,该终端在接收到网络设备发送的第一信息后,可以直接根 据该第一信息确定出非授权频段上半静态调度资源的一个周期内的上行数据信道的多个候选传输机会。相比于相关技术中半静态调度资源的一个周期内仅有一个候选传输机会,本发明实施例中终端在一个周期内能够有多次传输机会进行上行传输,从而降低了上行传输的时延的出现概率,提高通信效率以及效能。
应理解的是,本发明实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
终端100通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
终端100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端100的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个 部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图9中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端100的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端100的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与终端100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端100内的一个或多个元件或者可以用于在终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端100的控制中心,利用各种接口和线路连接整个终端100的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端100的各种功能和处理数据,从而对终端100进行整体监控。处理器110可包括一个或多个处理单元;可选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端100还可以包括给各个部件供电的电源111(比如电池),可选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端100包括一些未示出的功能模块,在此不再赘述。
图10为实现本发明实施例的一种网络设备的硬件结构示意图,该网络设备800包括:处理器801、收发机802、存储器803、用户接口804和总线接口。
其中,收发机802,用于向终端发送第一信息;其中,上述的第一信息用于指示第一 周期内的上行数据信道的M个候选传输机会,M为大于或等于2的正整数;上述的第一周期为非授权频段上半静态调度资源的一个周期;上述的第一信息用于指示终端根据所述第一信息,确定该第一周期内的上行数据信道的M个候选传输机会。
本发明实施例提供的网络设备,网络设备通过向终端发送第一信息,使得终端可以直接根据该第一信息确定出非授权频段上半静态调度资源的一个周期内的上行数据信道的多个候选传输机会。相比于相关技术中半静态调度资源的一个周期内仅有一个候选传输机会,本发明实施例中终端在一个周期内能够有多次传输机会进行上行传输,从而降低了上行传输的时延的出现概率,提高通信效率以及效能。
本发明实施例中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口804还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
另外,网络设备800还包括一些未示出的功能模块,在此不再赘述。
可选的,本发明实施例还提供一种终端,包括处理器,存储器,存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述方法实施例所示的确定方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可选的,本发明实施例还提供一种网络设备,包括处理器,存储器,存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述方法实施例所示的确定方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例所示的确定方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机, 服务器,空调器,或者网络设备等)执行本发明多个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (19)

  1. 一种确定方法,其特征在于,应用于终端,该方法包括:
    从网络设备接收第一信息;其中,所述第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,所述第一周期为非授权频段上半静态调度资源的一个周期,M为大于或等于2的正整数;
    根据所述第一信息,确定所述第一周期内的上行数据信道的M个候选传输机会。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息用于指示以下至少一项:所述第一周期内的每个候选传输机会的第一时间位置或所述第一周期内的第一个候选传输机会的第一时间位置,所述M个候选传输机会对应的时间窗长以及时域资源长度集;其中,所述第一时间位置包括以下至少一项:起始位置和结束位置;所述时域资源长度集包括至少一个时域资源长度,所述至少一个时域资源长度用于指示所述每个候选传输机会的时域资源长度。
  3. 根据权利要求2所述的方法,其特征在于,所述M个候选传输机会在时域上是连续的或等间隔的。
  4. 根据权利要求2所述的方法,其特征在于,所述M个候选传输机会位于上行时隙/子帧/符号。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据所述第一信息,确定所述第一周期内的上行数据信道的M个候选传输机会,包括:
    在所述第一信息用于指示:每个候选传输机会的第一时间位置的情况下,根据所述每个候选传输机会的第一时间位置以及对应的时域资源长度,确定出所述每个候选传输机会;
    或者,
    在所述第一信息用于指示:第一个候选传输机会的第一时间位置的情况下,根据所述第一个候选传输机会的第一时间位置以及对应的时域资源长度,确定出所述每个候选传输机会。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在第一候选传输机会上发送所述上行数据信道;
    其中,在所述第一候选传输机会之前,所述终端对所述半静态调度资源进行侦听的侦听结果为空闲;所述第一候选传输机会为所述M个候选传输机会中的至少一个候选传输机会;所述上行数据信道上承载有上行控制信息UCI。
  7. 根据权利要求6所述的方法,其特征在于,所述UCI映射在所述上行数据信道的以第一正交频分复用OFDM符号为起始的OFDM符号上;其中,所述第一OFDM符号为承载解调参考信号DMRS的第一个连续OFDM符号集合后的第X个OFDM符号,或者,所述第一OFDM符号为所述第一个连续OFDM符号集合前的第Z个OFDM符号;X,Z为预定义的或所述网络设备为所述终端配置的,X,Z为大于或等于1的正整数。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    对所述上行数据信道进行跳频;
    其中,所述UCI是由N+1段UCI片段组成,在所述上行数据信道的每一跳中承 载一段UCI片段,N为跳频次数,N为大于或等于1的正整数。
  9. 一种确定方法,其特征在于,应用于网络设备,该方法包括:
    向终端发送第一信息;其中,所述第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,M为大于或等于2的正整数;所述第一周期为非授权频段上半静态调度资源的一个周期;所述第一信息用于指示所述终端根据所述第一信息,确定所述第一周期内的上行数据信道的M个候选传输机会。
  10. 根据权利要求9所述的方法,其特征在于,所述第一信息用于指示以下至少一项:所述第一周期内的每个候选传输机会的第一时间位置或所述第一周期内的第一个候选传输机会的第一时间位置,所述M个候选传输机会对应的时间窗长以及时域资源长度集;其中,所述第一时间位置包括以下至少一项:起始位置和结束位置;所述时域资源长度集包括至少一个时域资源长度,所述至少一个时域资源长度用于指示所述每个候选传输机会的时域资源长度。
  11. 根据权利要求10所述的方法,其特征在于,所述M个候选传输机会在时域上是连续的或等间隔的。
  12. 根据权利要求10所述的方法,其特征在于,所述M个候选传输机会位于上行时隙/子帧/符号。
  13. 根据权利要求9至12任一项所述的方法,其特征在于,所述向终端发送第一信息之后,所述方法还包括:
    接收所述终端在第一候选传输机会上发送的所述上行数据信道;
    其中,在所述第一候选传输机会之前,所述终端对所述半静态调度资源进行侦听的侦听结果为空闲;所述第一候选传输机会为所述M个候选传输机会中的至少一个候选传输机会;所述上行数据信道上承载有上行控制信息UCI。
  14. 根据权利要求13所述的方法,其特征在于,所述UCI映射在所述上行数据信道的以第一正交频分复用OFDM符号为起始的OFDM符号上;其中,所述第一OFDM符号为承载解调参考信号DMRS的第一个连续OFDM符号集合后的第X个OFDM符号,或者,所述第一OFDM符号为所述第一个连续OFDM符号集合前的第Z个OFDM符号;X,Z为预定义的或所述网络设备为所述终端配置的,X,Z为大于或等于1的正整数。
  15. 一种终端,其特征在于,包括:
    接收模块,用于从网络设备接收第一信息;其中,所述第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,所述第一周期为非授权频段上半静态调度资源的一个周期,M为大于或等于2的正整数;
    确定模块,用于根据所述接收模块接收到的所述第一信息,确定所述第一周期内的上行数据信道的M个候选传输机会。
  16. 一种网络设备,其特征在于,包括:
    发送模块,用于向终端发送第一信息;其中,所述第一信息用于指示第一周期内的上行数据信道的M个候选传输机会,M为大于或等于2的正整数;所述第一周期为非授权频段上半静态调度资源的一个周期;所述第一信息用于指示所述终端根据所述第一信息,确定所述第一周期内的上行数据信道的M个候选传输机会。
  17. 一种终端,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的确定方法的步骤。
  18. 一种网络设备,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求9至14中任一项所述的确定方法的步骤。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8中任一项或者权利要求9至14中任一项所述的确定方法的步骤。
PCT/CN2019/097427 2018-08-07 2019-07-24 确定方法、终端及网络设备 WO2020029797A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2019316839A AU2019316839B2 (en) 2018-08-07 2019-07-24 Determination method, terminal and network device
RU2021105607A RU2765682C1 (ru) 2018-08-07 2019-07-24 Способ определения, абонентское оборудование и сетевое устройство
EP19846781.3A EP3836679A4 (en) 2018-08-07 2019-07-24 DETERMINATION PROCESS, TERMINAL AND NETWORK DEVICE
JP2021506480A JP7124204B2 (ja) 2018-08-07 2019-07-24 決定方法、端末及びネットワーク機器
KR1020217006846A KR102750975B1 (ko) 2018-08-07 2019-07-24 확정 방법, 단말 및 네트워크 기기
SG11202100615SA SG11202100615SA (en) 2018-08-07 2019-07-24 Determining method, terminal, and network device
CA3107136A CA3107136A1 (en) 2018-08-07 2019-07-24 Determining method, terminal, and network device
US17/167,038 US12177873B2 (en) 2018-08-07 2021-02-03 Determining method, terminal, and network device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810893011.5 2018-08-07
CN201810893011 2018-08-07
CN201810904371.0A CN110831172A (zh) 2018-08-07 2018-08-09 确定方法、终端及网络设备
CN201810904371.0 2018-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/167,038 Continuation US12177873B2 (en) 2018-08-07 2021-02-03 Determining method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2020029797A1 true WO2020029797A1 (zh) 2020-02-13

Family

ID=69415348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097427 WO2020029797A1 (zh) 2018-08-07 2019-07-24 确定方法、终端及网络设备

Country Status (1)

Country Link
WO (1) WO2020029797A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049136A (zh) * 2015-08-07 2015-11-11 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱信道检测方法和装置
CN105991210A (zh) * 2015-01-28 2016-10-05 中国移动通信集团公司 一种非授权频段上的参考信号发送方法、接收方法及装置
CN106797569A (zh) * 2015-07-31 2017-05-31 日本电气株式会社 用于执行传输的方法和设备
US20180035463A1 (en) * 2016-07-26 2018-02-01 Qualcomm Incorporated License assisted request-to-send and clear-to-send transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991210A (zh) * 2015-01-28 2016-10-05 中国移动通信集团公司 一种非授权频段上的参考信号发送方法、接收方法及装置
CN106797569A (zh) * 2015-07-31 2017-05-31 日本电气株式会社 用于执行传输的方法和设备
CN105049136A (zh) * 2015-08-07 2015-11-11 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱信道检测方法和装置
US20180035463A1 (en) * 2016-07-26 2018-02-01 Qualcomm Incorporated License assisted request-to-send and clear-to-send transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA NETWORKS ET AL.: "On Listen before Talk and Channel Access", 3GPP TSG RAN WGI MEETING #79 RL-145003, 21 November 2014 (2014-11-21), XP050895111 *
See also references of EP3836679A4 *

Similar Documents

Publication Publication Date Title
AU2019316839B2 (en) Determination method, terminal and network device
CN111817831B (zh) 一种传输方法和通信设备
WO2019076171A1 (zh) 非授权频段下的信息传输方法、终端及网络设备
WO2019196826A1 (zh) 旁链路信息的传输方法及设备
WO2020029782A1 (zh) Pusch重复传输时的跳频方法、终端及网络设备
CN111800794B (zh) 解调参考信号位置的确定方法及设备
CN110719646B (zh) 一种上行传输方法及终端
WO2020228529A1 (zh) 半静态调度配置的配置方法、设备及系统
WO2019095917A1 (zh) 时隙格式指示检测方法、配置方法及装置
CN110351835A (zh) 一种频段确定方法和装置
WO2020192674A1 (zh) 搜索空间的配置方法及装置、通信设备
CN111615197B (zh) 资源调整方法及设备
CN112566264B (zh) 一种参考信号传输方法及设备
CN111278124B (zh) 资源配置方法、资源确定方法、网络侧设备和终端
WO2020029760A1 (zh) 资源配置方法和装置
WO2021208980A1 (zh) Srs传输方法、设备及系统
JP2023515836A (ja) リソース決定方法、リソース指示方法及び通信機器
WO2020164515A1 (zh) 信号传输方法、设备及系统
WO2020015679A1 (zh) Csi上报方法、终端及网络设备
WO2020151706A1 (zh) 随机接入传输方法及终端
CN110636614A (zh) 一种随机接入方法、终端及网络设备
WO2020134222A1 (zh) 信息传输方法、终端及网络设备
WO2020238964A1 (zh) 资源映射方法及用户设备
WO2020029797A1 (zh) 确定方法、终端及网络设备
CN111132293B (zh) 信息传输方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3107136

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021506480

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019316839

Country of ref document: AU

Date of ref document: 20190724

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019846781

Country of ref document: EP

Effective date: 20210309