WO2020238964A1 - 资源映射方法及用户设备 - Google Patents

资源映射方法及用户设备 Download PDF

Info

Publication number
WO2020238964A1
WO2020238964A1 PCT/CN2020/092637 CN2020092637W WO2020238964A1 WO 2020238964 A1 WO2020238964 A1 WO 2020238964A1 CN 2020092637 W CN2020092637 W CN 2020092637W WO 2020238964 A1 WO2020238964 A1 WO 2020238964A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
resource
available
mapping
target
Prior art date
Application number
PCT/CN2020/092637
Other languages
English (en)
French (fr)
Inventor
沈晓冬
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217040113A priority Critical patent/KR20220006100A/ko
Priority to BR112021023733A priority patent/BR112021023733A2/pt
Priority to EP20813199.5A priority patent/EP3979735A4/en
Publication of WO2020238964A1 publication Critical patent/WO2020238964A1/zh
Priority to US17/537,659 priority patent/US20220086877A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a resource mapping method and user equipment (UE).
  • UE user equipment
  • unlicensed bands are used as a supplement to licensed bands (licensed bands), which can improve spectrum utilization.
  • the bitmap of automatic uplink access is based on the continued enhancement of the licensed spectrum assisted access (further enhanced licensed assisted access, FeLAA) It can be used as an enhanced solution to realize the configuration of time domain resources for automatic uplink transmission (configured grant) of unlicensed frequency bands.
  • one bit may represent one subframe or one time interval.
  • a bitmap can be composed of 40 bits, but it is generally required that the period of bitmap configuration (the use period of real-time domain resources) needs to be divided by 40 to meet the period configuration, resulting in bit The flexibility of the graph configuration cycle is low.
  • the embodiments of the present disclosure provide a resource mapping method and user equipment to solve the problem of low flexibility in time domain resource configuration.
  • embodiments of the present disclosure provide a resource mapping method.
  • This method can be applied to UE.
  • the method may include: mapping a target channel to a first time domain resource according to configuration information, the target channel carries first data, and the configuration information includes a first value; wherein the first value is used to indicate the target time domain resource
  • the number of channels mapped in each cycle or the number of available first time domain units in each cycle, the target time domain resource is the resource configured for the first data, and the first time domain resource is the target time domain resource H.
  • an embodiment of the present disclosure provides a UE.
  • the UE includes a processing module.
  • the processing module is configured to map the target channel to the first time domain resource according to the configuration information, the target channel carries first data, and the configuration information includes a first value; wherein the first value is used to indicate the target time domain resource
  • the number of channels mapped in each cycle or the number of available first time domain units in each cycle, the target time domain resource is the resource configured for the first data, and the first time domain resource is the target time domain resource H.
  • the embodiments of the present disclosure provide a UE, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program implements the first The steps of the resource mapping method provided by the aspect.
  • embodiments of the present disclosure provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the resource mapping method provided in the first aspect are implemented.
  • the target channel may be mapped to the first time domain resource according to configuration information, the target channel carries first data, and the configuration information includes a first value; wherein, the first value is used to indicate each The number of channels mapped in a period or the number of available first time domain units in each period, the target time domain resource is a resource configured for the first data, and the first time domain resource is a resource in the target time domain resource .
  • the first value in the configuration information can be used to indicate the number of channels mapped in each period or the number of available first time domain units in each period, by configuring the first value, each period can be flexibly configured.
  • the number of channels mapped in a period or the number of available first time domain units in each period Therefore, the embodiment of the present disclosure can flexibly configure the first time domain resource for mapping the target channel according to the configuration information, thereby improving the time domain resource Configuration flexibility.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the disclosure
  • FIG. 2 is one of the schematic diagrams of a resource mapping method provided by an embodiment of the disclosure
  • FIG. 3 is the second schematic diagram of a resource mapping method provided by an embodiment of the disclosure.
  • FIG. 4 is one of the schematic diagrams of mapping channels to time domain resources provided by an embodiment of the disclosure.
  • FIG. 5 is the second schematic diagram of mapping channels to time domain resources provided by an embodiment of the disclosure.
  • FIG. 6 is the third schematic diagram of mapping channels to time domain resources according to an embodiment of the disclosure.
  • FIG. 7 is the fourth schematic diagram of mapping channels to time domain resources provided by an embodiment of the disclosure.
  • FIG. 8 is the fifth schematic diagram of mapping channels to time domain resources according to an embodiment of the disclosure.
  • FIG. 9 is a sixth schematic diagram of mapping channels to time domain resources according to an embodiment of the disclosure.
  • FIG. 10 is the seventh schematic diagram of mapping channels to time domain resources provided by an embodiment of the disclosure.
  • FIG. 11 is the eighth schematic diagram of mapping channels to time domain resources provided by an embodiment of the disclosure.
  • FIG. 12 is the ninth schematic diagram of mapping channels to time domain resources provided by an embodiment of the disclosure.
  • FIG. 13 is a tenth schematic diagram of mapping channels to time domain resources provided by an embodiment of the disclosure.
  • FIG. 14 is the eleventh schematic diagram of mapping channels to time domain resources provided by an embodiment of the disclosure.
  • FIG. 15 is a twelfth schematic diagram of mapping channels to time domain resources according to an embodiment of the disclosure.
  • FIG. 16 is a schematic structural diagram of a UE provided by an embodiment of the disclosure.
  • FIG. 17 is a schematic diagram of hardware of a UE provided by an embodiment of the disclosure.
  • first and second in the specification and claims of the present disclosure are used to distinguish different objects, rather than describing a specific order of objects.
  • first time domain unit and the second time domain unit are used to distinguish different time domain units, rather than to describe the specific order of time domain units.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the embodiments of the present disclosure provide a resource mapping method and user equipment, which can map a target channel to a first time domain resource according to configuration information, the target channel carries first data, and the configuration information includes a first value; A value is used to indicate the number of channels mapped in each cycle or the number of available first time domain units in each cycle in the target resource, the target time domain resource is a resource configured for the first data, and the first time domain The resource is the resource in the target time domain resource.
  • the embodiments of the present disclosure can flexibly configure the first time domain resource for mapping the target channel according to the configuration information, thereby improving the time domain resources. Configuration flexibility.
  • the resource mapping method and user equipment provided by the embodiments of the present disclosure can be applied to a communication system. Specifically, it can be applied to the scenario of configuring time domain resources based on configured grant transmission.
  • FIG. 1 it is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include UE 01 and access network equipment 02. Among them, a connection can be established between the UE 01 and the access network device 02.
  • the above-mentioned UE 01 shown in FIG. 1 and the access network device 02 may be a wireless connection.
  • a UE is a device that provides voice and/or data connectivity to users, a handheld device with wired/wireless connection functions, or other processing devices connected to a wireless modem.
  • the UE may communicate with one or more core network devices through a radio access network (RAN).
  • RAN radio access network
  • the UE can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal. It can also be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device, which exchanges languages with the RAN And/or data, for example, personal communication service (PCS) phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants) , PDA) and other equipment.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • the UE may also be referred to as a user agent or terminal device.
  • the access network device is a device deployed in the RAN to provide wireless communication functions for the UE.
  • the access network device may be a base station, and the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • 5G base station 5G base station
  • 4G fourth-generation wireless communication
  • eNB evolved NodeB
  • 3G 3-Generation
  • base station NodeB
  • embodiments of the present disclosure provide a resource mapping method. As shown in FIG. 2, the method can be applied to user equipment UE, and the method includes the following steps 201 and 202.
  • Step 201 The UE obtains configuration information.
  • the above-mentioned configuration information may be configured by the network side device, or predefined in the communication protocol, or configured for the UE. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the foregoing step 201 may specifically be: the UE receives the configuration information sent by the access network device.
  • the access network device may send radio resource control (radio resource control, RRC) signaling to the UE, and the RRC signaling may include the Configuration information.
  • RRC radio resource control
  • the foregoing example is taken as an example for the access network device sending RRC signaling including configuration information to the UE, which does not form any limitation on the embodiments of the present disclosure. It can be understood that in actual implementation, the access network device may send other types of signaling or resources to the UE, and the other types of signaling or resources may include configuration information, which may be specifically determined according to actual usage requirements.
  • Step 202 The UE maps the target channel to the first time domain resource according to the configuration information, the target channel carries the first data, and the configuration information includes the first value.
  • the above-mentioned first value can be used to indicate the number of channels mapped in each period (period, also called configuration period) in the target time domain resource or the number of available first time domain units in each period (ie configuration period).
  • Quantity The target time domain resource may be a resource configured for the first data.
  • the first time domain resource may be a resource in the target time domain resource.
  • the foregoing configuration information may further include the period length, the first starting position, and the first number.
  • the aforementioned period length may be the length of each period (that is, the configuration period) in the target time domain resource.
  • the foregoing first starting position may be the starting position of the first channel mapping in the first period (that is, the first configuration period) in the target time domain resource.
  • the foregoing first number may be the number of second time domain units occupied by one channel in each period (ie, configuration period) of the target time domain resource.
  • first starting position and first number may be collectively referred to as time domain resource configuration (SLIV).
  • the above-mentioned target time domain resource may be a time domain resource of an unlicensed spectrum or a time domain resource of a licensed spectrum. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the foregoing target channel may include one channel or multiple channels.
  • the above-mentioned target channel may be an uplink channel, for example, a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the target channel may also be other possible channels, which may be specifically determined according to actual use requirements, which is not limited in the embodiment of the present disclosure.
  • each PUSCH may specifically be one PUSCH resource block.
  • a second time domain unit may be a symbol.
  • an available first time domain unit may be a slot.
  • the length of an available first time domain unit may be greater than the length of a second time domain unit.
  • the length of an available first time domain unit may be one time slot, and the one time slot includes 4, 7 or 14 symbols; the length of a second time domain unit is one symbol.
  • FIGS. 4 to 15 of the embodiment of the present disclosure are all exemplified by taking an example that the length of the available first time domain unit is 14 symbols. It can be understood that it does not limit the embodiments of the present disclosure.
  • the aforementioned configuration information may further include a first offset (offset), and the first offset may be an offset of the target time domain resource. It can be understood that by configuring the first offset, the UE can determine the starting position (starting time) of the target time domain resource.
  • the aforementioned configuration information may further include a second number, the second number may be the number of periods in the target time domain resource, and the second number may be a positive integer. It can be understood that by configuring the second number, the UE can determine the number of periodic repeated transmissions.
  • the foregoing first value may be an integer greater than or equal to 0, and the first value may be less than or equal to the second value.
  • the second value may be the number of available first time domain units included in each period.
  • the above-mentioned first value may be an invalid value or a valid value.
  • the invalid value can be 0 or + ⁇
  • the valid value can be 1, 2, 3, 4 or other possible positive integers.
  • the number of channels mapped in each period may be 1.
  • the number of channels mapped in each period is 1; the first value is an invalid value, and the first available When the length of the time domain unit is less than or equal to the period length, the number of channels mapped in each period is one.
  • the length of the available first time domain unit is 14 symbols in length, and the period length is 7 symbols in length. Since the first value is an invalid value, the number of channels mapped in each cycle is one.
  • the length of the available first time domain unit is 7 symbols in length, and the period length is 14 symbols in length. Since the first value is an invalid value, the number of channels mapped in each cycle is one.
  • the number of channels mapped in each period or the number of available first time domain units in each period may be the first value.
  • the first value is a valid value
  • the length of the available first time domain unit is greater than the period length
  • the number of channels mapped in each period is the first value
  • the first value is a valid value
  • the available In the case that the length of the first time domain unit is less than or equal to the period length, the number of available first time domain units in each period is the first value.
  • the length of the available first time domain unit is 14 symbols in length, and the period length is 7 symbols in length. Since the first value is a valid value, and the length of the available first time domain unit is greater than the period length, the number of channels mapped in each period may be two.
  • the length of the available first time domain unit is 7 symbols in length
  • the period length is 14 symbols in length. Since the first value is a valid value, and the length of the usable first time domain unit is less than the period length, the number of usable first time domain units in each period is two.
  • the embodiments of the present disclosure provide a resource mapping method. Since the first value in the configuration information can be used to indicate the number of channels mapped in each period or the number of available first time domain units in each period, the first value is set Value, the number of channels mapped in each cycle or the number of available first time domain units in each cycle can be flexibly configured. Therefore, the embodiments of the present disclosure can flexibly configure the first time domain resource for mapping the target channel according to the configuration information , Which can improve the flexibility of time domain resource configuration.
  • step 202 may be specifically implemented by the following step 202A.
  • Step 202A In each cycle, the UE maps the target channel to the first time domain resource according to the configuration information.
  • the UE may determine the first time domain resource of each cycle, and map the target channel to the first time of each cycle Domain resources.
  • step 202A can be implemented by any one of the following (1)-(3):
  • step 202A can be specifically implemented through the following steps 202A1 and 202A2.
  • Step 202A In each cycle, the UE determines the first time domain resource according to the configuration information.
  • Step 202A2 the UE maps the target channel to the first time domain resource.
  • the foregoing first time domain resource may be L consecutive second time domain units starting from the first starting position.
  • L is the first number, and L is a positive integer.
  • step 202A1 and step 202A2 for details, please refer to the related description of time domain resource configuration in NR Rell5, which will not be repeated here.
  • the start of a channel mapped The start time can be [S, S+L-1].
  • Two consecutive second time domain units starting from the start position T1 of the first period are the first time domain resources of the first period, and two consecutive second time units starting from the start position T2 of the second period
  • the domain unit is the first time domain resource of the second cycle
  • the two consecutive second time domain units starting from the start position T3 of the third cycle are the first time domain resources of the third cycle.
  • Two consecutive second time domain units starting from the start position T4 of each cycle are the first time domain resources of the fourth cycle... and so on, for the first time domain resource of each cycle, one PUSCH can be mapped .
  • the number of channels mapped in each period can be configured to 1, so that one channel can be mapped in each period.
  • step 202A can be specifically implemented by the following step 202A3 and step 202A4.
  • Step 202A3 In each cycle, the UE determines the first time domain resource according to the configuration information.
  • Step 202A4 The UE maps the target channel to the first time domain resource.
  • the above-mentioned first time domain resource may be N consecutive first sub-mapping resources starting from the first starting position.
  • the number of second time domain units in each first sub-mapping resource in the N first sub-mapping resources is the first number, and N is the first value.
  • the target channel may include multiple sub-channels, and each sub-channel may be mapped to a first sub-mapping resource.
  • the starting time of at least one channel mapped can be [S, S+L-1], [S+L, S+2L-1],..., [S+(N-1 )*L, S+N*L-1].
  • N ⁇ floor ⁇ X/L ⁇ , floor ⁇ is the function of rounding down.
  • Two consecutive second time domain units starting from the start position T1 of the first period are the first first sub-mapping resource of the first period, and after the first first sub-mapping resource of the first period
  • the first two consecutive second time domain units are the second first sub-mapping resource of the first cycle
  • the two consecutive second time domain units starting from the start position T2 of the second cycle are the second cycle
  • the first first sub-mapping resource in the second period, and the two consecutive second time domain units starting from the first first sub-mapping resource in the second period are the second first sub-mapping resource in the second period
  • Two consecutive second time domain units starting from the start position T3 of the third period are the first first sub-mapping resource of the third period, and after the first first sub-mapping resource of the third period
  • the first two consecutive second time domain units are the second first sub-mapping resource of the third cycle
  • the two consecutive second time domain units starting from the start position T4 of the fourth cycle are the fourth cycle
  • the number of channels mapped in each period may be configured as the first value, Therefore, the first number of channels can be mapped in each cycle.
  • step 202A can be specifically implemented by the following step 202A5, step 202A6, and step 202A7.
  • Step 202A5 In each cycle, the UE determines M available first time domain units according to the configuration information.
  • M is the first value, and M is a positive integer.
  • the number of available first time domain units in each period is 3; if the first value is an effective value of 4, then the number of available first time domain units in each period The number is 4; if the first value is a valid value of 5, the number of available first time domain units in each cycle is 5.
  • Step 202A6 The UE determines the first time domain resource among the M available first time domain units according to the configuration information.
  • the foregoing first time domain resource may be part or all of the resources in the M available first time domain units.
  • the foregoing step 202A6 may specifically include: the UE determines the first time domain resource among the M available first time domain units in a target manner according to the configuration information.
  • the above-mentioned target mode may be the first mode, the second mode, or the third mode.
  • the foregoing first manner may be: each of the M available first time domain units has a mapping resource in the available first time domain unit as the first target resource.
  • the above-mentioned second manner may be: the first available mapping resource in the first available first time domain unit among the M available first time domain units is the first target resource, and the first available M available first time domain unit Other available mapping resources in the first time domain unit in a time domain unit are the second target resources.
  • the above-mentioned third manner may be: the first available mapping resource in the first available first time domain unit among the M available first time domain units is the first target resource, and the first available M available first time domain unit The last available mapping resource in the first time domain unit in a time domain unit is the third target resource, and the other available mapping resources in the first time domain unit in the M available first time domain units are the second target resources .
  • each available mapping resource in the first time domain unit may constitute a first time domain resource.
  • the foregoing first target resource may be a first resource, a second resource, or a third resource.
  • the foregoing second target resource may be a fourth resource or a fifth resource.
  • the aforementioned third target resource may be a sixth resource.
  • the aforementioned first resource may be: K consecutive second sub-mapping resources starting from the first starting position.
  • the number of second time domain units in each second sub-mapping resource may be a first number
  • K may be a value obtained by rounding down the ratio of the first difference to the first number
  • the first difference The value can be the difference between the length of the available first time domain unit and the first starting position
  • K is a positive integer.
  • the first value is a valid value and the length of the available first time domain unit is less than or equal to the period length
  • the first starting position is represented by S
  • the first number is represented by L
  • the second submap The number of resources is represented by K
  • the starting time of at least one channel mapped on the first available time domain unit can be [S, S+L-1], [S+L, S+2L-1],... ..., [S+(K-1)*L, S+K*L-1].
  • K floor ⁇ (F-S)/L ⁇
  • floor ⁇ is a round-down function
  • the starting position of the usable first time domain unit is T0
  • the first starting position S 1
  • the number of second sub-mapping resources can be:
  • the position T1 in the available first time domain unit can be the starting position of the first channel mapping.
  • the four consecutive second time domain units starting from the position T1 of the available first time domain unit may be the first second sub-mapping resource of the available first time domain unit, and the first second sub-mapping resource may be Used to map the first PUSCH.
  • the four consecutive second time domain units starting from the position T2 in the available first time domain unit may be the second second sub-mapping resource of the available first time domain unit, and the second second sub-mapping resource Can be used to map the second PUSCH.
  • the four consecutive second time domain units starting from position T3 in the available first time domain unit may be the third second sub-mapping resource of the available first time domain unit, and the third second sub-mapping resource Can be used to map the third PUSCH.
  • the aforementioned second resource may be: K consecutive second sub-mapping resources and one third sub-mapping resource starting from the first starting position.
  • the third sub-mapping resource may be a second time domain unit in the available first time domain unit except for the second time domain unit before the first start position and the second time domain unit in the K second sub-mapping resources. Time domain unit.
  • the third sub-mapping resource includes the last second time domain unit of the available first time domain unit.
  • the length of the third sub-mapping resource may be less than the length of one second sub-mapping resource.
  • the first value is a valid value and the length of the available first time domain unit is less than or equal to the period length
  • the first starting position is represented by S
  • the first number is represented by L
  • the second submap The number of resources is represented by K
  • the length of the available first time domain unit is represented by F.
  • the starting time of at least one channel mapped on the available first time domain unit is [S, S+L-1], [S +L, S+2L-1],..., [S+K*L, S+(K+1)*L-1], [S+(K+1)*L,F].
  • K floor ⁇ (F-S)/L ⁇ .
  • the second The number of sub-mapping resources can be:
  • the position T1 in the available first time domain unit can be the starting position of the first channel mapping.
  • the four consecutive second time domain units starting from the position T1 of the available first time domain unit may be the first second sub-mapping resource of the available first time domain unit, and the first second sub-mapping resource may be Used to map the first PUSCH.
  • the four consecutive second time domain units starting from the position T2 in the available first time domain unit may be the second second sub-mapping resource of the available first time domain unit, and the second second sub-mapping resource Can be used to map the second PUSCH.
  • the four consecutive second time domain units starting from position T3 in the available first time domain unit may be the third second sub-mapping resource of the available first time domain unit, and the third second sub-mapping resource Can be used to map the third PUSCH.
  • the last second time domain unit starting from position T4 in the first available time domain unit may be the third sub-mapping resource of the available first time domain unit, and the third sub-mapping resource may be used to map the fourth one PUSCH.
  • the aforementioned third resource may be: P consecutive second time domain units starting from the first starting position. Among them, P can be the first difference, and P is a positive integer.
  • the first value is a valid value and the length of the available first time domain unit is less than or equal to the period length
  • the first starting position is represented by S
  • the length of the first time domain unit can be represented by F
  • the start time of a channel mapped on the available first time domain unit can be [S, F].
  • the position T1 in the available first time domain unit can be the starting position of channel mapping. 10 consecutive second time domain units starting from the position T1 of the available first time domain unit (that is, starting from the position T1 of the available first time domain unit to the end position of the available first time domain unit) may be the third resource, The third resource can be used to map 1 PUSCH.
  • the foregoing fourth resource may be: consecutive Q second sub-mapping resources starting from the start position of the available first time domain unit.
  • Q may be a value obtained by rounding down the ratio of the length of the available first time domain unit to the first number, and Q is a positive integer.
  • the number of second sub-mapping resources can be:
  • the starting position T1 in the available first time domain unit can be the starting position of the first channel mapping.
  • the four consecutive second time domain units starting from the starting position T1 of the available first time domain unit may be the first second sub-mapping resource of the available first time domain unit, and the first second sub-mapping resource It can be used to map the first PUSCH.
  • the four consecutive second time domain units starting from the position T2 in the available first time domain unit may be the second second sub-mapping resource of the available first time domain unit, and the second second sub-mapping resource may be Used to map the second PUSCH.
  • the four consecutive second time domain units starting from the position T3 in the available first time domain unit may be the third second sub-mapping resource of the available first time domain unit, and the third second sub-mapping resource may be Used to map the third PUSCH.
  • the above-mentioned fifth resource may be: all the second time domain units in the first time domain unit are available.
  • the starting position of the available first time domain unit is T1
  • the 14 consecutive second time domain units starting from the starting position T1 of the available first time domain unit (that is, all the second time domain units in the first time domain unit can be used) can be the fifth resource, and the fifth resource can be Used to map 1 PUSCH.
  • the above-mentioned sixth resource may be: consecutive R second time domain units starting from the start position of the available first time domain unit.
  • R is the first number, and R is a positive integer.
  • the first value is a valid value and the length of the available first time domain unit is less than or equal to the period length
  • the first starting position is represented by S
  • the length of the available first time domain unit is represented by F
  • the first number is represented by L
  • the start time of a channel mapped on the available first time domain unit may be [0, L].
  • the two consecutive second time domain units starting from the starting position T1 of the available first time domain unit may be the sixth resource, and the sixth resource may be used to map one PUSCH.
  • Step 202A7 The UE maps the target channel to the first time domain resource.
  • each cycle may include M available first time domains Units, and each available first time domain unit can map channels in different ways, thereby improving the flexibility of time domain resource configuration.
  • the mapping resource in each available first time domain unit in the M available first time domain units is the first target resource (that is, the target mode is the first mode), and the first target resource is the first resource (that is, K consecutive second sub-mapping resources starting from the first starting position) are taken as an example for illustration.
  • each cycle includes 3 available first time domain units, and each available first time domain unit
  • the number of second sub-mapping resources in each available first time domain unit may be:
  • position T1 may be the start position of the first channel mapping in the first available first time domain unit.
  • the four consecutive second time domain units starting from position T1 may be the first second sub-mapping resource of the first available first time domain unit, and the first second sub-mapping resource may be used to map the first time domain unit.
  • the four consecutive second time domain units after the first second sub-mapping resource may be the second second sub-mapping resource of the first available first time-domain unit, and the second second sub-mapping resource
  • the resource can be used to map the second PUSCH of the first available first time domain unit.
  • the four consecutive second time domain units after the second second sub-mapping resource may be the third second sub-mapping resource of the first available first time-domain unit, and the third second sub-mapping resource
  • the resource can be used to map the third PUSCH of the first available first time domain unit.
  • position T2 may be the starting position of the first channel mapping in the second available first time domain unit.
  • the four consecutive second time domain units starting from position T2 may be the first second sub-mapping resource of the second available first time domain unit, and the first second sub-mapping resource may be used to map the first time domain unit.
  • the four consecutive second time domain units after the first second sub-mapping resource may be the second second sub-mapping resource of the second available first time-domain unit, and the second second sub-mapping resource
  • the resource can be used to map the second PUSCH of the second available first time domain unit.
  • the four consecutive second time domain units following the second second sub-mapping resource may be the third second sub-mapping resource of the second available first time-domain unit, and the third second sub-mapping resource
  • the resource can be used to map the third PUSCH of the second available first time domain unit.
  • position T3 may be the starting position of the first channel mapping in the third available first time domain unit.
  • the four consecutive second time domain units starting from position T3 may be the first second sub-mapping resource of the third available first time domain unit, and the first second sub-mapping resource may be used to map the first time domain unit.
  • the four consecutive second time domain units after the first second sub-mapping resource may be the second second sub-mapping resource of the third available first time-domain unit, and the second second sub-mapping resource
  • the resource can be used to map the second PUSCH of the third available first time domain unit.
  • the four consecutive second time domain units after the second second sub-mapping resource may be the third second sub-mapping resource of the third available first time-domain unit, and the third second sub-mapping resource
  • the resource can be used to map the third PUSCH of the third available first time domain unit.
  • the mapping resource in the first available first time domain unit among the M available first time domain units is taken as the first target resource, and the other available first time domain unit in the M available first time domain units
  • the mapping resource is the second target resource (that is, the target mode is the second mode)
  • the first target resource is the first resource (that is, K consecutive second sub-mapping resources starting from the first starting position)
  • the second target resource is
  • the fourth resource (the consecutive Q second sub-mapping resources starting from the start position of the available first time domain unit) is taken as an example for exemplifying description.
  • the number of second sub-mapping resources in the first available first time domain unit may be:
  • the number of second sub-mapping resources in the second available first time domain unit and the third available first time domain unit may be:
  • position T1 may be the starting position of the first channel mapping in the first available first time domain unit.
  • the two consecutive second time domain units starting from position T1 may be the first second sub-mapping resource of the first available first time domain unit, and the first second sub-mapping resource may be used to map the first time domain unit.
  • the two consecutive second time domain units following the first second sub-mapping resource may be the second second sub-mapping resource of the first available first time-domain unit, and the second second sub-mapping resource
  • the resource can be used to map the second PUSCH of the first available first time domain unit...
  • the last two second sub-mapping resources of the first available first time domain unit can be the first The fifth second sub-mapping resource of the first available first time domain unit, and the fifth second sub-mapping resource can be used to map the fifth PUSCH of the first available first time domain unit.
  • position T2 may be the starting position of the first channel mapping in the second available first time domain unit.
  • the two consecutive second time domain units starting from position T2 may be the first second sub-mapping resource of the second available first time domain unit, and the first second sub-mapping resource may be used to map the first time domain unit.
  • Two consecutive second time domain units after the first second sub-mapping resource may be the second second sub-mapping resource of the second available first time-domain unit, and the second second sub-mapping resource
  • the resource can be used to map the second PUSCH of the second available first time domain unit...
  • the last two second sub-mapping resources of the second available first time domain unit can be the second The seventh second sub-mapping resource of the first available first time domain unit, and the seventh second sub-mapping resource may be used to map the seventh PUSCH of the second available first time domain unit.
  • position T3 may be the starting position of the first channel mapping in the third available first time domain unit.
  • the two consecutive second time domain units starting from position T3 may be the first second sub-mapping resource of the third available first time domain unit, and the first second sub-mapping resource may be used to map the first time domain unit.
  • the two consecutive second time domain units after the first second sub-mapping resource may be the second second sub-mapping resource of the third available first time-domain unit, and the second second sub-mapping resource
  • the resource can be used to map the second PUSCH of the third available first time domain unit...
  • the last two second sub-mapping resources of the third available first time domain unit can be the third The seventh second sub-mapping resource of the first available first time domain unit, and the seventh second sub-mapping resource may be used to map the seventh PUSCH of the third available first time domain unit.
  • the mapping resource in each available first time domain unit in the M available first time domain units is the first target resource (that is, the target mode is the first mode), and the first target resource is the second resource (that is, K consecutive second sub-mapping resources and one third sub-mapping resource starting from the first starting position) are taken as an example to illustrate.
  • the number of second sub-mapping resources in each available first time domain unit may be:
  • position T1 may be the starting position of the first channel mapping in the first available first time domain unit.
  • the four consecutive second time domain units starting from position T1 may be the first second sub-mapping resource of the first available first time domain unit, and the first second sub-mapping resource may be used to map the first time domain unit.
  • the four consecutive second time domain units after the first second sub-mapping resource may be the second second sub-mapping resource of the first available first time-domain unit, and the second second sub-mapping resource
  • the resource can be used to map the second PUSCH of the first available first time domain unit.
  • the four consecutive second time domain units following the second second sub-mapping resource may be the third second sub-mapping resource of the first available first time-domain unit, and the third second sub-mapping resource
  • the resource can be used to map the third PUSCH of the first available first time domain unit.
  • the last second time domain unit of the first available first time domain unit may be the third sub-mapping resource of the first available first time domain unit, and the third sub-mapping resource may be used to map the first time domain unit. 1 available 4th PUSCH of the first time domain unit.
  • position T2 may be the starting position of the first channel mapping in the second available first time domain unit.
  • the four consecutive second time domain units starting from position T2 may be the first second sub-mapping resource of the second available first time domain unit, and the first second sub-mapping resource may be used to map the first time domain unit.
  • the 4 consecutive second time domain units after the first second sub-mapping resource may be the second second sub-mapping resource of the second available first time-domain unit, and the second second sub-mapping resource
  • the resource can be used to map the second PUSCH of the second available first time domain unit.
  • the four consecutive second time domain units following the second second sub-mapping resource may be the third second sub-mapping resource of the second available first time-domain unit, and the third second sub-mapping resource
  • the resource can be used to map the third PUSCH of the second available first time domain unit.
  • the last second time domain unit of the second available first time domain unit may be the third sub-mapping resource of the second available first time domain unit, and the third sub-mapping resource may be used to map the second time domain unit. 2 available 4th PUSCH of the first time domain unit.
  • position T3 may be the starting position of the first channel mapping in the third available first time domain unit.
  • the four consecutive second time domain units starting from position T3 may be the first second sub-mapping resource of the third available first time domain unit, and the first second sub-mapping resource may be used to map the first time domain unit.
  • the four consecutive second time domain units after the first second sub-mapping resource may be the second second sub-mapping resource of the third available first time-domain unit, and the second second sub-mapping resource
  • the resource can be used to map the second PUSCH of the third available first time domain unit.
  • the four consecutive second time domain units after the second second sub-mapping resource may be the third second sub-mapping resource of the third available first time-domain unit, and the third second sub-mapping resource
  • the resource can be used to map the third PUSCH of the third available first time domain unit.
  • the last second time domain unit of the third available first time domain unit may be the third sub-mapping resource of the third available first time domain unit, and the third sub-mapping resource may be used to map the first time domain unit. 3 available 4th PUSCH of the first time domain unit.
  • the mapping resource in the first available first time domain unit among the M available first time domain units is used as the first target resource
  • the last available first time domain unit among the M available first time domain units is The mapping resource of is the third target resource
  • the other available mapping resources in the first time domain unit of the M available first time domain units are the second target resources (that is, the target mode is the third mode)
  • the first target resource Is the third resource (P consecutive second time domain units starting from the first starting position)
  • the second target resource is the fifth resource (that is, all second time domain units in the first time domain unit can be used)
  • the third The target resource is the sixth resource (ie, R consecutive second time domain units starting from the start position of the available first time domain unit) as an example for exemplification.
  • each cycle includes 3 available first time domain units, and each available first time domain unit
  • position T1 may be the starting position of 1 channel mapping in the first available first time domain unit. 10 consecutive second time domain units starting from position T1 can be used to map 1 PUSCH of the first available first time domain unit.
  • position T2 may be the starting position of 1 channel mapping in the second available first time domain unit. 14 consecutive second time domain units starting from position T2 (that is, all second time domain units of the second available first time domain unit) can be used to map 1 PUSCH of the second available first time domain unit .
  • position T3 may be the starting position of 1 channel mapping in the third available first time domain unit. Two consecutive second time domain units starting from position T3 can be used to map 1 PUSCH of the third available first time domain unit.
  • an embodiment of the present disclosure provides a UE 1600.
  • the UE may include a processing module 1601.
  • the processing module 1601 may be configured to map the target channel to the first time domain resource according to the configuration information, the target channel may carry the first data, and the configuration information may include the first value.
  • the first value may be used to indicate the number of channels mapped in each period in the target time domain resource or the number of available first time domain units in each period, and the target time domain resource may be configured for the first data
  • the first time domain resource may be a resource in the target time domain resource.
  • the aforementioned configuration information may further include the period length, the first starting position, and the first number.
  • the first starting position may be the starting position of the first channel mapping in the first period
  • the first number may be the number of second time domain units occupied by one channel in each period.
  • the foregoing period length may be the length of each period in the target time domain resource.
  • the above configuration information may further include a first offset, and the first offset may be an offset of the target time domain resource.
  • the processing module 1601 may be specifically configured to map the target channel to the first time domain resource according to the configuration information in each cycle.
  • the number of channels mapped in each period may be 1.
  • the processing module 1601 may be specifically configured to determine the first time domain resource according to the configuration information in each cycle; and map the target channel to the first time domain resource.
  • the first time domain resource may be L consecutive second time domain units starting from the first starting position, L is the first number, and L is a positive integer.
  • the length of the usable first time domain unit is greater than the period length, and when the first value is a valid value, the number of channels mapped in each period is the first value.
  • the processing module 1601 may be specifically configured to determine the first time domain resource according to the configuration information in each cycle; and map the target channel to the first time domain resource.
  • the first time domain resource may be N consecutive first sub-mapping resources starting from the first starting position, the number of second time domain units in each first sub-mapping resource is the first number, and N is the first Numerical value.
  • the length of the available first time domain unit is less than or equal to the period length, and when the first value is a valid value, the number of available first time domain units in each period is the first Numerical value.
  • the processing module 1601 can be specifically used to determine M available first time domain units according to configuration information in each cycle, where M is the first value, and M is a positive integer; and according to the configuration information, in the M available Determine the first time domain resource in the first time domain unit; and map the target channel to the first time domain resource.
  • the processing module 1601 may be specifically configured to determine the first time domain resource among the M available first time domain units in the target mode according to the configuration information, and the target mode may be the first time domain unit.
  • Way, way two or way three wherein, the first manner may be: the mapping resource in each of the M available first time domain units is the first target resource.
  • the second way may be: the first available mapping resource in the first time domain unit in the M available first time domain units is the first target resource, and the other available available in the M available first time domain units The mapping resource in the first time domain unit is the second target resource.
  • the third manner may be: the first one of the M available first time domain units and the mapping resource in the first available first time domain unit is the first target resource, and the last one of the M available first time domain units
  • the available mapping resource in the first time domain unit is the third target resource
  • the other available mapping resources in the first time domain unit in the M available first time domain units are the second target resources.
  • Each available mapping resource in the first time domain unit may constitute a first time domain resource.
  • the first starting position is the starting position of the first channel mapping in each available first time domain unit, and the first number is the occupation of one channel in each available first time domain unit The number of second time domain units.
  • the first target resource may be the first resource, the second resource, or the third resource; the second target resource may be the fourth resource or the fifth resource; the third target resource may be the sixth resource.
  • the foregoing first resource may be: K consecutive second sub-mapping resources starting from the first starting position.
  • the number of second time domain units in each second sub-mapping resource can be a first number
  • K can be a value obtained by rounding down the ratio of the first difference to the first number
  • the first difference can be The difference between the length of the first time domain unit and the first starting position can be used, and K is a positive integer.
  • the foregoing second resource may be: K consecutive second sub-mapping resources and one third sub-mapping resource starting from the first starting position.
  • the third sub-mapping resource may be a second time-domain unit other than the second time-domain unit in the available first time-domain unit before the first starting position and the second time-domain unit in the K second sub-mapping resources.
  • the foregoing third resource may be: P consecutive second time domain units starting from the first starting position. P is the first difference, and P is a positive integer.
  • the foregoing fourth resource may be: consecutive Q second sub-mapping resources starting from the starting position of the available first time domain unit.
  • Q may be a value obtained by rounding down the ratio of the length of the available first time domain unit to the first number, and Q is a positive integer.
  • the above fifth resource may be: all the second time domain units in the first time domain unit are available.
  • the above-mentioned sixth resource may be: continuous R second time domain units starting from the start position of the available first time domain unit.
  • R can be the first number, and R is a positive integer.
  • the UE provided in the embodiment of the present disclosure may further include a receiving module 1602.
  • the receiving module 1602 may be configured to receive the configuration information sent by the access network device before the processing module 1601 maps the target channel to the first time domain resource according to the configuration information.
  • the UE provided in the embodiments of the present disclosure can implement the various processes implemented by the UE in the foregoing resource mapping method embodiments. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure provides a UE. Since the first value in the configuration information can be used to indicate the number of channels mapped in each period or the number of available first time domain units in each period, by configuring the first value, The number of channels mapped in each cycle or the number of available first time domain units in each cycle can be flexibly configured. Therefore, the UE provided in the embodiments of the present disclosure can flexibly configure the first time domain for mapping the target channel according to the configuration information. Resources, which can improve the flexibility of time domain resource configuration.
  • FIG. 17 is a schematic diagram of a hardware structure of a UE that implements various embodiments of the present disclosure.
  • UE 100 includes but is not limited to: radio frequency unit 101, network module 102, audio output unit 103, input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processing The device 110, and the power supply 111 and other components.
  • the UE structure shown in FIG. 17 does not constitute a limitation on the UE, and the UE may include more or less components than those shown in the figure, or combine certain components, or arrange different components.
  • UE includes, but is not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, wearable devices, pedometers, and the like.
  • the processor 110 may be configured to map the target channel to the first time domain resource according to configuration information, the target channel carries first data, and the configuration information may include the first value.
  • the first value may be used to indicate the number of channels mapped in each cycle in the target time domain resource or the number of available first time domain units in each cycle, and the target time domain resource may be configured for the first data
  • the first time domain resource may be a resource in the target time domain resource.
  • the embodiment of the present disclosure provides a UE. Since the first value in the configuration information can be used to indicate the number of channels mapped in each period or the number of available first time domain units in each period, by configuring the first value, The number of channels mapped in each cycle or the number of available first time domain units in each cycle can be flexibly configured. Therefore, the UE provided in the embodiments of the present disclosure can flexibly configure the first time domain for mapping the target channel according to the configuration information. Resources, which can improve the flexibility of time domain resource configuration.
  • the radio frequency unit 101 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 110; Uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through a wireless communication system.
  • the UE 100 provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 103 can convert the audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into audio signals and output them as sounds. Moreover, the audio output unit 103 may also provide audio output related to a specific function performed by the UE 100 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used to receive audio or video signals.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042.
  • the graphics processing unit 1041 is used to capture images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 106.
  • the image frame processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or sent via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in the case of a telephone call mode.
  • the UE 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1061 and/or when the UE 100 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of the mobile terminal (such as horizontal and vertical screen switching, related games , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 105 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the UE 100.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1071 or near the touch panel 1071. operating).
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 110, the command sent by the processor 110 is received and executed.
  • the touch panel 1071 can be realized by various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 1071 can be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it is transmitted to the processor 110 to determine the type of the touch event, and then the processor 110 according to The type of touch event provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to realize the input and output functions of the UE, but in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated. Realize the input and output functions of the UE, which are not specifically limited here.
  • the interface unit 108 is an interface for connecting an external device to the UE 100.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 may be used to receive input (such as data information, power, etc.) from an external device and transmit the received input to one or more elements in the UE 100 or may be used to transmit between the UE 100 and the external device data.
  • the memory 109 can be used to store software programs and various data.
  • the memory 109 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the UE. It uses various interfaces and lines to connect various parts of the entire UE. It executes by running or executing software programs and/or modules stored in the memory 109, and calling data stored in the memory 109. Various functions and processing data of the UE, so as to monitor the UE as a whole.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the UE 100 may also include a power source 111 (such as a battery) for supplying power to various components.
  • a power source 111 such as a battery
  • the power source 111 may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the UE 100 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a UE, including a processor 110 as shown in FIG. 17, a memory 109, a computer program stored in the memory 109 and capable of running on the processor 110, and the computer program is processed
  • a UE including a processor 110 as shown in FIG. 17, a memory 109, a computer program stored in the memory 109 and capable of running on the processor 110, and the computer program is processed
  • the device 110 executes, each process of the foregoing resource mapping method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by the processor 110 as shown in FIG. 17, each of the foregoing resource mapping method embodiments is implemented. Process, and can achieve the same technical effect, in order to avoid repetition, I will not repeat it here.
  • computer-readable storage media such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disks, or optical disks, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) )
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本公开实施例公开了一种资源映射方法及用户设备。该方法包括:根据配置信息,将目标信道映射至第一时域资源,该目标信道承载第一数据,该配置信息包括第一数值;其中,该第一数值用于指示目标时域资源中每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,该目标时域资源是为第一数据配置的资源,该第一时域资源为目标时域资源中的资源。

Description

资源映射方法及用户设备
本申请要求于2019年05月30日提交国家知识产权局、申请号为201910465673.7、申请名称为“一种资源映射方法及用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种资源映射方法及用户设备(user equipment,UE)。
背景技术
随着通信技术的快速发展,非授权频段(unlicensed band)作为授权频段(licensed band)的补充,可以提高频谱利用率。
目前,在新空口(new radio,NR)系统中,基于继续增强许可频谱辅助接入(further enhanced licensed assisted access,FeLAA)中自动上行接入(autonomous uplink access,AUL)的比特位图(bitmap),可以作为一种增强方案实现对非授权频段的自动上行传输(configured grant)的时域资源的配置。具体的,在自动上行接入的比特位图中,一个比特(bit)可以代表一个子帧或一个时间间隔。当一个比特代表一个子帧时,一个比特位图可以由40个比特构成,但是通常要求比特位图配置的周期(即时域资源的使用周期)需要整除40才能满足周期的配置,从而导致比特位图配置周期的灵活性较低。当一个比特代表一个时间间隔时,若不同子载波间隔对应的比特位图配置的周期相同,则在相同周期内,每个频段对应的比特数均为固定值,从而导致比特位图的比特数的灵活性较低。如此,导致时域资源配置的灵活性较低。
发明内容
本公开实施例提供一种资源映射方法及用户设备,以解决时域资源配置的灵活性较低的问题。
为了解决上述技术问题,本公开实施例是这样实现的:
第一方面,本公开实施例提供了一种资源映射方法。该方法可以应用于UE。该方法可以包括:根据配置信息,将目标信道映射至第一时域资源,该目标信道承载第一数据,该配置信息包括第一数值;其中,该第一数值用于指示目标时域资源中每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,该目标时域资源是为该第一数据配置的资源,该第一时域资源为该目标时域资源中的资源。
第二方面,本公开实施例提供了一种UE。该UE包括处理模块。处理模块,用于根据配置信息,将目标信道映射至第一时域资源,该目标信道承载第一数据,该配置信息包括第一数值;其中,该第一数值用于指示目标时域资源中每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,该目标时域资源是为该第一数据配置的资源,该第一时域资源为该目标时域资源中的资源。
第三方面,本公开实施例提供了一种UE,包括处理器、存储器及存储在该存储器上并可在该处理器上运行的计算机程序,该计算机程序被该处理器执行时实现上述第 一方面提供的资源映射方法的步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储计算机程序,该计算机程序被处理器执行时实现上述第一方面提供的资源映射方法的步骤。
在本公开实施例中,可以根据配置信息,将目标信道映射至第一时域资源,该目标信道承载第一数据,该配置信息包括第一数值;其中,该第一数值用于指示每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,该目标时域资源是为该第一数据配置的资源,该第一时域资源为该目标时域资源中的资源。通过该方案,由于配置信息中的第一数值可以用于指示每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此通过配置第一数值,可以灵活地配置每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此本公开实施例可以根据配置信息灵活配置用于映射目标信道的第一时域资源,从而可以提高时域资源配置的灵活性。
附图说明
图1为本公开实施例提供的一种通信系统的架构示意图;
图2为本公开实施例提供的一种资源映射方法的示意图之一;
图3为本公开实施例提供的一种资源映射方法的示意图之二;
图4为本公开实施例提供的一种将信道映射至时域资源的示意图之一;
图5为本公开实施例提供的一种将信道映射至时域资源的示意图之二;
图6为本公开实施例提供的一种将信道映射至时域资源的示意图之三;
图7为本公开实施例提供的一种将信道映射至时域资源的示意图之四;
图8为本公开实施例提供的一种将信道映射至时域资源的示意图之五;
图9为本公开实施例提供的一种将信道映射至时域资源的示意图之六;
图10为本公开实施例提供的一种将信道映射至时域资源的示意图之七;
图11为本公开实施例提供的一种将信道映射至时域资源的示意图之八;
图12为本公开实施例提供的一种将信道映射至时域资源的示意图之九;
图13为本公开实施例提供的一种将信道映射至时域资源的示意图之十;
图14为本公开实施例提供的一种将信道映射至时域资源的示意图之十一;
图15为本公开实施例提供的一种将信道映射至时域资源的示意图之十二;
图16为本公开实施例提供的UE的结构示意图;
图17为本公开实施例提供的UE的硬件示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本文中术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
本公开的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象, 而不是用于描述对象的特定顺序。例如,第一时域单元和第二时域单元等是用于区别不同的时域单元,而不是用于描述时域单元的特定顺序。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或者两个以上,例如,多个元件是指两个或者两个以上的元件等。
本公开实施例提供一种资源映射方法及用户设备,可以根据配置信息,将目标信道映射至第一时域资源,该目标信道承载第一数据,该配置信息包括第一数值;其中,该第一数值用于指示目标资源中每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,该目标时域资源是为该第一数据配置的资源,该第一时域资源为该目标时域资源中的资源。通过该方案,由于配置信息中的第一数值可以用于指示每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此通过配置第一数值,可以灵活地配置每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此本公开实施例可以根据配置信息灵活配置用于映射目标信道的第一时域资源,从而可以提高时域资源配置的灵活性。
本公开实施例提供的一种资源映射方法及用户设备,可以应用于通信系统中。具体可以应用于配置基于configured grant传输的时域资源的场景中。
如图1所示,为本公开实施例提供的一种通信系统的架构示意图。该通信系统可以包括UE 01和接入网设备02。其中,UE 01与接入网设备02之间可以建立连接。
需要说明的是,本公开实施例中,上述如图1所示的UE 01和接入网设备02之间可以是无线连接。
UE是一种向用户提供语音和/或数据连通性的设备,具有有线/无线连接功能的手持式设备,或连接到无线调制解调器的其他处理设备。UE可以经过无线接入网(radio access network,RAN)与一个或多个核心网设备进行通信。UE可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与RAN交换语言和/或数据,例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。UE也可以称为用户代理(user agent)或者终端设备等。
接入网设备是一种部署在RAN中用于为UE提供无线通信功能的设备。本公开实施例中,接入网设备可以为基站,且基站可以包括各种形式的宏基站、微基站、中继站、接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,在第五代移动通信(5-Generation,5G)系统中,可以称为5G基站(gNB);在第四代无线通信(4-Generation,4G)系统,如长期演进(long term evolution,LTE)系统中,可以称为演进型基站(evolved NodeB,eNB);在第三代移动通信(3-Generation,3G)系统中,可以称为基站(Node B)。随着通信技术的演进,“基站”这一名称可能会发生变化。
下面结合附图,通过具体的实施例及其应用场景对本公开实施例提供的资源映射方法及用户设备进行详细地说明。
基于如图1所示的通信系统,本公开实施例提供一种资源映射方法。如图2所示,该方法可以应用于用户设备UE,该方法包括下述的步骤201和步骤202。
步骤201、UE获取配置信息。
可选地,上述配置信息可以为网络侧设备配置的,或者为通信协议中预定义的,或者为UE配置的。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选地,在配置信息为网络设备配置的情况下,上述步骤201具体可以为:UE接收接入网设备发送的配置信息。
示例性的,如图3所示,在接入网设备配置了配置信息之后,接入网设备可以向UE发送无线资源控制(radio resource control,RRC)信令,该RRC信令中可以包括该配置信息。如此,UE接收该RRC信令,并从该RRC信令中获取该配置信息。
需要说明的是,上述示例是以接入网设备向UE发送包括配置信息的RRC信令为例进行示例性说明的,其并不对本公开实施例形成任何限定。可以理解,实际实现时,接入网设备可以向UE发送其他类型的信令或资源,该其他类型的信令或资源中可以包括配置信息,具体可以根据实际使用需求确定。
步骤202、UE根据该配置信息,将目标信道映射至第一时域资源,该目标信道承载第一数据,该配置信息包括第一数值。
其中,上述第一数值可以用于指示目标时域资源中每个周期(period,也可称为配置周期)内映射的信道数量或每个周期(即配置周期)内可用第一时域单元的数量。该目标时域资源可以是为第一数据配置的资源。第一时域资源可以为该目标时域资源中的资源。
可选地,上述配置信息还可以包括周期长度、第一起始位置和第一数量。
其中,上述周期长度可以为目标时域资源中每个周期(即配置周期)的长度。
上述第一起始位置可以为目标时域资源中第一个周期(即第一个配置周期)内第一个信道映射的起始位置。
上述第一数量可以为目标时域资源中每个周期(即配置周期)内一个信道占用的第二时域单元的数量。
需要说明的是,上述第一起始位置和第一数量可以统称为时域资源配置(SLIV)。
可选地,本公开实施例中,上述目标时域资源可以为非授权频谱的时域资源,也可以为授权频谱的时域资源。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选地,本公开实施例中,上述目标信道可以包括一个信道或多个信道。
可选地,本公开实施例中,上述目标信道可以为上行信道,例如物理上行共享信道(physical uplink shared channel,PUSCH)。当然,目标信道还可以为其他可能的信道,具体可以根据实际使用需求确定,本公开实施例不作限定。
可选地,本公开实施例中,在目标信道包括多个PUSCH的情况下,每个PUSCH具体可以为一个PUSCH资源块。
可选地,本公开实施例中,一个第二时域单元可以为一个符号(symbol)。
可选地,本公开实施例中,一个可用第一时域单元可以为一个时隙(slot)。
可选地,本公开实施例中,一个可用第一时域单元的长度可以大于一个第二时域单元 的长度。例如,一个可用第一时域单元的长度可以为一个时隙,该一个时隙包括4个、7个或14个符号;一个第二时域单元的长度为一个符号。
需要说明的是,本公开实施例下述图4至图15均是以一个可用第一时域单元的长度为14个符号为例进行示例性说明的。可以理解,其并不对本公开实施例形成限定。
可选地,本公开实施例中,上述配置信息还可以包括第一偏移量(offset),该第一偏移量可以为目标时域资源的偏移量。可以理解,通过配置第一偏移量,使得UE可以确定目标时域资源的起始位置(starting time)。
可选地,本公开实施例中,上述配置信息还可以包括第二数量,该第二数量可以为目标时域资源中的周期的数量,该第二数量可以为正整数。可以理解,通过配置第二数量,使得UE可以确定周期重复传输的次数。
可选地,本公开实施例中,上述第一数值可以为大于或等于0的整数,且第一数值可以小于或等于第二数值。该第二数值可以为每个周期包括的可用第一时域单元的数量。
可选地,本公开实施例中,上述第一数值可以为无效数值或有效数值。其中,该无效数值可以为0或+∞,该有效数值可以为1、2、3、4或其他可能的正整数等。
可选地,在第一数值为无效数值的情况下,每个周期内映射的信道数量可以为1。
具体的,在第一数值为无效数值,且可用第一时域单元的长度大于周期长度的情况下,每个周期内映射的信道数量为1;在第一数值为无效数值,且可用第一时域单元的长度小于或等于周期长度的情况下,每个周期内映射的信道数量为1。
示例性的,假设第一数值为0,可用第一时域单元的长度为14个符号长度,周期长度为7个符号长度。由于第一数值为无效数值,那么每个周期内映射的信道数量为1个。
示例性的,假设第一数值为0,可用第一时域单元的长度为7个符号长度,周期长度为14个符号长度。由于第一数值为无效数值,那么每个周期内映射的信道数量为1个。
可选地,在第一数值为有效数值的情况下,每个周期内映射的信道数量或每个周期内可用第一时域单元的数量可以为第一数值。
具体的,在第一数值为有效数值,且可用第一时域单元的长度大于周期长度的情况下,每个周期内映射的信道数量为第一数值;在第一数值为有效数值,且可用第一时域单元的长度小于或等于周期长度的情况下,每个周期内可用第一时域单元的数量为第一数值。
示例性的,假设第一数值为2,可用第一时域单元的长度为14个符号长度,周期长度为7个符号长度。由于第一数值为有效数值,且可用第一时域单元的长度大于周期长度,因此每个周期内映射的信道数量可以为2个。
示例性的,假设第一数值为2,可用第一时域单元的长度为7个符号长度,周期长度为14个符号长度。由于第一数值为有效数值,且可用第一时域单元的长度小于周期长度,因此每个周期内可用第一时域单元的数量为2个。
本公开实施例提供一种资源映射方法,由于配置信息中的第一数值可以用于指示每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此通过设置第一数值,可以灵活地配置每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此本公开实施例可以根据配置信息灵活配置用于映射目标信道的第一时域资源,从而可以提高时域资源配置的灵活性。
可选地,本公开实施例中,上述步骤202具体可以通过下述的步骤202A实现。
步骤202A、在每个周期内,UE根据配置信息,将目标信道映射至第一时域资源。
本公开实施例中,在根据第一偏移量确定目标时域资源的起始位置之后,UE可以确定每个周期的第一时域资源,并将目标信道映射至每个周期的第一时域资源。
具体的,上述步骤202A可以通过下述的(1)-(3)中任一项实现:
(1)在第一数值为无效数值的情况下,每个周期内映射的信道数量为1。相应的,上述步骤202A具体可以通过下述的步骤202A1和步骤202A2实现。
步骤202A1、在每个周期内,UE根据配置信息,确定第一时域资源。
步骤202A2、UE将目标信道映射至第一时域资源。
其中,上述第一时域资源可以为从第一起始位置开始的连续L个第二时域单元。L为第一数量,L为正整数。
需要说明的是,对于上述步骤202A1和步骤202A2,具体可以参照NR Rell5中关于时域资源的配置相关描述,此处不予赘述。
示例性的,在第一数值为无效数值(例如N=0)的情况下,假设第一起始位置用S表示,第一数量用L表示,则在每个周期内,映射的一个信道的起始时间可以为[S,S+L-1]。
如图4所示,以第一数值N=0,周期长度X=7,第一起始位置S=0,第一数量L=2为例进行示例性说明。由于第一数值N=0为无效数值,因此每个周期内映射的信道数量可以为1个。又由于第一起始位置S=0,因此每个周期内的起始位置为每个周期内的一个信道映射的起始位置。从第一个周期的起始位置T1开始的连续2个第二时域单元为第一个周期的第一时域资源,从第二个周期的起始位置T2开始的连续2个第二时域单元为第二个周期的第一时域资源,从第三个周期的起始位置位置T3开始的连续2个第二时域单元为第三个周期的第一时域资源,从第四个周期的起始位置T4开始的连续2个第二时域单元为第四个周期的第一时域资源……以此类推,针对每个周期的第一时域资源,均可以映射一个PUSCH。
本公开实施例提供的资源映射方法,在第一数值为无效数值的情况下,可以将每个周期内映射的信道数量配置为1,从而每个周期均可以映射一个信道。
(2)在第一数值为有效数值,且可用第一时域单元的长度大于周期长度的情况下,每个周期内映射的信道数量为第一数值。相应的,上述步骤202A具体可以通过下述的步骤202A3和步骤202A4实现。
步骤202A3、在每个周期内,UE根据配置信息,确定第一时域资源。
步骤202A4、UE将目标信道映射至第一时域资源。
其中,上述第一时域资源可以为从第一起始位置开始的连续N第一子映射资源。该N个第一子映射资源中每个第一子映射资源中的第二时域单元的数量为第一数量,N为第一数值。
可选地,目标信道可以包括多个子信道,每个子信道可以映射至一个第一子映射资源。
示例性的,在第一数值为有效数值,且可用第一时域单元的长度大于周期长度的情况下,假设第一数值用N表示,第一起始位置用S表示,第一数量用L表示,则在每个周期内,映射的至少一个信道的起始时间可以为[S,S+L-1],[S+L,S+2L-1],……,[S+(N-1)*L,S+N*L-1]。
其中,N≤floor{X/L},floor{}为向下取整函数。
如图5所示,以第一数值N=2,周期长度X=7,第一起始位置S=0,第一数量L=2为例进行示例性说明。由于第一数值N=2为有效数值,因此每个周期内映射的信道数量为2。又由于第一起始位置S=0,因此每个周期内的起始位置为每个周期内的第一个信道映射的起始位置。从第一个周期的起始位置T1开始的连续2个第二时域单元为第一个周期的第一个第一子映射资源,从第一个周期的第一个第一子映射资源后开始的连续2个第二时域单元为第一个周期的第二个第一子映射资源;从第二个周期的起始位置T2开始的连续2个第二时域单元为第二个周期的第一个第一子映射资源,从第二个周期的第一个第一子映射资源后开始的连续2个第二时域单元为第二个周期的第二个第一子映射资源;从第三个周期的起始位置T3开始的连续2个第二时域单元为第三个周期的第一个第一子映射资源,从第三个周期的第一个第一子映射资源后开始的连续2个第二时域单元为第三个周期的第二个第一子映射资源;从第四个周期的起始位置T4开始的连续2个第二时域单元为第四个周期的第一个第一子映射资源,从第四个周期的第一个第一子映射资源后开始的连续2个第二时域单元为第四个周期的第二个第一子映射资源……以此类推,在UE确定每个周期内的2个第一子映射资源之后,针对每个周期的每个第一子映射资源,均可以映射一个PUSCH。
本公开实施例提供的资源映射方法,可以在第一数值为有效数值,且可用第一时域单元的长度大于周期长度的情况下,将每个周期内映射的信道数量配置为第一数值,从而每个周期均可以映射第一数值个信道。
(3)在第一数值为有效数值,且可用第一时域单元的长度小于或等于周期长度的情况下,每个周期内可用第一时域单元的数量可以为第一数值。相应的,上述步骤202A具体可以通过下述的步骤202A5、步骤202A6和步骤202A7实现。
步骤202A5、在每个周期内,UE根据配置信息,确定M个可用第一时域单元。
其中,M为第一数值,M为正整数。
示例性的,若第一数值为有效数值3,则每个周期内可用第一时域单元的数量为3;若第一数值为有效数值4,则每个周期内可用第一时域单元的数量为4;若第一数值为有效数值5,则每个周期内可用第一时域单元的数量为5。
步骤202A6、UE根据该配置信息,在M个可用第一时域单元中确定第一时域资源。
可选地,上述第一时域资源可以为M个可用第一时域单元中的部分或全部资源。
可选地,上述步骤202A6具体可以包括:UE根据配置信息,采用目标方式,在M个可用第一时域单元中确定第一时域资源。
其中,上述目标方式可以为第一方式、第二方式或第三方式。
可选地,本公开实施例中,上述第一方式可以为:M个可用第一时域单元中的每个可用第一时域单元中的映射资源为第一目标资源。
可选地,本公开实施例中,上述第二方式可以为:M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,M个可用第一时域单元中的其它可用第一时域单元中的映射资源为第二目标资源。
可选地,本公开实施例中,上述第三方式可以为:M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,M个可用第一时域单元中的最后一个可用第一时域单元中的映射资源为第三目标资源,M个可用第一时域单元中的其它可用第一 时域单元中的映射资源为第二目标资源。
需要说明的是,对于上述三种方式中的任意一种方式,每个可用第一时域单元中的映射资源可以组成第一时域资源。
可选地,上述第一目标资源可以为第一资源、第二资源或第三资源。
可选地,上述第二目标资源可以为第四资源或第五资源。
可选地,上述第三目标资源可以为第六资源。
(a)上述第一资源可以为:从第一起始位置开始的连续K个第二子映射资源。其中,每个第二子映射资源中的第二时域单元的数量可以为第一数量,K可以为对第一差值与第一数量的比值向下取整得到的数值,该第一差值可以为可用第一时域单元的长度与第一起始位置的差值,K为正整数。
示例性的,在第一数值为有效数值,且可用第一时域单元的长度小于或等于周期长度的情况下,假设第一起始位置用S表示,第一数量用L表示,第二子映射资源的数量用K表示,则在可用第一时域单元上映射的至少一个信道的起始时间可以为[S,S+L-1],[S+L,S+2L-1],……,[S+(K-1)*L,S+K*L-1]。
其中,K=floor{(F-S)/L},floor{}为向下取整函数。
如图6所示,以可用第一时域单元的起始位置为T0,可用第一时域单元的长度F=14,第一起始位置S=1,第一数量L=4为例进行示例性说明,第二子映射资源的数量可以为:
K=floor{(F-S)/L}=floor{(14-1)/4}=3。
由于第一起始位置S=1,因此可用第一时域单元中的位置T1可以为第1个信道映射的起始位置。从该可用第一时域单元的位置T1开始的连续4个第二时域单元可以为该可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射第1个PUSCH。从该可用第一时域单元中的位置T2开始的连续4个第二时域单元可以为该可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射第2个PUSCH。从该可用第一时域单元中的位置T3开始的连续4个第二时域单元可以为该可用第一时域单元的第3个第二子映射资源,该第3个第二子映射资源可以用于映射第3个PUSCH。
(b)上述第二资源可以为:从第一起始位置开始的连续K个第二子映射资源和一个第三子映射资源。其中,该第三子映射资源可以为可用第一时域单元内除第一起始位置之前的第二时域单元和该K个第二子映射资源中的第二时域单元之外的第二时域单元。
可以理解,第三子映射资源包括可用第一时域单元的最后一个第二时域单元。
本公开实施例中,第三子映射资源的长度可以小于一个第二子映射资源的长度。
示例性的,在第一数值为有效数值,且可用第一时域单元的长度小于或等于周期长度的情况下,假设第一起始位置用S表示,第一数量用L表示,第二子映射资源的数量用K表示,可用第一时域单元的长度用F表示,则在可用第一时域单元上映射的至少一个信道的起始时间为[S,S+L-1],[S+L,S+2L-1],……,[S+K*L,S+(K+1)*L-1],[S+(K+1)*L,F]。
其中,K=floor{(F-S)/L}。
如图7所示,假设可用第一时域单元的起始位置为T0,可用第一时域单元的长度F=14,第一起始位置S=1,第一数量L=4,那么第二子映射资源的数量可以为:
K=floor{(F-S)/L}=floor{(14-1)/4}=3。
由于第一起始位置S=1,因此可用第一时域单元中的位置T1可以为第1个信道映射的起始位置。从该可用第一时域单元的位置T1开始的连续4个第二时域单元可以为该可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射第1个PUSCH。从该可用第一时域单元中的位置T2开始的连续4个第二时域单元可以为该可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射第2个PUSCH。从该可用第一时域单元中的位置T3开始的连续4个第二时域单元可以为该可用第一时域单元的第3个第二子映射资源,该第3个第二子映射资源可以用于映射第3个PUSCH。从可用第一时域单元中的位置T4开始的最后1个第二时域单元可以为该可用第一时域单元的第三子映射资源,该第三子映射资源可以用于映射第4个PUSCH。
(c)上述第三资源可以为:从第一起始位置开始的连续P个第二时域单元。其中,P可以为第一差值,P为正整数。
示例性的,在第一数值为有效数值,且可用第一时域单元的长度小于或等于周期长度的情况下,假设第一起始位置用S表示,可用第一时域单元的长度用F表示,则在可用第一时域单元上映射的一个信道的起始时间可以为[S,F]。
如图8所示,假设可用第一时域单元的起始位置为T0,可用第一时域单元的长度F=14,第一起始位置S=4,那么第一差值:P=F-S=10。由于第一起始位置S=4,因此可用第一时域单元中的位置T1可以为信道映射的起始位置。从可用第一时域单元的位置T1开始的连续10个第二时域单元(即从可用第一时域单元的位置T1开始至可用第一时域单元的结束位置)可以为第三资源,该第三资源可以用于映射1个PUSCH。
(d)上述第四资源可以为:从可用第一时域单元的起始位置开始的连续Q个第二子映射资源。其中,Q可以为对可用第一时域单元的长度与第一数量的比值向下取整得到的数值,Q为正整数。
示例性的,如图9所示,假设可用第一时域单元的起始位置为T1,可用第一时域单元的长度F=14,第一起始位置S=0,第一数量L=4,那么第二子映射资源的数量可以为:
Q=floor{F/L}=floor{14/4}=3。
如图9所示,由于第一起始位置S=0,因此可用第一时域单元中的起始位置T1可以为第1个信道映射的起始位置。从可用第一时域单元的起始位置T1开始的连续4个第二时域单元可以为该可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射第1个PUSCH。从可用第一时域单元中的位置T2开始的连续4个第二时域单元可以为该可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射第2个PUSCH。从可用第一时域单元中的位置T3开始的连续4个第二时域单元可以为该可用第一时域单元的第3个第二子映射资源,该第3个第二子映射资源可以用于映射第3个PUSCH。
(e)上述第五资源可以为:可用第一时域单元中的所有第二时域单元。
示例性的,如图10所示,假设可用第一时域单元的起始位置为T1,可用第一时域单元的长度F=14。从可用第一时域单元的起始位置T1开始的连续14个第二时域单元(即可用第一时域单元中的所有第二时域单元)可以为第五资源,该第五资源可以用于映射1个PUSCH。
(f)上述第六资源可以为:从可用第一时域单元的起始位置开始的连续R个第二时域单元。R为第一数量,R为正整数。
示例性的,在第一数值为有效数值,且可用第一时域单元的长度小于或等于周期长度的情况下,假设第一起始位置用S表示,可用第一时域单元的长度用F表示,第一数量用L表示,则在可用第一时域单元上映射的一个信道的起始时间可以为[0,L]。
如图11所示,以可用第一时域单元的长度F=14,第一起始位置S=0,第一数量L=2为例进行示例性说明。从可用第一时域单元的起始位置T1开始的连续2个第二时域单元可以为第六资源,该第六资源可以用于映射1个PUSCH。
步骤202A7、UE将目标信道映射至该第一时域资源。
本公开实施例提供的资源映射方法,可以在第一数值为有效数值,且可用第一时域单元的长度小于或等于周期长度的情况下,每个周期内可以包括M个可用第一时域单元,且每个可用第一时域单元映射信道的方式各不相同,从而提高了时域资源配置的灵活性。
为了更清楚地理解本公开实施例提供的资源映射方法,以下提供几种采用目标方式将目标信道映射至第一时域资源的示例。
示例一
下面以M个可用第一时域单元中的每个可用第一时域单元中的映射资源为第一目标资源(即目标方式为第一方式),且第一目标资源为第一资源(即从第一起始位置开始的连续K个第二子映射资源)为例进行示例性地说明。
示例性的,如图12所示,假设N=3,F=14,S=1,L=4,即每个周期包括3个可用第一时域单元,每个可用第一时域单元的长度F=14,每个可用第一时域单元内一个信道占用的第二时域单元的数量(即第一数量)为4。
每个可用第一时域单元中的第二子映射资源的数量可以为:
K=floor{(F-S)/L}=floor{(14-1)/4}=3。
对于第1个可用第一时域单元:位置T1可以为该第1个可用第一时域单元中的第1个信道映射的起始位置。从位置T1开始的连续4个第二时域单元可以为该第1个可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射该第1个可用第一时域单元的第1个PUSCH。从该第1个第二子映射资源后的连续4个第二时域单元可以为该第1个可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射该第1个可用第一时域单元的第2个PUSCH。从该第2个第二子映射资源后的连续4个第二时域单元可以为该第1个可用第一时域单元的第3个第二子映射资源,该第3个第二子映射资源可以用于映射该第1个可用第一时域单元的第3个PUSCH。
对于第2个可用第一时域单元:位置T2可以为该第2个可用第一时域单元中的第1个信道映射的起始位置。从位置T2开始的连续4个第二时域单元可以为该第2个可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射该第2个可用第一时域单元的第1个PUSCH。从该第1个第二子映射资源后的连续4个第二时域单元可以为该第2个可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射该第2个可用第一时域单元的第2个PUSCH。从该第2个第二子映射资源后的连续4个第二时域单元可以为该第2个可用第一时域单元的第3个第二子映射资源,该第3个第二子映射资源可以用于映射该第2个可用第一时域单元的第3个PUSCH。
对于第3个可用第一时域单元:位置T3可以为该第3个可用第一时域单元中的第1个信道映射的起始位置。从位置T3开始的连续4个第二时域单元可以为该第3个可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射该第3个可用第一时域单元的第1个PUSCH。从该第1个第二子映射资源后的连续4个第二时域单元可以为该第3个可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射该第3个可用第一时域单元的第2个PUSCH。从该第2个第二子映射资源后的连续4个第二时域单元可以为该第3个可用第一时域单元的第3个第二子映射资源,该第3个第二子映射资源可以用于映射该第3个可用第一时域单元的第3个PUSCH。
示例二
下面以M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,M个可用第一时域单元中的其它可用第一时域单元中的映射资源为第二目标资源(即目标方式为第二方式),且第一目标资源为第一资源(即从第一起始位置开始的连续K个第二子映射资源),第二目标资源为第四资源(从可用第一时域单元的起始位置开始的连续Q个第二子映射资源)为例进行示例性地说明。
示例性的,如图13所示,假设N=3,F=14,S=4,L=2,即每个周期包括3个可用第一时域单元,每个可用第一时域单元的长度F=14,每个可用第一时域单元内一个信道占用的第二时域单元的数量(即第一数量)为2。
第一个可用第一时域单元中的第二子映射资源的数量可以为:
K1=floor{(F-S)/L}=floor{(14-4)/2}=5。
第二个可用第一时域单元、第三个可用第一时域单元中的第二子映射资源的数量可以为:
K2=floor{F/L}=floor{14/2}=7。
对于第1个可用第一时域单元:位置T1可以为第1个可用第一时域单元中的第1个信道映射的起始位置。从位置T1开始的连续2个第二时域单元可以为该第1个可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射该第1个可用第一时域单元的第1个PUSCH。从该第1个第二子映射资源后的连续2个第二时域单元可以为该第1个可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射该第1个可用第一时域单元的第2个PUSCH……以此类推,该第1个可用第一时域单元的最后2个第二子映射资源可以为该第1个可用第一时域单元的第5个第二子映射资源,该第5个第二子映射资源可以用于映射该第1个可用第一时域单元的第5个PUSCH。
对于第2个可用第一时域单元:位置T2可以为第2个可用第一时域单元中的第1个信道映射的起始位置。从位置T2开始的连续2个第二时域单元可以为该第2个可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射该第2个可用第一时域单元的第1个PUSCH。从该第1个第二子映射资源后的连续2个第二时域单元可以为该第2个可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射该第2个可用第一时域单元的第2个PUSCH……以此类推,该第2个可用第一时域单元的最后2个第二子映射资源可以为该第2个可用第一时域单元的第7个第二子映射资源,该第7个第二子映射资源可以用于映射该第2个可用第一时域单元的第7个PUSCH。
对于第3个可用第一时域单元:位置T3可以为第3个可用第一时域单元中的第1个 信道映射的起始位置。从位置T3开始的连续2个第二时域单元可以为该第3个可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射该第3个可用第一时域单元的第1个PUSCH。从该第1个第二子映射资源后的连续2个第二时域单元可以为该第3个可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射该第3个可用第一时域单元的第2个PUSCH……以此类推,该第3个可用第一时域单元的最后2个第二子映射资源可以为该第3个可用第一时域单元的第7个第二子映射资源,该第7个第二子映射资源可以用于映射该第3个可用第一时域单元的第7个PUSCH。
示例三
下面以M个可用第一时域单元中的每个可用第一时域单元中的映射资源为第一目标资源(即目标方式为第一方式),且第一目标资源为第二资源(即从第一起始位置开始的连续K个第二子映射资源和一个第三子映射资源)为例进行示例性地说明。
示例性的,如图14所示,假设N=3,F=14,S=1,L=4,即每个周期包括3个可用第一时域单元,每个可用第一时域单元的长度F=14,可用第一时域单元内一个信道占用的第二时域单元的数量(即第一数量)为4。
每个可用第一时域单元中的第二子映射资源的数量可以为:
K=floor{(F-S)/L}=floor{(14-1)/4}=3。
对于第1个可用第一时域单元:位置T1可以为第1个可用第一时域单元中的第1个信道映射的起始位置。从位置T1开始的连续4个第二时域单元可以为该第1个可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射该第1个可用第一时域单元的第1个PUSCH。从该第1个第二子映射资源后的连续4个第二时域单元可以为该第1个可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射该第1个可用第一时域单元的第2个PUSCH。从该第2个第二子映射资源后的连续4个第二时域单元可以为该第1个可用第一时域单元的第3个第二子映射资源,该第3个第二子映射资源可以用于映射该第1个可用第一时域单元的第3个PUSCH。该第1个可用第一时域单元的最后1个第二时域单元可以为该第1个可用第一时域单元的第三子映射资源,该第三子映射资源可以用于映射该第1个可用第一时域单元的第4个PUSCH。
对于第2个可用第一时域单元:位置T2可以为第2个可用第一时域单元中的第1个信道映射的起始位置。从位置T2开始的连续4个第二时域单元可以为该第2个可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射该第2个可用第一时域单元的第1个PUSCH。从该第1个第二子映射资源后的连续4个第二时域单元可以为该第2个可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射该第2个可用第一时域单元的第2个PUSCH。从该第2个第二子映射资源后的连续4个第二时域单元可以为该第2个可用第一时域单元的第3个第二子映射资源,该第3个第二子映射资源可以用于映射该第2个可用第一时域单元的第3个PUSCH。该第2个可用第一时域单元的最后1个第二时域单元可以为该第2个可用第一时域单元的第三子映射资源,该第三子映射资源可以用于映射该第2个可用第一时域单元的第4个PUSCH。
对于第3个可用第一时域单元:位置T3可以为第3个可用第一时域单元中的第1个信道映射的起始位置。从位置T3开始的连续4个第二时域单元可以为该第3个可用第一时域单元的第1个第二子映射资源,该第1个第二子映射资源可以用于映射该第3个可用 第一时域单元的第1个PUSCH。从该第1个第二子映射资源后的连续4个第二时域单元可以为该第3个可用第一时域单元的第2个第二子映射资源,该第2个第二子映射资源可以用于映射该第3个可用第一时域单元的第2个PUSCH。从该第2个第二子映射资源后的连续4个第二时域单元可以为该第3个可用第一时域单元的第3个第二子映射资源,该第3个第二子映射资源可以用于映射该第3个可用第一时域单元的第3个PUSCH。该第3个可用第一时域单元的最后1个第二时域单元可以为该第3个可用第一时域单元的第三子映射资源,该第三子映射资源可以用于映射该第3个可用第一时域单元的第4个PUSCH。
示例四
下面以M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,M个可用第一时域单元中的最后一个可用第一时域单元中的映射资源为第三目标资源,M个可用第一时域单元中的其它可用第一时域单元中的映射资源为第二目标资源(即目标方式为第三方式),且第一目标资源为第三资源(从第一起始位置开始的连续P个第二时域单元),第二目标资源为第五资源(即可用第一时域单元中的所有第二时域单元),第三目标资源为第六资源(即从可用第一时域单元的起始位置开始的连续R个第二时域单元)为例进行示例性地说明。
示例性的,如图15所示,假设N=3,F=14,S=4,L=2,即每个周期包括3个可用第一时域单元,每个可用第一时域单元的长度F=14,第三个可用第一时域单元中一个信道占用的第二时域单元的数量(即第一数量)为2。
对于第1个可用第一时域单元:位置T1可以为第1个可用第一时域单元中的1个信道映射的起始位置。从位置T1开始的连续10个第二时域单元可以用于映射该第1个可用第一时域单元的1个PUSCH。
对于第2个可用第一时域单元:位置T2可以为第2个可用第一时域单元中的1个信道映射的起始位置。从位置T2开始的连续14个第二时域单元(即第2个可用第一时域单元的所有第二时域单元)可以用于映射该第2个可用第一时域单元的1个PUSCH。
对于第3个可用第一时域单元:位置T3可以为第3个可用第一时域单元中的1个信道映射的起始位置。从位置T3开始的连续2个第二时域单元可以用于映射该第3个可用第一时域单元的1个PUSCH。
如图16所示,本公开实施例提供一种UE 1600。该UE可以包括处理模块1601。处理模块1601,可以用于根据配置信息,将目标信道映射至第一时域资源,该目标信道可以承载第一数据,该配置信息可以包括第一数值。其中,该第一数值可以用于指示目标时域资源中每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,该目标时域资源可以是为该第一数据配置的资源,该第一时域资源可以为该目标时域资源中的资源。
可选地,本公开实施例中,上述配置信息还可以包括周期长度、第一起始位置和第一数量。其中,该第一起始位置可以为第一个周期内第一个信道映射的起始位置,该第一数量可以为每个周期内一个信道占用的第二时域单元的数量。
可选地,本公开实施例中,上述周期长度可以为目标时域资源中每个周期的长度。
可选地,本公开实施例中,上述配置信息还可以包括第一偏移量,该第一偏移量可以为目标时域资源的偏移量。
可选地,本公开实施例中,处理模块1601,具体可以用于在每个周期内,根据配置信 息,将目标信道映射至第一时域资源。
可选地,本公开实施例中,在第一数值为无效数值的情况下,每个周期内映射的信道数量可以为1。处理模块1601,具体可以用于在每个周期内,根据配置信息,确定第一时域资源;并将目标信道映射至该第一时域资源。其中,该第一时域资源可以为从第一起始位置开始的连续L个第二时域单元,L为第一数量,L为正整数。
可选地,本公开实施例中,可用第一时域单元的长度大于周期长度,在第一数值为有效数值的情况下,每个周期内映射的信道数量为第一数值。处理模块1601,具体可以用于在每个周期内,根据配置信息,确定第一时域资源;并将目标信道映射至该第一时域资源。其中,第一时域资源可以为从第一起始位置开始的连续N个第一子映射资源,每个第一子映射资源中的第二时域单元的数量为第一数量,N为第一数值。
可选地,本公开实施例中,可用第一时域单元的长度小于或等于周期长度,在第一数值为有效数值的情况下,每个周期内可用第一时域单元的数量为第一数值。处理模块1601,具体可以用于在每个周期内,根据配置信息,确定M个可用第一时域单元,M为第一数值,M为正整数;并根据该配置信息,在该M个可用第一时域单元中确定第一时域资源;以及将目标信道映射至该第一时域资源。
可选地,本公开实施例中,处理模块1601,具体可以用于根据配置信息,采用目标方式,在M个可用第一时域单元中确定第一时域资源,该目标方式可以为第一方式、第二方式或第三方式。其中,该第一方式可以为:该M个可用第一时域单元中的每个可用第一时域单元中的映射资源为第一目标资源。该第二方式可以为:该M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,该M个可用第一时域单元中的其它可用第一时域单元中的映射资源为第二目标资源。该第三方式可以为:该M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,该M个可用第一时域单元中的最后一个可用第一时域单元中的映射资源为第三目标资源,该M个可用第一时域单元中的其它可用第一时域单元中的映射资源为第二目标资源。每个可用第一时域单元中的映射资源可以组成第一时域资源。
可选地,本公开实施例中,第一起始位置为每个可用第一时域单元内第一个信道映射的起始位置,第一数量为每个可用第一时域单元内一个信道占用的第二时域单元的数量。第一目标资源可以为第一资源、第二资源或第三资源;第二目标资源可以为第四资源或第五资源;第三目标资源可以为第六资源。
上述第一资源可以为:从第一起始位置开始的连续K个第二子映射资源。每个第二子映射资源中的第二时域单元的数量可以为第一数量,K可以为对第一差值与第一数量的比值向下取整得到的数值,第一差值可以为可用第一时域单元的长度与第一起始位置的差值,K为正整数。
上述第二资源可以为:从第一起始位置开始的连续K个第二子映射资源和一个第三子映射资源。第三子映射资源可以为可用第一时域单元内除第一起始位置之前的第二时域单元和K个第二子映射资源中的第二时域单元之外的第二时域单元。
上述第三资源可以为:从第一起始位置开始的连续P个第二时域单元。P为第一差值,P为正整数。
上述第四资源可以为:从可用第一时域单元的起始位置开始的连续Q个第二子映射资 源。Q可以为对可用第一时域单元的长度与第一数量的比值向下取整得到的数值,Q为正整数。
上述第五资源可以为:可用第一时域单元中的所有第二时域单元。
上述第六资源可以为:从可用第一时域单元的起始位置开始的连续R个第二时域单元。R可以为第一数量,R为正整数。
可选地,如图16所示,本公开实施例提供的UE还可以包括接收模块1602。接收模块1602,可以用于在处理模块1601根据配置信息,将目标信道映射至第一时域资源之前,接收接入网设备发送的该配置信息。
本公开实施例提供的UE能够实现上述资源映射方法实施例中UE实现的各个过程,为避免重复,这里不再赘述。
本公开实施例提供一种UE,由于配置信息中的第一数值可以用于指示每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此通过配置第一数值,可以灵活地配置每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此本公开实施例提供的UE可以根据配置信息灵活配置用于映射目标信道的第一时域资源,从而可以提高时域资源配置的灵活性。
图17为实现本公开各个实施例的一种UE的硬件结构示意图。如图17所示,UE 100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图17中示出的UE结构并不构成对UE的限定,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,UE包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、可穿戴设备以及计步器等。
其中,处理器110,可以用于根据配置信息,将目标信道映射至第一时域资源,该目标信道承载第一数据,该配置信息可以包括第一数值。其中,该第一数值可以用于指示目标时域资源中每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,该目标时域资源可以是为该第一数据配置的资源,该第一时域资源可以为该目标时域资源中的资源。
本公开实施例提供一种UE,由于配置信息中的第一数值可以用于指示每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此通过配置第一数值,可以灵活地配置每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,因此本公开实施例提供的UE可以根据配置信息灵活配置用于映射目标信道的第一时域资源,从而可以提高时域资源配置的灵活性。
应理解的是,本公开实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
UE 100通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与UE100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(graphics processing unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
UE 100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在UE 100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与UE 100的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
可选地,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图17中,触控面板1071与显示面板1061是作为两个独立的部件来实现UE的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现UE的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与UE 100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等。接口单元108可以用于接收来自外部装置的输入(例如数据信息、电力等)并将接收到的输入传输到UE 100内的一个或多个元件或者可以用于在UE 100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是UE的控制中心,利用各种接口和线路连接整个UE的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行UE的各种功能和处理数据,从而对UE进行整体监控。处理器110可包括一个或多个处理单元;可选地,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
UE 100还可以包括给各个部件供电的电源111(比如电池),可选地,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,UE 100包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种UE,包括如图17所示的处理器110,存储器109,存储在存储器109上并可在处理器110上运行的计算机程序,该计算机程序被处理器110执行时实现上述资源映射方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被如图17所示的处理器110执行时实现上述资源映射方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如 ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例描述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (22)

  1. 一种资源映射方法,应用于用户设备UE,所述方法包括:
    根据配置信息,将目标信道映射至第一时域资源,所述目标信道承载第一数据,所述配置信息包括第一数值;
    其中,所述第一数值用于指示目标时域资源中每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,所述目标时域资源是为所述第一数据配置的资源,所述第一时域资源为所述目标时域资源中的资源。
  2. 根据权利要求1所述的方法,其中,所述配置信息还包括周期长度、第一起始位置和第一数量;
    其中,所述第一起始位置为第一个周期内第一个信道映射的起始位置,所述第一数量为每个周期内一个信道占用的第二时域单元的数量。
  3. 根据权利要求2所述的方法,其中,所述配置信息还包括第一偏移量,所述第一偏移量为所述目标时域资源的偏移量。
  4. 根据权利要求2或3所述的方法,其中,所述根据配置信息,将目标信道映射至第一时域资源,包括:
    在每个周期内,根据所述配置信息,将所述目标信道映射至所述第一时域资源。
  5. 根据权利要求4所述的方法,其中,在所述第一数值为无效数值的情况下,每个周期内映射的信道数量为1;
    所述在每个周期内,根据所述配置信息,将所述目标信道映射至所述第一时域资源,包括:
    在每个周期内,根据所述配置信息,确定所述第一时域资源;
    将所述目标信道映射至所述第一时域资源;
    其中,所述第一时域资源为从所述第一起始位置开始的连续L个第二时域单元,L为所述第一数量,L为正整数。
  6. 根据权利要求4所述的方法,其中,所述可用第一时域单元的长度大于所述周期长度,在所述第一数值为有效数值的情况下,每个周期内映射的信道数量为所述第一数值;
    所述在每个周期内,根据所述配置信息,将所述目标信道映射至所述第一时域资源,包括:
    在每个周期内,根据所述配置信息,确定所述第一时域资源;
    将所述目标信道映射至所述第一时域资源;
    其中,所述第一时域资源为从所述第一起始位置开始的连续N个第一子映射资源,每个第一子映射资源中的第二时域单元的数量为所述第一数量,N为所述第一数值。
  7. 根据权利要求4所述的方法,其中,所述可用第一时域单元的长度小于或等于所述周期长度,在所述第一数值为有效数值的情况下,每个周期内可用第一时域单元的数量为所述第一数值;
    所述在每个周期内,根据所述配置信息,将所述目标信道映射至所述第一时域资源,包括:
    在每个周期内,根据所述配置信息,确定M个可用第一时域单元,M为所述第一 数值,M为正整数;
    根据所述配置信息,在所述M个可用第一时域单元中确定所述第一时域资源;
    将所述目标信道映射至所述第一时域资源。
  8. 根据权利要求7所述的方法,其中,所述根据所述配置信息,在所述M个可用第一时域单元中确定所述第一时域资源,包括:
    根据所述配置信息,采用目标方式,在所述M个可用第一时域单元中确定所述第一时域资源,所述目标方式为第一方式、第二方式或第三方式;其中,
    所述第一方式为:所述M个可用第一时域单元中的每个可用第一时域单元中的映射资源为第一目标资源;
    所述第二方式为:所述M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,所述M个可用第一时域单元中的其它可用第一时域单元中的映射资源为第二目标资源;
    所述第三方式为:所述M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,所述M个可用第一时域单元中的最后一个可用第一时域单元中的映射资源为第三目标资源,所述M个可用第一时域单元中的其它可用第一时域单元中的映射资源为第二目标资源;
    每个可用第一时域单元中的映射资源组成所述第一时域资源。
  9. 根据权利要求8所述的方法,其中,所述第一目标资源为第一资源、第二资源或第三资源;所述第二目标资源为第四资源或第五资源;所述第三目标资源为第六资源;
    所述第一资源为:从所述第一起始位置开始的连续K个第二子映射资源,每个第二子映射资源中的第二时域单元的数量为所述第一数量,K为正整数;
    所述第二资源为:从所述第一起始位置开始的连续K个第二子映射资源和一个第三子映射资源,所述第三子映射资源为可用第一时域单元内除所述第一起始位置之前的第二时域单元和所述K个第二子映射资源中的第二时域单元之外的第二时域单元;
    所述第三资源为:从所述第一起始位置开始的连续P个第二时域单元,P为所述第一差值,P为正整数;
    所述第四资源为:从所述可用第一时域单元的起始位置开始的连续Q个第二子映射资源,Q为对可用第一时域单元的长度与所述第一数量的比值向下取整得到的数值,Q为正整数;
    所述第五资源为:所述可用第一时域单元中的所有第二时域单元;
    所述第六资源为:从所述可用第一时域单元的起始位置开始的连续R个第二时域单元,R为所述第一数量,R为正整数。
  10. 根据权利要求1所述的方法,其中,所述根据配置信息,将目标信道映射至第一时域资源之前,所述方法还包括:
    接收接入网设备发送的所述配置信息。
  11. 一种用户设备UE,所述UE包括处理模块;
    所述处理模块,用于根据配置信息,将目标信道映射至第一时域资源,所述目标信道承载第一数据,所述配置信息包括第一数值;
    其中,所述第一数值用于指示目标时域资源中每个周期内映射的信道数量或每个周期内可用第一时域单元的数量,所述目标时域资源是为所述第一数据配置的资源,所述第一时域资源为所述目标时域资源中的资源。
  12. 根据权利要求11所述的UE,其中,所述配置信息还包括周期长度、第一起始位置和第一数量;
    其中,所述第一起始位置为第一个周期内第一个信道映射的起始位置,所述第一数量为每个周期内一个信道占用的第二时域单元的数量。
  13. 根据权利要求12所述的UE,其中,所述配置信息还包括第一偏移量,所述第一偏移量为所述目标时域资源的偏移量。
  14. 根据权利要求12或13所述的UE,其中,所述处理模块,具体用于在每个周期内,根据所述配置信息,将所述目标信道映射至所述第一时域资源。
  15. 根据权利要求14所述的UE,其中,在所述第一数值为无效数值的情况下,每个周期内映射的信道数量为1;
    所述处理模块,具体用于在每个周期内,根据所述配置信息,确定所述第一时域资源;并将所述目标信道映射至所述第一时域资源;
    其中,所述第一时域资源为从所述第一起始位置开始的连续L个第二时域单元,L为所述第一数量,L为正整数。
  16. 根据权利要求14所述的UE,其中,所述可用第一时域单元的长度大于所述周期长度,在所述第一数值为有效数值的情况下,每个周期内映射的信道数量为所述第一数值;
    所述处理模块,具体用于在每个周期内,根据所述配置信息,确定所述第一时域资源;并将所述目标信道映射至所述第一时域资源;
    其中,所述第一时域资源为从所述第一起始位置开始的连续N个第一子映射资源,每个第一子映射资源中的第二时域单元的数量为所述第一数量,N为所述第一数值。
  17. 根据权利要求14所述的UE,其中,所述可用第一时域单元的长度小于或等于所述周期长度,在所述第一数值为有效数值的情况下,每个周期内可用第一时域单元的数量为所述第一数值;
    所述处理模块,具体用于在每个周期内,根据所述配置信息,确定M个可用第一时域单元,M为所述第一数值,M为正整数;并根据所述配置信息,在所述M个可用第一时域单元中确定所述第一时域资源;以及将所述目标信道映射至所述第一时域资源。
  18. 根据权利要求17所述的UE,其中,所述处理模块,具体用于根据所述配置信息,采用目标方式,在所述M个可用第一时域单元中确定所述第一时域资源,所述目标方式为第一方式、第二方式或第三方式;其中,
    所述第一方式为:所述M个可用第一时域单元中的每个可用第一时域单元中的映射资源为第一目标资源;
    所述第二方式为:所述M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,所述M个可用第一时域单元中的其它可用第一时域单元中的映射资源为第二目标资源;
    所述第三方式为:所述M个可用第一时域单元中的第一个可用第一时域单元中的映射资源为第一目标资源,所述M个可用第一时域单元中的最后一个可用第一时域单元中的映射资源为第三目标资源,所述M个可用第一时域单元中的其它可用第一时域单元中的映射资源为第二目标资源;
    每个可用第一时域单元中的映射资源组成所述第一时域资源。
  19. 根据权利要求18所述的UE,其中,所述第一起始位置为每个可用第一时域单元内第一个信道映射的起始位置,所述第一数量为每个可用第一时域单元内一个信道占用的第二时域单元的数量;
    所述第一目标资源为第一资源、第二资源或第三资源;所述第二目标资源为第四资源或第五资源;所述第三目标资源为第六资源;
    所述第一资源为:从所述第一起始位置开始的连续K个第二子映射资源,每个第二子映射资源中的第二时域单元的数量为所述第一数量,K为正整数;
    所述第二资源为:从所述第一起始位置开始的连续K个第二子映射资源和一个第三子映射资源,所述第三子映射资源为可用第一时域单元内除所述第一起始位置之前的第二时域单元和所述K个第二子映射资源中的第二时域单元之外的第二时域单元;
    所述第三资源为:从所述第一起始位置开始的连续P个第二时域单元,P为所述第一差值,P为正整数;
    所述第四资源为:从所述可用第一时域单元的起始位置开始的连续Q个第二子映射资源,Q为对可用第一时域单元的长度与所述第一数量的比值向下取整得到的数值,Q为正整数;
    所述第五资源为:所述可用第一时域单元中的所有第二时域单元;
    所述第六资源为:从所述可用第一时域单元的起始位置开始的连续R个第二时域单元,R为所述第一数量,R为正整数。
  20. 根据权利要求11所述的UE,其中,所述UE还包括接收模块;
    所述接收模块,用于在所述处理模块根据配置信息,将目标信道映射至第一时域资源之前,接收接入网设备发送的所述配置信息。
  21. 一种用户设备UE,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的资源映射方法的步骤。
  22. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的资源映射方法的步骤。
PCT/CN2020/092637 2019-05-30 2020-05-27 资源映射方法及用户设备 WO2020238964A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217040113A KR20220006100A (ko) 2019-05-30 2020-05-27 자원 매핑 방법 및 사용자 장치
BR112021023733A BR112021023733A2 (pt) 2019-05-30 2020-05-27 Método de mapeamento de recursos e equipamento do usuário.
EP20813199.5A EP3979735A4 (en) 2019-05-30 2020-05-27 RESOURCE ALLOCATION PROCEDURE AND USER DEVICE
US17/537,659 US20220086877A1 (en) 2019-05-30 2021-11-30 Resource mapping method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910465673.7A CN111432481B (zh) 2019-05-30 2019-05-30 一种资源映射方法及用户设备
CN201910465673.7 2019-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/537,659 Continuation US20220086877A1 (en) 2019-05-30 2021-11-30 Resource mapping method and user equipment

Publications (1)

Publication Number Publication Date
WO2020238964A1 true WO2020238964A1 (zh) 2020-12-03

Family

ID=71546753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092637 WO2020238964A1 (zh) 2019-05-30 2020-05-27 资源映射方法及用户设备

Country Status (6)

Country Link
US (1) US20220086877A1 (zh)
EP (1) EP3979735A4 (zh)
KR (1) KR20220006100A (zh)
CN (1) CN111432481B (zh)
BR (1) BR112021023733A2 (zh)
WO (1) WO2020238964A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267679A (zh) * 2008-04-26 2008-09-17 中兴通讯股份有限公司 一种用于映射物理随机接入信道的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107770870B (zh) * 2016-08-22 2020-06-12 中国移动通信有限公司研究院 资源指示、确定方法、装置、网络侧设备及接收侧设备
CN108366424B (zh) * 2017-01-26 2021-10-26 华为技术有限公司 一种资源分配方法、相关设备及系统
EP3630548B1 (en) * 2017-05-11 2021-06-23 SMR Patents S.à.r.l. Drive mechanism and rear view device
CN111052657B (zh) * 2017-06-15 2022-11-15 三星电子株式会社 用于无授权配置的终端、基站及其方法
US11115998B2 (en) * 2018-07-26 2021-09-07 Qualcomm Incorporated Scheduling offset management for wireless communications
US20230364557A1 (en) * 2022-04-07 2023-11-16 Clean Air Zone Inc. Air purification system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267679A (zh) * 2008-04-26 2008-09-17 中兴通讯股份有限公司 一种用于映射物理随机接入信道的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Transmission with Configured Grant in NR Unlicensed Band", 3GPP TSG RAN WG1 MEETING #97 R1-1906047, 3 May 2019 (2019-05-03), XP051708089, DOI: 20200721105301X *
INTEL CORPORATION: "Enhancements to Configured Grants for NR-unlicensed", 3GPP TSG RAN WG1 MEETING #97 R1-1906788, 4 May 2019 (2019-05-04), XP051708824, DOI: 20200721105436X *
See also references of EP3979735A4
VIVO: "Discussion on the Enhancements to Configured Grants", 3GPP TSG RAN WG1 #97 R1-1906133, 1 May 2019 (2019-05-01), XP051727589, DOI: 20200721105109X *

Also Published As

Publication number Publication date
US20220086877A1 (en) 2022-03-17
EP3979735A1 (en) 2022-04-06
CN111432481A (zh) 2020-07-17
KR20220006100A (ko) 2022-01-14
CN111432481B (zh) 2022-03-04
EP3979735A4 (en) 2022-07-27
BR112021023733A2 (pt) 2022-01-04

Similar Documents

Publication Publication Date Title
US11582791B2 (en) PUCCH collision processing method and terminal
EP3826387B1 (en) Paging indication method, apparatus and system
WO2021008430A1 (zh) 传输方法和通信设备
AU2019316839B2 (en) Determination method, terminal and network device
WO2021057655A1 (zh) 信息指示方法、设备及系统
WO2020073805A1 (zh) 上行传输的指示方法、终端及网络侧设备
US20210105651A1 (en) Measurement gap processing method, terminal, and network node
WO2020228529A1 (zh) 半静态调度配置的配置方法、设备及系统
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
WO2021027713A1 (zh) 上行传输方法、上行传输控制方法及相关设备
WO2020029760A1 (zh) 资源配置方法和装置
US20210092731A1 (en) Resource indication method, apparatus, and system
WO2021000778A1 (zh) 上行发送丢弃方法、上行发送丢弃配置方法及相关设备
WO2020249116A1 (zh) 测量方法、设备及系统
WO2020192673A1 (zh) 资源配置方法、资源确定方法、网络侧设备和终端
JP7332688B2 (ja) 受信方法、送信方法、端末及びネットワーク側機器
WO2020088188A1 (zh) 传输方法、发送端设备、接收端设备及网络侧设备
CN110621069B (zh) 一种数据传输方法、设备及系统
WO2021147777A1 (zh) 一种通信处理方法及相关设备
EP4080804A1 (en) Uplink transmission method and apparatus, and device and storage medium
WO2020238964A1 (zh) 资源映射方法及用户设备
WO2020169003A1 (zh) 控制信号的发送方法及传输节点
WO2020156005A1 (zh) 一种数据处理方法及用户设备
WO2019137307A1 (zh) Bsr上报方法和移动终端
WO2019242476A1 (zh) 一种传输控制方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217040113

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021023733

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021023733

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211125

ENP Entry into the national phase

Ref document number: 2020813199

Country of ref document: EP

Effective date: 20220103