WO2020156005A1 - 一种数据处理方法及用户设备 - Google Patents

一种数据处理方法及用户设备 Download PDF

Info

Publication number
WO2020156005A1
WO2020156005A1 PCT/CN2019/130099 CN2019130099W WO2020156005A1 WO 2020156005 A1 WO2020156005 A1 WO 2020156005A1 CN 2019130099 W CN2019130099 W CN 2019130099W WO 2020156005 A1 WO2020156005 A1 WO 2020156005A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
time domain
resource
uplink data
data channel
Prior art date
Application number
PCT/CN2019/130099
Other languages
English (en)
French (fr)
Inventor
陈晓航
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19912824.0A priority Critical patent/EP3920629B1/en
Priority to JP2021544408A priority patent/JP7190058B2/ja
Priority to KR1020217026221A priority patent/KR20210116588A/ko
Publication of WO2020156005A1 publication Critical patent/WO2020156005A1/zh
Priority to US17/390,376 priority patent/US20210360709A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a data processing method and user equipment.
  • a user equipment User Equipment, UE
  • UE User Equipment
  • a message A such as a random access request message
  • msgB message B
  • the UE may carry the msgA on a physical random access channel (Physical Random Access Channel, PRACH) and a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) to send to the network device.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • the UE may need to transmit the PRACH carrying msgA and the PUSCH carrying msgA on continuous time domain resources, and the transmission power of the UE may be different when transmitting the PRACH and the PUSCH.
  • the UE uses one transmission power After transmitting the PRACH, the UE first performs power adjustment, and then uses the adjusted transmit power to transmit the PUSCH.
  • the UE cannot transmit the PRACH and the PUSCH on continuous time domain resources, and thus cannot guarantee the performance of uplink transmission.
  • the embodiments of the present application provide a data processing method and user equipment, which can solve the problem that the traditional method of UE sending PRACH and PUSCH carrying msgA cannot guarantee uplink transmission performance.
  • the first aspect of the embodiments of the present application provides a data processing method applied to a UE.
  • the data processing method includes: performing any one of the following according to the relationship between the target time domain interval and a first preset value: sending random access Channel, sending uplink data channel, sending random access channel and uplink data channel, not sending random access channel and uplink data channel; among them, the target time domain interval is the time domain position of the first resource and the time domain position of the second resource In the interval between, the first resource is a resource of a random access channel, and the second resource is a resource of an uplink data channel, and the random access channel and the uplink data channel are used to carry random access messages.
  • a UE in a second aspect of the embodiments of the present application, includes a processing unit.
  • the processing unit is configured to perform any one of the following according to the relationship between the target time domain interval and the first preset value: send random access channel, send uplink data channel, send random access channel and uplink data channel, do not send Random access channel and uplink data channel; where the target time domain interval is the interval between the time domain position of the first resource and the time domain position of the second resource, the first resource is the resource of the random access channel, and the first resource
  • the second resource is the resource of the uplink data channel, and the random access channel and the uplink data channel are used to carry random access messages.
  • a UE in a third aspect of the embodiments of the present application, includes a processor, a memory, and a computer program that is stored in the memory and can run on the processor.
  • the computer program When the computer program is executed by the processor, the first aspect is implemented. The steps of the data processing method.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the data processing method as described in the first aspect are implemented .
  • the UE can be based on the target time domain interval (that is, the interval between the time domain position of the first resource and the time domain position of the second resource, where the first resource is a random access channel resource, and the second The resource is the relationship between the resource of the uplink data channel) and the first preset value. Perform any of the following: send random access channel, send uplink data channel, send random access channel and uplink data channel, do not send random access channel And uplink data channel. Since the target time domain interval is the interval between the time domain position of the first resource and the time domain position of the second resource, the UE can determine whether the target time interval is sufficient according to the relationship between the target interval and the first preset value.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 2 is one of the schematic diagrams of a data processing method provided by an embodiment of this application.
  • FIG. 3 is one of the schematic diagrams of an example of a PRACH resource and a PUSCH resource provided by an embodiment of this application;
  • FIG. 4 is a second schematic diagram of a data processing method provided by an embodiment of this application.
  • FIG. 5 is the third schematic diagram of a data processing method provided by an embodiment of this application.
  • FIG. 6 is the second schematic diagram of an example of a PRACH resource and a PUSCH resource provided by an embodiment of this application;
  • FIG. 7 is the fourth schematic diagram of a data processing method provided by an embodiment of this application.
  • FIG. 8 is a fifth schematic diagram of a data processing method provided by an embodiment of this application.
  • FIG. 9 is a sixth schematic diagram of a data processing method provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a UE provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of hardware of a UE provided by an embodiment of the application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first resource and the second resource are used to distinguish different resources, rather than to describe a specific order of resources.
  • plural means two or more.
  • a plurality of elements refers to two elements or more than two elements.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the UE can first send message 1 (msg1) to the network, which contains the preamble (Preamble); after receiving the preamble, the network device can send message 2 (msg2) to the UE, the msg2 It contains the random access response (RAR) message corresponding to the preamble; after the UE receives msg2, it can send message 3 (msg3) to the network device according to the instructions of the RAR; after the network device receives msg3, it can send message 4 to the UE (msg4), this msg4 contains a contention resolution ID (Contention Resolution ID); when the UE receives msg4, the four-step random access process is completed.
  • RACH random access response
  • the UE can send msgA to the network device; after the network device receives the msgA, it can send the msgB to the UE. After the UE receives the msgB, the two-step random access process is completed.
  • msgA random access request message
  • Preamble random access preamble
  • random access information high-level information
  • the random access preamble can be carried on PRACH for transmission
  • the random access information can be carried Transmission on PUSCH.
  • PRACH occasions In the new radio technology (New Radio, NR), the base station can be configured at a point in time (time instance, that is, the time required to transmit a PRACH resource, which can also be used here) There are multiple frequency division multiplexing (Frequency Division Multiplexing, FDM) physical random access channel transmission opportunities (PRACH transmission occasions) on the time domain resources for PRACH transmission.
  • FDM Frequency Division Multiplexing
  • PRACH transmission occasions Physical random access channel transmission opportunities on the time domain resources for PRACH transmission.
  • the number of ROs that can perform FDM at a time point can be: ⁇ 1, 2, 4, 8 ⁇ .
  • the random access preamble can only be transmitted on the time domain resources configured by the parameter PRACH Configuration Index, and the random access preamble can only be transmitted on the frequency domain resources configured by the parameter PRACH-FDM.
  • the frequency domain resource n RA of PRACH is numbered in ascending order from the lowest frequency RO resource in the initial active uplink bandwidth part (initial active uplink bandwidth part). Otherwise, the frequency domain resource n RA of PRACH starts from the activated uplink bandwidth part ( The lowest frequency RO resource in the active uplink bandwidth part) starts to be numbered in ascending order.
  • synchronization signal block such as synchronization signal (SS) or physical broadcast channel block (PBCH block)
  • An RO may be associated with multiple SSBs, and the number of SSBs associated with an RO may be: ⁇ 1/8, 1/4, 1/2, 1, 2, 4, 8, 16 ⁇ .
  • SSB synchronization signal
  • PBCH block physical broadcast channel block
  • CSI-RS Channel State Information-Reference Signals
  • the corresponding SSBs are SSB#0, SSB#1, SSB#2, SSB#3, and each SSB is associated with 2 ROs. . If the UE sends PRACH on the RO corresponding to SSB0, the UE selects one RO from RO#0 and RO#1 to send PRACH.
  • the embodiment of the present application provides a data processing method and user equipment.
  • the UE can be based on a target time domain interval (that is, the interval between the time domain position of the first resource and the time domain position of the second resource, the first resource is a random access
  • the relationship between the resource of the incoming channel, the second resource is the resource of the uplink data channel) and the first preset value, do any of the following: send random access channel, send uplink data channel, send random access channel and uplink data channel , Do not send random access channel and uplink data channel.
  • the target time domain interval is the interval between the time domain position of the first resource and the time domain position of the second resource, the UE can determine whether the target time interval is sufficient according to the relationship between the target interval and the first preset value.
  • the data processing method and user equipment provided in the embodiments of the present application can be applied to a communication system. It can be specifically applied to a process in which the UE determines how to process the random access message based on the interval between the time domain positions of two resources (resources of the two channels carrying the random access message) based on the communication system.
  • FIG. 1 shows a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • the communication system may include UE 01 and network equipment 02. Among them, a connection and communication can be established between UE 01 and network device 02.
  • the above-mentioned UE 01 shown in FIG. 1 and the network device 02 may be a wireless connection.
  • the connection relationship between UE 01 and network device 02 is shown in solid lines in FIG. 1.
  • a UE is a device that provides voice and/or data connectivity to users, a handheld device with wired/wireless connection functions, or other processing devices connected to a wireless modem.
  • the UE may communicate with one or more core network devices through a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • the UE can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA Personal Digital Assistants
  • the UE may also be called a user agent (User Agent) or a terminal device.
  • the network device may be a base station.
  • a base station is a device deployed in the RAN to provide wireless communication functions for the UE.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • NodeB base station
  • eNB evolved NodeB
  • 5G fifth generation mobile communication
  • the name "base station” may change.
  • the embodiment of the present application provides a data processing method, and the data processing method can be implemented in the following possible ways.
  • the UE when the time domain position of the second resource is at least N time units (also referred to as at least N time domain units) after the time domain position of the first resource, the UE sends a random access Incoming channel and uplink data channel.
  • the time interval between the time domain position of the second resource and the time domain position of the first resource is at least N time units described above.
  • the foregoing first resource is a resource of a random access channel
  • the second resource is a resource of an uplink data channel
  • the random access channel and the uplink data channel are used to carry random access messages.
  • the UE may send the uplink data channel at least N time units after sending the random access channel.
  • the time interval between the time domain position of the second resource and the time domain position of the first resource is less than N time units under:
  • the UE only sends the random access channel
  • the UE only sends the uplink data channel; or,
  • the UE does not send the random access channel and the uplink data channel; or,
  • the UE uses the same transmit power to transmit the random access channel and the uplink data channel; or,
  • the UE sends the random access channel and the uplink data channel, and the UE is not in the first X time units in the uplink data channel (that is, the first time domain unit in the embodiment of this application, also called the first X time domain units). Carry the uplink load.
  • the UE when the UE uses the same transmit power to transmit the random access channel and the uplink data channel, the UE may use the transmit power of the random access channel to transmit the random access channel and the uplink data channel, or the UE The transmission power of the uplink data channel can also be used to transmit the random access channel and the uplink data channel.
  • the aforementioned value of N may be predefined or configured by a network device.
  • the above-mentioned value of X can be predefined or configured by the network device.
  • the first resource, the second resource, the random access channel, the uplink data channel, and the random access message will be described in detail in the following embodiments, and will not be repeated here.
  • the data processing method may include the following steps 201 and 202.
  • Step 201 The UE obtains the target time domain interval.
  • the above-mentioned target time domain interval is the interval between the time domain position of the first resource and the time domain position of the second resource
  • the first resource is a random access channel resource
  • the second resource is an uplink Data channel resources
  • the random access channel and the uplink data channel are used to carry random access messages.
  • the resource of the random access channel may be a transmission opportunity of the random access channel
  • the resource of the uplink data channel may be a transmission opportunity of the uplink data channel
  • the resources of the random access channel and the resources of the uplink data channel are both effective resources; the transmission opportunities of the random access channel and the transmission opportunities of the uplink data channel are both effective transmission. opportunity.
  • the effective transmission opportunity of the random access channel (or uplink data channel) refers to the time domain resource where the transmission opportunity of the random access channel (or uplink data channel) configured by the network device is located, and the downlink (Down Link) , DL) resources or DL transmission opportunities do not conflict.
  • the resource of the random access channel and the resource of the uplink data channel may have an association relationship.
  • the association relationship between the resources of the random access channel and the resources of the uplink data channel can be a one-to-one association relationship (that is, one resource of the random access channel is associated with one resource of the uplink data channel), or one A to-many association relationship (that is, one resource of the random access channel is associated with multiple resources of the uplink data channel), or a many-to-one association relationship (that is, multiple resources of the random access channel and one of the uplink data channel resources) Resource association) may also be a many-to-many association relationship (that is, multiple resources of the random access channel are associated with multiple resources of the uplink data channel).
  • the time domain position of the first resource may be the end position of the first resource
  • the time domain position of the second resource may be the start position of the second resource
  • the random access message may include a random access preamble (Preamble) and random access information (higher layer information), and the random access channel is used to carry the random access preamble and uplink data.
  • the channel is used to carry random access information.
  • the aforementioned random access message may be a random access message corresponding to two-step random access.
  • the foregoing first resource may include time domain resources of a random access channel, or include time domain resources and frequency domain resources of a random access channel; the foregoing second resource may include uplink data channel resources. Time domain resources, or time domain resources and frequency domain resources including uplink data channels.
  • the aforementioned random access channel may be PRACH
  • the uplink data channel may be PUSCH.
  • time domain position of the second resource is behind the time domain position of the first resource.
  • the time domain position of the PRACH resource is t1 to t2 (t2>t1)
  • the time domain position of the PUSCH resource is t3 to t4 (t4>t3 ⁇ t2, that is, the time domain position of the PUSCH resource
  • the time domain position is located after the time domain position of the PRACH resource, as shown in Figure 3 as t3>t2)
  • the UE can compare the end position of the PRACH resource (ie t2) and the start position of the PUSCH resource (ie t3
  • the interval between) is determined as the target time domain interval ⁇ t, that is, the target time domain interval ⁇ t is t3-t2.
  • Step 202 The UE performs any one of the following according to the relationship between the target time domain interval and the first preset value: sending the random access channel, sending the uplink data channel, sending the random access channel and the uplink data channel, and not sending the random access Channel and uplink data channel.
  • the UE may compare the target time domain interval with a first preset value to determine the relationship between the target time domain interval and the first preset value, that is, determine the target time domain interval and the first preset value The magnitude of the value.
  • the aforementioned first preset value may be predefined or configured by a network device.
  • the foregoing non-transmission of the random access channel and the uplink data channel can be understood as: giving up sending the random access channel on the first resource, and giving up sending the uplink data channel on the second resource.
  • step 202 may be specifically implemented by the following step 202a.
  • Step 202a When the target time domain interval is greater than or equal to a first preset value, the UE sends a random access channel and an uplink data channel.
  • the UE when the target time domain interval is greater than or equal to the first preset value, the UE may send the random access channel at the time domain position of the first resource, and send the uplink at the time domain position of the second resource. Data channel.
  • the UE may use the transmit power of the random access channel (that is, the first transmit power described below) in the first
  • the resource sends the random access channel, and uses the transmission power of the uplink data channel (that is, the second transmission power described below) to send the uplink data channel on the second resource.
  • the UE may send the PRACH on the PRACH resource and send the PUSCH on the PUSCH resource.
  • the UE when the target time domain interval is greater than or equal to the first preset value, the UE has enough time for power adjustment (that is, after the UE sends the random access channel, the UE has enough time to access the random access channel).
  • the transmit power is adjusted to the transmit power of the uplink data channel), so the UE can send the random access channel and the uplink data channel, thereby ensuring the uplink transmission performance when the UE sends the random access channel and the uplink data channel.
  • step 202 may be specifically implemented by the following step 202b.
  • Step 202b When the target time domain interval is less than the first preset value, the UE performs any one of the following: sending a random access channel; sending an uplink data channel; not sending a random access channel and an uplink data channel; sending a random access channel; Incoming channel and uplink data channel, wherein the first time domain unit in the second resource does not carry the uplink load, or the transmission power of the random access channel and the uplink data channel are the same.
  • the UE may send the random access channel in the first resource.
  • the UE may use the transmit power of the random access channel to send the random access channel in the first resource.
  • the UE may send the uplink data channel in the second resource.
  • the UE may use the transmit power of the uplink data channel to send the uplink data channel on the second resource.
  • the UE may send the random access channel in the first resource and divide the first time domain unit in the second resource.
  • External time domain resources send uplink data channels.
  • the aforementioned first time domain unit may be predefined or configured by a network device.
  • the above-mentioned first time domain unit may be X time domain units starting from the first time domain position in the second resource, and the value of X is predefined or configured by the network device, A time domain position is the starting position of the second resource.
  • the sum of the target time domain interval and the first time domain unit is greater than or equal to a first preset value.
  • the first time domain unit A is the X time domain units in the PUSCH resource from the start position of the resource (that is, t3), and the UE can include time domain resources other than the first time domain unit in the PUSCH resource (For example, the time domain resources in the shaded part B in FIG. 6 are the time domain units that can carry PUSCH transmission in the PUSCH resources) to transmit the uplink data channel.
  • the first time domain unit carries an extended cyclic prefix (Cyclic Prefix, CP), for example, the cyclic prefix of the second time domain unit, which is in the second resource Located in the next time domain unit of the first time domain unit.
  • Cyclic Prefix CP
  • the UE when the target time domain interval is less than the first preset value, the UE may use the same transmit power to transmit the random access channel and the uplink data channel.
  • the UE since the UE can only send the random access channel or the uplink data channel when the target time domain interval is less than the first preset value, the UE does not need to perform power adjustment (that is, after the UE sends the random access channel or sends Before the uplink data channel, there is no need to adjust the transmit power of the random access channel to the transmit power of the uplink data channel), so that the uplink transmission performance when the UE sends the random access channel or the uplink data channel can be guaranteed.
  • the UE when the target time domain interval is less than the first preset value, the UE can send the random access channel and the uplink data channel, and the first time domain unit in the second resource is not used to transmit PUSCH, so The UE has enough time to adjust the power between sending the random access channel and sending the uplink data channel (that is, after the UE sends the random access channel, it can adjust the power within the target time domain interval and the first time domain unit) Therefore, the uplink transmission performance when the UE sends the random access channel and the uplink data channel can be guaranteed.
  • the UE since the UE can transmit the random access channel and the uplink data channel when the target time domain interval is less than the first preset value, and the transmission power of the random access channel and the uplink data channel are the same, the UE does not need to be The power adjustment is performed between the sending of the random access channel and the sending of the uplink data channel (that is, after the UE sends the random access channel, the transmission power of the random access channel does not need to be adjusted to the transmission power of the uplink data channel), thereby ensuring that the UE sends random The uplink transmission performance when accessing the channel and the uplink data channel.
  • the embodiment of the present application provides a data processing method.
  • the UE can be based on the target time domain interval (that is, the interval between the time domain position of the first resource and the time domain position of the second resource, and the first resource is the random access channel. Resource, the second resource is the resource of the uplink data channel) and the first preset value, do any of the following: send random access channel, send uplink data channel, send random access channel and uplink data channel, do not send Random access channel and uplink data channel. Since the target time domain interval is the interval between the time domain position of the first resource and the time domain position of the second resource, the UE can determine whether the target time interval is sufficient according to the relationship between the target interval and the first preset value.
  • step 202a may be specifically implemented by the following step 301 and step 302.
  • Step 301 When the target time domain interval is greater than or equal to the first preset value, the UE uses the first transmission power to transmit the random access channel, and uses the second transmission power to transmit the uplink data channel.
  • the UE can use the first transmission power to send the random access channel to the network device, and adjust the first transmission power to the second transmission power within the target time interval, and then use the second transmission power to send uplink data to the network device. channel.
  • Step 302 The network device receives the random access channel and the uplink data channel sent by the UE.
  • the UE when the target time domain interval is greater than or equal to the first preset value, the UE has enough time for power adjustment (that is, after the UE sends the random access channel, the UE has enough time to access the random access channel).
  • the transmit power is adjusted to the transmit power of the uplink data channel), so it can be ensured that the UE has enough time to adjust the power when sending the random access channel and the uplink data channel, so as to ensure the uplink transmission performance of the UE.
  • the above step 202b can be specifically implemented by the following steps 401 and 402.
  • Step 401 When the target time domain interval is less than the first preset value, the UE uses the first transmission power to transmit the random access channel, and uses the second transmission power to transmit the uplink data channel, where the first of the second resources is No uplink load is carried on the time domain unit.
  • the UE can use the first transmit power to send the random access channel to the network device, and adjust the first transmit power to the second transmit power within the target time interval and the first time domain source, and then use the second transmit power to The network device sends the uplink data channel.
  • Step 402 The network device receives the random access channel and the uplink data channel sent by the UE.
  • the UE when the target time domain interval is less than the first preset value, the UE can send the random access channel and the uplink data channel, and the first time domain unit in the second resource does not carry the uplink load, therefore
  • the UE has enough time for power adjustment (that is, after the UE sends the random access channel, it can adjust the power within the target time domain interval and the first time domain unit), so it can ensure that the UE is sending the random access channel and sending In the uplink data channel, there is enough time for power adjustment to ensure the uplink transmission performance of the UE.
  • the above step 202b can be specifically implemented by the following steps 501 and 502.
  • Step 501 When the target time domain interval is less than the first preset value, the UE uses the third transmission power to transmit the random access channel, and uses the third transmission power to transmit the uplink data channel.
  • the foregoing third transmission power is the transmission power of the random access channel or the transmission power of the uplink data channel.
  • Step 502 The network device receives the random access channel and the uplink data channel sent by the UE.
  • the UE when the target time domain interval is less than the first preset value, the UE can use the third transmit power to transmit the random access channel and the uplink data channel, so the UE does not need to send the random access channel and the uplink data.
  • the power adjustment between channels can ensure the uplink transmission performance when the UE sends the random access channel and the uplink data channel.
  • the foregoing step 202b in the case that the foregoing step 202b is "when the target time domain interval is less than the first preset value, the UE sends the random access channel", the foregoing step 202b may specifically be implemented as follows: Step 601 and step 602 are implemented.
  • Step 601 When the target time domain interval is less than a first preset value, the UE uses the first transmit power to transmit the random access channel.
  • Step 602 The network device receives the random access channel sent by the UE.
  • the UE when the target time domain interval is less than the first preset value, the UE can use the first transmit power to transmit only the random access channel, so the UE does not need to perform power adjustment, which can ensure that the UE transmits the random access channel Uplink transmission performance.
  • the foregoing step 202b in the case where the foregoing step 202b is "when the target time domain interval is less than the first preset value, the UE sends the uplink data channel", the foregoing step 202b may specifically be implemented as follows: Step 701 and step 702 are implemented.
  • Step 701 When the target time domain interval is less than the first preset value, the UE uses the second transmit power to transmit the uplink data channel.
  • Step 702 The network device receives the uplink data channel sent by the UE.
  • the UE when the target time domain interval is less than the first preset value, the UE can use the second transmit power to transmit only the uplink data channel. Therefore, the UE does not need to perform power adjustment, which can ensure the uplink of the UE to transmit the uplink data channel. Transmission performance.
  • FIG. 10 shows a schematic diagram of a possible structure of a UE involved in an embodiment of the present application.
  • the UE 100 provided in the embodiment of the present application may include: a processing unit 101.
  • the processing unit 101 is configured to perform any one of the following according to the relationship between the target time domain interval and the first preset value: sending a random access channel, sending an uplink data channel, sending a random access channel and an uplink data channel, and not Sending a random access channel and an uplink data channel; where the target time domain interval is the interval between the time domain position of the first resource and the time domain position of the second resource, the first resource is the resource of the random access channel, the The second resource is the resource of the uplink data channel, and the random access channel and the uplink data channel are used to carry random access messages.
  • the foregoing processing unit 101 is specifically configured to send a random access channel and an uplink data channel when the target time domain interval is greater than or equal to a first preset value.
  • the foregoing processing unit 101 is specifically configured to use the first transmission power to transmit the random access channel, and use the second transmission power to transmit the uplink data channel.
  • the aforementioned processing unit 101 is specifically configured to perform any one of the following when the target time domain interval is less than a first preset value: sending a random access channel; sending an uplink data channel; not Send the random access channel and the uplink data channel; send the random access channel and the uplink data channel, where the first time domain unit in the second resource does not carry the uplink load, or the transmission power of the random access channel and the uplink data channel the same.
  • no uplink load is carried on the first time domain unit in the second resource.
  • the above-mentioned processing unit 101 is specifically configured to use the first transmission power to transmit the random access channel, and use the second transmission power to transmit the uplink data channel.
  • the transmission power of the random access channel and the uplink data channel are the same.
  • the above-mentioned processing unit 101 is specifically configured to use the third transmission power to transmit the random access channel, and use the third transmission power to transmit the uplink data channel.
  • the third transmission power may be the transmission power of the random access channel or the transmission of the uplink data channel. power.
  • the aforementioned first preset value may be predefined or configured by a network device.
  • the foregoing first time domain unit may be predefined or configured by a network device.
  • the above-mentioned first time domain unit may be X time domain units starting from the first time domain position in the second resource, the value of X is predefined or configured by the network device, and the first The time domain position is the starting position of the second resource.
  • the first time domain unit carries the cyclic prefix CP of the second time domain unit
  • the second time domain unit is the next time domain unit located in the first time domain unit in the second resource .
  • the time domain position of the first resource may be the end position of the first resource
  • the time domain position of the second resource may be the start position of the second resource
  • the UE provided in the embodiments of the present application can implement each process implemented by the UE in the foregoing method embodiments. To avoid repetition, the specific description will not be repeated here.
  • An embodiment of the present application provides a UE. Since the target time domain interval is the interval between the time domain position of the first resource and the time domain position of the second resource, the UE according to the relationship between the target interval and the first preset value, It can be determined whether the target time interval is sufficient for the UE to perform power adjustment, so as to determine whether to send the random access channel and/or the uplink data channel carrying the random access message. This can ensure that the UE has enough time to perform power adjustment, thereby ensuring that the UE Uplink transmission performance when sending continuous random access channel and uplink data channel.
  • FIG. 11 shows a hardware schematic diagram of a UE provided by an embodiment of the present application.
  • the UE 110 includes but is not limited to: a radio frequency unit 111, a network module 112, an audio output unit 113, an input unit 114, a sensor 115, a display unit 116, a user input unit 117, an interface unit 118, a memory 119, The processor 120, and the power supply 121 and other components.
  • the UE structure shown in FIG. 11 does not constitute a limitation on the UE, and the UE may include more or less components than those shown in FIG. 11, or combine certain components. Or different component arrangements.
  • the UE includes but is not limited to a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, and a pedometer, etc.
  • the processor 120 may be configured to perform any one of the following according to the relationship between the target time domain interval and the first preset value: sending a random access channel, sending an uplink data channel, sending a random access channel and an uplink data channel, The random access channel and the uplink data channel are not sent; the target time domain interval is the interval between the time domain position of the first resource and the time domain position of the second resource, and the first resource is the resource of the random access channel, The second resource is a resource of an uplink data channel, and the random access channel and the uplink data channel are used to carry random access messages.
  • An embodiment of the present application provides a UE. Since the target time domain interval is the interval between the time domain position of the first resource and the time domain position of the second resource, the UE according to the relationship between the target interval and the first preset value, It can be determined whether the target time interval is sufficient for the UE to perform power adjustment, so as to determine whether to send the random access channel and/or the uplink data channel carrying the random access message. This can ensure that the UE has enough time to perform power adjustment, thereby ensuring that the UE Uplink transmission performance when sending continuous random access channel and uplink data channel.
  • the radio frequency unit 111 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 120; Uplink data is sent to the base station.
  • the radio frequency unit 111 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 111 can also communicate with the network and other devices through a wireless communication system.
  • the UE provides users with wireless broadband Internet access through the network module 112, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 113 may convert the audio data received by the radio frequency unit 111 or the network module 112 or stored in the memory 119 into an audio signal and output it as sound. Moreover, the audio output unit 113 may also provide audio output related to a specific function performed by the UE 110 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 113 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 114 is used to receive audio or video signals.
  • the input unit 114 may include a graphics processing unit (GPU) 1141 and a microphone 1142, and the graphics processor 1141 is configured to monitor still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 116.
  • the image frames processed by the graphics processor 1141 may be stored in the memory 119 (or other storage medium) or sent via the radio frequency unit 111 or the network module 112.
  • the microphone 1142 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 111 for output in the case of a telephone call mode.
  • the UE 110 also includes at least one sensor 115, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1161 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1161 and/or when the UE 110 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify UE posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 115 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 116 is used to display information input by the user or information provided to the user.
  • the display unit 116 may include a display panel 1161, and the display panel 1161 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 117 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the UE.
  • the user input unit 117 includes a touch panel 1171 and other input devices 1172.
  • the touch panel 1171 also known as a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1171 or near the touch panel 1171. operating).
  • the touch panel 1171 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 120, the command sent by the processor 120 is received and executed.
  • the touch panel 1171 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 117 may also include other input devices 1172.
  • other input devices 1172 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 1171 can be overlaid on the display panel 1161.
  • the touch panel 1171 detects a touch operation on or near it, it transmits it to the processor 120 to determine the type of the touch event, and then the processor 120 responds to the touch
  • the type of event provides corresponding visual output on the display panel 1161.
  • the touch panel 1171 and the display panel 1161 are used as two independent components to implement the input and output functions of the UE, in some embodiments, the touch panel 1171 and the display panel 1161 can be integrated. Realize the input and output functions of the UE, which are not specifically limited here.
  • the interface unit 118 is an interface for connecting an external device to the UE 110.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 118 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the UE 110 or can be used to communicate between the UE 110 and the external device. Transfer data between.
  • the memory 119 can be used to store software programs and various data.
  • the memory 119 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 119 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 120 is the control center of the UE. It uses various interfaces and lines to connect various parts of the entire UE. It executes by running or executing software programs and/or modules stored in the memory 119, and calling data stored in the memory 119. Various functions of the UE and processing data, so as to monitor the UE as a whole.
  • the processor 120 may include one or more processing units; optionally, the processor 120 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 120.
  • the UE 110 may also include a power supply 121 (such as a battery) for supplying power to various components.
  • a power supply 121 (such as a battery) for supplying power to various components.
  • the power supply 121 may be logically connected to the processor 120 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system And other functions.
  • the UE 110 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present application further provides a UE, including a processor 120 as shown in FIG. 11, a memory 119, a computer program stored on the memory 119 and running on the processor 120, the computer program When executed by the processor 120, each process of the foregoing method embodiment is realized, and the same technical effect can be achieved. To avoid repetition, details are not described herein again.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by the processor 120 as shown in FIG. 11, each process of the foregoing method embodiment is implemented, And can achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present application.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据处理方法及用户设备,涉及通信技术领域,可以解决UE发送承载msgA的PRACH和PUSCH的传统方法,无法保证上行传输性能的问题。具体方案为:根据目标时域间隔与第一预设值的关系,进行以下任意一项:发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道;其中,目标时域间隔为第一资源的时域位置和第二资源的时域位置之间的间隔,该第一资源为随机接入信道的资源,该第二资源为上行数据信道的资源,该随机接入信道和该上行数据信道上用于承载随机接入消息。本申请实施例应用于UE处理随机接入消息的过程中。

Description

一种数据处理方法及用户设备
本申请要求于2019年01月30日提交国家知识产权局、申请号为201910094345.0、申请名称为“一种数据处理方法及用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种数据处理方法及用户设备。
背景技术
通常,用户设备(User Equipment,UE)在发起两步随机接入时,可以向网络设备发送消息A(msgA,例如随机接入请求消息),并在接收到网络设备发送的消息B(msgB,例如随机接入响应消息)之后,完成两步随机接入过程。其中,UE可以将msgA承载在物理随机接入信道(Physical Random Access Channel,PRACH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上发送给网络设备。
然而,UE可能需要在连续的时域资源上发送承载msgA的PRACH和承载msgA的PUSCH,且UE在发送该PRACH和该PUSCH时的发射功率可能不同,这种情况下,UE在采用一个发射功率发送该PRACH之后,UE首先进行功率调整,然后再采用调整后的发射功率发送该PUSCH,如此,导致UE无法在连续的时域资源上发送该PRACH和该PUSCH,从而无法保证上行传输的性能。
发明内容
本申请实施例提供一种数据处理方法及用户设备,可以解决UE发送承载msgA的PRACH和PUSCH的传统方法,无法保证上行传输性能的问题。
为了解决上述技术问题,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种数据处理方法,应用于UE,该数据处理方法包括:根据目标时域间隔与第一预设值的关系,进行以下任意一项:发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道;其中,目标时域间隔为第一资源的时域位置和第二资源的时域位置之间的间隔,该第一资源为随机接入信道的资源,该第二资源为上行数据信道的资源,该随机接入信道和该上行数据信道上用于承载随机接入消息。
本申请实施例的第二方面,提供一种UE,该UE包括:处理单元。其中,处理单元,用于根据目标时域间隔与第一预设值的关系,进行以下任意一项:发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道;其中,目标时域间隔为第一资源的时域位置和第二资源的时域位置之间的间隔,该第一资源为随机接入信道的资源,该第二资源为上行数据信道的资源,该随机接入信道和该上行数据信道上用于承载随机接入消息。
本申请实施例的第三方面,提供一种UE,该UE包括处理器、存储器及存储在存 储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现如第一方面所述的数据处理方法的步骤。
本申请实施例的第四方面,提供一种计算机可读存储介质,该计算机可读存储介质上存储计算机程序,该计算机程序被处理器执行时实现如第一方面所述的数据处理方法的步骤。
在本申请实施例中,UE可以根据目标时域间隔(即第一资源的时域位置和第二资源的时域位置之间的间隔,该第一资源为随机接入信道的资源,第二资源为上行数据信道的资源)与第一预设值的关系,进行以下任意一项:发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道。由于目标时域间隔为第一资源的时域位置与第二资源的时域位置之间的间隔,因此UE根据该目标间隔与第一预设值的关系,可以确定该目标时间间隔是否足够UE进行功率调整,从而以确定是否发送承载随机接入消息的随机接入信道和/或上行数据信道,如此可以保证UE有足够的时长进行功率调整,从而保证UE在发送连续的随机接入信道和上行数据信道时的上行传输性能。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种数据处理方法的示意图之一;
图3为本申请实施例提供的一种PRACH的资源和PUSCH的资源的实例示意图之一;
图4为本申请实施例提供的一种数据处理方法的示意图之二;
图5为本申请实施例提供的一种数据处理方法的示意图之三;
图6为本申请实施例提供的一种PRACH的资源和PUSCH的资源的实例示意图之二;
图7为本申请实施例提供的一种数据处理方法的示意图之四;
图8为本申请实施例提供的一种数据处理方法的示意图之五;
图9为本申请实施例提供的一种数据处理方法的示意图之六;
图10为本申请实施例提供的一种UE的结构示意图;
图11为本申请实施例提供的一种UE的硬件示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一资源和第二资源等是用于区别不同的资源,而不是用于描述资源的特定顺序。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。 例如,多个元件是指两个元件或两个以上元件。
本文中术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,显示面板和/或背光,可以表示:单独存在显示面板,同时存在显示面板和背光,单独存在背光这三种情况。本文中符号“/”表示关联对象是或者的关系,例如输入/输出表示输入或者输出。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面对本申请实施例提供的数据处理方法及用户设备中涉及的一些概念和/或术语做一下解释说明。
四步随机接入(RACH):UE首先可以向网络发送消息1(msg1),该msg1中包含前导码(Preamble);网络设备接收到preamble之后,可以向UE发送消息2(msg2),该msg2中包含该preamble对应的随机接入响应(RAR)消息;UE接收到msg2之后,可以根据RAR的指示,向网络设备发送消息3(msg3);网络设备接收到msg3之后,可以向UE发送消息4(msg4),该msg4中包含竞争解决标识(Contention Resolution ID);UE接收到msg4,即完成四步随机接入过程。
两步随机接入:UE可以向网络设备发送msgA;网络设备接收到msgA之后,可以向UE发送msgB,UE接收到msgB之后,即完成两步随机接入过程。其中,msgA(随机接入请求消息)可以包括随机接入前导码(Preamble)和随机接入信息(高层信息),该随机接入前导码可以承载在PRACH上传输,该随机接入信息可以承载在PUSCH上传输。
PRACH时机(PRACH occasions,RO):在新无线技术(New Radio,NR)中,基站可以配置在一个时间点(time instance,即传输一个PRACH的资源所需的时长,此处也可以指用于传输PRACH的时域资源)上存在多个频分复用(Frequency Division Multiplexing,FDM)的物理随机接入信道传输机会(PRACH transmission occasion)。一个时间点上可以进行FDM的RO个数可以为:{1,2,4,8}。
随机接入前导码只能在参数PRACH Configuration Index配置的时域资源上传输,随机接入前导只能在参数PRACH-FDM配置的频域资源上传输,PRACH的频域资源n RA∈{0,1,...,M-1},其中M等于高层参数PRACH-FDM。在初始接入时,PRACH的频域资源n RA从初始激活上行带宽部分(initial active uplink bandwidth part)内频率最低RO资源开始升序编号,否则,PRACH的频域资源n RA从激活上行带宽部分(active uplink bandwidth part)内频率最低RO资源开始升序编号。
在NR中,RO和实际发送的同步信号块(SSB,例如同步信号(SS)或物理广播信道块(PBCH block))之间存在关联关系。一个RO上可能关联多个SSB,一个RO关联的SSB的数目可以为:{1/8,1/4,1/2,1,2,4,8,16}。对于非竞争的随机接入过程,RO和信道状态信息-参考信号(Channel State Information-Reference Signals,CSI-RS)也可能存在关联关系。一个时间点上的FDM的RO数目为8个,实际传输的SSB数目为4个,例如对应的SSB为SSB#0,SSB#1,SSB#2,SSB#3,每个SSB关 联2个RO。如果UE在SSB0对应的RO上发送PRACH,那么UE在RO#0和RO#1中选择一个RO进行PRACH的发送。
本申请实施例提供一种数据处理方法及用户设备,UE可以根据目标时域间隔(即第一资源的时域位置和第二资源的时域位置之间的间隔,该第一资源为随机接入信道的资源,第二资源为上行数据信道的资源)与第一预设值的关系,进行以下任意一项:发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道。由于目标时域间隔为第一资源的时域位置与第二资源的时域位置之间的间隔,因此UE根据该目标间隔与第一预设值的关系,可以确定该目标时间间隔是否足够UE进行功率调整,从而以确定是否发送承载随机接入消息的随机接入信道和/或上行数据信道,如此可以保证UE有足够的时长进行功率调整,从而保证UE在发送连续的随机接入信道和上行数据信道时的上行传输性能。
本申请实施例提供的数据处理方法及用户设备,可以应用于通信系统中。具体可以应用于基于该通信系统,UE根据两个资源(承载随机接入消息的两个信道的资源)的时域位置之间的间隔,确定如何处理随机接入消息的过程中。
图1示出了本申请实施例提供的一种通信系统的架构示意图。如图1所示,该通信系统可以包括UE 01和网络设备02。其中,UE 01与网络设备02之间可以建立连接并通信。
需要说明的是,本申请实施例中,上述如图1所示的UE 01和网络设备02之间可以是无线连接。为了更加清楚的示意UE 01和网络设备02之间的连接关系,图1中是以实线示意UE 01和网络设备02之间的连接关系的。
UE是一种向用户提供语音和/或数据连通性的设备,具有有线/无线连接功能的手持式设备,或连接到无线调制解调器的其它处理设备。UE可以经过无线接入网(Radio Access Network,RAN)与一个或多个核心网设备进行通信。UE可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与RAN交换语言和/或数据,例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。UE也可以称为用户代理(User Agent)或者终端设备等。
网络设备可以为基站。基站是一种部署在RAN中用于为UE提供无线通信功能的装置。基站可以包括各种形式的宏基站、微基站、中继站、接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在第三代移动通信(3-Generation,3G)网络中,称为基站(NodeB);在LTE系统中,称为演进型基站(evolved NodeB,eNB或eNodeB);在第五代移动通信(5G)网络中,称为gNB等等。随着通信技术的演进,“基站”这一名称可能会发生变化。
本申请实施例提供一种数据处理方法,该数据处理方法可以通过如下几种可能的方式实现。
一种可能的实现方式中,在第二资源的时域位置位于第一资源的时域位置之后的至少N个时间单位(也称为至少N个时域单元)的情况下,UE发送随机接入信道和 上行数据信道。
可以理解,这种实现方式中,第二资源的时域位置与第一资源的时域位置之间的时间间隔(即本申请实施例中的目标时域间隔)为上述至少N个时间单位。
其中,上述第一资源为随机接入信道的资源,第二资源为上行数据信道的资源,且随机接入信道和上行数据信道上用于承载随机接入消息。
具体的,UE可以在发送随机接入信道之后的至少N个时间单位之后,再发送上行数据信道。
另一种可能的实现方式中,在第二资源的时域位置与第一资源的时域位置之间的时间间隔(即本申请实施例中的目标时域间隔)小于N个时间单位的情况下:
UE仅发送随机接入信道;或者,
UE仅发送上行数据信道;或者,
UE不发送随机接入信道和上行数据信道;或者,
UE采用相同发射功率发送随机接入信道和上行数据信道;或者,
UE发送随机接入信道和上行数据信道、且UE在上行数据信道中的前X个时间单位(即本申请实施例中的第一时域单元,也称为前X个时域单元)内不承载上行载荷。
在另一种可能的实现方式中,当UE采用相同发射功率发送随机接入信道和上行数据信道时,UE可以采用随机接入信道的发射功率发送随机接入信道和上行数据信道,或者,UE也可以采用上行数据信道的发射功率发送随机接入信道和上行数据信道。
可选的,本申请实施例中,上述N的数值可以为预定义的或者网络设备配置的。上述X的数值可以为预定义的或者网络设备配置的。
对于第一资源、第二资源、随机接入信道、上行数据信道,以及随机接入消息等将在下述实施例中进行详细描述,此处不予赘述。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的一种数据处理方法及用户设备进行详细地说明。
基于如图1所示的通信系统,本申请实施例提供一种数据处理方法,如图2所示,该数据处理方法可以包括下述的步骤201和步骤202。
步骤201、UE获取目标时域间隔。
本申请实施例中,上述目标时域间隔为第一资源的时域位置和第二资源的时域位置之间的间隔,该第一资源为随机接入信道的资源,该第二资源为上行数据信道的资源,该随机接入信道和该上行数据信道上用于承载随机接入消息。
可选的,本申请实施例中,上述随机接入信道的资源可以为随机接入信道的传输机会,上述上行数据信道的资源可以为上行数据信道的传输机会。
需要说明的是,本申请实施例中,随机接入信道的资源和上行数据信道的资源,均为有效的资源;随机接入信道的传输机会和上行数据信道的传输机会,均为有效的传输机会。其中,随机接入信道(或上行数据信道)的传输机会有效,是指由网络设备配置的随机接入信道(或上行数据信道)的传输机会所在的时域资源,与下行链路(Down Link,DL)资源或DL传输机会不冲突。
可选的,本申请实施例中,上述随机接入信道的资源和上行数据信道的资源可以具有关联关系。其中,随机接入信道的资源和上行数据信道的资源之间的关联关系可 以为一对一的关联关系(即随机接入信道的一个资源与上行数据信道的一个资源关联),也可以为一对多的关联关系(即随机接入信道的一个资源与上行数据信道的多个资源关联),也可以为多对一的关联关系(即随机接入信道的多个资源与上行数据信道的一个资源关联),还可以为多对多的关联关系(即随机接入信道的多个资源与上行数据信道的多个资源关联)。
可选的,本申请实施例中,上述第一资源的时域位置可以为第一资源的结束位置,第二资源的时域位置可以为第二资源的起始位置。
可选的,本申请实施例中,随机接入消息可以包括随机接入前导码(Preamble)和随机接入信息(高层信息),随机接入信道上用于承载随机接入前导码,上行数据信道上用于承载随机接入信息。
可选的,本申请实施例中,上述随机接入消息可以为两步随机接入对应的随机接入消息。
可选的,本申请实施例中,上述第一资源可以包括随机接入信道的时域资源,或者包括随机接入信道的时域资源和频域资源;上述第二资源可以包括上行数据信道的时域资源,或者包括上行数据信道的时域资源和频域资源。
可选的,本申请实施例中,上述随机接入信道可以为PRACH,上行数据信道可以为PUSCH。
可以理解,第二资源的时域位置位于第一资源的时域位置之后。
示例性的,如图3所示,PRACH的资源的时域位置为t1至t2(t2>t1),PUSCH的资源的时域位置为t3至t4(t4>t3≥t2,即PUSCH的资源的时域位置位于PRACH的资源的时域位置之后,图3中是以t3>t2进行示意的),UE可以将PRACH的资源的结束位置(即t2)和PUSCH的资源的起始位置(即t3)之间的间隔确定为目标时域间隔Δt,即目标时域间隔Δt为t3-t2。
步骤202、UE根据目标时域间隔与第一预设值的关系,进行以下任意一项:发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道。
本申请实施例中,UE可以将目标时域间隔与第一预设值进行比较,以确定目标时域间隔与第一预设值之间的关系,即确定目标时域间隔和第一预设值的大小关系。
可选的,本申请实施例中,上述第一预设值可以为预定义的或网络设备配置的。
需要说明的是,上述不发送随机接入信道和上行数据信道可以理解为:放弃在第一资源上发送随机接入信道,且放弃在第二资源上发送上行数据信道。
可选的,本申请实施例中,结合图2,如图4所示,上述步骤202具体可以通过下述的步骤202a实现。
步骤202a、在目标时域间隔大于或等于第一预设值的情况下,UE发送随机接入信道和上行数据信道。
本申请实施例中,在目标时域间隔大于或等于第一预设值的情况下,UE可以在第一资源的时域位置发送随机接入信道,并在第二资源的时域位置发送上行数据信道。
可选的,本申请实施例中,在目标时域间隔大于或等于第一预设值的情况下,UE可以采用随机接入信道的发射功率(即下述的第一发射功率)在第一资源发送随机接 入信道,并采用上行数据信道的发射功率(即下述的第二发射功率)在第二资源发送上行数据信道。
示例性的,结合图3,若目标时域间隔Δt(t3-t2)大于或等于第一预设值,则UE可以在PRACH的资源发送PRACH,并在PUSCH的资源发送PUSCH。
本申请实施例中,由于当目标时域间隔大于或等于第一预设值时,UE有足够的时间进行功率调整(即UE在发送随机接入信道之后,UE有足够时间将随机接入信道的发射功率调整为上行数据信道的发射功率),因此UE可以发送随机接入信道和上行数据信道,从而保证UE发送随机接入信道和上行数据信道时的上行传输性能。
可选的,本申请实施例中,结合图2,如图5所示,上述步骤202具体可以通过下述的步骤202b实现。
步骤202b、在目标时域间隔小于第一预设值的情况下,UE进行以下任意一项:发送随机接入信道;发送上行数据信道;不发送随机接入信道和上行数据信道;发送随机接入信道和上行数据信道,其中,第二资源中的第一时域单元上不承载上行载荷,或者随机接入信道和上行数据信道的发射功率相同。
可选的,本申请实施例中,在目标时域间隔小于第一预设值的情况下,UE可以在第一资源发送随机接入信道。
可选的,本申请实施例中,在目标时域间隔小于第一预设值的情况下,UE可以采用随机接入信道的发射功率在第一资源发送随机接入信道。
可选的,本申请实施例中,在目标时域间隔小于第一预设值的情况下,UE可以在第二资源发送上行数据信道。
可选的,本申请实施例中,在目标时域间隔小于第一预设值的情况下,UE可以采用上行数据信道的发射功率在第二资源发送上行数据信道。
可选的,本申请实施例中,在目标时域间隔小于第一预设值的情况下,UE可以在第一资源发送随机接入信道,并在第二资源中除第一时域单元之外的时域资源发送上行数据信道。
可选的,本申请实施例中,上述第一时域单元可以为预定义的或网络设备配置的。
可选的,本申请实施例中,上述第一时域单元可以为第二资源中从第一时域位置开始的X个时域单元,X的数值为预定义的或网络设备配置的,第一时域位置为第二资源的起始位置。
可选的,本申请实施例中,目标时域间隔与第一时域单元之和大于或等于第一预设值。
示例性的,结合图3,如图6所示,假设t3=t2,即目标时域间隔Δt为0。第一时域单元A为PUSCH的资源中从该资源的起始位置(即t3)开始的X个时域单元,UE可以在PUSCH的资源中除该第一时域单元之外的时域资源(例如图6中的阴影部分B中的时域资源,该阴影部分B为PUSCH的资源中可承载PUSCH传输的时域单元)发送上行数据信道。
可选的,本申请实施例中,上述第一时域单元上承载扩展循环前缀(Cyclic Prefix,CP),例如,承载第二时域单元的循环前缀,第二时域单元为第二资源中位于第一时域单元的下一个时域单元。
可选的,本申请实施例中,在目标时域间隔小于第一预设值的情况下,UE可以采用相同的发射功率发送随机接入信道和上行数据信道。
本申请实施例中,由于当目标时域间隔小于第一预设值时,UE可以仅发送随机接入信道或上行数据信道,因此UE无需进行功率调整(即UE发送随机接入信道之后或发送上行数据信道之前,均无需将随机接入信道的发射功率调整为上行数据信道的发射功率),从而可以保证UE发送随机接入信道或上行数据信道时的上行传输性能。
本申请实施例中,由于当目标时域间隔小于第一预设值时,UE可以发送随机接入信道和上行数据信道,且第二资源中的第一时域单元上不用于传输PUSCH,因此UE有足够的时间在发送随机接入信道和发送上行数据信道之间进行功率调整(即UE在发送随机接入信道之后,可以在目标时域间隔和第一时域单元之内进行功率调整),从而可以保证UE发送随机接入信道和上行数据信道时的上行传输性能。
本申请实施例中,由于当目标时域间隔小于第一预设值时,UE可以发送随机接入信道和上行数据信道,且随机接入信道和上行数据信道的发射功率相同,因此UE无需在发送随机接入信道和发送上行数据信道之间进行功率调整(即UE发送随机接入信道之后,无需将随机接入信道的发射功率调整为上行数据信道的发射功率),从而可以保证UE发送随机接入信道和上行数据信道时的上行传输性能。
本申请实施例提供一种数据处理方法,UE可以根据目标时域间隔(即第一资源的时域位置和第二资源的时域位置之间的间隔,该第一资源为随机接入信道的资源,第二资源为上行数据信道的资源)与第一预设值的关系,进行以下任意一项:发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道。由于目标时域间隔为第一资源的时域位置与第二资源的时域位置之间的间隔,因此UE根据该目标间隔与第一预设值的关系,可以确定该目标时间间隔是否足够UE进行功率调整,从而以确定是否发送承载随机接入消息的随机接入信道和/或上行数据信道,如此可以保证UE有足够的时长进行功率调整,从而保证UE在发送连续的随机接入信道和上行数据信道时的上行传输性能。
可选的,本申请实施例中,结合图4,如图7所示,上述步骤202a具体可以通过下述的步骤301和步骤302实现。
步骤301、在目标时域间隔大于或等于第一预设值的情况下,UE采用第一发射功率发送随机接入信道,并采用第二发射功率发送上行数据信道。
可以理解,UE可以采用第一发射功率向网络设备发送随机接入信道,并在目标时间间隔内将第一发射功率调整为第二发射功率,然后再采用第二发射功率向网络设备发送上行数据信道。
步骤302、网络设备接收UE发送的随机接入信道和上行数据信道。
本申请实施例中,由于当目标时域间隔大于或等于第一预设值时,UE有足够的时间进行功率调整(即UE在发送随机接入信道之后,UE有足够时间将随机接入信道的发射功率调整为上行数据信道的发射功率),因此可以保证UE在发送随机接入信道和发送上行数据信道时,有足够的时长进行功率调整,从而可以保证UE的上行传输性能。
可选的,本申请实施例中,结合图5,在上述步骤202b为“在目标时域间隔小于 第一预设值的情况下,UE发送随机接入信道和上行数据信道,其中,第二资源中的第一时域单元上不承载上行载荷”的情况下,如图8所示,上述步骤202b具体可以通过下述的步骤401和步骤402实现。
步骤401、在目标时域间隔小于第一预设值的情况下,UE采用第一发射功率发送随机接入信道,并采用第二发射功率发送上行数据信道,其中,第二资源中的第一时域单元上不承载上行载荷。
可以理解,UE可以采用第一发射功率向网络设备发送随机接入信道,并在目标时间间隔和第一时域源内将第一发射功率调整为第二发射功率,然后再采用第二发射功率向网络设备发送上行数据信道。
步骤402、网络设备接收UE发送的随机接入信道和上行数据信道。
本申请实施例中,由于当目标时域间隔小于第一预设值时,UE可以发送随机接入信道和上行数据信道,且第二资源中的第一时域单元上不承载上行载荷,因此UE有足够的时间进行功率调整(即UE在发送随机接入信道之后,可以在目标时域间隔和第一时域单元之内进行功率调整),因此可以保证UE在发送随机接入信道和发送上行数据信道时,有足够的时长进行功率调整,从而可以保证UE的上行传输性能。
可选的,本申请实施例中,结合图5,在上述步骤202b为“在目标时域间隔小于第一预设值的情况下,UE发送随机接入信道和上行数据信道,其中,随机接入信道和上行数据信道的发射功率相同”的情况下,如图9所示,上述步骤202b具体可以通过下述的步骤501和步骤502实现。
步骤501、在目标时域间隔小于第一预设值的情况下,UE采用第三发射功率发送随机接入信道,并采用第三发射功率发送上行数据信道。
本申请实施例中,上述第三发射功率为随机接入信道的发射功率或上行数据信道的发射功率。
步骤502、网络设备接收UE发送的随机接入信道和上行数据信道。
本申请实施例中,由于当目标时域间隔小于第一预设值时,UE可以采用第三发射功率发送随机接入信道和上行数据信道,因此UE无需在发送随机接入信道和发送上行数据信道之间进行功率调整,从而可以保证UE发送随机接入信道和上行数据信道时的上行传输性能。
可选的,本申请实施例中,在上述步骤202b为“在目标时域间隔小于第一预设值的情况下,UE发送随机接入信道”的情况下,上述步骤202b具体可以通过下述的步骤601和步骤602实现。
步骤601、在目标时域间隔小于第一预设值的情况下,UE采用第一发射功率发送随机接入信道。
步骤602、网络设备接收UE发送的随机接入信道。
本申请实施例中,由于当目标时域间隔小于第一预设值时,UE可以采用第一发射功率仅发送随机接入信道,因此UE无需进行功率调整,从而可以保证UE发送随机接入信道的上行传输性能。
可选的,本申请实施例中,在上述步骤202b为“在目标时域间隔小于第一预设值的情况下,UE发送上行数据信道”的情况下,上述步骤202b具体可以通过下述的步 骤701和步骤702实现。
步骤701、在目标时域间隔小于第一预设值的情况下,UE采用第二发射功率发送上行数据信道。
步骤702、网络设备接收UE发送的上行数据信道。
本申请实施例中,由于当目标时域间隔小于第一预设值时,UE可以采用第二发射功率仅发送上行数据信道,因此UE无需进行功率调整,从而可以保证UE发送上行数据信道的上行传输性能。
图10示出了本申请实施例中涉及的UE的一种可能的结构示意图。如图10所示,本申请实施例提供的UE 100可以包括:处理单元101。
其中,处理单元101,用于根据目标时域间隔与第一预设值的关系,进行以下任意一项:发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道;其中,目标时域间隔为第一资源的时域位置和第二资源的时域位置之间的间隔,该第一资源为随机接入信道的资源,该第二资源为上行数据信道的资源,该随机接入信道和该上行数据信道上用于承载随机接入消息。
在一种可能的实现方式中,上述处理单元101,具体用于在目标时域间隔大于或等于第一预设值的情况下,发送随机接入信道和上行数据信道。
在一种可能的实现方式中,上述处理单元101,具体用于采用第一发射功率发送随机接入信道,并采用第二发射功率发送上行数据信道。
在一种可能的实现方式中,上述处理单元101,具体用于在目标时域间隔小于第一预设值的情况下,进行以下任意一项:发送随机接入信道;发送上行数据信道;不发送随机接入信道和上行数据信道;发送随机接入信道和上行数据信道,其中,第二资源中的第一时域单元上不承载上行载荷,或者随机接入信道和上行数据信道的发射功率相同。
在一种可能的实现方式中,上述第二资源中的第一时域单元上不承载上行载荷。上述处理单元101,具体用于采用第一发射功率发送随机接入信道,并采用第二发射功率发送上行数据信道。
在一种可能的实现方式中,上述随机接入信道和上行数据信道的发射功率相同。上述处理单元101,具体用于采用第三发射功率发送随机接入信道,并采用第三发射功率发送上行数据信道,该第三发射功率可以为随机接入信道的发射功率或上行数据信道的发射功率。
在一种可能的实现方式中,上述第一预设值可以为预定义的或网络设备配置的。
在一种可能的实现方式中,上述第一时域单元可以为预定义的或网络设备配置的。
在一种可能的实现方式中,上述第一时域单元可以为第二资源中从第一时域位置开始的X个时域单元,X的数值为预定义的或网络设备配置的,第一时域位置为第二资源的起始位置。
在一种可能的实现方式中,上述第一时域单元上承载第二时域单元的循环前缀CP,该第二时域单元为第二资源中位于第一时域单元的下一个时域单元。
在一种可能的实现方式中,上述第一资源的时域位置可以为第一资源的结束位置,上述第二资源的时域位置可以为第二资源的起始位置。
本申请实施例提供的UE能够实现上述方法实施例中UE实现的各个过程,为避免重复,具体描述此处不再赘述。
本申请实施例提供一种UE,由于目标时域间隔为第一资源的时域位置与第二资源的时域位置之间的间隔,因此UE根据该目标间隔与第一预设值的关系,可以确定该目标时间间隔是否足够UE进行功率调整,从而以确定是否发送承载随机接入消息的随机接入信道和/或上行数据信道,如此可以保证UE有足够的时长进行功率调整,从而保证UE在发送连续的随机接入信道和上行数据信道时的上行传输性能。
图11示出了本申请实施例提供的一种UE的硬件示意图。如图11所示,该UE 110包括但不限于:射频单元111、网络模块112、音频输出单元113、输入单元114、传感器115、显示单元116、用户输入单元117、接口单元118、存储器119、处理器120、以及电源121等部件。
需要说明的是,本领域技术人员可以理解,图11中示出的UE结构并不构成对UE的限定,UE可以包括比图11所示更多或更少的部件,或者组合某些部件,或者不同的部件布置。示例性的,在本申请实施例中,UE包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器120,可以用于根据目标时域间隔与第一预设值的关系,进行以下任意一项:发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道;其中,目标时域间隔为第一资源的时域位置和第二资源的时域位置之间的间隔,该第一资源为随机接入信道的资源,该第二资源为上行数据信道的资源,该随机接入信道和该上行数据信道上用于承载随机接入消息。
本申请实施例提供一种UE,由于目标时域间隔为第一资源的时域位置与第二资源的时域位置之间的间隔,因此UE根据该目标间隔与第一预设值的关系,可以确定该目标时间间隔是否足够UE进行功率调整,从而以确定是否发送承载随机接入消息的随机接入信道和/或上行数据信道,如此可以保证UE有足够的时长进行功率调整,从而保证UE在发送连续的随机接入信道和上行数据信道时的上行传输性能。
应理解的是,本申请实施例中,射频单元111可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器120处理;另外,将上行的数据发送给基站。通常,射频单元111包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元111还可以通过无线通信系统与网络和其他设备通信。
UE通过网络模块112为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元113可以将射频单元111或网络模块112接收的或者在存储器119中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元113还可以提供与UE 110执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元113包括扬声器、蜂鸣器以及受话器等。
输入单元114用于接收音频或视频信号。输入单元114可以包括图形处理器(Graphics Processing Unit,GPU)1141和麦克风1142,图形处理器1141对在视频捕 获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元116上。经图形处理器1141处理后的图像帧可以存储在存储器119(或其它存储介质)中或者经由射频单元111或网络模块112进行发送。麦克风1142可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元111发送到移动通信基站的格式输出。
UE 110还包括至少一种传感器115,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1161的亮度,接近传感器可在UE 110移动到耳边时,关闭显示面板1161和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别UE姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器115还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元116用于显示由用户输入的信息或提供给用户的信息。显示单元116可包括显示面板1161,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1161。
用户输入单元117可用于接收输入的数字或字符信息,以及产生与UE的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元117包括触控面板1171以及其他输入设备1172。触控面板1171,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1171上或在触控面板1171附近的操作)。触控面板1171可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器120,接收处理器120发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1171。除了触控面板1171,用户输入单元117还可以包括其他输入设备1172。具体地,其他输入设备1172可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1171可覆盖在显示面板1161上,当触控面板1171检测到在其上或附近的触摸操作后,传送给处理器120以确定触摸事件的类型,随后处理器120根据触摸事件的类型在显示面板1161上提供相应的视觉输出。虽然在图11中,触控面板1171与显示面板1161是作为两个独立的部件来实现UE的输入和输出功能,但是在某些实施例中,可以将触控面板1171与显示面板1161集成而实现UE的输入和输出功能,具体此处不做限定。
接口单元118为外部装置与UE 110连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元118可以用于接收来自外部装置的输入(例如,数据 信息、电力等等)并且将接收到的输入传输到UE 110内的一个或多个元件或者可以用于在UE 110和外部装置之间传输数据。
存储器119可用于存储软件程序以及各种数据。存储器119可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器119可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器120是UE的控制中心,利用各种接口和线路连接整个UE的各个部分,通过运行或执行存储在存储器119内的软件程序和/或模块,以及调用存储在存储器119内的数据,执行UE的各种功能和处理数据,从而对UE进行整体监控。处理器120可包括一个或多个处理单元;可选的,处理器120可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器120中。
UE 110还可以包括给各个部件供电的电源121(比如电池),可选的,电源121可以通过电源管理系统与处理器120逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,UE 110包括一些未示出的功能模块,在此不再赘述。
可选的,本申请实施例还提供一种UE,包括如图11所示的处理器120,存储器119,存储在存储器119上并可在所述处理器120上运行的计算机程序,该计算机程序被处理器120执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被如图11所示的处理器120执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可 以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (24)

  1. 一种数据处理方法,应用于用户设备UE,其特征在于,所述方法包括:
    根据目标时域间隔与第一预设值的关系,进行以下任意一项:
    发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道;
    其中,所述目标时域间隔为第一资源的时域位置和第二资源的时域位置之间的间隔,所述第一资源为所述随机接入信道的资源,所述第二资源为所述上行数据信道的资源,所述随机接入信道和所述上行数据信道上用于承载随机接入消息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据目标时域间隔与第一预设值的关系,进行以下任意一项,包括:
    在所述目标时域间隔大于或等于所述第一预设值的情况下,发送所述随机接入信道和所述上行数据信道。
  3. 根据权利要求2所述的方法,其特征在于,所述发送所述随机接入信道和所述上行数据信道,包括:
    采用第一发射功率发送所述随机接入信道,并采用第二发射功率发送所述上行数据信道。
  4. 根据权利要求1所述的方法,其特征在于,所述根据目标时域间隔与第一预设值的关系,进行以下任意一项,包括:
    在所述目标时域间隔小于所述第一预设值的情况下,进行以下任意一项:
    发送所述随机接入信道;
    发送所述上行数据信道;
    不发送所述随机接入信道和所述上行数据信道;
    发送所述随机接入信道和所述上行数据信道,其中,所述第二资源中的第一时域单元上不承载上行载荷,或者所述随机接入信道和所述上行数据信道的发射功率相同。
  5. 根据权利要求4所述的方法,其特征在于,所述第二资源中的第一时域单元上不承载上行载荷;
    所述发送所述随机接入信道和所述上行数据信道,包括:
    采用第一发射功率发送所述随机接入信道,并采用第二发射功率发送所述上行数据信道。
  6. 根据权利要求4所述的方法,其特征在于,所述随机接入信道和所述上行数据信道的发射功率相同;
    所述发送所述随机接入信道和所述上行数据信道,包括:
    采用第三发射功率发送所述随机接入信道,并采用所述第三发射功率发送所述上行数据信道,所述第三发射功率为所述随机接入信道的发射功率或所述上行数据信道的发射功率。
  7. 根据权利要求1至6中任意一项所述的方法,其特征在于,所述第一预设值为预定义的或网络设备配置的。
  8. 根据权利要求4至6中任意一项所述的方法,其特征在于,所述第一时域单元为预定义的或网络设备配置的。
  9. 根据权利要求4至6中任意一项所述的方法,其特征在于,所述第一时域单元为所述第二资源中从第一时域位置开始的X个时域单元,X的数值为预定义的或网络设备配置的,所述第一时域位置为所述第二资源的起始位置。
  10. 根据权利要求4至6中任意一项所述的方法,其特征在于,所述第一时域单元上承载第二时域单元的循环前缀CP,所述第二时域单元为所述第二资源中位于所述第一时域单元的下一个时域单元。
  11. 根据权利要求1所述的方法,其特征在于,所述第一资源的时域位置为所述第一资源的结束位置,所述第二资源的时域位置为所述第二资源的起始位置。
  12. 一种用户设备UE,其特征在于,所述UE包括:处理单元;
    所述处理单元,用于根据目标时域间隔与第一预设值的关系,进行以下任意一项:
    发送随机接入信道、发送上行数据信道、发送随机接入信道和上行数据信道、不发送随机接入信道和上行数据信道;
    其中,所述目标时域间隔为第一资源的时域位置和第二资源的时域位置之间的间隔,所述第一资源为所述随机接入信道的资源,所述第二资源为所述上行数据信道的资源,所述随机接入信道和所述上行数据信道上用于承载随机接入消息。
  13. 根据权利要求12所述的UE,其特征在于,所述处理单元,具体用于在所述目标时域间隔大于或等于所述第一预设值的情况下,发送所述随机接入信道和所述上行数据信道。
  14. 根据权利要求13所述的UE,其特征在于,所述处理单元,具体用于采用第一发射功率发送所述随机接入信道,并采用第二发射功率发送所述上行数据信道。
  15. 根据权利要求12所述的UE,其特征在于,所述处理单元,具体用于在所述目标时域间隔小于所述第一预设值的情况下,进行以下任意一项:
    发送所述随机接入信道;
    发送所述上行数据信道;
    不发送所述随机接入信道和所述上行数据信道;
    发送所述随机接入信道和所述上行数据信道,其中,所述第二资源中的第一时域单元上不承载上行载荷,或者所述随机接入信道和所述上行数据信道的发射功率相同。
  16. 根据权利要求15所述的UE,其特征在于,所述第二资源中的第一时域单元上不承载上行载荷;
    所述处理单元,具体用于采用第一发射功率发送所述随机接入信道,并采用第二发射功率发送所述上行数据信道。
  17. 根据权利要求15所述的UE,其特征在于,所述随机接入信道和所述上行数据信道的发射功率相同;
    所述处理单元,具体用于采用第三发射功率发送所述随机接入信道,并采用所述第三发射功率发送所述上行数据信道,所述第三发射功率为所述随机接入信道的发射功率或所述上行数据信道的发射功率。
  18. 根据权利要求12至17中任意一项所述的UE,其特征在于,所述第一预设值为预定义的或网络设备配置的。
  19. 根据权利要求15至17中任意一项所述的UE,其特征在于,所述第一时域单 元为预定义的或网络设备配置的。
  20. 根据权利要求15至17中任意一项所述的UE,其特征在于,所述第一时域单元为所述第二资源中从第一时域位置开始的X个时域单元,X的数值为预定义的或网络设备配置的,所述第一时域位置为所述第二资源的起始位置。
  21. 根据权利要求15至17中任意一项所述的UE,其特征在于,所述第一时域单元上承载第二时域单元的循环前缀CP,所述第二时域单元为所述第二资源中位于所述第一时域单元的下一个时域单元。
  22. 根据权利要求12所述的UE,其特征在于,所述第一资源的时域位置为所述第一资源的结束位置,所述第二资源的时域位置为所述第二资源的起始位置。
  23. 一种用户设备UE,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至11中任意一项所述的数据处理方法的步骤。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任意一项所述的数据处理方法的步骤。
PCT/CN2019/130099 2019-01-30 2019-12-30 一种数据处理方法及用户设备 WO2020156005A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19912824.0A EP3920629B1 (en) 2019-01-30 2019-12-30 Data processing method and user equipment
JP2021544408A JP7190058B2 (ja) 2019-01-30 2019-12-30 データ処理方法及びユーザ機器
KR1020217026221A KR20210116588A (ko) 2019-01-30 2019-12-30 데이터 처리 방법 및 사용자 장치
US17/390,376 US20210360709A1 (en) 2019-01-30 2021-07-30 Data processing method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910094345.0A CN111263428B (zh) 2019-01-30 2019-01-30 一种数据处理方法及用户设备
CN201910094345.0 2019-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/390,376 Continuation US20210360709A1 (en) 2019-01-30 2021-07-30 Data processing method and user equipment

Publications (1)

Publication Number Publication Date
WO2020156005A1 true WO2020156005A1 (zh) 2020-08-06

Family

ID=70952038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130099 WO2020156005A1 (zh) 2019-01-30 2019-12-30 一种数据处理方法及用户设备

Country Status (6)

Country Link
US (1) US20210360709A1 (zh)
EP (1) EP3920629B1 (zh)
JP (1) JP7190058B2 (zh)
KR (1) KR20210116588A (zh)
CN (2) CN114375032B (zh)
WO (1) WO2020156005A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615209B (zh) * 2019-04-29 2022-03-15 维沃移动通信有限公司 随机接入方法及装置、用户设备
CN113973370A (zh) * 2020-07-23 2022-01-25 大唐移动通信设备有限公司 随机接入前导码序列的发送、接收方法、终端及网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104618883A (zh) * 2013-11-01 2015-05-13 上海贝尔股份有限公司 在双连接系统的承载分离场景中传输调度请求的方法
CN107371273A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 随机接入方法、装置及用户设备
CN108282855A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 上行功率控制方法及终端
CN108293265A (zh) * 2015-10-21 2018-07-17 松下电器(美国)知识产权公司 用户设备、eNodeB以及无线通信方法
US20180279186A1 (en) * 2017-03-22 2018-09-27 Comcast Cable Communications, Llc Handover Random Access

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242203B (zh) * 2007-02-07 2012-01-11 电信科学技术研究院 一种实现控制信道功率控制的方法及装置
ES2663837T3 (es) * 2011-09-21 2018-04-17 Lg Electronics Inc. Dispositivo terminal de control de potencia de transmisión de señal de enlace ascendente, y procedimiento para el mismo
US9763234B2 (en) * 2013-01-28 2017-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for uplink resource allocation
US9491712B2 (en) * 2013-12-20 2016-11-08 Qualcomm Incorporated PUSCH and PUCCH power control under coverage enhancements in LTE
US9936506B2 (en) * 2015-05-08 2018-04-03 Lg Electronics Inc. Method for receiving or transmitting uplink signal in wireless communication system and apparatus therefor
WO2017151187A1 (en) * 2016-03-02 2017-09-08 Intel IP Corporation Low latency prach design in unlicensed spectrum
US20170265230A1 (en) * 2016-03-14 2017-09-14 Futurewei Technologies, Inc. System and Method for Random Access Backoffs
CN107295662B (zh) * 2016-04-01 2020-12-01 上海诺基亚贝尔股份有限公司 用于实施上行接入的方法及其装置
US11297658B2 (en) * 2016-12-09 2022-04-05 Telefonaktiebolaget Lm Ericsson (Publ) PRACH scheduling method, scheduled PRACH transmission method, network node and user equipment
CN108684076B (zh) * 2018-05-11 2019-12-03 中国信息通信研究院 一种上行传输功率分配方法和移动通信设备
KR20210103475A (ko) * 2018-12-18 2021-08-23 퀄컴 인코포레이티드 2-단계 rach를 위한 시그널링 지원 및 자원 맵핑

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104618883A (zh) * 2013-11-01 2015-05-13 上海贝尔股份有限公司 在双连接系统的承载分离场景中传输调度请求的方法
CN108293265A (zh) * 2015-10-21 2018-07-17 松下电器(美国)知识产权公司 用户设备、eNodeB以及无线通信方法
CN107371273A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 随机接入方法、装置及用户设备
CN108282855A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 上行功率控制方法及终端
US20180279186A1 (en) * 2017-03-22 2018-09-27 Comcast Cable Communications, Llc Handover Random Access

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3920629A4

Also Published As

Publication number Publication date
EP3920629A1 (en) 2021-12-08
CN114375032B (zh) 2024-05-10
EP3920629B1 (en) 2024-05-22
CN111263428A (zh) 2020-06-09
CN114375032A (zh) 2022-04-19
JP7190058B2 (ja) 2022-12-14
US20210360709A1 (en) 2021-11-18
KR20210116588A (ko) 2021-09-27
EP3920629A4 (en) 2022-03-23
JP2022523508A (ja) 2022-04-25
CN111263428B (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2021037148A1 (zh) 数据传输方法及终端
WO2021057655A1 (zh) 信息指示方法、设备及系统
WO2020228529A1 (zh) 半静态调度配置的配置方法、设备及系统
US20210360709A1 (en) Data processing method and user equipment
WO2020156451A1 (zh) 随机接入方法及设备
AU2019348064B2 (en) Method for Processing Terminal Device Capability Information, Terminal Device, and Network-Side Device
WO2020029760A1 (zh) 资源配置方法和装置
EP3813454A1 (en) Measurement interval processing method, terminal and network node
EP3998831A1 (en) Random access method, configuration method, terminal, and network-side device
WO2020249116A1 (zh) 测量方法、设备及系统
WO2019242464A1 (zh) 一种资源指示方法、装置及系统
WO2019242466A1 (zh) 一种随机接入方法、终端及网络设备
WO2020164515A1 (zh) 信号传输方法、设备及系统
US20210204329A1 (en) Random access method and terminal
EP3917257A1 (en) Information transmission method and terminal
WO2019242451A1 (zh) 一种数据传输方法、设备及系统
WO2021088966A1 (zh) 信息处理方法、设备及系统
WO2021017754A1 (zh) 路径变换方法及设备
WO2021023219A1 (zh) 随机接入请求资源的选择方法、终端及网络设备
JP7474241B2 (ja) ランダムアクセス方法及び端末装置
WO2021057657A1 (zh) 资源配置方法、设备及系统
US20220149992A1 (en) Channel sending method and device
EP3993487A1 (en) Handling method and apparatus
WO2023019524A1 (zh) 指示方法、通信设备、通信系统及存储介质
WO2020238964A1 (zh) 资源映射方法及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217026221

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019912824

Country of ref document: EP

Effective date: 20210830