WO2021017754A1 - 路径变换方法及设备 - Google Patents

路径变换方法及设备 Download PDF

Info

Publication number
WO2021017754A1
WO2021017754A1 PCT/CN2020/100277 CN2020100277W WO2021017754A1 WO 2021017754 A1 WO2021017754 A1 WO 2021017754A1 CN 2020100277 W CN2020100277 W CN 2020100277W WO 2021017754 A1 WO2021017754 A1 WO 2021017754A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
target cell
random access
uplink
successful
Prior art date
Application number
PCT/CN2020/100277
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020227006753A priority Critical patent/KR20220043176A/ko
Priority to EP20846933.8A priority patent/EP4009702A4/en
Publication of WO2021017754A1 publication Critical patent/WO2021017754A1/zh
Priority to US17/585,938 priority patent/US20220150772A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a path conversion method and device.
  • Dual connectivity means that user equipment (User Equipment, UE) can simultaneously establish a connection in two cell groups (ie, a master cell group (Master Cell Group, MCG) and a secondary cell group (Secondary Cell Group, SCG)).
  • the MCG includes at least a primary cell (Primary Cell, PCell), and may also include at least one secondary cell (Secondary Cell, SCell);
  • the SCG includes at least a primary and secondary cell (Primary Secondary Cell, PSCell), and may also include at least one SCell.
  • both PCell and PSCell can be called SpCell (Special Cell, special cell).
  • dual-connection mobility such as handover or SCG change
  • the UE can establish a connection between the source cell and the target cell at the same time, and then the UE releases the connection with the source cell and only maintains the connection with the target cell .
  • the UE may only be able to send uplink data on one path at the same time.
  • the uplink data transmission may be interrupted or delayed.
  • the embodiments of the present disclosure provide a path conversion method and device to solve the problem of interruption or delay in uplink data transmission caused by untimely path switching in a dual-connection mobility process.
  • the embodiments of the present disclosure provide a path conversion method, which is applied to a UE, and the method includes: according to a first condition or a target uplink authorization, a transmission path of uplink data is changed from a source cell to a target cell;
  • One condition includes any one of the following: change when the handover is successful, change when the SCG change of the secondary cell group is successful, change when the random access of the target cell is successful during the handover, and the random access of the target cell is successful during the SCG change
  • the target uplink authorization is: the MAC layer of the UE uses the uplink authorization for the target cell when the predetermined condition is met; the predetermined condition includes any one of the following: the handover is successful, the SCG change is successful, The random access of the target cell is successful during the handover, and the random access of the target cell is successful during the SCG change process.
  • the embodiments of the present disclosure provide a UE, the UE includes: a conversion module; a conversion module, configured to change the transmission path of uplink data from a source cell to a target cell according to a first condition or a target uplink authorization; wherein ,
  • the first condition includes any one of the following: change when the handover is successful, change when the SCG change of the secondary cell group is successful, change when the random access of the target cell is successful during the handover, and change the random access of the target cell during the SCG change.
  • the target uplink authorization is the uplink authorization used by the MAC layer of the UE for the target cell if the predetermined conditions are met; the predetermined conditions include any one of the following: handover is successful, SCG change is successful , The random access of the target cell is successful during the handover process, and the random access of the target cell is successful during the SCG change process.
  • the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the UE can change the uplink data transmission path from the source cell to the target cell in time (hereinafter referred to as uplink data transmission path conversion), that is, when the UE needs to transmit uplink data through the target cell, the UE has already transferred the uplink data transmission path from the source cell Transforming to a target cell can avoid interruption or delay in the transmission of uplink data; or, when the predetermined conditions (successful handover, successful SCG change, successful random access to the target cell during the handover, or during the SCG change) In the case where the random access of the target cell is successful), according to the uplink authorization for
  • the embodiments of the present disclosure provide a path transformation method, which is applied to a target network device to which a target cell belongs, and the method includes: sending a target uplink grant to the UE during a random access process of the target cell; wherein, The target uplink authorization is: when the predetermined conditions are met, the uplink authorization used by the MAC layer of the UE; the predetermined conditions include any of the following: the handover is successful, the secondary cell group SCG is successfully changed, and the random access during the handover process If successful, the random access is successful during the SCG change process; the target uplink authorization is used for uplink data transmission path change.
  • an embodiment of the present disclosure provides a network device, which is a target network device to which a target cell belongs, and the network device includes: a sending module; a sending module for performing random access in the target cell , Send the target uplink authorization to the UE; where the target uplink authorization is: the uplink authorization used by the MAC layer of the UE when the predetermined conditions are met; the predetermined conditions include any of the following: handover is successful, the secondary cell group SCG If the change is successful, the random access is successful during the handover process, and the random access is successful during the SCG change process; the target uplink authorization is used for the transmission path change of the uplink data.
  • the target network device to which the target cell belongs sends a target uplink authorization to the UE, where the target uplink authorization is: when a predetermined condition is met, the UE’s The uplink authorization used by the MAC layer; the predetermined conditions include any of the following: handover is successful, the secondary cell group SCG is successfully changed, the random access is successful during the handover, and the random access is successful during the SCG change; the target uplink It is authorized to change the transmission path of uplink data.
  • the target network device sends to the UE during the random access process (when the predetermined conditions are met, the uplink authorization used by the MAC layer of the UE; and is used for sending uplink data (Path change) target uplink authorization, so that in the dual-connection mobility process, the UE can use the target uplink authorization to change the transmission path of uplink data in time, which can reduce the probability of interruption or delay in the transmission of uplink data.
  • the embodiments of the present disclosure provide a path conversion method, which is applied to a target network device to which the target cell belongs, and the method includes: sending target indication information to a source network device to which the source cell belongs according to the target condition, the target indication Information is used to instruct the UE to change the transmission path of uplink data from the source cell to the target cell;
  • the target condition includes any one of the following: when the target network device receives the uplink data sent by the UE through the target cell Send under the condition that a predetermined condition is met, and is sent under the condition that the predetermined condition is met and the target network device sends the first uplink authorization for the target cell to the UE;
  • the predetermined condition includes any of the following: handover If the SCG is changed successfully, the random access of the target cell is successful during the handover process, and the random access of the target cell is successful during the SCG change process.
  • embodiments of the present disclosure provide a network device, which is a target network device to which a target cell belongs, and the network device includes: a sending module; The network device sends target indication information, which is used to instruct the UE to change the transmission path of uplink data from the source cell to the target cell; wherein the target condition includes any one of the following: the target network device receives When the UE sends the uplink data through the target cell, it is sent when the predetermined condition is met.
  • the predetermined condition includes any one of the following: the handover is successful, the SCG change is successful, the random access of the target cell is successful during the handover, and the random access of the target cell is successful during the SCG change.
  • the target network device to which the target cell belongs sends target indication information to the source network device to which the source cell belongs, where the target indication information is used to instruct the UE to route the uplink data transmission path from the source.
  • the cell changes to the target cell.
  • the target network device sends target indication information to the source network device.
  • the source network device can timely obtain that the UE has performed uplink data transmission path change without Then send a dynamically scheduled uplink grant to the UE to avoid interruption or delay in sending uplink data.
  • the embodiments of the present disclosure provide a UE, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program is executed by the processor, Implement the steps of the path conversion method as described in the first aspect.
  • embodiments of the present disclosure provide a network device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • a network device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the embodiments of the present disclosure provide a communication system, the communication system including the UE in the above second aspect and the network device in the above fourth aspect; or, the communication system includes the above in the second aspect The UE in the foregoing sixth aspect, and the network device in the foregoing sixth aspect; or, the communication system includes the UE in the foregoing seventh aspect and the foregoing network device in the eighth aspect.
  • an embodiment of the present disclosure provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the first aspect, the third aspect, and the first aspect described above are implemented.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the disclosure
  • FIG. 2 is one of the flowcharts of the path conversion method provided by the embodiments of the disclosure.
  • FIG. 3 is the second flowchart of the path conversion method provided by an embodiment of the disclosure.
  • FIG. 4 is the third flowchart of the path conversion method provided by the embodiments of the disclosure.
  • FIG. 5 is the fourth flowchart of the path conversion method provided by the embodiments of the disclosure.
  • FIG. 6 is the fifth flowchart of the path conversion method provided by an embodiment of the disclosure.
  • FIG. 7 is the sixth flowchart of the path conversion method provided by the embodiments of the disclosure.
  • FIG. 8 is one of the schematic structural diagrams of the UE provided by an embodiment of the disclosure.
  • FIG. 9 is the second schematic diagram of UE hardware provided by an embodiment of the disclosure.
  • FIG. 10 is one of the schematic structural diagrams of a network device provided by an embodiment of the disclosure.
  • FIG. 11 is the second schematic diagram of hardware of a network device provided by an embodiment of the disclosure.
  • multiple refers to two or more than two, for example, multiple processing units refers to two or more processing units; multiple elements Refers to two or more elements, etc.
  • the technical solutions provided by the present disclosure can be applied to various communication systems, for example, 5G communication systems, future evolution systems, or multiple communication convergence systems, and so on. It can include a variety of application scenarios, such as Machine to Machine (M2M), D2M, macro and micro communications, enhanced Mobile Broadband (eMBB), ultra-high reliability and ultra-low latency communications (ultra Reliable&Low Latency Communication, uRLLC) and Massive Machine Type Communication (mMTC) and other scenarios. These scenarios include, but are not limited to: the communication between the UE and the UE, or the communication between the network device and the network device, or the communication between the network device and the UE, and other scenarios.
  • the embodiments of the present disclosure may be applied to communication between a network device and a UE in a 5G communication system, or a communication between a UE and a UE, or a communication between a network device and a network device.
  • Fig. 1 shows a schematic diagram of a possible structure of a communication system involved in an embodiment of the present disclosure.
  • the communication system includes at least one network device 100 (only one in Figure 1 is taken as an example) and one or more UEs 200 connected to each network device 100 (only one in Figure 1 is taken as an example) Description).
  • the at least one network device 100 can serve at least one cell group (such as MCG or SCG).
  • MCG includes at least one PCell, and may also include at least one SCell
  • MCG includes at least one PSCell, and may also include at least one SCell.
  • the communication system shown in FIG. 1 may be a multi-carrier communication system, for example, a carrier aggregation (CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, etc., which are not limited in the embodiment of the present disclosure.
  • CA carrier aggregation
  • DC Dual Connectivity
  • the aforementioned network device 100 may be a base station, a core network device, a transmission and reception point (Transmission and Reception Point, TRP), a relay station, or an access point.
  • the network device 100 may be a base station transceiver station (BTS) in a Global System for Mobile communication (GSM) or Code Division Multiple Access (CDMA) network, or it may be a broadband
  • the NB (NodeB) in Wideband Code Division Multiple Access (WCDMA) may also be the eNB or eNodeB (evolutional NodeB) in LTE.
  • the network device 100 may also be a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario.
  • the network device 100 may also be a network device in a 5G communication system or a network device in a future evolution network.
  • the wording does not constitute a limitation to the present disclosure.
  • the UE 200 may be a wireless UE or a wired UE.
  • the wireless UE may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless communication function, a computing device, or other processing connected to a wireless modem Equipment, in-vehicle equipment, wearable equipment, UE in future 5G network or UE in future evolved PLMN network, etc.
  • Wireless UEs can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the wireless UEs can be mobile devices, such as mobile phones (or "cellular" phones) and computers with mobile devices.
  • Wireless UEs can also be mobile devices, terminal devices, Access terminal equipment, wireless communication equipment, terminal equipment unit, terminal equipment station, mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), remote station, remote terminal equipment (Remote Terminal), subscriber unit (Subscriber Unit), Subscriber Station (Subscriber Station), User Agent (User Agent), terminal equipment, etc.
  • FIG. 1 shows that the UE 200 is a mobile phone as an example.
  • the uplink data transmission may be interrupted or delayed.
  • the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the UE can change the uplink data transmission path in time, that is, when the UE needs to send uplink data through the target cell, the UE has changed the uplink data transmission path from the source cell to the target cell, which can avoid the interruption or delay of the uplink data transmission Or, in the case of meeting the predetermined conditions (successful handover, successful SCG change, successful random access of the target cell during the handover, or successful random access of the target cell during the SCG change), according to the UE’s
  • the uplink authorization used by the MAC layer for the uplink authorization used by the MAC layer
  • an embodiment of the present disclosure provides a path conversion method.
  • the path conversion method may include the following step 201.
  • Step 201 According to the first condition or the target uplink authorization, the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the first condition includes any one of the following: change when the handover is successful, change when the SCG change of the secondary cell group is successful, change when the random access of the target cell is successful during the handover, and random access to the target cell during the SCG change Change when successful.
  • the target uplink authorization is the uplink authorization used by the MAC layer of the UE for the target cell when the predetermined conditions are met; the predetermined conditions include any of the following: successful handover, successful SCG change, random target cell during handover The access is successful, and the random access of the target cell is successful during the SCG change process.
  • the above-mentioned changing the transmission path of the uplink data from the source cell to the target cell means changing the transmission path of the uplink data from the source connection (or path) to the target connection (or path).
  • the source connection (or path) is the connection (or path) established between the UE and the source cell
  • the target cell (or path) is the connection (or path) established between the UE and the target cell.
  • the uplink authorization is the uplink authorization information, and may specifically be indication information used to indicate uplink data transmission resources.
  • the target uplink grant is indication information used to indicate uplink data transmission resources for the target cell, not indication information used to indicate uplink data transmission resources for the source cell.
  • the handover (ie, dual-connection handover) may specifically be the handover of the primary cell group in the dual connectivity (ie, the primary cell in the primary cell group).
  • the SCG change (that is, the dual-connection SCG change) may specifically be switching the secondary cell group in the dual-connection (that is, the primary and secondary cells in the secondary cell group).
  • the random access may be random access based on contention, or random access based on non-competition, which may be specifically determined according to actual usage requirements, which is not limited in the embodiment of the present disclosure.
  • the contention-based random access process may include the following four steps: step one, the UE sends a random access preamble to the network device; step two, the network device sends random access to the UE Response (Random Access Response); step three, the UE sends a scheduled transmission to the network device (Scheduled Transmission); step four, the network device sends a contention resolution (Contention Resolution) to the UE.
  • the non-contention-based random access procedure may include the following two steps: step one, the UE sends a random access preamble sequence to the network device; step two, the network device sends a random access response to the UE.
  • the embodiments of the present disclosure may also be applicable to other forms of contention-based random access procedures or non-contention-based random access procedures, which are not limited in the embodiments of the present disclosure.
  • step 201 may be specifically implemented in the following two possible implementation manners.
  • the foregoing step 201 may be specifically implemented by the following step 301.
  • Step 301 According to the first condition, the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the first condition includes any of the following: change when the handover is successful, change when the SCG change is successful, change when the random access of the target cell is successful during the handover, and change when the random access of the target cell is successful during the SCG change process .
  • the UE transfers the uplink data transmission path from the source The cell changes to the target cell.
  • the UE when the handover is successful, when the SCG change is successful, when the random access of the target cell is successful during the handover, or when the random access of the target cell is during the SCG change
  • the UE can change the uplink data transmission path in time, that is, when the UE needs to transmit uplink data through the target cell, the UE has changed the uplink data transmission path from the source cell to the target cell, which can avoid interruption or interruption of uplink data transmission. Delay.
  • step 201 can be specifically implemented by the following step 401.
  • Step 401 According to the target uplink authorization, the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the target uplink authorization is: the MAC layer of the UE uses the uplink authorization for the target cell when the predetermined conditions are met; the predetermined conditions include any one of the following: the handover is successful, the SCG change is successful, and the target cell is in the handover process The random access of the target cell is successful, and the random access of the target cell is successful during the SCG change process.
  • the target cell is used according to the MAC layer of the UE.
  • the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the UE when the predetermined conditions (successful handover, successful SCG change, successful random access of the target cell during the handover, or successful random access of the target cell during the SCG change) are met,
  • the UE performs the uplink data transmission path change, that is, when the UE’s MAC layer uses the uplink authorization, the UE performs the uplink data transmission path change, so to a certain extent
  • the UE when the UE needs to send uplink data through the target cell, the UE has changed the uplink data transmission path from the source cell to the target cell, which can reduce the probability of interruption or delay in sending uplink data.
  • the target network device to which the target cell belongs sends configuration information to the UE.
  • the path conversion method provided by the embodiment of the present disclosure may further include the following step 402.
  • Step 402 The target network device sends configuration information to the UE.
  • the configuration information may be radio resource control (Radio Resource Control, RRC) configuration information or RRC reconfiguration information, which is not limited in the embodiment of the present disclosure.
  • RRC Radio Resource Control
  • the target network device may configure the UE with at least one uplink grant (Configured Grant, CG) for the target cell.
  • Configured Grant Configured Grant
  • the target uplink authorization may be the uplink authorization configured by the target network device for the UE in the above configuration information during the dual-connection mobility process; the target uplink authorization may also be the uplink authorization sent by the target network device to the UE when the predetermined conditions are met.
  • Authorization for example, an uplink grant (DG) dynamically scheduled by a target network device through Downlink Control Information (DCI)). Specifically, it can be determined according to actual usage requirements, which is not limited in the embodiment of the present disclosure.
  • the configured uplink authorization may be in an available state (activated state), or may be in an unavailable state (inactive state).
  • the predetermined condition is met, after the UE receives the uplink grant in the unavailable state sent by the target network device, the uplink grant in the unavailable state is activated and becomes an available uplink grant.
  • the UE receives the configuration information sent by the target network device, and according to the received configuration information, the UE triggers the dual-connection mobility procedure and establishes a connection with the source cell and the target cell at the same time.
  • the UE can only send uplink data on one of the source cell and the target cell at the same time. Therefore, the UE needs to change the transmission path of the uplink data in time.
  • step 401 may be specifically implemented by the following step 401a.
  • Step 401a When a predetermined condition is met, when the MAC layer of the UE uses the target uplink authorization, the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the UE when the predetermined conditions (successful handover, successful SCG change, successful random access of the target cell during the handover, or successful random access of the target cell during the SCG change) are met,
  • the target uplink authorization is used in the MAC layer of the UE, the UE performs the uplink data transmission path change.
  • the UE needs to send the uplink data through the target cell, the UE has changed the uplink data transmission path from the source cell to the target cell, which can avoid the uplink Data transmission is interrupted or delayed.
  • the target uplink authorization includes any one of the following: the first uplink authorization used by the MAC layer of the UE is used for the uplink authorization of the target cell, and the uplink authorization used by the UE to send the uplink data is the earliest.
  • the UE is the first to receive the uplink grant for the target cell.
  • the path change method provided by the embodiment of the present disclosure is introduced in the following three possible situations.
  • the target uplink grant is the first uplink grant used by the MAC layer of the UE for the target cell.
  • step 401 may be specifically implemented by the following step 401b.
  • Step 401b When the predetermined condition is met, according to the first uplink authorization used by the MAC layer of the UE for the target cell, the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the target uplink authorization is CG 1.
  • the first uplink grant used by the MAC layer of the UE for the target cell is a dynamically scheduled uplink grant (hereinafter referred to as DG 1), then the target uplink grant is DG 1.
  • step 401b may be: when the MAC layer of the UE uses the first uplink authorization for the target cell when the predetermined conditions are met, the UE changes the transmission path of the uplink data from the source cell to the target cell . That is, the MAC layer of the UE uses the first time point for the uplink authorization of the target cell as the time point for the UE to change the transmission path of the uplink data.
  • the UE when the predetermined conditions are met, according to the first uplink authorization used by the MAC layer of the UE for the target cell, the UE performs the uplink data transmission path change, then when the UE needs to send the uplink data through the target cell When data is being sent, the UE has changed the uplink data transmission path from the source cell to the target cell, which can reduce the probability of interruption or delay in uplink data transmission.
  • the target uplink grant is the uplink grant used for the target cell with the earliest sending time for the UE to send uplink data. That is, the target uplink grant is the uplink grant used by the MAC layer of the UE for the target cell, the uplink grant with the earliest sending time for the UE to send uplink data.
  • step 401 may be specifically implemented by the following step 401c.
  • Step 401c Under the condition that the predetermined conditions are met, according to the MAC layer of the UE, the uplink authorization for the target cell with the earliest transmission time of the UE to send the uplink data is used, and the UE changes the transmission path of the uplink data from the source cell to the target cell .
  • the sending time is the time for the physical layer of the UE to send uplink data to the target network device through the uplink authorization.
  • the UE can know the transmission time corresponding to the uplink grant.
  • the target uplink grant is Among the multiple uplink grants, the uplink grant with the earliest transmission time for the UE to send uplink data.
  • the above-mentioned MAC layer using multiple uplink authorizations within a certain period of time can be: in the case of parallel transmission, the MAC layer uses the multiple uplink authorizations at the same time; the above-mentioned MAC layer uses multiple uplink authorizations within a certain period of time It may also be: in the case of serial transmission, the MAC layer uses the multiple uplink authorizations at different times; the above-mentioned MAC layer uses multiple uplink authorizations within a certain period of time may also be other cases, which are not limited in the embodiment of the present disclosure.
  • the MAC layer can determine to use the multiple uplink authorizations at the same time, but because it is a serial transmission, the MAC layer determines the number according to certain rules (determined according to actual usage requirements) The order and time of use of multiple uplink authorizations.
  • the MAC layer of the UE uses two uplink grants within a certain period of time, they are CG 2 and DG 2 respectively. Regardless of the order in which CG 2 and DG 2 are used by the MAC layer, if the sending time of CG 2 is earlier than DG 2, the target uplink authorization is CG 2, and if the sending time of DG 2 is earlier than CG 2, the target uplink authorization is DG 2. .
  • step 401b may be used in the MAC layer of the UE when the predetermined conditions are met.
  • the UE sends the uplink data with the earliest sending time for the uplink authorization of the target cell
  • the UE will uplink The data transmission path is changed from the source cell to the target cell. That is, the MAC layer of the UE uses the time point for the uplink authorization of the target cell with the earliest transmission time of the UE to send the uplink data as the time point for the UE to change the transmission path of the uplink data.
  • the uplink authorization for the target cell with the earliest transmission time of the UE to send the uplink data is used for the uplink authorization of the target cell.
  • the UE needs to send uplink data through the target cell, the UE has already changed the uplink data transmission path from the source cell to the target cell, which can reduce the probability of interruption or delay in uplink data transmission.
  • the target uplink grant is the first uplink grant received by the UE for the target cell. That is, the target uplink grant is the first uplink grant received by the UE among the uplink grants used by the MAC layer of the UE for the target cell.
  • step 401 may be specifically implemented by the following step 401d.
  • Step 401d When the predetermined condition is met, according to the uplink authorization for the target cell that the UE first received by the UE's MAC layer, the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the first uplink grant for the target cell received by the UE may be a configured uplink grant in an unavailable state.
  • the target uplink grant is DG 3.
  • step 401b may be: when the MAC layer of the UE uses the first uplink authorization for the target cell received by the UE, the UE sends the uplink data when the predetermined conditions are met. The path is changed from the source cell to the target cell. That is, the MAC layer of the UE uses the time point when the UE first receives the uplink authorization for the target cell as the time point when the UE performs the uplink data transmission path change.
  • the UE when a predetermined condition is met, according to the uplink authorization used by the UE's MAC layer, the UE first receives the uplink authorization for the target cell, and the UE performs the uplink data transmission path change, then when the UE needs When transmitting uplink data through the target cell, the UE has changed the uplink data transmission path from the source cell to the target cell, which can reduce the probability of interruption or delay in uplink data transmission.
  • the path conversion method provided in the embodiment of the present disclosure may further include the following steps 403 to 404.
  • Step 403 During the random access process of the target cell, the target network device sends the target uplink authorization to the UE.
  • the target uplink authorization is: when the predetermined conditions are met, the uplink authorization used by the MAC layer of the UE; the predetermined conditions include any one of the following: the handover is successful, the secondary cell group SCG is changed successfully, and the random access is successful during the handover. , Random access is successful during the SCG change process; the target uplink authorization is used for the transmission path change of the uplink data.
  • step 401 For the description of the target uplink authorization, reference may be made to the related description in step 401 above, which is not repeated here.
  • Step 404 During the random access process of the target cell, the UE receives the target uplink authorization from the target network device.
  • the random access is the random access of the target cell in the process of dual-connection mobility, in the process of handover or SCG change.
  • the random access is a four-step random access based on contention;
  • the target uplink authorization is: the uplink authorization transmitted in the fourth step (Msg4) of the random access process.
  • the foregoing step 403 may be specifically implemented by the following step 403a
  • the foregoing step 404 may be specifically implemented by the following step 404a
  • the foregoing step 401 may be specifically implemented by the following step 401e.
  • Step 403a In the fourth step of the contention-based four-step random access process, the target network device sends the target uplink authorization to the UE.
  • the target network device issues a target uplink grant (Uplink Grant) through a medium access control-control unit (MAC-CE) command.
  • Uplink Grant Uplink Grant
  • MAC-CE medium access control-control unit
  • Step 404a In the fourth step of the contention-based four-step random access process, the UE receives the target uplink authorization sent by the target network device.
  • Step 401e In the case of contention resolution, according to the target uplink authorization, the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the contention resolution is the success of a four-step random access based on contention.
  • a scheme is provided to issue a target uplink authorization through Msg4 in a contention-based four-step random access process, which can further reduce the probability of interruption or delay in sending uplink data.
  • the target network device sends to the UE during the random access process (when the predetermined conditions are met, the uplink authorization used by the MAC layer of the UE; and is used for uplink data
  • the target uplink authorization based on the transmission path change), so that in the dual-connection mobility process, the UE can use the target uplink authorization to change the transmission path of uplink data in time, which can reduce the probability of interruption or delay in the transmission of uplink data.
  • the UE when the UE changes the transmission path of the uplink data from the source cell to the target cell, or after the UE changes the transmission path of the uplink data from the source cell to the target cell, the UE may transmit to the source network device to which the source cell belongs The first indication information used to indicate the change of the transmission path of the uplink data.
  • the path conversion method provided by the embodiment of the present disclosure may further include the following steps 405 to 406.
  • Step 405 The UE sends first indication information to the source network device.
  • the first indication information is used to indicate that the transmission path of the uplink data is changed from the source cell to the target cell.
  • Step 406 The source network device receives the first indication information sent by the UE.
  • step 401 and step 405-step 406 are not limited.
  • step 401 may be executed first, and step 405-step 406 may be executed, or step 401 and step 405 may be executed simultaneously.
  • -Step 406, which can be specifically determined according to actual usage requirements.
  • the source network device can learn in time that the UE has changed the sending path of the uplink data from the source cell to the target cell. In this way, on the one hand, the source network device does not need to send dynamically scheduled uplink grants to the UE to avoid interruption or delay in sending uplink data; on the other hand, if the source network device no longer sends scheduled uplink grants to the UE, the source network device The uplink data sent by the UE is no longer received. Only the target network device sends the dynamically scheduled uplink authorization to the UE and receives the uplink data sent by the UE. The target network device can then send the uplink data to the core network device in sequence, thereby ensuring The sequence of the uplink data sent by the core network equipment.
  • the target network device may also send target indication information for indicating the change of the transmission path of the uplink data to the source network device to which the source cell belongs.
  • the path conversion method provided by the embodiment of the present disclosure may further include the following steps 407 to 408.
  • Step 407 According to the target condition, the target network device sends target indication information to the source network device.
  • the target indication information is used to instruct the UE to change the transmission path of the uplink data from the source cell to the target cell.
  • the target condition includes any one of the following: sending when the target network device receives the uplink data sent by the UE through the target cell, sending when a predetermined condition is met, and when the predetermined condition is met and the target network device sends the first One is sent under the uplink authorization for the target cell.
  • the predetermined conditions include any one of the following: the handover is successful, the SCG change is successful, the random access of the target cell is successful during the handover, and the random access of the target cell is successful during the SCG change.
  • step 407 may specifically include, but is not limited to the following three situations:
  • the target network device When the target network device receives the uplink data sent by the UE through the target cell, the target network device sends target indication information to the source network device.
  • the target network device sends target indication information to the source network device .
  • Case 3 In the case of successful handover, successful SCG change, successful random access of the target cell during the handover, or successful random access of the target cell during the SCG change, and the target network device sends the first user to the UE In the case of the uplink authorization of the target cell, the target network device sends target indication information to the source network device.
  • the target condition may further include: sending when the target network device receives the second indication information sent by the UE, the second indication information is used to instruct the UE to change the transmission path of the uplink data from the source cell to the target cell. Then when the UE changes the transmission path of the uplink data from the source cell to the target cell, or after the UE changes the transmission path of the uplink data from the source cell to the target cell, the UE sends the second indication information to the target network device.
  • step 407 may also include the following case 4.
  • Step 408 The source network device receives the target indication information sent by the target network device.
  • the target network device sends target indication information to the source network device according to the target condition, and the source network device can obtain the UE's uplink data in time after receiving the target indication information.
  • the transmission path is changed, and there is no need to send a dynamically scheduled uplink grant to the UE to avoid interruption or delay in the transmission of uplink data.
  • step 405-step 406 and the execution sequence between step 407-step 408 are not limited.
  • step 405-step 406 can be performed first, and then step 407-step 408; or step 407-step 408 can be performed first, and then step 405-step 406 can be performed; step 405-step 406, and step 407 can also be performed simultaneously -Step 408.
  • step 405-step 406 can be performed first, and then step 407-step 408; or step 407-step 408 can be performed first, and then step 405-step 406 can be performed; step 405-step 406, and step 407 can also be performed simultaneously -Step 408.
  • only the above-mentioned step 405-step 406 may be included, or only the above-mentioned step 407-step 408 may be included, which can be specifically determined according to actual usage requirements, which is not limited by the embodiment of the present disclosure.
  • each of the drawings in the embodiments of the present disclosure is an example in combination with the drawings of the independent embodiment. In specific implementation, each of the drawings can also be implemented in combination with any other drawings that can be combined. limited.
  • the path conversion method provided by the embodiment of the present disclosure may further include the above-mentioned steps 405-406; or, with reference to FIG. 4, after step 401, the path conversion provided by the embodiment of the present disclosure The method may also include the above-mentioned steps 405-406.
  • uplink data involved in the embodiments of the present disclosure can be all types of uplink data in related technologies, or can be predefined partial types of uplink data, which can be specifically determined according to actual usage requirements. Not limited.
  • the type of uplink data that cannot be sent by the target cell includes any of the following: PDCP (Packet Data Convergence Protocol) layer data packet, PDCP layer control packet, and PDCP layer data.
  • the above-mentioned PDCP layer data packet may be PDCP Data PDU
  • the above-mentioned PDCP layer control packet may be PDCP control PDU
  • the above PDCP layer data may be PDCP PDU.
  • the foregoing PDCP layer data includes but is not limited to: SRB control packet, SRB data packet, DRB control packet, DRB data packet, PDCP control packet, and PDCP data packet.
  • the types of uplink data that cannot be sent by the target cell include any one of the following: PDCP layer data packets carried by data, PDCP layer control packets carried by data, and PDCP layer data carried by data.
  • Example 1 If the target connection or source connection is a connection that cannot send uplink data, the UE cannot send uplink PDCP Data PDU on the target connection or source connection.
  • Example 2 If the target connection or the source connection is a connection that cannot send uplink data, the UE cannot send the PDCP PDU of the uplink DRB on the target connection or the source connection.
  • Example 3 If the target connection or the source connection is a connection that cannot send uplink data, the UE cannot send the PDCP Data PDU of the uplink DRB on the target connection or the source connection.
  • one PDCP entity of the UE is associated with two RLC (Radio Link Control, radio link control) entities at the same time, and one source RLC entity is associated with the transmission path of the source cell.
  • One target RLC is associated with the transmission path of the target cell.
  • the PDCP entity Before the transmission path of the uplink data is changed by the UE, the PDCP entity sends the uplink data that can be sent to the source RLC entity, and the PDCP entity does not send the uplink data that cannot be sent to the target RLC entity.
  • the PDCP entity does not send uplink data that cannot be sent to the source RLC entity, and the PDCP entity sends uplink data that can be sent to the target RLC entity.
  • an embodiment of the present disclosure provides a UE 500.
  • the UE 500 includes: a conversion module 501; the conversion module 501 is configured to change the transmission path of uplink data from the source cell according to a first condition or target uplink authorization To the target cell; where the first condition includes any of the following: change when the handover is successful, change when the SCG change of the secondary cell group is successful, change when the random access of the target cell is successful during the handover, and change the target cell during the SCG change process
  • the target uplink authorization is: the MAC layer of the UE uses the uplink authorization for the target cell when the predetermined conditions are met; the predetermined conditions include any of the following: handover is successful, SCG change is successful, The random access of the target cell is successful in the handover process, and the random access of the target cell is successful in the SCG change process.
  • the conversion module 501 is specifically configured to convert the transmission path of the uplink data from the source cell to the target cell when the target uplink authorization is used at the MAC layer of the UE.
  • the target uplink authorization includes any one of the following: the first uplink authorization used by the MAC layer of the UE for the target cell, the uplink authorization used for the target cell with the earliest transmission time of the UE to send the uplink data, and the UE first The received uplink grants for the target cell.
  • the UE 500 further includes: a receiving module 502; the receiving module 502 is configured to change the transmission path of the uplink data from the source cell to the target cell before the transformation module 501 changes the transmission path of the uplink data from the source cell to the target cell.
  • the target uplink authorization is received from the target network device to which the target cell belongs.
  • the random access process is a contention-based four-step random access process
  • the target uplink authorization is: the uplink authorization transmitted in the fourth step of the random access process; the transformation module 501 is specifically used for contention resolution
  • the transmission path of the uplink data is changed from the source cell to the target cell.
  • the UE 500 further includes: a sending module 503; the sending module 503 is configured to send first indication information to the source network device to which the source cell belongs, and the first indication information is used to indicate that the transmission path of the uplink data is changed by the source cell To the target cell.
  • a sending module 503 is configured to send first indication information to the source network device to which the source cell belongs, and the first indication information is used to indicate that the transmission path of the uplink data is changed by the source cell To the target cell.
  • the modules that must be included in the UE 500 are indicated by solid line boxes, such as the transformation module 501; the modules that may or may not be included in the UE 500 are indicated by dashed boxes, such as the receiving module 502 and Sending module 503.
  • the UE provided in the embodiments of the present disclosure can implement the various processes shown in the foregoing embodiments, and to avoid repetition, details are not described herein again.
  • the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the UE can change the uplink data transmission path from the source cell to the target cell in time (hereinafter referred to as uplink data transmission path conversion), that is, when the UE needs to transmit uplink data through the target cell, the UE has already transferred the uplink data transmission path from the source cell Transforming to a target cell can avoid interruption or delay in the transmission of uplink data; or, when the predetermined conditions (successful handover, successful SCG change, successful random access to the target cell during the handover, or during the SCG change) In the case where the random access of the target cell is successful), according to the predetermined conditions (successful handover, successful SCG change, successful random access to the target cell during the handover, or during the SCG change) In the case where the random access of the target cell is successful), according to the predetermined conditions (successful handover, successful SCG change, successful random access to the target cell during the handover
  • the UE 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, User input unit 607, interface unit 608, memory 609, processor 610, power supply 611 and other components.
  • a radio frequency unit 601 for example, a radio frequency unit 601
  • a network module 602 for example, a radio frequency unit 601
  • an audio output unit 603 an input unit 604
  • a sensor 605 a display unit 606, User input unit 607, interface unit 608, memory 609, processor 610, power supply 611 and other components.
  • the structure of the UE 600 shown in FIG. 9 does not constitute a limitation on the UE, and the UE 600 may include more or less components than those shown in the figure, or a combination of certain components, or different components Layout.
  • the UE 600 includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer,
  • the processor 610 is configured to change the transmission path of the uplink data from the source cell to the target cell according to the first condition or the target uplink authorization; wherein, the first condition includes any one of the following: change when the handover is successful, and the secondary cell group Change when the SCG change is successful, change when the random access of the target cell is successful during the handover process, and change when the random access of the target cell is successful during the SCG change process; the target uplink authorization is: when the predetermined conditions are met , The uplink authorization used by the MAC layer of the UE for the target cell; the predetermined condition includes any one of the following: handover is successful, the SCG change is successful, the random access of the target cell is successful during the handover, and the SCG change process The random access of the target cell is successful.
  • the first condition includes any one of the following: change when the handover is successful, and the secondary cell group Change when the SCG change is successful, change when the random access of the target cell is successful during the handover process, and change when the random access of the
  • the UE changes the transmission path of the uplink data from the source cell to the target cell.
  • the UE can change the uplink data transmission path from the source cell to the target cell in time (hereinafter referred to as uplink data transmission path conversion), that is, when the UE needs to transmit uplink data through the target cell, the UE has already transferred the uplink data transmission path from the source cell Transforming to a target cell can avoid interruption or delay in the transmission of uplink data; or, when the predetermined conditions (successful handover, successful SCG change, successful random access to the target cell during the handover, or during the SCG change) In the case where the random access of the target cell is successful), according to the predetermined conditions (successful handover, successful SCG change, successful random access to the target cell during the handover, or during the SCG change) In the case where the random access of the target cell is successful), according to the predetermined conditions (successful handover, successful SCG change, successful random access to the target cell during the handover
  • the radio frequency unit 601 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving downlink data from the base station, it is processed by the processor 610; Uplink data is sent to the base station.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 601 can also communicate with the network and other devices through a wireless communication system.
  • the UE 600 provides users with wireless broadband Internet access through the network module 602, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 603 can convert the audio data received by the radio frequency unit 601 or the network module 602 or stored in the memory 609 into audio signals and output them as sounds. Moreover, the audio output unit 603 may also provide audio output related to a specific function performed by the UE 600 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 604 is used to receive audio or video signals.
  • the input unit 604 may include a graphics processing unit (GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 606.
  • the image frame processed by the graphics processor 6041 may be stored in the memory 609 (or other storage medium) or sent via the radio frequency unit 601 or the network module 602.
  • the microphone 6042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 601 for output in the case of a telephone call mode.
  • the UE 600 also includes at least one sensor 605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 6061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 6061 and/or when the UE 600 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify UE posture (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 605 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 606 is used to display information input by the user or information provided to the user.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 607 may be used to receive inputted numeric or character information, and generate key signal input related to the user settings and function control of the UE 600.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072.
  • the touch panel 6071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 6071 or near the touch panel 6071. operating).
  • the touch panel 6071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 610, the command sent by the processor 610 is received and executed.
  • the touch panel 6071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 607 may also include other input devices 6072.
  • other input devices 6072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 6071 can cover the display panel 6061.
  • the touch panel 6071 detects a touch operation on or near it, it is transmitted to the processor 610 to determine the type of the touch event, and then the processor 610 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 6061.
  • the touch panel 6071 and the display panel 6061 are used as two independent components to realize the input and output functions of the UE 600, in some embodiments, the touch panel 6071 and the display panel 6061 can be integrated
  • the implementation of the input and output functions of the UE 600 is not specifically limited here.
  • the interface unit 608 is an interface for connecting an external device to the UE 600.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 608 can be used to receive input from an external device (for example, data information, power, etc.) and transmit the received input to one or more elements in the UE 600 or can be used to communicate between the UE 600 and the external device. Transfer data between.
  • the memory 609 can be used to store software programs and various data.
  • the memory 609 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 609 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 610 is the control center of the UE 600. It uses various interfaces and lines to connect the various parts of the entire UE 600, by running or executing software programs and/or modules stored in the memory 609, and calling data stored in the memory 609 Execute various functions of the UE 600 and process data, thereby monitoring the UE 600 as a whole.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the UE 600 may also include a power supply 611 (such as a battery) for supplying power to various components.
  • a power supply 611 (such as a battery) for supplying power to various components.
  • the power supply 611 may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the UE 600 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a UE, including a processor 610 as shown in FIG. 9, a memory 609, a computer program stored in the memory 609 and running on the processor 610, the computer program When executed by the processor 610, each process of the foregoing method embodiment is realized, and the same technical effect can be achieved. In order to avoid repetition, details are not repeated here.
  • the network device 700 is a target network device to which a target cell belongs.
  • the network device 700 includes: a sending module 701; In the random access process of the target cell, a target uplink authorization is sent to the UE; where the target uplink authorization is: an uplink authorization used by the MAC layer of the UE when a predetermined condition is met; the predetermined condition includes any of the following : The handover is successful, the SCG change of the secondary cell group is successful, the random access is successful during the handover, and the random access is successful during the SCG change; the target uplink authorization is used for the transmission path change of the uplink data.
  • the random access is a four-step random access based on contention;
  • the target uplink authorization is: the uplink authorization transmitted in the fourth step in the random access process.
  • the network device provided in the embodiments of the present disclosure can implement the various processes shown in the foregoing embodiments, and to avoid repetition, details are not described herein again.
  • the target network device to which the target cell belongs sends a target uplink authorization to the UE, where the target uplink authorization is: when a predetermined condition is met, The uplink authorization used by the MAC layer of the UE; the predetermined condition includes any one of the following: the handover is successful, the secondary cell group SCG is successfully changed, the random access is successful during the handover, and the random access is successful during the SCG change;
  • the target uplink authorization is used to change the transmission path of the uplink data.
  • the target network device sends to the UE during the random access process (when the predetermined conditions are met, the uplink authorization used by the MAC layer of the UE; and is used for sending uplink data (Path change) target uplink authorization, so that in the dual-connection mobility process, the UE can use the target uplink authorization to change the transmission path of uplink data in time, which can reduce the probability of interruption or delay in the transmission of uplink data.
  • FIG. 10 is a schematic diagram of the hardware structure of a network device that implements an embodiment of the present disclosure.
  • the network device 700 is a target network device to which a target cell belongs.
  • the network device 700 includes: a sending module 701; the sending module is used to follow target conditions , Send target indication information to the source network device to which the source cell belongs, the target indication information is used to instruct the UE to change the transmission path of uplink data from the source cell to the target cell; wherein the target condition includes any of the following:
  • the target network device sends the uplink data sent by the UE through the target cell, and sends it when a predetermined condition is met, and when the predetermined condition is met and the target network device sends the first data for the target to the UE Sent under the uplink authorization of the cell;
  • the predetermined condition includes any one of the following: handover is successful, the SCG change is successful, the random access of the target cell is successful during the handover, and the random access of the target cell during the SCG change success.
  • the network device provided in the embodiments of the present disclosure can implement the various processes shown in the foregoing embodiments, and to avoid repetition, details are not described herein again.
  • the target network device to which the target cell belongs sends target indication information to the source network device to which the source cell belongs, where the target indication information is used to instruct the UE to route the uplink data transmission path
  • the source cell changes to the target cell.
  • the target network device sends target indication information to the source network device.
  • the source network device can timely obtain that the UE has performed uplink data transmission path change without Then send a dynamically scheduled uplink grant to the UE to avoid interruption or delay in sending uplink data.
  • FIG. 11 is a schematic diagram of the hardware structure of a network device implementing an embodiment of the present disclosure.
  • the network device 800 is a target network device to which a target cell belongs.
  • the network device 800 includes a processor 801, a transceiver 802, a memory 803, and a user interface 804 and bus interface 805.
  • the transceiver 802 is configured to send a target uplink authorization to the UE during the random access process of the target cell; wherein, the target uplink authorization is: when a predetermined condition is met, the MAC layer of the UE
  • the uplink authorization used; the predetermined conditions include any of the following: the handover is successful, the secondary cell group SCG is successfully changed, the random access is successful during the handover, and the random access is successful during the SCG change; the target uplink authorization is used The transmission path of the uplink data is changed.
  • the target network device to which the target cell belongs sends a target uplink authorization to the UE, where the target uplink authorization is: when a predetermined condition is met, The uplink authorization used by the MAC layer of the UE; the predetermined condition includes any one of the following: the handover is successful, the secondary cell group SCG is successfully changed, the random access is successful during the handover, and the random access is successful during the SCG change;
  • the target uplink authorization is used to change the transmission path of the uplink data.
  • the target network device sends to the UE during the random access process (when the predetermined conditions are met, the uplink authorization used by the MAC layer of the UE; and is used for sending uplink data (Path change) target uplink authorization, so that in the dual-connection mobility process, the UE can use the target uplink authorization to change the transmission path of uplink data in time, which can reduce the probability of interruption or delay in the transmission of uplink data.
  • the transceiver 802 is configured to send target indication information to the source network device to which the source cell belongs according to target conditions, where the target indication information is used to instruct the UE to change the transmission path of uplink data from the source cell to The target cell; wherein the target condition includes any one of the following: sending when the target network device receives the uplink data sent by the UE through the target cell, sending when a predetermined condition is met, and when meeting a predetermined Condition and the target network device sends the first uplink authorization for the target cell to the UE; the predetermined condition includes any one of the following: the handover is successful, the SCG change is successful, and the target cell’s The random access is successful, and the random access of the target cell is successful during the SCG change process.
  • the target network device to which the target cell belongs sends target indication information to the source network device to which the source cell belongs, where the target indication information is used to instruct the UE to route the uplink data transmission path
  • the source cell changes to the target cell.
  • the target network device sends target indication information to the source network device.
  • the source network device can timely obtain that the UE has performed uplink data transmission path change without Then send a dynamically scheduled uplink grant to the UE to avoid interruption or delay in sending uplink data.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together. .
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 802 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 804 may also be an interface capable of connecting externally and internally with required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 801 when performing operations.
  • the network device 800 also includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a network device, including a processor 801 as shown in FIG. 11, a memory 803, a computer program stored in the memory 803 and running on the processor 801, and the computer program is
  • the processor 801 implements the process of the path conversion method in the foregoing embodiment when executing, and can achieve the same technical effect. To avoid repetition, details are not described herein again.
  • the embodiments of the present disclosure also provide a communication system, which includes the UE and network equipment as described in the foregoing embodiment.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • the computer program is used by the processor 610 shown in FIG. 9 and/or the processor 801 shown in FIG.
  • the various processes of the foregoing method embodiments are implemented during execution, and the same technical effects can be achieved. To avoid repetition, details are not repeated here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disks, or optical disks, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present disclosure.
  • a terminal device which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开的路径变换方法及设备,该方法包括:根据第一条件或目标上行授权,将上行数据的发送路径由源小区变换到目标小区;其中,第一条件包括切换成功时、辅小区组SCG变更成功时、在切换过程中该目标小区的随机接入成功时或在SCG变更过程中该目标小区的随机接入成功时变换;该目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的用于所述目标小区的上行授权;该预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中该目标小区的随机接入成功,在SCG变更过程中该目标小区的随机接入成功。

Description

路径变换方法及设备
相关申请的交叉引用
本申请主张在2019年08月01日在中国提交的中国专利申请号201910708719.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种路径变换方法及设备。
背景技术
双连接是指用户设备(User Equipment,UE)可以在两个小区组(即,主小区组(Master Cell Group,MCG)和辅小区组(Secondary Cell Group,SCG))同时建立连接。其中,MCG至少包括主小区(Primary Cell,PCell),可能还包括至少一个辅小区(Secondary Cell,SCell);SCG至少包括主辅小区(Primary Secondary Cell,PSCell),可能还包括至少一个SCell。其中,PCell和PSCell又都可以称为SpCell(Special Cell,特殊小区)。在双连接移动过程中(如,切换或SCG变更(SCG change)),UE可以同时在源小区和目标小区建立连接,然后,UE释放与源小区间的连接,仅仅保持与目标小区间的连接。
然而,在双连接移动性过程中,由于UE能力或网络部署复杂度的限制,在同一时刻UE可能只能在一个路径上发送上行数据。
如此,在双连接移动性过程中,若UE不能及时将上行数据的发送路径从源小区变更到目标小区,则可能导致上行数据发送中断或延时。
发明内容
本公开实施例提供一种路径变换方法及设备,以解决双连接移动性过程中由于路径切换不及时,所导致的上行数据发送中断或延时的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种路径变换方法,应用于UE,该方法包括:根据第 一条件或目标上行授权,将上行数据的发送路径由源小区变换到目标小区;其中,第一条件包括以下任意一项:切换成功时变换,辅小区组SCG变更成功时变换,在切换过程中该目标小区的随机接入成功时变换,在SCG变更过程中该目标小区的随机接入成功时变换;该目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的用于所述目标小区的上行授权;该预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中该目标小区的随机接入成功,在SCG变更过程中该目标小区的随机接入成功。
第二方面,本公开实施例提供了一种UE,该UE包括:变换模块;变换模块,用于根据第一条件或目标上行授权,将上行数据的发送路径由源小区变换到目标小区;其中,第一条件包括以下任意一项:切换成功时变换,辅小区组SCG变更成功时变换,在切换过程中该目标小区的随机接入成功时变换,在SCG变更过程中该目标小区的随机接入成功时变换;该目标上行授权为:在满足预定条件的情况下,该UE的MAC层使用的用于该目标小区的上行授权;该预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中该目标小区的随机接入成功,在SCG变更过程中该目标小区的随机接入成功。
在本公开实施例中,根据第一条件或目标上行授权,UE将上行数据的发送路径由源小区变换到目标小区。通过该方案,在双连接移动性过程中,在切换成功时或SCG变更成功时或在切换过程中该目标小区的随机接入成功时或在SCG变更过程中该目标小区的随机接入成功时,UE可以及时将上行数据的发送路径由源小区变换到目标小区(以下简称上行数据的发送路径变换),即在UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,则可以避免上行数据的发送中断或延时;或者,在满足预定条件(切换成功、SCG变更成功、在切换过程中该目标小区的随机接入成功,或在SCG变更过程中该目标小区的随机接入成功)的情况下,根据UE的MAC层使用的用于目标小区的上行授权,UE进行上行数据的发送路径变换,即在UE的MAC层使用上行授权的情况下,UE进行上行数据的发送路径变换,如此在一定程度上,当UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,可以降低上行数据的发送中断或延时的概率。
第三方面,本公开实施例提供了一种路径变换方法,应用于目标小区所属的目标网络设备,该方法包括:在该目标小区的随机接入过程中,向UE发送目标上行授权;其中, 该目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的上行授权;该预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在切换过程中该随机接入成功,在SCG变更过程中该随机接入成功;该目标上行授权用于上行数据的发送路径变换。
第四方面,本公开实施例提供了一种网络设备,该网络设备为目标小区所属的目标网络设备,该网络设备包括:发送模块;发送模块,用于在该目标小区的随机接入过程中,向UE发送目标上行授权;其中,该目标上行授权为:在满足预定条件的情况下,该UE的MAC层使用的上行授权;该预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在切换过程中该随机接入成功,在SCG变更过程中该随机接入成功;该目标上行授权用于上行数据的发送路径变换。
在本公开实施例中,在该目标小区的随机接入过程中,目标小区所属的目标网络设备向UE发送目标上行授权,其中,该目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的上行授权;该预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在切换过程中该随机接入成功,在SCG变更过程中该随机接入成功;该目标上行授权用于上行数据的发送路径变换。通过该方案,在双连接移动性过程中,目标网络设备在该随机接入过程中向UE发送(在满足预定条件的情况下,UE的MAC层使用的上行授权;且用于上行数据的发送路径变换的)目标上行授权,从而在双连接移动性过程中,UE可以使用该目标上行授权及时进行上行数据的发送路径变换,可以降低上行数据的发送中断或延时的概率。
第五方面,本公开实施例提供了一种路径变换方法,应用于目标小区所属的目标网络设备,该方法包括:按照目标条件,向源小区所属的源网络设备发送目标指示信息,该目标指示信息用于指示UE将上行数据的发送路径由该源小区变换到该目标小区;其中,该目标条件包括以下任意一项:在该目标网络设备接收到UE通过该目标小区发送的上行数据的情况下发送,在满足预定条件的情况下发送,在满足预定条件且该目标网络设备向UE发送第一个用于该目标小区的上行授权的情况下发送;该预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中该目标小区的随机接入成功,在SCG变更过程中该目标小区的随机接入成功。
第六方面,本公开实施例提供了一种网络设备,该网络设备为目标小区所属的目标网 络设备,该网络设备包括:发送模块;发送模块,用于按照目标条件,向源小区所属的源网络设备发送目标指示信息,该目标指示信息用于指示UE将上行数据的发送路径由所述源小区变换到所述目标小区;其中,该目标条件包括以下任意一项:在该目标网络设备接收到该UE通过该目标小区发送的上行数据的情况下发送,在满足预定条件的情况下发送,在满足预定条件且该目标网络设备向该UE发送第一个用于该目标小区的上行授权的情况下发送;该预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中该目标小区的随机接入成功,在SCG变更过程中该目标小区的随机接入成功。
在本公开实施例中,按照目标条件,目标小区所属的目标网络设备向源小区所属的源网络设备发送目标指示信息,其中,该目标指示信息用于指示UE将上行数据的发送路径由该源小区变换到该目标小区。通过该方案,在双连接移动性过程中,目标网络设备向源网络设备发送目标指示信息,则源网络设备在收到目标指示信息之后,可以及时获得UE已进行上行数据的发送路径变换,无需再向UE发送动态调度的上行授权,以避免上行数据的发送中断或延时。
第七方面,本公开实施例提供了一种UE,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的路径变换方法的步骤。
第八方面,本公开实施例提供一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第三方面或第五方面所述的路径变换方法的步骤。
第九方面,本公开实施例提供一种通信系统,该通信系统包括如上述第二方面中的UE、以及如上述第四方面中的网络设备;或者,该通信系统包括如上述第二方面中的UE、以及如上述第六方面中的网络设备;或者,该通信系统包括如上述第七方面中的UE、以及如上述第八方面中的网络设备。
第十方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上述第一方面、第三方面和第五方面中的路径变换方法的步骤。
附图说明
图1为本公开实施例提供的一种通信系统的架构示意图;
图2为本公开实施例提供的路径变换方法的流程图之一;
图3为本公开实施例提供的路径变换方法的流程图之二;
图4为本公开实施例提供的路径变换方法的流程图之三;
图5为本公开实施例提供的路径变换方法的流程图之四;
图6为本公开实施例提供的路径变换方法的流程图之五;
图7为本公开实施例提供的路径变换方法的流程图之六;
图8为本公开实施例提供的UE的结构示意图之一;
图9为本公开实施例提供的UE的硬件示意图之二;
图10为本公开实施例提供的网络设备的结构示意图之一;
图11为本公开实施例提供的网络设备的硬件示意图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例中的“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。本文中的“的(英文:of)”,“相应的(英文:corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或者两个以上,例如,多个处理单元是指两个或者两个以上的处理单元;多个元件是指两个或者两个以上的元件等。
本公开提供的技术方案可以应用于各种通信系统,例如,5G通信系统,未来演进系统,或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(Machine to  Machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance Mobile Broadband,eMBB)、超高可靠性与超低时延通信(ultra Reliable&Low Latency Communication,uRLLC)以及海量物联网通信(Massive Machine Type Communication,mMTC)等场景。这些场景包括但不限于:UE与UE之间的通信,或网络设备与网络设备之间的通信,或网络设备与UE间的通信等场景中。本公开实施例可以应用于与5G通信系统中的网络设备与UE之间的通信,或UE与UE之间的通信,或网络设备与网络设备之间的通信。
图1示出了本公开实施例所涉及的通信系统的一种可能的结构示意图。如图1所示,该通信系统包括至少一个网络设备100(图1中仅以一个为例说明)以及每个网络设备100所连接的一个或多个UE 200(图1中仅以一个为例说明)。
该至少一个网络设备100可以服务至少一个小区群(如MCG或SCG)。其中,一个MCG中至少包括一个PCell,可能还包括至少一个SCell;一个MCG中至少包括一个PSCell,可能还包括至少一个SCell。
示例性的,上述图1所示通信系统可以是多载波通信系统,例如,载波聚合(Carrier Aggregation,CA)场景、双连接(Dual Connectivity,DC)场景等,本公开实施例不作限定。
其中,上述的网络设备100可以为基站、核心网设备、发射接收节点(Transmission and Reception Point,TRP)、中继站或接入点等。网络设备100可以是全球移动通信系统(Global System for Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。网络设备100还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。网络设备100还可以是5G通信系统中的网络设备或未来演进网络中的网络设备。然用词并不构成对本公开的限制。
UE 200可以为无线UE也可以为有线UE,该无线UE可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的UE或者未来演进的PLMN 网络中的UE等。无线UE可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线UE可以是移动设备,如移动电话(或称为“蜂窝”电话)和具有移动设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,以及个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备,无线UE也可以为移动设备、终端设备、接入终端设备、无线通信设备、终端设备单元、终端设备站、移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远方站、远程终端设备(Remote Terminal)、订户单元(Subscriber Unit)、订户站(Subscriber Station)、用户代理(User Agent)、终端设备装置等。作为一种实例,在本公开实施例中,图1以UE 200是手机为例示出。
目前,相关技术中,在双连接移动性过程中,若UE不能及时将上行数据的发送路径从源小区变更到目标小区,则可能导致上行数据发送中断或延时。
为了解决上述技术问题,本公开实施例提供一种路径变换方法及设备,根据第一条件或目标上行授权,UE将上行数据的发送路径由源小区变换到目标小区。通过该方案,在双连接移动性过程中,在切换成功时、SCG变更成功时、在切换过程中该目标小区的随机接入成功时或在SCG变更过程中该目标小区的随机接入成功时,UE可以及时进行上行数据的发送路径变换,即在UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,则可以避免上行数据的发送中断或延时;或者,在满足预定条件(切换成功、SCG变更成功、在切换过程中该目标小区的随机接入成功,或在SCG变更过程中该目标小区的随机接入成功)的情况下,根据UE的MAC层使用的用于目标小区的上行授权,UE进行上行数据的发送路径变换,即在UE的MAC层使用上行授权的情况下,UE进行上行数据的发送路径变换,如此在一定程度上,当UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,可以降低上行数据的发送中断或延时的概率。
下面结合附图,通过具体的实施例及其应用场景对本公开实施例提供的一种路径变换方法及设备进行详细地说明。
结合上述内容,本公开实施例提供一种路径变换方法,如图2所示,该路径变换方法可以包括下述的步骤201。
步骤201、根据第一条件或目标上行授权,UE将上行数据的发送路径由源小区变换到目标小区。
其中,第一条件包括以下任意一项:切换成功时变换,辅小区组SCG变更成功时变换,在切换过程中目标小区的随机接入成功时变换,在SCG变更过程中目标小区的随机接入成功时变换。目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的用于目标小区的上行授权;预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中目标小区的随机接入成功,在SCG变更过程中目标小区的随机接入成功。
可以理解,上述将上行数据的发送路径由源小区变换到目标小区,即为将上行数据的发送路径由源连接(或路径)变换到目标连接(或路径)。其中,源连接(或路径)即为UE与源小区之间建立的连接(或路径),目标小区(或路径)即为UE与目标小区之间建立的连接(或路径)。
可以理解,上行授权即为上行授权信息,具体可以为用于指示上行数据发送资源的指示信息。
需要说明的是,本公开实施例中,目标上行授权是用于指示针对目标小区的上行数据发送资源的指示信息,不是用于指示针对源小区的上行数据发送资源的指示信息。
本公开实施例中,切换(即双连接切换)具体可以为切换双连接中的主小区组(即主小区组中的主小区)。
本公开实施例中,SCG变更(即双连接SCG变更)具体可以为切换双连接中的辅小区组(即辅小区组中的主辅小区)。
本公开实施例中,随机接入可以为基于竞争的随机接入,也可以为基于非竞争的随机接入,具体可以根据实际使用需求确定,本公开实施例不作限定。
示例性的,基于竞争的随机接入过程可以包括下述的四个步骤:步骤一、UE向网络设备发送随机接入前导序列(random access preamble);步骤二、网络设备向UE发送随机接入响应(Random Access Response);步骤三、UE向网络设备发送调度传输(Scheduled Transmission);步骤四、网络设备向UE发送竞争解决(Contention Resolution)。基 于非竞争的随机接入过程可以包括下述的两个步骤:步骤一、UE向网络设备发送随机接入前导序列;步骤二、网络设备向UE发送随机接入响应。本公开实施例中还可以适用于其他形式的基于竞争的随机接入过程或基于非竞争的随机接入过程,本公开实施例不作限定。
本公开实施例中,上述步骤201具体的可以通过下述两种可能的实现方式实现。
第一种可能的实现方式:上述步骤201具体可以通过下述步骤301实现。
步骤301、根据第一条件,UE将上行数据的发送路径由源小区变换到目标小区。
其中,第一条件包括以下任意一项:切换成功时变换,SCG变更成功时变换,在切换过程中目标小区的随机接入成功时变换,在SCG变更过程中目标小区的随机接入成功时变换。
示例性的,在切换成功时、SCG变更成功时、在切换过程中目标小区的随机接入成功时或在SCG变更过程中目标小区的随机接入成功时,UE将上行数据的发送路径由源小区变换到目标小区。
本公开实施例中,在双连接移动性过程中,在切换成功时、SCG变更成功时、在切换过程中该目标小区的随机接入成功时或在SCG变更过程中该目标小区的随机接入成功时,UE可以及时进行上行数据的发送路径变换,即在UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,则可以避免上行数据的发送中断或延时。
第二种可能的实现方式:结合图2,如图3所示,上述步骤201具体可以通过下述步骤401实现。
步骤401、根据目标上行授权,UE将上行数据的发送路径由源小区变换到目标小区。
其中,目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的用于目标小区的上行授权;预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中目标小区的随机接入成功,在SCG变更过程中目标小区的随机接入成功。
示例性的,在切换成功、SCG变更成功、在切换过程中目标小区的随机接入成功或在SCG变更过程中目标小区的随机接入成功的情况下,根据UE的MAC层使用的用于目标小区的上行授权(在UE的MAC层使用目标上行授权时或以后),UE将上行数据的发送路径由源小区变换到目标小区。
本公开实施例中,在满足预定条件(切换成功、SCG变更成功、在切换过程中该目标小区的随机接入成功,或在SCG变更过程中该目标小区的随机接入成功)的情况下,根据UE的MAC层使用的用于目标小区的上行授权,UE进行上行数据的发送路径变换,即在UE的MAC层使用上行授权的情况下,UE进行上行数据的发送路径变换,如此在一定程度上,当UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,可以降低上行数据的发送中断或延时的概率。
可选地,在上述步骤401之前,目标小区所属的目标网络设备向UE发送配置信息。
示例性的,结合图3,如图4所示,在步骤401之前,本公开实施例提供的路径变换方法还可以包括下述的步骤402。
步骤402、目标网络设备向UE发送配置信息。
该配置信息可以为无线资源控制(Radio Resource Control,RRC)配置信息,也可以为RRC重配置信息,本公开实施例不作限定。
本公开实施例中,在该配置信息中,目标网络设备可以为UE配置至少一个用于目标小区的上行授权(Configured Grant,CG)。
目标上行授权可以为在双连接移动性过程中,目标网络设备在上述配置信息中为UE配置的上行授权;目标上行授权也可以为在满足预定条件的情况下,目标网络设备向UE发送的上行授权(例如,目标网络设备通过下行控制信息(Downlink Control Information,DCI)动态调度的上行授权(Dyanmic Grant,DG)。具体可以根据实际使用需求确定,本公开实施例不作限定。
需要说明的是,配置的上行授权可能处于可用状态(激活状态),也可以能处于不可用状态(未激活状态)。在满足预定条件的情况下,在UE接收到目标网络设备发送的该处于不可用状态的上行授权后,该处于不可用状态的上行授权被激活,成为可用的上行授权。
UE接收目标网络设备发送的配置信息,并根据接收到的该配置信息,UE触发双连接移动性过程,同时建立与源小区和目标小区的连接。在双连接移动性过程中,在UE释放与源小区的连接之前,UE同一时刻只能在源小区和目标小区中的1个小区上发送上行数据。因此需要UE及时进行上行数据的发送路径变换。
示例性的,在第二中可能的实现方式中,上述步骤401具体可以通过下述步骤401a实现。
步骤401a、在满足预定条件的情况下,在UE的MAC层使用目标上行授权时,UE将上行数据的发送路径由源小区变换到目标小区。
本公开实施例中,在满足预定条件(切换成功、SCG变更成功、在切换过程中该目标小区的随机接入成功,或在SCG变更过程中该目标小区的随机接入成功)的情况下,在UE的MAC层使用目标上行授权时,UE进行上行数据的发送路径变换,则当UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,可以避免上行数据的发送中断或延时。
可选地,在第二中可能的实现方式中,目标上行授权包括以下任一项:UE的MAC层使用的第一个用于目标小区的上行授权,UE发送上行数据的发送时间最早的用于目标小区的上行授权,UE第一个接收到的用于目标小区的上行授权。
下面分三种可能情况介绍本公开实施例提供的路径变换方法。
一种可能的情况,目标上行授权为UE的MAC层使用的第一个用于目标小区的上行授权。
示例性的,上述步骤401具体可以通过下述的步骤401b实现。
步骤401b、在满足预定条件的情况下,根据UE的MAC层使用的第一个用于目标小区的上行授权,UE将上行数据的发送路径由源小区变换到目标小区。
可以理解,在满足预定条件的情况下,若UE的MAC层使用的第一个用于目标小区的上行授权为配置的上行授权(以下称为CG 1,CG 1处于可用状态(激活状态)),则目标上行授权为CG 1。在满足预定条件的情况下,若UE的MAC层使用的第一个用于目标小区的上行授权为动态调度的上行授权(以下称为DG 1),则目标上行授权为DG 1。
结合上述步骤401a,步骤401b可以为:在满足预定条件的情况下,在UE的MAC层使用第一个用于目标小区的上行授权时,UE将上行数据的发送路径由源小区变换到目标小区。也即UE的MAC层使用第一个用于目标小区的上行授权的时间点,作为UE进行上行数据的发送路径变换的时间点。
本公开实施例中,在满足预定条件的情况下,根据UE的MAC层使用的第一个用于目 标小区的上行授权,UE进行上行数据的发送路径变换,则当UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,可以降低上行数据发送中断或延时的概率。
一种可能的情况,目标上行授权为UE发送上行数据的发送时间最早的用于目标小区的上行授权。即目标上行授权为UE的MAC层使用的用于目标小区的上行授权中,UE发送上行数据的发送时间最早的上行授权。
示例性的,上述步骤401具体可以通过下述的步骤401c实现。
步骤401c、在满足预定条件的情况下,根据UE的MAC层使用的,UE发送上行数据的发送时间最早的用于目标小区的上行授权,UE将上行数据的发送路径由源小区变换到目标小区。
可以理解,本公开实施例中,发送时间即为UE的物理层通过该上行授权向目标网络设备发送上行数据的时间。
需要说明的是,在MAC层使用一个上行授权时,UE则可以知道该上行授权对应的发送时间。
可以理解,在满足预定条件的情况下,若UE的MAC层在一定时间内使用多个上行授权(包括下述的至少一种:配置的上行授权和动态调度的上行授权),目标上行授权为该多个上行授权中UE发送上行数据的发送时间最早的上行授权。
需要说明的是,上述MAC层在一定时间内使用多个上行授权可以为:并行传输的情况下,MAC层在同一时刻使用该多个上行授权;上述MAC层在一定时间内使用多个上行授权也可以为:串行传输的情况下,MAC层在不同时刻使用该多个上行授权;上述MAC层在一定时间内使用多个上行授权还可以为其他情况,本公开实施例不作限定。当MAC层在不同时刻使用该多个上行授权时,MAC层可以在同一时刻确定使用该多个上行授权,但由于是串行传输,因此MAC层根据一定规则(根据实际使用需求确定)确定该多个上行授权的使用顺序和使用时间。
示例性的,在满足预设定条件的情况下,若UE的MAC层在一定时间内使用两个上行授权,分别为CG 2和DG 2。不管MAC层使用CG 2和DG 2的顺序如何,若CG 2的发送时间先于DG 2,则目标上行授权为CG 2,若DG 2的发送时间先于CG 2,则目标上行授权为 DG 2。
可选地,结合上述步骤401a,步骤401b可以为:在满足预定条件的情况下,在UE的MAC层使用,UE发送上行数据的发送时间最早的用于目标小区的上行授权时,UE将上行数据的发送路径由源小区变换到目标小区。也即UE的MAC层使用,UE发送上行数据的发送时间最早的用于目标小区的上行授权的时间点,作为UE进行上行数据的发送路径变换的时间点。
本公开实施例中,在满足预定条件的情况下,根据UE的MAC层使用的,UE发送上行数据的发送时间最早的用于目标小区的上行授权,UE进行上行数据的发送路径变换,则当UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,可以降低上行数据发送中断或延时的概率。
一种可能的情况,目标上行授权为UE第一个接收到的用于目标小区的上行授权。即目标上行授权为UE的MAC层使用的用于目标小区的上行授权中,UE第一个接收到的上行授权。
示例性的,上述步骤401具体可以通过下述的步骤401d实现。
步骤401d、在满足预定条件的情况下,根据UE的MAC层使用的,UE第一个接收到的用于目标小区的上行授权,UE将上行数据的发送路径由源小区变换到目标小区。
可以理解,UE第一个接收到的用于目标小区的上行授权可以是配置的处于不可用状态的上行授权。
示例性的,在满足预定条件的情况下,若UE的MAC层使用UE第一个接收到的用于目标小区的上行授权(以下称为DG 3),则目标上行授权为DG 3。
可选地,结合上述步骤401a,步骤401b可以为:在满足预定条件的情况下,在UE的MAC层使用UE第一个接收到的用于目标小区的上行授权时,UE将上行数据的发送路径由源小区变换到目标小区。也即UE的MAC层使用UE第一个接收到的用于目标小区的上行授权的时间点,作为UE进行上行数据的发送路径变换的时间点。
本公开实施例中,在满足预定条件的情况下,根据UE的MAC层使用的,UE第一个接收到的用于目标小区的上行授权,UE进行上行数据的发送路径变换,则当UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,可以降低 上行数据发送中断或延时的概率。
可选地,结合图3,如图5所示,在步骤401之前,本公开实施例提供的路径变换方法还可以包括下述步骤403-步骤404。
步骤403、在目标小区的随机接入过程中,目标网络设备向UE发送目标上行授权。
其中,目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的上行授权;预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在切换过程中随机接入成功,在SCG变更过程中随机接入成功;目标上行授权用于上行数据的发送路径变换。
对目标上行授权的描述可以参考上述步骤401中的相关描述,此处不再赘述。
步骤404、在目标小区的随机接入过程中,UE从目标网络设备接收目标上行授权。
该随机接入为双连接移动性过程中,在切换或SCG变更过程中,目标小区的随机接入。
可选地,随机接入为基于竞争的四步随机接入;目标上行授权为:在随机接入过程中的第四步(Msg4)传输的上行授权。
示例性的,上述步骤403具体的可以通过下述的步骤403a实现,上述步骤404具体的可以通过下述的步骤404a实现,上述步骤401具体可以通过下述步骤401e实现。
步骤403a、在基于竞争的四步随机接入过程中的第四步,目标网络设备向UE发送目标上行授权。
示例性的,在基于竞争的四步随机接入过程中的Msg4中,目标网络设备通过媒体接入控制-控制单元(MAC-CE)命令下发目标上行授权(Uplink Grant)。
步骤404a、在基于竞争的四步随机接入过程中的第四步,UE接收目标网络设备发送的目标上行授权。
步骤401e、在竞争解决的情况下,根据目标上行授权,UE将上行数据的发送路径由源小区变换到目标小区。
竞争解决即基于竞争的四步随机接入成功。
本公开实施例中,提供了通过基于竞争的四步随机接入过程中的Msg4,下发目标上行授权的方案,可以进一步的降低上行数据的发送中断或延时的概率。
本公开实施例中,在双连接移动性过程中,目标网络设备在该随机接入过程中向UE发送(在满足预定条件的情况下,UE的MAC层使用的上行授权;且用于上行数据的发送路 径变换的)目标上行授权,从而在双连接移动性过程中,UE可以使用该目标上行授权及时进行上行数据的发送路径变换,可以降低上行数据的发送中断或延时的概率。
可选地,在UE将上行数据的发送路径由源小区变换到目标小区的同时,或UE将上行数据的发送路径由源小区变换到目标小区之后,UE可以向源小区所属的源网络设备发送用于指示上行数据的发送路径变换的第一指示信息。
示例性的,结合图5,如图6所示,在步骤401之后,本公开实施例提供的路径变换方法还可以包括下述的步骤405-步骤406。
步骤405、UE向源网络设备发送第一指示信息。
第一指示信息用于指示上行数据的发送路径由源小区变换到目标小区。
步骤406、源网络设备接收UE发送的第一指示信息。
需要说明的是,本公开实施例中,不限定上述步骤401与步骤405-步骤406的执行顺序,例如可以先执行步骤401,在执行步骤405-步骤406,也可以同时执行步骤401和步骤405-步骤406,具体可以根据实际使用需求确定。
本公开实施例中,UE向源网络设备发送第一指示信息之后,则源网络设备可以及时获知UE已将上行数据的发送路径由源小区变换为目标小区。如此,一方面源网络设备无需再向UE发送动态调度的上行授权,以避免上行数据的发送中断或延时;另一方面,源网络设备不再向UE发送调度的上行授权,则源网络设备不再收到UE发送的上行数据,只有目标网络设备向UE发送动态调度的上行授权,并接收UE发送的上行数据,进而目标网络设备可以按顺序向核心网设备发送上行数据,从而可以保证向核心网设备发送的上行数据的顺序性。
可选地,本公开实施例中,目标网络设备也可以向源小区所属的源网络设备发送用于指示上行数据的发送路径变换的目标指示信息。
示例性的,结合图6,如图7所示,本公开实施例提供的路径变换方法还可以包括下述的步骤407-步骤408。
步骤407、按照目标条件,目标网络设备向源网络设备发送目标指示信息。
目标指示信息用于指示UE将上行数据的发送路径由源小区变换到目标小区。其中,目标条件包括以下任意一项:在目标网络设备接收到UE通过目标小区发送的上行数据的 情况下发送,在满足预定条件的情况下发送,在满足预定条件且目标网络设备向UE发送第一个用于目标小区的上行授权的情况下发送。预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中目标小区的随机接入成功,在SCG变更过程中目标小区的随机接入成功。
上述步骤407具体的可以包括,但不限于下述3种情况:
情况1、在目标网络设备接收到UE通过目标小区发送的上行数据的情况下,目标网络设备向源网络设备发送目标指示信息。
情况2、在切换成功、SCG变更成功、在切换过程中目标小区的随机接入成功或在SCG变更过程中目标小区的随机接入成功的情况下,目标网络设备向源网络设备发送目标指示信息。
情况3、在切换成功、SCG变更成功、在切换过程中目标小区的随机接入成功或在SCG变更过程中目标小区的随机接入成功的情况下,且目标网络设备向UE发送第一个用于目标小区的上行授权的情况下,目标网络设备向源网络设备发送目标指示信息。
可选地,目标条件还可以包括:在目标网络设备接收到UE发送的第二指示信息的情况下发送,第二指示信息用于指示UE将上行数据的发送路径由源小区变换到目标小区。则在UE将上行数据的发送路径由源小区变换到目标小区的同时,或UE将上行数据的发送路径由源小区变换到目标小区之后,UE向目标网络设备发送第二指示信息。
可以理解,上述步骤407还可以包括下述的情况4。
情况4、在目标网络设备接收到UE发送的第二指示信息的情况下,目标网络设备向源网络设备发送目标指示信息。
步骤408、源网络设备接收目标网络设备发送的目标指示信息。
本公开实施例中,在双连接移动性过程中,按照目标条件,目标网络设备向源网络设备发送目标指示信息,则源网络设备在收到目标指示信息之后,可以及时获得UE已进行上行数据的发送路径变换,无需再向UE发送动态调度的上行授权,以避免上行数据的发送中断或延时。
需要说明的是,本公开实施例中,不限定上述步骤405-步骤406,以及步骤407-步骤408之间的执行顺序。例如,可以先执行步骤405-步骤406,再执行步骤407-步骤408; 也可以先执行步骤407-步骤408,再执行步骤405-步骤406;还可以同时执行步骤405-步骤406,以及步骤407-步骤408。而且,在本公开实施例中,可以只包括上述的步骤405-步骤406,也可以只包括上述的步骤407-步骤408,具体可以根据实际使用需求确定,本公开实施例不作限定。
需要说明的是,本公开实施例中的各个附图均是结合独权实施例附图示例的,具体实现时,各个附图还可以结合其它任意可以结合的附图实现,本公开实施例不作限定。例如,结合图3,在步骤401之后,本公开实施例提供的路径变换方法还可以包括上述的步骤405-步骤406;或者,结合图4,在步骤401之后,本公开实施例提供的路径变换方法还可以包括上述的步骤405-步骤406。
需要说明的是,本公开实施例所涉及的上行数据可以是相关技术中的全部类型的上行数据,也可以是预先定义的部分类型的上行数据,具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,在上行数据的发送路径变换之后目标小区才可以发送的(或源小区不可以发送的)上行数据的类型,或在上行数据的发送路径变换之前源小区可以发送的(或目标小区不可以发送的)上行数据的类型,包括以下任意一种:PDCP(Packet Data Convergence Protocol,包数据汇聚协议)层数据包,PDCP层控制包,PDCP层数据。其中,上述的PDCP层数据包可以为PDCP Data PDU,上述的PDCP层控制包可以为PDCP control PDU,上述的PDCP层数据可以为PDCP PDU。示例性的,上述PDCP层数据(如,PDCP PDU)包括但不限于:SRB控制包、SRB数据包、DRB控制包、DRB数据包、PDCP控制包以及PDCP数据包。
在一种示例中,在上行数据的发送路径变换之后目标小区才可以发送的(或源小区不可以发送的)上行数据的类型,或在上行数据的发送路径变换之前源小区可以发送的(或目标小区不可以发送的)上行数据的类型包括以下任意一种:数据承载的PDCP层数据包,数据承载的PDCP层控制包,数据承载的PDCP层数据。
例1,目标连接或源连接为不能发送上行数据的连接,则UE不能在目标连接或源连接发送上行PDCP Data PDU。
例2,目标连接或源连接为不能发送上行数据的连接,则UE不能在目标连接或源连接 发送上行DRB的PDCP PDU。
例3,目标连接或源连接为不能发送上行数据的连接,则UE不能在目标连接或源连接发送上行DRB的PDCP Data PDU。
本公开实施例中,对于上行数据的发送路径变换,UE的1个PDCP实体同时关联了2个RLC(Radio Link Control,无线链路控制)实体,1个源RLC实体关联源小区的发送路径,1个目标RLC关联目标小区的发送路径。UE在上行数据的发送路径变化前,该PDCP实体向源RLC实体发送可以发送的上行数据,该PDCP实体不向目标RLC实体发送不可以发送的上行数据。UE在上行数据的发送路径变化后,该PDCP实体不向源RLC实体发送不可以发送的上行数据,该PDCP实体向目标RLC实体发送可以发送的上行数据。
图8所示,本公开实施例提供一种UE 500,该UE 500包括:变换模块501;该变换模块501,用于根据第一条件或目标上行授权,将上行数据的发送路径由源小区变换到目标小区;其中,第一条件包括以下任意一项:切换成功时变换,辅小区组SCG变更成功时变换,在切换过程中目标小区的随机接入成功时变换,在SCG变更过程中目标小区的随机接入成功时变换;目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的用于目标小区的上行授权;预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中目标小区的随机接入成功,在SCG变更过程中目标小区的随机接入成功。
可选地,该变换模块501,具体用于在UE的MAC层使用目标上行授权时,将上行数据的发送路径由源小区变换到目标小区。
可选地,目标上行授权包括以下任一项:UE的MAC层使用的第一个用于目标小区的上行授权,UE发送上行数据的发送时间最早的用于目标小区的上行授权,UE第一个接收到的用于目标小区的上行授权。
可选地,UE 500还包括:接收模块502;该接收模块502,用于在该变换模块501根据目标上行授权,将上行数据的发送路径由源小区变换到目标小区之前,在目标小区的随机接入过程中,从目标小区所属的目标网络设备接收目标上行授权。
可选地,随机接入过程为基于竞争的四步随机接入过程,目标上行授权为:在随机接入过程中的第四步传输的上行授权;该变换模块501,具体用于在竞争解决的情况下,根据目标上行授权,将上行数据的发送路径由源小区变换到目标小区。
可选地,UE 500还包括:发送模块503;该发送模块503,用于向源小区所属的源网络设备发送第一指示信息,第一指示信息用于指示上行数据的发送路径由源小区变换到目标小区。
需要说明的是,如图8所示,UE 500中一定包括的模块用实线框示意,如变换模块501;UE 500中可以包括也可以不包括的模块用虚线框示意,如接收模块502和发送模块503。
本公开实施例提供的UE能够实现上述实施例所示的各个过程,为避免重复,此处不再赘述。
本公开实施例提供的UE,根据第一条件或目标上行授权,UE将上行数据的发送路径由源小区变换到目标小区。通过该方案,在双连接移动性过程中,在切换成功时或SCG变更成功时或在切换过程中该目标小区的随机接入成功时或在SCG变更过程中该目标小区的随机接入成功时,UE可以及时将上行数据的发送路径由源小区变换到目标小区(以下简称上行数据的发送路径变换),即在UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,则可以避免上行数据的发送中断或延时;或者,在满足预定条件(切换成功、SCG变更成功、在切换过程中该目标小区的随机接入成功,或在SCG变更过程中该目标小区的随机接入成功)的情况下,根据UE的MAC层使用的用于目标小区的上行授权,UE进行上行数据的发送路径变换,即在UE的MAC层使用上行授权的情况下,UE进行上行数据的发送路径变换,如此在一定程度上,当UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,可以降低上行数据的发送中断或延时的概率。
图9为实现本公开各个实施例的一种UE的硬件结构示意图,该UE 600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、处理器610、以及电源611等部件。本领域技术人员可以理解,图9中示出的UE 600的结构并不构成对UE的限定,UE 600可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,UE 600包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载UE、可穿戴设备、以及计步器等。
其中,处理器610,用于根据第一条件或目标上行授权,将上行数据的发送路径由源小区变换到目标小区;其中,第一条件包括以下任意一项:切换成功时变换,辅小区组SCG变更成功时变换,在切换过程中该目标小区的随机接入成功时变换,在SCG变更过程中该目标小区的随机接入成功时变换;该目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的用于所述目标小区的上行授权;该预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中该目标小区的随机接入成功,在SCG变更过程中该目标小区的随机接入成功。
本公开实施例提供的UE,根据第一条件或目标上行授权,UE将上行数据的发送路径由源小区变换到目标小区。通过该方案,在双连接移动性过程中,在切换成功时或SCG变更成功时或在切换过程中该目标小区的随机接入成功时或在SCG变更过程中该目标小区的随机接入成功时,UE可以及时将上行数据的发送路径由源小区变换到目标小区(以下简称上行数据的发送路径变换),即在UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,则可以避免上行数据的发送中断或延时;或者,在满足预定条件(切换成功、SCG变更成功、在切换过程中该目标小区的随机接入成功,或在SCG变更过程中该目标小区的随机接入成功)的情况下,根据UE的MAC层使用的用于目标小区的上行授权,UE进行上行数据的发送路径变换,即在UE的MAC层使用上行授权的情况下,UE进行上行数据的发送路径变换,如此在一定程度上,当UE需要通过目标小区发送上行数据时,UE已经将上行数据发送路径由源小区变换为目标小区,可以降低上行数据的发送中断或延时的概率。
应理解的是,本公开实施例中,射频单元601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器610处理;另外,将上行的数据发送给基站。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元601还可以通过无线通信系统与网络和其他设备通信。
UE 600通过网络模块602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元603可以将射频单元601或网络模块602接收的或者在存储器609中存 储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元603还可以提供与UE600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元603包括扬声器、蜂鸣器以及受话器等。
输入单元604用于接收音频或视频信号。输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元606上。经图形处理器6041处理后的图像帧可以存储在存储器609(或其它存储介质)中或者经由射频单元601或网络模块602进行发送。麦克风6042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元601发送到移动通信基站的格式输出。
UE 600还包括至少一种传感器605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板6061的亮度,接近传感器可在UE 600移动到耳边时,关闭显示面板6061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别UE姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元606用于显示由用户输入的信息或提供给用户的信息。显示单元606可包括显示面板6061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板6061。
用户输入单元607可用于接收输入的数字或字符信息,以及产生与UE 600的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6071上或在触控面板6071附近的操作)。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制 器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6071。除了触控面板6071,用户输入单元607还可以包括其他输入设备6072。具体地,其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板6071可覆盖在显示面板6061上,当触控面板6071检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板6061上提供相应的视觉输出。虽然在图9中,触控面板6071与显示面板6061是作为两个独立的部件来实现UE 600的输入和输出功能,但是在某些实施例中,可以将触控面板6071与显示面板6061集成而实现UE 600的输入和输出功能,具体此处不做限定。
接口单元608为外部装置与UE 600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到UE 600内的一个或多个元件或者可以用于在UE 600和外部装置之间传输数据。
存储器609可用于存储软件程序以及各种数据。存储器609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是UE 600的控制中心,利用各种接口和线路连接整个UE 600的各个部分,通过运行或执行存储在存储器609内的软件程序和/或模块,以及调用存储在存储器609内的数据,执行UE 600的各种功能和处理数据,从而对UE 600进行整体监控。处理器610可包括一个或多个处理单元;可选地,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理 无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
UE 600还可以包括给各个部件供电的电源611(比如电池),可选地,电源611可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,UE 600包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种UE,包括如图9所示的处理器610,存储器609,存储在存储器609上并可在所述处理器610上运行的计算机程序,该计算机程序被处理器610执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图10为实现本公开实施例的一种网络设备的硬件结构示意图,该网络设备700为目标小区所属的目标网络设备,该网络设备700包括:发送模块701;该发送模块701,用于在该目标小区的随机接入过程中,向UE发送目标上行授权;其中,该目标上行授权为:在满足预定条件的情况下,该UE的MAC层使用的上行授权;该预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在切换过程中该随机接入成功,在SCG变更过程中该随机接入成功;该目标上行授权用于上行数据的发送路径变换。
可选地,该随机接入为基于竞争的四步随机接入;该目标上行授权为:在该随机接入过程中的第四步传输的上行授权。
本公开实施例提供的网络设备能够实现上述实施例所示的各个过程,为避免重复,此处不再赘述。
本公开实施例提供的网络设备,在该目标小区的随机接入过程中,目标小区所属的目标网络设备向UE发送目标上行授权,其中,该目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的上行授权;该预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在切换过程中该随机接入成功,在SCG变更过程中该随机接入成功;该目标上行授权用于上行数据的发送路径变换。通过该方案,在双连接移动性过程中,目标网络设备在该随机接入过程中向UE发送(在满足预定条件的情况下,UE的MAC层使用的上行授权;且用于上行数据的发送路径变换的)目标上行授权,从而在双连接移动性过程中,UE可以使用该目标上行授权及时进行上行数据的发送路径变换,可以降低上行数据的发送 中断或延时的概率。
图10为实现本公开实施例的一种网络设备的硬件结构示意图,该网络设备700为目标小区所属的目标网络设备,该网络设备700包括:发送模块701;该发送模块,用于按照目标条件,向源小区所属的源网络设备发送目标指示信息,该目标指示信息用于指示UE将上行数据的发送路径由该源小区变换到该目标小区;其中,该目标条件包括以下任意一项:在该目标网络设备接收到该UE通过该目标小区发送的上行数据的情况下发送,在满足预定条件的情况下发送,在满足预定条件且该目标网络设备向该UE发送第一个用于该目标小区的上行授权的情况下发送;该预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中该目标小区的随机接入成功,在SCG变更过程中该目标小区的随机接入成功。
本公开实施例提供的网络设备能够实现上述实施例所示的各个过程,为避免重复,此处不再赘述。
本公开实施例提供的网络设备,按照目标条件,目标小区所属的目标网络设备向源小区所属的源网络设备发送目标指示信息,其中,该目标指示信息用于指示UE将上行数据的发送路径由该源小区变换到该目标小区。通过该方案,在双连接移动性过程中,目标网络设备向源网络设备发送目标指示信息,则源网络设备在收到目标指示信息之后,可以及时获得UE已进行上行数据的发送路径变换,无需再向UE发送动态调度的上行授权,以避免上行数据的发送中断或延时。
图11为实现本公开实施例的一种网络设备的硬件结构示意图,该网络设备800为目标小区所属的目标网络设备,该网络设备800包括:处理器801、收发机802、存储器803、用户接口804和总线接口805。
一种情况中,收发机802,用于在该目标小区的随机接入过程中,向UE发送目标上行授权;其中,该目标上行授权为:在满足预定条件的情况下,该UE的MAC层使用的上行授权;该预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在切换过程中该随机接入成功,在SCG变更过程中该随机接入成功;该目标上行授权用于上行数据的发送路径变换。
本公开实施例提供的网络设备,在该目标小区的随机接入过程中,目标小区所属的目 标网络设备向UE发送目标上行授权,其中,该目标上行授权为:在满足预定条件的情况下,UE的MAC层使用的上行授权;该预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在切换过程中该随机接入成功,在SCG变更过程中该随机接入成功;该目标上行授权用于上行数据的发送路径变换。通过该方案,在双连接移动性过程中,目标网络设备在该随机接入过程中向UE发送(在满足预定条件的情况下,UE的MAC层使用的上行授权;且用于上行数据的发送路径变换的)目标上行授权,从而在双连接移动性过程中,UE可以使用该目标上行授权及时进行上行数据的发送路径变换,可以降低上行数据的发送中断或延时的概率。
另一种情况中,收发机802,用于按照目标条件,向源小区所属的源网络设备发送目标指示信息,该目标指示信息用于指示UE将上行数据的发送路径由所述源小区变换到所述目标小区;其中,该目标条件包括以下任意一项:在该目标网络设备接收到该UE通过该目标小区发送的上行数据的情况下发送,在满足预定条件的情况下发送,在满足预定条件且该目标网络设备向该UE发送第一个用于该目标小区的上行授权的情况下发送;该预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中该目标小区的随机接入成功,在SCG变更过程中该目标小区的随机接入成功。
本公开实施例提供的网络设备,按照目标条件,目标小区所属的目标网络设备向源小区所属的源网络设备发送目标指示信息,其中,该目标指示信息用于指示UE将上行数据的发送路径由该源小区变换到该目标小区。通过该方案,在双连接移动性过程中,目标网络设备向源网络设备发送目标指示信息,则源网络设备在收到目标指示信息之后,可以及时获得UE已进行上行数据的发送路径变换,无需再向UE发送动态调度的上行授权,以避免上行数据的发送中断或延时。
本公开实施例中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的UE,用户接口804还可以是能够外接内接需要设备的接口, 连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
另外,网络设备800还包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种网络设备,包括如图11所示的处理器801,存储器803,存储在存储器803上并可在处理器801上运行的计算机程序,该计算机程序被处理器801执行时实现上述实施例一种路径变换方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种通信系统,该通信系统包括如上述实施例所述的UE、以及网络设备。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被如图9所示的处理器610和/或如图11所示的处理器801执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在 本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (22)

  1. 一种路径变换方法,应用于用户设备UE,所述方法包括:
    根据第一条件或目标上行授权,将上行数据的发送路径由源小区变换到目标小区;
    其中,所述第一条件包括以下任意一项:切换成功时变换,辅小区组SCG变更成功时变换,在切换过程中所述目标小区的随机接入成功时变换,在SCG变更过程中所述目标小区的随机接入成功时变换;
    所述目标上行授权为:在满足预定条件的情况下,所述UE的MAC层使用的用于所述目标小区的上行授权;所述预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中所述目标小区的随机接入成功,在SCG变更过程中所述目标小区的随机接入成功。
  2. 根据权利要求1所述的方法,其中,所述根据目标上行授权,将上行数据的发送路径由源小区变换到目标小区,包括:
    在所述UE的MAC层使用所述目标上行授权时,将上行数据的发送路径由所述源小区变换到所述目标小区。
  3. 根据权利要求1或2所述的方法,其中,所述目标上行授权包括以下任一项:
    所述UE的MAC层使用的第一个用于所述目标小区的上行授权,
    所述UE发送上行数据的发送时间最早的用于所述目标小区的上行授权,
    所述UE第一个接收到的用于所述目标小区的上行授权。
  4. 根据权利要求1或2所述的方法,其中,所述根据目标上行授权,将上行数据的发送路径由源小区变换到目标小区之前,所述方法还包括:
    在所述目标小区的随机接入过程中,从所述目标小区所属的目标网络设备接收所述目标上行授权。
  5. 根据权利要求4所述的方法,其中,所述随机接入过程为基于竞争的四步随机接入过程,所述目标上行授权为:在所述随机接入过程中的第四步传输的上行授权;
    所述根据目标上行授权,将上行数据的发送路径由源小区变换到目标小区,包括:
    在竞争解决的情况下,根据所述目标上行授权,将上行数据的发送路径由所述源小区变换到所述目标小区。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    向所述源小区所属的源网络设备发送第一指示信息,所述第一指示信息用于指示所述上行数据的发送路径由所述源小区变换到所述目标小区。
  7. 一种路径变换方法,应用于目标小区所属的目标网络设备,所述方法包括:
    在所述目标小区的随机接入过程中,向用户设备UE发送目标上行授权;
    其中,所述目标上行授权为:在满足预定条件的情况下,所述UE的MAC层使用的上行授权;所述预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在切换过程中所述随机接入成功,在SCG变更过程中所述随机接入成功;
    所述目标上行授权用于上行数据的发送路径变换。
  8. 根据权利要求7所述的方法,其中,所述随机接入为基于竞争的四步随机接入;所述目标上行授权为:在所述随机接入过程中的第四步传输的上行授权。
  9. 一种路径变换方法,应用于目标小区所属的目标网络设备,所述方法包括:
    按照目标条件,向源小区所属的源网络设备发送目标指示信息,所述目标指示信息用于指示用户设备UE将上行数据的发送路径由所述源小区变换到所述目标小区;
    其中,所述目标条件包括以下任意一项:在所述目标网络设备接收到所述UE通过所述目标小区发送的上行数据的情况下发送,在满足预定条件的情况下发送,在满足预定条件且所述目标网络设备向所述UE发送第一个用于所述目标小区的上行授权的情况下发送;
    所述预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中所述目标小区的随机接入成功,在SCG变更过程中所述目标小区的随机接入成功。
  10. 一种用户设备UE,所述UE包括:变换模块;
    所述变换模块,用于根据第一条件或目标上行授权,将上行数据的发送路径由源小区变换到目标小区;
    其中,所述第一条件包括以下任意一项:切换成功时变换,辅小区组SCG变更成功时变换,在切换过程中所述目标小区的随机接入成功时变换,在SCG变更过程中所述目标小区的随机接入成功时变换;
    所述目标上行授权为:在满足预定条件的情况下,所述UE的MAC层使用的用于所 述目标小区的上行授权;所述预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中所述目标小区的随机接入成功,在SCG变更过程中所述目标小区的随机接入成功。
  11. 根据权利要求10所述的UE,其中,所述变换模块,具体用于在所述UE的MAC层使用所述目标上行授权时,将上行数据的发送路径由所述源小区变换到所述目标小区。
  12. 根据权利要求10或11所述的UE,其中,所述目标上行授权包括以下任一项:
    所述UE的MAC层使用的第一个用于所述目标小区的上行授权,
    所述UE发送上行数据的发送时间最早的用于所述目标小区的上行授权,
    所述UE第一个接收到的用于所述目标小区的上行授权。
  13. 根据权利要求10或11所述的UE,其中,所述UE还包括:接收模块;
    所述接收模块,用于在所述变换模块根据目标上行授权,将上行数据的发送路径由源小区变换到目标小区之前,在所述目标小区的随机接入过程中,从所述目标小区所属的目标网络设备接收所述目标上行授权。
  14. 根据权利要求13所述的UE,其中,所述随机接入过程为基于竞争的四步随机接入过程,所述目标上行授权为:在所述随机接入过程中的第四步传输的上行授权;
    所述变换模块,具体用于在竞争解决的情况下,根据所述目标上行授权,将上行数据的发送路径由所述源小区变换到所述目标小区。
  15. 根据权利要求10所述的UE,其中,所述UE还包括:发送模块;
    所述发送模块,用于向所述源小区所属的源网络设备发送第一指示信息,所述第一指示信息用于指示所述上行数据的发送路径由所述源小区变换到所述目标小区。
  16. 一种网络设备,所述网络设备为目标小区所属的目标网络设备,所述网络设备包括:发送模块;
    所述发送模块,用于在所述目标小区的随机接入过程中,向用户设备UE发送目标上行授权;
    其中,所述目标上行授权为:在满足预定条件的情况下,所述UE的MAC层使用的上行授权;所述预定条件包括以下任意一项:切换成功,辅小区组SCG变更成功,在 切换过程中所述随机接入成功,在SCG变更过程中所述随机接入成功;
    所述目标上行授权用于上行数据的发送路径变换。
  17. 根据权利要求16所述的网络设备,其中,所述随机接入为基于竞争的四步随机接入;所述目标上行授权为:在所述随机接入过程中的第四步传输的上行授权。
  18. 一种网络设备,所述网络设备为目标小区所属的目标网络设备,所述网络设备包括:发送模块;
    所述发送模块,用于按照目标条件,向源小区所属的源网络设备发送目标指示信息,所述目标指示信息用于指示用户设备UE将上行数据的发送路径由所述源小区变换到所述目标小区;
    其中,所述目标条件包括以下任意一项:在所述目标网络设备接收到所述UE通过所述目标小区发送的上行数据的情况下发送,在满足预定条件的情况下发送,在满足预定条件且所述目标网络设备向所述UE发送第一个用于所述目标小区的上行授权的情况下发送;
    所述预定条件包括以下任意一项:切换成功,SCG变更成功,在切换过程中所述目标小区的随机接入成功,在SCG变更过程中所述目标小区的随机接入成功。
  19. 一种用户设备UE,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至6中任一项所述的路径变换方法的步骤。
  20. 一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求7至9中任一项所述的路径变换方法的步骤。
  21. 一种通信系统,所述通信系统包括如权利要求10至15中任一项所述的用户设备UE、以及如权利要求16至18中任一项所述的网络设备;或者,
    所述通信系统包括如权利要求19所述的UE、以及如权利要求20所述的网络设备。
  22. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的路径变换方法的步骤。
PCT/CN2020/100277 2019-08-01 2020-07-03 路径变换方法及设备 WO2021017754A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227006753A KR20220043176A (ko) 2019-08-01 2020-07-03 경로 변경 방법 및 장치
EP20846933.8A EP4009702A4 (en) 2019-08-01 2020-07-03 ROUTE MODIFICATION METHOD AND DEVICE
US17/585,938 US20220150772A1 (en) 2019-08-01 2022-01-27 Path switching method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910708719.3A CN111800831B (zh) 2019-08-01 2019-08-01 路径变换方法、设备、通信系统及计算机可读存储介质
CN201910708719.3 2019-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/585,938 Continuation US20220150772A1 (en) 2019-08-01 2022-01-27 Path switching method and device

Publications (1)

Publication Number Publication Date
WO2021017754A1 true WO2021017754A1 (zh) 2021-02-04

Family

ID=72805456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100277 WO2021017754A1 (zh) 2019-08-01 2020-07-03 路径变换方法及设备

Country Status (5)

Country Link
US (1) US20220150772A1 (zh)
EP (1) EP4009702A4 (zh)
KR (1) KR20220043176A (zh)
CN (1) CN111800831B (zh)
WO (1) WO2021017754A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370267A (zh) * 2007-08-19 2009-02-18 中兴通讯股份有限公司 一种移动通信系统中的切换方法
CN102123457A (zh) * 2010-01-11 2011-07-13 中兴通讯股份有限公司 切换方法及终端
US20160157219A1 (en) * 2013-06-27 2016-06-02 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, control method, and integrated circuit
CN106817735A (zh) * 2015-11-27 2017-06-09 普天信息技术有限公司 一种小小区切换方法和系统
CN106941733A (zh) * 2016-01-04 2017-07-11 中兴通讯股份有限公司 双连接中实现重配置的方法、主服务基站及辅服务基站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161170A1 (en) * 2013-04-03 2014-10-09 Broadcom Corporation Method and apparatus for time switched uplink in a dual connectivity environment
WO2017201743A1 (zh) * 2016-05-27 2017-11-30 华为技术有限公司 传输方法、基站和终端
CN106060870B (zh) * 2016-06-02 2018-08-14 爱立信(中国)通信有限公司 一种无线网络接入节点、用户设备以及调整用户设备上行传输和切换上行数据链路的方法
CN107690163A (zh) * 2016-08-03 2018-02-13 中兴通讯股份有限公司 小区切换方法及装置
US10623149B2 (en) * 2017-01-24 2020-04-14 Mediatek Inc. Blockage detection in millimeter wave radio communications
WO2018175719A1 (en) * 2017-03-22 2018-09-27 Idac Holdings, Inc. System and methods for phased reconfiguration in wireless systems
US10798775B2 (en) * 2017-08-10 2020-10-06 Qualcomm Incorporated Techniques and apparatuses for duplication bearer management
CN109673023B (zh) * 2018-11-12 2022-04-01 中国科学院上海高等研究院 链路通信模式的操作方法、系统、计算机存储介质、设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370267A (zh) * 2007-08-19 2009-02-18 中兴通讯股份有限公司 一种移动通信系统中的切换方法
CN102123457A (zh) * 2010-01-11 2011-07-13 中兴通讯股份有限公司 切换方法及终端
US20160157219A1 (en) * 2013-06-27 2016-06-02 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, control method, and integrated circuit
CN106817735A (zh) * 2015-11-27 2017-06-09 普天信息技术有限公司 一种小小区切换方法和系统
CN106941733A (zh) * 2016-01-04 2017-07-11 中兴通讯股份有限公司 双连接中实现重配置的方法、主服务基站及辅服务基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4009702A4 *

Also Published As

Publication number Publication date
CN111800831B (zh) 2021-09-07
CN111800831A (zh) 2020-10-20
EP4009702A4 (en) 2022-12-07
US20220150772A1 (en) 2022-05-12
EP4009702A1 (en) 2022-06-08
KR20220043176A (ko) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2021213495A1 (zh) Gap配置方法、UE及网络设备
WO2019091266A1 (zh) 载波配置方法、用户终端和网络侧设备
CN110167041B (zh) 波束失败恢复请求发送方法及用户设备
CN111818658B (zh) 调度请求发送方法、调度请求接收方法、终端和网络设备
US11974151B2 (en) Measurement indication method, apparatus, and system
US11877339B2 (en) Channel access method, configuration method, terminal, and network side device
WO2019242465A1 (zh) 一种资源请求方法及用户设备
EP3876583A1 (en) Processing method and terminal
WO2021068876A1 (zh) 信息传输、接收方法、终端及网络侧设备
WO2021057655A1 (zh) 信息指示方法、设备及系统
WO2020156451A1 (zh) 随机接入方法及设备
WO2020147795A1 (zh) 一种无线通信方法及终端设备
WO2020063852A1 (zh) 终端设备能力信息处理方法、终端设备及网络侧设备
WO2019242482A1 (zh) 一种命令处理方法及终端设备
WO2020156395A1 (zh) 随机接入方法及装置
WO2020156005A1 (zh) 一种数据处理方法及用户设备
WO2019242464A1 (zh) 一种资源指示方法、装置及系统
WO2020093842A1 (zh) 小区切换方法、终端和通信节点
WO2020063210A1 (zh) 功率余量上报方法及终端设备
WO2019242466A1 (zh) 一种随机接入方法、终端及网络设备
WO2020164515A1 (zh) 信号传输方法、设备及系统
WO2021017754A1 (zh) 路径变换方法及设备
CN111818655B (zh) 传输方法、终端和网络设备
WO2020063282A1 (zh) 信息指示方法、指示接收方法、终端及网络侧设备
WO2020063230A1 (zh) 一种信号传输方法、用户设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227006753

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020846933

Country of ref document: EP

Effective date: 20220301