WO2020125360A1 - 非授权频段信息传输方法、终端及网络设备 - Google Patents

非授权频段信息传输方法、终端及网络设备 Download PDF

Info

Publication number
WO2020125360A1
WO2020125360A1 PCT/CN2019/121193 CN2019121193W WO2020125360A1 WO 2020125360 A1 WO2020125360 A1 WO 2020125360A1 CN 2019121193 W CN2019121193 W CN 2019121193W WO 2020125360 A1 WO2020125360 A1 WO 2020125360A1
Authority
WO
WIPO (PCT)
Prior art keywords
starting position
time domain
channel access
indication field
access type
Prior art date
Application number
PCT/CN2019/121193
Other languages
English (en)
French (fr)
Inventor
姜蕾
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020125360A1 publication Critical patent/WO2020125360A1/zh
Priority to US17/349,894 priority Critical patent/US20210314779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to an unauthorized frequency band information transmission method, terminal, and network equipment.
  • unlicensed bands can be used as supplements to licensed bands to help operators expand their services.
  • the unlicensed frequency band can work in the 5GHz, 37GHz and 60GHz frequency bands.
  • the large bandwidth (80 or 100MHz) of the unlicensed frequency band can reduce the implementation complexity of network equipment and terminals.
  • the unlicensed frequency band must comply with a preset rule when using it to ensure that all devices can use the resource fairly.
  • the preset rule includes: Listen before talk (Listen Before Talk, LBT), maximum channel occupation time (Maximum Channel Occupancy Time, MCOT) and other rules.
  • the transmission node mentioned here may be a network device (such as a base station), a terminal, a WiFi access point (Access Point, AP), and so on. After the transmission node starts transmission, the channel occupancy time (Channel Occupancy Time, COT) cannot exceed MCOT.
  • COT Channel Occupancy Time
  • LBT or channel access can be divided into Cat 1, Cat 2, and Cat 4.
  • the LBT or channel access mechanism of Cat 1 is that the sending node does not do LBT, ie no LBT or immediate transmission.
  • the LBT of Cat 2 is one-shot LBT, that is, the node performs LBT once before transmission, and transmits if the channel is empty, and does not transmit if the channel is busy.
  • Cat 4's LBT is based on a back-off channel listening mechanism. When the transmission node detects that the channel is busy, it performs back-off and continues to listen until the channel is empty.
  • LBT of Cat 2 is used for Discovery Signal (DS) does not carry a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), LBT of Cat 4 is used for PDSCH/Physical Downlink Control Channel (Physical Downlink Control Channel) , PDCCH)/enhanced PDCCH (enhanced PDCCH, ePDCCH).
  • the LBT of Cat 4 corresponds to the UL channel access procedure (type 1)
  • the LBT of Cat 2 corresponds to the UL channel access procedure of type 2 (type 2).
  • the network device within the channel occupied time (initiated COT) initiated by the network device, that is, the network device does LBT to obtain the COT, when the gap between the end of the downlink transmission and the start of the uplink transmission (gap) is less than 16us ,
  • the terminal can do LBT of Category 1, when two consecutive transmissions of the terminal in the COT have gaps smaller than 25us, or when there is no downlink transmission (DL transmission) behind the uplink transmission (UL transmission), you can use Cat 2 LBT.
  • the two consecutive transmissions of the terminal may be scheduled (scheduled) or unscheduled (granted).
  • LBT of Cat 1 can be used. If the gap is greater than 16us but less than 25us, Cat LBT 2 can be used.
  • the network device uses 1 bit in the downlink control information (Downlink Control Information, DCI) to indicate the channel access type (Channel Access Type), that is, type 1 or type 2 UL channel access procedures.
  • DCI Downlink Control Information
  • the network device will indicate the starting position and duration of scheduling in the time domain resource allocation (Time domain resource assignment) field in DCI. The start position and duration determine the end position of the transmission.
  • the time-domain granularity of LBT is in the order of microsecond us.
  • the gap of the above-mentioned LBT that can adopt Cat 1 is 16us at the maximum.
  • the scheduling granularity of the network equipment is 1 time domain symbol (OFDM), and the minimum granularity of all signals is 1 OS, so the related art solutions cannot match the granularity of LBT.
  • the LBT is Cat 2
  • the terminal does one-shot LBT and then starts transmission.
  • the duration of an OS is> 25us.
  • the spacing for other subcarriers is similar, corresponding to 2OS>25us, or multiple OS. Because the size of the OS is not a multiple of 25us or 16us, there is no guarantee that the end time of the gap/LBT between the two transmissions will be the same as the starting position of the next transmission.
  • Embodiments of the present disclosure provide an unlicensed frequency band information transmission method, terminal, and network equipment to solve the problem of the mismatch between the size of the time domain symbol and the granularity of gap/LBT in the unlicensed frequency band.
  • an embodiment of the present disclosure provides an unlicensed frequency band information transmission method, which is applied to the terminal side and includes:
  • the transmission starts from the actual starting position, where the actual starting position is located at the starting position of the reference time domain symbol, or the actual starting position is located inside the reference time domain symbol.
  • an embodiment of the present disclosure also provides a terminal, including:
  • the first receiving module is used to receive the indication information
  • the transmission module is configured to start transmission from the actual starting position according to the instruction information, wherein the actual starting position is located at the starting position of the reference time domain symbol, or the actual starting position is located inside the reference time domain symbol.
  • an embodiment of the present disclosure provides a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor, the above-mentioned unlicensed band information transmission is realized.
  • an embodiment of the present disclosure provides an unlicensed frequency band information transmission method, which is applied to the network device side and includes:
  • the indication information is used to indicate the actual starting position of the transmission, which is located at the starting position of the reference time domain symbol, or the actual starting position is located inside the reference time domain symbol.
  • an embodiment of the present disclosure provides a network device, including:
  • the first sending module is used to send indication information; wherein the indication information is used to indicate the actual starting position of the transmission, the actual starting position being at the starting position of the reference time domain symbol, or the actual starting position being at the reference time domain symbol internal.
  • an embodiment of the present disclosure also provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the processor executes the computer program, the above-mentioned unlicensed frequency band is realized. Information transmission method steps.
  • embodiments of the present disclosure provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the steps of the above-mentioned unlicensed band information transmission method.
  • the starting position of the uplink transmission of the terminal in the embodiment of the present disclosure may be located at the beginning of a certain time-domain symbol or inside a certain time-domain symbol.
  • the transmission starting position is more flexible, which can solve the problem of information scheduling and non-transmission.
  • the problem of matching the granularity of transmission in authorized frequency bands further ensures normal uplink transmission in unlicensed frequency bands.
  • FIG. 1 shows a block diagram of a mobile communication system to which embodiments of the present disclosure can be applied;
  • FIG. 2 is a schematic flowchart of a method for transmitting unlicensed band information of a terminal according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram 1 of a resource mapping relationship for transmission in a scenario in an embodiment of the present disclosure
  • FIG. 4 shows a second schematic diagram of the resource mapping relationship in the scenario of the embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of a resource mapping relationship transmitted in scenario 2 in an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of a module structure of a terminal according to an embodiment of the present disclosure
  • FIG. 7 shows a terminal block diagram of an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart of an unlicensed band information transmission method on a network device side according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a module structure of a network device according to an embodiment of the present disclosure.
  • FIG. 10 shows a block diagram of a network device according to an embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency Multiple access
  • SC-FDMA single-carrier Frequency-Division Multiple Access
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant) , PDA), mobile Internet device (Mobile Internet Device (MID), wearable device (Wearable Device) or vehicle-mounted device and other terminal side devices, it should be noted that the specific type of terminal 11 is not limited in the embodiments of the present disclosure .
  • the network device 12 may be a base station or a core network, wherein the base station may be a base station of 5G and later versions (for example: gNB, 5G, NR, etc.), or a base station in other communication systems (for example: eNB, wireless local area network (wireless local area network) area (network, WLAN) access point, or other access points, etc.), where the base station may be called Node B, Evolved Node B, access point, base transceiver station (Base Transceiver Station, BTS), radio base station, Radio transceiver, basic service set (Basic Service Set, BSS), extended service set (Extended Service Set, ESS), Node B, evolved Node B (eNB), home Node B, home evolved Node B, WLAN access Point, WiFi node, or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiments of the present disclosure, only the base station in the
  • the base station may communicate with the terminal 11 under the control of the base station controller.
  • the base station controller may be part of the core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may directly or indirectly communicate with each other through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operation on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can transmit modulated signals on these multiple carriers simultaneously. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, etc.
  • the base station can wirelessly communicate with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that only constitute a part of the coverage area.
  • the wireless communication system may include different types of base stations (eg, macro base stations, micro base stations, or pico base stations). The base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies. The base station may be associated with the same or different access network or operator deployment. The coverage areas of different base stations (including the coverage areas of the same or different types of base stations, the coverage areas using the same or different radio technologies, or the coverage areas belonging to the same or different access networks) may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 11 to the network device 12), or a downlink for carrying downlink (Downlink, DL)
  • the downlink of the transmission (eg, from the network device 12 to the terminal 11).
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmissions can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • An embodiment of the present disclosure provides an unlicensed frequency band information transmission method, which is applied to a terminal. As shown in FIG. 2, the method includes the following steps:
  • Step 21 Receive instruction information.
  • the indication information is used to indicate the actual starting position of the transmission.
  • the indication information may directly indicate the actual starting position of the transmission through one indication field, or may indirectly indicate the actual starting position of the transmission through multiple indication fields.
  • the actual starting position of the transmission is jointly indicated by indicating the channel access type (or category called LBT), whether the actual starting position is on the edge of a certain time domain symbol (such as OFDM Symbol, OS for short), and so on.
  • the indication information may be carried in downlink control information (Downlink Control Information, DCI), or the indication information may also be carried in radio resource control (Radio Resource Control, RRC).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • Step 22 Start transmission from the actual starting position according to the instruction information, where the actual starting position is located at the starting position of the reference time domain symbol, or the actual starting position is located inside the reference time domain symbol.
  • the actual starting position mentioned here refers to the actual starting position of transmission (transmission) or transmission burst (transmission burst).
  • the above transmission is the uplink (UL) transmission of the terminal, and the transmission before the transmission It may be UL transmission or downlink (DL) transmission burst of the network device.
  • the interval between two transmissions can be used for receive/transmit (receive/transmit, Rx/Tx) conversion, or Rx/Tx conversion plus LBT.
  • the determination of the actual starting position of the transmission may also be the determination of the starting position of the latter upstream transmission in the two upstream transmissions.
  • the reference time domain symbol in the embodiment of the present disclosure may refer to any time domain symbol, that is to say, the actual starting position of transmission may be located at the starting position of a certain time domain symbol (or called edge, starting edge), or It is located inside the time-domain symbol.
  • the inside mentioned here refers to other positions than the starting position. In this way, the starting position of the transmission is more flexible, which can solve the problem of granularity matching between transmission scheduling and unlicensed frequency band transmission, and ensure normal uplink transmission in the unlicensed frequency band.
  • the indication information and how the terminal obtains the actual starting position of the transmission in conjunction with the drawings.
  • the indication manners of the indication information include but are not limited to:
  • the indication information includes a first indication field used to indicate the channel access type, and a second indication field used to indicate whether the actual starting position is the starting position of time domain resource allocation.
  • the channel access type includes but is not limited to: LBT category1, category2 and category4, etc., where the terminal does not need LBT if it uses LBT category1; if the terminal uses LBT category2, it needs to perform LBT before transmission; If the terminal uses category 4 of LBT, LBT needs to be continued until the channel is heard to be empty before transmission.
  • the granularity of time domain resource allocation (such as resources scheduled in the "Time domain resource" domain in DCI) is a time domain symbol. When the gap between two transmissions is less than 16us, LBT can be used Category1; when the interval between two transmissions is less than 25us, LBT category2 can be used.
  • the network device of the embodiment of the present disclosure may indicate the actual starting position of the transmission to be located at the edge or inside of the time domain symbol through the indication information to perform the granularity matching.
  • the terminal can obtain the adopted channel access type according to the first indication field.
  • the first indication field can also implicitly indicate the actual starting position and the time domain symbol.
  • the second indication field whether the actual starting position is the starting position of time domain resource allocation.
  • the network device uses a first indication field of 2 bits to indicate the category of LBT in DCI, including category 1, 2 and 4 of LBT; a second indication field of 1 bit is used in DCI to indicate Whether the transmission starts from the start position or boundary of a certain time domain symbol (such as the first time domain symbol indicated by the time domain resource allocation).
  • the second indication field indicates whether the gap/LBT starts from the start position of a time domain symbol, or gap/LBT starts from the middle position of a time domain symbol and ends at the end position of the time domain symbol.
  • the former corresponds to starting transmission within the OS
  • the latter corresponds to starting transmission from the starting edge of the OS.
  • Scenario 1 The actual starting position is not the starting position for time domain resource allocation
  • step 22 includes: if the second indication field indicates that the actual starting position is not the starting position for time domain resource allocation, if the first indication field indicates that the channel access type is the first channel access type, then The transmission starts from the actual starting position offset by the first offset from the starting position of the reference time domain symbol.
  • step 22 includes: if the second indication field indicates that the actual starting position is not the starting position allocated for the time domain resource, if the first indication field indicates that the channel access type is the second channel access type, then The actual start position offset from the start position of the reference time domain symbol by the second offset starts transmission.
  • the first channel access type is different from the second channel type, and the first offset is different from the second offset.
  • the first offset is one of 16us and 25us
  • the second offset is the other one of 16us and 25us.
  • This scenario is a scenario where transmission starts from inside a certain time-domain symbol.
  • the first indicator field indicates category 1 of LBT
  • the actual start position of the transmission is 16us apart from the start position of the reference time-domain symbol
  • the first indication when the field indicates category 2 of the LBT, the actual start position of the transmission is separated from the start position of the reference time domain symbol by 25 us; when the first indication field indicates category 4 of the LBT, the second indication field is ignored.
  • the channel access type indicated by the first indication field is a specific channel access type
  • the content indicated by the second indication field is invalid
  • the specific channel access type is category 4 of LBT.
  • the reference time domain symbol includes: the first time domain symbol of time domain resource allocation, or the Mth time domain symbol before the start position of time domain resource allocation, or the time domain resource allocation
  • the Nth time-domain symbol after the start position, M and N are integers greater than or equal to 1. That is to say, the time domain symbol where the actual starting position is located may be the first time domain symbol allocated to the time domain resource, or may be a time domain symbol before or after the starting location of the time domain resource allocation.
  • the network device gives the terminal Indicates the channel access type (LBT category) and the actual starting position of the time domain transmission.
  • LBT category channel access type
  • the terminal adopts the channel access type of category 1 of LBT it implicitly indicates that there is a gap of no more than 16us before UL transmission;
  • the terminal adopts the channel access type of category 2 of LBT it implicitly indicates that it is required before UL transmission Do LBT of 25us. As shown in FIG.
  • a time-domain symbol is reserved between the DL transmission end position and the indicated UL transmission start position as Tx/Rx conversion or Tx/Rx conversion and LBT.
  • the actual start position of the UL transmission should be within the time domain symbol before the start position of the time domain resource allocation (indicated time domain resource), when the first indication
  • the actual starting position of UL transmission is: the starting position of time domain resource allocation (that is, the indicated time domain resource)-1OS+16us.
  • the channel access type indicated by the first indication domain is category 2 of LBT
  • the actual starting position of UL transmission is: the starting position of time domain resource allocation-1OS+25us.
  • the number of time-domain symbols (that is, the value of M) subtracted when calculating the actual starting position above depends on the number of time-domain symbols reserved for Tx/Rx conversion and LBT , The value may be greater than 1.
  • the value of M can be indicated in RRC, DCI, or predefined (such as directly agreed by the protocol).
  • the network device when the actual starting position of transmission starts within a certain time domain symbol, for upstream transmission, the network device indicates the channel access type to the terminal And the actual starting position of the time domain transmission, when the terminal uses the channel access type of LBT category1, it implicitly indicates that there is a gap of no more than 16us before UL transmission; when the terminal uses the channel access type of LBT category2 , Implicitly indicating that a 25us LBT needs to be done before UL transmission. As shown in FIG. 4, after the DL transmission is UL transmission, a time-domain symbol is reserved between the DL transmission end position and the indicated UL transmission start position as Tx/Rx conversion or Tx/Rx conversion and LBT.
  • the actual starting position of the UL transmission should be within the first time domain symbol indicated when the channel access type indicated by the first indication domain is category 1 of the LBT
  • the actual starting position of UL transmission is: the starting position of time domain resource allocation (that is, indicating the time domain resource) +16us.
  • the actual starting position of UL transmission is: the starting position of time domain resource allocation + 25us.
  • the above calculation of the actual starting position can also be extended by multiple time-domain symbols, that is, the Nth time-domain symbol after the starting position of the time-domain resource referenced by the time-domain symbol ,
  • the actual starting position is: the starting position of time domain resource allocation +N*OS+25us.
  • the number of extended time-domain symbols depends on the number of time-domain symbols reserved for Tx/Rx conversion and LBT. This value may be greater than 1.
  • the value of N may be indicated in RRC, may also be indicated in DCI, or pre-defined (such as directly agreed by the protocol).
  • the indication information includes: a third indication field used to indicate whether the actual starting position is offset from the timing advance TA. For example, a value of 1 bit in the third indication field indicates a transmission delay of TA, and a value of 1 bit in the third indication field indicates that no additional delay of TA is required, or vice versa.
  • the actual start The starting position is: the starting position of time domain resource allocation-M*OS+25us+TA.
  • the actual starting position is: the starting location of time-domain resource allocation +25us+TA.
  • the actual starting position is: the starting position of time-domain resource allocation +N*OS+25us+TA.
  • Step 22 includes: when the second indication field indicates that the actual starting position is the starting position of time domain resource allocation, transmission is started from the starting position of time domain resource allocation.
  • a time-domain symbol is reserved between the DL transmission end position and the indicated UL transmission start position as Tx/Rx conversion or Tx/Rx conversion and LBT.
  • the indication information indicates that the actual starting position of UL transmission is the starting position of time domain resource allocation (indicated time domain resource)
  • the transmission is started from the indicated time domain resource.
  • This scenario is a scenario where the transmission starts from the starting position of a certain time domain symbol, and the transmission starts from the starting position of time domain resource allocation.
  • the channel access type indicated by the first indication field is a specific channel access type
  • the content indicated by the second indication field is invalid
  • the specific channel access type is LBT category4.
  • the indication information includes: a fourth indication field for indicating whether the channel access type is a specific channel access type; a fifth indication field for indicating whether the actual starting position is the starting position of time domain resource allocation; And a sixth indication field for indicating the offset between the actual starting position and the starting position of the reference time domain symbol.
  • the offset includes: 16us, 25us or 25us+TA.
  • the specific channel access type may be category 4 of LBT.
  • the LBT needs to be continued before transmission until the channel is heard to be empty.
  • the terminal can know according to the fourth indication field whether the channel access type used is category 4 of LBT.
  • the network device uses a 1 bit fourth indication field to indicate whether the channel access type is LBT category4, for example, when the value of 1 bit in the fourth indication field is 1, it indicates a channel When the access type is category 4 of LBT, and the value of 1 bit in the fourth indication field is 0, it means that the channel access type is not category 4 of LBT, namely category 1 of LBT or category 2 of LBT.
  • the network device may also use a 1-bit fifth indication field in DCI to indicate whether the transmission starts from the start position or edge of a certain time-domain symbol (such as the first time-domain symbol indicated by time-domain resource allocation) ( boundary), for example, when the value of 1 bit in the fifth indication field is 1, it means that the actual starting position is the starting position of scheduling indicated by the "Time domain resource” assignment field in DCI. When the value of 1bit in the fifth indication field is 0, it means that the actual starting position is not in the DCI.
  • the “Time domain resource” assignment indicates the starting position of scheduling, and can be located in the time domain symbol where the indicated starting position is located or in the time domain. Within the time domain symbol before and after the symbol.
  • the fifth indication field indicates whether gap/LBT starts from the starting position of a time domain symbol, or whether gap/LBT starts from the middle position of a time domain symbol and ends at the end position of the time domain symbol.
  • the former corresponds to starting transmission within the OS
  • the latter corresponds to starting transmission from the starting edge of the OS.
  • the network device may also use the sixth indication field of 2 bits or 1 bit in the DCI to indicate the offset between the actual starting position of the transmission and the starting position of the reference time domain symbol to indicate the actual starting position of the transmission .
  • the reference time domain symbol includes: the first time domain symbol of time domain resource allocation, or the Mth time domain symbol before the start location of time domain resource allocation, or the Mth time domain symbol after the start location of time domain resource allocation N time domain symbols, M and N are integers greater than or equal to 1.
  • the actual starting position is: the start of the reference time-domain symbol +16us;
  • the value of 2bits in the sixth indication field 01
  • it means that the actual starting position is: the start of the reference time domain symbol +25us;
  • the value of 2bits in the sixth indication field is 10
  • the actual starting position is: Refer to the start of the time-domain symbol +25us+TA; for example, when the value of 2bits in the sixth indication domain is 11, it indicates an invalid bit.
  • the sixth indication field can use 1 bit to indicate the actual starting position, for example, the value of 1 bit in the sixth indication field is 0.
  • the value of 1 bit in the sixth indication field is 0.
  • LBT category1 when the interval between two transmissions is less than 16us, LBT category1 can be used; when the interval between two transmissions is less than 25us, LBT category2 can be used.
  • the terminal uses LBT category1, a gap of at least 16us is required between the two transmissions; if the terminal uses LBT category2, at least 25us is required between the two transmissions.
  • the sixth indication field indicates the offset between the actual start position and the start position of the reference time domain symbol
  • the sixth indication field also implicitly indicates the channel access type adopted by the terminal.
  • the value of 2bits in the sixth indication field when the value of 2bits in the sixth indication field is 00, it indicates that the actual starting position is: reference to the start of the time domain symbol +16us, and implicitly indicates that the terminal uses category 1 of LBT.
  • the value of 2bits in the sixth indication field is 01, it means that the actual starting position is: the start of the reference time domain symbol +25us; when the value of 2bits is 10, it means that the actual starting position is: the start of the reference time domain symbol +25us+TA, and when the value of these 2 bits is "01" or "10", it implicitly indicates that the terminal adopts category 2 of LBT.
  • step 22 includes: when the fourth indication field indicates that the channel access type is not a specific channel access type, and the fifth indication field indicates that the actual starting position is not the starting position for time domain resource allocation , According to the sixth indication field, obtain the actual starting position and channel access type, and start transmission from the actual starting position.
  • the fourth indication field indicates category4 whose access type is not LBT, which is 0; the fifth indication field indicates that the actual starting position is not the starting position of time domain resource allocation, that is, when the value is 0, according to the sixth indication
  • the 2 bits of the field get the actual starting position of the transmission and the channel access type of the terminal.
  • step 22 includes: when the fourth indication field indicates that the channel access type is not a specific channel access type, and the fifth indication field indicates that the actual starting position is the starting position for time domain resource allocation, according to the sixth Indicate the domain, get the channel access type, and start transmission from the starting position of time domain resource allocation.
  • the fourth indicator field indicates category4 whose access type is not LBT, that is, the value is 0; the fifth indicator field indicates that the actual starting position is the starting position of time domain resource allocation, that is, when the value is 1, according to the sixth indicator field 2bits of the terminal get the channel access type of the terminal, and start transmission from the starting position of time domain resource allocation.
  • step 22 includes ignoring the fifth and sixth indication fields if the fourth indication field indicates that the channel access type is a specific channel access type.
  • the fourth indication field indicates category4 whose access type is LBT, that is, the value is 1, and the terminal ignores the interpretation of the fifth indication field and the sixth indication field.
  • the terminal further includes: sending preset information in the time domain resource after referring to the actual starting position in the time domain symbol, and the preset information includes: a placeholder signal , Data, reference signal and extended cyclic prefix (extended Cyclic Prefix, extended CP) at least one.
  • the terminal can transmit at least one of the occupancy signal, data, reference signal extended cyclic prefix and other signals in the part of the time-domain symbol at the start of transmission, where the data can be a physical uplink shared channel (Physical Uplink Shared) Channel, PUSCH) and the reference signal may be tracking reference signals (Sounding Reference Signal, SRS).
  • the data can be a physical uplink shared channel (Physical Uplink Shared) Channel, PUSCH)
  • the reference signal may be tracking reference signals (Sounding Reference Signal, SRS).
  • the start position of the terminal's uplink transmission may be located at the start position of a certain time domain symbol or within a certain time domain symbol, and the transmission start position is more flexible. It can solve the problem of granularity matching between information scheduling and unlicensed frequency band transmission, and further ensure normal uplink transmission in unlicensed frequency band.
  • the terminal 600 of the embodiment of the present disclosure can achieve the reception of the indication information in the above embodiments; according to the indication information, the transmission starts from the actual starting position, where the actual starting position is located at the beginning of the reference time domain symbol The location, or the actual starting position is in the details of the internal method of referring to the time domain symbol, and achieves the same effect.
  • the terminal 600 specifically includes the following functional modules:
  • the first receiving module 610 is configured to receive indication information
  • the first transmission module 620 is configured to start transmission from the actual starting position according to the instruction information, where the actual starting position is located at the starting position of the reference time domain symbol, or the actual starting position is located inside the reference time domain symbol.
  • the instructions include:
  • a second indication field used to indicate whether the actual starting position is the starting position of time domain resource allocation.
  • the first transmission module 620 includes:
  • the first transmission submodule is configured to, when the second indication field indicates that the actual starting position is not the starting position allocated for time domain resources, if the first indication field indicates that the channel access type is the first channel access type, Then, the transmission starts from the actual starting position offset by the first offset from the starting position of the reference time domain symbol.
  • the first transmission module 620 includes:
  • a second transmission submodule configured to: if the second indication field indicates that the actual starting position is not the starting position allocated for time domain resources, if the first indication field indicates that the channel access type is the second channel access type, Then, the transmission is started from the actual starting position offset from the starting position of the reference time domain symbol by a second offset.
  • the first offset is one of 16us and 25us
  • the second offset is the other one of 16us and 25us.
  • the terminal 600 further includes:
  • the processing module is configured to start transmission from the start position of time domain resource allocation when the second indication field indicates that the actual start position is the start location of time domain resource allocation.
  • the instructions also include:
  • a third indication field used to indicate whether the actual starting position is offset from the timing advance TA.
  • the instructions include:
  • a sixth indication field for indicating the offset between the actual starting position and the starting position of the reference time domain symbol.
  • the first transmission module 620 includes:
  • the third transmission submodule is configured to, when the fourth indication field indicates that the channel access type is not a specific channel access type, and the fifth indication field indicates that the actual starting position is not the starting position for time domain resource allocation, According to the sixth indication field, the actual starting position and channel access type are obtained, and transmission is started from the actual starting position.
  • the first transmission module 620 includes:
  • the fourth transmission submodule is used for, according to the case where the fourth indication field indicates that the channel access type is not a specific channel access type, and the fifth indication field indicates that the actual starting position is the starting position of time domain resource allocation
  • the sixth indication field obtains the channel access type and starts transmission from the actual starting position.
  • the first transmission module 620 includes:
  • the fifth transmission submodule is configured to ignore the fifth indication field and the sixth indication field when the fourth indication field indicates that the channel access type is a specific channel access type.
  • the offset includes: 16us, 25us or 25us+TA.
  • the reference time domain symbol includes: the first time domain symbol of time domain resource allocation, or the Mth time domain symbol before the start location of time domain resource allocation, or the Mth time domain symbol after the start location of time domain resource allocation N time domain symbols, M and N are integers greater than or equal to 1.
  • the terminal 600 further includes:
  • the second transmission module is used to send preset information in the time domain resource after the actual starting position in the reference time domain symbol, where the preset information includes: the placeholder signal, data, reference signal and extended cyclic prefix At least one.
  • the starting position of its uplink transmission can be located at the beginning of a certain time domain symbol, or it can be located inside a certain time domain symbol, the transmission starting position is more flexible and can be solved
  • the problem of granularity matching between information scheduling and unlicensed frequency band transmission further ensures normal uplink transmission in unlicensed frequency bands.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal for implementing various embodiments of the present disclosure.
  • the terminal 70 includes but is not limited to: a radio frequency unit 71, a network module 72, an audio output unit 73, The input unit 74, sensor 75, display unit 76, user input unit 77, interface unit 78, memory 79, processor 710, power supply 711 and other components.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those illustrated, or combine certain components, or arrange different components.
  • the terminal includes but is not limited to a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the radio frequency unit 71 is used to receive indication information
  • the processor 710 is configured to obtain the actual starting position of the transmission according to the instruction information, where the actual starting position is located at the starting position of the reference time domain symbol, or the actual starting position is located inside the reference time domain symbol;
  • the start position of the uplink transmission may be located at the start position of a certain time domain symbol, or may be located inside a certain time domain symbol.
  • the transmission start position is more flexible, which can solve the problem of information scheduling and non-transmission.
  • the problem of matching the granularity of transmission in authorized frequency bands further ensures normal uplink transmission in unlicensed frequency bands.
  • the radio frequency unit 71 may be used to receive and send signals during sending and receiving information or during a call. Specifically, after receiving the downlink data from the base station, it is processed by the processor 710; The uplink data is sent to the base station.
  • the radio frequency unit 71 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 71 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 72, such as helping users to send and receive e-mail, browse web pages, and access streaming media.
  • the audio output unit 73 may convert the audio data received by the radio frequency unit 71 or the network module 72 or stored in the memory 79 into an audio signal and output as sound. Moreover, the audio output unit 73 may also provide audio output related to a specific function performed by the terminal 70 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 73 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 74 is used to receive audio or video signals.
  • the input unit 74 may include a graphics processor (Graphics Processing Unit, GPU) 741 and a microphone 742.
  • the graphics processor 741 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode
  • the data is processed.
  • the processed image frame may be displayed on the display unit 76.
  • the image frame processed by the graphics processor 741 may be stored in the memory 79 (or other storage medium) or sent via the radio frequency unit 71 or the network module 72.
  • the microphone 742 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 71 in the case of the telephone call mode and output.
  • the terminal 70 further includes at least one sensor 75, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 761 according to the brightness of the ambient light, and the proximity sensor can close the display panel 761 and/or when the terminal 70 moves to the ear Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to identify terminal postures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 75 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 76 is used to display information input by the user or information provided to the user.
  • the display unit 76 may include a display panel 761, and the display panel 761 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the user input unit 77 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 77 includes a touch panel 771 and other input devices 772.
  • the touch panel 771 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. on or near the touch panel 771 operating).
  • the touch panel 771 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then sends To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 771 may be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 77 may also include other input devices 772.
  • other input devices 772 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 771 may be overlaid on the display panel 761. After the touch panel 771 detects a touch operation on or near it, it is transmitted to the processor 710 to determine the type of touch event, and then the processor 710 according to the touch The type of event provides corresponding visual output on the display panel 761.
  • the touch panel 771 and the display panel 761 are implemented as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 771 and the display panel 761 may be integrated to The input and output functions of the terminal are implemented, which is not limited here.
  • the interface unit 78 is an interface for connecting an external device to the terminal 70.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 78 may be used to receive input from external devices (eg, data information, power, etc.) and transmit the received input to one or more elements within the terminal 70 or may be used between the terminal 70 and external devices Transfer data between.
  • the memory 79 can be used to store software programs and various data.
  • the memory 79 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one function required application programs (such as sound playback function, image playback function, etc.), etc.; the storage data area may store Data created by the use of mobile phones (such as audio data, phonebooks, etc.), etc.
  • the memory 79 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the terminal, and uses various interfaces and lines to connect the various parts of the entire terminal, executes or executes the software programs and/or modules stored in the memory 79, and calls the data stored in the memory 79 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modulation processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the terminal 70 may further include a power supply 711 (such as a battery) that supplies power to various components.
  • a power supply 711 (such as a battery) that supplies power to various components.
  • the power supply 711 may be logically connected to the processor 710 through a power management system, thereby managing charge, discharge, and power consumption management through the power management system And other functions.
  • the terminal 70 includes some function modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 710, a memory 79, and a computer program stored on the memory 79 and executable on the processor 710, when the computer program is executed by the processor 710
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides users with voice and/or other service data connectivity, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem .
  • a wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • Radio Access Network Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • it may be a portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless terminal can also be called a system, a subscriber unit (Subscriber Unit), a subscriber station (Subscriber Station), a mobile station (Mobile Station), a mobile station (Mobile), a remote station (Remote Station), a remote terminal (Remote Terminal), an access terminal Access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), user equipment (User Device or User Equipment), not limited here.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program is executed by a processor, the processes of the above-mentioned unlicensed band information transmission method embodiments are implemented, and can be achieved The same technical effect will not be repeated here to avoid repetition.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the above embodiment introduces the unlicensed frequency band information transmission method of the present disclosure from the terminal side.
  • the following embodiment will further introduce the unlicensed frequency band information transmission method on the network device side with reference to the drawings.
  • the unlicensed band information transmission method of the embodiment of the present disclosure is applied to the network device side.
  • the method includes the following steps:
  • Step 81 Send indication information; the indication information is used to indicate the actual starting position of the transmission, which is located at the starting position of the reference time domain symbol, or the actual starting position is located inside the reference time domain symbol.
  • the indication information is used to indicate the actual starting position of the transmission.
  • the indication information may directly indicate the actual starting position of the transmission through one indication field, or may indirectly indicate the actual starting position of the transmission through multiple indication fields. Further, the indication information may be carried in DCI, or the indication information may also be carried in RRC.
  • the reference time domain symbol in the embodiment of the present disclosure may refer to any time domain symbol (such as an OFDM symbol), that is, the actual starting position of transmission may be located at the start position of a certain time domain symbol, or may be located at Internal, internal here refers to other positions than the starting position. In this way, the starting position of the transmission is more flexible, which can solve the problem of granularity matching between transmission scheduling and unlicensed frequency band transmission, and ensure normal uplink transmission in the unlicensed frequency band.
  • time domain symbol such as an OFDM symbol
  • the indication manners of the indication information include but are not limited to:
  • Manner 3 a first indication field used to indicate the channel access type; and a second indication field used to indicate whether the actual starting position is the starting position of time domain resource allocation.
  • the channel access type includes but is not limited to: LBT category1, category2 and category4, etc.
  • LBT category1, category2 and category4 the indication information carried in the DCI as an example, suppose the network device uses the first indication field of 2 bits in the DCI to indicate the category of the LBT, including LBT categories 1, 2 and 4.
  • LBT categories 1, 2 and 4 the access modes of these channel access types, reference may be made to the introduction in the first mode of the embodiment on the terminal side, so they will not be repeated here.
  • the channel access type includes a first channel access type and/or a second channel access type, where the first channel access type implicitly indicates the interval between the actual starting position and the starting position of the reference time domain symbol.
  • the first offset and the second channel access type implicitly indicate a second offset between the actual starting position and the starting position of the reference time domain symbol.
  • the first channel access type is different from the second channel type, and the first offset is different from the second offset.
  • the first offset is one of 16us and 25us, and the second offset is the other one of 16us and 25us. That is, different channel access types correspond to different intervals, that is, the first indication field may also implicitly indicate the interval offset (or offset) between the actual starting position and the time domain symbol.
  • LBT category1 when the gap between two transmissions is less than 16us, LBT category1 can be used; when the interval between two transmissions is less than 25us, LBT category2 can be used. That is to say, if the terminal uses category 1 of LBT, the interval between two transmissions is less than 16us; if the terminal uses category 2 of LBT, an LBT of 25us is required.
  • the indication information further includes: a third indication field used to indicate whether the actual starting position is offset from the timing advance TA. For example, a value of 1 bit in the third indication field indicates a transmission delay of TA, and a value of 1 bit in the third indication field indicates that no additional delay of TA is required, or vice versa.
  • the actual starting position starts within the time domain symbol before the starting position of time domain resource allocation
  • the actual starting position Is: the starting position of time domain resource allocation-M*OS+25us+TA.
  • the actual starting position is: starting position of time domain resource allocation +25us+ TA, or the starting position of time domain resource allocation +N*OS+25us+TA.
  • the indication information includes: a fourth indication field for indicating whether the channel access type is a specific channel access type; a fifth indication field for indicating whether the actual starting position is the starting position of time domain resource allocation; And a sixth indication field for indicating the offset between the actual starting position and the starting position of the reference time domain symbol.
  • the offset includes: 16us, 25us or 25us+TA.
  • the specific channel access type may be category 4 of LBT.
  • the LBT needs to be continued before transmission until the channel is heard to be empty.
  • the terminal can know according to the fourth indication field whether the channel access type used is category 4 of LBT.
  • the network device uses a 1 bit fourth indication field to indicate whether the channel access type is LBT category4, for example, when the value of 1 bit in the fourth indication field is 1, it indicates a channel When the access type is category 4 of LBT, and the value of 1 bit in the fourth indication field is 0, it means that the channel access type is not category 4 of LBT, namely category 1 of LBT or category 2 of LBT.
  • the reference time domain symbol includes: the first time domain symbol of time domain resource allocation, or the Mth time domain symbol before the start location of time domain resource allocation, or the Mth time domain symbol after the start location of time domain resource allocation N time domain symbols, M and N are integers greater than or equal to 1.
  • the network device may also use the sixth indication field of 2 bits or 1 bit in the DCI to indicate the sixth indication field of the offset between the actual start position of the transmission and the start position of the reference time domain symbol to indicate the transmission The actual starting position of.
  • the reference time domain symbol includes: the first time domain symbol of time domain resource allocation, or the Mth time domain symbol before the start location of time domain resource allocation, or the Mth time domain symbol after the start location of time domain resource allocation N time domain symbols, M and N are integers greater than or equal to 1.
  • the actual starting position is: the start of the reference time-domain symbol +16us;
  • the value of 2bits in the sixth indication field 01
  • it means that the actual starting position is: the start of the reference time domain symbol +25us;
  • the value of 2bits in the sixth indication field is 10
  • the actual starting position is: Refer to the start of the time-domain symbol +25us+TA; for example, when the value of 2bits in the sixth indication domain is 11, it indicates an invalid bit.
  • the sixth indication field can use 1 bit to indicate the actual starting position, for example, the value of 1 bit in the sixth indication field is 0.
  • the value of 1 bit in the sixth indication field is 0.
  • the network device indicates through the indication information that the starting position of the terminal's uplink transmission may be located at the start position of a certain time domain symbol, or may be located inside a certain time domain symbol, so that The transmission starting position is more flexible, which can solve the problem of granularity matching between information scheduling and unlicensed frequency band transmission, and further ensure the normal upstream transmission in the unlicensed frequency band.
  • the network device 900 of the embodiment of the present disclosure can implement the sending of the indication information in the above embodiments; wherein, the indication information is used to indicate the actual starting position of the transmission, and the actual starting position is in the reference time domain
  • the network device 900 specifically includes the following functional modules:
  • the first sending module 910 is used to send indication information; wherein, the indication information is used to indicate the actual starting position of the transmission, the actual starting position is located at the starting position of the reference time domain symbol, or the actual starting position is located at the reference time domain The interior of the symbol.
  • the instructions include:
  • a second indication field used to indicate whether the actual starting position is the starting position of time domain resource allocation.
  • the channel access type includes a first channel access type and/or a second channel access type, where the first channel access type implicitly indicates the interval between the actual starting position and the starting position of the reference time domain symbol
  • the first offset and the second channel access type implicitly indicate a second offset between the actual starting position and the starting position of the reference time domain symbol.
  • the first offset is: one of 16us and 25us
  • the second offset is the other of 16us and 25us.
  • the instructions also include:
  • a third indication field used to indicate whether the actual starting position is offset from the timing advance TA.
  • the instructions include:
  • a sixth indication field for indicating the offset between the actual starting position and the starting position of the reference time domain symbol.
  • the offset includes: 16us, 25us or 25us+TA.
  • the reference time domain symbol includes: the first time domain symbol of time domain resource allocation, or the Mth time domain symbol before the start location of time domain resource allocation, or the Mth time domain symbol after the start location of time domain resource allocation N time domain symbols, M and N are integers greater than or equal to 1.
  • the network device of the embodiment of the present disclosure indicates that the start position of the terminal's uplink transmission through the indication information may be located at the start position of a certain time domain symbol, or may be located inside a certain time domain symbol, so that the transmission starts
  • the location is more flexible, which can solve the problem of granularity matching between information scheduling and unlicensed frequency band transmission, and further ensure the normal uplink transmission in the unlicensed frequency band.
  • the determination module may be a separately established processing element, or it may be implemented by being integrated in a chip of the above-mentioned device, or it may be stored in the memory of the above-mentioned device in the form of a program code, and a processing element of the above-mentioned device Call and execute the function of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together or can be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or one or more microprocessors (digital signal processor (DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • an embodiment of the present disclosure also provides a network device, the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor, and the processor executes the computer program To implement the steps in the unlicensed band information transmission method as described above.
  • the disclosed embodiments also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium. The computer program is executed by a processor to implement the steps of the unlicensed band information transmission method as described above.
  • the embodiments of the present disclosure also provide a network device.
  • the network device 1000 includes an antenna 101, a radio frequency device 102, and a baseband device 103.
  • the antenna 101 is connected to the radio frequency device 102.
  • the radio frequency device 102 receives information through the antenna 101 and sends the received information to the baseband device 103 for processing.
  • the baseband device 103 processes the information to be sent and sends it to the radio frequency device 102, and the radio frequency device 102 processes the received information and sends it out through the antenna 101.
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 103.
  • the method performed by the network device in the above embodiment may be implemented in the baseband apparatus 103.
  • the baseband apparatus 103 includes a processor 104 and a memory 105.
  • the baseband device 103 may include, for example, at least one baseband board, and a plurality of chips are provided on the baseband board, as shown in FIG. 10, one of the chips is, for example, the processor 104, and is connected to the memory 105 to call a program in the memory 105 to execute The network device operations shown in the above method embodiments.
  • the baseband device 103 may further include a network interface 106 for exchanging information with the radio frequency device 102, and the interface is, for example, a common public radio interface (common public radio interface, CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective term for multiple processing elements, for example, the processor may be a CPU, or an ASIC, or one or more configured to implement the method performed by the above network device
  • An integrated circuit for example: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element may be a memory or a collective term for multiple storage elements.
  • the memory 105 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the network device of the embodiment of the present disclosure further includes: a computer program stored on the memory 105 and executable on the processor 104, and the processor 104 calls the computer program in the memory 105 to execute the method performed by each module shown in FIG. 9 .
  • the computer program when called by the processor 104, it can be used to execute: sending instruction information; wherein the instruction information is used to indicate the actual starting position of the transmission, and the actual starting position is located at the starting position of the reference time domain symbol, Or the actual starting position is located inside the reference time domain symbol.
  • the indication information indicates that the start position of the terminal's uplink transmission can be located at the start position of a certain time domain symbol or inside a certain time domain symbol, making the transmission start position more flexible , It can solve the problem of granularity matching between information scheduling and unlicensed frequency band transmission, and further ensure normal uplink transmission in unlicensed frequency band.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some elements can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the related technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be decomposed and/or recombined.
  • These decompositions and/or recombinations should be regarded as equivalent solutions of the present disclosure.
  • the steps for performing the above-mentioned series of processing can naturally be executed in chronological order in the order described, but it does not necessarily need to be executed in chronological order, and some steps can be executed in parallel or independently of each other.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure. Obviously, the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be noted that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种非授权频段信息传输方法、终端及网络设备,该方法包括:接收指示信息;根据指示信息,从实际起始位置开始传输,其中,实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部。

Description

非授权频段信息传输方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年12月21日在中国提交的中国专利申请号No.201811570008.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种非授权频段信息传输方法、终端及网络设备。
背景技术
在移动通信系统中,非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充帮助运营商对服务进行扩容。为了与新空口(New Radio,NR)部署保持一致,并尽可能的最大化基于NR的非授权接入,非授权频段可以工作在5GHz、37GHz和60GHz频段。非授权频段的大带宽(80或者100MHz)能够减小网络设备和终端的实施复杂度。由于非授权频段由多种技术(Radio Access Technology,RATs)共用,例如无线保真(wireless fidelity,WiFi)、雷达、长期演进型授权辅助接入(Long Term Evolution-Licensed Assisted Access,LTE-LAA)等,因此非授权频段在使用时必须符合预设规则(regulation)以保证所有设备可以公平的使用该资源,该预设规则包括:先听后说(Listen Before Talk,LBT)、最大信道占用时间(Maximum Channel Occupancy Time,MCOT)等规则。当传输节点需要发送信息时,需要先做LBT时,对周围的节点进行功率检测(Energy Detection,ED),当检测到的功率低于一个门限时,认为信道为空(idle),传输节点可以进行发送。反之,则认为信道为忙,传输节点不能进行发送。这里所说的传输节点可以是网络设备(如基站)、终端、WiFi接入点(Access Point,AP)等等。传输节点开始传输后,信道占用时间(Channel Occupancy Time,COT)不能超过MCOT。
其中,常用的LBT或者信道接入(channel access)的类型(category,Cat)可以分为Cat 1、Cat 2和Cat 4。Cat 1的LBT或者信道接入机制是发送 节点不做LBT,即no LBT或者立即传输(immediate transmission)。Cat 2的LBT是一次性侦听(one-shot LBT),即节点在传输前做一次LBT,若信道为空则进行传输,若信道为忙则不传输。Cat 4的LBT是基于回退(back-off)的信道侦听机制,当传输节点侦听到信道为忙时,进行回退继续做侦听,直到侦听到信道为空。对于网络设备,Cat 2的LBT应用于发现信号(Discovery Signal,DS)未携带物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、Cat 4的LBT应用于PDSCH/物理下行控制信道(Physical Downlink Control Channel,PDCCH)/增强PDCCH(enhanced PDCCH,ePDCCH)。而对于终端,Cat 4的LBT对应于类型1(type1)的上行信道接入流程(UL channel access procedure),Cat 2的LBT对应于类型2(type2)的UL channel access procedure。
例如在非授权频段上,在网络设备发起的信道占用时间(initiated COT)内,即网络设备做LBT得到COT,当下行传输的结尾和上行传输的开始之间的间隔(gap)小于16us的时候,终端可以做Category 1的LBT,当终端的两个连续传输在COT内的gap比25us小的时候,或者上行传输(UL transmission)后面没有下行传输(DL transmission)的时候,可以用Cat 2的LBT。其中终端的两个连续传输可以是基于调度的(scheduled)或者非调度的(granted)。此外,在网络设备initiated COT内,若一个下行突发(burst)跟随在一个上行burst之后,如果调度的上行传输的结尾和上行burst开始之间的gap小于16us,则可以采用Cat 1的LBT,如果gap大于16us但是小于25us,则可以采用Cat 2的LBT。
在增强型授权辅助接入(enhanced Licensed Assisted Access,eLAA)中,网络设备在下行控制信息(Downlink Control Information,DCI)中用1bit指示信道接入类型(Channel Access type),即type1或者type2 UL channel access procedure。在NR中,网络设备会在DCI中时域资源分配(Time domain resource assignment)域指示调度的起始位置和持续时间(duration)。起始位置和duration决定了传输的结束位置。
在非授权频段上,LBT的时域颗粒度是微秒us级,例如上述能够采用Cat 1的LBT的gap最大为16us。网络设备的调度颗粒度为1个时域符号 (OFDM symbol,OS),并且所有信号的最小颗粒度是1个OS,因此相关技术的方案无法匹配LBT的颗粒度。例如,当LBT为Cat 2时,终端做one-shot的LBT,然后开始传输。对于15kHz和30kHz子载波间隔,一个OS的duration>25us。对于其他子载波间隔情况也类似,对应于2OS>25us,或者多个OS。因为OS的大小和25us或者16us不是倍数关系,无法保证两个传输之间的gap/LBT的结束时间和下一个传输的起始位置一致。
发明内容
本公开实施例提供了一种非授权频段信息传输方法、终端及网络设备,以解非授权频段中时域符号的大小和gap/LBT的颗粒度不匹配的问题。
第一方面,本公开实施例提供了一种非授权频段信息传输方法,应用于终端侧,包括:
接收指示信息;
根据指示信息,从实际起始位置开始传输,其中,实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部。
第二方面,本公开实施例还提供了一种终端,包括:
第一接收模块,用于接收指示信息;
传输模块,用于根据指示信息,从实际起始位置开始传输,其中,实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的非授权频段信息传输方法的步骤。
第四方面,本公开实施例提供了一种非授权频段信息传输方法,应用于网络设备侧,包括:
发送指示信息;其中,指示信息用于指示传输的实际起始位置,该实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部。
第五方面,本公开实施例提供了一种网络设备,包括:
第一发送模块,用于发送指示信息;其中,指示信息用于指示传输的实际起始位置,该实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部。
第六方面,本公开实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的非授权频段信息传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述的非授权频段信息传输方法的步骤。
这样,本公开实施例中终端的上行传输的开始位置可以位于某个时域符号的起始位置,也可以位于某个时域符号的内部,传输起始位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上行传输。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例可应用的一种移动通信系统框图;
图2表示本公开实施例终端的非授权频段信息传输方法的流程示意图;
图3表示本公开实施例中场景一下传输的资源映射关系示意图一;
图4表示本公开实施例中场景一下传输的资源映射关系示意图二;
图5表示本公开实施例中场景二下传输的资源映射关系示意图;
图6表示本公开实施例终端的模块结构示意图;
图7表示本公开实施例的终端框图;
图8表示本公开实施例网络设备侧的非授权频段信息传输方法的流程示意图;
图9表示本公开实施例网络设备的模块结构示意图;
图10表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。 各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的要素可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、无线局域网(wireless local area network,WLAN)接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可 以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开实施例提供了一种非授权频段信息传输方法,应用于终端,如图2所示,该方法包括以下步骤:
步骤21:接收指示信息。
其中,指示信息用于指示传输的实际起始位置,该指示信息可通过一个指示域直接指示传输的实际起始位置,也可以通过多个指示域间接指示传输的实际起始位置。例如通过指示信道接入类型(或称为LBT的category)、实际起始位置是否在某个时域符号(如OFDM Symbol,简称OS)的边缘等联合指示传输的实际起始位置。
其中,指示信息可承载于下行控制信息(Downlink Control Information,DCI)中,或者,指示信息还可以承载于无线资源控制(Radio Resource Control,RRC)中。
步骤22:根据指示信息,从实际起始位置开始传输,其中,实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部。
其中,这里所说实际起始位置指的是传输(transmission)或称为传输突发(transmission burst)的实际起始位置,上述传输是终端的上行(Uplink,UL)传输,该传输之前的传输可以是UL传输,也可以是网络设备的下行 (Downlink,DL)传输burst。两个传输之间的间隔可以用来做接收/发送(receive/transmit,Rx/Tx)转换、或Rx/Tx转换加LBT。传输的实际起始位置的确定还可以是两个上行传输中后一个上行传输起始位置的确定。本公开实施例中参考时域符号可以指任一时域符号,也就是说,传输的实际起始位置可以位于某个时域符号的起始位置(或称为边缘、起始边缘),也可以位于时域符号的内部,这里所说的内部指的是除起始位置之外的其他位置。这样传输的起始位置更加灵活,可解决传输调度和非授权频段传输的颗粒度匹配问题,保证非授权频段下可进行正常的上行传输。
下面本公开实施例将进一步结合附图对指示信息以及终端如何得到传输的实际起始位置作出说明。其中,以指示信息通过多个指示域联合指示为例,指示信息的指示方式包括但不限于:
方式一、指示信息包括用于指示信道接入类型的第一指示域,以及用于指示实际起始位置是否为时域资源分配的起始位置的第二指示域。
其中,信道接入类型包括但不限于:LBT的category1、category2和category4等,其中,若终端采用LBT的category1,则无需进行LBT;若终端采用LBT的category2,则在传输前需要进行一次LBT;若终端采用LBT的category4,则在传输前需要持续LBT直到侦听到信道为空。本公开实施例中时域资源分配(如DCI中“Time domain resource assignment”域中调度的资源)的颗粒度为时域符号,两次传输之间的间隔(gap)小于16us时,可采用LBT的category1;两次传输之间的间隔小于25us时,可采用LBT的category2。也就是说,若终端采用LBT的category1,则两次传输之间的gap要小于16us;若终端采用LBT的category2,则LBT的时间需要25us。而不同子载波间隔(Sub-Carrier Spacing,SCS)对应的时域符号的时间长度不同,可能会出现时域资源分配的颗粒度与gap/LBT的颗粒度不匹配的问题。为了避免该问题,本公开实施例的网络设备可通过指示信息指示传输的实际起始位置位于时域符号边缘或内部来进行颗粒度匹配。
终端根据第一指示域可得到采用的信道接入类型,如上所述不同信道接入类型对应不同的gap或LBT的时间,即第一指示域还可隐式指示实际起始位置与时域符号之间的偏移,根据第二指示域得知实际起始位置是否为时域 资源分配的起始位置。以指示信息承载于DCI中为例,假设网络设备在DCI中使用2bits的第一指示域来指示LBT的category,包括LBT的category1、2和4;在DCI中使用1bit的第二指示域来指示传输是否从某个时域符号(如时域资源分配所指示的第一个时域符号)的起始位置或边缘(boundary)开始。例如,第二指示域的1bit的值为1时,表示实际起始位置是DCI中“Time domain resource assignment”域指示调度的起始位置。第二指示域的1bit的值为0时,表示实际起始位置不在DCI中“Time domain resource assignment”域指示调度的起始位置,可位于指示的起始位置所在时域符号内或者所在时域符号前后的时域符号内。或者说,第二指示域指示了gap/LBT是从一个时域符号的起始位置开始,还是gap/LBT从一个时域符号的中间位置开始,结束于该时域符号的结束位置。其中,前者对应于在OS内开始传输,后者对应于从OS的起始边缘开始传输。
具体地,在该方式下包括以下场景:
场景一、实际起始位置不为时域资源分配的起始位置的情况
具体地,步骤22包括:在第二指示域指示实际起始位置不为时域资源分配的起始位置的情况下,若第一指示域指示信道接入类型为第一信道接入类型,则从与参考时域符号的起始位置偏移第一偏移的实际起始位置开始传输。或者,步骤22包括:在第二指示域指示实际起始位置不为时域资源分配的起始位置的情况下,若第一指示域指示信道接入类型为第二信道接入类型,则从与参考时域符号的起始位置偏移第二偏移的实际起始位置开始传输。其中,第一信道接入类型不同于第二信道类型,第一偏移不同于第二偏移。其中,第一偏移为16us和25us中的一项,第二偏移为16us和25us中的另一项。
该场景为传输从某个时域符号内部开始的场景,当第一指示域指示LBT的category1时,传输的实际起始位置与参考时域符号的起始位置之间间隔16us;当第一指示域指示LBT的category2时,传输的实际起始位置与参考时域符号的起始位置之间间隔25us;当第一指示域指示LBT的category4时,忽略第二指示域。
值得指出的是,若第一指示域指示的信道接入类型为特定信道接入类型时,第二指示域指示的内容失效,特定信道接入类型为LBT的category4。
进一步地,在该场景下,参考时域符号包括:时域资源分配的第一个时域符号,或时域资源分配的起始位置之前的第M个时域符号,或时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。也就是说实际起始位置所在的时域符号可以是时域资源分配的第一个时域符号,也可以是时域资源分配的起始位置之前或之后的时域符号。
以参考时域符号为时域资源分配的起始位置之前的第M个时域符号为例,当传输的实际起始位置在某个时域符号内开始时,对于上行传输,网络设备给终端指示信道接入类型(LBT的category)以及时域传输的实际起始位置。对于终端采用LBT的category1的信道接入类型时,隐式地指示了UL传输之前有一个gap不大于16us;对于终端采用LBT的category2的信道接入类型时,隐式地指示了UL传输之前需要做25us的LBT。如图3所示,UL传输在DL传输之后,在DL传输结束位置和指示的UL传输开始位置之间预留一个时域符号作为Tx/Rx转换或者Tx/Rx转换和LBT。为了使得两个传输之间的gap不大于16us或者25us,UL传输的实际起始位置要在时域资源分配(指示的时域资源)的起始位置之前的时域符号内,当第一指示域指示的信道接入类型为LBT的category1时,UL传输的实际起始位置为:时域资源分配(即指示的时域资源)的起始位置-1OS+16us处。当第一指示域指示的信道接入类型为LBT的category2时,UL传输的实际起始位置为:时域资源分配的起始位置-1OS+25us。
值得指出的是,对于SCS大于30kHz的情况,上述计算实际起始位置时减掉的时域符号个数(即M的值),取决于留作Tx/Rx转换和LBT的时域符号个数,该值可能会大于1。其中,M的值可以在RRC中指示,也可以在DCI中指示,或者预定义(如协议直接约定)。
以参考时域符号为时域资源分配的第一个时域符号为例,当传输的实际起始位置在某个时域符号内开始时,对于上行传输,网络设备给终端指示信道接入类型以及时域传输的实际起始位置,对于终端采用LBT的category1的信道接入类型时,隐式地指示了UL传输之前有一个gap不大于16us;对于终端采用LBT的category2的信道接入类型时,隐式地指示了UL传输之前需要做25us的LBT。如图4所示,UL传输在DL传输之后,在DL传输 结束位置和指示的UL传输开始位置之间预留一个时域符号作为Tx/Rx转换或者Tx/Rx转换和LBT。为了使得两个传输之间的间隔不大于16us或者25us,UL传输的实际起始位置要在指示的第一个时域符号内,当第一指示域指示的信道接入类型为LBT的category1时,UL传输的实际起始位置为:时域资源分配(即指示时域资源)的起始位置+16us处。当第一指示域指示的信道接入类型为LBT的category2时,UL传输的实际起始位置为:时域资源分配的起始位置+25us处。
值得指出的是,对于SCS大于30kHz的情况,上述计算实际起始位置时还可顺延多个时域符号,即参考时域符号为时域资源分配的起始位置之后的第N个时域符号,实际起始位置为:时域资源分配的起始位置+N*OS+25us。其中,顺延的时域符号个数(即N的值),取决于留作Tx/Rx转换和LBT的时域符号个数,该值可能会大于1。其中,N的值可以在RRC中指示,也可以在DCI中指示,或者预定义(如协议直接约定)。
进一步地,考虑到网络设备和终端间的传输时延的影响,实际起始位置可能需要延后一个定时提前(Timing Advance,TA),因此在指示信息中可以额外增加一个bit的第三指示域,来指示传输是否需要延后一个TA。具体地,指示信息包括:用于指示实际起始位置是否偏移定时提前TA的第三指示域。例如第三指示域的1bit的值为1表示传输延后TA,第三指示域的1bit的值0表示不需要额外延后TA,或者反之。
以终端采用LBT的category2进行信道接入为例,对于实际起始位置在时域资源分配的起始位置之前的第M个时域符号内部的场景,当该bit的值为1时,实际起始位置为:时域资源分配的起始位置-M*OS+25us+TA。对于实际起始位置在时域资源分配的第一个时域符号内部的场景,当该bit的值为1时,实际起始位置为:时域资源分配的起始位置+25us+TA。对于实际起始位置在时域资源分配的起始位置之后的第N个时域符号内开始的场景,当该bit的值为1时,实际起始位置为:时域资源分配的起始位置+N*OS+25us+TA。
场景二、在实际起始位置为时域资源分配的起始位置的情况
步骤22包括:在第二指示域指示实际起始位置为时域资源分配的起始位置的情况下,从时域资源分配的起始位置开始传输。
如图5所示,UL传输在DL传输之后,在DL传输结束位置和指示的UL传输开始位置之间预留一个时域符号作为Tx/Rx转换或者Tx/Rx转换和LBT。在指示信息指示UL传输的实际起始位置在时域资源分配(指示的时域资源)的起始位置时,从指示的时域资源处开始传输。
该场景为传输从某个时域符号的起始位置开始的场景,传输从时域资源分配的起始位置开始。当第一指示域指示的信道接入类型为特定信道接入类型时,第二指示域指示的内容失效,特定信道接入类型为LBT的category4。
方式二、指示信息包括:用于指示信道接入类型是否为特定信道接入类型的第四指示域;用于指示实际起始位置是否为时域资源分配的起始位置的第五指示域;以及用于指示实际起始位置与参考时域符号的起始位置之间的偏移的第六指示域。
其中,偏移包括:16us、25us或25us+TA。特定信道接入类型可以为LBT的category4,其中,终端采用LBT的category4时,在传输前需要持续LBT直到侦听到信道为空。终端根据第四指示域可得知采用的信道接入类型是否为LBT的category4。以指示信息承载于DCI中为例,假设网络设备在DCI中使用1bit的第四指示域来指示信道接入类型是否为LBT的category4,例如第四指示域的1bit的值为1时,表示信道接入类型为LBT的category4,第四指示域的1bit的值为0时,表示信道接入类型不为LBT的category4,即为LBT的category1或LBT的category2。
进一步地,网络设备还可以在DCI中使用1bit的第五指示域来指示传输是否从某个时域符号(如时域资源分配所指示的第一个时域符号)的起始位置或边缘(boundary)开始,例如第五指示域的1bit的值为1时,表示实际起始位置是DCI中“Time domain resource assignment”域指示调度的起始位置。第五指示域的1bit的值为0时,表示实际起始位置不在DCI中“Time domain resource assignment”域指示调度的起始位置,可位于指示的起始位置所在时域符号内或者所在时域符号前后的时域符号内。或者说,第五指示域指示了gap/LBT是从一个时域符号的起始位置开始,还是gap/LBT从一个时域符号的中间位置开始,结束于该时域符号的结束位置。其中,前者对应于在OS内开始传输,后者对应于从OS的起始边缘开始传输。
进一步地,网络设备还可以在DCI中使用2bits或1bit的第六指示域来指示传输的实际起始位置与参考时域符号的起始位置之间的偏移,以指示传输的实际起始位置。其中,参考时域符号包括:时域资源分配的第一个时域符号,或时域资源分配的起始位置之前的第M个时域符号,或时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。
以参考时域符号为时域资源分配的第一个时域符号为例,例如第六指示域的2bits的值为00时,表示实际起始位置为:参考时域符号的起始+16us;例如第六指示域的2bits的值为01时,表示实际起始位置为:参考时域符号的起始+25us;例如第六指示域的2bits的值为10时,表示实际起始位置为:参考时域符号的起始+25us+TA;例如第六指示域的2bits的值为11时,表示为无效bit。
值得指出的是,在不考虑传输时延影响的情况下,实际传输位置中的TA可以考虑不计,第六指示域可采用1bit指示实际起始位置,例如第六指示域的1bit的值为0时,表示实际起始位置为:参考时域符号的起始+16us;例如第六指示域的1bit的值为1时,表示实际起始位置为:参考时域符号的起始+25us。
如上述方式一所述,两次传输之间的间隔小于16us时,可采用LBT的category1;两次传输之间的间隔小于25us时,可采用LBT的category2。也就是说,若终端采用LBT的category1,则两次传输之间至少需要16us的gap;若终端采用LBT的category2,则两次传输之间至少需要25us。那么在第六指示域指示实际起始位置与参考时域符号的起始位置之间的偏移时,第六指示域还隐式指示了终端所采用的信道接入类型。例如,第六指示域的2bits的值为00时,表示实际起始位置为:参考时域符号的起始+16us,并隐式指示了终端采用LBT的category1。第六指示域的2bits的值为01时,表示实际起始位置为:参考时域符号的起始+25us;2bits的值为10时,表示实际起始位置为:参考时域符号的起始+25us+TA,同时这2bits的值为“01”或“10”时还隐式指示了终端采用LBT的category2。
在该方式下,步骤22包括:在第四指示域指示信道接入类型不为特定信道接入类型、且第五指示域指示实际起始位置不为时域资源分配的起始位置 的情况下,根据第六指示域,得到实际起始位置和信道接入类型,并从实际起始位置开始传输。例如第四指示域指示接入类型不为LBT的category4,即值为0;第五指示域指示实际起始位置不为时域资源分配的起始位置,即值为0时,根据第六指示域的2bits得到传输的实际起始位置以及终端的信道接入类型。
或者,步骤22包括:在第四指示域指示信道接入类型不为特定信道接入类型、且第五指示域指示实际起始位置为时域资源分配的起始位置的情况下,根据第六指示域,得到信道接入类型,并从时域资源分配的起始位置开始传输。例如第四指示域指示接入类型不为LBT的category4,即值为0;第五指示域指示实际起始位置为时域资源分配的起始位置,即值为1时,根据第六指示域的2bits得到终端的信道接入类型,并从时域资源分配的起始位置开始传输。
或者,步骤22包括:在第四指示域指示信道接入类型为特定信道接入类型的情况下,忽略第五指示域和第六指示域。例如第四指示域指示接入类型为LBT的category4,即值为1,这时终端忽略第五指示域和第六指示域的解读。
以上介绍了指示信息如何指示传输的实际起始位置的不同实现方式,以及终端对于不同实际起始位置的不同处理方式,下面本公开实施例将进一步介绍终端在得知传输的实际起始位置后的行为。本公开实施例中终端在得知传输的实际起始位置之后,还包括:在参考时域符号中实际起始位置之后的时域资源内,发送预设信息,预设信息包括:占位信号、数据、参考信号和扩展循环前缀(extended Cyclic Prefix,extended CP)中的至少一项。也就是说,终端在传输开始的部分时域符号内,可以传输占位信号、数据、参考信号扩展循环前缀和其他信号中的至少一项,其中,数据可以为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、参考信号可以为跟踪参考信号(Sounding Reference Signal,SRS)。
本公开实施例的非授权频段信息传输方法中,终端的上行传输的开始位置可以位于某个时域符号的起始位置,也可以位于某个时域符号的内部,传输起始位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题, 进一步保证非授权频段下正常的上行传输。
以上实施例介绍了不同场景下的非授权频段信息传输方法,下面将结合附图对与其对应的终端做进一步介绍。
如图6所示,本公开实施例的终端600,能实现上述实施例中接收指示信息;根据指示信息,从实际起始位置开始传输,其中,实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部方法的细节,并达到相同的效果,该终端600具体包括以下功能模块:
第一接收模块610,用于接收指示信息;
第一传输模块620,用于根据指示信息,从实际起始位置开始传输,其中,实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部。
其中,指示信息包括:
用于指示信道接入类型的第一指示域;
用于指示实际起始位置是否为时域资源分配的起始位置的第二指示域。
其中,第一传输模块620包括:
第一传输子模块,用于在第二指示域指示实际起始位置不为时域资源分配的起始位置的情况下,若第一指示域指示信道接入类型为第一信道接入类型,则从与参考时域符号的起始位置偏移第一偏移的实际起始位置开始传输。
其中,第一传输模块620包括:
第二传输子模块,用于在第二指示域指示实际起始位置不为时域资源分配的起始位置的情况下,若第一指示域指示信道接入类型为第二信道接入类型,则从与参考时域符号的起始位置偏移第二偏移的实际起始位置开始传输。
其中,第一偏移为16us和25us中的一项,第二偏移为16us和25us中的另一项。
其中,终端600还包括:
处理模块,用于在第二指示域指示实际起始位置为时域资源分配的起始位置的情况下,从时域资源分配的起始位置开始传输。
其中,指示信息还包括:
用于指示实际起始位置是否偏移定时提前TA的第三指示域。
其中,指示信息包括:
用于指示信道接入类型是否为特定信道接入类型的第四指示域;
用于指示实际起始位置是否为时域资源分配的起始位置的第五指示域;以及
用于指示实际起始位置与参考时域符号的起始位置之间的偏移的第六指示域。
其中,第一传输模块620包括:
第三传输子模块,用于在第四指示域指示信道接入类型不为特定信道接入类型、且第五指示域指示实际起始位置不为时域资源分配的起始位置的情况下,根据第六指示域,得到实际起始位置和信道接入类型,并从实际起始位置开始传输。
其中,第一传输模块620包括:
第四传输子模块,用于在第四指示域指示信道接入类型不为特定信道接入类型、且第五指示域指示实际起始位置为时域资源分配的起始位置的情况下,根据第六指示域,得到信道接入类型,并从实际起始位置开始传输。
其中,第一传输模块620包括:
第五传输子模块,用于在第四指示域指示信道接入类型为特定信道接入类型的情况下,忽略第五指示域和第六指示域。
其中,偏移包括:16us、25us或25us+TA。
其中,参考时域符号包括:时域资源分配的第一个时域符号,或时域资源分配的起始位置之前的第M个时域符号,或时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。
其中,终端600还包括:
第二传输模块,用于在参考时域符号中实际起始位置之后的时域资源内,发送预设信息,所述预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。
值得指出的是,本公开实施例的终端,其上行传输的开始位置可以位于某个时域符号的起始位置,也可以位于某个时域符号的内部,传输起始位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保 证非授权频段下正常的上行传输。
为了更好的实现上述目的,进一步地,图7为实现本公开各个实施例的一种终端的硬件结构示意图,该终端70包括但不限于:射频单元71、网络模块72、音频输出单元73、输入单元74、传感器75、显示单元76、用户输入单元77、接口单元78、存储器79、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元71,用于接收指示信息;
处理器710,用于根据所述指示信息,得到传输的实际起始位置,其中,实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部;
本公开实施例的终端,其的上行传输的开始位置可以位于某个时域符号的起始位置,也可以位于某个时域符号的内部,传输起始位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上行传输。
应理解的是,本公开实施例中,射频单元71可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元71包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元71还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块72为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元73可以将射频单元71或网络模块72接收的或者在存储器79中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元73还可以提供与终端70执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元73包括扬声器、蜂鸣器以及受话器等。
输入单元74用于接收音频或视频信号。输入单元74可以包括图形处理器(Graphics Processing Unit,GPU)741和麦克风742,图形处理器741对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元76上。经图形处理器741处理后的图像帧可以存储在存储器79(或其它存储介质)中或者经由射频单元71或网络模块72进行发送。麦克风742可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元71发送到移动通信基站的格式输出。
终端70还包括至少一种传感器75,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板761的亮度,接近传感器可在终端70移动到耳边时,关闭显示面板761和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器75还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元76用于显示由用户输入的信息或提供给用户的信息。显示单元76可包括显示面板761,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板761。
用户输入单元77可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元77包括触控面板771以及其他输入设备772。触控面板771,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板771上或在触控面板771附近的操作)。触控面板771可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710, 接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板771。除了触控面板771,用户输入单元77还可以包括其他输入设备772。具体地,其他输入设备772可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板771可覆盖在显示面板761上,当触控面板771检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板761上提供相应的视觉输出。虽然在图7中,触控面板771与显示面板761是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板771与显示面板761集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元78为外部装置与终端70连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元78可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端70内的一个或多个元件或者可以用于在终端70和外部装置之间传输数据。
存储器79可用于存储软件程序以及各种数据。存储器79可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器79可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器79内的软件程序和/或模块,以及调用存储在存储器79内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是, 上述调制解调处理器也可以不集成到处理器710中。
终端70还可以包括给各个部件供电的电源711(比如电池),可选的,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端70包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器710,存储器79,存储在存储器79上并可在所述处理器710上运行的计算机程序,该计算机程序被处理器710执行时实现上述非授权频段信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述非授权频段信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的非授权频段信息传输方法,下面本实施例将结合附图对网络设备侧的非授权频段信息传输方法做进一步介绍。
如图8所示,本公开实施例的非授权频段信息传输方法,应用于网络设备侧,该方法包括以下步骤:
步骤81:发送指示信息;指示信息用于指示传输的实际起始位置,该实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部。
其中,指示信息用于指示传输的实际起始位置,该指示信息可通过一个指示域直接指示传输的实际起始位置,也可以通过多个指示域间接指示传输的实际起始位置。进一步地,指示信息可承载于DCI中,或者,指示信息还可以承载于RRC中。
本公开实施例中参考时域符号可以指任一时域符号(如OFDM符号),也就是说,传输的实际起始位置可以位于某个时域符号的起始位置,也可以位于时域符号的内部,这里所说的内部指的是除起始位置之外的其他位置。这样传输的起始位置更加灵活,可解决传输调度和非授权频段传输的颗粒度匹配问题,保证非授权频段下可进行正常的上行传输。
其中,以指示信息通过多个指示域联合指示为例,指示信息的指示方式包括但不限于:
方式三、用于指示信道接入类型的第一指示域;以及用于指示实际起始位置是否为时域资源分配的起始位置的第二指示域。
其中,信道接入类型包括但不限于:LBT的category1、category2和category4等,以指示信息承载于DCI中为例,假设网络设备在DCI中使用2bits的第一指示域来指示LBT的category,包括LBT的category1、2和4。其中,这些信道接入类型的接入形式可参照终端侧实施例的方式一中的介绍,故在此不再赘述。
其中,信道接入类型包括第一信道接入类型和/或第二信道接入类型,其中,第一信道接入类型隐式指示实际起始位置与参考时域符号的起始位置之间间隔第一偏移,第二信道接入类型隐式指示实际起始位置与参考时域符号的起始位置之间间隔第二偏移。其中,第一信道接入类型不同于第二信道类 型,第一偏移不同于第二偏移。其中,第一偏移为16us和25us中的一项,第二偏移为16us和25us中的另一项。也就是说,不同信道接入类型对应不同的间隔,即第一指示域还可隐式指示实际起始位置与时域符号之间的间隔偏移(或称为偏移)。例如两次传输之间的间隔(gap)小于16us时,可采用LBT的category1;两次传输之间的间隔小于25us时,可采用LBT的category2。也就是说,若终端采用LBT的category1,则两次传输之间的间隔小于16us;若终端采用LBT的category2,则需要25us的LBT。
进一步地,考虑到网络设备和终端间的传输时延的影响,实际起始位置可能需要延后一个定时提前TA,因此在指示信息中可以额外增加一个bit的第三指示域,来指示传输是否需要延后一个TA。具体地,指示信息还包括:用于指示实际起始位置是否偏移定时提前TA的第三指示域。例如第三指示域的1bit的值为1表示传输延后TA,第三指示域的1bit的值0表示不需要额外延后TA,或者反之。以终端采用LBT的category2进行信道接入为例,对于实际起始位置在时域资源分配的起始位置之前的时域符号内开始的场景,当该bit的值为1时,实际起始位置为:时域资源分配的起始位置-M*OS+25us+TA。对于实际起始位置在时域资源分配的起始位置之后的时域符号内开始的场景,当该bit的值为1时,实际起始位置为:时域资源分配的起始位置+25us+TA,或时域资源分配的起始位置+N*OS+25us+TA。
方式四、指示信息包括:用于指示信道接入类型是否为特定信道接入类型的第四指示域;用于指示实际起始位置是否为时域资源分配的起始位置的第五指示域;以及用于指示实际起始位置与参考时域符号的起始位置之间的偏移的第六指示域。
其中,偏移包括:16us、25us或25us+TA。特定信道接入类型可以为LBT的category4,其中,终端采用LBT的category4时,在传输前需要持续LBT直到侦听到信道为空。终端根据第四指示域可得知采用的信道接入类型是否为LBT的category4。以指示信息承载于DCI中为例,假设网络设备在DCI中使用1bit的第四指示域来指示信道接入类型是否为LBT的category4,例如第四指示域的1bit的值为1时,表示信道接入类型为LBT的category4,第四指示域的1bit的值为0时,表示信道接入类型不为LBT的category4,即为 LBT的category1或LBT的category2。
其中,参考时域符号包括:时域资源分配的第一个时域符号,或时域资源分配的起始位置之前的第M个时域符号,或时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。进一步地,网络设备还可以在DCI中使用2bits或1bit的第六指示域来指示传输的实际起始位置与参考时域符号的起始位置之间的偏移的第六指示域,以指示传输的实际起始位置。其中,参考时域符号包括:时域资源分配的第一个时域符号,或时域资源分配的起始位置之前的第M个时域符号,或时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。以参考时域符号为时域资源分配的第一个时域符号为例,例如第六指示域的2bits的值为00时,表示实际起始位置为:参考时域符号的起始+16us;例如第六指示域的2bits的值为01时,表示实际起始位置为:参考时域符号的起始+25us;例如第六指示域的2bits的值为10时,表示实际起始位置为:参考时域符号的起始+25us+TA;例如第六指示域的2bits的值为11时,表示为无效bit。值得指出的是,在不考虑传输时延影响的情况下,实际传输位置中的TA可以考虑不计,第六指示域可采用1bit指示实际起始位置,例如第六指示域的1bit的值为0时,表示实际起始位置为:参考时域符号的起始+16us;例如第六指示域的1bit的值为1时,表示实际起始位置为:参考时域符号的起始+25us。
本公开实施例的非授权频段信息传输方法中,网络设备通过指示信息指示终端的上行传输的开始位置可以位于某个时域符号的起始位置,也可以位于某个时域符号的内部,使得传输起始位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上行传输。
以上实施例分别详细介绍了不同场景下的非授权频段信息传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图9所示,本公开实施例的网络设备900,能实现上述实施例中发送指示信息;其中,所述指示信息用于指示传输的实际起始位置,该实际起始位置位于参考时域符号的起始位置,或所述实际起始位置位于所述参考时域符号的内部方法的细节,并达到相同的效果,该网络设备900具体包括以下功能模块:
第一发送模块910,用于发送指示信息;其中,指示信息用于指示传输的实际起始位置,该实际起始位置位于参考时域符号的起始位置,或实际起始位置位于参考时域符号的内部。
其中,指示信息包括:
用于指示信道接入类型的第一指示域;
用于指示实际起始位置是否为时域资源分配的起始位置的第二指示域。
其中,信道接入类型包括第一信道接入类型和/或第二信道接入类型,其中,第一信道接入类型隐式指示实际起始位置与参考时域符号的起始位置之间间隔第一偏移,第二信道接入类型隐式指示实际起始位置与参考时域符号的起始位置之间间隔第二偏移。
其中,第一偏移为:16us和25us中的一项,第二偏移为16us和25us中的另一项。
其中,指示信息还包括:
用于指示实际起始位置是否偏移定时提前TA的第三指示域。
其中,指示信息包括:
用于指示信道接入类型是否为特定信道接入类型的第四指示域;
用于指示实际起始位置是否为时域资源分配的起始位置的第五指示域;以及
用于指示实际起始位置与参考时域符号的起始位置之间的偏移的第六指示域。
其中,偏移包括:16us、25us或25us+TA。
其中,参考时域符号包括:时域资源分配的第一个时域符号,或时域资源分配的起始位置之前的第M个时域符号,或时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。
值得指出的是,本公开实施例的网络设备通过指示信息指示终端的上行传输的开始位置可以位于某个时域符号的起始位置,也可以位于某个时域符号的内部,使得传输起始位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上行传输。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一 种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的非授权频段信息传输方法中的步骤。公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的非授权频段信息传输方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图10所示,该网络设备1000包括:天线101、射频装置102、基带装置103。天线101与射频装置102连接。在上行方向上,射频装置102通过天线101接收信息,将接收的信息发送给基带装置103进行处理。在下行方向上,基带装置103对要发 送的信息进行处理,并发送给射频装置102,射频装置102对收到的信息进行处理后经过天线101发送出去。
上述频带处理装置可以位于基带装置103中,以上实施例中网络设备执行的方法可以在基带装置103中实现,该基带装置103包括处理器104和存储器105。
基带装置103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器104,与存储器105连接,以调用存储器105中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置103还可以包括网络接口106,用于与射频装置102交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器105可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器105旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器105上并可在处理器104上运行的计算机程序,处理器104调用存储器105中的计算机程序执行图9所示各模块执行的方法。
具体地,计算机程序被处理器104调用时可用于执行:发送指示信息;其中,所述指示信息用于指示传输的实际起始位置,该实际起始位置位于参考时域符号的起始位置,或所述实际起始位置位于所述参考时域符号的内部。
本公开实施例中的网络设备,通过指示信息指示终端的上行传输的开始位置可以位于某个时域符号的起始位置,也可以位于某个时域符号的内部,使得传输起始位置更加灵活,可解决信息调度和非授权频段传输的颗粒度匹配问题,进一步保证非授权频段下正常的上行传输。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些要素可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执 行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (39)

  1. 一种非授权频段信息传输方法,应用于终端侧,包括:
    接收指示信息;
    根据所述指示信息,从实际起始位置开始传输,其中,所述实际起始位置位于参考时域符号的起始位置,或所述实际起始位置位于所述参考时域符号的内部。
  2. 根据权利要求1所述的非授权频段信息传输方法,其中,所述指示信息包括:
    用于指示信道接入类型的第一指示域;
    用于指示所述实际起始位置是否为时域资源分配的起始位置的第二指示域。
  3. 根据权利要求2所述的非授权频段信息传输方法,其中,根据所述指示信息,从实际起始位置开始传输的步骤,包括:
    在所述第二指示域指示所述实际起始位置不为时域资源分配的起始位置的情况下,若所述第一指示域指示所述信道接入类型为第一信道接入类型,则从与所述参考时域符号的起始位置偏移第一偏移的实际起始位置开始传输。
  4. 根据权利要求2所述的非授权频段信息传输方法,其中,根据所述指示信息,从实际起始位置开始传输的步骤,包括:
    在所述第二指示域指示所述实际起始位置不为时域资源分配的起始位置的情况下,若所述第一指示域指示所述信道接入类型为第二信道接入类型,则从与所述参考时域符号的起始位置偏移第二偏移的实际起始位置开始传输。
  5. 根据权利要求2所述的非授权频段信息传输方法,其中,根据所述指示信息,从实际起始位置开始传输的步骤,包括:
    在所述第二指示域指示所述实际起始位置为时域资源分配的起始位置的情况下,从所述时域资源分配的起始位置开始传输。
  6. 根据权利要求2所述的非授权频段信息传输方法,其中,所述指示信息还包括:
    用于指示所述实际起始位置是否偏移定时提前TA的第三指示域。
  7. 根据权利要求1所述的非授权频段信息传输方法,其中,所述指示信息包括:
    用于指示信道接入类型是否为特定信道接入类型的第四指示域;
    用于指示所述实际起始位置是否为时域资源分配的起始位置的第五指示域;以及
    用于指示所述实际起始位置与所述参考时域符号的起始位置之间的偏移的第六指示域。
  8. 根据权利要求7所述的非授权频段信息传输方法,其中,根据所述指示信息,从实际起始位置开始传输的步骤,包括:
    在所述第四指示域指示所述信道接入类型不为所述特定信道接入类型、且所述第五指示域指示所述实际起始位置不为时域资源分配的起始位置的情况下,根据所述第六指示域,得到所述实际起始位置和信道接入类型,并从所述实际起始位置开始传输。
  9. 根据权利要求7所述的非授权频段信息传输方法,其中,根据所述指示信息,从实际起始位置开始传输的步骤,包括:
    在所述第四指示域指示所述信道接入类型不为所述特定信道接入类型、且所述第五指示域指示所述实际起始位置为时域资源分配的起始位置的情况下,根据所述第六指示域,得到信道接入类型,并从所述时域资源分配的起始位置开始传输。
  10. 根据权利要求7所述的非授权频段信息传输方法,其中,根据所述指示信息,从实际起始位置开始传输的步骤,包括:
    在所述第四指示域指示所述信道接入类型为所述特定信道接入类型的情况下,忽略所述第五指示域和所述第六指示域。
  11. 根据权利要求1、2或7所述的非授权频段信息传输方法,其中,所述参考时域符号包括:时域资源分配的第一个时域符号,或所述时域资源分配的起始位置之前的第M个时域符号,或所述时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。
  12. 根据权利要求1所述的非授权频段信息传输方法,还包括:
    在所述参考时域符号中所述实际起始位置之后的时域资源内,发送预设 信息,所述预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。
  13. 一种终端,包括:
    第一接收模块,用于接收指示信息;
    第一传输模块,用于根据所述指示信息,从实际起始位置开始,其中,所述实际起始位置位于参考时域符号的起始位置,或所述实际起始位置位于所述参考时域符号的内部。
  14. 根据权利要求13所述的终端,其中,所述指示信息包括:
    用于指示信道接入类型的第一指示域;
    用于指示所述实际起始位置是否为时域资源分配的起始位置的第二指示域。
  15. 根据权利要求14所述的终端,其中,所述第一传输模块包括:
    第一传输子模块,用于在所述第二指示域指示所述实际起始位置不为时域资源分配的起始位置的情况下,若所述第一指示域指示所述信道接入类型为第一信道接入类型,则从与所述参考时域符号的起始位置偏移第一偏移的实际起始位置开始传输。
  16. 根据权利要求14所述的终端,其中,所述第一传输模块包括:
    第二传输子模块,用于在所述第二指示域指示所述实际起始位置不为时域资源分配的起始位置的情况下,若所述第一指示域指示所述信道接入类型为第二信道接入类型,则从与所述参考时域符号的起始位置偏移第二偏移的实际起始位置开始传输。
  17. 根据权利要求14所述的终端,还包括:
    处理模块,用于在所述第二指示域指示所述实际起始位置为时域资源分配的起始位置的情况下,从所述时域资源分配的起始位置开始传输。
  18. 根据权利要求14所述的终端,其中,所述指示信息还包括:
    用于指示所述实际起始位置是否偏移定时提前TA的第三指示域。
  19. 根据权利要求13所述的终端,其中,所述指示信息包括:
    用于指示信道接入类型是否为特定信道接入类型的第四指示域;
    用于指示所述实际起始位置是否为时域资源分配的起始位置的第五指示 域;以及
    用于指示所述实际起始位置与所述参考时域符号的起始位置之间的偏移的第六指示域。
  20. 根据权利要求19所述的终端,其中,所述第一传输模块包括:
    第三传输子模块,用于在所述第四指示域指示所述信道接入类型不为所述特定信道接入类型、且所述第五指示域指示所述实际起始位置不为时域资源分配的起始位置的情况下,根据所述第六指示域,得到所述实际起始位置和信道接入类型,并从所述实际起始位置开始传输。
  21. 根据权利要求19所述的终端,其中,所述第一传输模块包括:
    第四传输子模块,用于在所述第四指示域指示所述信道接入类型不为所述特定信道接入类型、且所述第五指示域指示所述实际起始位置为时域资源分配的起始位置的情况下,根据所述第六指示域,得到信道接入类型,并从所述时域资源分配的起始位置开始传输。
  22. 根据权利要求19所述的终端,其中,所述第一传输模块包括:
    第五传输子模块,用于在所述第四指示域指示所述信道接入类型为所述特定信道接入类型的情况下,忽略所述第五指示域和所述第六指示域。
  23. 根据权利要求13、14或19所述的终端,其中,所述参考时域符号包括:时域资源分配的第一个时域符号,或所述时域资源分配的起始位置之前的第M个时域符号,或所述时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。
  24. 根据权利要求13所述的终端,还包括:
    第二传输模块,用于在所述参考时域符号中所述实际起始位置之后的时域资源内,发送预设信息,所述预设信息包括:占位信号、数据、参考信号和扩展循环前缀中的至少一项。
  25. 一种终端,包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12中任一项所述的非授权频段信息传输方法的步骤。
  26. 一种非授权频段信息传输方法,应用于网络设备侧,包括:
    发送指示信息;其中,所述指示信息用于指示传输的实际起始位置,所 述实际起始位置位于参考时域符号的起始位置,或所述实际起始位置位于所述参考时域符号的内部。
  27. 根据权利要求26所述的非授权频段信息传输方法,其中,所述指示信息包括:
    用于指示信道接入类型的第一指示域;
    用于指示所述实际起始位置是否为时域资源分配的起始位置的第二指示域。
  28. 根据权利要求27所述的非授权频段信息传输方法,其中,所述信道接入类型包括第一信道接入类型和/或第二信道接入类型,其中,第一信道接入类型隐式指示所述实际起始位置与所述参考时域符号的起始位置之间间隔第一偏移,所述第二信道接入类型隐式指示所述实际起始位置与所述参考时域符号的起始位置之间间隔第二偏移。
  29. 根据权利要求27所述的非授权频段信息传输方法,其中,所述指示信息还包括:
    用于指示所述实际起始位置是否偏移定时提前TA的第三指示域。
  30. 根据权利要求26所述的非授权频段信息传输方法,其中,所述指示信息包括:
    用于指示信道接入类型是否为特定信道接入类型的第四指示域;
    用于指示所述实际起始位置是否为时域资源分配的起始位置的第五指示域;以及
    用于指示所述实际起始位置与所述参考时域符号的起始位置之间的偏移的第六指示域。
  31. 根据权利要求26、27或30所述的非授权频段信息传输方法,其中,所述参考时域符号包括:时域资源分配的第一个时域符号,或所述时域资源分配的起始位置之前的第M个时域符号,或所述时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。
  32. 一种网络设备,包括:
    第一发送模块,用于发送指示信息;其中,所述指示信息用于指示传输的实际起始位置,所述实际起始位置位于参考时域符号的起始位置,或所述 实际起始位置位于所述参考时域符号的内部。
  33. 根据权利要求32所述的网络设备,其中,所述指示信息包括:
    用于指示信道接入类型的第一指示域;
    用于指示所述实际起始位置是否为时域资源分配的起始位置的第二指示域。
  34. 根据权利要求33所述的网络设备,其中,所述信道接入类型包括第一信道接入类型和/或第二信道接入类型,其中,第一信道接入类型隐式指示所述实际起始位置与所述参考时域符号的起始位置之间间隔第一偏移,所述第二信道接入类型隐式指示所述实际起始位置与所述参考时域符号的起始位置之间间隔第二偏移。
  35. 根据权利要求33所述的网络设备,其中,所述指示信息还包括:
    用于指示所述实际起始位置是否偏移定时提前TA的第三指示域。
  36. 根据权利要求32所述的网络设备,其中,所述指示信息包括:
    用于指示信道接入类型是否为特定信道接入类型的第四指示域;
    用于指示所述实际起始位置是否为时域资源分配的起始位置的第五指示域;以及
    用于指示所述实际起始位置与所述参考时域符号的起始位置之间的偏移的第六指示域。
  37. 根据权利要求32、33或36所述的网络设备,其中,所述参考时域符号包括:时域资源分配的第一个时域符号,或所述时域资源分配的起始位置之前的第M个时域符号,或所述时域资源分配的起始位置之后的第N个时域符号,M、N为大于或等于1的整数。
  38. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求26至31任一项所述的非授权频段信息传输方法的步骤。
  39. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12、26至31中任一项所述的非授权频段信息传输方法的步骤。
PCT/CN2019/121193 2018-12-21 2019-11-27 非授权频段信息传输方法、终端及网络设备 WO2020125360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/349,894 US20210314779A1 (en) 2018-12-21 2021-06-16 Information transmission method in unlicensed band, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811570008.6 2018-12-21
CN201811570008.6A CN111182635B (zh) 2018-12-21 2018-12-21 非授权频段信息传输方法、终端及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/349,894 Continuation US20210314779A1 (en) 2018-12-21 2021-06-16 Information transmission method in unlicensed band, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2020125360A1 true WO2020125360A1 (zh) 2020-06-25

Family

ID=70655337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121193 WO2020125360A1 (zh) 2018-12-21 2019-11-27 非授权频段信息传输方法、终端及网络设备

Country Status (3)

Country Link
US (1) US20210314779A1 (zh)
CN (1) CN111182635B (zh)
WO (1) WO2020125360A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071446B (zh) * 2020-08-04 2023-05-05 维沃移动通信有限公司 信息传输方法、信息传输装置、终端及网络侧设备
US11902950B2 (en) * 2021-02-11 2024-02-13 Qualcomm Incorporated Channel occupancy time (COT) aware autonomous sensing for sidelink
CN117320159A (zh) * 2022-06-21 2023-12-29 维沃移动通信有限公司 传输方法、设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
CN105991211A (zh) * 2015-01-28 2016-10-05 中国移动通信集团公司 非授权频段下的参考信号发送方法、接收方法及装置
CN107079333A (zh) * 2014-11-15 2017-08-18 松下电器(美国)知识产权公司 资源调度方法、资源确定方法、eNode B 和用户设备
US20180249497A1 (en) * 2015-11-04 2018-08-30 Wilus Institute Of Standards And Technology Inc. Method, device, and system for transmitting signals in unlicensed band

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105025574B (zh) * 2014-04-16 2019-07-02 中兴通讯股份有限公司 一种数据传输方法及装置
CN105515741B (zh) * 2014-09-26 2020-04-10 电信科学技术研究院 一种在非授权频段上的数据传输方法及装置
CN105592467A (zh) * 2014-11-07 2016-05-18 北京三星通信技术研究有限公司 长期演进通信系统中竞争信道资源的方法及设备
US10694539B2 (en) * 2016-02-05 2020-06-23 Samsung Electronics Co., Ltd Communication method and device in mobile communication system
CN107196735B (zh) * 2016-03-15 2021-09-03 中兴通讯股份有限公司 确定传输信息的方法、装置及系统
CN109792774B (zh) * 2016-06-11 2020-07-21 欧芬诺有限责任公司 在无线设备和无线网络中的先听后说流程
CN109413744B (zh) * 2017-08-18 2020-12-08 华为技术有限公司 通信方法与设备
WO2020032703A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 비면허 대역 내에서 이니셜 액세스 절차 수행 방법 및 상기 방법을 이용하는 단말
CN116707717A (zh) * 2018-09-27 2023-09-05 北京三星通信技术研究有限公司 上行信号发送方法及装置
WO2020073203A1 (zh) * 2018-10-09 2020-04-16 Oppo广东移动通信有限公司 一种资源配置方法及装置、通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
CN107079333A (zh) * 2014-11-15 2017-08-18 松下电器(美国)知识产权公司 资源调度方法、资源确定方法、eNode B 和用户设备
CN105991211A (zh) * 2015-01-28 2016-10-05 中国移动通信集团公司 非授权频段下的参考信号发送方法、接收方法及装置
US20180249497A1 (en) * 2015-11-04 2018-08-30 Wilus Institute Of Standards And Technology Inc. Method, device, and system for transmitting signals in unlicensed band

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on Usage of Mini-Slot in Unlicensed Band below 6GHz", 3GPP TSG RAN WG1 NR ADHOC MEETING, R1-1700420, 20 January 2017 (2017-01-20), XP051207957, DOI: 20200225170847A *

Also Published As

Publication number Publication date
CN111182635A (zh) 2020-05-19
CN111182635B (zh) 2024-03-26
US20210314779A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
WO2020147817A1 (zh) 随机接入过程的信息传输方法及终端
WO2019076171A1 (zh) 非授权频段下的信息传输方法、终端及网络设备
WO2020011181A1 (zh) 信道检测指示方法、终端及网络设备
WO2020147816A1 (zh) 随机接入传输方法及终端
WO2019214664A1 (zh) 传输资源指示方法、网络设备及终端
WO2020200098A1 (zh) 随机接入过程的信息传输方法及终端
WO2020024811A1 (zh) 信息传输方法、终端及网络设备
AU2019371949B2 (en) Information transmission method and communication device
WO2020156073A1 (zh) 非授权频段的信息传输方法、终端及网络设备
WO2020088101A1 (zh) 非周期信道状态信息参考信号配置方法、网络设备及终端
WO2021147761A1 (zh) 上行传输处理方法及装置、终端
WO2021155763A1 (zh) 非授权频段的数据传输方法及装置、通信设备
US20210314779A1 (en) Information transmission method in unlicensed band, terminal, and network device
WO2020125400A1 (zh) 信息传输方法、终端及网络设备
WO2020011096A1 (zh) 上行传输方法及终端
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
WO2020147827A1 (zh) 随机接入传输方法及终端
US11991756B2 (en) Random access transmission method and terminal
WO2020147826A1 (zh) 随机接入传输方法及终端
WO2019242568A1 (zh) 功率分配方法及终端
WO2020125401A1 (zh) 非授权频段信息传输方法、终端及网络设备
WO2019214459A1 (zh) 信息传输方法、网络设备及终端
WO2021208938A1 (zh) 确定数据传输层数的方法及装置、通信设备
WO2020134222A1 (zh) 信息传输方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899404

Country of ref document: EP

Kind code of ref document: A1