WO2021155763A1 - 非授权频段的数据传输方法及装置、通信设备 - Google Patents

非授权频段的数据传输方法及装置、通信设备 Download PDF

Info

Publication number
WO2021155763A1
WO2021155763A1 PCT/CN2021/074343 CN2021074343W WO2021155763A1 WO 2021155763 A1 WO2021155763 A1 WO 2021155763A1 CN 2021074343 W CN2021074343 W CN 2021074343W WO 2021155763 A1 WO2021155763 A1 WO 2021155763A1
Authority
WO
WIPO (PCT)
Prior art keywords
ffp
terminal
channel
transmission
side device
Prior art date
Application number
PCT/CN2021/074343
Other languages
English (en)
French (fr)
Inventor
姜蕾
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021155763A1 publication Critical patent/WO2021155763A1/zh
Priority to US17/880,571 priority Critical patent/US20220386371A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates to the field of communication technology, in particular to a data transmission method and device of an unlicensed frequency band, and communication equipment.
  • unlicensed bands can be used as a supplement to licensed bands to help operators expand their services.
  • Unlicensed frequency bands must comply with regulations when used to ensure that all devices can use the resource fairly, such as listen before talk (LBT), maximum channel occupation time (Maximum Channel Occupancy Time, MCOT) and other rules .
  • LBT listen before talk
  • MCOT Maximum Channel Occupancy Time
  • ED energy detection
  • Frame-Based Equipment means that the transmission and/or reception timing of the equipment adopts a periodic structure, and the cycle is a fixed frame period (Fixed Frame Period, FFP).
  • the FBE node uses the LBT-based channel access mechanism to occupy the channel.
  • any uplink transmission needs to perform downlink signal detection first. Whether it is uplink transmission based on dynamic grant or uplink transmission without authorization (configured grant), the UE can only detect Transmission is possible after the downlink signal. For unlicensed transmission, if the gNB side cannot occupy the channel, the UE cannot perform unlicensed transmission even if the channel on the UE side is empty, which reduces the efficiency of unlicensed transmission.
  • gNB does not know when there will be UE access or when there will be data to be transmitted. In order to ensure UE access or transmission as much as possible, gNB needs to perform frequent interception and preemption. Channel, and send downlink signals and/or channels, bringing unnecessary redundant signal transmission.
  • the embodiment of the present invention provides a data transmission method and device in an unlicensed frequency band, and communication equipment, which can realize that the gNB and the UE flexibly share the transmission channel under the FBE access mechanism of the unlicensed frequency band.
  • an embodiment of the present invention provides a data transmission method in an unlicensed frequency band, which is applied to a terminal, and includes:
  • Uplink transmission is performed according to the fixed frame period FFP configuration information and the channel state.
  • the FFP configuration information includes at least one of the FFP start position and FFP length of the terminal, and at least one of the FFP start position and FFP length of the network side device.
  • One item, the FFP start position of the terminal is different from the FFP start position of the network side device.
  • an embodiment of the present invention also provides a data transmission method in an unlicensed frequency band, which is applied to a network side device, and includes:
  • the downlink transmission is performed according to the fixed frame period FFP configuration information and the channel state.
  • the FFP configuration information includes at least one of the FFP start position and the FFP length of the network side device, and at least one of the FFP start position and the FFP length of the terminal.
  • One item, the FFP start position of the network side device is different from the FFP start position of the terminal.
  • an embodiment of the present invention also provides a data transmission device in an unlicensed frequency band, which is applied to a terminal, and includes:
  • the first transmission module is configured to perform uplink transmission according to fixed frame period FFP configuration information and channel status, where the FFP configuration information includes at least one of the FFP start position and FFP length of the terminal, and the FFP start of the network side device At least one of the position and the FFP length, the FFP start position of the terminal is different from the FFP start position of the network side device.
  • an embodiment of the present invention also provides a data transmission device in an unlicensed frequency band, which is applied to a network side device, and includes:
  • the second transmission module is configured to perform downlink transmission according to fixed frame period FFP configuration information and channel status, where the FFP configuration information includes at least one of the FFP start position and FFP length of the network side device, and the FFP start of the terminal At least one of the position and the FFP length, and the FFP start position of the network side device is different from the FFP start position of the terminal.
  • an embodiment of the present invention also provides a communication device.
  • the communication device includes a processor, a memory, and a computer program stored on the memory and running on the processor, and the processor executes all The computer program implements the steps of the data transmission method in the unlicensed frequency band as described above.
  • an embodiment of the present invention provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned unlicensed frequency band data is realized The steps of the transmission method.
  • the terminal performs uplink transmission according to FFP configuration information and channel status
  • the network side device performs downlink transmission according to FFP configuration information and channel status.
  • the FFP start position of the network side device is different from the FFP start position of the terminal, so that the network side
  • the device and the terminal can share the COT of the other party for transmission or initiate COT for transmission by themselves, so that the network side device and the terminal can flexibly share the transmission channel.
  • Fig. 1 shows a block diagram of a mobile communication system to which an embodiment of the present invention can be applied
  • Figure 2 shows a schematic diagram of the operation of the initiating node
  • FIG. 3 shows a schematic flowchart of a data transmission method in an unlicensed frequency band of a terminal according to an embodiment of the present invention
  • FIG. 4 shows a schematic flowchart of a data transmission method in an unlicensed frequency band of a network side device according to an embodiment of the present invention
  • FIG. 5 shows a schematic diagram of the UE FFP starting position is later than the gNB FFP starting position in the first embodiment of the present invention
  • FIG. 6 shows a schematic diagram of a UE FFP starting position later than a gNB FFP starting position in the second embodiment of the present invention
  • FIG. 7 shows a schematic diagram of the UE FFP starting position is later than the gNB FFP starting position in the third embodiment of the present invention
  • FIG. 8 shows a schematic diagram of the UE FFP starting position is later than the gNB FFP starting position in the fourth embodiment of the present invention, and the COT of the UE and the gNB do not overlap;
  • FIG. 9 is a schematic diagram showing that the start position of the gNB FFP is later than the start position of the UE FFP in the fifth embodiment of the present invention.
  • FIG. 10 shows a schematic diagram of a module structure of a terminal according to an embodiment of the present invention.
  • FIG. 11 shows a schematic diagram of a module structure of a network side device according to an embodiment of the present invention.
  • FIG. 12 shows a schematic diagram of the composition of a terminal according to an embodiment of the present invention.
  • FIG. 13 shows a schematic diagram of the composition of a network side device according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier Frequency-Division Multiple Access
  • the terms "system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • OFDMA system can realize such as Ultra Mobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 802.11 (Wireless Fidelity, Wi-Fi), IEEE 802.16 (Global Microwave) Access interoperability (Worldwide Interoperability for Microwave Access, WiMAX), IEEE 802.20, Flash-OFDM and other radio technologies.
  • UMB Ultra Mobile Broadband
  • Evolved UTRA Evolved UTRA
  • E-UTRA Evolved UTRA
  • IEEE 802.11 Wireless Fidelity, Wi-Fi
  • IEEE 802.16 Global Microwave) Access interoperability (Worldwide Interoperability for Microwave Access, WiMAX)
  • IEEE 802.20 Flash-OFDM and other radio technologies.
  • UMB Ultra Mobile Broadband
  • Evolved UTRA Evolved UTRA
  • IEEE 802.11 Wireless Fidelity, Wi-Fi
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described in this article can be used for the systems and radio technologies mentioned above, as well as other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these technologies can also be applied to applications other than NR system applications.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present invention can be applied.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • vehicle-mounted equipment it should be noted that the specific type of terminal 11 is not limited in the embodiment of the present invention .
  • the network-side device 12 may be a base station or a core network, wherein the base station may be the fifth generation (5 th Generation, 5G) and later a base station (e.g.: gNB, 5G NR NB, etc.), or other communication system, a base station (E.g. eNB, Wireless Local Area Network (WLAN) access point, or other access points, etc.), or a location server (e.g.
  • 5G fifth generation
  • a base station e.g.: gNB, 5G NR NB, etc.
  • a base station e.g. eNB, Wireless Local Area Network (WLAN) access point, or other access points, etc.
  • a location server e.g.
  • Evolved Serving Mobile Location Center (E-SMLC) ) Or Location Manager Function (LMF)
  • the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (Base Transceiver Station, BTS), Radio Base Station, Radio Transceiver , Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiment of the present invention, only the base station in the NR system is taken as an example. However, the specific type of base station is not limited.
  • the base station may communicate with the terminal 11 under the control of the base station controller.
  • the base station controller may be a part of a core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may directly or indirectly communicate with each other through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operations on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can simultaneously transmit modulated signals on these multiple carriers. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (for example, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station may perform wireless communication with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its corresponding coverage area. The coverage area of an access point can be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, a macro base station, a micro base station, or a pico base station).
  • the base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies.
  • the base stations can be associated with the same or different access networks or operator deployments.
  • the coverage areas of different base stations may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (UL) transmission (for example, from the terminal 11 to the network side device 12), or for carrying a downlink (Downlink, DL) transmission.
  • the downlink of transmission (for example, from the network side device 12 to the terminal 11) is used to carry the sidelink (Sidelink, SL) for transmission between the terminal 11 and other terminals 11.
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can use licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • unlicensed bands can be used as a supplement to licensed bands to help operators expand their services.
  • unlicensed frequency bands can work in 5GHz, 37GHz and 60GHz frequency bands.
  • the large bandwidth (80 or 100MHz) of the unlicensed frequency band can reduce the implementation complexity of base stations and terminals (User Equipment, UE).
  • the unlicensed frequency band is shared by multiple radio access technologies (RATs), such as WiFi, radar, Long Term Evolution (LTE)-License Assisted Access (LAA), etc.
  • RATs radio access technologies
  • LBT listen before talk
  • LAA Long Term Evolution
  • MCOT maximum channel occupation time
  • ED energy detection
  • the transmission node may be a base station, UE, WiFi access point (Access Point, AP), and so on. After the transmission node starts transmission, the occupied channel time (Channel Occupancy Time, COT) cannot exceed MCOT.
  • Frame-Based Equipment means that the transmission and/or reception timing of the equipment adopts a periodic structure, and the cycle is a fixed frame period (Fixed Frame Period, FFP).
  • the FBE node uses the LBT-based channel access mechanism to occupy the channel. Among them, the node that initiates a transmission sequence that includes one or more consecutive transmissions is called the initiating node (Initiating Device), and other nodes are called the responding device (Responding Device).
  • the FBE node can be an initiating node, a responding node, or supporting two node functions at the same time.
  • the value set of Fixed Frame Period supported by the node is set by the device manufacturer, and the values are all in the range of 1 to 10 ms.
  • the transmission can only be started at the beginning of a Fixed Frame Period.
  • the node can change the Fixed Frame Period of its current application, but its frequency cannot be higher than 200ms once.
  • the initiating node Before transmission is started at the beginning of a Fixed Frame Period, the initiating node will perform channel idle estimation (Clear Channel Assess, CCA). If it is judged to be idle, it can be sent immediately, otherwise it will not be sent during the next Fixed Frame Period. Sending is allowed (except for short control signaling transmissions (Short Control Signaling Transmissions) specified by regulatory requirements). In other words, the initiating node needs to do one-shot LBT before transmission, that is, Cat. 2 LBT.
  • CCA Channel Assessment
  • the total time that the initiating node can transmit without re-estimating the availability of the channel is defined as Channel Occupancy Time (COT).
  • COT Channel Occupancy Time
  • the initiating node can transmit multiple times on the designated channel within the COT without performing additional CCA, as long as the time interval between adjacent transmissions of these transmissions does not exceed 16 ⁇ s. If the time interval between adjacent transmissions in the COT exceeds 16 ⁇ s, the initiating node needs to perform additional CCA before continuing to transmit, and continue to transmit only when the CCA determines that the channel is idle. All time intervals between adjacent transmissions are included in the COT duration.
  • the initiating node can authorize the use of the designated channel in certain periods of time in the COT to one or more associated responding nodes for transmission.
  • COT cannot be longer than 95% of Fixed Frame Period, and there is an idle period (Idle Period) immediately after COT.
  • the idle period lasts until the beginning of the next Fixed Frame Period and ends, so that the length of the idle period is at least Fixed Frame Period. 5%, and the minimum value is 100 ⁇ s.
  • a certain node After a certain node correctly receives the data packet for it, it can immediately transmit the management and control frame (such as Acknowledgement (ACK) frame) corresponding to the data packet on the designated channel without CCA.
  • This node needs to ensure that these continuously transmitted frames cannot exceed the maximum COT duration mentioned above.
  • the responding node After the responding node receives an initiating node's authorization to use the specified channel for a certain period of time, it will perform the following operations:
  • the responding node initiates a transmission after the end of the last authorized transmission indicated by the initiating node, it does not need to perform CCA before transmission; otherwise, it performs CCA before the authorized transmission period starts, and if it determines that the channel is busy, it will give up
  • This authorization otherwise, can start transmission on the designated channel, up to the remaining part of the COT in the current Fixed Frame Period, and can start multiple transmissions within the time range of the remaining part, as long as the time interval between adjacent transmissions does not exceed 16 ⁇ s. Yes, give up this authorization after the transfer is complete.
  • the downlink signal or channel may be any downlink signal such as a synchronization signal block (Synchronization Signal Block, SSB), a physical downlink control channel (PDCCH), and a demodulation reference signal (Demodulation Reference Signal, DMRS).
  • SSB Synchronization Signal Block
  • PDCCH physical downlink control channel
  • DMRS demodulation Reference Signal
  • any uplink transmission needs to perform downlink signal detection first. Whether it is scheduled uplink transmission or unauthorized uplink transmission, the UE can only perform transmission after detecting the downlink signal. For unlicensed transmission, if the gNB side cannot occupy the channel, the UE cannot perform unlicensed transmission even if the channel on the UE side is empty, which reduces the efficiency of unlicensed transmission.
  • gNB does not know when there will be UE access or when there will be data to be transmitted. In order to ensure UE access or transmission as much as possible, gNB needs to perform frequent interception and preemption. Channel, and send downlink signals and/or channels, bringing unnecessary redundant signal transmission.
  • the embodiment of the present invention provides a data transmission method in an unlicensed frequency band, which is applied to a terminal, as shown in FIG. 3, including:
  • Step 101 Perform uplink transmission according to the fixed frame period FFP configuration information and the channel state.
  • the FFP configuration information includes at least one of the FFP start position and FFP length of the terminal, and the FFP start position and FFP length of the network side device In at least one of the following, the FFP start position of the terminal is different from the FFP start position of the network side device.
  • the terminal performs uplink transmission according to the FFP configuration information and channel status.
  • the FFP start position of the network side device is different from the FFP start position of the terminal, so that the terminal can share the COT of the network side device for transmission or initiate COT by itself. Transmission, so as to realize that the network side equipment and the terminal flexibly share the transmission channel.
  • the FFP configuration information is sent by the network side device.
  • FFP configuration information can be carried by radio resource control (Radio Resource Control, RRC) messages or physical layer signaling
  • the FFP starting position can be an absolute time domain position or an offset value relative to the reference position.
  • the offset value can be an integer.
  • the reference position can be predefined, pre-configured by the network side device, or configured by the network side device. .
  • the length of the FFP of the terminal is different from the length of the FFP of the network side device; or the length of the FFP of the terminal is the same as the length of the FFP of the network side device.
  • the FFP start position of the terminal is later than the FFP start position of the network side device, and the uplink transmission according to FFP configuration information and channel status includes:
  • channel idle estimation CCA to obtain the channel state
  • downlink signal detection to obtain the detection result
  • downlink channel detection to obtain the detection result
  • the uplink transmission resources in the first X symbols of the FFP of the terminal are invalid, X is an integer greater than or equal to 1.
  • the judging whether to perform uplink transmission according to the channel state includes any one of the following:
  • the terminal detects a downlink signal or a downlink channel, and detects that the channel is empty, perform uplink transmission;
  • the terminal detects a downlink signal or a downlink channel, and detects that the channel is busy, it does not perform uplink transmission;
  • the terminal does not detect a downlink signal or a downlink channel, and detects that the channel is empty, perform uplink transmission;
  • the terminal does not detect a downlink signal or a downlink channel, and detects that the channel is busy, no uplink transmission is performed.
  • the terminal does not detect the downlink signal or the downlink channel includes any of the following situations: the terminal performs downlink signal detection and/or downlink channel detection, but does not detect the downlink signal or downlink channel; the terminal does not perform downlink signal detection and downlink channel detection .
  • the performing uplink transmission includes any one of the following:
  • the terminal shares the channel occupation time COT of the network side device for uplink transmission, and the transmission time does not exceed the COT of the network side device;
  • the terminal itself initiates COT for uplink transmission.
  • the COT of the network-side device and the COT of the terminal may or may not overlap.
  • the uplink transmission is physical random access channel PRACH transmission
  • the performing uplink transmission includes any one of the following:
  • the terminal detects a downlink signal or a downlink channel, and detects that the channel is empty, the terminal selects any one of the random access channel RACH occasions in its own FFP for PRACH transmission, and the transmission duration does not exceed the network COT of side equipment;
  • the terminal If the terminal does not detect a downlink signal or a downlink channel, and detects that the channel is empty, the terminal performs PRACH transmission on the first RACH occasion among the RACH occasions in its own FFP.
  • initiating COT by the terminal itself for uplink transmission includes any one of the following:
  • the method before the terminal shares the COT of the network side device for uplink transmission, the method further includes:
  • the FFP start position of the terminal is earlier than the FFP start position of the network side device, and the method further includes:
  • the embodiment of the present invention provides a data transmission method in an unlicensed frequency band, which is applied to a network side device, as shown in FIG. 4, including:
  • Step 201 Perform downlink transmission according to the fixed frame period FFP configuration information and the channel state, the FFP configuration information includes at least one of the FFP start position and FFP length of the network side device, and the FFP start position and FFP length of the terminal In at least one of the following, the FFP start position of the network side device is different from the FFP start position of the terminal.
  • the network side device performs downlink transmission according to the FFP configuration information and channel status, and the FFP start position of the network side device is different from the FFP start position of the terminal, so the network side device can share the COT of the terminal for transmission or initiate transmission by itself COT performs transmission, so that network-side equipment and terminals can flexibly share transmission channels.
  • the FFP configuration information is sent by the network side device.
  • the method also includes:
  • FFP configuration information can be carried by radio resource control (Radio Resource Control, RRC) messages or physical layer signaling
  • the FFP starting position can be an absolute time domain position or an offset value relative to the reference position.
  • the offset value can be an integer.
  • the reference position can be predefined, pre-configured by the network side device, or configured by the network side device. .
  • the length of the FFP of the terminal is different from the length of the FFP of the network side device;
  • the length of the FFP of the terminal is the same as the length of the FFP of the network side device.
  • the FFP start position of the network side device is later than the FFP start position of the terminal, and the performing downlink transmission according to FFP configuration information and channel status includes:
  • channel idle estimation CCA to obtain the channel state
  • uplink signal detection to obtain the detection result
  • uplink channel detection to obtain the detection result
  • the judging whether to perform downlink transmission according to the channel state includes any one of the following:
  • the network side device detects an uplink signal or an uplink channel, and detects that the channel is empty, perform downlink transmission;
  • the network side device detects an uplink signal or an uplink channel, and detects that the channel is busy, no downlink transmission is performed;
  • the network side device does not detect an uplink signal or an uplink channel, and detects that the channel is empty, then perform downlink transmission;
  • the network side device does not detect an uplink signal or an uplink channel, and detects that the channel is busy, then no downlink transmission is performed.
  • the network side device does not detect the uplink signal or the uplink channel includes any of the following situations: the network side device performs the uplink signal detection and/or the uplink channel detection, but does not detect the uplink signal or the uplink channel; the network side device does not perform the uplink Signal detection and uplink channel detection.
  • the performing downlink transmission includes any one of the following:
  • the network side device shares the COT of the terminal for downlink transmission, and the transmission time does not exceed the COT of the terminal;
  • the network side device itself initiates COT for downlink transmission.
  • the method before the network side device shares the COT of the terminal for downlink transmission, the method further includes:
  • the FFP start position of the terminal is later than the FFP start position of the network side device, and the method further includes:
  • the method further includes:
  • the FFP start position of the UE is after the FFP of the gNB, and the FFP start positions of the UE and the gNB differ by at least one orthogonal frequency division multiplexing symbol (Orthogonal Frequency Division Multiplexing symbol, OS) , And the two COT time overlap.
  • the UE performs at least one of CCA and downlink signal detection within the idle period of its FFP.
  • the UE detects a downlink signal, it can perform uplink transmission in the COT of the gNB according to the instruction of the gNB or the default rule. If the UE does not detect a downlink signal within its idle period, and does CCA and detects that the channel is empty, the UE itself initiates FFP for uplink transmission.
  • the FFP start position of the UE is much later than the FFP of the gNB.
  • the detection of the gNB downlink signal (DL signal) is much earlier than the CCA.
  • the UE performs DL signal detection from the FFP start position of the gNB.
  • the UE can perform uplink transmission in the remaining COT of the gNB. If the UE does not detect the DL signal at the start position of the FFP of the gNB, the UE stops detecting and does CCA until its own FFP. If the channel is empty, the corresponding uplink transmission is performed.
  • the UE can also perform DL signal detection until the CCA is performed in the idle period when the DL signal is not detected. If the UE detects any DL signal, the UE can share the COT of the gNB. If the UE has not detected the DL signal, it will do LBT at the CCA location and decide whether to do uplink transmission according to the listening result.
  • the FFP of the UE starts later than the FFP of the gNB, and the FFP of the UE is much smaller than the FFP of the gNB, that is, there is more than one start position of the FFP of the UE in the COT of the gNB. .
  • the UE detects the DL signal of the gNB, the UE can share the COT of the gNB, as shown in FFP1 and FFP2 in the figure.
  • the UE can also choose to initiate COT, as shown in FFP4 in the figure.
  • the transmission duration of the UE can be longer than the remaining COT of the gNB.
  • the behavior of the UE may be indicated by the gNB, and the gNB may indicate whether the UE needs to intiate COT by itself in FFP4 when sending the DL signal.
  • the UE if the UE performs random access, after the UE detects the downlink signal during the idle period, it can configure the random access channel occasion (Random Access Channel occasion, RO) in the FFP One is randomly selected for physical random access channel (Physical Random Access Channel, PRACH) transmission, and the transmission time does not exceed the remaining COT of the gNB. If the UE does not detect a downlink signal during the idle period, and the CCA detection shows that the channel is empty, the UE configures the first RO in the RACH occasion in the FFP to perform PRACH transmission, as shown in Figure 5.
  • RO Random Access Channel occasion
  • PRACH Physical Random Access Channel
  • the UE can perform CG transmission in the COT of the gNB. If the UE does not detect a downlink signal during the idle period, and the CCA detection shows that the channel is empty, the UE starts CG transmission from its own FFP starting position.
  • SR scheduling request
  • CG Common Group
  • PUSCH Physical Uplink Shared Channel
  • the start position of the FFP of the UE is later than the FFP of the gNB, and the COT of the UE does not overlap with the FFP of the gNB, then the gNB and the UE can each perform CCA, and according to the channel sensing result, Transmit within your own COT.
  • the start position of the FFP of the gNB may be later than the start position of the FFP of the UE.
  • the gNB needs to do at least one of uplink signal (UL signal) detection and CCA. If the gNB detects the UL signal, it determines whether the COT of the UE can be shared or how long the COT can be shared according to the uplink signal, for example, the CG-Uplink Control Information (UCI) indication. If the gNB does not detect the UL signal and the CCA detection channel is empty, the gNB initiates COT by itself and performs downlink transmission.
  • UL signal uplink signal
  • CCA CG-Uplink Control Information
  • the gNB performs UL signal detection from the FFP start position of the UE.
  • the gNB can perform uplink transmission within the UE's remaining COT. If the gNB does not detect the UL signal at the start position of the FFP of the UE, the gNB stops detecting and does CCA until its own FFP. If the channel is empty, the corresponding downlink transmission is performed.
  • the gNB can also perform UL signal detection until the time of CCA in the idle period when the UL signal is not detected.
  • the gNB can share the COT of the UE. If the gNB has not detected the UL signal, it will do LBT at the CCA location, and decide whether to do downlink transmission according to the listening result.
  • the FFP of the gNB starts later than the FFP of the UE, and the FFP of the gNB is much smaller than the FFP of the UE, that is, there is more than one start position of the FFP of the gNB in the COT of the UE.
  • the gNB detects the UL signal of the UE, the gNB can share the COT of the UE.
  • the gNB can choose to initiate COT by itself. At this time, the transmission time of the gNB can be longer than the remaining COT of the UE.
  • the gNB may notify the UE of FFP related information through RRC messages or physical layer signaling.
  • the above-mentioned starting position can be an absolute time domain position or an offset value relative to a certain reference position.
  • gNB and UE have a common reference position, and their FFP start position is the offset value relative to this reference position.
  • the FFP start position of the gNB is an absolute position
  • the FFP start position of the UE can be the offset value relative to the FFP start position of the gNB;
  • the FFP start position of the gNB can be It is the offset value relative to the FFP start position of the UE.
  • the offset value can be 0 or any positive or negative integer.
  • the terminal 300 of the embodiment of the present invention includes an unlicensed frequency band data transmission device, which can implement the unlicensed frequency band data transmission method applied to the terminal in the above embodiment and achieve the same effect.
  • the terminal 300 Specifically includes the following functional modules:
  • the first transmission module 310 is configured to perform uplink transmission according to fixed frame period FFP configuration information and channel status.
  • the FFP configuration information includes at least one of the FFP start position and FFP length of the terminal, and the FFP start of the network side device. At least one of the start position and the FFP length, and the FFP start position of the terminal is different from the FFP start position of the network side device.
  • the terminal performs uplink transmission according to the FFP configuration information and channel status.
  • the FFP start position of the network side device is different from the FFP start position of the terminal, so that the terminal can share the COT of the network side device for transmission or initiate COT by itself. Transmission, so as to realize that the network side equipment and the terminal flexibly share the transmission channel.
  • the FFP configuration information is sent by the network side device.
  • FFP configuration information can be carried by RRC message or physical layer signaling
  • the FFP starting position can be an absolute time domain position or an offset value relative to the reference position.
  • the offset value can be an integer.
  • the reference position can be predefined, pre-configured by the network side device, or configured by the network side device. .
  • the length of the FFP of the terminal is different from the length of the FFP of the network side device; or the length of the FFP of the terminal is the same as the length of the FFP of the network side device.
  • the FFP start position of the terminal is later than the FFP start position of the network side device, and the first transmission module 310 is specifically configured to select the FFP idle position indicated by the FFP configuration information.
  • the uplink transmission resources in the first X symbols of the FFP of the terminal are invalid, X is an integer greater than or equal to 1.
  • the first transmission module 310 is specifically configured to perform any one of the following:
  • the terminal detects a downlink signal or a downlink channel, and detects that the channel is empty, perform uplink transmission;
  • the terminal detects a downlink signal or a downlink channel, and detects that the channel is busy, it does not perform uplink transmission;
  • the terminal does not detect a downlink signal or a downlink channel, and detects that the channel is empty, perform uplink transmission;
  • the terminal does not detect a downlink signal or a downlink channel, and detects that the channel is busy, no uplink transmission is performed.
  • the terminal does not detect the downlink signal or the downlink channel includes any of the following situations: the terminal performs downlink signal detection and/or downlink channel detection, but does not detect the downlink signal or downlink channel; the terminal does not perform downlink signal detection and downlink channel detection .
  • the first transmission module 310 is specifically configured to perform any one of the following:
  • the terminal shares the channel occupation time COT of the network side device for uplink transmission, and the transmission time does not exceed the COT of the network side device;
  • the terminal itself initiates COT for uplink transmission.
  • the COT of the network-side device and the COT of the terminal may or may not overlap.
  • the uplink transmission is physical random access channel PRACH transmission
  • the first transmission module 310 is specifically configured to perform any one of the following:
  • the terminal detects a downlink signal or a downlink channel, and detects that the channel is empty, the terminal selects any one of the random access channel RACH occasions in its own FFP for PRACH transmission, and the transmission duration does not exceed the network COT of side equipment;
  • the terminal If the terminal does not detect a downlink signal or a downlink channel, and detects that the channel is empty, the terminal performs PRACH transmission on the first RACH occasion among the RACH occasions in its own FFP.
  • the first transmission module 310 is specifically configured to perform any one of the following:
  • the first transmission module 310 is further configured to receive second indication information of the network-side device, and the second indication information indicates that the terminal is allowed to share the COT of the network-side device. .
  • the FFP start position of the terminal is earlier than the FFP start position of the network side device
  • the first transmission module 310 is further configured to send a third instruction to the network side device Information, the third indication information indicates that the network side device is allowed to share the COT of the terminal.
  • the network side device 301 of the embodiment of the present invention includes an unlicensed frequency band data transmission device, which can implement the unlicensed frequency band data transmission method applied to the network side device in the above embodiment, and achieve the same effect .
  • the network side device 301 specifically includes the following functional modules:
  • the second transmission module 330 is configured to perform downlink transmission according to the fixed frame period FFP configuration information and the channel state.
  • the FFP configuration information includes at least one of the FFP start position and the FFP length of the network side device, and the FFP start of the terminal At least one of the start position and the FFP length, and the FFP start position of the network side device is different from the FFP start position of the terminal.
  • the network side device performs downlink transmission according to the FFP configuration information and channel status, and the FFP start position of the network side device is different from the FFP start position of the terminal, so the network side device can share the COT of the terminal for transmission or initiate transmission by itself COT performs transmission, so that network-side equipment and terminals can flexibly share transmission channels.
  • the FFP configuration information is sent by the network side device.
  • the second transmission module 330 is further configured to send FFP configuration information to the terminal.
  • FFP configuration information can be carried by radio resource control (Radio Resource Control, RRC) messages or physical layer signaling
  • the FFP starting position can be an absolute time domain position or an offset value relative to the reference position.
  • the offset value can be an integer.
  • the reference position can be predefined, pre-configured by the network side device, or configured by the network side device. .
  • the length of the FFP of the terminal is different from the length of the FFP of the network side device;
  • the length of the FFP of the terminal is the same as the length of the FFP of the network side device.
  • the FFP start position of the network side device is later than the FFP start position of the terminal, and the second transmission module 330 is specifically configured to execute during the FFP idle period indicated by the FFP configuration information At least one of the following operations: channel idle estimation CCA to obtain the channel state, uplink signal detection to obtain the detection result, and uplink channel detection to obtain the detection result; judging whether to perform downlink transmission according to at least one of the channel state and the detection result.
  • the second transmission module 330 is specifically configured to perform any one of the following:
  • the network side device detects an uplink signal or an uplink channel, and detects that the channel is empty, perform downlink transmission;
  • the network side device detects an uplink signal or an uplink channel, and detects that the channel is busy, no downlink transmission is performed;
  • the network side device does not detect an uplink signal or an uplink channel, and detects that the channel is empty, then perform downlink transmission;
  • the network side device does not detect an uplink signal or an uplink channel, and detects that the channel is busy, then no downlink transmission is performed.
  • the network side device does not detect the uplink signal or the uplink channel includes any of the following situations: the network side device performs the uplink signal detection and/or the uplink channel detection, but does not detect the uplink signal or the uplink channel; the network side device does not perform the uplink Signal detection and uplink channel detection.
  • the second transmission module 330 is specifically configured to perform any one of the following:
  • the network side device shares the COT of the terminal for downlink transmission, and the transmission time does not exceed the COT of the terminal;
  • the network side device itself initiates COT for downlink transmission.
  • the second transmission module 330 is further configured to receive third indication information of the terminal, where the third indication information indicates that the network side device is allowed to share the COT of the terminal.
  • the FFP start position of the terminal is later than the FFP start position of the network side device
  • the second transmission module 330 is further configured to send second indication information to the terminal.
  • the second indication information indicates that the terminal is allowed to share the COT of the network side device.
  • the second transmission module 330 is further configured to send first indication information to the terminal, where the first indication information indicates that the terminal is allowed to initiate COT for uplink transmission.
  • FIG. 12 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present invention.
  • the terminal 40 includes but is not limited to: a radio frequency unit 41, a network module 42, an audio output unit 43, The input unit 44, the sensor 45, the display unit 46, the user input unit 47, the interface unit 48, the memory 49, the processor 410, and the power supply 411 and other components.
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, a pedometer, and the like.
  • the processor 410 is configured to perform uplink transmission according to fixed frame period FFP configuration information and channel status.
  • the FFP configuration information includes at least one of the FFP start position and FFP length of the terminal, and the FFP start of the network side device. At least one of the start position and the FFP length, and the FFP start position of the terminal is different from the FFP start position of the network side device.
  • the radio frequency unit 41 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 410; Uplink data is sent to the base station.
  • the radio frequency unit 41 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 41 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 42, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 43 may convert the audio data received by the radio frequency unit 41 or the network module 42 or stored in the memory 49 into an audio signal and output it as sound. Moreover, the audio output unit 43 may also provide audio output related to a specific function performed by the terminal 40 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 43 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 44 is used to receive audio or video signals.
  • the input unit 44 may include a graphics processing unit (GPU) 441 and a microphone 442, and the graphics processor 441 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 46.
  • the image frame processed by the graphics processor 441 may be stored in the memory 49 (or other storage medium) or sent via the radio frequency unit 41 or the network module 42.
  • the microphone 442 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 41 for output in the case of a telephone call mode.
  • the terminal 40 also includes at least one sensor 45, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 461 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 461 and/or when the terminal 40 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensors 45 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared rays Sensors, etc., will not be repeated here.
  • the display unit 46 is used to display information input by the user or information provided to the user.
  • the display unit 46 may include a display panel 461, and the display panel 461 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 47 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 47 includes a touch panel 471 and other input devices 472.
  • the touch panel 471 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 471 or near the touch panel 471. operate).
  • the touch panel 471 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 410, the command sent by the processor 410 is received and executed.
  • the touch panel 471 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 47 may also include other input devices 472.
  • other input devices 472 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 471 may cover the display panel 461. When the touch panel 471 detects a touch operation on or near it, it transmits it to the processor 410 to determine the type of the touch event, and then the processor 410 determines the type of the touch event according to the touch The type of event provides corresponding visual output on the display panel 461.
  • the touch panel 471 and the display panel 461 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 471 and the display panel 461 may be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 48 is an interface for connecting an external device to the terminal 40.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (Input/Output, I/O) port, video I/O port, headphone port, etc.
  • the interface unit 48 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 40 or may be used to communicate between the terminal 40 and the external device. Transfer data between.
  • the memory 49 can be used to store software programs and various data.
  • the memory 49 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 49 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 410 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 410 may include one or more processing units; preferably, the processor 410 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem
  • the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 410.
  • the terminal 40 may also include a power source 411 (such as a battery) for supplying power to various components.
  • a power source 411 such as a battery
  • the power source 411 may be logically connected to the processor 410 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. Function.
  • the terminal 40 includes some functional modules not shown, which will not be repeated here.
  • An embodiment of the present invention also provides a communication device, including a processor 410, a memory 49, and a computer program stored on the memory 49 and running on the processor 410.
  • a communication device including a processor 410, a memory 49, and a computer program stored on the memory 49 and running on the processor 410.
  • the computer program is executed by the processor 410, the above-mentioned non-operation is realized.
  • Each process of the embodiment of the data transmission method in the authorized frequency band can achieve the same technical effect, and in order to avoid repetition, it will not be repeated here.
  • the above-mentioned communication device may be a terminal, which may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal For example, they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • Wireless terminal can also be called system, subscriber unit (Subscriber Unit), subscriber station (Subscriber Station), mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), remote terminal (Remote Terminal), connection The access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), and user equipment (User Device or User Equipment) are not limited here.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, each process of the above-mentioned terminal-side unlicensed frequency band data transmission method embodiment is implemented. , And can achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • inventions of the present invention also provide a network-side device.
  • the network-side device includes a processor, a memory, and a computer program that is stored in the memory and can run on the processor.
  • the processor executes
  • the computer program implements the steps in the data transmission method of the unlicensed frequency band as described above, and can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the embodiment of the present invention also provides a network side device.
  • the network side equipment 500 includes: an antenna 51, a radio frequency device 52, and a baseband device 53.
  • the antenna 51 is connected to the radio frequency device 52.
  • the radio frequency device 52 receives information through the antenna 51 and sends the received information to the baseband device 53 for processing.
  • the baseband device 53 processes the information to be sent and sends it to the radio frequency device 52, and the radio frequency device 52 processes the received information and sends it out via the antenna 51.
  • the foregoing frequency band processing device may be located in the baseband device 53, and the method executed by the network side device in the above embodiment may be implemented in the baseband device 53.
  • the baseband device 53 includes a processor 54 and a memory 55.
  • the baseband device 53 may include, for example, at least one baseband board, and multiple chips are arranged on the baseband board, as shown in FIG.
  • the network side device shown in the above method embodiment operates.
  • the baseband device 53 may also include a network interface 56 for exchanging information with the radio frequency device 52, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here can be a processor or a collective term for multiple processing elements.
  • the processor can be a CPU or an ASIC, or it can be configured to implement one or the other of the methods executed by the network side device above.
  • Multiple integrated circuits such as: one or more microprocessors DSP, or, one or more field programmable gate array FPGAs, etc.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • the memory 55 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the network-side device of the embodiment of the present invention further includes: a computer program stored in the memory 55 and that can be run on the processor 54.
  • the processor 54 calls the computer program in the memory 55 to execute the operations performed by each module shown in FIG. method.
  • the computer program when called by the processor 54, it can be used to perform downlink transmission according to fixed frame period FFP configuration information and channel status, where the FFP configuration information includes at least one of the FFP starting position and the FFP length of the network side device, And at least one of the FFP start position of the terminal and the FFP length, the FFP start position of the network side device is different from the FFP start position of the terminal.
  • the FFP configuration information includes at least one of the FFP starting position and the FFP length of the network side device, And at least one of the FFP start position of the terminal and the FFP length, the FFP start position of the network side device is different from the FFP start position of the terminal.
  • the embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, it realizes the data of the unlicensed frequency band applied to the network side device as described above.
  • the steps of the transmission method can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network-side device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium. When executed, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, and sub-units can be implemented in one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processor, DSP), and digital signal processing equipment (DSP Device, DSPD). ), programmable logic devices (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to execute the present disclosure Other electronic units or a combination of the functions described above.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processor
  • DSP Device digital signal processing equipment
  • PLD programmable logic devices
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • each component or each step can be decomposed and/or recombined. These decomposition and/or recombination should be regarded as equivalent solutions of the present invention.
  • the steps of performing the above-mentioned series of processing can naturally be performed in a time sequence in the order of description, but do not necessarily need to be performed in a time sequence, and some steps can be performed in parallel or independently of each other.
  • a person of ordinary skill in the art can understand that all or any of the steps or components of the method and device of the present invention can be used in any computing device (including a processor, storage medium, etc.) or a network of computing devices with hardware and firmware. , Software, or a combination of them, this can be achieved by those of ordinary skill in the art using their basic programming skills after reading the description of the present invention.
  • the purpose of the present invention can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present invention can also be achieved only by providing a program product containing program code for realizing the method or device.
  • a program product also constitutes the present invention
  • a storage medium storing such a program product also constitutes the present invention.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present invention, obviously, each component or each step can be decomposed and/or recombined.

Abstract

本发明实施例公开了一种非授权频段的数据传输方法及装置、通信设备。该方法包括:终端根据固定帧周期FFP配置信息和信道状态进行上行传输,所述FFP配置信息包括终端的FFP起始位置和FFP长度中的至少一项,以及网络侧设备的FFP起始位置和FFP长度中的至少一项,所述终端的FFP起始位置与网络侧设备的FFP起始位置不同。

Description

非授权频段的数据传输方法及装置、通信设备
相关申请的交叉引用
本申请主张在2020年2月5日在中国提交的中国专利申请号No.202010080691.6的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种非授权频段的数据传输方法及装置、通信设备。
背景技术
在未来通信系统中,非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充,帮助运营商对服务进行扩容。非授权频段在使用时必须符合规则(regulation)以保证所有设备可以公平的使用该资源,例如先听后讲(listen before talk,LBT),最大信道占用时间(Maximum Channel Occupancy Time,MCOT)等规则。当传输节点需要发送信息时,需要先做LBT时,对周围的节点进行功率检测(energy detection,ED),当检测到的功率低于一个门限时,认为信道为空(idle),传输节点可以进行发送。反之,则认为信道为忙,传输节点不能进行发送。
基于帧的设备(Frame Based Equipment,FBE)指设备的发送和/或接收定时采用周期结构,其周期为固定帧周期(Fixed Frame Period,FFP)。FBE节点采用基于LBT的信道接入机制占用信道。在FBE机制下,按照现有技术,任何上行传输都需要先进行下行信号检测,无论是基于调度(dynamic grant)的上行传输,还是免授权(Configured grant)的上行传输,UE都只有在检测到下行信号之后才可能进行传输。对于免授权传输,gNB端若无法占用信道,则即使UE端信道为空,UE也无法进行免授权传输,这样降低了免授权传输的效率。其次,对于初始接入或者免授权传输,gNB并不知道何时会有UE接入或者何时会有数据需要传输,为了尽可能地保证UE的接入或者传输,gNB需要频繁做侦听抢占信道,并发送下行信号和/或信道,带来不必要的冗余信 号发送。
发明内容
本发明实施例提供了一种非授权频段的数据传输方法及装置、通信设备,能够实现在非授权频段FBE接入机制下,gNB和UE灵活地共享传输信道。
第一方面,本发明实施例提供了一种非授权频段的数据传输方法,应用于终端,包括:
根据固定帧周期FFP配置信息和信道状态进行上行传输,所述FFP配置信息包括终端的FFP起始位置和FFP长度中的至少一项,以及网络侧设备的FFP起始位置和FFP长度中的至少一项,所述终端的FFP起始位置与网络侧设备的FFP起始位置不同。
第二方面,本发明实施例还提供了一种非授权频段的数据传输方法,应用于网络侧设备,包括:
根据固定帧周期FFP配置信息和信道状态进行下行传输,所述FFP配置信息包括网络侧设备的FFP起始位置和FFP长度中的至少一项,以及终端的FFP起始位置和FFP长度中的至少一项,所述网络侧设备的FFP起始位置与终端的FFP起始位置不同。
第三方面,本发明实施例还提供了一种非授权频段的数据传输装置,应用于终端,包括:
第一传输模块,用于根据固定帧周期FFP配置信息和信道状态进行上行传输,所述FFP配置信息包括终端的FFP起始位置和FFP长度中的至少一项,以及网络侧设备的FFP起始位置和FFP长度中的至少一项,所述终端的FFP起始位置与网络侧设备的FFP起始位置不同。
第四方面,本发明实施例还提供了一种非授权频段的数据传输装置,应用于网络侧设备,包括:
第二传输模块,用于根据固定帧周期FFP配置信息和信道状态进行下行传输,所述FFP配置信息包括网络侧设备的FFP起始位置和FFP长度中的至少一项,以及终端的FFP起始位置和FFP长度中的至少一项,所述网络侧设备的FFP起始位置与终端的FFP起始位置不同。
第五方面,本发明实施例还提供了一种通信设备,所述通信设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的非授权频段的数据传输方法的步骤。
第六方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的非授权频段的数据传输方法的步骤。
上述方案中,终端根据FFP配置信息和信道状态进行上行传输,网络侧设备根据FFP配置信息和信道状态进行下行传输,网络侧设备的FFP起始位置与终端的FFP起始位置不同,这样网络侧设备和终端可以共享对方的COT进行传输或自身发起COT进行传输,从而实现网络侧设备和终端灵活地共享传输信道。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本发明实施例可应用的一种移动通信系统框图;
图2表示发起节点操作示意图;
图3表示本发明实施例终端的非授权频段的数据传输方法的流程示意图;
图4表示本发明实施例网络侧设备的非授权频段的数据传输方法的流程示意图;
图5表示本发明实施例一UE FFP起始位置晚于gNB FFP起始位置的示意图;
图6表示本发明实施例二UE FFP起始位置晚于gNB FFP起始位置的示意图;
图7表示本发明实施例三UE FFP起始位置晚于gNB FFP起始位置的示意图;
图8表示本发明实施例四UE FFP起始位置晚于gNB FFP起始位置,且UE和gNB的COT不重叠的示意图;
图9表示本发明实施例五gNB FFP起始位置晚于UE FFP起始位置的示意图;
图10表示本发明实施例终端的模块结构示意图;
图11表示本发明实施例网络侧设备的模块结构示意图;
图12表示本发明实施例的终端组成示意图;
图13表示本发明实施例的网络侧设备组成示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access, SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.11(无线保真(Wireless Fidelity,Wi-Fi))、IEEE 802.16(全球微波接入互操作性(Worldwide Interoperability for Microwave Access,WiMAX))、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本发明实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device, MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本发明实施例中并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,上述基站可以是第五代(5 th Generation,5G)及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、无线局域网(Wireless Local Area Network,WLAN)接入点、或其他接入点等),或者为位置服务器(例如:演进的服务移动位置中心(Evolved Serving Mobile Location Center,E-SMLC)或位置管理功能(Location Manager Function,LMF)),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本发明实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用 相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络侧设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络侧设备12到终端11)的下行链路,用于承载终端11到其他终端11之间传输的旁链路(Sidelink,SL)。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
在未来通信系统中,非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充,帮助运营商对服务进行扩容。为了与新空口(New Radio,NR)部署保持一致并尽可能的最大化基于NR的非授权接入,非授权频段可以工作在5GHz,37GHz和60GHz频段。非授权频段的大带宽(80或者100MHz)能够减小基站和终端(User Equipment,UE)的实施复杂度。由于非授权频段由多种无线接入技术(Radio Access Technologies,RATs)共用,例如WiFi,雷达,长期演进(Long Term Evolution,LTE)-许可证辅助访问(License Assisted Access,LAA)等,因此在某些国家或者区域,非授权频段在使用时必须符合规则(regulation)以保证所有设备可以公平的使用该资源,例如先听后讲(listen before talk,LBT),最大信道占用时间(Maximum Channel Occupancy Time,MCOT)等规则。当传输节点需要发送信息时,需要先做LBT时,对周围的节点进行功率检测(energy detection,ED),当检测到的功率低于一个门限时,认为信道为空(idle),传输节点可以进行发送。反之,则认为信道为忙,传输节点不能进行发送。传输节点可以是基站,UE,WiFi接入点(Access Point,AP)等等。传输节点开始传输后,占用的信道时间(Channel Occupancy Time,COT)不能超过MCOT。
基于帧的设备(Frame Based Equipment,FBE)指设备的发送和/或接收定时采用周期结构,其周期为固定帧周期(Fixed Frame Period,FFP)。
FBE节点采用基于LBT的信道接入机制占用信道。其中发起包含一次或 多次连续传输的传输序列的节点称之为发起节点(Initiating Device),其它节点称之为响应节点(Responding Device)。FBE节点可以是发起节点,响应节点,或者同时支持两种节点功能。
发起节点的操作示例参见图2,其中,UUT为被测单元(Unit Under Test)。其操作要求包括:
节点支持的Fixed Frame Period取值集合由设备制造商设置,取值都位于1~10ms范围内。仅可在某个Fixed Frame Period的开始时刻启动传输。节点可以更改其当前应用的Fixed Frame Period,但是其频度不能高于200ms一次。
在某个Fixed Frame Period的开始时刻启动传输之前,发起节点将执行信道空闲估计(Clear Channel Assess,CCA),如果判断为空闲,则可以立即发送,否则在紧接着的Fixed Frame Period时长内都不允许发送(监管要求规定的短控制信令传输(Short Control Signaling Transmissions)除外)。也就是说,发起节点在传输之前需要做one-shot LBT,即Cat.2 LBT。
在某个已开始发送的Fixed Frame Period内,对应发起节点无需重新估计信道的可用性便可传输的总时长,定义为信道占用时间(Channel Occupancy Time,COT)。发起节点可以在COT内在指定信道上传输多次而无需执行额外的CCA,只要这些传输的相邻传输之间的时间间隔都不超过16μs。如果COT内相邻传输之间的时间间隔超过16μs,则发起节点在继续传输之前,需要执行额外的CCA,仅当CCA判断信道为空闲时继续传输。所有相邻传输之间的时间间隔都计入COT时长。
发起节点可以将COT内某些时段的指定信道的使用权授权给一到多个关联的响应节点进行传输。
COT不能长于Fixed Frame Period的95%,并且在COT后紧接着一个空闲时段(Idle Period),空闲时段持续至下一个Fixed Frame Period的开始时刻才结束,这样空闲时段的长度至少为Fixed Frame Period的5%,并且最小值为100μs。
某个节点在正确收到针对它的数据包之后,可以不作CCA直接立即在指 定信道上传输数据包对应的管理和控制帧(例如确认(Acknowledgement,ACK)帧)。此节点需要保证这些连续传输的帧不能超出上述提到的最大COT时长。
响应节点在收到某个发起节点对指定信道在某些时段内的使用授权之后,将执行如下操作:
响应节点如果在发起节点指示授权的最后一次传输结束之后最多间隔16μs后就发起传输,则其在传输之前无需执行CCA;否则在授权的传输时段开始之前执行CCA,如果判断信道为忙,则放弃此授权,否则,可在指定信道上启动传输,最多可占用当前Fixed Frame Period内COT的剩余部分,在剩余部分的时间范围内可启动多次传输,只要相邻传输的时间间隔不超过16μs即可,传输完毕后放弃此授权。
相关协议中,当系统采用FBE接入机制,只有基站(gNB)可以在FFP之前做LBT,当信道为空时,gNB进行下行传输。当UE接收到任何下行信道或者信号时,可以共享gNB的COT进行上行传输。该下行信号或者信道可以是同步信号块(Synchronization Signal Block,SSB),物理下行控制信道(Physical Downlink Control Channel,PDCCH),解调参考信号(Demodulation Reference Signal,DMRS)等任何下行信号。
相关技术中,任何上行传输都需要先进行下行信号检测,无论是基于调度的上行传输,还是免授权的上行传输,UE都只有在检测到下行信号之后才可能进行传输。对于免授权传输,gNB端若无法占用信道,则即使UE端信道为空,UE也无法进行免授权传输,这样降低了免授权传输的效率。其次,对于初始接入或者免授权传输,gNB并不知道何时会有UE接入或者何时会有数据需要传输,为了尽可能地保证UE的接入或者传输,gNB需要频繁做侦听抢占信道,并发送下行信号和/或信道,带来不必要的冗余信号发送。
本发明实施例提供了一种非授权频段的数据传输方法,应用于终端,如图3所示,包括:
步骤101:根据固定帧周期FFP配置信息和信道状态进行上行传输,所述FFP配置信息包括终端的FFP起始位置和FFP长度中的至少一项,以及网络侧设备的FFP起始位置和FFP长度中的至少一项,所述终端的FFP起始位 置与网络侧设备的FFP起始位置不同。
本实施例中,终端根据FFP配置信息和信道状态进行上行传输,网络侧设备的FFP起始位置与终端的FFP起始位置不同,这样终端可以共享网络侧设备的COT进行传输或自身发起COT进行传输,从而实现网络侧设备和终端灵活地共享传输信道。
本发明的示例性实施例中,所述FFP配置信息由所述网络侧设备发送。FFP配置信息可以通过无线资源控制(Radio Resource Control,RRC)消息或物理层信令承载
其中,FFP起始位置可以为绝对时域位置,还可以为相对于参考位置的偏移值,偏移值可以为整数,参考位置可以为预定义、网络侧设备预配置或网络侧设备配置的。
本发明的示例性实施例中,所述终端的FFP的长度与所述网络侧设备的FFP的长度不同;或所述终端的FFP的长度与所述网络侧设备的FFP的长度相同。
本发明的示例性实施例中,所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,所述根据FFP配置信息和信道状态进行上行传输包括:
在所述FFP配置信息指示的FFP空闲时段执行以下至少一项操作:信道空闲估计CCA以获取信道状态,下行信号检测以获取检测结果,下行信道检测以获取检测结果;
根据信道状态和检测结果中的至少一项判断是否进行上行传输。
本发明的示例性实施例中,若所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,所述终端的FFP的前X个符号内的上行传输资源为无效的,X为大于等于1的整数。
本发明的示例性实施例中,所述根据信道状态判断是否进行上行传输包括以下任一项:
若所述终端检测到下行信号或下行信道,且检测到信道为空,则进行上行传输;
若所述终端检测到下行信号或下行信道,且检测到信道为忙,则不进行上行传输;
若所述终端未检测到下行信号或下行信道,且检测到信道为空,则进行上行传输;
若所述终端未检测到下行信号或下行信道,且检测到信道为忙,则不进行上行传输。
其中,终端未检测到下行信号或下行信道包括以下任一种情况:终端进行下行信号检测和/或下行信道检测,但是没有检测到下行信号或下行信道;终端未进行下行信号检测和下行信道检测。
本发明的示例性实施例中,所述进行上行传输包括以下任一项:
所述终端共享所述网络侧设备的信道占用时间COT进行上行传输,传输时长不超出所述网络侧设备的COT;
所述终端自身发起COT进行上行传输。
其中,网络侧设备的COT与终端的COT可以重叠,也可以不重叠。
一具体示例中,所述上行传输为物理随机接入信道PRACH传输,所述进行上行传输包括以下任一项:
若所述终端检测到下行信号或下行信道,且检测到信道为空,则所述终端在自身FFP中的随机接入信道RACH时机中选取任一个进行PRACH传输,且传输时长不超出所述网络侧设备的COT;
若所述终端未检测到下行信号或下行信道,且检测到信道为空,则所述终端在自身FFP中的RACH时机中的第一个RACH时机上进行PRACH传输。
本发明的示例性实施例中,所述终端自身发起COT进行上行传输包括以下任一项:
接收所述网络侧设备的第一指示信息,所述第一指示信息指示允许所述终端发起COT进行上行传输;或
所述终端自身判断是否发起COT。
本发明的示例性实施例中,所述终端共享所述网络侧设备的COT进行上行传输之前,所述方法还包括:
接收所述网络侧设备的第二指示信息,所述第二指示信息指示允许所述终端共享所述网络侧设备的COT。
本发明的示例性实施例中,所述终端的FFP起始位置早于所述网络侧设备的FFP起始位置,所述方法还包括:
向所述网络侧设备发送第三指示信息,所述第三指示信息指示允许所述网络侧设备共享所述终端的COT。
本发明实施例提供了一种非授权频段的数据传输方法,应用于网络侧设备,如图4所示,包括:
步骤201:根据固定帧周期FFP配置信息和信道状态进行下行传输,所述FFP配置信息包括网络侧设备的FFP起始位置和FFP长度中的至少一项,以及终端的FFP起始位置和FFP长度中的至少一项,所述网络侧设备的FFP起始位置与终端的FFP起始位置不同。
本实施例中,网络侧设备根据FFP配置信息和信道状态进行下行传输,网络侧设备的FFP起始位置与终端的FFP起始位置不同,这样网络侧设备可以共享终端的COT进行传输或自身发起COT进行传输,从而实现网络侧设备和终端灵活地共享传输信道。
本发明的示例性实施例中,所述FFP配置信息由所述网络侧设备发送。所述方法还包括:
向所述终端发送所述FFP配置信息。
FFP配置信息可以通过无线资源控制(Radio Resource Control,RRC)消息或物理层信令承载
其中,FFP起始位置可以为绝对时域位置,还可以为相对于参考位置的偏移值,偏移值可以为整数,参考位置可以为预定义、网络侧设备预配置或网络侧设备配置的。
本发明的示例性实施例中,所述终端的FFP的长度与所述网络侧设备的FFP的长度不同;或
所述终端的FFP的长度与所述网络侧设备的FFP的长度相同。
本发明的示例性实施例中,所述网络侧设备的FFP起始位置晚于所述终端的FFP起始位置,所述根据FFP配置信息和信道状态进行下行传输包括:
在所述FFP配置信息指示的FFP空闲时段执行以下至少一项操作:信道空闲估计CCA以获取信道状态,上行信号检测以获取检测结果,上行信道检 测以获取检测结果;
根据信道状态和检测结果中的至少一项判断是否进行下行传输。
本发明的示例性实施例中,所述根据信道状态判断是否进行下行传输包括以下任一项:
若所述网络侧设备检测到上行信号或上行信道,且检测到信道为空,则进行下行传输;
若所述网络侧设备检测到上行信号或上行信道,且检测到信道为忙,则不进行下行传输;
若所述网络侧设备未检测到上行信号或上行信道,且检测到信道为空,则进行下行传输;
若所述网络侧设备未检测到上行信号或上行信道,且检测到信道为忙,则不进行下行传输。
其中,网络侧设备未检测到上行信号或上行信道包括以下任一种情况:网络侧设备进行上行信号检测和/或上行信道检测,但是没有检测到上行信号或上行信道;网络侧设备未进行上行信号检测和上行信道检测。
本发明的示例性实施例中,所述进行下行传输包括以下任一项:
所述网络侧设备共享所述终端的COT进行下行传输,传输时长不超出所述终端的COT;
所述网络侧设备自身发起COT进行下行传输。
本发明的示例性实施例中,所述网络侧设备共享所述终端的COT进行下行传输之前,所述方法还包括:
接收所述终端的第三指示信息,所述第三指示信息指示允许所述网络侧设备共享所述终端的COT。
本发明的示例性实施例中,所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,所述方法还包括:
向所述终端发送第二指示信息,所述第二指示信息指示允许所述终端共享所述网络侧设备的COT。
本发明的示例性实施例中,所述方法还包括:
向所述终端发送第一指示信息,所述第一指示信息指示允许所述终端发 起COT进行上行传输。
下面结合附图以及具体的实施例对本发明的技术方案进行进一步介绍。
实施例一
本实施例中,如图5所示,UE的FFP起始位置在gNB的FFP之后,UE和gNB的FFP起始位置至少差一个正交频分复用符号(Orthogonal Frequency Division Multiplexing symbol,OS),且二者COT时间有重叠。则UE在自己的FFP的idle period内做CCA和下行信号检测中的至少一项。当UE检测到下行信号,则可以根据gNB的指示,或者默认规则,在gNB的COT内进行上行传输。若UE在自己的idle period内未检测到下行信号,且做CCA检测到信道为空,则UE自己发起(initiate)FFP进行上行传输。
实施例二
本实施例中,UE的FFP起始位置远远晚于gNB的FFP,如图6所示,对gNB下行信号(DL signal)的检测远远早于CCA。此时UE从gNB的FFP起始位置进行DL signal检测,当检测到DL signal,则UE可以在gNB的剩余COT内进行上行传输。若UE在gNB的FFP起始位置没有检测到DL signal,则UE停止检测,直到自己的FFP之前做CCA,若信道为空,则进行相应的上行传输。此外,UE也可以在没有检测到DL signal的时候一直进行DL signal检测直到idle period中做CCA的时间。若UE检测到任何DL signal,则UE可以共享gNB的COT。若UE一直未检测到DL signal,则在CCA的位置做LBT,根据侦听结果决定是否做上行传输。
实施例三
本实施例中,如图7所示,UE的FFP晚于gNB的FFP开始,且UE的FFP远小于gNB的FFP,也就是说,在gNB的COT内有多余一个UE的FFP的起始位置。此时,若UE检测到了gNB的DL signal,则UE可以共享(share)gNB的COT,如图中FFP1和FFP2所示。此外,即使UE检测到了gNB的DL signal,UE也可以选择自己initiate COT,如图中FFP4所示,这时,UE的传输时长可以大于gNB的剩余COT。进一步的,UE的行为可以由gNB指示,gNB在发送DL signal的时候可以指示UE在FFP4是否需要自己intiate COT。
进一步的,在实施例一、二和三中,如果UE进行随机接入,则UE在idle period检测到下行信号后,可以在FFP中配置的随机接入信道时机(Random Access Channel occasion,RO)内随机选取一个进行物理随机接入信道(Physical Random Access Channel,PRACH)传输,且传输时长不超过gNB的剩余COT。如果UE在idle period没有检测到下行信号,且CCA检测显示信道为空,则UE在FFP内配置RACH occasion中的第一个RO上进行PRACH传输,如图5所示。
同理,对于免授权传输UE,若UE在idle period检测到下行信号,则UE可以在gNB的COT内进行CG传输。如果UE在idle period没有检测到下行信号,且CCA检测显示信道为空,则UE从自己的FFP起始位置开始进行CG传输。
此外,对于配置的上行传输,例如PRACH,调度请求(Scheduling request,SR),公共组(Common Group,CG),2-step RACH MSGA的物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH),若传输资源落在了FFP的前X个符号,则该这X个符号内的资源是无效的,X>=1。X取决于信号处理时间或者上下行转换时间。
实施例四
本实施例中,如图8所示,UE的FFP起始位置晚于gNB的FFP,且UE的COT与gNB的FFP不重叠,则gNB和UE可以各自做CCA,并根据信道侦听结果,在自己的COT内进行传输。
实施例五
本实施例中,如图9所示,gNB的FFP的起始位置可以晚于UE的FFP起始位置。此时,gNB需要做上行信号(UL signal)detection和CCA中的至少一项。若gNB检测到UL signal,则根据上行信号,例如CG-上行控制信息(Uplink Control Information,UCI)指示,确定是否可以共享UE的COT或者可以共享多长时间的COT。若gNB没有检测到UL signal,且CCA检测信道为空,则gNB自己initiate COT,进行下行传输。
另外,对于gNB FFP起始位置晚于UE FFP起始位置的情况,gNB从UE的FFP起始位置进行UL signal检测,当检测到UL signal,则gNB可以在UE 的剩余COT内进行上行传输。若gNB在UE的FFP起始位置没有检测到UL signal,则gNB停止检测,直到自己的FFP之前做CCA,若信道为空,则进行相应的下行传输。此外,gNB也可以在没有检测到UL signal的时候一直进行UL signal检测直到idle period中做CCA的时间。若gNB检测到任何UL signal,则gNB可以共享UE的COT。若gNB一直未检测到UL signal,则在CCA的位置做LBT,根据侦听结果决定是否做下行传输。
如果gNB的FFP晚于UE的FFP开始,且gNB的FFP远小于UE的FFP,也就是说,在UE的COT内有多余一个gNB的FFP的起始位置。此时,若gNB检测到了UE的UL signal,则gNB可以共享UE的COT。此外,即使gNB检测到了UE的UL signal,gNB也可以选择自己initiate COT,这时,gNB的传输时长可以大于UE的剩余COT。
上述实施例中,gNB可以通过RRC消息或者物理层信令通知UE FFP相关信息。
上述起始位置可以是绝对的时域位置,也可以是相对某个参考位置的偏移值。例如gNB和UE有一个共同的参考位置,则他们FFP的起始位置是相对这个参考位置的偏移值。如果gNB的FFP起始位置是绝对位置,UE的FFP起始位置可以是相对于gNB的FFP起始位置的偏移值;如果UE的FFP起始位置是绝对位置,gNB的FFP起始位置可以是相对于UE的FFP起始位置的偏移值。其中,偏移值可以是0,还可以是任意正负整数。
如图10所示,本发明实施例的终端300,包括非授权频段的数据传输装置,能实现上述实施例中应用于终端的非授权频段的数据传输方法,并达到相同的效果,该终端300具体包括以下功能模块:
第一传输模块310,用于根据固定帧周期FFP配置信息和信道状态进行上行传输,所述FFP配置信息包括终端的FFP起始位置和FFP长度中的至少一项,以及网络侧设备的FFP起始位置和FFP长度中的至少一项,所述终端的FFP起始位置与网络侧设备的FFP起始位置不同。
本实施例中,终端根据FFP配置信息和信道状态进行上行传输,网络侧设备的FFP起始位置与终端的FFP起始位置不同,这样终端可以共享网络侧设备的COT进行传输或自身发起COT进行传输,从而实现网络侧设备和终 端灵活地共享传输信道。
本发明的示例性实施例中,所述FFP配置信息由所述网络侧设备发送。FFP配置信息可以通过RRC消息或物理层信令承载
其中,FFP起始位置可以为绝对时域位置,还可以为相对于参考位置的偏移值,偏移值可以为整数,参考位置可以为预定义、网络侧设备预配置或网络侧设备配置的。
本发明的示例性实施例中,所述终端的FFP的长度与所述网络侧设备的FFP的长度不同;或所述终端的FFP的长度与所述网络侧设备的FFP的长度相同。
本发明的示例性实施例中,所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,所述第一传输模块310具体用于在所述FFP配置信息指示的FFP空闲时段执行以下至少一项操作:信道空闲估计CCA以获取信道状态,下行信号检测以获取检测结果,下行信道检测以获取检测结果;根据信道状态和检测结果中的至少一项判断是否进行上行传输。
本发明的示例性实施例中,若所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,所述终端的FFP的前X个符号内的上行传输资源为无效的,X为大于等于1的整数。
本发明的示例性实施例中,所述第一传输模块310具体用于执行以下任一项:
若所述终端检测到下行信号或下行信道,且检测到信道为空,则进行上行传输;
若所述终端检测到下行信号或下行信道,且检测到信道为忙,则不进行上行传输;
若所述终端未检测到下行信号或下行信道,且检测到信道为空,则进行上行传输;
若所述终端未检测到下行信号或下行信道,且检测到信道为忙,则不进行上行传输。
其中,终端未检测到下行信号或下行信道包括以下任一种情况:终端进行下行信号检测和/或下行信道检测,但是没有检测到下行信号或下行信道; 终端未进行下行信号检测和下行信道检测。
本发明的示例性实施例中,所述第一传输模块310具体用于执行以下任一项:
所述终端共享所述网络侧设备的信道占用时间COT进行上行传输,传输时长不超出所述网络侧设备的COT;
所述终端自身发起COT进行上行传输。
其中,网络侧设备的COT与终端的COT可以重叠,也可以不重叠。
一具体示例中,所述上行传输为物理随机接入信道PRACH传输,所述第一传输模块310具体用于执行以下任一项:
若所述终端检测到下行信号或下行信道,且检测到信道为空,则所述终端在自身FFP中的随机接入信道RACH时机中选取任一个进行PRACH传输,且传输时长不超出所述网络侧设备的COT;
若所述终端未检测到下行信号或下行信道,且检测到信道为空,则所述终端在自身FFP中的RACH时机中的第一个RACH时机上进行PRACH传输。
本发明的示例性实施例中,所述第一传输模块310具体用于执行以下任一项:
接收所述网络侧设备的第一指示信息,所述第一指示信息指示允许所述终端发起COT进行上行传输;或
所述终端自身判断是否发起COT。
本发明的示例性实施例中,所述第一传输模块310还用于接收所述网络侧设备的第二指示信息,所述第二指示信息指示允许所述终端共享所述网络侧设备的COT。
本发明的示例性实施例中,所述终端的FFP起始位置早于所述网络侧设备的FFP起始位置,所述第一传输模块310还用于向所述网络侧设备发送第三指示信息,所述第三指示信息指示允许所述网络侧设备共享所述终端的COT。
如图11所示,本发明实施例的网络侧设备301,包括非授权频段的数据传输装置,能实现上述实施例中应用于网络侧设备的非授权频段的数据传输 方法,并达到相同的效果,网络侧设备301具体包括以下功能模块:
第二传输模块330,用于根据固定帧周期FFP配置信息和信道状态进行下行传输,所述FFP配置信息包括网络侧设备的FFP起始位置和FFP长度中的至少一项,以及终端的FFP起始位置和FFP长度中的至少一项,所述网络侧设备的FFP起始位置与终端的FFP起始位置不同。
本实施例中,网络侧设备根据FFP配置信息和信道状态进行下行传输,网络侧设备的FFP起始位置与终端的FFP起始位置不同,这样网络侧设备可以共享终端的COT进行传输或自身发起COT进行传输,从而实现网络侧设备和终端灵活地共享传输信道。
本发明的示例性实施例中,所述FFP配置信息由所述网络侧设备发送。第二传输模块330还用于向所述终端发送FFP配置信息。
FFP配置信息可以通过无线资源控制(Radio Resource Control,RRC)消息或物理层信令承载
其中,FFP起始位置可以为绝对时域位置,还可以为相对于参考位置的偏移值,偏移值可以为整数,参考位置可以为预定义、网络侧设备预配置或网络侧设备配置的。
本发明的示例性实施例中,所述终端的FFP的长度与所述网络侧设备的FFP的长度不同;或
所述终端的FFP的长度与所述网络侧设备的FFP的长度相同。
本发明的示例性实施例中,所述网络侧设备的FFP起始位置晚于所述终端的FFP起始位置,第二传输模块330具体用于在所述FFP配置信息指示的FFP空闲时段执行以下至少一项操作:信道空闲估计CCA以获取信道状态,上行信号检测以获取检测结果,上行信道检测以获取检测结果;根据信道状态和检测结果中的至少一项判断是否进行下行传输。
本发明的示例性实施例中,第二传输模块330具体用于执行以下任一项:
若所述网络侧设备检测到上行信号或上行信道,且检测到信道为空,则进行下行传输;
若所述网络侧设备检测到上行信号或上行信道,且检测到信道为忙,则不进行下行传输;
若所述网络侧设备未检测到上行信号或上行信道,且检测到信道为空,则进行下行传输;
若所述网络侧设备未检测到上行信号或上行信道,且检测到信道为忙,则不进行下行传输。
其中,网络侧设备未检测到上行信号或上行信道包括以下任一种情况:网络侧设备进行上行信号检测和/或上行信道检测,但是没有检测到上行信号或上行信道;网络侧设备未进行上行信号检测和上行信道检测。
本发明的示例性实施例中,第二传输模块330具体用于执行以下任一项:
所述网络侧设备共享所述终端的COT进行下行传输,传输时长不超出所述终端的COT;
所述网络侧设备自身发起COT进行下行传输。
本发明的示例性实施例中,第二传输模块330还用于接收所述终端的第三指示信息,所述第三指示信息指示允许所述网络侧设备共享所述终端的COT。
本发明的示例性实施例中,所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,第二传输模块330还用于向所述终端发送第二指示信息,所述第二指示信息指示允许所述终端共享所述网络侧设备的COT。
本发明的示例性实施例中,第二传输模块330还用于向所述终端发送第一指示信息,所述第一指示信息指示允许所述终端发起COT进行上行传输。
为了更好的实现上述目的,进一步地,图12为实现本发明各个实施例的一种终端的硬件结构示意图,该终端40包括但不限于:射频单元41、网络模块42、音频输出单元43、输入单元44、传感器45、显示单元46、用户输入单元47、接口单元48、存储器49、处理器410、以及电源411等部件。本领域技术人员可以理解,图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器410,用于根据固定帧周期FFP配置信息和信道状态进行上行传输,所述FFP配置信息包括终端的FFP起始位置和FFP长度中的至少 一项,以及网络侧设备的FFP起始位置和FFP长度中的至少一项,所述终端的FFP起始位置与网络侧设备的FFP起始位置不同。
应理解的是,本发明实施例中,射频单元41可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器410处理;另外,将上行的数据发送给基站。通常,射频单元41包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元41还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块42为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元43可以将射频单元41或网络模块42接收的或者在存储器49中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元43还可以提供与终端40执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元43包括扬声器、蜂鸣器以及受话器等。
输入单元44用于接收音频或视频信号。输入单元44可以包括图形处理器(Graphics Processing Unit,GPU)441和麦克风442,图形处理器441对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元46上。经图形处理器441处理后的图像帧可以存储在存储器49(或其它存储介质)中或者经由射频单元41或网络模块42进行发送。麦克风442可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元41发送到移动通信基站的格式输出。
终端40还包括至少一种传感器45,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板461的亮度,接近传感器可在终端40移动到耳边时,关闭显示面板461和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、 磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器45还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元46用于显示由用户输入的信息或提供给用户的信息。显示单元46可包括显示面板461,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板461。
用户输入单元47可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元47包括触控面板471以及其他输入设备472。触控面板471,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板471上或在触控面板471附近的操作)。触控面板471可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器410,接收处理器410发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板471。除了触控面板471,用户输入单元47还可以包括其他输入设备472。具体地,其他输入设备472可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板471可覆盖在显示面板461上,当触控面板471检测到在其上或附近的触摸操作后,传送给处理器410以确定触摸事件的类型,随后处理器410根据触摸事件的类型在显示面板461上提供相应的视觉输出。虽然在图12中,触控面板471与显示面板461是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板471与显示面板461集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元48为外部装置与终端40连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数 据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(Input/Output,I/O)端口、视频I/O端口、耳机端口等等。接口单元48可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端40内的一个或多个元件或者可以用于在终端40和外部装置之间传输数据。
存储器49可用于存储软件程序以及各种数据。存储器49可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器49可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器410是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器49内的软件程序和/或模块,以及调用存储在存储器49内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器410可包括一个或多个处理单元;优选的,处理器410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
终端40还可以包括给各个部件供电的电源411(比如电池),优选的,电源411可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端40包括一些未示出的功能模块,在此不再赘述。
本发明实施例还提供一种通信设备,包括处理器410,存储器49,存储在存储器49上并可在所述处理器410上运行的计算机程序,该计算机程序被处理器410执行时实现上述非授权频段的数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,上述通信设备可以为终端,终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线 调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述终端侧的非授权频段的数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
为了更好的实现上述目的,本发明的实施例还提供了一种网络侧设备,该网络侧设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的非授权频段的数据传输方法中的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本发明的实施例还提供了一种网络侧设备。如图13所示,该网络侧设备500包括:天线51、射频装置52、基带装置53。天线51与射频装置52连接。在上行方向上,射频装置52通过天线51接收信息,将接收的信息发送给基带装置53进行处理。在下行方向上,基带装置53对要发送的信息进行处理,并发送给射频装置52,射频装置52对收到的信息进行处理后经过天线51发送出去。
上述频带处理装置可以位于基带装置53中,以上实施例中网络侧设备执 行的方法可以在基带装置53中实现,该基带装置53包括处理器54和存储器55。
基带装置53例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为处理器54,与存储器55连接,以调用存储器55中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置53还可以包括网络接口56,用于与射频装置52交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络侧设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器55可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器55旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本发明实施例的网络侧设备还包括:存储在存储器55上并可在处理器54上运行的计算机程序,处理器54调用存储器55中的计算机程序执行图11所示各模块执行的方法。
具体地,计算机程序被处理器54调用时可用于根据固定帧周期FFP配置信息和信道状态进行下行传输,所述FFP配置信息包括网络侧设备的FFP起始位置和FFP长度中的至少一项,以及终端的FFP起始位置和FFP长度中的至少一项,所述网络侧设备的FFP起始位置与终端的FFP起始位置不同。
本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的应用于网络侧设备的非授权频段的数据传输方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单 元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
此外,需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立 地执行。对本领域的普通技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本发明的说明的情况下运用他们的基本编程技能就能实现的。
因此,本发明的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本发明的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本发明,并且存储有这样的程序产品的存储介质也构成本发明。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (50)

  1. 一种非授权频段的数据传输方法,应用于终端,包括:
    根据固定帧周期FFP配置信息和信道状态进行上行传输,所述FFP配置信息包括终端的FFP起始位置和FFP长度中的至少一项,以及网络侧设备的FFP起始位置和FFP长度中的至少一项,所述终端的FFP起始位置与网络侧设备的FFP起始位置不同。
  2. 根据权利要求1所述的非授权频段的数据传输方法,其中,所述FFP配置信息由所述网络侧设备发送。
  3. 根据权利要求1或2所述的非授权频段的数据传输方法,其中,
    所述终端的FFP的长度与所述网络侧设备的FFP的长度不同;或
    所述终端的FFP的长度与所述网络侧设备的FFP的长度相同。
  4. 根据权利要求1或2所述的非授权频段的数据传输方法,其中,所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,所述根据FFP配置信息和信道状态进行上行传输包括:
    在所述FFP配置信息指示的FFP空闲时段执行以下至少一项操作:信道空闲估计CCA以获取信道状态,下行信号检测以获取检测结果,下行信道检测以获取检测结果;
    根据信道状态和检测结果中的至少一项判断是否进行上行传输。
  5. 根据权利要求4所述的非授权频段的数据传输方法,其中,所述根据信道状态判断是否进行上行传输包括以下任一项:
    若所述终端检测到下行信号或下行信道,且检测到信道为空,则进行上行传输;
    若所述终端检测到下行信号或下行信道,且检测到信道为忙,则不进行上行传输;
    若所述终端未检测到下行信号或下行信道,且检测到信道为空,则进行上行传输;
    若所述终端未检测到下行信号或下行信道,且检测到信道为忙,则不进行上行传输。
  6. 根据权利要求5所述的非授权频段的数据传输方法,其中,所述进行上行传输包括以下任一项:
    所述终端共享所述网络侧设备的信道占用时间COT进行上行传输,传输时长不超出所述网络侧设备的COT;
    所述终端自身发起COT进行上行传输。
  7. 根据权利要求5所述的非授权频段的数据传输方法,其中,所述上行传输为物理随机接入信道PRACH传输,所述进行上行传输包括以下任一项:
    若所述终端检测到下行信号或下行信道,且检测到信道为空,则所述终端在自身FFP中的随机接入信道RACH时机中选取任一个进行PRACH传输,且传输时长不超出所述网络侧设备的COT;
    若所述终端未检测到下行信号或下行信道,且检测到信道为空,则所述终端在自身FFP中的RACH时机中的第一个RACH时机上进行PRACH传输。
  8. 根据权利要求6所述的非授权频段的数据传输方法,其中,所述终端自身发起COT进行上行传输包括以下任一项:
    接收所述网络侧设备的第一指示信息,所述第一指示信息指示允许所述终端发起COT进行上行传输;或
    所述终端自身判断是否发起COT。
  9. 根据权利要求6所述的非授权频段的数据传输方法,其中,所述终端共享所述网络侧设备的COT进行上行传输之前,所述方法还包括:
    接收所述网络侧设备的第二指示信息,所述第二指示信息指示允许所述终端共享所述网络侧设备的COT。
  10. 根据权利要求1或2所述的非授权频段的数据传输方法,其中,所述终端的FFP起始位置早于所述网络侧设备的FFP起始位置,所述方法还包括:
    向所述网络侧设备发送第三指示信息,所述第三指示信息指示允许所述网络侧设备共享所述终端的COT。
  11. 根据权利要求2所述的非授权频段的数据传输方法,其中,所述FFP配置信息通过无线资源控制RRC消息或物理层信令承载。
  12. 根据权利要求1所述的非授权频段的数据传输方法,其中,所述FFP起始位置为绝对时域位置或相对于参考位置的偏移值。
  13. 根据权利要求4所述的非授权频段的数据传输方法,其中,所述终端的FFP的前X个符号内的上行传输资源为无效的,X为大于等于1的整数。
  14. 一种非授权频段的数据传输方法,应用于网络侧设备,包括:
    根据固定帧周期FFP配置信息和信道状态进行下行传输,所述FFP配置信息包括网络侧设备的FFP起始位置和FFP长度中的至少一项,以及终端的FFP起始位置和FFP长度中的至少一项,所述网络侧设备的FFP起始位置与终端的FFP起始位置不同。
  15. 根据权利要求14所述的非授权频段的数据传输方法,还包括:
    向所述终端发送所述FFP配置信息。
  16. 根据权利要求14或15所述的非授权频段的数据传输方法,其中,所述终端的FFP的长度与所述网络侧设备的FFP的长度不同;或
    所述终端的FFP的长度与所述网络侧设备的FFP的长度相同。
  17. 根据权利要求14或15所述的非授权频段的数据传输方法,其中,所述网络侧设备的FFP起始位置晚于所述终端的FFP起始位置,所述根据FFP配置信息和信道状态进行下行传输包括:
    在所述FFP配置信息指示的FFP空闲时段执行以下至少一项操作:信道空闲估计CCA以获取信道状态,上行信号检测以获取检测结果,上行信道检测以获取检测结果;
    根据信道状态和检测结果中的至少一项判断是否进行下行传输。
  18. 根据权利要求17所述的非授权频段的数据传输方法,其中,所述根据信道状态判断是否进行下行传输包括以下任一项:
    若所述网络侧设备检测到上行信号或上行信道,且检测到信道为空,则进行下行传输;
    若所述网络侧设备检测到上行信号或上行信道,且检测到信道为忙,则不进行下行传输;
    若所述网络侧设备未检测到上行信号或上行信道,且检测到信道为空, 则进行下行传输;
    若所述网络侧设备未检测到上行信号或上行信道,且检测到信道为忙,则不进行下行传输。
  19. 根据权利要求18所述的非授权频段的数据传输方法,其中,所述进行下行传输包括以下任一项:
    所述网络侧设备共享所述终端的COT进行下行传输,传输时长不超出所述终端的COT;
    所述网络侧设备自身发起COT进行下行传输。
  20. 根据权利要求19所述的非授权频段的数据传输方法,其中,所述网络侧设备共享所述终端的COT进行下行传输之前,所述方法还包括:
    接收所述终端的第三指示信息,所述第三指示信息指示允许所述网络侧设备共享所述终端的COT。
  21. 根据权利要求14或15所述的非授权频段的数据传输方法,其中,所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,所述方法还包括:
    向所述终端发送第二指示信息,所述第二指示信息指示允许所述终端共享所述网络侧设备的COT。
  22. 根据权利要求14所述的非授权频段的数据传输方法,还包括:
    向所述终端发送第一指示信息,所述第一指示信息指示允许所述终端发起COT进行上行传输。
  23. 根据权利要求15所述的非授权频段的数据传输方法,其中,所述FFP配置信息通过无线资源控制RRC消息或物理层信令承载。
  24. 根据权利要求14所述的非授权频段的数据传输方法,其中,所述FFP起始位置为绝对时域位置或相对于参考位置的偏移值。
  25. 一种非授权频段的数据传输装置,应用于终端,包括:
    第一传输模块,用于根据固定帧周期FFP配置信息和信道状态进行上行传输,所述FFP配置信息包括终端的FFP起始位置和FFP长度中的至少一项,以及网络侧设备的FFP起始位置和FFP长度中的至少一项,所述终端的FFP起始位置与网络侧设备的FFP起始位置不同。
  26. 根据权利要求25所述的非授权频段的数据传输装置,其中,所述FFP配置信息由所述网络侧设备发送。
  27. 根据权利要求25或26所述的非授权频段的数据传输装置,其中,
    所述终端的FFP的长度与所述网络侧设备的FFP的长度不同;或
    所述终端的FFP的长度与所述网络侧设备的FFP的长度相同。
  28. 根据权利要求25或26所述的非授权频段的数据传输装置,其中,所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,所述第一传输模块具体用于在所述FFP配置信息指示的FFP空闲时段执行以下至少一项操作:信道空闲估计CCA以获取信道状态,下行信号检测以获取检测结果,下行信道检测以获取检测结果;
    根据信道状态和检测结果中的至少一项判断是否进行上行传输。
  29. 根据权利要求28所述的非授权频段的数据传输装置,其中,所述第一传输模块具体用于执行以下任一项:
    若所述终端检测到下行信号或下行信道,且检测到信道为空,则进行上行传输;
    若所述终端检测到下行信号或下行信道,且检测到信道为忙,则不进行上行传输;
    若所述终端未检测到下行信号或下行信道,且检测到信道为空,则进行上行传输;
    若所述终端未检测到下行信号或下行信道,且检测到信道为忙,则不进行上行传输。
  30. 根据权利要求29所述的非授权频段的数据传输装置,其中所述第一传输模块具体用于执行以下任一项:
    所述终端共享所述网络侧设备的信道占用时间COT进行上行传输,传输时长不超出所述网络侧设备的COT;
    所述终端自身发起COT进行上行传输。
  31. 根据权利要求29所述的非授权频段的数据传输装置,其中,所述上行传输为物理随机接入信道PRACH传输,所述第一传输模块具体用于执行以下任一项:
    若所述终端检测到下行信号或下行信道,且检测到信道为空,则所述终端在自身FFP中的随机接入信道RACH时机中选取任一个进行PRACH传输,且传输时长不超出所述网络侧设备的COT;
    若所述终端未检测到下行信号或下行信道,且检测到信道为空,则所述终端在自身FFP中的RACH时机中的第一个RACH时机上进行PRACH传输。
  32. 根据权利要求30所述的非授权频段的数据传输装置,其中,所述第一传输模块具体用于执行以下任一项:
    接收所述网络侧设备的第一指示信息,所述第一指示信息指示允许所述终端发起COT进行上行传输;或
    所述终端自身判断是否发起COT。
  33. 根据权利要求30所述的非授权频段的数据传输装置,其中,所述第一传输模块还用于:
    接收所述网络侧设备的第二指示信息,所述第二指示信息指示允许所述终端共享所述网络侧设备的COT。
  34. 根据权利要求25或26所述的非授权频段的数据传输装置,其中,所述终端的FFP起始位置早于所述网络侧设备的FFP起始位置,所述第一传输模块还用于:
    向所述网络侧设备发送第三指示信息,所述第三指示信息指示允许所述网络侧设备共享所述终端的COT。
  35. 根据权利要求26所述的非授权频段的数据传输装置,其中,所述FFP配置信息通过无线资源控制RRC消息或物理层信令承载。
  36. 根据权利要求25所述的非授权频段的数据传输装置,其中,所述FFP起始位置为绝对时域位置或相对于参考位置的偏移值。
  37. 根据权利要求28所述的非授权频段的数据传输装置,其中,所述终端的FFP的前X个符号内的上行传输资源为无效的,X为大于等于1的整数。
  38. 一种非授权频段的数据传输装置,应用于网络侧设备,包括:
    第二传输模块,用于根据固定帧周期FFP配置信息和信道状态进行下行 传输,所述FFP配置信息包括网络侧设备的FFP起始位置和FFP长度中的至少一项,以及终端的FFP起始位置和FFP长度中的至少一项,所述网络侧设备的FFP起始位置与终端的FFP起始位置不同。
  39. 根据权利要求38所述的非授权频段的数据传输装置,其中,所述第二传输模块还用于向所述终端发送所述FFP配置信息。
  40. 根据权利要求38或39所述的非授权频段的数据传输装置,其中,所述终端的FFP的长度与所述网络侧设备的FFP的长度不同;或
    所述终端的FFP的长度与所述网络侧设备的FFP的长度相同。
  41. 根据权利要求38或39所述的非授权频段的数据传输装置,其中,所述网络侧设备的FFP起始位置晚于所述终端的FFP起始位置,所述第二传输模块具体用于在所述FFP配置信息指示的FFP空闲时段执行以下至少一项操作:信道空闲估计CCA以获取信道状态,上行信号检测以获取检测结果,上行信道检测以获取检测结果;
    根据信道状态和检测结果中的至少一项判断是否进行下行传输。
  42. 根据权利要求41所述的非授权频段的数据传输装置,其中,所述第二传输模块具体用于执行以下任一项:
    若所述网络侧设备检测到上行信号或上行信道,且检测到信道为空,则进行下行传输;
    若所述网络侧设备检测到上行信号或上行信道,且检测到信道为忙,则不进行下行传输;
    若所述网络侧设备未检测到上行信号或上行信道,且检测到信道为空,则进行下行传输;
    若所述网络侧设备未检测到上行信号或上行信道,且检测到信道为忙,则不进行下行传输。
  43. 根据权利要求42所述的非授权频段的数据传输装置,其中,所述第二传输模块具体用于执行以下任一项:
    所述网络侧设备共享所述终端的COT进行下行传输,传输时长不超出所述终端的COT;
    所述网络侧设备自身发起COT进行下行传输。
  44. 根据权利要求43所述的非授权频段的数据传输装置,其中,所述第二传输模块还用于:
    接收所述终端的第三指示信息,所述第三指示信息指示允许所述网络侧设备共享所述终端的COT。
  45. 根据权利要求38或39所述的非授权频段的数据传输装置,其中,所述终端的FFP起始位置晚于所述网络侧设备的FFP起始位置,所述第二传输模块还用于:
    向所述终端发送第二指示信息,所述第二指示信息指示允许所述终端共享所述网络侧设备的COT。
  46. 根据权利要求38所述的非授权频段的数据传输装置,其中,所述第二传输模块还用于:
    向所述终端发送第一指示信息,所述第一指示信息指示允许所述终端发起COT进行上行传输。
  47. 根据权利要求39所述的非授权频段的数据传输装置,其中,所述FFP配置信息通过无线资源控制RRC消息或物理层信令承载。
  48. 根据权利要求38所述的非授权频段的数据传输装置,其中,所述FFP起始位置为绝对时域位置或相对于参考位置的偏移值。
  49. 一种通信设备,包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至24中任一项所述的非授权频段的数据传输方法的步骤。
  50. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至24中任一项所述的非授权频段的数据传输方法的步骤。
PCT/CN2021/074343 2020-02-05 2021-01-29 非授权频段的数据传输方法及装置、通信设备 WO2021155763A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/880,571 US20220386371A1 (en) 2020-02-05 2022-08-03 Data transmission method and apparatus for unlicensed band, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010080691.6A CN113225832B (zh) 2020-02-05 2020-02-05 非授权频段的数据传输方法及装置、通信设备
CN202010080691.6 2020-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/880,571 Continuation US20220386371A1 (en) 2020-02-05 2022-08-03 Data transmission method and apparatus for unlicensed band, and communication device

Publications (1)

Publication Number Publication Date
WO2021155763A1 true WO2021155763A1 (zh) 2021-08-12

Family

ID=77085642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074343 WO2021155763A1 (zh) 2020-02-05 2021-01-29 非授权频段的数据传输方法及装置、通信设备

Country Status (3)

Country Link
US (1) US20220386371A1 (zh)
CN (1) CN113225832B (zh)
WO (1) WO2021155763A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055739A1 (zh) * 2022-09-16 2024-03-21 青岛海尔智能技术研发有限公司 用于确定上行信道的方法及终端、网络设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322425A1 (en) * 2020-08-05 2022-10-06 Apple Inc. UE-Initiated Channel Access Procedure in Wireless Communication on Shared Spectrum
WO2024045011A1 (en) * 2022-08-31 2024-03-07 Qualcomm Incorporated Channel access techniques for frame-based equipment in sidelink communications using shared spectrum
WO2024055231A1 (zh) * 2022-09-15 2024-03-21 Oppo广东移动通信有限公司 无线通信的方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170332358A1 (en) * 2016-05-12 2017-11-16 Samsung Electronics Co., Ltd. Method and apparatus for uplink resource assignment for cellular network using unlicensed bands
US20190335500A1 (en) * 2018-04-30 2019-10-31 Qualcomm Incorporated Aligned lbt gaps for single operator fbe nr-ss
CN110537385A (zh) * 2019-06-25 2019-12-03 北京小米移动软件有限公司 下行传输的检测方法、装置、设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705835B2 (ja) * 2015-04-08 2020-06-03 インターデイジタル パテント ホールディングス インコーポレイテッド 非認可帯域におけるlte動作のためのシステムおよび方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170332358A1 (en) * 2016-05-12 2017-11-16 Samsung Electronics Co., Ltd. Method and apparatus for uplink resource assignment for cellular network using unlicensed bands
US20190335500A1 (en) * 2018-04-30 2019-10-31 Qualcomm Incorporated Aligned lbt gaps for single operator fbe nr-ss
CN110537385A (zh) * 2019-06-25 2019-12-03 北京小米移动软件有限公司 下行传输的检测方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "DL signals and channels for NR-U", 3GPP DRAFT; R1-1911095 7.2.2.1.2 DL SIGNALS AND CHANNELS FOR NR-U, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, CN; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789872 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055739A1 (zh) * 2022-09-16 2024-03-21 青岛海尔智能技术研发有限公司 用于确定上行信道的方法及终端、网络设备

Also Published As

Publication number Publication date
CN113225832A (zh) 2021-08-06
US20220386371A1 (en) 2022-12-01
CN113225832B (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
JP7369782B2 (ja) ハイブリッド自動再送要求harqフィードバック方法、端末及びネットワーク機器
WO2021155763A1 (zh) 非授权频段的数据传输方法及装置、通信设备
JP7153124B2 (ja) チャネル検出指示方法、端末及びネットワーク機器
WO2019076171A1 (zh) 非授权频段下的信息传输方法、终端及网络设备
EP3793121B1 (en) Quasi co-location configuration method, terminal, and network device
WO2020151743A1 (zh) 随机接入方法及终端
WO2019214664A1 (zh) 传输资源指示方法、网络设备及终端
JP7089070B2 (ja) 同期信号ブロックの伝送方法、ネットワーク装置及び端末
WO2020024811A1 (zh) 信息传输方法、终端及网络设备
US20210250936A1 (en) Information transmission method and communications device
WO2020156073A1 (zh) 非授权频段的信息传输方法、终端及网络设备
WO2021147761A1 (zh) 上行传输处理方法及装置、终端
WO2020011096A1 (zh) 上行传输方法及终端
WO2019076170A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
US20210314779A1 (en) Information transmission method in unlicensed band, terminal, and network device
WO2020151706A1 (zh) 随机接入传输方法及终端
WO2020147826A1 (zh) 随机接入传输方法及终端
CN110784873A (zh) 非授权频段的信息传输方法、终端及网络设备
WO2021088783A1 (zh) 物理下行控制信道的检测方法及装置
WO2021208938A1 (zh) 确定数据传输层数的方法及装置、通信设备
CN111315015B (zh) 非授权频段信息传输方法、终端及网络设备
US20210329470A1 (en) Information transmission method, terminal and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750377

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21750377

Country of ref document: EP

Kind code of ref document: A1