WO2020024811A1 - 信息传输方法、终端及网络设备 - Google Patents

信息传输方法、终端及网络设备 Download PDF

Info

Publication number
WO2020024811A1
WO2020024811A1 PCT/CN2019/096701 CN2019096701W WO2020024811A1 WO 2020024811 A1 WO2020024811 A1 WO 2020024811A1 CN 2019096701 W CN2019096701 W CN 2019096701W WO 2020024811 A1 WO2020024811 A1 WO 2020024811A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
channel
information
sequence
target transmission
Prior art date
Application number
PCT/CN2019/096701
Other languages
English (en)
French (fr)
Inventor
刘思綦
潘学明
吴凯
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020024811A1 publication Critical patent/WO2020024811A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an information transmission method, a terminal, and a network device.
  • the initial access, system information acquisition, and link recovery processes can be implemented through a random access process.
  • a new air interface New Radio, NR.
  • the subcarrier spacing (SCS) of msg1 may be 1.25 kHz or 5 kHz.
  • the subcarrier spacing of the preamble may be 15/30/60/120 / kHz.
  • Physical random access channel transmission timing Physical Random Access Channel Occasion / Physical Random Access Channel Occasion (RO) is defined as the time-frequency resources required to send a given format msg1. Under different subcarrier intervals, one RO occupies The bandwidth is shown in Table 1:
  • the available bandwidth of the licensed band may be much larger than the bandwidth occupied by an RO. If it is within the RO of the licensed band, sending only msg1 may result in low resource utilization.
  • the unlicensed frequency band can be used as a supplement to the licensed frequency band (licensed frequency band) to help operators expand service capacity.
  • Unlicensed frequency bands are shared by multiple radio access technologies (Radio Access Technologies, RATs), such as WiFi, radar, Long-Term Evolution Licensed Assisted Access (LTE-LAA), etc.
  • RATs Radio Access Technologies
  • LBT Listen Before Talk
  • MCOT Maximum Channel Occupancy Time
  • Occupied Bandwidth occupied channel bandwidth, OCB
  • the OCB must be greater than or equal to 80% of the nominal channel bandwidth
  • the OCB must be greater than or equal to 70% of the nominal channel bandwidth.
  • the terminal needs to perform LBT first, and judge the channel to be free before use.
  • the terminal can perform LBT according to the granularity of 20MHz. After the terminal preempts the channel, the frequency domain bandwidth of an RO may not meet the OCB of the unlicensed frequency band Demand, it will lead to the problem that the terminal cannot be used even if it seizes the resources.
  • the embodiments of the present disclosure provide an information transmission method, a terminal, and a network device to solve the transmission problem of msg1 in a random access process.
  • an embodiment of the present disclosure provides an information transmission method, which is applied to a terminal side and includes:
  • message 1 and padding information of the random access process are sent to the network device; among them, message 1 and padding information are frequency division multiplexed.
  • an embodiment of the present disclosure further provides a terminal, including:
  • the sending module is configured to send a random access process message 1 and padding information to a network device on a target transmission resource of the target transmission channel, where the message 1 and the padding information are frequency division multiplexed.
  • an embodiment of the present disclosure provides a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor, the steps of the foregoing information transmission method are implemented. .
  • an embodiment of the present disclosure provides an information transmission method, which is applied to a network device side and includes:
  • message 1 and padding information of the random access process are received; among them, message 1 and padding information are frequency division multiplexed;
  • an embodiment of the present disclosure provides a network device, including:
  • a receiving module configured to receive message 1 and padding information of a random access process on a target transmission resource of a target transmission channel; wherein message 1 and padding information are frequency division multiplexed;
  • the response module is configured to feed back a response message to the terminal according to the first message.
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the processor implements the foregoing information transmission method when the computer program is executed. A step of.
  • an embodiment of the present disclosure provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the information transmission method on the terminal side or the network device side. .
  • the terminal in the embodiment of the present disclosure jointly sends a message-1 and padding information on the target transmission resources, so that the random access process on the authorized frequency band can be performed normally, thereby further improving the bandwidth utilization rate, and ensuring that Idle transmission channels are available to ensure the normal operation of the random access process.
  • FIG. 1 shows a block diagram of a mobile communication system applicable to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of an information transmission method on a terminal side according to an embodiment of the present disclosure
  • 3 to 6 are schematic diagrams illustrating a position relationship between a target transmission resource and a target transmission channel according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of resource monitoring in scenario 1 in an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of resource monitoring in scenario two in the embodiment of the present disclosure.
  • FIG. 14 shows a schematic diagram of resource monitoring in scenario three in the embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a module structure of a terminal according to an embodiment of the present disclosure.
  • FIG. 16 shows a block diagram of a terminal according to an embodiment of the present disclosure
  • FIG. 17 is a schematic flowchart of an information transmission method for a network device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a module of a network device according to an embodiment of the present disclosure.
  • FIG. 19 shows a block diagram of a network device according to an embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier Frequency-Division Multiple Access
  • system and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA) and the like.
  • UTRA includes Wideband CDMA (Wideband Code Division Multiple Access) and other CDMA variants.
  • the TDMA system can implement a radio technology such as Global System for Mobile (Communication, Global System for Mobile).
  • OFDMA system can implement such as Ultra Mobile Broadband (UMB), Evolution-UTRA (Evolution-UTRA, E-UTRA), IEEE802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM And other radio technologies.
  • UMB Ultra Mobile Broadband
  • Evolution-UTRA Evolution-UTRA
  • E-UTRA Evolution-UTRA
  • IEEE802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM And other radio technologies.
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE (such as LTE-A) are new UMTS versions using E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3rd Generation Generation Partnership Project (3GPP)).
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein can be used for both the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the following description describes the NR system for example purposes and uses NR terminology in much of the description below, although these techniques can also be applied to applications other than NR system applications.
  • FIG. 1 is a block diagram of a wireless communication system applicable to an embodiment of the present disclosure.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be referred to as a terminal device or a user terminal (User), and the terminal 11 may be a mobile phone, a tablet computer (laptop computer), a laptop computer (laptop computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • terminal equipment such as vehicle-mounted equipment
  • the network device 12 may be a base station or a core network, where the above base stations may be 5G and later versions of base stations (for example, gNB, 5G, NR, NB, etc.), or base stations in other communication systems (for example, eNB, WLAN access point, Or other access points, etc.), where the base station may be referred to as Node B, evolved Node B, access point, Base Transceiver Station (BTS), radio base station, radio transceiver, basic service set (Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node or in the field
  • BSS Basic Service Set
  • ESS Extended Service Set
  • eNB Evolved Node B
  • the base station is not limited to a specific technical vocabulary. It should be noted that, in the embodiment of the present disclosure, only the base station in the NR system is taken as an example, but the base station is not
  • the base station may communicate with the terminal 11 under the control of a base station controller.
  • the base station controller may be part of the core network or some base stations.
  • Some base stations can communicate control information or user data with the core network through the backhaul.
  • some of these base stations may communicate with each other directly or indirectly through a backhaul link, which may be a wired or wireless communication link.
  • Wireless communication systems can support operation on multiple carriers (waveform signals of different frequencies).
  • Multi-carrier transmitters can transmit modulated signals on these multiple carriers simultaneously.
  • each communication link may be a multi-carrier signal modulated according to various radio technologies.
  • Each modulated signal can be sent on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station may perform wireless communication with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, a macro base station, a pico base station, or a pico base station). Base stations can also utilize different radio technologies, such as cellular or WLAN radio access technologies. Base stations can be associated with the same or different access networks or operator deployments. The coverage areas of different base stations (including the coverage areas of the same or different types of base stations, the coverage areas using the same or different radio technologies, or the coverage areas belonging to the same or different access networks) may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 11 to the network device 12), or a bearer for downlink (Downlink, DL) Downlink for transmission (for example, from network device 12 to terminal 11).
  • UL transmissions may also be referred to as reverse link transmissions, and DL transmissions may also be referred to as forward link transmissions.
  • Downlink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmissions can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • the information transmission method according to the embodiment of the present disclosure is applied to a terminal side. As shown in FIG. 2, the method includes the following steps:
  • Step 21 On the target transmission resource of the target transmission channel, send a random access process message one and at least one padding information to the network device; wherein the message one and the padding information are frequency division multiplexed.
  • the target transmission channel may be located in a licensed frequency band or in an unlicensed frequency band.
  • a part or all of the transmission resources of the target transmission channel of the authorized frequency band is used to send a message to the network device and fill information used for other purposes. This can improve the utilization of the authorized frequency band resources.
  • the unlicensed frequency bands In order to ensure that the unlicensed frequency bands can be used normally under different wireless access technologies, the unlicensed frequency bands must comply with certain regulations, such as LBT, MCOT, OCB, and so on. In order to meet the OCB requirements, the bandwidth occupied by the target transmission resources (here, the range of bandwidth spanned by the target transmission resources) is greater than or equal to a preset percentage of the nominal channel bandwidth of the target transmission channel.
  • the terminal sends a random access process message 1 and at least one padding information for other purposes to the network device through the target transmission resource of the target transmission channel on the unlicensed band.
  • the message 1 and the padding information are frequency division multiplexed, and the message 1 and The padding information is discretely set on the frequency domain resources. In this way, the discrete message and padding information in the frequency domain can ensure that the bandwidth span of the target transmission channel exceeds a preset percentage of the nominal bandwidth of the target transmission channel (such as 70% or 80%). ) To ensure that the transmission in the unlicensed band meets the OCB requirements.
  • the target transmission resource includes at least one RO and at least one other channel, and the other channels are located in the frequency domain part of the target transmission channel except all ROs.
  • the target transmission channel includes 4 ROs, such as RO1, RO2, RO3, and RO4.
  • the target transmission resource includes RO1 and at least one other channel, which is located on the target transmission channel in a frequency domain other than RO1, RO2, RO3, and RO4. section.
  • the target transmission channel has at least one RO in the frequency domain at the same time, and the terminal may send message one on one of the ROs and send padding information on the other channels.
  • the selected RO may be predefined (such as a protocol agreement) or a network device configuration, and the other channels may be predefined or configured by a network device.
  • the selected RO may be predefined (such as a protocol agreement) or a network device configuration, and the other channels may be predefined or configured by a network device.
  • at least one other channel in the target transmission resource and at least one RO in the frequency domain are farthest from each other in order to meet the OCB requirements.
  • the target transmission resource includes a plurality of at least two ROs.
  • the target transmission channel includes 4 ROs, such as RO1, RO2, RO3, and RO4, and the target transmission resources include RO1 and RO4.
  • the target transmission channel has at least one RO in the frequency domain at the same time, and the terminal may send message one on one of the ROs and send padding information on the other ROs.
  • the selected RO (such as the RO transmitting the first message and / or the RO transmitting the padding information) may be predefined or configured by the network device.
  • at least one other channel in the target transmission resource and at least one RO in the frequency domain are farthest from each other in order to meet the OCB requirements.
  • the other channels include at least one of the following resources:
  • the first resource that is symmetrical to the frequency center of the RO with respect to the frequency center of the target transmission channel; the frequency domain symmetry here may be: the starting position of the other channel is symmetrical to the starting position of the selected RO in the frequency domain, and the end of the other channel is The position is symmetric in the frequency domain with the end position of the selected RO.
  • the start positions of other channels are symmetric in the frequency domain with the end position of the selected RO.
  • the end positions of other channels are symmetric in the frequency domain with the start position of the selected RO. It is symmetrical in the frequency domain with the start and end positions of the selected RO. As shown in FIG.
  • the selected RO is located at a low frequency portion of the target transmission channel, and other channels are located at a high frequency portion that is symmetrical to the RO frequency domain.
  • the selected RO is located in a high-frequency portion of the target transmission channel, and other channels are located in a low-frequency portion that is symmetrical to the RO frequency domain.
  • the messages in FIG. 3 and FIG. 4 are all sent in the selected RO.
  • a fourth resource offset from the high-frequency boundary of the RO by a third offset wherein, here, the starting position of other channels may be located at a position offset from the high-frequency boundary of the RO by a third offset, or, The end positions of the other channels are located at a position offset from the RO high-frequency boundary by a third offset, or the center frequencies of the other channels are located at a position offset from the RO high-frequency boundary by a third offset. It is worth pointing out that the values of the third offsets corresponding to the above three scenarios may be the same or different.
  • the fourth resource may be located in a frequency domain position offset by a third offset offset3, two third offset offset3 * 2,... From the high-frequency boundary of the selected RO. As shown in FIG. 5, the selected RO is located near the center frequency point of the target transmission channel, and the starting position of the other channel 1 is located at a position offset from the RO high-frequency boundary by a third offset (offset3).
  • the fourth resource may be located in a frequency domain position offset by a fourth offset offset4, two fourth offset offset4 * 2,... From the low-frequency boundary of the selected RO. As shown in FIG. 5, the selected RO is located near the center frequency of the target transmission channel, and the end position of the other channel 2 is located at a position offset from the RO low-frequency boundary by a fourth offset (offset4).
  • the preset frequency domain interval is the target transmission channel bandwidth / M, and M is a positive integer.
  • the selected RO and 3 other channels are evenly distributed in the target transmission channel.
  • the activated uplink bandwidth part is at least one of an activated uplink bandwidth part, a first activated uplink bandwidth part, and an initially activated uplink bandwidth part.
  • the eighth resource that offsets the sixth-frequency offset from the low-frequency boundary of the active uplink bandwidth portion where the RO is located, where the start position of other channels may be offset from the low-frequency boundary of the active uplink bandwidth portion where the RO is located.
  • the position of the sixth offset, or the end position of the other channel is located at a position offset from the low frequency boundary of the active uplink bandwidth portion of the RO, or the center frequency of the other channel is located at the active uplink of the RO.
  • the low frequency boundary of the bandwidth portion is shifted by the position of the sixth offset. It is worth pointing out that the values of the sixth offsets corresponding to the above three scenarios may be the same or different.
  • first offset, second offset, third offset, fourth offset, fifth offset, and sixth offset may be the same or different.
  • embodiment of the present disclosure does not specifically limit the number of other channels, and the positions and numbers of other channels may be predefined or configured by a network device.
  • the number and location of the selected ROs can be predefined or configured by the network device.
  • the at least one piece of padding information may be the same or different.
  • the filling information may include, but is not limited to, at least one of the following:
  • a copy of message one; the initial sequence of the preamble corresponding to message one and message one are the same as the cyclic shift, that is, the terminal repeatedly sends message one through the target transmission resource.
  • the RO transmits the same message one as the other channels.
  • the target transmission channel includes 4 ROs, and the terminal sends the same message 1 through all ROs in the 4 ROs.
  • the terminal sends the same message 1 through RO1, RO2, RO3, and RO4.
  • the first stuffing information includes at least one first sequence, wherein the initial sequence of the preamble corresponding to the first sequence is the same as the initial sequence of the preamble corresponding to the message one, and the cyclic shift corresponding to the first sequence is the same as the message A corresponding cyclic shift is different.
  • the first sequence and the message one correspond to the same preamble initial sequence, but the cyclic shift of the preamble initial sequence is different.
  • the same initial sequence of the preamble means that the corresponding sequence before the cyclic shift is the same, including but not limited to the same root sequence of the preamble sequence.
  • the first sequence and the first message correspond to the preamble initial sequence 1.
  • the first sequence is a sequence determined after the first preamble sequence 1 is rotated by the first digit, and the first message is the first sequence of the preamble. Determine the sequence after the number of digits.
  • the cyclic shifts of the multiple first sequences may be the same, or may be partially or completely different.
  • the first padding information includes P first sequences, and the P first sequences respectively correspond to M cyclic shifts, and M is less than or equal to P.
  • the first sequence is a preamble sequence other than message one in the preamble sequence set, where the preamble sequence set includes message one candidate preamble sequence and other preamble sequences. For example, the system maintains a preamble sequence set.
  • the preamble sequence set contains 64 preamble sequences. Among them, 40 preamble sequences are used for message 1. Then, the 40 preamble sequences are message-candidate preamble sequences. The remaining 24 preamble sequences are used for other purposes and are called other preamble sequences.
  • the first sequence may be one of the remaining 39 message one candidate preamble sequences and 24 other preamble sequences.
  • the RO transmits message one, and the first sequence is transmitted on other channels. Alternatively, the target transmission channel includes 4 ROs. As shown in FIG.
  • the terminal sends a message-candidate preamble sequence seq1, seq2, seq3, and seq4 through RO1, RO2, RO3, and RO4, respectively.
  • the terminal sends a message-candidate preamble sequences seq1 and seq2 through RO1 and RO4 of RO1, RO2, RO3, and RO4, respectively.
  • the terminal sends a message, a candidate preamble sequence seq1, and other preamble sequences seq4 for placeholders through RO1 and RO4 of RO1, RO2, RO3, and RO4, respectively.
  • the second padding information includes at least one second sequence, wherein the preamble sequence corresponding to the second sequence is different from the preamble sequence corresponding to the message one, where it is said that the second sequence and the message one correspond to different initial sequences
  • the preamble sequence for example, the second sequence corresponds to the preamble initial sequence 1, and the message one corresponds to the preamble initial sequence 2. Because the initial sequence of the preamble corresponding to the second sequence and the message one is different, no matter whether the cyclic shifts of the two sequences are the same, the resulting sequences are different.
  • the preamble sequences corresponding to the multiple second sequences may be the same, or may be partially or completely different.
  • the second padding information includes P second sequences, and the P second sequences correspond to M preamble sequences, and M is less than or equal to P.
  • the second sequence is a preamble sequence other than message one in the preamble sequence set, where the preamble sequence set includes message one candidate preamble sequence and other preamble sequences.
  • the system maintains a preamble sequence set.
  • the preamble sequence set contains 64 preamble sequences. Among them, 40 preamble sequences are used for message 1. Then, the 40 preamble sequences are message-candidate preamble sequences. The remaining 24 preamble sequences are used for other purposes and are called other preamble sequences.
  • the second sequence may be one of the remaining 39 message one candidate preamble sequences and 24 other preamble sequences.
  • the sending form of the second padding information is similar to the sending form of the first padding information, and transmission modes as shown in FIGS. 3 to 6 and 8 to 10 can also be adopted.
  • the target pseudo-random sequence (also known as non-msg1 message).
  • the target pseudo-random sequence mentioned herein may include, but is not limited to, a sequence of a given set or a sequence subject to a certain distribution, such as a ZC sequence, a CAZAC sequence, a Gold sequence, and an M sequence other than a preamble sequence set. At least one of.
  • the terminal selects 2 ROs from these ROs to send a message and a target pseudo-random sequence. These two ROs meet the OCB requirements. For example, as shown in FIG. 11, the terminal sends a message on RO1 corresponding to the preamble sequence seq1, and sends a target pseudo-random sequence on RO4, such as the ZC sequence zcseq1.
  • the padding information may also be a placeholder for placeholder use only.
  • the combination of the initial sequence of the preamble and the cyclic shift corresponding to the first sequence in the first stuffing information and the second sequence in the second stuffing information is predefined or configured by a network device. Which of the above-mentioned modes the terminal uses to send message one can also be predefined or configured by the network device.
  • the terminal sends message 1 and padding information through a target transmission resource in a target transmission channel, where the role of the padding information described herein may include, but is not limited to, placeholders and joint messages 1 for random access.
  • the network device may receive the message 1 and the padding information on the target transmission resource.
  • the behavior may be as follows: only detecting the message 1 to complete the random access process without detecting the padding information; that is, the network device The fill information can be ignored.
  • the padding information is used in the joint message-1 for random access process or other practical purposes, after receiving the message-1 and padding information on the target transmission resource, the network device needs to detect both the message-1 and padding information to complete the corresponding Business process.
  • the terminal sends seq1 on RO1 and seq2 on RO4.
  • seq1 and seq2 are jointly used for sending message 1 of the random access process.
  • the network device After receiving the seq1 and seq2, the network device combines seq1 and seq2 to determine the message 2 of the random access process, so as to implement the subsequent process of random access.
  • the preamble sequence combination used in the random access process may be predefined or configured by a network device.
  • the combination of message one and padding message may be used to indicate related information of other transmissions, which may be modulation and coding strategies (MCS), transport blocks (Transport Blocks, TBS) of other transmissions.
  • MCS modulation and coding strategies
  • TBS Transport Blocks
  • DMRS De-Modulation Reference Signal
  • TPC Transmission Power Control Command
  • SCS DMRS sequence initialization
  • detection reference At least one of the number of symbols of the signal (Sounding Reference Signal, SRS), the position of the SRS in the time domain, the number of combs of the SRS, time-frequency resource allocation, and cyclic prefix (CP) type, etc.
  • Other transmissions may be transmissions other than message one and padding information, such as at least one of PUSCH, PUCCH, DMRS, and SRS.
  • the base station configures a set of parameter configurations, and the terminal indicates the parameter configuration selected by the terminal by using a combination of the first message sent and the padding message.
  • seq1 and seq2 are jointly used to send message 1 of the random access process and indicate the MCS of the physical uplink shared channel (PUSCH).
  • the network device After receiving seq1 and seq2, the network device jointly determines seq1 and seq2 to determine the PUSCH
  • the MCS decodes the PUSCH based on the MCS.
  • the preamble sequence combination used in the random access process may be predefined or configured by a network device.
  • the target transmission channel may be located in a licensed frequency band or an unlicensed frequency band.
  • the method may further include: determining a target transmission channel in the licensed frequency band; or, monitoring transmission resources in the unlicensed frequency band to determine the target transmission channel.
  • the RO in the target transmission channel may correspond to at least one association information
  • the association signals include: synchronization signal block and physical channel broadcast channel block (SSB) and / or channel state indication reference signal (Channel state information reference signal , CSI-RS).
  • the step of monitoring the transmission resources of the unlicensed band includes: within a message window, listening to at least one first RO of the first channel in the unlicensed band, where at least one The first RO corresponds to a first correlation signal, and the first correlation signal includes at least one of a first synchronization signal block SSB and a first channel state indication reference signal CSI-RS; if the first If an RO is idle, or if the first RO is detected to be occupied N consecutive times within a message window, the failure indication information is indicated to the upper layer (of the terminal), where the failure indication information is used to indicate: random access process Failure, message-sending failure, or random access problem (random access problem).
  • N is a positive integer. That is, if the terminal fails to preempt the channel containing the RO at the time point of an RO, and the message-time window does not expire, the terminal can continue to LBT within the message-time window and try to preempt the message-time The next available first RO channel in the window. If the message-time window has ended and the terminal fails to preempt the channel containing the available first RO to send msg1, or the message-time window does not end but the number of failures to preempt the channel containing the available first RO reaches a certain threshold (such as N times), the terminal indicates the failure indication information to the upper layer.
  • a certain threshold such as N times
  • the starting point of the selected RO is the starting point of the message-time window, that is, the message-time window is opened from the starting point of the selected RO.
  • the opening of the next message-time window is after the end of the current message-time window, that is, before the current message-time window ends, it is not allowed to open a new message-time window again.
  • a time window of the message may be ended in advance.
  • the starting point of the selected RO may be a position of a start time domain symbol (such as an OFDM symbol) of the RO or a time domain symbol 0 of a slot in which the RO is located.
  • the method further includes: listening to at least one second RO of the first channel in the unlicensed frequency band within a time window of the next message, where at least one second RO Corresponding to the second correlation signal, the second correlation signal includes at least one of a second SSB and a second CSI-RS, and the second correlation signal is different from the first correlation signal.
  • the difference between the second correlation signal and the first correlation signal means that the second SSB is different from the first SSB, the second CSI-RS is different from the first CSI-RS, the second correlation signal is CSI-RS and the first correlation
  • the signal is SSB, the second correlation signal is SSB and the first correlation signal is CSI-RS.
  • the terminal may change the SSB used to select an available RO, and select an RO based on the SSB.
  • the target RO of the second channel in the unlicensed band is monitored; wherein the frequency domain range of the second channel is at least partially different from the frequency domain range of the first channel, and the target RO includes: The first RO, the second RO, or another RO.
  • the other ROs are ROs other than the first RO and the second RO.
  • the correlation signals corresponding to the other ROs are different from the first correlation signal and the second correlation signal; for example, the terminal. After a channel fails to preempt a channel, you can try to preempt another channel and select an RO on another channel to start a new random access process.
  • the step of indicating to the upper layer that the random access procedure fails further includes: if the message-time window is not over, continuing in the message-one time window; At least one second RO of the first channel in the unlicensed band is monitored within the time window; wherein at least one second RO corresponds to a second associated signal, and the second associated signal includes a second SSB and a second CSI-RS For at least one of the two, the second correlation signal is different from the first correlation signal.
  • both the first correlation signal and the second correlation signal as SSBs as an example, after a terminal fails to preempt a channel for an RO corresponding to a certain SSB, The terminal may change the SSB used to select an available RO, and select an RO based on the SSB to start a new random access procedure.
  • the target RO of the second channel in the unlicensed frequency band is continuously monitored within the message-time window, wherein the frequency domain range of the second channel and the frequency domain of the first channel are monitored. The range is at least partially different.
  • the target RO includes: the first RO, the second RO, or other ROs.
  • the other ROs are ROs other than the first RO and the second RO.
  • the correlation signals corresponding to the other ROs are different from the first ROs.
  • Signal and the second associated signal for example, after a channel fails to preempt a channel, the terminal may try to preempt another channel and select an RO on another channel to start a new random access process.
  • the step of listening to at least one second RO of the first channel in the unlicensed frequency band includes: if the measurement result of the second associated signal in the first channel satisfies a preset condition, At least one second RO of a channel listens. Wherein, the measurement result mentioned here may satisfy the preset condition. The measurement result indicates that the received power and / or quality of the second associated signal in the first channel is superior. At this time, the terminal performs at least one second RO of the first channel. Listen. For example, at least one of Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Reference Signal Strength Indicator (RSSI) of the associated signal satisfies their respective requirements. Corresponding threshold.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Reference Signal Strength Indicator
  • the measurement result of the second associated signal in the first channel does not meet the preset condition, and listening may be suspended or listening in other channels.
  • the measurement results of the plurality of second associated signals in the first channel satisfy a preset condition, and the terminal may select an optimal second associated signal among them and listen to the corresponding second RO, such as the second The RSRPs of SSB2 and SSB3 in the channel are both greater than the threshold, and the quality of SSB2 is the best, then the terminal listens to the RO corresponding to SSB2.
  • the step of monitoring the target RO of the second channel in the unlicensed frequency band includes: if the measurement result of the second channel meets a preset condition, monitoring the target RO of the second channel in the unlicensed frequency band.
  • the measurement result referred to herein may refer to: the measurement result indicates that the target RO in the second channel has better channel quality (for example, in the RSRP, RSRQ, and RSSI of the associated signal of the target RO in the second channel). At least one of them respectively meets its corresponding threshold, and / or the target RO in the second channel remains idle within a certain time window), then the terminal listens to the target RO in the second channel.
  • the listening may be suspended or switched to listening in another channel.
  • the measurement results of multiple target RO-associated signals in the second channel meet preset conditions (for example, the RSRPs of SSB1 and SSB2 in the second channel are both greater than the threshold), and the terminal may select the optimal target RO-association among them. Signal, and listen to the corresponding target RO.
  • the threshold and / or a certain time window may be predefined by the protocol, or may be configured by a network device.
  • the step of listening to at least one first RO of the first channel in the unlicensed frequency band in the message-time window includes, but is not limited to, the time-domain order of the first RO in the unlicensed frequency band in the message-time window.
  • At least one first RO of a channel listens, that is, it is preferred to listen to whether the nearest RO is idle within a time window of the message.
  • the selected at least one first RO in the first channel in the unlicensed frequency band is sequentially monitored.
  • the first RO includes RO1 and RO3 corresponding to SSB1, and the selected first RO is RO1. Then, the terminal only listens to whether RO1 is idle within a time window of the message.
  • the channel monitoring method in the unlicensed frequency band is briefly introduced above, and this embodiment will be further described in combination with different application scenarios below.
  • At least one first RO of the first channel in the unlicensed band is monitored within the message-one time window; if the first RO is not idle during the message-time window, it is indicated to the upper layer of the terminal Failure indication information; within a time window of the next message, listening on at least one second RO of the first channel in the unlicensed frequency band; at least one second RO corresponds to a second SSB.
  • at least one first RO corresponds to the first SSB
  • the second SSB is different from the first SSB.
  • RO1 and RO3 are associated with SSB1, and RO2 and RO4 respectively.
  • SSB2 Relevant to SSB2.
  • the terminal selects SSB1 and selects RACH resources based on SSB1. For example, the terminal is served by the downlink beam used when sending SSB1, so the terminal can select the RO based on SSB1. As shown in FIG. 12, assuming that the next available RO is RO1, the user starts LBT to try to preempt the channel containing RO1, and starts msg1 window from the starting point of RO1.
  • the terminal indicates the failure indication information to the upper layer at this time.
  • the terminal may also switch the SSB used to select the RO. For example, when the RSRP of the measurement result of the terminal in SSB2 is not less than the corresponding threshold, the next message is based on SSB2 within a time window. Select RO and start a new random access procedure. Assuming that the next available RO is RO2, the terminal starts msg1 from the starting point of RO2. If LBT succeeds at RO2 and preempts the channel containing RO2, the terminal sends on RO2. msg1.
  • Scenario 2 At least one first RO of the first channel in the unlicensed band is monitored within the time window of message one; if the first RO is detected to be occupied N consecutive times within the time window of message one, the terminal is notified to the terminal The upper layer indicates failure indication information; within a time window of the next message, listening on at least one second RO of the first channel in the unlicensed band; at least one second RO corresponds to the second SSB. Among them, at least one first RO corresponds to the first SSB, and the second SSB is different from the first SSB.
  • the PRACH resource period is 10ms
  • the length of the message-time window (msg1) is 20ms
  • the maximum number of consecutive LBT failures in the message-time window is 8, and there are 4 ROs (RO1, RO2, RO3, and RO4) in a PRACH resource period.
  • RO1 and RO3 are associated with SSB1
  • RO2 and RO4 are associated with SSB2.
  • the terminal selects SSB1 and selects RACH resources based on SSB1. For example, the terminal is served by the downlink beam used when sending SSB1, so the terminal can select the RO based on SSB1. As shown in FIG.
  • the user starts LBT to try to preempt the channel containing RO1, and starts msg1 window from the starting point of RO1. If the current RO1 is detected to be busy, it will continue to listen to the RO1. The nearest RO3. If the RO3 is also busy, it will continue to listen to the RO1 closest to the RO3, and so on until the number of times that the RO is occupied within the time window of the message reaches 8. Alternatively, start msg1 window from the beginning of RO1. If the current RO1 is detected as busy, it will continue to listen to the next RO1. If the RO1 is also busy, it will continue to listen to the next RO1, and so on until the message 1 The number of consecutive detections of RO1 being occupied within the time window reached 8. If the LBT concurrent msg1 is not successful before the end of the time window of the message, the terminal indicates the failure indication information to the upper layer at this time.
  • the terminal may also switch the SSB used to select the RO. For example, the terminal selects the RO based on SSB2 and starts a new random access procedure within the next message-time window. The next available RO is RO4, then the terminal starts msg1 window from the starting point of RO4. If the LBT fails at the first RO4, it will continue to listen to the RO2 closest to the first RO4. If the interception is successful and preempts the included RO2 Channel, the terminal sends msg1 on RO2.
  • At least one first RO of the first channel in the unlicensed band is monitored within the message-one time window; if the first RO is not idle during the message-time window, or, at the message-time If the first RO is occupied in the window N times in succession, the failure indication information is indicated to the upper layer of the terminal; within a time window of the next message, the first RO of the second channel in the unlicensed band is monitored.
  • at least one first RO corresponds to the first SSB; the frequency domain range of the second channel is at least partially different from the frequency domain range of the first channel.
  • the PRACH resource period in the first channel (channel 1) is 10ms
  • the length of the message-time window (msg1window) is 20ms
  • the maximum number of consecutive LBT failures in the message-time window is 8, and there are 4 RO (RO1) in a PRACH resource period.
  • RO2, RO3, and RO4 where RO1 and RO3 are associated with SSB1, and RO2 and RO4 are associated with SSB2, respectively.
  • the PRACH resource period on the second channel (channel 2) is 10 ms
  • the length of the message-time window (msg1) window is 20 ms
  • the maximum number of consecutive LBT failures in the message-time window is 8, and there are 4 RO (RO1) in a PRACH resource period.
  • RO2, RO3, and RO4 where RO1 and RO3 are associated with SSB1, and RO2 and RO4 are associated with SSB3, respectively.
  • the terminal selects SSB1 and selects RACH resources based on SSB1. For example, the terminal is served by the downlink beam used when sending SSB1, so the terminal can select the RO based on SSB1. Assume that the next available RO is RO1. The user turns on LBT to try to preempt the channel containing RO1, and starts msg1 window from the starting point of RO1. If the current RO1 is heard to be busy, it will continue to listen to the RO3 closest to the RO1. If RO3 is also busy, it will continue to listen to the RO1 closest to the RO3, and so on until the idle RO is not detected within the time window of the message (as shown in Figure 13) or the number of consecutive RO interceptions is reached. 8 (not shown).
  • the terminal may also select another channel 2 in the LBT frequency domain containing the RACH resource, and initiate a new random access procedure on the channel 2.
  • the terminal is served by the downlink beam used when sending SSB1, so the terminal will select the RO on channel 2 based on SSB1. Assume that the next available RO is RO1 on channel 2.
  • the terminal starts LBT to try to preempt the channel containing RO1, and starts msg1 from the starting point of RO1. LBT succeeds and preempts channel 2 containing RO1.
  • the terminal starts from RO1 on channel 2. Send msg1 on.
  • the method Prior to the step of listening on transmission resources in an unlicensed band to determine a target transmission channel, the method further includes: obtaining PRACH configuration information of a physical random access channel; wherein the PRACH configuration information is used to indicate an RO identity, an RO frequency At least one of demultiplexing capability (prach-FDM) and RO frequency domain interval (ROfreqoffset1).
  • the RO identifier is used to distinguish different ROs.
  • the RO frequency division multiplexing capability refers to the maximum number of ROs that can be included in a PRACH resource. For example, the maximum FDM RO in the PRACH resource is 16.
  • the RO frequency domain interval is the interval between two ROs at the same time FDM.
  • the PRACH configuration information mentioned in this embodiment is predefined (such as a protocol agreement) or configured by a network device.
  • the method further includes: acquiring message-time window configuration information; wherein the message-time window configuration information is used to indicate a window start point, a window At least one of the long (duration), the window period, the maximum number of listening failures in the window, and the window time domain offset.
  • the message-time window configuration information mentioned in this embodiment is predefined (such as a protocol agreement) or configured by a network device.
  • the terminal jointly sends a message-1 and padding information on the target transmission resource, so that the random access process on the authorized frequency band is normally performed, and the bandwidth utilization rate is further improved, and non- Idle transmission channels on the authorized frequency band are available to ensure the normal operation of the random access process.
  • the terminal 1500 in the embodiment of the present disclosure can implement message 1 and padding information of a random access process to a network device on a target transmission resource of a target transmission channel in the foregoing embodiment.
  • message 1 and The padding information is a detail of the frequency division multiplexing method and achieves the same effect.
  • the terminal 1500 specifically includes the following functional modules:
  • a sending module 1510 is configured to send a random access process message 1 and padding information to a target transmission resource of a target transmission channel; the message 1 and the padding information are frequency division multiplexed.
  • the target transmission resource includes at least one RO and at least one other channel, and the other channels are located in the frequency domain part of the target transmission channel except all ROs.
  • the target transmission resource includes multiple of the at least two ROs.
  • the other channels include at least one of the following resources:
  • a first resource that is symmetrical to the frequency center of the RO with respect to the frequency center of the target transmission channel
  • a second resource that is offset from the high-frequency boundary of the target transmission channel by a first offset
  • a seventh resource that is offset from the fifth frequency offset by the high frequency domain boundary of the active uplink bandwidth portion where the RO is located;
  • An eighth resource that is offset by a sixth offset from the low frequency domain boundary of the active uplink bandwidth portion where the RO is located.
  • the filling information includes at least one of the following:
  • the first stuffing information includes at least one first sequence, wherein the initial sequence of the preamble corresponding to the first sequence is the same as the initial sequence of the preamble corresponding to the message one, and the cyclic shift corresponding to the first sequence corresponds to the message one Different cyclic shifts;
  • Second padding information including at least one second sequence, wherein a preamble initial sequence corresponding to the second sequence is different from a preamble initial sequence corresponding to the message one;
  • the target pseudo-random sequence includes at least one of a ZC sequence, a CAZAC sequence, a Gold sequence, and an M sequence.
  • the first sequence and / or the second sequence are: a preamble sequence other than message one in the preamble sequence set, where the preamble sequence set includes message one candidate preamble sequence and other preamble sequences.
  • the terminal 1500 further includes:
  • a first determining module configured to determine a target transmission channel in an authorized frequency band
  • the second determining module is configured to listen to transmission resources in an unlicensed frequency band and determine a target transmission channel.
  • the second determination module includes:
  • a first listening submodule configured to listen to at least one first RO of a first channel in an unlicensed band within a time window of a message, where at least one first RO corresponds to a first associated signal, and the first
  • the associated signal includes: at least one of a first synchronization signal block SSB and a first channel state indication reference signal CSI-RS;
  • a first processing submodule configured to indicate a failure indication to an upper layer if the first RO is not detected to be idle within a message-time window or if the first RO is detected to be occupied N consecutive times within the message-time window Information, where the failure indication information is used to indicate that the random access procedure fails, message 1 fails to be sent, or there is a problem in the random access procedure.
  • the second determination module further includes:
  • a second listening submodule configured to listen to at least one second RO of the first channel in the unlicensed frequency band within a time window of the next message, where the at least one second RO corresponds to the second associated signal, the first
  • the two correlation signals include at least one of a second SSB and a second CSI-RS, and the second correlation signal is different from the first correlation signal;
  • the third listening submodule is configured to listen to the target RO of the second channel in the unlicensed frequency band within a time window of the next message, where the frequency domain range of the second channel and the frequency domain range of the first channel are at least Partially different, the target RO includes: a first RO, a second RO, or another RO, and the associated signals corresponding to the other ROs are different from the first and second associated signals.
  • the second determining module further includes a fourth listening sub-module for continuing to perform at least one second RO of the first channel in the unlicensed frequency band within the message-time window if the message-time window has not ended. Listening; where at least one second RO corresponds to a second associated signal, the second associated signal includes at least one of a second SSB and a second CSI-RS, and the second associated signal is different from the first associated signal;
  • a fifth listening sub-module is configured to continue to listen to the target RO of the second channel in the unlicensed frequency band within the message-time window if the message-time window is not over, wherein the frequency domain range of the second channel
  • the frequency domain range of the first channel is at least partially different.
  • the target RO includes: a first RO, a second RO, or another RO, and the associated signals corresponding to the other ROs are different from the first and second associated signals.
  • the second determining module is specifically configured to:
  • the second determining module is further specifically used for:
  • the target RO of the second channel in the unlicensed frequency band is monitored.
  • the terminal 1500 further includes:
  • the first obtaining module is configured to obtain PRACH configuration information of the physical random access channel; wherein the PRACH configuration information is used to indicate at least one of an RO identity, an RO frequency division multiplexing capability, and an RO frequency domain interval.
  • the terminal 1500 further includes:
  • the second obtaining module is configured to obtain message-time window configuration information.
  • the message-time window configuration information is used to indicate at least one of a window starting point, a window length, a window period, a maximum number of listening failures in the window, and a window time domain offset.
  • the bandwidth occupied by the target transmission resource is greater than or equal to a preset percentage of the nominal channel bandwidth of the target transmission channel.
  • the terminal in the embodiment of the present disclosure jointly sends a message-1 and padding information on the target transmission resources, so that the random access process on the authorized frequency band is normally performed, and the bandwidth utilization rate is further improved, and non- Idle transmission channels on the authorized frequency band are available to ensure the normal operation of the random access process.
  • FIG. 16 is a schematic diagram of a hardware structure of a terminal that implements some embodiments of the present disclosure.
  • the terminal 160 includes, but is not limited to, a radio frequency unit 161, a network module 162, an audio output unit 163, The input unit 164, the sensor 165, the display unit 166, the user input unit 167, the interface unit 168, the memory 169, the processor 1610, and the power supply 1611 and other components.
  • the terminal structure shown in FIG. 16 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown in the figure, or some components may be combined, or different components may be arranged.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the radio frequency unit 161 is configured to send and receive data under the control of the processor 1610. Specifically, the radio frequency unit 161 is configured to send a random access process message 1 and padding information to a network device on a target transmission resource of a target transmission channel. Among them, the message 1 Is frequency division multiplexed with padding information;
  • the terminal in the embodiment of the present disclosure jointly sends a message-1 and padding information on the target transmission resource, so that the random access process on the authorized frequency band is normally performed, thereby further improving the bandwidth utilization rate and ensuring that the unlicensed frequency band is idle.
  • the transmission channel is available to ensure the normal progress of the random access process.
  • the radio frequency unit 161 may be used to receive and send signals during the process of transmitting and receiving information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 1610; The uplink data is sent to the base station.
  • the radio frequency unit 161 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 161 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 162, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 163 may convert audio data received by the radio frequency unit 161 or the network module 162 or stored in the memory 169 into audio signals and output them as sound. Also, the audio output unit 163 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 160.
  • the audio output unit 163 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 164 is used for receiving audio or video signals.
  • the input unit 164 may include a Graphics Processing Unit (GPU) 1641 and a microphone 1642.
  • the graphics processor 1641 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on the display unit 166.
  • the image frames processed by the graphics processor 1641 may be stored in the memory 169 (or other storage medium) or transmitted via the radio frequency unit 161 or the network module 162.
  • the microphone 1642 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 161 in the case of a telephone call mode and output.
  • the terminal 160 further includes at least one sensor 165, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1661 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1661 and / or when the terminal 160 is moved to the ear. Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 165 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 166 is configured to display information input by the user or information provided to the user.
  • the display unit 166 may include a display panel 1661.
  • the display panel 1661 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 167 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 167 includes a touch panel 1671 and other input devices 1672.
  • Touch panel 1671 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 1671 or near touch panel 1671 operating).
  • the touch panel 1671 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it
  • the processor 1610 receives and executes a command sent by the processor 1610.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 1671.
  • the user input unit 167 may further include other input devices 1672.
  • other input devices 1672 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 1671 may be overlaid on the display panel 1661.
  • the touch panel 1671 detects a touch operation on or near the touch panel 1671, the touch panel 1671 transmits the touch operation to the processor 1610 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 1661.
  • the touch panel 1671 and the display panel 1661 are implemented as two independent components to implement input and output functions of the terminal, in some embodiments, the touch panel 1671 and the display panel 1661 may be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 168 is an interface through which an external device is connected to the terminal 160.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 168 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 160 or may be used to communicate between the terminal 160 and an external device. Transfer data.
  • the memory 169 may be used to store software programs and various data.
  • the memory 169 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 169 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one disk storage device, a flash memory device, or other volatile solid-state storage device.
  • the processor 1610 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal.
  • the processor 1610 executes or executes software programs and / or modules stored in the memory 169 and calls data stored in the memory 169 to execute.
  • Various functions and processing data of the terminal so as to monitor the terminal as a whole.
  • the processor 1610 may include one or more processing units; optionally, the processor 1610 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1610.
  • the terminal 160 may further include a power supply 1611 (such as a battery) for supplying power to various components.
  • a power supply 1611 such as a battery
  • the power supply 1611 may be logically connected to the processor 1610 through a power management system, thereby implementing management of charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 160 includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 1610 and a memory 169, and a computer program stored in the memory 169 and executable on the processor 1610.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and / or other business data connectivity to the user, a handheld device with a wireless connection function, or other processing equipment connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • it can be a portable, pocket, handheld, computer-built or vehicle-mounted mobile device that exchanges language and / or data with a wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless terminal can also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a mobile station, a remote station, a remote terminal,
  • the access terminal Access terminal
  • user terminal User terminal
  • user agent User agent
  • user equipment User Equipment
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the processes of the foregoing information transmission method embodiments are implemented, and the same technology can be achieved. Effect, in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the information transmission method according to an embodiment of the present disclosure which is applied to a network device, includes the following steps:
  • Step 171 On the target transmission resource of the target transmission channel, receive message 1 and padding information of the random access process; wherein message 1 and padding information are frequency division multiplexed.
  • the target transmission channel may be located in a licensed frequency band or in an unlicensed frequency band.
  • the terminal sends message 1 and padding information through a target transmission resource in a target transmission channel, where the role of the padding information described herein may include, but is not limited to, placeholders and joint messages 1 for random access.
  • the padding information when the padding information is used for the placeholder, after the network device receives the message 1 and the padding information on the target transmission resource, it only needs to detect the message and complete the random access process, without the need to detect the padding information, that is, the network device can Filling information is ignored. That is, after step 171, the network device detects the message and ignores the padding information.
  • the network device When the padding information is used in the joint message-1 for random access process or other practical purposes, after receiving the message-1 and padding information on the target transmission resource, the network device needs to detect both the message-1 and padding information to complete the corresponding Business process.
  • the preamble sequence combination used in the random access process may be predefined or configured by a network device.
  • Step 172 According to the first message, a response message is fed back to the terminal.
  • the response message includes but is not limited to message two, and the network device feeds back the response message to the terminal to complete the random access process.
  • the target transmission resource includes at least one RO and at least one other channel, and the other channels are located in the frequency domain part of the target transmission channel except all ROs.
  • the target transmission channel includes 4 ROs, such as RO1, RO2, RO3, and RO4.
  • the target transmission resource includes the selected RO1 and at least one other channel.
  • the other channels are located on the target transmission channel except RO1, RO2, RO3, and RO4.
  • the selected RO may be predefined (such as a protocol agreement) or a network device configuration, and similarly, other channels may be predefined or configured by a network device.
  • at least one other channel in the target transmission resource and at least one RO in the frequency domain are farthest from each other in order to meet the OCB requirements.
  • the target transmission resource includes a plurality of at least two ROs.
  • the target transmission channel includes 4 ROs, such as RO1, RO2, RO3, and RO4, and the target transmission resources include RO1 and RO4.
  • the target transmission channel has at least one RO in the frequency domain at the same time, and the terminal may send message one on one of the ROs and send padding information on the other ROs.
  • the selected RO (such as the RO transmitting the first message and / or the RO transmitting the padding information) may be predefined or configured by the network device.
  • the other channels include at least one of the following resources:
  • the first resource that is symmetrical to the frequency center of the RO with respect to the frequency center of the target transmission channel; the frequency domain symmetry here may be: the starting position of the other channel is symmetrical to the starting position of the selected RO in the frequency domain, and the end of the other channel is The position is symmetric in the frequency domain with the end position of the selected RO.
  • the start positions of other channels are symmetric in the frequency domain with the end position of the selected RO.
  • the end positions of other channels are symmetric in the frequency domain with the start position of the selected RO. It is symmetrical in the frequency domain with the start and end positions of the selected RO.
  • a fourth resource offset from the high-frequency boundary of the RO by a third offset wherein, here, the starting position of other channels may be located at a position offset from the high-frequency boundary of the RO by a third offset, or, The end positions of the other channels are located at a position offset from the RO high-frequency boundary by a third offset, or the center frequencies of the other channels are located at a position offset from the RO high-frequency boundary by a third offset. It is worth pointing out that the values of the third offsets corresponding to the above three scenarios may be the same or different.
  • the preset frequency domain interval is the target transmission channel bandwidth / M, and M is a positive integer.
  • the eighth resource that offsets the sixth-frequency offset from the low-frequency boundary of the active uplink bandwidth portion where the RO is located, where the start position of other channels may be offset from the low-frequency boundary of the active uplink bandwidth portion where the RO is located.
  • the position of the sixth offset, or the end position of the other channel is located at a position offset from the low frequency boundary of the active uplink bandwidth portion of the RO, or the center frequency of the other channel is located at the active uplink of the RO.
  • the low frequency boundary of the bandwidth portion is shifted by the position of the sixth offset. It is worth pointing out that the values of the sixth offsets corresponding to the above three scenarios may be the same or different.
  • first offset, second offset, third offset, fourth offset, fifth offset, and sixth offset may be the same or different.
  • embodiment of the present disclosure does not specifically limit the number of other channels, and the positions and numbers of other channels may be predefined or configured by a network device.
  • the number and location of the selected ROs can be predefined or configured by the network device.
  • the at least one piece of padding information may be the same or different.
  • the filling information may include, but is not limited to, at least one of the following:
  • a copy of message one; the initial sequence of the preamble corresponding to message one and message one are the same as the cyclic shift, that is, the terminal repeatedly sends message one through the target transmission resource.
  • the first padding information includes at least one first sequence
  • the initial sequence of the preamble corresponding to the first sequence is the same as the initial sequence of the preamble corresponding to the message one
  • the cyclic shift corresponding to the first sequence corresponds to the message one.
  • the cyclic shift is different.
  • the first sequence and the message one correspond to the same preamble initial sequence, but the cyclic shift of the preamble initial sequence is different.
  • the first sequence and the first message correspond to the preamble initial sequence 1.
  • the first sequence is a sequence determined after the first preamble sequence 1 is rotated by the first digit
  • the first message is the first sequence of the preamble. Determine the sequence after the number of digits.
  • the cyclic shifts of the multiple first sequences may be the same, or may be partially or completely different.
  • the first sequence is a preamble sequence other than message one in the preamble sequence set, where the preamble sequence set includes message one candidate preamble sequence and other preamble sequences.
  • the system maintains a preamble sequence set.
  • the preamble sequence set contains 64 preamble sequences. Among them, 40 preamble sequences are used for message 1. Then, the 40 preamble sequences are message-candidate preamble sequences. The remaining 24 preamble sequences are used for other purposes and are called other preamble sequences.
  • message one is one of the 40 message one candidate preamble sequences
  • the first sequence may be one of the remaining 39 message one candidate preamble sequences and 24 other preamble sequences.
  • the second padding information includes at least one second sequence, and the initial sequence of the preamble corresponding to the second sequence is different from the initial sequence of the preamble corresponding to the message one.
  • the preamble initial sequence for example, the second sequence corresponds to the preamble initial sequence 1
  • the message one corresponds to the preamble initial sequence 2. Because the initial sequence of the preamble corresponding to the second sequence and the message one is different, no matter whether the cyclic shifts of the two sequences are the same, the resulting sequences are different.
  • the preamble initial sequences corresponding to the multiple second sequences may be the same, or may be partially or completely different.
  • the second sequence is a preamble sequence other than message one in the preamble sequence set, where the preamble sequence set includes message one candidate preamble sequence and other preamble sequences.
  • the system maintains a preamble sequence set.
  • the preamble sequence set contains 64 preamble sequences. Among them, 40 preamble sequences are used for message 1. Then, the 40 preamble sequences are message-candidate preamble sequences. The remaining 24 preamble sequences are used for other purposes and are called other preamble sequences.
  • the second sequence may be one of the remaining 39 message one candidate preamble sequences and 24 other preamble sequences.
  • the receiving form of the first stuffing information and the second stuffing information corresponds to the sending form of the first stuffing information in the above-mentioned embodiment of the terminal side, and details are not described herein again.
  • the target pseudo-random sequence (also known as non-msg1 message).
  • the target pseudo-random sequence mentioned herein may include, but is not limited to, a sequence of a given set or a sequence subject to a certain distribution, such as a ZC sequence, a CAZAC sequence, a Gold sequence, and an M sequence other than a preamble sequence. At least one.
  • the combination of the initial sequence of the preamble and the cyclic shift corresponding to the first sequence in the first stuffing information and the second sequence in the second stuffing information is predefined or configured by a network device. Which of the above-mentioned modes the terminal uses to send message one can also be predefined or configured by the network device.
  • the method further includes: configuring physical random access channel PRACH configuration information for the terminal; wherein the PRACH configuration information is used to indicate at least one of an RO identity, an RO frequency division multiplexing capability, and an RO frequency domain interval.
  • the method further includes: configuring message-time window configuration information for the terminal; wherein the message-time window configuration information is used to indicate a window starting point, a window length (duration), a window period, and a maximum number of listening failures in the window. And at least one of the window time domain offset.
  • the network device receives the message one and the padding information on the target transmission resource. In this way, on the basis of ensuring that the random access process on the authorized frequency band is performed normally, the bandwidth utilization rate is further improved, and non- Idle transmission channels on the authorized frequency band are available to ensure the normal operation of the random access process.
  • the network device 1800 can implement message 1 and padding information of the random access process on the target transmission resource of the target transmission channel in the foregoing embodiment, where message 1 and padding information It is frequency division multiplexed; according to the first message, the details of the response message method are fed back to the terminal and the same effect is achieved.
  • the network device 1800 specifically includes the following functional modules:
  • the receiving module 1810 is configured to receive message 1 and padding information of a random access process on a target transmission resource of a target transmission channel, where message 1 and padding information are frequency division multiplexed;
  • the response module 1820 is configured to feedback a response message to the terminal according to the first message.
  • the target transmission resource includes at least one RO and at least one other channel, and the other channels are located in the frequency domain part of the target transmission channel except all ROs.
  • the target transmission resource includes multiple of the at least two ROs.
  • the other channels include at least one of the following resources:
  • a first resource that is symmetrical to the frequency center of the RO with respect to the frequency center of the target transmission channel
  • a second resource that is offset from the high-frequency boundary of the target transmission channel by a first offset
  • a seventh resource that is offset from the fifth frequency offset by the high frequency domain boundary of the active uplink bandwidth portion where the RO is located;
  • An eighth resource that is offset by a sixth offset from the low frequency domain boundary of the active uplink bandwidth portion where the RO is located.
  • the filling information includes at least one of the following:
  • the first stuffing information includes at least one first sequence, the preamble sequence corresponding to the first sequence is the same as the preamble sequence corresponding to the message one, and the cyclic shift corresponding to the first sequence is corresponding to the message one. different;
  • Second padding information including at least one second sequence, and a preamble sequence corresponding to the second sequence is different from a preamble sequence corresponding to the message one;
  • the target pseudo-random sequence includes at least one of a ZC sequence, a CAZAC sequence, a Gold sequence, and an M sequence.
  • the first sequence and / or the second sequence are: a preamble sequence other than message one in the preamble sequence set, where the preamble sequence set includes message one candidate preamble sequence and other preamble sequences.
  • the target transmission channel is located in an unlicensed frequency band or a licensed frequency band.
  • the network device 1800 further includes: a first configuration module configured to configure physical random access channel PRACH configuration information for the terminal; and the PRACH configuration information is used to indicate the RO identity, the RO frequency division multiplexing capability, and the RO frequency domain interval. At least one.
  • the network device 1800 further includes: a second configuration module configured to configure message-time window configuration information for the terminal; and the message-time window configuration information is used to indicate a window starting point, a window length, a window period, and a maximum listening in the window. At least one of the number of failures and the window time domain offset.
  • the network device 1800 further includes: a processing module, configured to detect the message and ignore the padding information.
  • the bandwidth occupied by the target transmission resource is greater than or equal to a preset percentage of the nominal channel bandwidth of the target transmission channel.
  • the network device in the embodiment of the present disclosure receives the message one and the padding information on the target transmission resource.
  • the bandwidth utilization rate is further improved, and non- Idle transmission channels on the authorized frequency band are available to ensure the normal operation of the random access process.
  • each module of the above network equipment and terminal is only a division of logical functions. In actual implementation, it can be fully or partially integrated into a physical entity, or it can be physically separated. And these modules can all be implemented in the form of software called by processing elements; they can also be all implemented in hardware; some modules can be implemented in the form of software called by processing elements, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or it may be integrated and implemented in a certain chip of the above device.
  • it may also be stored in the form of a program code in the memory of the above device, and a certain processing element of the above device Invoke and execute the functions of the above identified modules.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a Central Processing Unit (CPU) or other processor that can call program code.
  • CPU Central Processing Unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program.
  • the steps in the information transmission method as described above are implemented.
  • An embodiment of the present disclosure also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the information transmission method described above.
  • an embodiment of the present disclosure also provides a network device.
  • the network device 1900 includes: an antenna 191, a radio frequency device 192, and a baseband device 193.
  • the antenna 191 is connected to the radio frequency device 192.
  • the radio frequency device 192 receives information through the antenna 191, and sends the received information to the baseband device 193 for processing.
  • the baseband device 193 processes the information to be sent and sends it to the radio frequency device 192.
  • the radio frequency device 192 processes the received information and sends it out via the antenna 191.
  • the above-mentioned frequency band processing device may be located in a baseband device 193, and the method performed by the network device in the above embodiments may be implemented in the baseband device 193, which includes a processor 194 and a memory 195.
  • the baseband device 193 may include, for example, at least one baseband board, and a plurality of chips are provided on the baseband board, as shown in FIG. 19.
  • One of the chips is, for example, the processor 194 and is connected to the memory 195 to call a program in the memory 195 and execute the program.
  • the network device operations shown in the above method embodiments are operated.
  • the baseband device 193 may further include a network interface 196 for exchanging information with the radio frequency device 192, such as a common public radio interface (CPRI).
  • a network interface 196 for exchanging information with the radio frequency device 192, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name for multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the methods performed by the above network devices.
  • Integrated circuits such as: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • the memory 195 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM SLDRAM
  • Direct RAMbus RAM Direct RAMbus RAM, DRRAM
  • the memory 195 described herein is intended to include, without being limited to, these and any other suitable types of memory.
  • the network device further includes: a computer program stored on the memory 195 and executable on the processor 194, and the processor 194 calls the computer program in the memory 195 to execute the method executed by each module shown in FIG. 18 .
  • the computer program when the computer program is called by the processor 194, it can be used to execute: on the target transmission resource of the target transmission channel, receive message 1 and padding information of the random access process; wherein message 1 and padding information are frequency division multiplexed ; According to message 1, feedback response message to the terminal.
  • the network device in the embodiment of the present disclosure receives the message one and the padding information on the target transmission resource. In this way, on the basis of ensuring that the random access process on the authorized frequency band is performed normally, the bandwidth utilization is further improved, and the unlicensed frequency band can be guaranteed Idle transmission channels are available to ensure the normal operation of the random access process.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be disassembled and / or recombined.
  • These decompositions and / or recombinations should be regarded as equivalent solutions of the present disclosure.
  • the steps for performing the series of processes described above can be performed naturally in chronological order in accordance with the described order, but need not necessarily be performed in chronological order, and certain steps can be performed in parallel or independently of each other.
  • it is able to understand all or any steps or components of the methods and devices of the present disclosure and may be implemented in hardware, firmware in any computing device (including a processor, a storage medium, etc.) or a network of computing devices.
  • Software, or a combination thereof which can be achieved by a person of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product including a program code that implements the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future. It should also be noted that, in the apparatus and method of the present disclosure, it is obvious that each component or each step can be disassembled and / or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信息传输方法、终端及网络设备,该方法包括:在目标传输信道的目标传输资源上,向网络设备发送随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的。

Description

信息传输方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年7月31日在中国提交的中国专利申请号No.201810858289.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息传输方法、终端及网络设备。
背景技术
在移动通信系统中,初始接入、系统信息获取、链路恢复等过程均可通过随机接入过程实现,在新空口(New Radio,NR)中随机接入过程的消息一(message1,msg1)引入了长短两种序列,分别为139和839。对于长序列L=839,msg1的子载波间隔(Subcarrier Spacing,SCS)可能为1.25kHz或者5kHz。对于长序列L=139,preamble的子载波间隔可能为15/30/60/120/kHz。物理随机接入信道传输时机(Physical Random Access Channel transmission occasion/Physical Random Access Channel occasion,RO)定义为发送一个给定格式(format)msg1所需要的时频资源,不同子载波间隔下,一个RO占据的带宽如表1所示:
表1
序列长度 SCS(kHz) 带宽(MHz)
839 1.25 1.08
839 5 4.32
139 15 2.16
139 30 4.32
139 60 8.64
139 120 17.28
在移动通信系统中,授权频段的可用带宽可能远远大于一个RO所占带 宽,若在授权频段的RO内,仅发送msg1可能会导致资源利用率低。
进一步地,非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充,以帮助运营商对服务进行扩容。由于非授权频段由多种无线接入技术(Radio Access Technology,RATs)共用,例如WiFi、雷达、长期演进授权频谱辅助接入(Long Term Evolution License Assisted Access,LTE-LAA)等,因此非授权频段在使用时必须符合某些规定(regulation)以保证所有设备可以公平的使用该资源,例如先听后说(Listen Before Talk,LBT),最大信道占用时间(Maximum Channel Occupancy Time,MCOT),占用带宽(occupied channel bandwidth,OCB)等规则。其中,对于5GHz频段,OCB要大于等于80%的标称信道带宽(nominal channel bandwidth),对于60GHz频段,OCB要大于等于70%的标称信道带宽。
在非授权频段上,终端需要先进行LBT,判断信道空闲后才能使用,终端可按照20MHz的粒度进行LBT,终端在抢占信道后,可能由于一个RO的频域带宽可能无法满足非授权频段的OCB需求,会导致终端即使抢占到了资源但仍无法使用的问题。
发明内容
本公开实施例提供了一种信息传输方法、终端及网络设备,以解决随机接入过程中msg1的传输问题。
第一方面,本公开实施例提供了一种信息传输方法,应用于终端侧,包括:
在目标传输信道的目标传输资源上,向网络设备发送随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的。
第二方面,本公开实施例还提供了一种终端,包括:
发送模块,用于在目标传输信道的目标传输资源上,向网络设备发送随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的信息传输方法的步骤。
第四方面,本公开实施例提供了一种信息传输方法,应用于网络设备侧,包括:
在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的;
根据消息一,向终端反馈响应消息。
第五方面,本公开实施例提供了一种网络设备,包括:
接收模块,用于在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的;
响应模块,用于根据消息一,向终端反馈响应消息。
第六方面,本公开实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的信息传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述终端侧或网络设备侧的信息传输方法的步骤。
这样,本公开实施例的终端在目标传输资源上联合发送消息一和填充信息,这样在保证授权频段上随机接入过程正常进行的基础上,进一步提高带宽利用率,且可以保证非授权频段上空闲的传输信道可用,保证随机接入过程的正常进行。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例可应用的一种移动通信系统框图;
图2表示本公开实施例终端侧的信息传输方法的流程示意图;
图3~6表示本公开实施例目标传输资源与目标传输信道之间的位置关系示意图;
图7~11表示本公开实施例消息一与填充信息的资源映射示意图;
图12表示本公开实施例中场景一的资源侦听示意图;
图13表示本公开实施例中场景二的资源侦听示意图;
图14表示本公开实施例中场景三的资源侦听示意图;
图15表示本公开实施例终端的模块结构示意图;
图16表示本公开实施例的终端框图;
图17表示本公开实施例网络设备的信息传输方法的流程示意图;
图18表示本公开实施例网络设备的模块结构示意图;
图19表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access, OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是, 在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL 传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开实施例的信息传输方法,应用于终端侧,如图2所示,该方法包括以下步骤:
步骤21:在目标传输信道的目标传输资源上,向网络设备发送一个随机接入过程的消息一以及至少一个填充信息;其中,消息一与填充信息是频分复用的。
其中,目标传输信道可以位于授权频段,也可以位于非授权频段。通过授权频段的目标传输信道的部分或全部传输资源,向网络设备发送消息一以及用于其他用途的填充信息,这样可提高授权频段资源利用率。而为了保证在不同无线接入技术下非授权频段均可正常使用,非授权频段在使用时必须符合某个规定,例如LBT、MCOT、OCB等。为了满足OCB要求,目标传输资源所占用的带宽(这里指的是目标传输资源所跨带宽范围)大于或等于目标传输信道的标称信道带宽的预设百分比。终端通过非授权频段上目标传输信道的目标传输资源,向网络设备发送一个随机接入过程的消息一以及至少一个用于其他用途的填充信息,消息一与填充信息频分复用,消息一与填充信息在频域资源上离散设置,这样在频域离散的消息一与填充信息可以保证目标传输信道所占的带宽跨度超过目标传输信道的标称带宽的预设百分比(如70%或80%),这样即可保证非授权频段的传输满足OCB要求。
本公开实施例中的目标传输信道满足以下位置关系中的一种:
在目标传输信道中包括至少一个物理随机接入信道传输时机RO时,目标传输资源包括至少一个RO以及至少一个其他信道,其他信道位于目标传输信道上除全部RO之外的频域部分。假设目标传输信道包括4个RO,如RO1、RO2、RO3和RO4,目标传输资源包括RO1以及至少一个其他信道,该其他信道位于目标传输信道上除RO1、RO2、RO3和RO4之外的频域部分。其中,目标传输信道同一时间频域范围内存在至少一个RO,终端可在其中一个RO上发送消息一,在其他信道上发送填充信息。其中,被选择的RO可以是预定义的(如协议约定)或网络设备配置,同理其他信道可以是预定义 的或网络设备配置的。其中,对于非授权频段传输场景,目标传输资源中的至少一个其他信道中和至少一个RO中频域位置距离最远的两者满足OCB要求。
或者,在目标传输信道中包括至少两个RO时,目标传输资源包括至少两个RO中的多个。假设目标传输信道包括4个RO,如RO1、RO2、RO3和RO4,目标传输资源包括RO1和RO4。其中,目标传输信道同一时间频域范围内存在至少一个RO,终端可在其中一个RO上发送消息一,在其他RO上发送填充信息。其中,被选择的RO(如传输消息一的RO和/或传输填充信息的RO)可以是预定义的或网络设备配置的。其中,对于非授权频段传输场景,目标传输资源中的至少一个其他信道中和至少一个RO中频域位置距离最远的两者满足OCB要求。
以上简单介绍了目标传输资源与目标传输信道之间的关系,下面将结合附图对目标传输资源与目标传输信道之间的位置关系做进一步说明。
其中,其他信道包括以下资源中的至少一项:
与RO相对于目标传输信道的频率中心频域对称的第一资源;这里所说的频域对称可以是:其他信道的起始位置与被选择RO的起始位置频域对称,其他信道的结束位置与被选择RO的结束位置频域对称,其他信道的起始位置与被选择RO的结束位置频域对称,其他信道的结束位置与被选择RO的起始位置频域对称,其他信道起止位置与被选择的RO的起止位置均频域对称等。如图3所示,被选择的RO位于目标传输信道的低频部分,那么其他信道位于与该RO频域对称的高频部分。或者,如图4所示,被选择的RO位于目标传输信道的高频部分,其他信道位于与该RO频域对称的低频部分。其中,图3和图4中消息一均在被选择的RO中发送。
与目标传输信道的高频边界偏移第一偏移量的第二资源;其中,这里所说的可以是其他信道的起始位置位于与目标传输信道的高频边界偏移第一偏移量的位置,或者,其他信道的结束位置位于与目标传输信道的高频边界偏移第一偏移量的位置,或者,其他信道的中心频点位于与目标传输信道的高频边界偏移第一偏移量的位置。值得指出的是,以上三种场景所对应的第一偏移量的值可以相同也可以不同。如图5所示,被选择的RO位于目标传输 信道的中心频点附近,其他信道1的结束位置位于与目标传输信道的高频边界偏移第一偏移量(offset1)的位置。
与目标传输信道的低频边界偏移第二偏移量的第三资源;其中,这里所说的可以是其他信道的起始位置位于与目标传输信道的低频边界偏移第二偏移量的位置,或者,其他信道的结束位置位于与目标传输信道的低频边界偏移第二偏移量的位置,或者,其他信道的中心频点位于与目标传输信道的低频边界偏移第二偏移量的位置。值得指出的是,以上三种场景所对应的第二偏移量的值可以相同也可以不同。如图5所示,被选择的RO位于目标传输信道的中心频点附近,其他信道2的起始位置位于与目标传输信道的低频边界偏移第二偏移量(offset2)的位置。
与RO的高频边界偏移第三偏移量的第四资源;其中,这里所说的可以是其他信道的起始位置位于与RO高频边界偏移第三偏移量的位置,或者,其他信道的结束位置位于与RO高频边界偏移第三偏移量的位置,或者,其他信道的中心频点位于与RO高频边界偏移第三偏移量的位置。值得指出的是,以上三种场景所对应的第三偏移量的值可以相同也可以不同。第四资源可以位于距离该被选择RO的高频边界偏移一个第三偏移量offset3、偏移两个第三偏移量offset3*2……的频域位置。如图5所示,被选择的RO位于目标传输信道的中心频点附近,其他信道1的起始位置位于与RO高频边界偏移第三偏移量(offset3)的位置。
与RO的低频边界偏移第四偏移量的第五资源;其中,这里所说的可以是其他信道的起始位置位于与RO低频边界偏移第四偏移量的位置,或者,其他信道的结束位置位于与RO低频边界偏移第四偏移量的位置,或者,其他信道的中心频点位于与RO低频边界偏移第四偏移量的位置。值得指出的是,以上三种场景所对应的第四偏移量的值可以相同也可以不同。第四资源可以位于距离该被选择RO的低频边界偏移一个第四偏移量offset4、偏移两个第四偏移量offset4*2……的频域位置。如图5所示,被选择的RO位于目标传输信道的中心频点附近,其他信道2的结束位置位于与RO低频边界偏移第四偏移量(offset4)的位置。
与RO以预设频域间隔在目标传输信道中均匀分布的第六资源;其中, 这里所说的是备选的RO与其他信道均匀分布在目标传输信道中。例如,预设频域间隔为目标传输信道带宽/M,M为正整数。如图6所示,被选择的RO与3个其他信道均匀分布在目标传输信道内。
与RO所在激活上行带宽部分的高频域边界偏移第五偏移量的第七资源;其中,这里所说的可以是其他信道的起始位置位于与RO所在激活上行带宽部分的高频边界偏移第五偏移量的位置,或者,其他信道的结束位置位于与RO所在激活上行带宽部分的高频边界偏移第五偏移量的位置,或者,其他信道的中心频点位于与RO所在激活上行带宽部分的高频边界偏移第五偏移量的位置。值得指出的是,以上三种场景所对应的第五偏移量的值可以相同也可以不同。其中激活上行带宽部分为激活上行带宽部分、第一激活上行带宽部分和初始激活上行带宽部分中的至少一项。
与RO所在激活上行带宽部分的低频域边界偏移第六偏移量的第八资源,其中,这里所说的可以是其他信道的起始位置位于与RO所在激活上行带宽部分的低频边界偏移第六偏移量的位置,或者,其他信道的结束位置位于与RO所在激活上行带宽部分的低频边界偏移第六偏移量的位置,或者,其他信道的中心频点位于与RO所在激活上行带宽部分的低频边界偏移第六偏移量的位置。值得指出的是,以上三种场景所对应的第六偏移量的值可以相同也可以不同。
其中,以上第一偏移量、第二偏移量、第三偏移量、第四偏移量、第五偏移量和第六偏移量的具体取值可以相同也可以不同。另外本公开实施例也不对其他信道的个数做具体限定,其他信道的位置和个数可以是预定义的或者网络设备配置的。被选择的RO的个数以及位置可以是预定义或网络设备配置的。
以上介绍了目标传输资源与目标传输信道之间的位置关系,下面本实施例将进一步介绍填充信息的具体形式。
其中,至少一个填充信息可以相同也可以不同。填充信息可以包括但不限于以下中的至少一项:
消息一的副本;消息一的副本与消息一对应的前导码初始序列与循环移位均相同,即终端通过目标传输资源重复发送消息一。如图3至6所示,RO 与其他信道均传输相同的消息一。或者,目标传输信道中包含4个RO,终端通过这4个RO中的所有RO发送相同的消息一,如图7所示,终端通过RO1、RO2、RO3和RO4发送相同的消息一。
第一填充信息,其中,第一填充信息包括至少一个第一序列,其中,第一序列对应的前导码初始序列与消息一对应的前导码初始序列相同,第一序列对应的循环移位与消息一对应的循环移位不同。其中,这里是说第一序列和消息一对应相同的前导码初始序列,但对于该前导码初始序列的循环移位不同。其中,前导码初始序列相同指的是循环移位之前对应的序列相同,包括但不限于前导码序列的根序列相同。例如第一序列和消息一均对应前导码初始序列1,第一序列具体为前导码初始序列1循环移位第一位数后确定的序列,消息一为前导码初始序列1循环移位第二位数后确定的序列。当第一填充信息有多个第一序列时,这多个第一序列的循环移位可以相同,也可以部分或全部不同。例如第一填充信息包括P个第一序列,这P个第一序列分别对应M个循环移位,M小于或等于P。进一步地,第一序列为:前导码序列集中除消息一之外的前导码序列,其中,前导码序列集包括消息一候选前导码序列与其他前导码序列。例如,系统维护一个前导码序列集,该前导码序列集中包含64个前导码序列,其中,40个前导码序列用于消息一,那么这40个前导码序列即为消息一候选前导码序列,剩余的24个前导码序列用于其他用途,被称为其他前导码序列。这里是说,假设消息一为40个消息一候选前导码序列中的一个,那么第一序列可以为剩余的39个消息一候选前导码序列和24个其他前导码序列中的一个。如图3至6所示,RO传输消息一,其他信道中传输第一序列。或者,目标传输信道中包含4个RO,如图8所示,终端通过RO1、RO2、RO3和RO4分别发送消息一候选前导码序列seq1、seq2、seq3和seq4。或者,如图9所示,终端通过RO1、RO2、RO3和RO4中的RO1和RO4分别发送消息一候选前导码序列seq1和seq2。或者,如图10所示,终端通过RO1、RO2、RO3和RO4中的RO1和RO4分别发送消息一候选前导码序列seq1和用于占位的其他前导码序列seq4。
第二填充信息,第二填充信息包括至少一个第二序列,其中第二序列对应的前导码序列与消息一对应的前导码序列不同,其中,这里是说第二序列 和消息一对应不同的初始前导码序列,例如第二序列对应前导码初始序列1,消息一对应前导码初始序列2。由于第二序列和消息一对应的前导码初始序列不同,因此无论两者的循环移位是否相同,最后构建形成的序列均不同。当第二填充信息有多个第二序列时,这多个第二序列对应的前导码序列可以相同,也可以部分或全部不同。例如第二填充信息有P个第二序列,这P个第二序列分别对应M个前导码序列,M小于或等于P。与第一序列类似,第二序列为:前导码序列集中除消息一之外的前导码序列,其中,前导码序列集包括消息一候选前导码序列与其他前导码序列。例如,系统维护一个前导码序列集,该前导码序列集中包含64个前导码序列,其中,40个前导码序列用于消息一,那么这40个前导码序列即为消息一候选前导码序列,剩余的24个前导码序列用于其他用途,被称为其他前导码序列。这里是说,假设消息一为40个消息一候选前导码序列中的一个,那么第二序列可以为剩余的39个消息一候选前导码序列和24个其他前导码序列中的一个。其中,第二填充信息的发送形式与第一填充信息的发送形式相似,亦可采用如图3至6、8至10的传输方式。
以及目标伪随机序列(又可称为非msg1消息)。其中,这里所说的目标伪随机序列可以包括但不限于:给定集合的序列或服从某种分布的序列等,如ZC序列、CAZAC序列、Gold序列和除前导码序列集之外的M序列中的至少一项。目标传输信道同一时间上频域范围内存在4个RO,终端从这些RO中选出2个RO发送消息一和目标伪随机序列,这两个RO满足OCB需求。例如图11所示,终端在RO1上发送消息一对应前导码序列seq1,在RO4上发送目标伪随机序列,例如ZC序列zcseq1。
值得指出的是,除了上述填充信息的形式外,填充信息还可以是仅为占位用的占位比特。第一填充信息中第一序列和第二填充信息中第二序列对应的前导码初始序列以及循环移位的组合是预定义的或网络设备配置的。终端采用上述何种方式进行消息一的发送也可以是预定义或网络设备配置的。
本公开实施例中,终端通过目标传输信道中的目标传输资源发送消息一和填充信息,其中,这里所说的填充信息的作用可以包括但不限于:占位、联合消息一用于随机接入过程和其他用途等。其中,当填充信息用于占位时, 网络设备在目标传输资源上接收到消息一和填充信息后的行为可能有:仅检测消息一完成随机接入过程,而无需检测填充信息;即网络设备可将填充信息忽略。当填充信息用于联合消息一用于随机接入过程或其他实际用途时,网络设备在目标传输资源上接收到消息一和填充信息后,需对消息一和填充信息均进行检测,以完成相应的业务过程。以图9为例,终端在RO1上发送seq1,在RO4上发送seq2。其中,seq1和seq2联合用于随机接入过程消息一的发送,网络设备在接收到seq1和seq2后,将seq1和seq2联合确定随机接入过程的消息二,以实现随机接入的后续过程。其中,联合用于随机接入过程的前导码序列组合可以是预定义的,也可以是网络设备配置的。可选地,消息一和填充消息的组合可以用于指示其他传输的相关信息,该相关信息可能是其他传输的调制与编码策略(Modulation and Coding Scheme,MCS)、传输块(Transport Blocks,TBS)、解调参考信号(De-Modulation Reference Signal,DMRS)符号个数、DMRS时域位置、DMRS密度、DMRS序列、传输功率控制命令(Transmission Power Control Command,TPC)、SCS、DMRS序列初始化、探测参考信号(Sounding Reference Signal、SRS)的符号个数、SRS的时域位置、SRS的梳状(comb)数、时频资源分配和循环前缀(Cyclic Prefix,CP)类型等信息等中的至少一项。其他传输可能为除了消息一和填充信息之外的传输,例如PUSCH,PUCCH,DMRS,SRS中的至少一项。其中,一种实现方式为,在RACH流程中,基站配置一组参数配置,终端通过发送的消息一和填充消息的组合指示终端选择的参数配置。例如seq1和seq2联合用于随机接入过程消息一的发送并指示物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的MCS,网络设备在接收到seq1和seq2后,将seq1和seq2联合确定PUSCH的MCS并基于该MCS解码PUSCH。其中,联合用于随机接入过程的前导码序列组合可以是预定义的,也可以是网络设备配置的。
本公开实施例中,目标传输信道可以位于授权频段也可以位于非授权频段。相应地,步骤21之前还可包括:确定授权频段中的目标传输信道;或者,对非授权频段的传输资源进行侦听,以确定目标传输信道。
其中,目标传输信道中的RO可以分别对应至少一个关联信息,其中,关联信号包括:同步信号块(Synchronization Signal and Physical Broadcast  Channel Block,SSB)和/或信道状态指示参考信号(Channel State Information Reference Signal,CSI-RS)。对于非授权频段传输场景,对非授权频段的传输资源进行侦听的步骤包括:在消息一时间窗内,对非授权频段中第一信道的至少一个第一RO进行侦听,其中,至少一个第一RO对应于第一关联信号,第一关联信号包括第一同步信号块SSB和第一信道状态指示参考信号CSI-RS中的至少一项;若在消息一时间窗内未侦听到第一RO空闲,或者,在消息一时间窗内连续N次侦听到第一RO被占用,则向(终端的)上层指示失败指示信息,其中,该失败指示信息用于指示:随机接入过程失败、消息一发送失败或随机接入过程存在问题(random access problem)。其中,N为正整数。也就是说,如果在某个RO所在的时间点上,终端没能抢占包含该RO的信道,且消息一时间窗没有过期,则终端可在消息一时间窗内继续LBT,尝试抢占消息一时间窗内再下一个可用的第一RO的信道。如果消息一时间窗已经结束且终端没能抢占包含可用的第一RO的信道来发送msg1,或者消息一时间窗没有结束但是抢占包含可用的第一RO的信道的失败次数达到某个阈值(如N次)时,终端向上层指示失败指示信息。其中,被选择的RO的起点为消息一时间窗的起点,即从被选择的RO的起点开启消息一时间窗。其中,下一个消息一时间窗的开启在当前消息一时间窗结束之后,也就是说,在当前消息一时间窗结束之前,不允许再次开启新的消息一时间窗。其中,在满足一定条件(如连续N次侦听到RO被占用)时消息一时间窗可提前结束。其中,被选择RO的起点可以是RO的起始时域符号(如OFDM符号)或RO所在时隙(slot)的时域符号0的位置。
进一步地,向上层指示随机接入过程失败的步骤之后还包括:在下一个消息一时间窗内,对非授权频段中第一信道的至少一个第二RO进行侦听,其中,至少一个第二RO对应于第二关联信号,第二关联信号包括:第二SSB和第二CSI-RS中的至少一项,第二关联信号与第一关联信号不同。其中,第二关联信号与第一关联信号不同指的是:第二SSB与第一SSB不同,第二CSI-RS与第一CSI-RS不同,第二关联信号为CSI-RS而第一关联信号为SSB,第二关联信号为SSB而第一关联信号为CSI-RS。以第一关联信号和第二关联信号均为SSB为例,终端在某个信道针对某个SSB对应的RO抢占信道失败 后,终端可以更换用于选择可用RO的SSB,并基于该SSB选择RO,开始新的随机接入过程。或者,在下一个消息一时间窗内,对非授权频段中第二信道的目标RO进行侦听;其中,第二信道的频域范围与第一信道的频域范围至少部分不同,目标RO包括:第一RO、第二RO或其他RO,其他RO为除第一RO和第二RO之外的RO,具体地,其他RO对应的关联信号不同于第一关联信号和第二关联信号;例如终端在某个信道抢占信道失败后,可以尝试抢占其他信道并选择其他信道上的RO,开始新的随机接入过程。
或者,针对于在消息一时间窗内连续N次侦听到第一RO被占用,向上层指示随机接入过程失败的步骤之后还包括:若消息一时间窗未结束,则继续在该消息一时间窗内,对非授权频段中第一信道的至少一个第二RO进行侦听;其中,至少一个第二RO对应于第二关联信号,第二关联信号包括第二SSB和第二CSI-RS中的至少一项,第二关联信号与第一关联信号不同;以第一关联信号和第二关联信号均为SSB为例,终端在某个信道针对某个SSB对应的RO抢占信道失败后,终端可以更换用于选择可用RO的SSB,并基于该SSB选择RO,开始新的随机接入过程。或者,若消息一时间窗未结束,则继续在消息一时间窗内,对非授权频段中第二信道的目标RO进行侦听,其中,第二信道的频域范围与第一信道的频域范围至少部分不同,目标RO包括:第一RO、第二RO或其他RO,其他RO为除第一RO和第二RO之外的RO,具体地,其他RO对应的关联信号不同于第一关联信号和第二关联信号;例如终端在某个信道抢占信道失败后,可以尝试抢占其他信道并选择其他信道上的RO,开始新的随机接入过程。
进一步地,对非授权频段中第一信道的至少一个第二RO进行侦听的步骤包括:若第一信道内的第二关联信号的测量结果满足预设条件,则对非授权频段中的第一信道的至少一个第二RO进行侦听。其中,这里所说的测量结果满足预设条件可以指:测量结果指示第一信道内第二关联信号的接收功率和/或质量较优,这时终端对第一信道的至少一个第二RO进行侦听。例如该关联信号的参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)和参考信号强度指示(Received Signal Strength Indicator,RSSI)中的至少一个分别满足其 对应的阈值。可选地,在第一信道内的第二关联信号的测量结果不满足预设条件,可暂停侦听或在其他信道内侦听。可选地,在第一信道内的多个第二关联信号的测量结果满足预设条件,终端可以选取其中最优的第二关联信号,并对对应的第二RO进行侦听,例如第二信道内的SSB2和SSB3的RSRP都大于阈值,且SSB2的质量最优,那么终端对SSB2对应的RO进行侦听。
进一步地,对非授权频段中第二信道的目标RO进行侦听的步骤包括:若第二信道的测量结果满足预设条件,则对非授权频段中的第二信道的目标RO进行侦听。其中,这里所说的测量结果满足预设条件可以指:测量结果指示第二信道内的目标RO的信道质量较优(例如第二信道内的目标RO的关联信号的RSRP、RSRQ和RSSI中的至少一个分别满足其对应的阈值,和/或,第二信道内的目标RO的在一定时间窗内保持空闲),这时终端对第二信道的目标RO进行侦听。可选地,在第二信道的测量结果不满足预设条件,可暂停侦听或切换到其他信道内侦听。可选地,在第二信道内的多个目标RO关联信号的测量结果满足预设条件(例如第二信道内的SSB1和SSB2的RSRP都大于阈值),终端可以选取其中最优的目标RO关联信号,并对对应的目标RO进行侦听。
其中上述阈值和/或一定时间窗可以是协议预定义的,也可以是网络设备配置的。
其中,在消息一时间窗内,对非授权频段中第一信道的至少一个第一RO进行侦听的步骤包括但不限于:在消息一时间窗内,按照时域顺序对非授权频段中第一信道的至少一个第一RO进行侦听,即在消息一时间窗内优先侦听最近的RO是否空闲。或者,在消息一时间窗内,依次对非授权频段中第一信道中的被选择的至少一个第一RO进行侦听。例如第一RO包括与SSB1对应的RO1和RO3,被选择的第一RO为RO1,那么终端在消息一时间窗内只侦听RO1是否空闲,当侦听到第一信道内所有RO1均为忙或RO1连续为忙的次数为N时,向终端的上层指示随机接入过程失败。或者,在消息一时间窗内,随机对非授权频段中第一信道的至少一个第一RO进行侦听。
以上简单介绍了非授权频段下的信道侦听方式,下面本实施例将进一步结合不同应用场景对其做进一步说明。
场景一、在消息一时间窗内,对非授权频段中第一信道的至少一个第一RO进行侦听;若在消息一时间窗内未侦听到第一RO空闲,则向终端的上层指示失败指示信息;在下一个消息一时间窗内,对非授权频段中第一信道的至少一个第二RO进行侦听;至少一个第二RO对应于第二SSB。其中,至少一个第一RO对应于第一SSB,第二SSB与第一SSB不同。
假设PRACH资源周期为10ms,消息一时间窗(msg1 window)长度为20ms,一个PRACH资源周期内有4个RO(RO1、RO2、RO3和RO4),其中RO1和RO3分别于SSB1关联,RO2和RO4分别于SSB2关联。终端选择SSB1并基于SSB1选择RACH资源。例如终端由发送SSB1时使用的下行波束进行服务,因此终端可以基于SSB1选择RO。如图12所示,假设下一个可用RO为RO1,用户开启LBT尝试抢占包含RO1的信道,并从RO1的起点开始开启msg1 window,若侦听到当前RO1为忙,则继续侦听距离当前RO1最近的RO3,若该RO3也为忙,则继续侦听距离该RO3最近的RO1,依此类推直至消息一时间窗内均未侦听到空闲的RO。或者,从RO1的起点开始开启msg1 window,若侦听到当前RO1为忙,则继续侦听下一个RO1,若该RO1也为忙,则继续侦听在下一个RO1,依此类推直至消息一时间窗内均未侦听到空闲的RO1。若在消息一时间窗结束前都没有成功LBT并发msg1,此时终端向上层指示失败指示信息。
进一步地,在向终端的上层指示失败指示信息的步骤之后,终端还可以切换用于选择RO的SSB,如终端在SSB2的测量结果RSRP不小于对应阈值时,在下一个消息一时间窗内基于SSB2选择RO并开启新的随机接入流程,假设下一个可用RO为RO2,那么终端从RO2的起点开始开启msg1 window,若在RO2处LBT成功并抢占到了包含RO2的信道,终端则在RO2上发送msg1。
场景二、在消息一时间窗内,对非授权频段中第一信道的至少一个第一RO进行侦听;若在消息一时间窗内连续N次侦听到第一RO被占用,则向终端的上层指示失败指示信息;在下一个消息一时间窗内,对非授权频段中第一信道的至少一个第二RO进行侦听;至少一个第二RO对应于第二SSB。其中,至少一个第一RO对应于第一SSB,第二SSB与第一SSB不同。
假设PRACH资源周期为10ms,消息一时间窗(msg1 window)长度为20ms,消息一时间窗内连续LBT失败最大次数为8,一个PRACH资源周期内有4个RO(RO1、RO2、RO3和RO4),其中RO1和RO3分别于SSB1关联,RO2和RO4分别于SSB2关联。终端选择SSB1并基于SSB1选择RACH资源。例如终端由发送SSB1时使用的下行波束进行服务,因此终端可以基于SSB1选择RO。如图13所示,假设下一个可用RO为RO1,用户开启LBT尝试抢占包含RO1的信道,并从RO1的起点开始开启msg1 window,若侦听到当前RO1为忙,则继续侦听距离该RO1最近的RO3,若该RO3也为忙,则继续侦听距离该RO3最近的RO1,依此类推直至消息一时间窗内连续侦听到RO被占用的次数达到8。或者,从RO1的起点开始开启msg1 window,若侦听到当前RO1为忙,则继续侦听下一个RO1,若该RO1也为忙,则继续侦听再下一个RO1,依此类推直至消息一时间窗内连续侦听到RO1被占用的次数达到8。若在消息一时间窗结束前都没有成功LBT并发msg1,此时终端向上层指示失败指示信息。
进一步地,在向终端的上层指示失败指示信息的步骤之后,终端还可以切换用于选择RO的SSB,如终端在下一个消息一时间窗内基于SSB2选择RO并开启新的随机接入流程,假设下一个可用RO为RO4,那么终端从RO4的起点开始开启msg1 window,若在第一个RO4处LBT失败,则继续侦听距离第一个RO4最近的RO2,若侦听成功并抢占到了包含RO2的信道,终端则在RO2上发送msg1。
场景三、在消息一时间窗内,对非授权频段中第一信道的至少一个第一RO进行侦听;若在消息一时间窗内未侦听到第一RO空闲,或者,在消息一时间窗内连续N次侦听到第一RO被占用,则向终端的上层指示失败指示信息;在下一个消息一时间窗内,对非授权频段中第二信道的所述第一RO进行侦听。其中,至少一个第一RO对应于第一SSB;第二信道的频域范围与第一信道的频域范围至少部分不同。
假设第一信道(信道1)中PRACH资源周期为10ms,消息一时间窗(msg1window)长度为20ms,消息一时间窗内连续LBT失败最大次数为8,一个PRACH资源周期内有4个RO(RO1、RO2、RO3和RO4),其中RO1和RO3 分别于SSB1关联,RO2和RO4分别于SSB2关联。第二信道(信道2)中PRACH资源周期为10ms,消息一时间窗(msg1 window)长度为20ms,消息一时间窗内连续LBT失败最大次数为8,一个PRACH资源周期内有4个RO(RO1、RO2、RO3和RO4),其中RO1和RO3分别于SSB1关联,RO2和RO4分别于SSB3关联。
终端选择SSB1并基于SSB1选择RACH资源。例如终端由发送SSB1时使用的下行波束进行服务,因此终端可以基于SSB1选择RO。假设下一个可用RO为RO1,用户开启LBT尝试抢占包含RO1的信道,并从RO1的起点开始开启msg1 window,若侦听到当前RO1为忙,则继续侦听距离该RO1最近的RO3,若该RO3也为忙,则继续侦听距离该RO3最近的RO1,依此类推直至消息一时间窗内未侦听到空闲的RO(如图13所示)或连续侦听到RO被占用的次数达到8(图中未示出)。或者,从RO1的起点开始开启msg1window,若侦听到当前RO1为忙,则继续侦听下一个RO1,若该RO1也为忙,则继续侦听再下一个RO1,依此类推直至消息一时间窗内未侦听到空闲的RO1(如图13所示)或连续侦听到RO1被占用的次数达到8(图中未示出)。若在消息一时间窗结束前都没有成功LBT并发msg1,此时终端向上层指示失败指示信息。
进一步地,在向上层指示失败指示信息的步骤之后,终端还可以选择LBT频域上另外一个包含RACH资源的信道2,并在该信道2上发起新的随机接入流程。终端由发送SSB1时使用的下行波束进行服务,因此终端会基于SSB1选择信道2上的RO。假设下一个可用RO为信道2上的RO1,终端开启LBT尝试抢占包含RO1的信道,并从RO1的起点开始开启msg1 window,LBT成功并抢占到包含RO1的信道2,终端从信道2上的RO1上发送msg1。
其中,对非授权频段的传输资源进行侦听,以确定目标传输信道的步骤之前,该方法还包括:获取物理随机接入信道PRACH配置信息;其中,PRACH配置信息用于指示RO标识、RO频分复用能力(prach-FDM)和RO频域间隔(ROfreqoffset1)中的至少一项。其中,RO标识用于区分不同的RO,RO频分复用能力指的是一个PRACH资源中可包含RO的最大个数,例如PRACH资源中FDM的RO最大为16。RO频域间隔是同一个时间FDM的两个RO 的间隔。其中,本实施例所说的PRACH配置信息是预定义(如协议约定)的,或网络设备配置的。
其中,对非授权频段的传输资源进行侦听,以确定目标传输信道的步骤之前,该方法还包括:获取消息一时间窗配置信息;其中,消息一时间窗配置信息用于指示窗起点、窗长(持续时间)、窗周期、窗内最大侦听失败次数和窗时域偏移中至少一项。其中,本实施例所说的消息一时间窗配置信息是预定义(如协议约定)的,或网络设备配置的。
本公开实施例的信息传输方法中,终端在目标传输资源上联合发送消息一和填充信息,这样在保证授权频段上随机接入过程正常进行的基础上,进一步提高带宽利用率,且可以保证非授权频段上空闲的传输信道可用,保证随机接入过程的正常进行。
以上实施例介绍了不同场景下的信息传输方法,下面将结合附图对与其对应的终端做进一步介绍。
如图15所示,本公开实施例的终端1500,能实现上述实施例中在目标传输信道的目标传输资源上,向网络设备发送随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的方法的细节,并达到相同的效果,该终端1500具体包括以下功能模块:
发送模块1510,用于在目标传输信道的目标传输资源上,向网络设备发送随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的。
其中,在目标传输信道中包括至少一个物理随机接入信道传输时机RO时,目标传输资源包括至少一个RO以及至少一个其他信道,其他信道位于目标传输信道上除全部RO之外的频域部分,
或者,
在目标传输信道中包括至少两个RO时,目标传输资源包括至少两个RO中的多个。
其中,其他信道包括以下资源中的至少一项:
与RO相对于目标传输信道的频率中心频域对称的第一资源;
与目标传输信道的高频边界偏移第一偏移量的第二资源;
与目标传输信道的低频边界偏移第二偏移量的第三资源;
与RO的高频边界偏移第三偏移量的第四资源;
与RO的低频边界偏移第四偏移量的第五资源;
与RO以预设频域间隔在目标传输信道中均匀分布的第六资源;
与RO所在激活上行带宽部分的高频域边界偏移第五偏移量的第七资源;
与RO所在激活上行带宽部分的低频域边界偏移第六偏移量的第八资源。
其中,填充信息包括以下中的至少一项:
消息一的副本;
第一填充信息,第一填充信息包括至少一个第一序列,其中,第一序列对应的前导码初始序列与消息一对应的前导码初始序列相同,第一序列对应的循环移位与消息一对应的循环移位不同;
第二填充信息,第二填充信息包括至少一个第二序列,其中,第二序列对应的前导码初始序列与消息一对应的前导码初始序列不同;以及
目标伪随机序列,目标伪随机序列包括:ZC序列、CAZAC序列、Gold序列和M序列中的至少一项。
其中,第一序列和/或第二序列为:前导码序列集中除消息一之外的前导码序列,其中,前导码序列集包括消息一候选前导码序列与其他前导码序列。
其中,终端1500还包括:
第一确定模块,用于确定授权频段中的目标传输信道;
或者,
第二确定模块,用于对非授权频段的传输资源进行侦听,确定目标传输信道。
其中第二确定模块包括:
第一侦听子模块,用于在消息一时间窗内,对非授权频段中第一信道的至少一个第一RO进行侦听,其中,至少一个第一RO对应于第一关联信号,第一关联信号包括:第一同步信号块SSB和第一信道状态指示参考信号CSI-RS中的至少一项;
第一处理子模块,用于若在消息一时间窗内未侦听到第一RO空闲,或者,在消息一时间窗内连续N次侦听到第一RO被占用,则向上层指示失败 指示信息,其中,失败指示信息用于指示:随机接入过程失败、消息一发送失败或随机接入过程存在问题。
其中第二确定模块还包括:
第二侦听子模块,用于在下一个消息一时间窗内,对非授权频段中第一信道的至少一个第二RO进行侦听,其中,至少一个第二RO对应于第二关联信号,第二关联信号包括:第二SSB和第二CSI-RS中的至少一项,第二关联信号与第一关联信号不同;
或者,
第三侦听子模块,用于在下一个消息一时间窗内,对非授权频段中第二信道的目标RO进行侦听,其中,第二信道的频域范围与第一信道的频域范围至少部分不同,目标RO包括:第一RO、第二RO或其他RO,其他RO对应的关联信号不同于第一关联信号和第二关联信号。
其中,第二确定模块还包括:第四侦听子模块,用于若消息一时间窗未结束,则继续在消息一时间窗内,对非授权频段中第一信道的至少一个第二RO进行侦听;其中,至少一个第二RO对应于第二关联信号,第二关联信号包括:第二SSB和第二CSI-RS中的至少一项,第二关联信号与第一关联信号不同;
或者,
第五侦听子模块,用于若消息一时间窗未结束,则继续在消息一时间窗内,对非授权频段中第二信道的目标RO进行侦听,其中,第二信道的频域范围与第一信道的频域范围至少部分不同,目标RO包括:第一RO、第二RO或其他RO,其他RO对应的关联信号不同于第一关联信号和第二关联信号。
具体地,第二确定模块具体用于:
若第一信道内的第二关联信号的测量结果满足预设条件,则对非授权频段中的第一信道的至少一个第二RO进行侦听。
第二确定模块还具体用于:
若第二信道的测量结果满足预设条件,则对非授权频段中的第二信道的目标RO进行侦听。
其中,终端1500还包括:
第一获取模块,用于获取物理随机接入信道PRACH配置信息;其中,PRACH配置信息用于指示RO标识、RO频分复用能力和RO频域间隔中的至少一项。
其中,终端1500还包括:
第二获取模块,用于获取消息一时间窗配置信息;其中,消息一时间窗配置信息用于指示窗起点、窗长、窗周期、窗内最大侦听失败次数和窗时域偏移中至少一项。
其中,目标传输资源所占用的带宽大于或等于目标传输信道的标称信道带宽的预设百分比。
值得指出的是,本公开实施例的终端在目标传输资源上联合发送消息一和填充信息,这样在保证授权频段上随机接入过程正常进行的基础上,进一步提高带宽利用率,且可以保证非授权频段上空闲的传输信道可用,保证随机接入过程的正常进行。
为了更好的实现上述目的,进一步地,图16为实现本公开一些实施例的一种终端的硬件结构示意图,该终端160包括但不限于:射频单元161、网络模块162、音频输出单元163、输入单元164、传感器165、显示单元166、用户输入单元167、接口单元168、存储器169、处理器1610、以及电源1611等部件。本领域技术人员可以理解,图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元161,用于在处理器1610的控制下收发数据,具体用于在目标传输信道的目标传输资源上,向网络设备发送随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的;
本公开实施例的终端在目标传输资源上联合发送消息一和填充信息,这样在保证授权频段上随机接入过程正常进行的基础上,进一步提高带宽利用率,且可以保证非授权频段上空闲的传输信道可用,保证随机接入过程的正常进行。
应理解的是,本公开实施例中,射频单元161可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1610处理;另外,将上行的数据发送给基站。通常,射频单元161包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元161还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块162为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元163可以将射频单元161或网络模块162接收的或者在存储器169中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元163还可以提供与终端160执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元163包括扬声器、蜂鸣器以及受话器等。
输入单元164用于接收音频或视频信号。输入单元164可以包括图形处理器(Graphics Processing Unit,GPU)1641和麦克风1642,图形处理器1641对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元166上。经图形处理器1641处理后的图像帧可以存储在存储器169(或其它存储介质)中或者经由射频单元161或网络模块162进行发送。麦克风1642可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元161发送到移动通信基站的格式输出。
终端160还包括至少一种传感器165,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1661的亮度,接近传感器可在终端160移动到耳边时,关闭显示面板1661和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器165还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、 陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元166用于显示由用户输入的信息或提供给用户的信息。显示单元166可包括显示面板1661,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1661。
用户输入单元167可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元167包括触控面板1671以及其他输入设备1672。触控面板1671,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1671上或在触控面板1671附近的操作)。触控面板1671可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1610,接收处理器1610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1671。除了触控面板1671,用户输入单元167还可以包括其他输入设备1672。具体地,其他输入设备1672可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1671可覆盖在显示面板1661上,当触控面板1671检测到在其上或附近的触摸操作后,传送给处理器1610以确定触摸事件的类型,随后处理器1610根据触摸事件的类型在显示面板1661上提供相应的视觉输出。虽然在图16中,触控面板1671与显示面板1661是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板1671与显示面板1661集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元168为外部装置与终端160连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元168可以用于接收来 自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端160内的一个或多个元件或者可以用于在终端160和外部装置之间传输数据。
存储器169可用于存储软件程序以及各种数据。存储器169可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器169可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器169内的软件程序和/或模块,以及调用存储在存储器169内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1610可包括一个或多个处理单元;可选的,处理器1610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
终端160还可以包括给各个部件供电的电源1611(比如电池),可选的,电源1611可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端160包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器1610,存储器169,存储在存储器169上并可在所述处理器1610上运行的计算机程序,该计算机程序被处理器1610执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、 手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的信息传输方法,下面本实施例将结合附图对网络设备侧的信息传输方法做进一步介绍。
如图17所示,本公开实施例的信息传输方法,应用于网络设备,包括以下步骤:
步骤171:在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的。
其中,目标传输信道可以位于授权频段,也可以位于非授权频段。本公开实施例中,终端通过目标传输信道中的目标传输资源发送消息一和填充信息,其中,这里所说的填充信息的作用可以包括但不限于:占位、联合消息一用于随机接入过程和其他用途等。其中,当填充信息用于占位时,网络设备在目标传输资源上接收到消息一和填充信息后,仅检测消息一完成随机接入过程即可,而无需检测填充信息,即网络设备可将填充信息忽略。也就是说在步骤171之后,网络设备检测消息一并忽略填充信息。当填充信息用于联合消息一用于随机接入过程或其他实际用途时,网络设备在目标传输资源上接收到消息一和填充信息后,需对消息一和填充信息均进行检测,以完成 相应的业务过程。其中,联合用于随机接入过程的前导码序列组合可以是预定义的,也可以是网络设备配置的。
步骤172:根据消息一,向终端反馈响应消息。
其中,该响应消息包括但不限于消息二,网络设备向终端反馈响应消息以完成随机接入过程。
本公开实施例中的目标传输信道满足以下位置关系中的一种:
在目标传输信道中包括至少一个物理随机接入信道传输时机RO时,目标传输资源包括至少一个RO以及至少一个其他信道,其他信道位于目标传输信道上除全部RO之外的频域部分。假设目标传输信道包括4个RO,如RO1、RO2、RO3和RO4,目标传输资源包括被选择的RO1以及至少一个其他信道,该其他信道位于目标传输信道上除RO1、RO2、RO3和RO4之外的频域部分。其中,被选择的RO可以是预定义的(如协议约定)或网络设备配置,同理其他信道可以是预定义的或网络设备配置的。其中,对于非授权频段传输场景,目标传输资源中的至少一个其他信道中和至少一个RO中频域位置距离最远的两者满足OCB要求。
或者,在目标传输信道中包括至少两个RO时,目标传输资源包括至少两个RO中的多个。假设目标传输信道包括4个RO,如RO1、RO2、RO3和RO4,目标传输资源包括RO1和RO4。其中,目标传输信道同一时间频域范围内存在至少一个RO,终端可在其中一个RO上发送消息一,在其他RO上发送填充信息。其中,被选择的RO(如传输消息一的RO和/或传输填充信息的RO)可以是预定义的或网络设备配置的。
下面将结合附图对目标传输资源与目标传输信道之间的位置关系做进一步说明。
其中,其他信道包括以下资源中的至少一项:
与RO相对于目标传输信道的频率中心频域对称的第一资源;这里所说的频域对称可以是:其他信道的起始位置与被选择RO的起始位置频域对称,其他信道的结束位置与被选择RO的结束位置频域对称,其他信道的起始位置与被选择RO的结束位置频域对称,其他信道的结束位置与被选择RO的起始位置频域对称,其他信道起止位置与被选择的RO的起止位置均频域对 称等。
与目标传输信道的高频边界偏移第一偏移量的第二资源;其中,这里所说的可以是其他信道的起始位置位于与目标传输信道的高频边界偏移第一偏移量的位置,或者,其他信道的结束位置位于与目标传输信道的高频边界偏移第一偏移量的位置,或者,其他信道的中心频点位于与目标传输信道的高频边界偏移第一偏移量的位置。值得指出的是,以上三种场景所对应的第一偏移量的值可以相同也可以不同。
与目标传输信道的低频边界偏移第二偏移量的第三资源;其中,这里所说的可以是其他信道的起始位置位于与目标传输信道的低频边界偏移第二偏移量的位置,或者,其他信道的结束位置位于与目标传输信道的低频边界偏移第二偏移量的位置,或者,其他信道的中心频点位于与目标传输信道的低频边界偏移第二偏移量的位置。值得指出的是,以上三种场景所对应的第二偏移量的值可以相同也可以不同。
与RO的高频边界偏移第三偏移量的第四资源;其中,这里所说的可以是其他信道的起始位置位于与RO高频边界偏移第三偏移量的位置,或者,其他信道的结束位置位于与RO高频边界偏移第三偏移量的位置,或者,其他信道的中心频点位于与RO高频边界偏移第三偏移量的位置。值得指出的是,以上三种场景所对应的第三偏移量的值可以相同也可以不同。
与RO的低频边界偏移第四偏移量的第五资源;其中,这里所说的可以是其他信道的起始位置位于与RO低频边界偏移第四偏移量的位置,或者,其他信道的结束位置位于与RO低频边界偏移第四偏移量的位置,或者,其他信道的中心频点位于与RO低频边界偏移第四偏移量的位置。值得指出的是,以上三种场景所对应的第四偏移量的值可以相同也可以不同。
与RO以预设频域间隔在目标传输信道中均匀分布的第六资源;其中,这里所说的是备选的RO与其他信道均匀分布在目标传输信道中。例如,预设频域间隔为目标传输信道带宽/M,M为正整数。
与RO所在激活上行带宽部分的高频域边界偏移第五偏移量的第七资源;其中,这里所说的可以是其他信道的起始位置位于与RO所在激活上行带宽部分的高频边界偏移第五偏移量的位置,或者,其他信道的结束位置位于与 RO所在激活上行带宽部分的高频边界偏移第五偏移量的位置,或者,其他信道的中心频点位于与RO所在激活上行带宽部分的高频边界偏移第五偏移量的位置。值得指出的是,以上三种场景所对应的第五偏移量的值可以相同也可以不同。
与RO所在激活上行带宽部分的低频域边界偏移第六偏移量的第八资源,其中,这里所说的可以是其他信道的起始位置位于与RO所在激活上行带宽部分的低频边界偏移第六偏移量的位置,或者,其他信道的结束位置位于与RO所在激活上行带宽部分的低频边界偏移第六偏移量的位置,或者,其他信道的中心频点位于与RO所在激活上行带宽部分的低频边界偏移第六偏移量的位置。值得指出的是,以上三种场景所对应的第六偏移量的值可以相同也可以不同。
其中,以上第一偏移量、第二偏移量、第三偏移量、第四偏移量、第五偏移量和第六偏移量的具体取值可以相同也可以不同。另外本公开实施例也不对其他信道的个数做具体限定,其他信道的位置和个数可以是预定义的或者网络设备配置的。被选择的RO的个数以及位置可以是预定义或网络设备配置的。
以上介绍了目标传输资源与目标传输信道之间的位置关系,下面本实施例将进一步介绍填充信息的具体形式。
其中,至少一个填充信息可以相同也可以不同。填充信息可以包括但不限于以下中的至少一项:
消息一的副本;消息一的副本与消息一对应的前导码初始序列与循环移位均相同,即终端通过目标传输资源重复发送消息一。
第一填充信息,其中,第一填充信息包括至少一个第一序列,第一序列对应的前导码初始序列与消息一对应的前导码初始序列相同,第一序列对应的循环移位与消息一对应的循环移位不同。其中,这里是说第一序列和消息一对应相同的前导码初始序列,但对于该前导码初始序列的循环移位不同。例如第一序列和消息一均对应前导码初始序列1,第一序列具体为前导码初始序列1循环移位第一位数后确定的序列,消息一为前导码初始序列1循环移位第二位数后确定的序列。当第一填充信息有多个第一序列时,这多个第 一序列的循环移位可以相同,也可以部分或全部不同。进一步地,第一序列为:前导码序列集中除消息一之外的前导码序列,其中,前导码序列集包括消息一候选前导码序列与其他前导码序列。例如,系统维护一个前导码序列集,该前导码序列集中包含64个前导码序列,其中,40个前导码序列用于消息一,那么这40个前导码序列即为消息一候选前导码序列,剩余的24个前导码序列用于其他用途,被称为其他前导码序列。这里是说,假设消息一为40个消息一候选前导码序列中的一个,那么第一序列可以为剩余的39个消息一候选前导码序列和24个其他前导码序列中的一个。
第二填充信息,第二填充信息包括至少一个第二序列,第二序列对应的前导码初始序列与消息一对应的前导码初始序列不同,其中,这里是说第二序列和消息一对应不同的前导码初始序列,例如第二序列对应前导码初始序列1,消息一对应前导码初始序列2。由于第二序列和消息一对应的前导码初始序列不同,因此无论两者的循环移位是否相同,最后构建形成的序列均不同。当第二填充信息有多个第二序列时,这多个第二序列对应的前导码初始序列可以相同,也可以部分或全部不同。与第一序列类似,第二序列为:前导码序列集中除消息一之外的前导码序列,其中,前导码序列集包括消息一候选前导码序列与其他前导码序列。例如,系统维护一个前导码序列集,该前导码序列集中包含64个前导码序列,其中,40个前导码序列用于消息一,那么这40个前导码序列即为消息一候选前导码序列,剩余的24个前导码序列用于其他用途,被称为其他前导码序列。这里是说,假设消息一为40个消息一候选前导码序列中的一个,那么第二序列可以为剩余的39个消息一候选前导码序列和24个其他前导码序列中的一个。其中,第一填充信息和第二填充信息的接收形式与上述终端侧实施例中第一填充信息的发送形式相对应,故在此不再赘述。
以及目标伪随机序列(又可称为非msg1消息)。其中,这里所说的目标伪随机序列可以包括但不限于:给定集合的序列或服从某种分布的序列等,如ZC序列、CAZAC序列、Gold序列和除前导码序列之外的M序列中的至少一项。目标传输信道同一时间上频域范围内存在4个RO,终端从这些RO中选出2个RO发送消息一和目标伪随机序列,这两个RO满足OCB需求。
值得指出的是,第一填充信息中的第一序列和第二填充信息中的第二序列对应的前导码初始序列以及循环移位的组合是预定义的或网络设备配置的。终端采用上述何种方式进行消息一的发送也可以是预定义或网络设备配置的。
步骤171之前,该方法还包括:为终端配置物理随机接入信道PRACH配置信息;其中,PRACH配置信息用于指示RO标识、RO频分复用能力和RO频域间隔中的至少一项。
步骤171之前,该方法还包括:为终端配置消息一时间窗配置信息;其中,消息一时间窗配置信息用于指示窗起点、窗长(持续时间)、窗周期、窗内最大侦听失败次数和窗时域偏移中至少一项。
本公开实施例的信息传输方法中,网络设备在目标传输资源上接收消息一和填充信息,这样在保证授权频段上随机接入过程正常进行的基础上,进一步提高带宽利用率,且可以保证非授权频段上空闲的传输信道可用,保证随机接入过程的正常进行。
以上实施例分别详细介绍了不同场景下的信息传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图18所示,本公开实施例的网络设备1800,能实现上述实施例中在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息,其中,消息一与填充信息是频分复用的;根据消息一,向终端反馈响应消息方法的细节,并达到相同的效果,该网络设备1800具体包括以下功能模块:
接收模块1810,用于在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的;
响应模块1820,用于根据消息一,向终端反馈响应消息。
其中,在目标传输信道中包括至少一个物理随机接入信道传输时机RO时,目标传输资源包括至少一个RO以及至少一个其他信道,其他信道位于目标传输信道上除全部RO之外的频域部分,
或者,
在目标传输信道中包括至少两个RO时,目标传输资源包括至少两个RO中的多个。
其中,其他信道包括以下资源中的至少一项:
与RO相对于目标传输信道的频率中心频域对称的第一资源;
与目标传输信道的高频边界偏移第一偏移量的第二资源;
与目标传输信道的低频边界偏移第二偏移量的第三资源;
与RO的高频边界偏移第三偏移量的第四资源;
与RO的低频边界偏移第四偏移量的第五资源;
与RO以预设频域间隔在目标传输信道中均匀分布的第六资源;
与RO所在激活上行带宽部分的高频域边界偏移第五偏移量的第七资源;
与RO所在激活上行带宽部分的低频域边界偏移第六偏移量的第八资源。
其中,填充信息包括以下中的至少一项:
消息一的副本;
第一填充信息,第一填充信息包括至少一个第一序列,第一序列对应的前导码序列与消息一对应的前导码序列相同,第一序列对应的循环移位与消息一对应的循环移位不同;
第二填充信息,第二填充信息包括至少一个第二序列,第二序列对应的前导码序列与消息一对应的前导码序列不同;以及
目标伪随机序列,目标伪随机序列包括:ZC序列、CAZAC序列、Gold序列和M序列中的至少一项。
其中,第一序列和/或第二序列为:前导码序列集中除消息一之外的前导码序列,其中,前导码序列集包括消息一候选前导码序列与其他前导码序列。
其中,目标传输信道位于非授权频段或授权频段。
其中,网络设备1800还包括:第一配置模块,用于为终端配置物理随机接入信道PRACH配置信息;其中,PRACH配置信息用于指示RO标识、RO频分复用能力和RO频域间隔中的至少一项。
其中,网络设备1800还包括:第二配置模块,用于为终端配置消息一时间窗配置信息;其中,消息一时间窗配置信息用于指示窗起点、窗长、窗周期、窗内最大侦听失败次数和窗时域偏移中至少一项。
其中,网络设备1800还包括:处理模块,用于检测消息一并忽略填充信息。
其中,目标传输资源所占用的带宽大于或等于目标传输信道的标称信道 带宽的预设百分比。
值得指出的是,本公开实施例的网络设备在目标传输资源上接收消息一和填充信息,这样在保证授权频段上随机接入过程正常进行的基础上,进一步提高带宽利用率,且可以保证非授权频段上空闲的传输信道可用,保证随机接入过程的正常进行。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的信息传输方法中的步骤。本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上 存储有计算机程序,计算机程序被处理器执行时实现如上所述的信息传输方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图19所示,该网络设备1900包括:天线191、射频装置192、基带装置193。天线191与射频装置192连接。在上行方向上,射频装置192通过天线191接收信息,将接收的信息发送给基带装置193进行处理。在下行方向上,基带装置193对要发送的信息进行处理,并发送给射频装置192,射频装置192对收到的信息进行处理后经过天线191发送出去。
上述频带处理装置可以位于基带装置193中,以上实施例中网络设备执行的方法可以在基带装置193中实现,该基带装置193包括处理器194和存储器195。
基带装置193例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图19所示,其中一个芯片例如为处理器194,与存储器195连接,以调用存储器195中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置193还可以包括网络接口196,用于与射频装置192交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器195可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取 存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器195旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器195上并可在处理器194上运行的计算机程序,处理器194调用存储器195中的计算机程序执行图18所示各模块执行的方法。
具体地,计算机程序被处理器194调用时可用于执行:在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息;其中,消息一与填充信息是频分复用的;根据消息一,向终端反馈响应消息。
本公开实施例中的网络设备,在目标传输资源上接收消息一和填充信息,这样在保证授权频段上随机接入过程正常进行的基础上,进一步提高带宽利用率,且可以保证非授权频段上空闲的传输信道可用,保证随机接入过程的正常进行。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实 现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (29)

  1. 一种信息传输方法,应用于终端侧,包括:
    在目标传输信道的目标传输资源上,向网络设备发送随机接入过程的消息一以及填充信息;其中,所述消息一与所述填充信息是频分复用的。
  2. 根据权利要求1所述的信息传输方法,其中,在所述目标传输信道中包括至少一个物理随机接入信道传输时机RO时,所述目标传输资源包括至少一个RO以及至少一个其他信道,所述其他信道位于所述目标传输信道上除全部RO之外的频域部分,
    或者,
    在所述目标传输信道中包括至少两个RO时,所述目标传输资源包括所述至少两个RO中的多个。
  3. 根据权利要求2所述的信息传输方法,其中,所述其他信道包括以下资源中的至少一项:
    与所述RO相对于所述目标传输信道的频率中心频域对称的第一资源;
    与所述目标传输信道的高频边界偏移第一偏移量的第二资源;
    与所述目标传输信道的低频边界偏移第二偏移量的第三资源;
    与所述RO的高频边界偏移第三偏移量的第四资源;
    与所述RO的低频边界偏移第四偏移量的第五资源;
    与所述RO以预设频域间隔在所述目标传输信道中均匀分布的第六资源;
    与所述RO所在激活上行带宽部分的高频域边界偏移第五偏移量的第七资源;
    与所述RO所在激活上行带宽部分的低频域边界偏移第六偏移量的第八资源。
  4. 根据权利要求1或2所述的信息传输方法,其中,所述填充信息包括以下中的至少一项:
    所述消息一的副本;
    第一填充信息,所述第一填充信息包括至少一个第一序列,其中,所述第一序列对应的前导码初始序列与所述消息一对应的前导码初始序列相同, 所述第一序列的循环移位与所述消息一对应的循环移位不同;
    第二填充信息,所述第二填充信息包括至少一个第二序列,其中,所述第二序列对应的前导码初始序列与所述消息一对应的前导码初始序列不同;以及
    目标伪随机序列,所述目标伪随机序列包括:ZC序列、CAZAC序列、Gold序列和M序列中的至少一项。
  5. 根据权利要求4所述的信息传输方法,其中,所述第一序列和/或所述第二序列为:前导码序列集中除所述消息一之外的前导码序列,其中,所述前导码序列集包括消息一候选前导码序列与其他前导码序列。
  6. 根据权利要求1所述的信息传输方法,其中,在目标传输信道的目标传输资源上,向网络设备发送随机接入过程的消息一以及填充信息的步骤之前,还包括:
    确定授权频段中的目标传输信道;
    或者,
    对非授权频段的传输资源进行侦听,以确定目标传输信道。
  7. 根据权利要求6所述的信息传输方法,其中,对非授权频段的传输资源进行侦听的步骤,包括:
    在消息一时间窗内,对非授权频段中第一信道的至少一个第一RO进行侦听;所述至少一个第一RO对应于第一关联信号,所述第一关联信号包括:第一同步信号块SSB和第一信道状态指示参考信号CSI-RS中的至少一项;
    若在所述消息一时间窗内未侦听到所述第一RO空闲,或者,在所述消息一时间窗内连续N次侦听到所述第一RO被占用,则向上层指示失败指示信息,其中,所述失败指示信息用于指示:随机接入过程失败、消息一发送失败或随机接入过程存在问题。
  8. 根据权利要求7所述的信息传输方法,其中,向上层指示失败指示信息的步骤之后,还包括:
    在下一个消息一时间窗内,对非授权频段中所述第一信道的至少一个第二RO进行侦听,其中,所述至少一个第二RO对应于第二关联信号,所述第二关联信号包括:第二SSB和第二CSI-RS中的至少一项,所述第二关联 信号与所述第一关联信号不同;
    或者,
    在下一个消息一时间窗内,对非授权频段中第二信道的目标RO进行侦听,其中,所述第二信道的频域范围与所述第一信道的频域范围至少部分不同,所述目标RO包括:第一RO、第二RO或其他RO,所述其他RO对应的关联信号不同于所述第一关联信号和第二关联信号。
  9. 根据权利要求7所述的信息传输方法,其中,向上层指示失败指示信息的步骤之后,还包括:
    若所述消息一时间窗未结束,则继续在所述消息一时间窗内,对非授权频段中所述第一信道的至少一个第二RO进行侦听,其中,所述至少一个第二RO对应于第二关联信号,所述第二关联信号包括:第二SSB和第二CSI-RS中的至少一项,所述第二关联信号与所述第一关联信号不同;
    或者,
    若所述消息一时间窗未结束,则继续在所述消息一时间窗内,对非授权频段中第二信道的目标RO进行侦听,其中,所述第二信道的频域范围与所述第一信道的频域范围至少部分不同,所述目标RO包括:第一RO、第二RO或其他RO,所述其他RO对应的关联信号不同于所述第一关联信号和第二关联信号。
  10. 根据权利要求8或9所述的信息传输方法,其中,对非授权频段中第一信道的至少一个第二RO进行侦听的步骤,包括:
    若所述第一信道内的第二关联信号的测量结果满足预设条件,则对非授权频段中的所述第一信道的至少一个第二RO进行侦听。
  11. 根据权利要求8或9所述的信息传输方法,其中,对非授权频段中第二信道的目标RO进行侦听的步骤,包括:
    若所述第二信道的测量结果满足预设条件,则对非授权频段中的所述第二信道的目标RO进行侦听。
  12. 根据权利要求6或7所述的信息传输方法,其中,对非授权频段的传输资源进行侦听,以确定目标传输信道的步骤之前,还包括:
    获取物理随机接入信道PRACH配置信息;其中,所述PRACH配置信息 用于指示RO标识、RO频分复用能力和RO频域间隔中的至少一项。
  13. 根据权利要求6或7所述的信息传输方法,其中,对非授权频段的传输资源进行侦听,以确定目标传输信道的步骤之前,还包括:
    获取消息一时间窗配置信息;其中,所述消息一时间窗配置信息用于指示窗起点、窗长、窗周期、窗内最大侦听失败次数和窗时域偏移中至少一项。
  14. 根据权利要求1所述的信息传输方法,其中,所述目标传输资源所占用的带宽大于或等于所述目标传输信道的标称信道带宽的预设百分比。
  15. 一种终端,包括:
    发送模块,用于在目标传输信道的目标传输资源上,向网络设备发送随机接入过程的消息一以及填充信息;其中,所述消息一与所述填充信息是频分复用的。
  16. 一种终端,包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至14中任一项所述的信息传输方法的步骤。
  17. 一种信息传输方法,应用于网络设备侧,包括:
    在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息;其中,所述消息一与所述填充信息是频分复用的;
    根据所述消息一,向终端反馈响应消息。
  18. 根据权利要求17所述的信息传输方法,其中,在所述目标传输信道中包括至少一个物理随机接入信道传输时机RO时,所述目标传输资源包括至少一个RO以及至少一个其他信道,所述其他信道位于所述目标传输信道上除全部RO之外的频域部分,
    或者,
    在所述目标传输信道中包括至少两个RO时,所述目标传输资源包括所述至少两个RO中的多个。
  19. 根据权利要求18所述的信息传输方法,其中,所述其他信道包括以下资源中的至少一项:
    与所述RO相对于所述目标传输信道的频率中心频域对称的第一资源;
    与所述目标传输信道的高频边界偏移第一偏移量的第二资源;
    与所述目标传输信道的低频边界偏移第二偏移量的第三资源;
    与所述RO的高频边界偏移第三偏移量的第四资源;
    与所述RO的低频边界偏移第四偏移量的第五资源;
    与所述RO以预设频域间隔在所述目标传输信道中均匀分布的第六资源;
    与所述RO所在激活上行带宽部分的高频域边界偏移第五偏移量的第七资源;
    与所述RO所在激活上行带宽部分的低频域边界偏移第六偏移量的第八资源。
  20. 根据权利要求17或18所述的信息传输方法,其中,所述填充信息包括以下中的至少一项:
    所述消息一的副本;
    第一填充信息,所述第一填充信息包括至少一个第一序列,其中,所述第一序列对应的前导码初始序列与所述消息一对应的前导码初始序列相同,所述第一序列对应的循环移位与所述消息一对应的循环移位不同;
    第二填充信息,所述第二填充信息包括至少一个第二序列,其中,所述第二序列对应的前导码初始序列与所述消息一对应的前导码初始序列不同;以及
    目标伪随机序列,所述目标伪随机序列包括:ZC序列、CAZAC序列、Gold序列和M序列中的至少一项。
  21. 根据权利要求20所述的信息传输方法,其中,所述第一序列和/或所述第二序列为:前导码序列集中除所述消息一之外的前导码序列,其中,所述前导码序列集包括消息一候选前导码序列与其他前导码序列。
  22. 根据权利要求17所述的信息传输方法,其中,所述目标传输信道位于非授权频段或授权频段。
  23. 根据权利要求17或22所述的信息传输方法,其中,在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息的步骤之前,还包括:
    为终端配置物理随机接入信道PRACH配置信息;其中,所述PRACH配置信息用于指示RO标识、RO频分复用能力和RO频域间隔中的至少一项。
  24. 根据权利要求17或22所述的信息传输方法,其中,在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息的步骤之前,还包括:
    为终端配置消息一时间窗配置信息;其中,所述消息一时间窗配置信息用于指示窗起点、窗长、窗周期、窗内最大侦听失败次数和窗时域偏移中至少一项。
  25. 根据权利要求17所述的信息传输方法,其中,在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息的步骤之后,还包括:
    检测所述消息一并忽略所述填充信息。
  26. 根据权利要求17所述的信息传输方法,其中,所述目标传输资源所占用的带宽大于或等于所述目标传输信道的标称信道带宽的预设百分比。
  27. 一种网络设备,包括:
    接收模块,用于在目标传输信道的目标传输资源上,接收随机接入过程的消息一以及填充信息;其中,所述消息一与所述填充信息是频分复用的;
    响应模块,用于根据所述消息一,向终端反馈响应消息。
  28. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求17至26任一项所述的信息传输方法的步骤。
  29. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至14、17至26中任一项所述的信息传输方法的步骤。
PCT/CN2019/096701 2018-07-31 2019-07-19 信息传输方法、终端及网络设备 WO2020024811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810858289.9 2018-07-31
CN201810858289.9A CN110784933B (zh) 2018-07-31 2018-07-31 信息传输方法、终端及网络设备

Publications (1)

Publication Number Publication Date
WO2020024811A1 true WO2020024811A1 (zh) 2020-02-06

Family

ID=69232360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096701 WO2020024811A1 (zh) 2018-07-31 2019-07-19 信息传输方法、终端及网络设备

Country Status (2)

Country Link
CN (1) CN110784933B (zh)
WO (1) WO2020024811A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113260048A (zh) * 2020-02-07 2021-08-13 维沃移动通信有限公司 一种系统运行模式确定方法和终端
CN114071765A (zh) * 2020-08-05 2022-02-18 维沃移动通信有限公司 传输控制方法、装置及电子设备
CN116709569A (zh) * 2023-08-02 2023-09-05 南京朗立微集成电路有限公司 一种基于视频预测的Wi-Fi QoS保障方法
WO2024125403A1 (zh) * 2022-12-12 2024-06-20 维沃移动通信有限公司 传输方法、装置、终端及网络侧设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113260004A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 一种通信方法及装置
CN114071446B (zh) * 2020-08-04 2023-05-05 维沃移动通信有限公司 信息传输方法、信息传输装置、终端及网络侧设备
CN112369104B (zh) * 2020-09-28 2021-12-17 中兴通讯股份有限公司 用于随机接入过程中的前导码聚合的方法、装置和系统
CN115996476A (zh) * 2021-10-18 2023-04-21 华为技术有限公司 一种随机接入方法及装置
CN114080048A (zh) * 2021-11-15 2022-02-22 中国移动通信有限公司研究院 一种随机接入资源分配方法及装置、终端、网络设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106900075A (zh) * 2016-05-13 2017-06-27 中国移动通信有限公司研究院 一种随机接入方法、装置、相关设备和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11343680B2 (en) * 2014-09-29 2022-05-24 Qualcomm Incorporated Techniques for accessing a cell using an unlicensed radio frequency spectrum band
US10420139B2 (en) * 2016-02-05 2019-09-17 Qualcomm Incorporated Uplink scheduling for license assisted access
CN113347719A (zh) * 2017-03-22 2021-09-03 华为技术有限公司 信息传输方法、装置及系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106900075A (zh) * 2016-05-13 2017-06-27 中国移动通信有限公司研究院 一种随机接入方法、装置、相关设备和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "UL PHY Channels for NR Unlicensed", 3GPP TSG RAN WGI MEETING #93 R1-1805921, 11 May 2018 (2018-05-11), XP051461631 *
VIVO: "Discussion on Physical UL Channel Design in NR Unlicensed Spectrum", 3GPP TSG RAN WGI MEETING #93 R1-1806085, 12 May 2018 (2018-05-12), pages 2, XP051462349 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113260048A (zh) * 2020-02-07 2021-08-13 维沃移动通信有限公司 一种系统运行模式确定方法和终端
CN113260048B (zh) * 2020-02-07 2023-03-24 维沃移动通信有限公司 一种系统运行模式确定方法和终端
CN114071765A (zh) * 2020-08-05 2022-02-18 维沃移动通信有限公司 传输控制方法、装置及电子设备
CN114071765B (zh) * 2020-08-05 2023-09-01 维沃移动通信有限公司 传输控制方法、装置及电子设备
WO2024125403A1 (zh) * 2022-12-12 2024-06-20 维沃移动通信有限公司 传输方法、装置、终端及网络侧设备
CN116709569A (zh) * 2023-08-02 2023-09-05 南京朗立微集成电路有限公司 一种基于视频预测的Wi-Fi QoS保障方法
CN116709569B (zh) * 2023-08-02 2023-12-12 南京朗立微集成电路有限公司 一种基于视频预测的Wi-Fi QoS保障方法

Also Published As

Publication number Publication date
CN110784933B (zh) 2021-12-14
CN110784933A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2020024811A1 (zh) 信息传输方法、终端及网络设备
JP7369782B2 (ja) ハイブリッド自動再送要求harqフィードバック方法、端末及びネットワーク機器
US11463214B2 (en) Quasi co-location configuration method, terminal, and network device
CN111106907B (zh) 传输配置指示tci状态的指示方法及终端
WO2020151743A1 (zh) 随机接入方法及终端
JP7089070B2 (ja) 同期信号ブロックの伝送方法、ネットワーク装置及び端末
WO2019214664A1 (zh) 传输资源指示方法、网络设备及终端
CA3118244C (en) Information transmission method and communications device
CN111182648B (zh) 一种随机接入传输方法及终端
CN111182635B (zh) 非授权频段信息传输方法、终端及网络设备
WO2021155763A1 (zh) 非授权频段的数据传输方法及装置、通信设备
CN110611954B (zh) 一种带宽部分的处理方法、终端及网络设备
CN110784873B (zh) 非授权频段的信息传输方法、终端及网络设备
WO2020151706A1 (zh) 随机接入传输方法及终端
CN111315015B (zh) 非授权频段信息传输方法、终端及网络设备
US12041654B2 (en) Random access resource determining method, terminal, and network device
US20210250991A1 (en) Random access resource determining method, terminal, and network device
CN113452488B (zh) 传输节点的配置方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844543

Country of ref document: EP

Kind code of ref document: A1