KR102622889B1 - 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
KR102622889B1
KR102622889B1 KR1020227045009A KR20227045009A KR102622889B1 KR 102622889 B1 KR102622889 B1 KR 102622889B1 KR 1020227045009 A KR1020227045009 A KR 1020227045009A KR 20227045009 A KR20227045009 A KR 20227045009A KR 102622889 B1 KR102622889 B1 KR 102622889B1
Authority
KR
South Korea
Prior art keywords
pusch
message
resource
present disclosure
various embodiments
Prior art date
Application number
KR1020227045009A
Other languages
English (en)
Other versions
KR20230003442A (ko
Inventor
고현수
윤석현
이정수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20230003442A publication Critical patent/KR20230003442A/ko
Application granted granted Critical
Publication of KR102622889B1 publication Critical patent/KR102622889B1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access

Abstract

본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 개시한다.

Description

무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 {METHOD FOR TRANSMITTING AND RECEIVING SIGNAL IN WIRELESS COMMUNICATION SYSTEM, AND APPARATUS FOR SUPPORTING SAME}
본 개시 (present disclosure)의 다양한 실시예들은 무선 통신 시스템에 대한 것으로, 구체적으로는 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.
이와 같이 향상된 모바일 브로드밴드 통신, 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 실시예들은 무선 통신 시스템에서 2-스텝 RACH 절차를 위한 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 실시예들은 2-스텝 RACH 절차를 지원하기 위한 메시지A 내에 포함된 PUSCH 들의 멀티플렉싱 (multiplexing) 및/또는 DM-RS 매핑 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 실시예들은 무선 통신 시스템에서 2-스텝 RACH 절차를 위한 메시지A 내의 RACH 기회 및 PUSCH 기회 간의 다중화 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 실시예들은 무선 통신 시스템에서 2-스텝 RACH 절차와 4-스텝 RACH 절차 간의 RACH 기회 공유가 허용되는지 여부에 따른 메시지A 의 구성 방법 및 이를 지원하는 장치를 제공할 수 있다.
본 개시의 다양한 실시예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 다양한 실시예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 단말의 방법이 제공될 수 있다.
예시적 실시예에서, 상기 방법은: 임의 접속 절차 (random access procedure) 와 관련된 메시지 A (message A) 를 획득하는 과정으로써, 상기 메시지 A 는 PRACH (physical random access channel) 프리앰블 (preamble) 과 PUSCH (physical uplink shared channel) 을 포함하는 과정; 상기 메시지 A 를 송신하는 과정; 및 상기 메시지 A 에 대한 응답으로, 상기 임의 접속 절차와 관련된 메시지 B (message B) 를 수신하는 과정을 포함할 수 있다.
예시적 실시예에서, 상기 PUSCH 는, 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 내에서 연속적인 PUSCH 기회들 (occasions) 중 하나 이상의 PUSCH 기회에서 송신될 수 있다.
예시적 실시예에서, 상기 PRACH 프리앰블은, 미리 설정된 하나 이상의 PRACH 프리앰블 중에서 획득될 수 있다.
예시적 실시예에서, 상기 PUSCH 는, DM-RS (demodulation reference signal) 를 포함할 수 있다.
예시적 실시예에서, 상기 DM-RS 는, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스와 관련될 수 있다.
예시적 실시예에서, 상기 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 상기 하나 이상의 DM-RS 포트 각각의 인덱스 (index) 및 (ii) 상기 하나 이상의 DM-RS 시퀀스 각각의 인덱스에 기초하여, (i) 상기 하나 이상의 DM-RS 포트 및 (ii) 상기 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
예시적 실시예에서, 상기 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 상기 하나 이상의 DM-RS 포트 각각의 인덱스가 오름차순 (ascending order) 으로 고려된 후 (ii) 상기 DM-RS 시퀀스 각각의 인덱스가 오름차순으로 고려되는 것에 기초하여, (i) 상기 하나 이상의 DM-RS 포트 및 (ii) 상기 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
예시적 실시예에서, 상기 DM-RS 가 하나의 OFDM (orthogonal frequency division multiplexing) 심볼 내에 설정됨에 기초하여, 상기 DM-RS 포트의 개수의 최대값은 4 일 수 있다.
예시적 실시예에서, 상기 PUSCH 는, 상기 PRACH 프리앰블의 RAPID (random access preamble identifier) 와 연관된 MCS (modulation and coding scheme) 레벨에 기초하여 송신될 수 있다.
예시적 실시예에서, 상기 DM-RS 를 위한 복수의 주파수 자원 집합들이 설정됨에 기초하여: 상기 DM-RS 는, 상기 복수의 주파수 자원 집합들 중 상기 RAPID 와 연관된 주파수 자원 집합에 기초하여 송신될 수 있다.
예시적 실시예에서, 상기 PRACH 프리앰블은 PRACH 기회들 (occasions) 중 하나 이상의 PRACH 기회에서 송신될 수 있다.
예시적 실시예에서, 상기 PRACH 기회들과 상기 PUSCH 기회들은, (i) 상기 PRACH 기회들이 상기 메시지 A 를 위한 제1 슬롯 내에서 포함되는 것 및 (ii) 상기 PUSCH 기회들이 상기 메시지 A 를 위한 제2 슬롯 내에서 포함되는 것에 기초하여 TDM (time division multiplexing) 되고, 상기 제1 슬롯과 상기 제2 슬롯은 서로 다른 슬롯일 수 있다.
예시적 실시예에서, 상기 시간 도메인에서 상기 PRACH 기회들과 상기 PUSCH 기회들 사이에는 시간 오프셋 (time offset) 이 설정될 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템의 장치가 제공될 수 있다.
예시적 실시예에서, 상기 장치는: 메모리 (memory); 및 상기 메모리와 연결된 하나 이상의 프로세서 (processor) 를 포함할 수 있다.
예시적 실시예에서, 상기 하나 이상의 프로세서는: 임의 접속 절차 (random access procedure) 와 관련된 메시지 A (message A) 를 획득하고, 상기 메시지 A 는 PRACH (physical random access channel) 프리앰블 (preamble) 과 PUSCH (physical uplink shared channel) 을 포함하고, 상기 메시지 A 를 송신하고, 상기 메시지 A 에 대한 응답으로, 상기 임의 접속 절차와 관련된 메시지 B (message B) 를 수신할 수 있다.
예시적 실시예에서, 상기 PUSCH 는, 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 내에서 연속적인 PUSCH 기회들 (occasions) 중 하나 이상의 PUSCH 기회에서 송신될 수 있다.
예시적 실시예에서, 상기 PRACH 프리앰블은, 미리 설정된 하나 이상의 PRACH 프리앰블 중에서 획득될 수 있다.
예시적 실시예에서, 상기 PUSCH 는, DM-RS (demodulation reference signal) 를 포함할 수 있다.
예시적 실시예에서, 상기 DM-RS 는, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스와 관련될 수 있다.
예시적 실시예에서, 상기 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 상기 하나 이상의 DM-RS 포트 각각의 인덱스 (index) 및 (ii) 상기 하나 이상의 DM-RS 시퀀스 각각의 인덱스에 기초하여, (i) 상기 하나 이상의 DM-RS 포트 및 (ii) 상기 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
예시적 실시예에서, 상기 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 상기 하나 이상의 DM-RS 포트 각각의 인덱스가 오름차순 (ascending order) 으로 고려된 후 (ii) 상기 DM-RS 시퀀스 각각의 인덱스가 오름차순으로 고려되는 것에 기초하여, (i) 상기 하나 이상의 DM-RS 포트 및 (ii) 상기 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
예시적 실시예에서, 상기 PUSCH 는, 상기 PRACH 프리앰블의 RAPID (random access preamble identifier) 와 연관된 MCS (modulation and coding scheme) 레벨에 기초하여 송신될 수 있다.
예시적 실시예에서, 상기 장치는, 이동 단말기, 네트워크 및 상기 장치가 포함된 차량 이외의 자율 주행 차량 중 하나 이상과 통신할 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 기지국의 방법이 제공될 수 있다.
예시적 실시예에서, 상기 방법은: 임의 접속 절차 (random access procedure) 와 관련된 메시지 A (message A) 를 수신하는 과정; 상기 메시지 A 에 포함된 PRACH (physical random access channel) 프리앰블 (preamble) 과 PUSCH (physical uplink shared channel) 을 획득하는 과정; 및 상기 메시지 A 에 대한 응답으로, 상기 임의 접속 절차와 관련된 메시지 B (message B) 를 송신하는 과정을 포함할 수 있다.
예시적 실시예에서, 상기 PUSCH 는, 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 내에서 연속적인 PUSCH 기회들 (occasions) 중 하나 이상의 PUSCH 기회에서 수신될 수 있다.
예시적 실시예에서, 상기 PRACH 프리앰블은, 미리 설정된 하나 이상의 PRACH 프리앰블 중에서 획득될 수 있다.
예시적 실시예에서, 상기 PUSCH 는, DM-RS (demodulation reference signal) 를 포함할 수 있다.
예시적 실시예에서, 상기 DM-RS 는, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스와 관련될 수 있다.
예시적 실시예에서, 상기 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 상기 하나 이상의 DM-RS 포트 각각의 인덱스 (index) 및 (ii) 상기 하나 이상의 DM-RS 시퀀스 각각의 인덱스에 기초하여, (i) 상기 하나 이상의 DM-RS 포트 및 (ii) 상기 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템의 장치가 제공될 수 있다.
예시적 실시예에서, 상기 장치는: 메모리 (memory); 및 상기 메모리와 연결된 하나 이상의 프로세서 (processor) 를 포함할 수 있다.
예시적 실시예에서, 상기 하나 이상의 프로세서는: 임의 접속 절차 (random access procedure) 와 관련된 메시지 A (message A) 를 수신하고, 상기 메시지 A 에 포함된 PRACH (physical random access channel) 프리앰블 (preamble) 과 PUSCH (physical uplink shared channel) 을 획득하고, 상기 메시지 A 에 대한 응답으로, 상기 임의 접속 절차와 관련된 메시지 B (message B) 를 송신할 수 있다.
예시적 실시예에서, 상기 PUSCH 는, 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 내에서 연속적인 PUSCH 기회들 (occasions) 중 하나 이상의 PUSCH 기회에서 수신될 수 있다.
예시적 실시예에서, 상기 PRACH 프리앰블은, 미리 설정된 하나 이상의 PRACH 프리앰블 중에서 획득될 수 있다.
예시적 실시예에서, 상기 PUSCH 는, DM-RS (demodulation reference signal) 를 포함할 수 있다.
예시적 실시예에서, 상기 DM-RS 는, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스와 관련될 수 있다.
예시적 실시예에서, 상기 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 상기 하나 이상의 DM-RS 포트 각각의 인덱스 (index) 및 (ii) 상기 하나 이상의 DM-RS 시퀀스 각각의 인덱스에 기초하여, (i) 상기 하나 이상의 DM-RS 포트 및 (ii) 상기 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템의 장치가 제공될 수 있다.
예시적 실시예에서, 상기 장치는: 하나 이상의 프로세서 (processor); 및 상기 하나 이상의 프로세서가 방법을 수행하도록 하는 하나 이상의 명령어 (instruction) 를 저장하는 하나 이상의 메모리 (memory) 를 포함할 수 있다.
예시적 실시예에서, 상기 방법은: 임의 접속 절차 (random access procedure) 와 관련된 메시지 A (message A) 를 획득하는 과정으로써, 상기 메시지 A 는 PRACH (physical random access channel) 프리앰블 (preamble) 과 PUSCH (physical uplink shared channel) 을 포함하는 과정; 상기 메시지 A 를 송신하는 과정; 및 상기 메시지 A 에 대한 응답으로, 상기 임의 접속 절차와 관련된 메시지 B (message B) 를 수신하는 과정을 포함할 수 있다.
예시적 실시예에서, 상기 PUSCH 는, 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 내에서 연속적인 PUSCH 기회들 (occasions) 중 하나 이상의 PUSCH 기회에서 송신될 수 있다.
예시적 실시예에서, 상기 PRACH 프리앰블은, 미리 설정된 하나 이상의 PRACH 프리앰블 중에서 획득될 수 있다.
예시적 실시예에서, 상기 PUSCH 는, DM-RS (demodulation reference signal) 를 포함할 수 있다.
예시적 실시예에서, 상기 DM-RS 는, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스와 관련될 수 있다.
예시적 실시예에서, 상기 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 상기 하나 이상의 DM-RS 포트 각각의 인덱스 (index) 및 (ii) 상기 하나 이상의 DM-RS 시퀀스 각각의 인덱스에 기초하여, (i) 상기 하나 이상의 DM-RS 포트 및 (ii) 상기 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
본 개시의 다양한 실시예들에 따르면, 하나 이상의 프로세서 (processor) 가 방법을 수행하도록 하는 하나 이상의 명령어 (instruction) 를 저장하는 프로세서-판독 가능 매체 (processor-readable medium) 가 제공될 수 있다.
예시적 실시예에서, 상기 방법은: 임의 접속 절차 (random access procedure) 와 관련된 메시지 A (message A) 를 획득하는 과정으로써, 상기 메시지 A 는 PRACH (physical random access channel) 프리앰블 (preamble) 과 PUSCH (physical uplink shared channel) 을 포함하는 과정; 상기 메시지 A 를 송신하는 과정; 및 상기 메시지 A 에 대한 응답으로, 상기 임의 접속 절차와 관련된 메시지 B (message B) 를 수신하는 과정을 포함할 수 있다.
예시적 실시예에서, 상기 PUSCH 는, 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 내에서 연속적인 PUSCH 기회들 (occasions) 중 하나 이상의 PUSCH 기회에서 송신될 수 있다.
예시적 실시예에서, 상기 PRACH 프리앰블은, 미리 설정된 하나 이상의 PRACH 프리앰블 중에서 획득될 수 있다.
예시적 실시예에서, 상기 PUSCH 는, DM-RS (demodulation reference signal) 를 포함할 수 있다.
예시적 실시예에서, 상기 DM-RS 는, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스와 관련될 수 있다.
예시적 실시예에서, 상기 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 상기 하나 이상의 DM-RS 포트 각각의 인덱스 (index) 및 (ii) 상기 하나 이상의 DM-RS 시퀀스 각각의 인덱스에 기초하여, (i) 상기 하나 이상의 DM-RS 포트 및 (ii) 상기 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
상술한 본 개시의 다양한 실시예들은 본 개시의 바람직한 실시예들 중 일부에 불과하며, 본 개시의 다양한 실시예들의 기술적 특징들이 반영된 여러 가지 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 개시의 다양한 실시예들에 따르면 다음과 같은 효과가 있다.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 실시예들은 무선 통신 시스템에서 2-스텝 RACH 절차를 위한 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 실시예들은 2-스텝 RACH 절차를 지원하기 위한 메시지A 내에 포함된 PUSCH 들의 멀티플렉싱 (multiplexing) 및/또는 DM-RS 매핑 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 실시예들은 무선 통신 시스템에서 2-스텝 RACH 절차를 위한 메시지A 내의 PRACH 기회 및 PUSCH 기회 간의 다중화 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 실시예들은 무선 통신 시스템에서 2-스텝 RACH 절차와 4-스텝 RACH 절차 간의 RACH 기회 공유가 허용되는지 여부에 따른 메시지A 의 구성 방법 및 이를 지원하는 장치를 제공할 수 있다.
본 개시의 다양한 실시예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.
이하에 첨부되는 도면들은 본 개시의 다양한 실시예들에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시의 다양한 실시예들을 제공한다. 다만, 본 개시의 다양한 실시예들의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다. 각 도면에서의 참조 번호 (reference numerals) 들은 구조적 구성요소 (structural elements) 를 의미한다.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.
도 3은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
도 4는 본 개시의 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 5은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.
도 6 은 본 개시의 다양한 실시예들에 따른 CCE-REG 매핑 타입의 예시를 나타낸 도면이다.
도 7 는 본 개시의 다양한 실시예들에 따른 블록 인터리버의 예시를 나타낸 도면이다.
도 8 은 본 개시의 다양한 실시예들에 따른 TXRU (Transceiver Unit)와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다.
도 9 는 본 개시의 다양한 실시예들에 따른 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다.
도 10은 본 개시의 다양한 실시예들에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다.
도 11 는 본 개시의 다양한 실시예들에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 12 는 본 개시의 다양한 실시예들이 적용 가능한 SSB (Synchronization Signal Block)의 구조를 나타낸 도면이다.
도 13 은 본 개시의 다양한 실시예들이 적용 가능한 SSB 의 전송 방법의 일 예를 나타낸 도면이다.
도 14 은 본 개시의 다양한 실시예들이 적용 가능한 비면허 대역을 지원하는 무선 통신 시스템의 예시를 나타낸 도면이다.
도 15 은 본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 DL CAP를 설명하기 위한 도면이다.
도 16 은 본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 UL CAP를 설명하기 위한 도면이다.
도 17는 본 개시의 다양한 실시예들이 적용 가능한 4-step RACH 절차의 일 예를 나타낸 도면이다.
도 18는 본 개시의 다양한 실시예들이 적용 가능한 2-step RACH 절차의 일 예를 나타낸 도면이다.
도 19은 본 개시의 다양한 실시예들이 적용 가능한 contention-free RACH 절차의 일 예를 나타낸 도면이다.
도 20 은 본 개시의 다양한 실시예들에 따른 단말과 기지국의 동작 방법을 간단히 나타낸 도면이다.
도 21 은 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 간단히 나타낸 도면이다.
도 22 은 본 개시의 다양한 실시예들에 따른 기지국의 동작 방법을 간단히 나타낸 도면이다.
도 23 는 본 개시의 다양한 실시예들에 따른 메시지A 구성의 예시를 나타낸 도면이다.
도 24 는 본 개시의 다양한 실시예들에 따른 메시지A 를 위한 자원 구성의 일 예를 나타낸 도면이다.
도 25 은 본 개시의 다양한 실시예들에 따른 메시지A 구성의 예시를 나타낸 도면이다.
도 26 은 본 개시의 다양한 실시예들에 따른 메시지A 구성의 예시를 나타낸 도면이다.
도 27 은 본 개시의 다양한 실시예들에 따른 네트워크 초기 접속 및 이후의 통신 과정을 간단히 나타낸 도면이다.
도 28 은 본 개시의 다양한 실시예들에 따른 DRX 동작을 예시한 도면이다.
도 29 은 본 개시의 다양한 실시예들에 따른 단말과 기지국의 동작 방법을 간단히 나타낸 도면이다.
도 30는 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 나타낸 흐름도이다.
도 31은 본 개시의 다양한 실시예들에 따른 기지국의 동작 방법을 나타낸 흐름도이다.
도 32는 본 개시의 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.
도 33은 본 개시의 다양한 실시예들에 적용되는 통신 시스템을 예시한다.
도 34은 본 개시의 다양한 실시예들에 적용될 수 있는 무선 기기를 예시한다.
도 35은 본 개시의 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다.
도 36는 본 개시의 다양한 실시예들에 적용되는 휴대 기기를 예시한다.
도 37는 본 개시의 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다.
도 38은 본 개시의 다양한 실시예들에 적용되는 차량을 예시한다.
이하의 실시예들은 본 개시의 다양한 실시예들의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 다양한 실시예들을 구성할 수도 있다. 본 개시의 다양한 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 개시의 다양한 실시예들의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당해 기술분야에서 통상의 지식을 가진 자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시의 다양한 실시예들을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 개시의 다양한 실시예들은 기지국(Base Station)과 단말(Terminal) 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 개시의 다양한 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미할 수 있다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 개시의 다양한 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 다양한 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 37.213, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.214, 3GPP TS 38.321 및 3GPP TS 38.331 등의 문서들에 의해 뒷받침 될 수 있다. 문서들에 의해 뒷받침 될 수 있다. 즉, 본 개시의 다양한 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 개시의 다양한 실시예들에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 다양한 실시예들의 예시적인 실시형태를 설명하고자 하는 것이며, 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 개시의 다양한 실시예들에서 사용되는 특정(特定) 용어들은 본 개시의 다양한 실시예들의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 다양한 실시예들의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하에서는 본 개시의 다양한 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다.
본 개시의 다양한 실시예들의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 개시의 다양한 실시예들을 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP 시스템 일반
1.1. 물리 채널들 및 일반적인 신호 전송
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다 (S11). 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다 (S12).
이후, 단말은 기지국에 접속을 완료하기 위해 임의 접속 절차 (Random Access Procedure)을 수행할 수 있다 (S13 ~ S16). 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 RAR (Random Access Response)를 수신할 수 있다(S14). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)을 전송하고 (S15), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다(S16).
한편, 임의 접속 과정이 2 단계로 수행되는 경우, S13/S15 는 단말이 송신을 수행하는 하나의 동작으로 수행되고, S14/S16 이 기지국이 송신을 수행하는 하나의 동작으로 수행될 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 무선 프레임 (Radio Frame) 구조
도 2는 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.
NR 시스템은 다수의 뉴머롤로지(Numerology)들을 지원할 수 있다. 여기에서, 뉴머롤로지는 부반송파 간격(subcarrier spacing, SCS)과 순환 프리픽스(cyclic prefix, CP) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 부반송파 간격은 기본 부반송파 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 부반송파 간격을 이용하지 않는다고 가정할지라도, 이용되는 뉴머롤로지는 셀의 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM) 뉴머롤로지 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1와 같이 정의될 수 있다. 대역폭 파트에 대한 μ 및 순환 프리픽스는 BS에 의해 제공되는 RRC 파라미터들로부터 얻어진다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머롤러지(예, 부반송파 간격(subcarrier spacing))를 지원한다. 예를 들어, 부반송파 간격이 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, 부반송파 간격이 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 레이턴시(lower latency) 및 더 넓은 반송파 대역폭(wider carrier bandwidth)를 지원하며, 부반송파 간격이 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 대역(frequency band)은 FR1과 FR2라는 2가지 타입의 주파수 범위(frequency range)로 정의된다. FR1은 sub 6GHz 범위이며, FR2는 above 6GHz 범위로 밀리미터 웨이브(millimiter wave, mmWave)를 의미할 수 있다.
아래 표 2는 NR 주파수 대역의 정의를 예시한다.
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 도메인의 다양한 필드들의 크기는 NR용 기본 시간 유닛(basic time unit)인 T c = 1/(△f max* N f)의 배수로 표현된다. 여기서, △f max = 480*10 3 Hz이고, 고속 푸리에 변환(fast Fourier transform, FFT) 혹은 역 고속 푸리에 변환(inverse fast Fourier transform, IFFT) 크기와 관련이 있는 값인 N f = 4096이다. T c는 LTE용 기반 시간 유닛이자 샘플링 시간인 T s = 1/((15kHz)*2048)와 다음의 관계를 갖는다: T s/ T c = 64. 하향링크 및 상향링크(uplink) 전송들은 T f = (△f max* N f/100)* T c = 10ms 지속기간(duration)의 (무선) 프레임들로 조직화(organize)된다. 여기서, 각 무선 프레임은 각각이 T sf = (△f max* N f/1000)* T c = 1ms 지속기간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 뉴머롤로지 μ에 대하여, 슬롯(slot)들은 서브프레임 내에서는 오름차순(increasing order)으로 n μ s ∈ {0,…, N slot,μ subframe-1}로 번호가 매겨지고, 무선 프레임 내에서는 오름차순으로 n μ s,f ∈ {0,…, N slot,μ frame-1}으로 번호가 매겨진다. 하나의 슬롯은 N μ symb개의 연속하는(consecutive) OFDM 심볼들로 구성되고, N μ symb는 순환 프리픽스(cyclic prefix, CP)에 의존한다. 서브프레임에서 슬롯 n μ s의 시작은 동일 서브프레임 내에서 OFDM 심볼 n μ s* N μ symb의 시작과 시간적으로 정렬된다.
표 3은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 4은 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.
상기 표에서, N slot symb 는 슬롯 내 심볼의 개수를 나타내고, N frame,μ slot는 프레임 내 슬롯의 개수를 나타내고, N subframe,μ slot는 서브프레임 내 슬롯의 개수를 나타낸다.
본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머롤로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
도 2은, μ=2인 경우(즉, 부반송파 간격이 60kHz)의 일례로서, 표 3을 참고하면 1개 서브프레임은 4개의 슬롯(slot)들을 포함할 수 있다. 도 2에 도시된 1개 서브프레임 = {1,2,4}개 슬롯들은 예시이며, 1개 서브프레임에 포함될 수 있는 슬롯(들)의 개수는 표 6 또는 표 7과 같이 정의된다.
또한, 미니-슬롯은 2, 4 또는 7개 심볼들을 포함할 수 있거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.
도 3은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
도 3을 참조하면, 하나의 슬롯은 시간 도메인에서 복수의 심볼들을 포함할 수 있다. 예를 들어, 보통 CP(normal CP)의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP(extended CP)의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파(carrier)는 주파수 도메인에서 복수의 부반송파(subcarrier)를 포함할 수 있다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다.
BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴머롤로지(예, SCS, CP 길이 등)에 대응될 수 있다.
반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 본 개시의 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
자립적 슬롯 구조란, 하나의 슬롯 내에 하향링크 제어 채널(downlink control channel), 하향링크/상향링크 데이터(downlink/uplink data), 그리고 상향링크 제어 채널(uplink control channel)이 모두 포함될 수 있는 슬롯 구조일 수 있다.
도 4를 참조하면, 빗금 친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환 또는 수신모드에서 송신 모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간(guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 개시의 다양한 실시예들에 따른 자립적 슬롯 구조는 도 4와 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
또한, 하나의 슬롯을 구성하는 상기 영역들의 순서는 실시예에 따라 달라질 수 있다. 일 예로, 하나의 슬롯은 DL 제어 영역 / DL 데이터 영역 / UL 제어 영역 / UL 데이터 영역 순서로 구성되거나, UL 제어 영역 / UL 데이터 영역 / DL 제어 영역 / DL 데이터 영역 순서 등으로 구성될 수 있다.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다.
1.3. 채널 구조
1.3.1. 하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
1.3.1.1. 물리 하향링크 공유 채널 (PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
1.3.1.2. 물리 하향링크 제어 채널 (PDCCH)
PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다.
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
도 5은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.
도 5을 참조하면, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로 1 번째, 5 번째, 9 번째 RE에 매핑된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴머롤로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 OCRESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
각 CORESET 을 위한 주파수 도메인 내 프리코더 입도 (precoder granularity)는 상위 계층 시그널링에 의해 다음 중 하나로 설정될 수 있다:
- sameAsREG-bundle : 주파수 도메인 내 REG 번들 크기와 동일함
- allContiguousRBs : CORESET 내부의 주파수 도메인 내 연속하는 RB들의 개수와 동일함
CORESET 내 REG들은 시간-우선 매핑 방식 (time-first mapping manner)에 기초하여 넘버링된다. 즉, REG들은 CORESET 내부의 가장-낮게 넘버링된 자원 블록 내 첫 번째 OFDM 심볼부터 시작하여 0부터 순차적으로 넘버링된다.
CCE에서 REG로의 매핑 타입은 비-인터리빙된 CCE-REG 매핑 타입 또는 인터리빙된 CCE-REG 매핑 타입 중 하나의 타입으로 설정된다.
도 6 은 본 개시의 다양한 실시예들에 따른 CCE-REG 매핑 타입의 예시를 나타낸 도면이다.
도 6 (a) 은 본 개시의 다양한 실시예들에 따른 비-인터리빙된 CCE-REG 매핑 타입의 예시를 나타낸 도면이다.
- 비-인터리빙된(non-interleaved) CCE-REG 매핑 타입 (또는 localized 매핑 타입): 주어진 CCE를 위한 6 REG들은 하나의 REG 번들을 구성하고, 주어진 CCE를 위한 모든 REG들은 연속함. 하나의 REG 번들은 하나의 CCE에 대응함
도 6 (b) : 본 개시의 다양한 실시예들에 따른 인터리빙된 CCE-REG 매핑 타입의 예시를 나타낸 도면이다.
- 인터리빙된 (interleaved) CCE-REG 매핑 타입 (또는 Distributed 매핑 타입): 주어진 CCE를 위한 2, 3 또는 6 REG들은 하나의 REG 번들을 구성하고, REG 번들은 CORESET 내에서 인터리빙됨. 1개 OFDM 심볼 또는 2개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 2 또는 6 REG들로 구성되고, 3개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 3 또는 6 REG들로 구성됨. REG 번들의 크기는 CORESET 별로 설정됨
도 7 는 본 개시의 다양한 실시예들에 따른 블록 인터리버의 예시를 나타낸 도면이다.
위와 같은 인터리빙 동작을 위한 (블록) 인터리버(interleaver)의 행(row) 개수(A)는 2, 3, 6 중 하나로 설정된다. 주어진 CORESET을 위한 인터리빙 단위 (interleaving unit)의 개수가 P인 경우, 블록 인터리버의 열(column) 개수는 P/A와 같다. 블록 인터리버에 대한 쓰기(write) 동작은 하기 도 7와 같이 행-우선 (row-first) 방향으로 수행되고, 읽기(read) 동작은 열-우선(column-first) 방향으로 수행된다. 인터리빙 단위의 순환 시프트 (CS)는 DMRS를 위해 설정 가능한 ID와 독립적으로 설정 가능한 id에 기초하여 적용된다.
단말은 PDCCH 후보들의 세트에 대한 디코딩 (일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간 (Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId : 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset : PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot : PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates : AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 5 은 검색 공간 타입별 특징을 예시한다.
표 6는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI format 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI format 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI format 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI format 2_0 및/또는 DCI format 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
1.3.2. 상향링크 채널 구조
단말은 후술하는 상향링크 채널을 통해 관련 신호를 기지국으로 전송하고, 기지국은 후술하는 상향링크 채널을 통해 관련 신호를 단말로부터 수신한다.
1.3.2.1. 물리 상향링크 공유 채널 (PUSCH)
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
1.3.2.2. 물리 상향링크 제어 채널 (PUCCH)
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 7은 PUCCH 포맷들을 예시한다.
PUCCH format 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH format 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH format 0인 PUCCH를 전송한다.
PUCCH format 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH format 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH format 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH format 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH format 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
1.4. 아날로그 빔포밍 (Analog beamforming)
밀리미터 파 (Millimeter Wave, mmW)에서는 파장이 짧아 동일 면적에 다수개의 안테나 요소(element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm이므로, 5 * 5 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-차원 (2-dimension) 배열을 하는 경우 총 100개의 안테나 요소를 설치할 수 있다. 이에 따라, 밀리미터 파 (mmW)에서는 다수개의 안테나 요소를 사용하여 빔포밍 (beamforming, BF) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)을 높일 수 있다.
이때, 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 각 안테나 요소는 TXRU(Transceiver Unit)을 포함할 수 있다. 이를 통해, 각 안테나 요소는 주파수 자원 별로 독립적인 빔포밍을 수행할 수 있다.
그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 아날로그 위상 시프터 (analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍이 어렵다는 단점을 갖는다.
이에 대한 해결 방안으로, 디지털 빔포밍과 아날로그 빔포밍의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍 (hybrid BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔(beam)의 방향은 B개 이하로 제한될 수 있다.
도 8 및 도 9는 본 개시의 다양한 실시예들에 따른 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다. 여기서 TXRU 가상화 (virtualization) 모델은 TXRU의 출력 신호와 안테나 요소의 출력 신호의 관계를 나타낸다.
도 8은 TXRU가 서브 어레이 (sub-array)에 연결된 방식을 나타낸 도면이다. 도 8의 경우, 안테나 요소는 하나의 TXRU에만 연결된다.
반면, 도 9는 TXRU가 모든 안테나 요소에 연결된 방식을 나타낸 도면이다. 도 12의 경우, 안테나 요소는 모든 TXRU에 연결된다. 이때, 안테나 요소가 모든 TXRU에 연결되기 위하여 도 9에 도시된 바와 같이 별도의 덧셈기를 필요로 한다.
도 8 및 도 9에서, W는 아날로그 위상 시프터 (analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W는 아날로그 빔포밍의 방향을 결정하는 주요 파라미터이다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1:1 또는 1:다(多) (1-to-many) 일 수 있다.
도 8의 구성에 따르면, 빔포밍의 포커싱이 어려운 단점이 있으나, 전체 안테나 구성을 적은 비용으로 구성할 수 있다는 장점이 있다.
도 9의 구성에 따르면, 빔포밍의 포커싱이 쉽다는 장점이 있다. 다만, 모든 안테나 요소에 TXRU가 연결되는 바, 전체 비용이 증가한다는 단점이 있다.
본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서 복수의 안테나가 사용되는 경우, 디지털 빔포밍 (Digital beamforming) 및 아날로그 빔포밍 (Analog beamforming)을 결합한 하이브리드 빔포밍 (Hybrid beamforming) 기법이 적용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF (Radio Frequency) 빔포밍)은 RF 단에서 프리코딩 (또는 콤바이닝 (Combining))을 수행하는 동작을 의미한다. 그리고, 하이브리드 빔포밍에서 베이스밴드 (Baseband) 단과 RF 단은 각각 프리코딩 (또는 콤바이닝)을 수행한다. 이로 인해 RF 체인 수와 D/A (Digital-to-Analog) (또는 A/D (Analog-to-Digital) 컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다.
설명의 편의상, 상기 하이브리드 빔포밍 구조는 N개 송수신단 (Transceiver unit, TXRU)과 M개의 물리적 안테나로 표현될 수 있다. 이때, 송신단에서 전송할 L개 데이터 계층 (Data layer)에 대한 디지털 빔포밍은 N * L (N by L) 행렬로 표현될 수 있다. 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환되고, 상기 변환된 신호에 대해 M * N (M by N) 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 10은 본 개시의 다양한 실시예들에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다. 도 10에서 디지털 빔의 개수는 L개이며, 아날로그 빔의 개수는 N개이다.
추가적으로, 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방법을 고려하고 있다. 더 나아가, 도 7과 같이 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 본 개시의 다양한 실시예들에 따른 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.
상기와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 이에 따라, 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서는 기지국이 특정 서브프레임 (SF) 또는 슬롯 내에서 심볼 별로 상이한 아날로그 빔을 적용하여 (적어도 동기 신호, 시스템 정보, 페이징 (Paging) 등) 신호를 전송함으로써 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 (Beam sweeping) 동작이 고려되고 있다.
도 11 는 본 개시의 다양한 실시예들에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 11에 있어, 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템의 시스템 정보가 브로드캐스팅 (Broadcasting) 방식으로 전송되는 물리적 자원 (또는 물리 채널)을 xPBCH (physical broadcast channel)으로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시에 전송될 수 있다.
또한, 도 11에 도시된 바와 같이, 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서는 아날로그 빔 별 채널을 측정하기 위한 구성으로써 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 참조 신호 (Reference signal, RS)인 빔 참조 신호 (Beam RS, BRS)가 도입될 수 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 이때, BRS와 달리, 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 그룹 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
1.5. 셀 탐색 (Cell search)
도 12 는 본 개시의 다양한 실시예들이 적용 가능한 SSB (Synchronization Signal Block)의 구조를 나타낸 도면이다.
단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
도 12을 참조하면, 본 개시의 다양한 실시예들이 적용 가능한 SSB은 연속한 4개의 OFDM 심볼 내 20 RB로 구성될 수 있다. 또한, SSB은 PSS, SSS 및 PBCH로 구성되고, 단말은 SSB 에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다.
PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
또한, 상기 SSB은 네트워크가 사용하는 주파수 대역의 중심 주파수가 아닌 주파수 대역에서도 전송될 수 있다.
이를 위해, 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서는 단말이 SSB을 검출해야 하는 후보 주파수 위치인 동기 래스터 (synchronization raster)를 정의한다. 상기 동기 래스터는 채널 래스터 (channel raster)와 구분될 수 있다.
상기 동기 래스터는 SSB위치에 대한 명시적인 시그널링이 존재하지 않는 경우 단말이 시스템 정보를 획득하기 위해 사용 가능한 SSB의 주파수 위치를 지시할 수 있다.
이때, 상기 동기 래스터는 GSCN (Global Synchronization Channel Number)에 기초하여 결정될 수 있다. 상기 GSCN은 RRC 시그널링 (예: MIB, SIB, RMSI, OSI 등)을 통해 전송될 수 있다.
이와 같은 동기 래스터는 초기 동기의 복잡도와 검출 속도를 감안하여 채널 래스터보다 주파수 축에서 길게 정의되고 블라인드 검출 수가 적다.
셀 탐색은 단말이 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
단말의 셀 탐색 과정은 하기 표 8과 같이 정리될 수 있다.
*336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다.
도 13 은 본 개시의 다양한 실시예들이 적용 가능한 SSB 의 전송 방법의 일 예를 나타낸 도면이다.
도 13을 참조하면, SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).
- Case A : 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case B : 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.
- Case C : 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case D : 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- Case E : 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.
1.6. 동기화 절차 (Synchronization procedure)
단말은 기지국으로부터 상기와 같은 SSB 을 수신하여 동기화를 수행할 수 있다. 이때, 상기 동기화 절차는 크게 셀 ID 검출 (Cell ID detection) 단계 및 타이밍 검출 (timing detection) 단계를 포함한다. 여기서, 셀 ID 검출 단계는 PSS에 기반한 셀 ID 검출 단계와 SSS에 기반한 셀 ID 검출 단계를 포함할 수 있다. 또한, 타이밍 검출 단계는 PBCH DM-RS (Demodulation Reference Signal)에 기반한 타이밍 검출 단계와 PBCH 컨텐츠 (예: MIB (Master Information Block))에 기반한 타이밍 검출 단계를 포함할 수 있다.
먼저, 단말은 PSS와 SSS 검출을 통해 시간 동기 및 검출된 셀의 물리적 셀 ID (Physical cell ID)를 획득할 수 있다. 보다 구체적으로, 상기 단말은 PSS 검출을 통해 SS 블록에 대한 심볼 타이밍을 획득하고, 셀 ID 그룹 내 셀 ID를 검출할 수 있다. 이어, 단말은 SSS 검출을 통해 셀 ID 그룹을 검출한다.
또한, 상기 단말은 PBCH의 DM-RS를 통해 SS 블록의 시간 인덱스 (예: 슬롯 경계)를 검출할 수 있다. 이어, 상기 단말은 PBCH에 포함된 MIB를 통해 하프 프레임 경계 정보 및 SFN (System Frame Number) 정보 등을 획득할 수 있다.
이때, 상기 PBCH는 관련된 (또는 대응하는) RMSI PDCCH/PDSCH가 상기 SS/PBCH block과 동일한 대역 또는 상이한 대역에서 전송됨을 알려줄 수 있다. 이에 따라, 단말은 상기 PBCH 디코딩 이후 상기 PBCH에 의해 지시된 주파수 대역 또는 상기 PBCH가 전송되는 주파수 대역에서 이후 전송되는 RMSI (예: MIB (Master Information Block, MIB) 외의 시스템 정보) 등을 수신할 수 있다.
상기 동작과 관련하여, 단말은 시스템 정보를 획득할 수 있다.
MIB는 SIB1(SystemInformationBlock1)을 나르는 PDSCH를 스케줄링하는 PDCCH의 모니터링을 위한 정보/파라미터를 포함하며, SS/PBCH block 내 PBCH를 통해 기지국에 의해 단말로 전송된다.
단말은 MIB에 기반하여 Type0-PDCCH 공통 탐색 공간(common search space)을 위한 CORESET(Control Resource Set)이 존재하는지 확인할 수 있다. Type0-PDCCH 공통 탐색 공간은 PDCCH 탐색 공간의 일종이며, SI 메시지를 스케줄링하는 PDCCH를 전송하는 데 사용된다.
Type0-PDCCH 공통 탐색 공간이 존재하는 경우, 단말은 MIB 내의 정보(예, pdcch-ConfigSIB1)에 기반하여 (i) CORESET을 구성하는 복수의 인접(contiguous) 자원 블록들 및 하나 이상의 연속된(consecutive) 심볼들과 (ii) PDCCH 기회(occasion)(예, PDCCH 수신을 위한 시간 도메인 위치)를 결정할 수 있다.
Type0-PDCCH 공통 탐색 공간이 존재하지 않는 경우, pdcch-ConfigSIB1은 SSB/SIB1이 존재하는 주파수 위치와 SSB/SIB1이 존재하지 않는 주파수 범위에 관한 정보를 제공한다.
SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성(availability) 및 스케줄링(예, 전송 주기, SI-윈도우 크기)과 관련된 정보를 포함한다. 예를 들어, SIB1은 SIBx가 주기적으로 브로드캐스트되는지 또는 on-demand 방식 (또는 단말의 요청에 의해)에 의해 제공되는지 여부를 알려줄 수 있다. SIBx가 on-demand 방식에 의해 제공되는 경우, SIB1은 단말이 SI 요청을 수행하는 데 필요한 정보를 포함할 수 있다. SIB1은 PDSCH를 통해 전송되며, SIB1을 스케줄링 하는 PDCCH는 Type0-PDCCH 공통 탐색 공간을 통해 전송되며, SIB1은 상기 PDCCH에 의해 지시되는 PDSCH를 통해 전송된다.
1.7. QCL (Quasi co-located 또는 Quasi co-location)
UE는 상기 UE 및 주어진 셀에 대해 의도된(intended) DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, 최대 M개의 TCI-상태 설정들을 포함하는 리스트를 수신할 있다. 여기서, M은 UE 능력(capability)에 의존한다.
각각의 TCI-State는 하나 또는 두 개의 DL RS와 PDSCH의 DM-RS 포트 간에 QCL 관계를 설정하기 위한 파라미터를 포함한다. QCL 관계는 첫 번째 DL RS에 대한 RRC 파라미터 qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)를 가지고 설정된다.
*각 DL RS에 대응하는 QCL 타입은 QCL-Info 내 파라미터 'qcl-Type'에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
예를 들어, 타겟 안테나 포트가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS 안테나 포트들은 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 UE는 QCL-TypeA TRS에서 측정된 도플러, 딜레이 값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.
1.8. 비면허 대역/공유 스펙트럼 (Unlicensed band/Shared spectrum) 시스템
도 14 은 본 개시의 다양한 실시예들이 적용 가능한 비면허 대역을 지원하는 무선 통신 시스템의 예시를 나타낸 도면이다.
이하 설명에 있어, 면허 대역(이하, L-band)에서 동작하는 셀을 L-cell로 정의하고, L-cell의 캐리어를 (DL/UL) LCC라고 정의한다. 또한, 비면허 대역 (이하, U-band)에서 동작하는 셀을 U-cell로 정의하고, U-cell의 캐리어를 (DL/UL) UCC라고 정의한다. 셀의 캐리어/캐리어-주파수는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, CC)는 셀로 통칭한다.
도 14(a)와 같이 단말과 기지국이 반송파 결합된 LCC 및 UCC를 통해 신호를 송수신하는 경우, LCC는 PCC (Primary CC)로 설정되고 UCC는 SCC (Secondary CC)로 설정될 수 있다.
도 14(b)와 같이, 단말과 기지국은 하나의 UCC 또는 반송파 결합된 복수의LCC 및 UCC를 통해 신호를 송수신할 수 있다. 즉, 단말과 기지국은 LCC 없이 UCC(s)만을 통해 신호를 송수신할 수 있다.이하, 본 개시의 다양한 실시예들에서 기술하는 비면허 대역에서의 신호 송수신 동작은 (별도의 언급이 없으면) 상술한 모든 배치 시나리오에 기초하여 수행될 수 있다.
1.8.1. 비면허 대역을 위한 무선 프레임 구조
비면허 대역에서의 동작을 위해 LTE의 프레임 구조 타입 3 또는 NR 프레임 구조가 사용될 수 있다. 비면허 대역을 위한 프레임 구조 내 상향링크/하향링크 신호 전송을 위해 점유되는 OFDM 심볼들의 구성은 기지국에 의해 설정될 수 있다. 여기서, OFDM 심볼은 SC-FDM(A) 심볼로 대체될 수 있다.
비면허 대역을 통한 하향링크 신호 전송을 위해, 기지국은 시그널링을 통해 서브프레임 #n에서 사용되는 OFDM 심볼들의 구성을 단말에게 알려줄 수 있다. 이하 설명에 있어, 서브프레임은 슬롯 또는 TU(Time Unit)로 대체될 수 있다.
구체적으로, 비면허 대역을 지원하는 무선 통신 시스템의 경우, 단말은 서브프레임 #n-1 또는 서브프레임 #n에서 기지국으로부터 수신된 DCI 내 특정 필드(예, Subframe configuration for LAA 필드 등)를 통해 서브프레임 #n 내 점유된 OFDM 심볼의 구성을 가정 (또는 식별)할 수 있다.
표 9은 무선 통신 시스템에서 Subframe configuration for LAA 필드가 현재 서브프레임 및/또는 다음 서브프레임(current and/or next subframe) 내 하향링크 물리 채널 및/또는 물리 신호의 전송을 위해 사용되는 OFDM 심볼들의 구성을 나타내는 방법을 예시한다.
비면허 대역을 통한 상향링크 신호 전송을 위해, 기지국은 시그널링을 통해 상향링크 전송 구간에 대한 정보를 단말에게 알려줄 수 있다.
구체적으로, 비면허 대역을 지원하는 LTE 시스템의 경우, 단말은 검출된 DCI 내 'UL duration and offset' 필드를 통해 서브프레임 #n에 대한 'UL duration' 및 'UL offset' 정보를 획득할 수 있다.
표 10는 무선 통신 시스템에서 UL duration and offset 필드가 UL offset 및 UL duration 구성을 나타내는 방법을 예시한다.
1.8.2. 채널 접속 절차 (Channel access procedure) 일반
이하의 정의들은, 별도의 언급이 없으면 후술되는 본 개시의 다양한 실시예들에 대한 설명에서 사용된 용어들 (terminologies) 에 적용될 수 있다.
- 채널 (channel) 이란, 공유된 스펙트럼 (shared spectrum) 내에서 채널 접속 절차가 수행되는 RBs 의 연속된 집합으로 구성된 캐리어 또는 캐리어의 부분 (a part of a carrier) 을 의미할 수 있다.
- 채널 접속 절차 (channel access procedure) 란, 전송을 수행하기 위한 채널의 가용성 (availability) 을 평가하는 센싱에 기반한 절차일 수 있다. 센싱의 기본 단위는 T sl = 9 us 의 구간 (duration) 갖는 센싱 슬롯 (sensing slot) 일 수 있다. 기지국 또는 UE 가 센싱 슬롯 구간 동안 채널을 감지하고, 센싱 슬롯 구간 내의 적어도 4us동안 감지된 검출된 전력이 에너지 검출 문턱치 X Thresh 보다 작다고 결정하는 경우, 센싱 슬롯 구간 T sl 은 유휴로 고려될 수 있다. 그렇지 않으면, 센싱 슬롯 구간 T sl 은 비지로 고려될 수 있다.
- 채널 점유 (channel occupancy) 란, 본 절에서 대응하는 채널 접속 절차 수행 이후 기지국/UE 에 의한 채널에서의 전송을 의미할 수 있다.
- 채널 점유 시간 (channel occupancy time) 이란, 기지국/UE 가 본 절에서 대응하는 채널 접속 절차를 수행한 이후 기지국/UE 및 채널 점유를 공유하는 임의의 기지국/UE(s) 가 채널에서의 송신을 수행한 총 시간을 의미할 수 있다. 채널 점유 시간을 결정하기 위하여, 송신 갭 (transmission gap) 이 25 us 이하이면, 갭 구간 (gap duration) 은 채널 점유 시간으로 카운트 될 수 있다. 채널 점유 시간은 기지국 및 대응하는 UE(s) 간의 전송을 위하여 공유될 수 있다.
1.8.3. 하향링크 채널 접속 절차 (Downlink channel access procedure)
기지국은 비면허 대역에서의 하향링크 신호 전송을 위해 상기 비면허 대역에 대해 하기와 같은 하향링크 채널 접속 절차(Channel Access Procedure; CAP)를 수행할 수 있다.
1.8.3.1. 타입 1 하향링크 채널 접속 절차 (Type 1 DL channel access procedures)
본 절에서는 하향링크 전송(들) 전에 유휴로 센싱되는 센싱 슬롯에 의하여 차지되는 (spanned) 시간 구간 (time duration) 이 랜덤한, 기지국으로부터 수행되는 채널 접속 절차에 대하여 설명한다. 본 절은 다음의 전송들에 적용될 수 있다:
- PDSCH/PDCCH/EPDCCH 를 포함하는, 기지국에 의하여 시작된 전송(들)(Transmission(s) initiated by a base station including PDSCH/PDCCH/EPDCCH), 또는,
- 사용자 평면 데이터 (user plane data) 를 갖는 유니캐스트 PDSCH (unicast PDSCH), 또는, 사용자 평면 데이터를 갖는 유니캐스트 PDSCH 및 사용자 평면 데이터를 스케쥴링하는 유니캐스트 PDCCH 를 포함하는, 기지국에 의하여 시작된 전송(들)(Transmission(s) initiated by a base station including unicast PDSCH with user plane data, or unicast PDSCH with user plane data and unicast PDCCH scheduling user plane data), 또는,
- 디스커버리 버스트만 갖는, 또는 비-유니캐스트(non-unicast) 정보와 멀티플렉스된 디스커버리 버스트를 갖는, 기지국에 의하여 시작된 전송(들). 여기서, 전송 구간은 1ms 보다 크거나 또는 전송은 디스커버리 버스트 듀티 사이클이 1/20 을 초과하게 할 수 있다.
도 15 은 본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 DL CAP를 설명하기 위한 도면이다.
본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 타입 1 하향링크 채널 접속 절차는 다음과 같이 정리할 수 있다.
하향링크 전송에 대해서 전송 노드(예를 들어, 기지국)가 채널 접속 과정(CAP)을 개시할 수 있다 (2010).
기지국은 스텝 1에 따라 경쟁 윈도우(CW) 내에서 백오프 카운터 N을 임의로 선택할 수 있다. 이때, N 값은 초기 값 N init으로 설정된다 (2020). N init 은 0 내지 CW p 사이의 값 중 임의의 값으로 선택된다.
이어서, 스텝 4에 따라 백오프 카운터 값(N)이 0이라면 (2030; Y), 기지국은 CAP 과정을 종료한다 (2032). 이어, 기지국은 Tx 버스트 전송을 수행할 수 있다 (2034). 반면에, 백오프 카운터 값이 0 이 아니라면 (2030; N), 기지국은 스텝 2에 따라 백오프 카운터 값을 1만큼 줄인다 (2040).
이어, 기지국은 채널이 유휴 상태인지 여부를 확인하고 (2050), 채널이 유휴 상태이면 (2050; Y) 백오프 카운터 값이 0 인지 확인한다 (2030).
반대로, 2050 동작에서 채널이 유휴 상태가 아니면 즉, 채널이 비지 상태이면 (2050; N), 기지국은 스텝 5에 따라 센싱 슬롯 시간(예를 들어, 9usec)보다 긴 지연 기간(defer duration T d; 25usec 이상) 동안 해당 채널이 유휴 상태인지 여부를 확인한다 (2060). 지연 기간에 채널이 유휴 상태이면 (2070; Y) 기지국은 다시 CAP 과정을 재개할 수 있다.
일 예로, 백오프 카운터 값 N init가 10이고, 백오프 카운터 값이 5까지 감소된 후 채널이 비지 상태로 판단되면 기지국은 지연 기간 동안 채널을 센싱하여 유휴 상태인지 여부를 판단한다. 이때, 지연 기간 동안 채널이 유휴 상태면 기지국은 백오프 카운터 값 N init을 설정하는 것이 아니라 백오프 카운터 값 5부터(또는, 백오프 카운터 값을 1 감소시킨 후 4부터) 다시 CAP 과정을 수행할 수 있다.
반면에, 지연 기간 동안 채널이 비지 상태이면 (2070; N), 기지국은 2060 단계를 재수행하여 새로운 지연 기간 동안 채널이 유휴 상태인지 여부를 다시 확인한다.
상기 절차에 있어 스텝 4 이후 기지국이 전송을 전송하지 않는 경우, 상기 기지국은 다음의 조건이 만족하면 상기 채널 상에서 전송을 전송할 수 있다:
상기 기지국이 전송을 전송하도록 준비되고 적어도 센싱 슬롯 구간 T sl 동안 해당 채널이 아이들로 센싱되는 경우, 및 상기 전송 이전에 바로 (immediately before) 지연 구간 T d의 모든 센싱 슬롯 구간 동안 상기 채널이 아이들로 센싱되는 경우
반대로, 전송을 전송을 하도록 준비된 이후 상기 기지국이 상기 채널을 센싱하였을 때 센싱 슬롯 구간 T sl 동안 상기 채널이 아이들로 센싱되지 않거나, 상기 의도던 전송 이전에 바로 (immediately before) 지연 구간 T d의 어느 하나의 센싱 슬롯 구간 동안 상기 채널이 아이들로 센싱되지 않은 경우, 상기 기지국은 지연 구간 T d의 센싱 슬롯 구간 동안 채널이 아이들하다고 센싱된 이후 스텝 1를 진행한다 (proceed to step 1).
상기 지연 구간 T d는 m p 연속된 센싱 슬롯 구간들 바로 다음에 이어지는 구간 T f (=16us)로 구성된다. 여기서, 각 센싱 슬롯 구간 (T sl)은 9us 이고, T f는 T f의 시작 지점에 아이들 센싱 슬롯 구간 (T sl)을 포함한다.
표 11 은 채널 접속 우선 순위 클래스에 따라 CAP에 적용되는 m p, 최소 CW, 최대 CW, 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.
1.8.3.2. 타입 2A DL 채널 접속 절차
기지국은 적어도 센싱 구간 T short dl =25 us 동안 해당 채널이 아이들로 센싱된 이후 바로 (immediately after) 전송을 전송할 수 있다. 여기서, T short dl 는 하나의 센싱 슬롯 구간 바로 다음에 이어지는 구간 T f (=16us)로 구성된다. T f는T f 의 시작 지점에 센싱 슬롯을 포함한다. 상기 T short dl 내의 두 센싱 슬롯이 아이들로 센싱된 경우, 상기 채널은 T short dl 동안 아이들로 고려된다 (be considered to be idle).
1.8.4. 다중 채널 상 전송(들)을 위한 채널 접속 절차 (channel access procedure for transmission(s) on multiple channels)
기지국은 하기의 타입 A 또는 타입 B 절차 중 하나를 통해 전송이 수행되는 다중 채널들에 접속할 수 있다.
1.8.4.1. 타입 A 다중-채널 접속 절차 (Type A multi-carrier access procedures)
본 절에 개시된 절차에 따라 기지국은 각 채널 상 채널 접속을 수행한다. 여기서, C는 상기 기지국이 전송하고자 하는 (intend to transmit) 채널의 세트이고, 이고, q는 상기 기지국이 전송하고자 하는 채널의 개수이다.
CAP에서 고려되는 카운터 N 은 각 채널 별로 결정되고, 이 경우 각 채널 별 카운터는 라 표시한다.
1.8.4.1.1. 타입 A1 (Type A1) 다중-채널 접속 절차
CAP에서 고려되는 카운터 N 은 각 채널 별로 결정되고, 각 채널 별 카운터는 라 표시한다.
기지국이 어느 하나의 채널 상 전송을 중지(cease)한 경우, 만약 상기 채널을 공유하는 다른 기술의 부재가 긴 구간 동안 보증될 수 있다면 (예: 규정의 레벨에 의해) (if the absence of any other technology sharing the channel can be guaranteed on a long term basis (e.g., by level of regulation)), 각 채널 c i (이때, c i는 c j와 상이함, )을 위해, 의 구간을 기다린 이후 또는 를 재 초기화 (reinitialising) 한 이후 아이들 센싱 슬롯이 검출되면 상기 기지국은 감소를 재개(resume)할 수 있다.
1.8.4.1.2. 타입 A2 (Type A2) 다중-채널 접속 절차
각 채널 별 카운터 N은 앞서 상술한 1.8.1. 절에 따라 결정될 수 있고, 이때 각 채널 별 카운터는 라 표시한다. 여기서, 는 가장 큰 CW p 값을 갖는 채널을 의미할 수 있다. 각 채널 를 위해, 로 설정될 수 있다.
기지국이 가 결정된 어느 하나의 채널에 대한 전송을 중단(cease)하는 경우, 상기 기지국은 모든 채널을 위한 를 재 초기화(reinitialise)한다.
1.8.4.2. 타입 B 다중-채널 접속 절차 (Type B multi-channel access procedure)
채널 는 기지국에 의해 다음과 같이 선택될 수 있다.
- 상기 기지국은 다중 채널 상 각각의 전송에 앞서 상기 C로부터 균등하게 임의적으로 (uniformly randomly) 를 선택하거나,
- 상기 기지국은 매 1 초마다 1번 이상 를 선택하지 않는다.
여기서, C는 상기 기지국이 전송하고자 하는 (intend to transmit) 채널의 세트이고, 이고, q는 상기 기지국이 전송하고자 하는 채널의 개수이다.
채널 상에서의 전송을 위해, 상기 기지국은 2.3.5.2.1. 절 또는 2.3.5.2.2. 절에 개시된 수정 사항 (medication)과 함께 2.2.1. 절에 개시된 절차에 따라 채널 상의 채널 접속을 수행한다.
인 채널 중 채널 상에서의 전송을 위해,
각 채널 를 위해, 상기 기지국은 채널 상에서의 전송에 바로 앞서 (immediately before) 적어도 센싱 구간 (sensing interval) 동안 채널 를 센싱한다. 그리고, 상기 기지국은 적어도 센싱 구간 동안 채널 가 아이들임을 센싱한 바로 직후 (immediately after) 채널 상에서 전송을 수행할 수 있다. 주어진 구간 내 채널 상 아이들 센싱이 수행되는 모든 시간 구간 동안 상기 채널이 아이들로 센싱되는 경우, 상기 채널 를 위한 아이들로 고려될 수 있다.
상기 기지국은 채널 (이때, )상에서 상기 표 12의 T mcot,p를 초과하는 구간을 위해 (for a period exceeding T mcot,p) 전송을 수행하지 않는다. 여기서, T mcot,p는 채널 을 위해 사용되는 채널 접속 파라미터를 사용하여 결정된다.
본 절의 절차에서, gNB 에 의하여 선택된 채널 세트 C 의 채널 주파수는 미리 정의된 채널 주파수 세트 중 하나의 서브 세트이다.
1.8.4.2.1. 타입 B1 (Type B1) 다중-채널 접속 절차
단일 CW p 값은 채널 세트 C 를 위해 유지된다.
채널 상 채널 접속을 위한 CW p를 결정하기 위해, 앞서 1.8.3.1 절에서 상술한 절차의 스텝 2는 다음과 같이 수정된다.
- 모든 채널 의 참조 서브프레임 k 내 PDSCH 전송(들)에 대응하는 HARQ-ACK 값들의 적어도 가 NACK으로 결정되는 경우, 모든 우선순위 클래스 를 위한 CW p를 다음 높은 허용된 값으로 (next higher allowed value)로 증가한다. 아닌 경우, 스텝 1로 이동한다.
1.8.4.2.2. 타입 B2 (Type B2) 다중-채널 접속 절차
2.3.3. 절에 개시된 절차를 이용하여 CW p 값은 각 채널 을 위해 독립적으로 유지된다. 채널 를 위한 CW p 를 결정하기 위해, 채널 와 완전히 또는 부분적으로 겹치는 임의의 PDSCH 가 2.3.3.2. 절에 기술된 절차에서 사용될 수 있다. 채널 을 위한 N init을 결정하기 위해, 채널 의 CW p 값이 사용된다. 여기서, 는 세트 C 내 모든 채널들 중 가장 큰 CW p를 갖는 채널이다.
1.8.5. 상향링크 채널 접속 절차 (Uplink channel access procedures)
UE 및 상기 UE를 위한 UL 전송을 스케줄링 또는 설정 (configuring) 하는 기지국은 (LAA S 셀 전송(들)을 수행하는) 채널로의 접속을 위해 하기의 절차를 수행한다. 이하 설명에 있어, 기본적으로 단말 및 기지국에 대해 면허 대역인 P 셀과 하나 이상의 비면허 대역인 S 셀이 설정되는 경우를 가정하여, 본 개시의 다양한 실시예들이 적용 가능한 상향링크 CAP 동작에 대해 상세히 설명한다. 다만, 상기 상향링크 CAP 동작은 상기 단말 및 기지국에 대해 비면허 대역만이 설정되는 경우에도 동일하게 적용될 수 있다.
UE는 UL 전송(들)이 수행되는 채널 상으로 타입 1 또는 타입 2 UL 채널 접속 절차에 따라 접속할 수 있다.
표 12 은 채널 접속 우선 순위 클래스에 따라 CAP에 적용되는 m p, 최소 CW, 최대 CW, 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.
1.8.5.1. 타입 1 UL 채널 접속 절차 (Type 1 UL channel access procedure)
본 절에서는 상향링크 전송(들) 전에 유휴로 센싱되는 센싱 슬롯에 의하여 차지되는 (spanned) 시간 구간 (time duration) 이 랜덤한, UE 로부터 수행되는 채널 접속 절차에 대하여 설명한다. 본 절은 다음의 전송들에 적용될 수 있다:
- 기지국으로부터 스케쥴링 및/또는 설정된 PUSCH/SRS 전송(들)
- 기지국으로부터 스케쥴링 및/또는 설정된 PUCCH 전송(들)
- RAP (random access procedure) 와 관련된 전송(들)
도 16 은 본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 UL CAP를 설명하기 위한 도면이다.
본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 UE의 타입 1 UL CAP는 다음과 같이 정리할 수 있다.
상향링크 전송에 대해서 전송 노드(예를 들어, UE)가 비면허 대역 에서 동작하기 위해 채널 접속 과정(CAP)을 개시할 수 있다 (2110).
UE는 스텝 1에 따라 경쟁 윈도우(CW) 내에서 백오프 카운터 N을 임의로 선택할 수 있다. 이때, N 값은 초기 값 N init으로 설정된다 (2120). N init 은 0 내지 CW p 사이의 값 중 임의의 값으로 선택된다.
이어서, 스텝 4에 따라 백오프 카운터 값(N)이 0이라면 (2130; Y), UE는 CAP 과정을 종료한다 (2132). 이어, UE는 Tx 버스트 전송을 수행할 수 있다 (2134). 반면에, 백오프 카운터 값이 0 이 아니라면 (2130; N), UE는 스텝 2에 따라 백오프 카운터 값을 1만큼 줄인다 (2140).
이어, UE는 채널이 유휴 상태인지 여부를 확인하고 (2150), 채널이 유휴 상태이면 (2150; Y) 백오프 카운터 값이 0 인지 확인한다 (2130).
반대로, 2150 동작에서 채널이 유휴 상태가 아니면 즉, 채널이 비지 상태이면 (2150; N), UE는 스텝 5에 따라 슬롯 시간(예를 들어, 9usec)보다 긴 지연 기간(defer duration T d; 25usec 이상) 동안 해당 채널이 유휴 상태인지 여부를 확인한다 (2160). 지연 기간에 채널이 유휴 상태이면 (2170; Y) UE는 다시 CAP 과정을 재개할 수 있다.
일 예로, 백오프 카운터 값 N init가 10이고, 백오프 카운터 값이 5까지 감소된 후 채널이 비지 상태로 판단되면 UE는 지연 기간 동안 채널을 센싱하여 유휴 상태인지 여부를 판단한다. 이때, 지연 기간 동안 채널이 유휴 상태면 UE는 백오프 카운터 값 N init을 설정하는 것이 아니라 백오프 카운터 값 5부터(또는, 백오프 카운터 값을 1 감소시킨 후 4부터) 다시 CAP 과정을 수행할 수 있다.
반면에, 지연 기간 동안 채널이 비지 상태이면 (2170; N), UE는 2160 동작을 재수행하여 새로운 지연 기간 동안 채널이 유휴 상태인지 여부를 다시 확인한다.
상기 절차에 있어 앞서 상술한 절차의 스텝 4 이후 UE가 전송(들)이 수행되는 채널 상 UL 전송을 전송하지 않는 경우, 상기 UE는 다음의 조건을 만족하면 상기 채널 상 UL 전송을 전송할 수 있다.
- 상기 UE가 전송을 수행할 준비가 되어 있고 적어도 센싱 슬롯 구간 T sl 내 해당 채널이 아이들로 센싱되는 경우, 및
- 상기 전송 바로 이전에 (immediately before) 지연 구간 T d의 모든 슬롯 구간들 동안 상기 채널이 아이들로 센싱되는 경우
반대로, 만약 상기 UE가 전송을 수행할 준비가 된 이후 상기 채널을 첫번째 센싱하였을 때 센싱 슬롯 구간 T sl 내 상기 채널이 아이들로 센싱되지 않거나, 또는 의도된 전송 바로 이전에 지연 구간 T d 의 어느 센싱 슬롯 구간 동안 해당 채널이 아이들로 센싱되지 않는 경우, 상기 UE는 지연 구간 T d의 슬롯 구간들 동안 해당 채널이 아이들로 센싱된 이후 스텝 1으로 진행한다.
상기 지연 구간 T d는 m p 연속된 슬롯 구간들 바로 다음에 이어지는 구간 T f (=16us)로 구성된다. 여기서, 각 슬롯 구간 (T sl)은 9us 이고, T f는 T f의 시작 지점에 아이들 슬롯 구간 (T sl)을 포함한다.
1.8.5.2. 타입 2A UL 채널 접속 절차
만약 UE 가 타입2A UL 채널 접속 절차를 수행할 것으로 지시된 경우, UE 는 UL 전송을 위해 타입 2A 채널 접속 절차를 이용한다. 상기 UE는 적어도 센싱 구간 동안 채널이 아이들임을 센싱한 바로 직후 (immediately after) 전송을 전송할 수 있다. T short_ul은 하나의 센싱 슬롯 구간 바로 다음에 (immediately followed) 구간 로 구성된다. T f는 상기 T f의 시작 지점에 센싱 슬롯을 포함한다. 상기 T short_ul 내 두 센싱 슬롯이 아이들로 센싱된 경우, 상기 채널은 T short_ul 동안 아이들로 고려된다.
1.8.6. UL 다중 채널 전송(들)을 위한 채널 접속 절차 (channel access procedure for UL multi-channel transmission(s))
만약 UE가:
- 채널 세트 (set of channels) C 상에서 전송하도록 스케줄링되고, 만약 상기 채널 세트 C 상 UL 전송을 위한 UL 스케쥴링 그랜트가 타입 1 채널 접속 절차를 지시하고, 만약 채널의 세트 C 내 모든 채널들을 위해 동일한 시간에서 전송을 시작하도록 UL 전송들이 스케쥴링되고, 및/또는
- 타입 1 채널 접속 절차를 이용하여 채널 세트 C 상에서 설정된 자원들 상에서 상향링크 전송을 수행할 의도(intends to perform)이고, 및
만약 채널 세트 C의 채널 주파수들이 미리 설정된 채널 주파수 세트 중 하나의 서브 세트인 경우:
- 상기 UE는 타입 2 채널 접속 절차를 이용하여 채널 상에서 전송을 수행할 수 있다.
- - 만약 채널 상 (여기서, ) UE 전송의 바로 직전에 (immediately before) 채널 상에서 타입 2 채널 접속 절차가 수행된 경우, 그리고
- - 만약 상기 UE가 타입 1 채널 접속 절차를 이용하여 채널 에 접속하고 있는 경우 (the UE has accessed channel using Type 1 channel access procedure),
- - - 채널의 세트 C 내 어느 하나의 (any) 채널 상 타입 1 채널 접속 절차를 수행하기에 앞서 채널 는 UE에 의해 채널 세트 C로부터 균등하게 임의적으로 (uniformly randomly) 선택된다.
- 만약 UE 가 어느 하나의 채널에 접속하지 못하면, UE 는 스케쥴링되거나 UL 자원들에 의해 설정된 캐리어 대역폭 (carrier bandwidth) 의 캐리어의 대역폭 내 채널 에서 전송하지 않을 수 있다.
* 2. 임의 접속 절차 (Random Access Procedure, RACH)
기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 등의 경우, 단말은 기지국에 대해 임의 접속 절차를 수행할 수 있다.
임의 접속 절차는 다양한 용도로 사용된다. 예를 들어, 임의 접속 절차는 RRC_IDLE로부터 네트워크 초기 접속, RRC 연결 재설립 절차 (RRC Connection Re-establishment procedure), 핸드오버, UE-트리거드(UE-triggered) UL 데이터 전송, RRC_INACTIVE로부터 트랜지션 (transition), SCell 추가에서 시간 정렬 (time alignment) 설립, OSI (other system information) 요청 및 빔 실패 회복 (Beam failure recovery) 등에 사용될 수 있다. 단말은 임의 접속 절차를 통해 UL 동기와 UL 전송 자원을 획득할 수 있다.
임의 접속 절차는 경쟁 기반(contention-based) 임의 접속 절차와 경쟁 프리(contention free) 임의 접속 절차로 구분된다. 경쟁 기반 임의 접속 절차는 4-step 임의 접속 절차 (4-step RACH) 와 2-step 임의 접속 절차 (2-step RACH) 로 구분된다.
2.1. 4-step RACH : Type-1 random access procedure
도 17는 본 개시의 다양한 실시예들이 적용 가능한 4-step RACH 절차의 일 예를 나타낸 도면이다.
(경쟁 기반) 임의 접속 절차가 4 단계로 수행 (4-step RACH) 되는 경우, 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 특정 시퀀스와 관련된 프리앰블을 포함하는 메시지(메시지1, Msg1)를 송신하고 (1701), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지((RAR(Random Access Response) message)(메시지2, Msg2)를 수신할 수 있다 (1703). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)를 포함하는 메시지(메시지3, Msg3)을 전송하고 (1705), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌 (경쟁) 해결 절차 (Contention Resolution Procedure)를 수행할 수 있다. 단말은 기지국으로부터 충돌 해결 절차를 위한 충돌 (경쟁) 해결 정보 (contention resolution information) 를 포함하는 메시지(메시지4, Msg4)를 수신할 수 있다 (1707).
단말의 4-스텝 RACH 절차는 아래 표 13 와 같이 요약될 수 있다.
먼저, 단말은 UL에서 임의 접속 절차의 Msg1로서 임의 접속 프리앰블을 PRACH를 통해 전송할 수 있다.
서로 다른 두 길이를 가지는 임의 접속 프리앰블 시퀀스들이 지원된다. 긴 시퀀스 길이 839는 1.25 및 5 kHz의 부반송파 간격(subcarrier spacing)에 대해 적용되며, 짧은 시퀀스 길이 139는 15, 30, 60 및 120 kHz의 부반송파 간격에 대해 적용된다.
다수의 프리앰블 포맷들이 하나 또는 그 이상의 RACH OFDM 심볼들 및 서로 다른 순환 프리픽스(cyclic prefix) (및/또는 가드 시간(guard time))에 의해 정의된다. 셀을 위한 RACH 설정(configuration)이 상기 셀의 시스템 정보에 포함되어 UE에게 제공된다. 상기 RACH 설정은 PRACH의 부반송파 간격, 이용 가능한 프리앰블들, 프리앰블 포맷 등에 관한 정보를 포함한다. 상기 RACH 설정은 SSB들과 RACH (시간-주파수) 자원들 간의 연관 정보를 포함한다. UE는 검출한 혹은 선택한 SSB와 연관된 RACH 시간-주파수 자원에서 임의 접속 프리앰블을 전송한다.
RACH 자원 연관을 위한 SSB의 임계값이 네트워크에 의해 설정될 수 있으며, SSB 기반으로 측정된 참조 신호 수신 전력(reference signal received power, RSRP)가 상기 임계값을 충족하는 SSB를 기반으로 RACH 프리앰블의 전송 또는 재전송이 수행된다. 예를 들어, 단말은 임계값을 충족하는 SSB(들) 중 하나를 선택하고, 선택된 SSB에 연관된 RACH 자원을 기반으로 RACH 프리앰블을 전송 또는 재전송할 수 있다.
기지국이 단말로부터 임의 접속 프리앰블을 수신하면, 기지국은 임의 접속 응답(random access response, RAR) 메시지(Msg2)를 상기 단말에게 전송한다. RAR을 나르는 PDSCH를 스케줄링하는 PDCCH는 임의 접속(random access, RA) 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)(RA-RNTI)로 CRC 마스킹되어 전송된다. RA-RNTI로 마스킹된 PDCCH를 검출한 단말은 상기 PDCCH가 나르는 DCI가 스케줄링하는 PDSCH로부터 RAR을 수신할 수 있다. 단말은 자신이 전송한 프리앰블, 즉, Msg1에 대한 임의 접속 응답 정보가 상기 RAR 내에 있는지 확인한다. 자신이 전송한 Msg1에 대한 임의 접속 정보가 존재하는지 여부는 상기 단말이 전송한 프리앰블에 대한 임의 접속 프리앰블 ID가 존재하는지 여부에 의해 판단될 수 있다. Msg1에 대한 응답이 없으면, 단말은 전력 램핑(power ramping)을 수행하면서 RACH 프리앰블을 소정의 횟수 이내에서 재전송할 수 있다. 단말은 가장 최근의 경로 손실 및 전력 램핑 카운터를 기반으로 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다.
임의 접속 응답 정보는 단말이 전송한 프리앰블 시퀀스, 기지국이 임의접속을 시도한 단말기에게 할당한 C-RNTI, 상향링크 전송 시간 조정 정보(Uplink transmit time alignment information), 상향링크 전송 전력 조정 정보 및 상향 링크 무선자원 할당 정보를 포함할 수 있다. 단말이 PDSCH 상에서 자신에 대한 임의 접속 응답 정보를 수신하면, 단말은 UL 동기화를 위한 타이밍 어드밴스(timing advance) 정보, 초기 UL 그랜트, 임시(temporary) 셀 RNTI(cell RNTI, C-RNTI)를 알 수 있다. 상기 타이밍 어드밴스 정보는 상향링크 신호 전송 타이밍을 제어하는 데 사용된다. 단말에 의한 PUSCH/PUCCH 전송이 네트워크 단에서 서브프레임 타이밍과 더 잘 정렬(align)되도록 하기 위해, 네트워크(예, BS)는 PUSCH/PUCCH/SRS 수신 및 서브프레임 간 시간 차이를 측정하고 이를 기반으로 타이밍 어드밴스 정보를 보낼 수 있다. 단말은 임의 접속 응답 정보를 기반으로 상향링크 공유 채널 상에서 UL 전송을 임의 접속 절차의 Msg3로서 전송할 수 있다. Msg3은 RRC 연결 요청 및 단말 식별자를 포함할 수 있다. Msg3에 대한 응답으로서, 네트워크는 Msg4를 전송할 수 있으며, 이는 DL 상에서의 경쟁 해결 메시지로 취급될 수 있다. Msg4를 수신함으로써, 단말은 RRC 연결된 상태에 진입할 수 있다.
앞서 언급한 바와 같이 RAR 내 UL 그랜트는 기지국에게 PUSCH 전송을 스케줄링한다. RAR 내 UL 그랜트에 의한 초기 UL 전송을 나르는 PUSCH는 Msg3 PUSCH로 칭하기도 한다. RAR UL 그랜트의 컨텐츠는 MSB에서 시작하여 LSB에서 끝나며, 표 14에서 주어진다.
TPC 명령은 Msg3 PUSCH의 전송 전력을 결정하는 데 사용되며, 예를 들어, 표 15에 따라 해석된다.
2.2. 2-step RACH : Type-2 random access procedure
도 18는 본 개시의 다양한 실시예들이 적용 가능한 2-step RACH 절차의 일 예를 나타낸 도면이다.
(경쟁 기반) 임의 접속 절차가 2 단계로 수행되는 2-step RACH 절차는 낮은 시그널링 오버헤드 (low signaling overhead) 와 낮은 지연 (low latency) 을 성취하기 위하여 RACH 절차를 단순화 시키기 위하여 제안되었다.
4-step RACH 절차에서의 메시지1 을 송신하는 동작과 메시지 3 을 송신하는 동작은 2-step RACH 절차에서는 단말이 PRACH 및 PUSCH 를 포함하는 하나의 메시지 (메시지A) 에 대한 송신을 수행하는 하나의 동작으로 수행되고, 4-step RACH 절차에서의 기지국이 메시지2을 송신하는 동작 및 메시지4를 송신하는 동작은 2-step RACH 절차에서는 기지국이 RAR 및 충돌 해결 정보를 포함하는 하나의 메시지 (메시지B) 에 대한 송신을 수행하는 하나의 동작으로 수행될 수 있다.
즉, 2-스텝 RACH 절차에서 단말은 4-스텝 RACH 절차에서의 메시지1 과 메시지3 를 하나의 메시지 (예를 들어, 메시지 A (message A, msgA)) 로 결합하여, 해당 하나의 메시지를 기지국으로 송신할 수 있다. (1801)
또한, 2-스텝 RACH 절차에서 기지국은 4-스텝 RACH 절차에서의 메시지 2 와 메시지 4 를 하나의 메시지 (예를 들어, 메시지 B (message B, msgB)) 로 결합하여, 해당 하나의 메시지를 단말로 송신할 수 있다. (1803)
이러한 메시지들의 결합에 기초하여 2-스텝 RACH 절차는 낮은 지연 (low-latency) RACH 절차를 제공할 수 있다.
보다 구체적으로, 2-스텝 RACH 절차에서 메시지 A 는 메시지1 에 포함된 PRACH 프리앰블 (preamble) 과 메시지3 에 포함된 데이터를 포함할 수 있다. 2-스텝 RACH 절차에서 메시지 B 는 메시지2에 포함된 RAR (random access response) 와 메시지4에 포함된 경쟁 해소 정보 (contention resolution information) 를 포함할 수 있다.
2.3. Contention-free RACH
도 19은 본 개시의 다양한 실시예들이 적용 가능한 contention-free RACH 절차의 일 예를 나타낸 도면이다.
경쟁-프리 임의 접속 절차(contention-free RACH)는 단말이 다른 셀 또는 기지국으로 핸드오버 하는 과정에서 사용되거나, 기지국의 명령에 의해 요청되는 경우에 수행될 수 있다. 경쟁-프리 임의 접속 절차의 기본적인 과정은 경쟁 기반 임의 접속 절차와 유사하다. 다만, 단말이 복수의 임의 접속 프리앰블들 중 사용할 프리앰블을 임의로 선택하는 경쟁 기반 임의 접속 절차와 달리, 경쟁-프리 임의 접속 절차의 경우에는 단말이 사용할 프리앰블(이하 전용 임의 접속 프리앰블)이 기지국에 의해 단말에게 할당된다 (1901). 전용 임의 접속 프리앰블에 대한 정보는 RRC 메시지(예, 핸드오버 명령)에 포함되거나 PDCCH 오더(order)를 통해 단말에게 제공될 수 있다. 임의 접속 절차가 개시되면 단말은 전용 임의 접속 프리앰블을 기지국에게 전송한다 (1903). 단말이 기지국으로부터 임의 접속 응답을 수신하면 상기 임의 접속 절차는 완료(complete)된다 (1905).
경쟁 프리 임의 접속 절차에서, RAR UL 그랜트 내 CSI 요청 필드는 단말이 비주기적 CSI 보고를 해당 PUSCH 전송에 포함시킬 것인지 여부를 지시한다. Msg3 PUSCH 전송을 위한 부반송파 간격은 RRC 파라미터에 의해 제공된다. 단말은 동일한 서비스 제공 셀의 동일한 상향링크 반송파 상에서 PRACH 및 Msg3 PUSCH을 전송하게 될 것이다. Msg3 PUSCH 전송을 위한 UL BWP는 SIB1(SystemInformationBlock1)에 의해 지시된다.
3. 본 개시의 다양한 실시예들
이하에서는, 상기와 같은 기술적 사상에 기반하여 본 개시의 다양한 실시예들에 대해 보다 상세히 설명한다. 이하에서 설명되는 본 개시의 다양한 실시예들에 대해서는 앞서 설명한 제 1 절 내지 제 2 절의 내용들이 적용될 수 있다. 예를 들어, 이하에서 설명되는 본 개시의 다양한 실시예들에서 정의되지 않은 동작, 기능, 용어 등은 제 1 절 내지 제 2 절의 내용들에 기반하여 수행되고 설명될 수 있다.
이하, 본 개시의 다양한 실시예들에 대한 설명에서 사용되는 기호/약어/용어는 다음과 같을 수 있다.
- CBRA : contention-based random access
- CDM : code division multiplexing (code domain sharing)
- comb : 콤은 신호를 주파수 영역에서 일정한 간격으로 매핑하는 방식을 의미할 수 있다. 예를 들어, 콤 2 (comb-2 또는 2-comb) 는 서브캐리어 2 개 간격으로 이격된 RE 마다 동일한 특정 DM-RS 포트를 매핑하는 것을 의미할 수 있다. 예를 들어, 콤 4 (comb-4 또는 4-comb) 는 서브캐리어 4 개 간격으로 이격된 RE 마다 동일한 특정 DM-RS 포트를 매핑하는 것을 의미할 수 있다.
- CP-OFDM : cyclic prefix based orthogonal frequency division multiplex
- DFT-s-OFDM : discrete Fourier transform spread orthogonal frequency division multiplex
- DL : downlink
- DM-RS (DMRS) : demodulation reference signal
- FDM : frequency division multiplexing (frequency domain sharing)
- MCS : modulation and coding scheme
- OCC : orthogonal cover code
- OFDM : orthogonal frequency division multiplexing
- PAPR : peak to average power ratio
- PRACH : physical random access channel
- PRB : physical resource block
- PUSCH : physical uplink shared channel
- RA : random access
- RACH : random access channel
- RAPID : random access preamble identifier
- RAR : random access response
- RB : resource block
- RE : resource element
- RNTI : radio network temporary identifier
- RO : RACH occasion or PRACH occasion
- TDM : time division multiplexing (time domain sharing)
- UL : uplink
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. 이러한 차세대 5G 시스템을 편의상 NR (new RAT) 이라 명명한다.
NR 시스템에서는 4-스텝 RACH (4-step RACH) 절차 (procedure) 에 더하여 2-스텝 RACH (2-step RACH) 절차가 지원될 수 있다.
2-스텝 RACH 절차에서 메시지 A 는 메시지1 에 포함된 PRACH 프리앰블 (preamble) 과 메시지3 에 포함된 데이터 (PUSCH) 를 포함할 수 있다. 2-스텝 RACH 절차에서 메시지 B 는 메시지2에 포함된 RAR (random access response) 와 메시지4에 포함된 경쟁 해소 정보 (contention resolution information) 를 포함할 수 있다.
2-스텝 RACH 절차에서, 예를 들어, 단말은 상향링크 송신 시 TA (timing advance) 를 수행하지 않고, PRACH 프리앰블과 PUSCH 를 송신할 수 있다. 예를 들어, TA 가 수행되지 않았기 때문에, 기지국에서 수신되는 신호들의 수신 타이밍이 불일치할 수 있다. 예를 들어, 수신된 신호들 간의 수신 타이밍이 불일치 하는 경우, 수신기는 각 신호들의 시작점을 찾아 신호 복원을 시도하게 되며, 각 신호들 간에 간섭 (예를 들어, 인터-심볼(inter-symbol) 간섭 및/또는 인터-캐리어(inter-carrier) 간섭 등) 이 발생되어 신호 품질이 악화될 수 있다. 예를 들어, 수신 타이밍이 불일치 되는 신호들 사이에서 발생되는 간섭 신호들은 2-스텝 RACH 절차의 메시지A (PRACH 프리앰블+PUSCH) 검출 성능을 저하시킬 수 있다.
이러한 점 고려하여, 본 개시의 다양한 실시예들은, 2-스텝 RACH 절차를 지원하기 위한 메시지A (PRACH 프리앰블+PUSCH) 내에 포함된 PUSCH 들의 멀티플렉싱 (multiplexing) 및/또는 DM-RS 매핑 방법 및 이를 지원하는 장치를 제공할 수 있다.
도 20 은 본 개시의 다양한 실시예들에 따른 단말과 기지국의 동작 방법을 간단히 나타낸 도면이다.
도 21 은 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 간단히 나타낸 도면이다.
도 22 은 본 개시의 다양한 실시예들에 따른 기지국의 동작 방법을 간단히 나타낸 도면이다.
도 20 내지 도 22을 참조하면, 예시적 실시예에 따른 동작 2001, 2101 에서, 단말은 메시지A 를 획득/생성할 수 있다. 예를 들어, 단말은 PRACH 프리앰블을 RO 에 매핑 및/또는 PUSCH 를 PUSCH 기회에 매핑 및/또는 DM-RS 를 매핑함에 기초하여 메시지A 를 획득/생성할 수 있다.
예시적 실시예에 따른 동작 2003, 2103, 2201에서, 단말은 메시지A 를 송신할 수 있으며, 기지국은 해당 메시지A 를 수신할 수 있다.
예시적 실시예에 따른 동작 2005, 2203 에서, 기지국은 메시지A 를 디코딩(검출)할 수 있다. 예를 들어, 기지국은 메시지A 를 디코딩하여 메시지A 내에 포함된 PRACH 프리앰블 및/또는 PUSCH 및/또는 DM-RS 를 획득할 수 있다.
예시적 실시예에 따른 동작 2007, 2105, 2205 에서, 기지국은 메시지A 에 대한 응답으로 메시지B 및/또는 메시지2 를 송신하고, 단말은 해당 메시지B 및/또는 메시지2를 수신할 수 있다.
각 예시적 실시예에 따른 동작에서의 보다 구체적인 동작, 기능, 용어 등은 후술되는 본 개시의 다양한 실시예들에 기반하여 수행되고 설명될 수 있다.
이하에서는 본 개시의 다양한 실시예들에 대해 상세히 설명한다. 이하에서 설명되는 본 개시의 다양한 실시예들은 상호 배척되지 않는 한 전부 또는 일부가 결합되어 본 개시의 또 다른 다양한 실시예들을 구성할 수도 있으며, 이는 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.
3.1. Multiplexing schemes for PUSCH
3.1.1. Multiplexing
본 개시의 다양한 실시예들에 따르면, 메시지A 를 위한 멀티플렉싱 방법들 (예를 들어, FDM, TDM, CDM 내지 이 중 하나 이상의 조합 등) 이 제공될 수 있다.
예를 들어, UL (uplink) 커버리지 및/또는 채널 추정 (channel estimation) 및/또는 인터-심볼 간섭 및/또는 인터-캐리어 간섭 및/또는 자원 이용률 (resource utilization) 등이 고려될 수 있다.
예를 들어, CDM 케이스의 경우 (예를 들어, 메시지A 에 포함되는 PUSCH 가 CDM 되는 경우 등), 특히 시간 부정합 (time misalignment) 에 따른 인터-계층 (inter-layer) 간섭이 고려될 수 있다.
예를 들어, 4-스텝 RACH 절차의 경우, 메시지3 를 위한 PUSCH 는 RAR 메시지 (메시지2) 내의 UL 그랜트에 의하여 할당될 수 있다.
예를 들어, 해당 자원은 FDM 및/또는 TDM 방식 (manner) 에 기초하여 할당될 수 있다.
또한, 예를 들어, 메시지3 를 위한 PUSCH 의 경우, DM-RS 포트 0 에 구성된 타입 1 의 단일 심볼 프론트-로디드 DMRS (single symbol front-loaded DMRS) 가 심볼 내 나머지 RE 는 어떠한 PUSCH 송신에 사용되지 않기 때문에, PUSCH 는 단일 UE 를 위하여 허용될 수 있다. (Also, for example, for PUSCH for msg3, since single symbol front-loaded DMRS of configured type 1 on DMRS port 0 is used and the remaining REs in the symbols are not used for any PUSCH transmission, the PUSCH may be allowed for single UE.)
예를 들어, 2-스텝 RACH 절차의 경우, 메시지A 에는 PRACH 프리앰블 및/또는 PUSCH 가 포함될 수 있다.
마찬가지로, 예를 들어, 메시지A 를 위한 PUSCH 의 경우, FDM/TDM 자원 할당이 허용될 수 있다.
도 23 는 본 개시의 다양한 실시예들에 따른 메시지A 구성의 예시를 나타낸 도면이다.
도 23 에서, 가로 축은 시간 도메인 내지 시간 축, 세로 축은 주파수 도메인 내지 주파수 축에 대응될 수 있다. 예를 들어, 시간 도메인은 하나 이상의 슬롯 및/또는 하나 이상의 OFDM 심볼에 대응할 수 있으며, 주파수 축은 하나 이상의 RB 및/또는 하나 이상의 RE 에 대응될 수 있다.
예를 들어, 메시지 A 를 위한 PUSCH 및/또는 PUSCH 기회는 다양한 방식으로 다중화 될 수 있다.
예를 들어, 도20 (a) 는 메시지 A 를 위한 PUSCH 및/또는 PUSCH 기회가 FDM 되는 예시를 나타낸다.
예를 들어, 도 23 (b) 는 메시지 A 를 위한 PUSCH 및/또는 PUSCH 기회가 TDM 되는 예시를 나타낸다.
예를 들어, 도 23 (c) 는 메시지 A 를 위한 PUSCH 및/또는 PUSCH 기회가 FDM/TDM 되는 예시를 나타낸다.
예를 들어, 도 23 (d) 는 메시지 A 를 위한 PUSCH 및/또는 PUSCH 기회가 FDM/CDM 되는 예시를 나타낸다.
예를 들어, FDM 케이스 (예를 들어, PUSCH 및/또는 PUSCH 기회가 FDM 되는 케이스) 의 경우, 좁은 대역폭 (narrow bandwidth) 및 (상대적으로) 많은 OFDM 심볼들 (예를 들어, 일정 임계치 이상/초과 개수의 OFDM 심볼들) 을 갖는 PUSCH 및/또는 PUSCH 기회의 자원이 할당될 수 있다.
이 경우, 예를 들어, 여러 개의 OFDM 심볼들이 사용되어 UL 커버리지가 향상 (UL coverage enhancement) 될 수 있다. 다만, 예를 들어, DM-RS RE 및 데이터 RE 를 포함하는 PUSCH 자원은 인접한 PUSCH 자원에 의하여 인터-캐리어 간섭을 겪을 수 있다.
예를 들어, TDM 케이스 (예를 들어, PUSCH 및/또는 PUSCH 기회가 TDM 되는 케이스) 의 경우, 넓은 대역폭 (wide bandwidth) 및 (상대적으로) 적은 OFDM 심볼들 (예를 들어, 일정 임계치 이하/미만 개수의 OFDM 심볼들) 을 갖는 PUSCH 및/또는 PUSCH 기회의 자원이 할당될 수 있다.
이 경우, 예를 들어, 넓은 대역폭으로부터 주파수 다이버시티 이득 (frequency diversity gain) 이 획득될 수 있다. 다만, 예를 들어, OFDM 심볼들의 개수가 작아, UL 커버리지가 제한될 수 있으며, PUSCH 자원은 인접한 PUSCH 심볼에 의하여 인터-심볼 간섭을 겪을 수 있다.
또한, 예를 들어, FDM 케이스 및 TDM 케이스 모두, PUSCH 자원은 직교성을 갖도록 지정(designate)되기 때문에 (orthogonally designated) 보존/예약된 PUSCH 자원이 단말에 의하여 선택되지 않는 경우, 선택되지 않은 자원들은 낭비될 수 있다.
예를 들어, CDM 케이스 (예를 들어, PUSCH 및/또는 PUSCH 기회가 CDM 되는 케이스) 의 경우, 넓은 대역폭 및 (상대적으로) 많은 OFDM 심볼들 (예를 들어, 일정 임계치 이상/초과 개수의 OFDM 심볼들) 을 갖는 PUSCH 자원이 할당될 수 있다.
이 경우, 예를 들어, UL 커버리지가 향상될 수 있다. 또한, 예를 들어, 인터-캐리어 및 인터-심볼 간 간섭이 감소될 수 있다. 또한, 예를 들어, 자원 활용 효율성이 향상될 수 있다. 다만, 예를 들어, 특히, 시간 부정합의 경우에 있어서 인터-계층 간섭이 고려되어야 할 수 있다.
3.1.2. 자원 지시
본 개시의 다양한 실시예들에 따르면, 특정 RO 와 연관된 PUSCH 자원 묶음이 지시될 수 있다.
예를 들어, RO 에 CBRA (contention based random access, 경쟁 기반 임의 접속) 로 사용되는 (P)RACH 프리앰블의 개수만큼 PUSCH 자원이 설정될 수 있다.
예를 들어, 하나의 RO 당 CBRA 를 위한 (P)RACH 프리앰블의 개수를 M 이라 하고, 하나의 PUSCH 자원 당 멀티플렉싱 될 수 있는 최대 RAPID 의 개수를 N 이라 하면, 적어도 M/N 의 PUSCH 자원이 요구될 수 있다. 예를 들어, 해당 PUSCH 자원이 묶음으로 지시될 수 있다. 예를 들어, 해당 PUSCH 자원과 RO 가 매핑 지시자로 설정을 알려줄 수 있다.
즉, 본 개시의 다양한 실시예들에 따르면, 기지국은 메시지 A 에 포함되는 PUSCH 의 송신을 위한 PUSCH 기회들에 대한 설정 정보 (configuration information) 를 단말에게 송신할 수 있고, 단말은 해당 설정 정보에 기초하여 메시지 A 를 위한 PUSCH 를 매핑 및 송신할 수 있다.
예를 들어, 설정 정보는 시간 도메인 지시자 및/또는 주파수 도메인 지시자를 포함할 수 있다.
예를 들어, 시간 도메인 지시자는 메시지A 에 포함되는 PUSCH 의 송신을 위한 PUSCH 기회들의 시간 자원 관점의 지시자일 수 있다.
예를 들어, 주파수 도메인 지시자는 메시지A 에 포함되는 PUSCH 송신을 위한 PUSCH 기회들의 주파수 자원 관점의 지시자일 수 있다.
예를 들어, 시간 도메인 지시자는 아래에 대한 정보 중 하나 이상을 포함할 수 있다:
- Number of OFDM symbol per PUSCH resource (및/또는 Occasion): {1,…14}
- - 즉, PUSCH 자원 (및/또는 PUSCH 기회) 당 OFDM 심볼의 개수가 설정 정보로부터 지시될 수 있으며, 해당 개수는 1 내지 14 일 수 있다.
- 슬롯 내에서 PUSCH resource (및/또는 occasion) 의 위치:
- - 비트맵 (bitmap), 및/또는
- - 시작 OFDM 심볼, 및/또는
- - - 즉, 시간 도메인에서 PUSCH 자원 (및/또는 PUSCH 기회) 가 시작되는 OFDM 심볼이 설정 정보로부터 지시될 수 있다.
- - 슬롯 내에서 시간 도메인에서 연속된 PUSCH 기회의 개수
- PUSCH occasion 내에 Null OFDM 심볼 포함 여부 지시자
- - Null OFDM 심볼은 PUSCH 가 매핑되지 않는 OFDM 심볼을 의미할 수 있다. Null OFDM 심볼은 시간 도메인에서 각 PUSCH 기회들 간에 설정될 수 있다. PUSCH occasion 내에 Null OFDM 심볼이 포함되면, 해당 Null OFDM 심볼에 의하여 시간 도메인에서 연속된 PUSCH 기회들이 분리되는 (separated) 것으로 이해될 수 있다. 즉, Null OFDM 심볼은 시간 도메인에서 시간 갭 (time gap) 으로 이해될 수 있다.
- PUSCH 자원 그룹(resource group)이 매핑되는 슬롯 인덱스 (slot index):
- - 비트맵, 및/또는
- - 개별 슬롯 인덱스, 및/또는
- - 시작 슬롯 인덱스, 및/또는
- - 연속된 슬롯의 개수
예를 들어, 주파수 도메인 지시자는 아래 정보 중 하나 이상을 포함할 수 있다:
- PRB 개수 (Number of PRBs)
- - 즉, PUSCH 자원 (및/또는 PUSCH 기회) 를 위한 PRB 개수가 설정 정보로부터 지시될 수 있다.
- 연속 매핑 (continuous mapping) 내지 불연속 매핑 (non-continuous mapping) 을 알려주는 지시자
- - 즉, PUSCH 자원 (및/또는 PUSCH 기회) 가 주파수 도메인에서 연속적으로 매핑되는 지 또는 불연속적으로 매핑되는 지 여부가 설정 정보에 의하여 지시될 수 있다. 예를 들어, 해당 불연속 매핑은 공유 스펙트럼 (shared spectrum) 내지 비면허 대역 (unlicensed band) 에서의 인터레이스 (interlace) 구조가 고려된 것일 수 있다.
- 주파수 도메인에서 PUSCH 자원 (및/또는 기회) 의 위치:
- - 시작 PRB, 및/또는
- - 연속된 PUSCH 자원 (및/또는 PUSCH 기회) 의 개수, 및/또는
- - 비트맵 등
- PUSCH occasion 내에 Null PRB 포함 여부 지시자
- - Null PRB 은 PUSCH 가 매핑되지 않는 PRB 을 의미할 수 있다. Null PRB 은 주파수 도메인에서 각 PUSCH 기회들 간에 설정될 수 있다. PUSCH occasion 내에 Null PRB 이 포함되면, 해당 Null PRB 에 의하여 주파수 도메인에서 연속된 PUSCH 기회들이 분리되는 (separated) 것으로 이해될 수 있다. 즉, Null PRB 은 주파수 도메인에서 주파수 갭 (frequency gap) 으로 이해될 수 있다.
또한, 예를 들어, RO 묶음이 PUSCH 자원 (및/또는 PUSCH 기회) 묶음과 매핑되는 지시자로 설정 관계를 지시할 수 있다.
3.2. Multiple Preamble to Single PUSCH resource
3.2.1. DM-RS 와 RAPID 의 연관성
본 개시의 다양한 실시예들에 따르면, 메시지A 내에 포함되는 PUSCH 를 위하여 CDM 이 허용되는 경우, 다수의 RAPID 들은 하나의 PUSCH 자원에 대응될 수 있다.
- 예를 들어, 다수의 DM-RS 자원 및/또는 시퀀스 (sequence) 및/또는 다수의 스크램블링 시퀀스 (scrambling) 가 사용될 수 있다.
- 예를 들어, 일정 (certain) DM-RS 자원 및/또는 시퀀스 및/또는 스크램블링 시퀀스는 RAPID 와 연관될 (associated with) 수 있다.
예를 들어, 4-스텝 RACH 절차에서, 메시지3 내에 포함되는 PUSCH 는 RAPID 와 연관된 UL 그랜트에 의하여 할당될 수 있다.
유사하게, 예를 들어, 2-스텝 RACH 절차에서, 메시지A 내에 포함되는 PUSCH 는 FDM 및 TDM 케이스를 위한 각 RAPID 를 위하여 지정될 수 있다. 또한, 예를 들어, CDM 이 허용되는 경우, 하나의 PUSCH 자원이 다수의 RAPID 들에 대응되는 것이 허용될 필요성이 있다. 이 경우, 예를 들어, PUSCH 자원 내 혼합된 (mixed) 다수의 데이터를 분리 (decoupling) 하기 위하여 다수의 DM-RS 자원 및/또는 시퀀스 및/또는 스크램블링 시퀀스가 요구될 수 있다.
또한, 예를 들어, 일정 DM-RS 자원 및/또는 시퀀스 및/또는 스크램블링 시퀀스는 RAPID 와 연관될 수 있다.
3.2.2. Parameters for MsgA PUSCH
본 절 및 다른 본 개시의 다양한 실시예들에 대한 설명에서, DM-RS 포트 및 DM-RS 시퀀스를 포괄하는 의미로써 DM-RS 자원이라는 용어가 혼용되어 사용될 수도 있다. 예를 들어, 하나의 DM-RS 포트에는 하나 이상의 DM-RS 시퀀스가 매핑될 수 있다. 예를 들어, 하나의 DM-RS 시퀀스에는 하나 이상의 DM-RS 포트가 매핑될 수 있다. 예를 들어, DM-RS 포트 : DM-RS 시퀀스는 1:1, M:1, 1:M 일 수 있다. (M 은 자연수)
본 개시의 다양한 실시예들에 따르면, 2-스텝 RACH 절차에서 메시지A 내에 포함되는 PUSCH (메시지A PUSCH) 를 위한 자원이 설정될 때, 각 메시지A PUSCH 에 멀티플렉싱 될 수 있는 RAPID 의 최대 개수 (maximum number of RAPID) 및/또는 단말의 최대 개수 (maximum number of UE) 가 지정/설정될 수 있다.
또한, 예를 들어, 어떠한 메시지A PUSCH 에 멀티플렉싱 가능한 RAPID 의 최대 개수에 맞추어 DM-RS 자원 (포트) 및/또는 DM-RS 시퀀스 등의 개수가 결정될 수 있다.
예를 들어, 각각의 파라미터 (parameter) 를 통해서 그 개수가 지정/설정될 수 있다. 예를 들어, 안테나 포트의 최대 개수 (maximum number of antenna port), 시퀀스의 최대 개수 (maximum number of sequence) 의 값이 지정/설정될 수 있다.
예를 들어, 아래와 같은 파라미터가 기지국으로부터 단말로 제공될 수 있다.
Parameters for MsgA PUSCH:
- Maximum number of RAPID : 예를 들어, 1, 2, 4, 8
- Maximum number of antenna port for DM-RS : 예를 들어, 1, 2, 4
- Maximum number of sequence : 예를 들어, 1, 2
예를 들어, (메시지A PUSCH 에) 멀티플렉싱 되는 최대 RAPID 의 개수는, 커버리지 (coverage) 및/또는 지오메트리 (geometry) 등을 고려하여 네트워크가 단말에게 설정해줄 수 있다.
예를 들어, 스몰 셀 (small cell) 의 경우 (예를 들어, 스몰 셀에서 2-스텝 RACH 가 수행되는 경우), 멀티플렉싱 되는 최대 RAPID 의 개수가 상대적으로 클 수 있다. 예를 들어, 스몰 셀의 경우 수신 동기가 어긋날 확률이 상대적으로 작기 때문에, FFT (fast Fourier transform) 바운더리 (boundary) 안에서 신호들이 수신될 가능성이 높고, 지오메트리 또한 상대적으로 좋은 값을 가지므로, 상대적으로 많은 사용자들이 멀티플렉싱 될 수 있는 환경이 될 수 있다. 예를 들어, 임의 접속 발생 빈도가 낮은 경우에는 PUSCH 자원 당 매핑 가능한 RAPID 의 개수를 증가시키는 것이 PUSCH 자원의 효율성을 증가시킬 수 있는 방법이 될 수 있다.
반대로, 예를 들어, 넓은 커버리지의 경우 (예를 들어, 넓은 커버리지에서 2-스텝 RACH 가 수행되는 경우), 멀티플렉싱 되는 최대 RAPID 의 개수가 상대적으로 작을 수 있다. 예를 들어, 특히 DFT-s-OFDM 이 사용될 정도로 넓은 커버리지 내의 사용자들까지 수용하는 경우, 수신 신호 감도가 많이 낮아지고, 수신 동기가 맞지 않을 확률이 상대적으로 높아지므로, PUSCH 자원에 멀티플렉싱 되는 사용자의 개수 및/또는 RAPID 의 개수를 상대적으로 낮추는 것이 바람직할 수 있다.
3.2.2.1. PUSCH data scrambling sequence
본 개시의 다양한 실시예들에 따르면, 각 단말에 대하여 서로 다른 PUSCH 데이터 스크램블링 시퀀스가 획득/적용될 수 있다. 예를 들어, 메시지A PUSCH 자원이 다수의 단말로부터 사용되는 경우, 각 단말 (사용자) 간의 간섭을 줄일 수 있도록 (각 단말 (사용자) 에 대하여) 서로 다른 스크램블링 시퀀스가 생성되어 적용될 수 있다.
예를 들어, 초기 접속하지 않은 단말 내지 단말-특정 RNTI 를 가지고 있지 않은 단말의 경우, RA-RNTI (random access-RNTI) 내지 메시지A PUSCH 에 대한 (기지국의) 응답을 모니터링 하는데 사용되는 RNTI 등이 스크램블링 시퀀스 생성/획득을 위한 시드값 (seed value) 으로 사용될 수 있다. 또한, 예를 들어, 단말 (내지 사용자) 를 구별할 수 있도록, 단말 (내지 사용자) 가 선택한 PRACH 프리앰블과 연관된 정보 (예를 들어, RAPID) 가 스크램블링 시퀀스의 시드값으로 사용될 수 있다.
예를 들어, 초기 접속 이후 단말이 RNTI (예를 들어, TC-RNTI (temporary cell-RNTI, C-RNTI (cell-RNTI) 등) 를 할당 받은 경우, 자신의 RNTI 를 사용할 수 있다. 예를 들어, 단말은 할당 받은 RNTI 를 스크램블링 시퀀스의 시드값으로 사용할 수 있다.
상술한 본 개시의 다양한 실시예들에 따르면, 해당 스크램블링 시퀀스의 시드값 (예를 들어, RAPID) 에 기초하여 (특히 데이터 채널 영역에서) 사용자 내지 단말이 구별될 수 있다.
예를 들어, PRACH 프리앰블과 PUSCH (기회) (및/또는 PUSCH (기회) 내의 DM-RS 자원) 간에는 매핑 관계가 미리 설정될 수 있다.
예를 들어, 하나 이상의 PRACH 프리앰블이 하나의 PUSCH (기회) (및/또는 PUSCH (기회) 내의 DM-RS 자원) 에 매핑될 수 있다.
예를 들어, 하나의 PRACH 프리앰블이 하나 이상의 PUSCH (기회) (및/또는 PUSCH (기회) 내의 DM-RS 자원) 에 매핑될 수 있다. 예를 들어, PRACH 프리앰블 : PUSCH (기회) (및/또는 PUSCH (기회)는 1:1, M:1, 1:M 일 수 있다. (M 은 자연수)
따라서, 예를 들어, 특히, PRACH 프리앰블 : PUSCH (기회) (및/또는 PUSCH (기회) 내의 DM-RS 자원) 가 M:1 인 경우에는, 메시지A (내의 PUSCH)를 송신한 사용자/단말의 구별이 문제될 수 있다.
상술한 본 개시의 다양한 실시예들에 따르면, 서로 다른 PRACH 프리앰블을 선택한 단말들은 서로 다른 RAPID 에 기초하여 PUSCH 를 획득/생성하므로, 메시지A 를 수신한 기지국은 PRACH 프리앰블에 대응하는 RAPID 에 기초하여 PUSCH 를 디코딩/복조하고, 성공/실패에 기초하여 단말을 구별할 수 있다.
예를 들어, PUSCH 생성을 위하여 사용되는 (또는 PUSCH 를 위한) 스크램블링 시퀀스 생성기 (scrambling sequence generator) 는 아래 수학식 1 에 따라 초기화될 수 있다. 아래 수학식 1 에서 사용되는 파라미터들 중 하나 이상의 파라미터가, 본 개시의 다양한 실시예들에 기초하여 생성/획득/결정될 수 있다.
[수학식 1]
여기서, C init 는 스크램블링 시퀀스 생성기의 초기값을 의미할 수 있다.
여기서, 각 파라미터의 값은 아래에 기초하여 결정될 수 있다.
- RNTI 가 C-RNTI, MCS-C-RNTI (modulation and coding scheme C-RNTI), SP-CSI-RNTI (semi persistent channel state information RNTI) 또는 CS-RNTI (configured scheduling RNTI) 이고, (PUSCH) 송신이 공통 탐색 영역 내의 DCI 포맷 1_0 에 의하여 스케쥴링되지 않고, 상위 계층 파라미터 dataScramblingIdentityPUSCH 가 설정되면, 은 상위 계층 파라미터 dataScramblingIdentityPUSCH 에서 지시된 값을 가질 수 있다.
- (PUSCH) 송신이 타입2 임의 접속 절차 (2-스텝 RACH 절차) 에 의하여 트리거링되고 상위 계층 파라미터 msgA-dataScramblingIdentity가 설정된 경우 은 상위 계층 파라미터 msgA-dataScramblingIdentity 에서 지시된 값을 가질 수 있다.
- 아닌 경우, . 즉, 는 PCI (physical cell identifier) 와 같은 값을 가질 수 있으며, 예를 들어 0 내지 1007 의 값을 가질 수 있다.
- 는 메시지 A 를 위하여 송신된 임의 접속 프리앰블의 인덱스일 수 있다. 예를 들어, 는 스크램블링 시퀀스의 시드값으로 상술한 단말 (내지 사용자) 가 선택한 PRACH 프리앰블과 연관된 정보에 대응할 수 있으며, 로부터 사용자가 구별될 수 있다.
- 는 (메시지A 내에 포함되는 PUSCH 를 위한 경우) 메시지A 를 위한 RA-RNTI 와 같은 값을 가질 수 있다. 예를 들어, 는 스크램블링 시퀀스의 시드값으로 상술한 RA-RNTI 내지 메시지A PUSCH 에 대한 (기지국의) 응답을 모니터링 하는데 사용되는 RNTI 에 대응할 수 있다. 다른 예시로, 4-스텝 RACH 를 위한 RA-RNTI 와 같은 값을 가질 수도 있다.
예를 들어, 에 의하면, 셀 (cell) 간 간섭이 랜덤화 (randomization) 될 수 있다.
한편, 예를 들어, 2-스텝 RACH 절차에서는 특정 RO 에 대응되는 RA-RNTI 와 msgB-RNTI 가 있을 수 있다.
본 개시의 다양한 실시예들에 따르면, RA-RNTI 는 PUSCH 데이터 스크램블링 시퀀스 생성/획득에 사용될 수 있고, msgB-RNTI 는 메시지B 를 위한 PDCCH 를 모니터링하는데 사용될 수 있다.
즉, 본 개시의 다양한 실시예들에 따르면, 특정 RO 에 대응되는 RA-RNTI 와 msgB-RNTI 의 각 용도가 구별될 수 있다.
또한, 본 개시의 다양한 실시예들에 따르면, RA-RNTI 와 RAPID가 구별되어, PUSCH 데이터 스크램블링 시퀀스 생성/획득의 시드값으로 사용될 수 있다.
3.2.2.2. DM-RS sequence / DM-RS resource
예를 들어, 제3.2.2.1 절에서 상술한 스크램블링 시퀀스는 메시지A 에 포함되는 PUSCH 의 데이터의 스크램블링과 관련되고, 본 제3.2.2.2 절에서 후술하는 DM-RS 시퀀스는 메시지A 에 포함되는 PUSCH 를 복조 (demodulation) 하기 위한 기준 신호의 생성과 관련될 수 있다.
한편, 예를 들어, REL.15 NR UL DM-RS 시퀀스는 기본 시퀀스 (base sequence) (예를 들어, CP-OFDM 을 위한 골드 시퀀스 (gold sequence) 와, 전송 프리코딩 (transform precoding) 을 위한 낮은 PAPR 시퀀스 등) 및 OCC 를 사용하여 설계될 수 있다.
예를 들어, 메시지A 에 포함되는 PUSCH 를 위하여 (메시지A 에 포함되는 PUSCH 의 DM-RS 시퀀스에) 기본 시퀀스 및 OCC 가 적용될 수 있다. 다만, 예를 들어, 시간 부정합의 경우에 있어서 OCC 가 메시지A 에 포함되는 PUSCH 의 DM-RS 시퀀스에 OCC 가 적용될 수 있는 지 여부에 대하여 논의되어야 할 수 있다. 또한, 예를 들어, 기본 시퀀스에 대한 초기화 시드값 (initialization seed value) 을 선택하는 방법에 대하여 논의되어야 할 수 있다.
한편, 예를 들어, REL.15 NR UL DM-RS 시퀀스를 위하여 2 가지 유형의 물리 계층 자원 (physical layer resource) (예를 들어, dmrs-TypeA-Position (comb-2) 및 dmrs-TypeB-Position) 이 정의될 수 있다.
예를 들어, dmrs-TypeA-Position 는 DM-RS 매핑 타입 A 와 관련된 파라미터일 수 있다. 예를 들어, DM-RS 매핑 타입 A 에서는, 첫번째 DM-RS 가 슬롯 내 심볼 2 또는 심볼 3에 위치되고, 슬롯 내에 실제 데이터 송신이 시작되는 위치와 무관하게, DM-RS 가 슬롯 경계의 시작부터 상대적으로 (relative to the start of the slot boundary) 매핑될 수 있다. 예를 들어, dmrs-TypeA-Position = ENUMERATED {pos2, pos3} 일 수 있으며, 첫번째 DM-RS의 위치를 지시할 수 있다.
예를 들어, dmrs-TypeB-Position는 DM-RS 매핑 타입 B 와 관련된 파라미터일 수 있다. 예를 들어, DM-RS 매핑 타입 B 에서는, 첫번째 DM-RS 가 데이터 할당 영역의 첫번째 심볼에 위치될 수 있다.
예를 들어, 4-스텝 RACH 절차의 메시지3와 같이, dmrs-TypeA-Position 는 메시지A 에 포함되는 PUSCH 에 대하여 적용될 수 있다. 이 경우, 예를 들어, 주파수 자원의 두 집합들 (예를 들어, 짝수 인덱스를 갖는 RE 들(의 집합) 및 홀수 인덱스를 갖는 RE 들(의 집합)) 모두 메시지A 에 포함되는 PUSCH 의 DM-RS 물리 계층 자원으로 사용될 수 있는 지에 대하여 논의되어야 할 수 있다.
예를 들어, 메시지A 에 포함되는 PUSCH 의 DM-RS 를 위하여 두 집합들을 모두 사용하는 것은 다양한 이점이 있을 수 있다.
예를 들어, 두 집합들을 모두 사용하는 것이 허용되는 경우, 상대적으로 많은 수의 단말이 PUSCH 자원에 멀티플렉싱될 수 있다.
또한, 예를 들어, 두 집합들을 모두 사용하는 것이 허용되는 경우, 주파수 자원의 길이가 다른 두 PUSCH 자원들이 다중화될 때, 상이한 주파수 자원 세트가 각각의 PUSCH 자원에 대한 DM-RS 물리 자원으로 할당될 수 있어, 더 나은 채널 추정 성능 (better channel estimation performance) 를 제공할 수 있다.
본 개시의 다양한 실시예들은 DM-RS 시퀀스 생성/획득 방법과 관련될 수 있다. 또한, 본 개시의 다양한 실시예들은 DM-RS 자원의 활용 방법과 관련될 수 있다.
예를 들어, 메시지A 에 포함되는 PUSCH 에 대하여 CDM 이 허용되는 경우, DM-RS 자원 및 시퀀스의 활용과 관련될 수 있다.
- 예를 들어, 메시지 A 에 포함되는 PUSCH 의 DM-RS 시퀀스를 위하여 OCC 가 적용될 수 있는 지와 관련될 수 있다.
- 예를 들어, 기본 시퀀스를 위한 초기화 시드값을 선택하는 방법과 관련될 수 있다. (예를 들어, CP-OFDM 을 위한 골드 시퀀스 (gold sequence) 와, 전송 프리코딩 (transform precoding) 을 위한 낮은 PAPR 시퀀스 등)
- 예를 들어, 주파수 자원의 두 집합들 (예를 들어, 짝수 인덱스를 갖는 RE 들(의 집합) 및 홀수 인덱스를 갖는 RE 들(의 집합)) 모두 메시지A 에 포함되는 PUSCH 의 DM-RS 물리 계층 자원으로 사용될 수 있는 지와 관련될 수 있다.
본 개시의 다양한 실시예들에 따르면, 메시지A 에 포함되는 PUSCH 의 파형 (waveform) 에 기초한 DM-RS 시퀀스 생성/획득 방법이 제공될 수 있다.
예를 들어, 메시지A 에 포함되는 PUSCH 의 파형으로 CP-OFDM 이 지정되는 경우, DM-RS 시퀀스의 시드값은 메시지A 를 구성하는 파라미터 집합 (parameter set) 에서 지정될 수 있다.
예를 들어, 해당 시드값이 2개 이상인 경우, 시드값은 RAPID 에 따라 선택될수 있다.
예를 들어, 메시지A의 파형으로 DFT-s-OFDM 이 지정되는 경우, 낮은 PAPR 시퀀스가 DM-RS 시퀀스로 사용될 수 있다. 예를 들어, 지정된 또는 지시된 하나의 기본 시퀀스가 사용될 수 있다.
예를 들어, 메시지A 의 PUSCH 의 파형으로 CP-OFDM 이 지정되는 경우 (예를 들어, 전송 프리코딩이 비활성화 (disable) 된 경우), DM-RS 시퀀스는 하나 이상이 사용될 수 있다. 예를 들어, 제 3.2.2. 절에서 상술한 Parameters for MsgA PUSCH 를 참조하면, DM-RS 시퀀스의 최대 개수는 {1, 2} 일 수 있으므로, 메시지A PUSCH 의 파형으로 CP-OFDM 이 지정되는 경우 DM-RS 시퀀스의 최대 개수는 1 또는 2 일 수 있다. 또한, 예를 들어, 상술한 바와 같이 메시지A PUSCH 파형으로 CP-OFDM 이 지정되는 경우, DM-RS 시퀀스의 시드값은 2 개 이상일 수 있다.
예를 들어, 메시지 A PUSCH 의 파형으로 DFT-s-OFDM 이 지정되는 경우(예를 들어, 전송 프리코딩이 활성화 (enable) 된 경우), DM-RS 시퀀스는 하나가 사용될 수 있다.
상술한 본 개시의 다양한 실시예들에서, DM-RS 시퀀스의 시드값은 전송 프리코딩이 비활성화된 경우/활성화된 경우 각각에서 사용되는 스크램블링 시퀀스 생성기의 초기화를 위한 파라미터로 사용될 수 있다.
3.2.2.3. DM-RS antenna port
예를 들어, 다수의 단말 (사용자) 가 멀티플렉싱되는 상황에서 수신 신호 간에 수신 동기가 일치하지 않으면, DM-RS 를 사용하여 획득된 채널 추정 성능이 열화될 수 있다. 다만, 이러한 열화 정도는 (안테나) 포트 선택에 따라 달라질 수 있으며, (안테나) 포트 선택에 따라 채널 추정 성능에 차이가 있을 수 있다.
예를 들어, PUSCH DM-RS 의 주파수 자원은 2-comb 형태로 구성되어 있고, 각 comb 자원 내에서는 0 및 FFT/2 의 시간 도메인 순환 시프트 (cyclic shift) 를 만들어 내는 위상 성분 (cyclic shift) 으로 구성될 수 있다. 예를 들어, 다른 주파수 자원을 사용하는 단말 (사용자) 들의 경우 각각 전송한 OFDM 심볼 간 수신 시간의 차이가 CP (cyclic prefix) 범위 (예를 들어, 4 us) 를 벗어나면, 인터-캐리어 간섭을 발생시킬 수 있다. 반면, 동일한 주파수 자원에서 사용되는 서로 다른 순환 시프트 값을 사용하는 사용자들의 경우, 각각 전송한 OFDM 심볼 간 수신 시간의 차이가 FFT/8 (66.667/8us ≒ 8.8us) 를 벗어나는 경우에도 OFDM 심볼 간 간섭의 영향이 크지 않을 수 있다.
본 개시의 다양한 실시예들에 따르면, 타입A DM-RS 가 하나의 OFDM 심볼 (single OFDM symbol) 인 경우 (예를 들어, 타입 A DM-RS 가 하나의 OFDM 심볼에 매핑되어 송수신되는 경우) 총 4 개의 안테나 포트가 사용될 수 있다:
- 예를 들어, 안테나 포트의 개수 (number of antenna port) 가 4로 지정되는 경우, (사용) 가능한 모든 안테나 포트가 사용될 수 있다. 및/또는
- 예를 들어, 안테나 포트의 개수가 2로 지정되는 경우, 특정 주파수 자원에서 서로 다른 순환 시프트를 갖는 안테나 포트 (예를 들어, 0, 1 또는 2, 3) 가 사용될 수 있다. 및/또는
- 예를 들어, 안테나 포트의 개수가 1 로 지정되는 경우, 특정 주파수 자원과 특정 순환 시프트를 갖는 안테나 포트 (예를 들어, 0 또는 1 또는 2 또는 3) 이 사용될 수 있다.
이때, 본 개시의 다양한 실시예들에 따르면, DM-RS 시퀀스 개수가 2 이상인 경우, 각 안테나 포트 당 사용될 수 있는 DM-RS 시퀀스의 개수는 2 이상일 수 있다.
본 개시의 다양한 실시예들에 따르면, DM-RS 포트와 DM-RS 시퀀스의 수를 고려하여 최대 멀티플렉싱 가능한 RAPID 의 개수가 결정될 수 있다.
본 개시의 다양한 실시예들에 따르면, 각 RAPID (및/또는 PRACH 프리앰블) 는 PUSCH 기회(내의 DM-RS 자원)에 매핑될 수 있으며, 이 때 DM-RS 포트 인덱스가 오름차순으로 먼저 고려되고, 이후 DM-RS 시퀀스 인덱스가 오름차순으로 고려될 수 있다.
예를 들어, DM-RS 포트 {0, 1, 2, 3}, DM-RS 시퀀스 {a, b} 를 가정하면, 각 RAPID 는 DM-RS 포트0 에 DM-RS 시퀀스 a, b -> DM-RS 포트1 에 DM-RS 시퀀스 a, b -> DM-RS 포트2 에 DM-RS 시퀀스 a, b -> DM-RS 포트3 에 DM-RS 시퀀스 a, b 등의 순서로 매핑될 수 있다. RAPID 는 메시지A 에 포함되는 PRACH 프리앰블의 인덱스와 관련되므로, 본 예시는 각 PRACH 프리앰블의 자원 매핑 예로도 이해될 수 있다.
예를 들어, 하나 이상의 PRACH 프리앰블이 (유효한) PUSCH 기회에 매핑됨에 있어서, PUSCH 기회 내의 DM-RS 인덱스를 증가시키면서 매핑되고, 여기서 DM-RS 인덱스는, 우선, DM-RS 포트 인덱스가 오름차순으로, 이후, DM-RS 시퀀스 인덱스가 오름차순으로 고려됨에 기초하여 결정될 수 있다.
한편, 본 개시의 다양한 실시예들에 따르면, 단말은, 2-스텝 RACH 절차를 위하여 PRACH 프리앰블을 선택하는 경우, 특정 구간 (duration) 안에 있는 RO 중 임의로 하나의 RO 를 선택하고, 프리앰블을 임의로 선택할 수 있다.
더하여, 본 개시의 다양한 실시예들에 따르면, 단말은 특정 RO 를 임의 로 선택하고, 그 선택된 RO 에서 프리앰블을 선택할 때, 다단계로 선택할 수 있다.
예를 들어, 먼저 단말은 DM-RS 시퀀스의 개수에 맞추어 설정된 RAPID 그룹 중 하나의 RAPID 그룹을 선택하고, 이후, 선택된 그룹 내에서 특정 RAPID 를 선택할 수 있다. 이러한 본 개시의 다양한 실시예들에 따르면, 예를 들어 DM-RS 로부터 획득되는 채널 추정 성능이 좋은 순서대로 RAPID 가 선택되도록 할 수 있다.
3.3. MCS level
본 개시의 다양한 실시예들에 따르면, 메시지A 에 포함되는 PUSCH 를 위하여, 매우 제한된 (very limited) 수의 MCS 레벨이 사용될 수 있다.
본 개시의 다양한 실시예들에 따르면, DM-RS 주파수 자원의 다수의 집합들이 허용되면, 각 DM-RS 주파수 자원이 MCS 레벨과 연관되는 것으로 정의될 수 있다.
3.3.1. MCS level related to MsgA PUSCH
예를 들어, 4-스텝 RACH 절차에서는, 메시지3를 위한 MCS 는 RAR 메시지에 포함된 UL 그랜트에 기초하여 획득될 수 있다. 따라서, 예를 들어, 단말 채널 상태에 따라, 기지국은 낮은 인덱스 (low index) 에서 높은 인덱스 (high index) 로 MCS 를 지정할 수 있다. 또한, 예를 들어, (메시지3 에 포함되는) PUSCH 를 위한 시간/주파수 자원은 선택된 MCS 레벨 및/또는 요구되는 커버리지에 기초하여 할당될 수 있다.
반면, 예를 들어, 2-스텝 RACH 절차에서는, 유연한 (flexible) MCS 선택 (selection) 이 어려울 수 있다. 예를 들어, 만약 단말이 DL 측정 결과에 따라 UL 송신을 위한 MCS 레벨을 선택하면, 채널 상태 뿐 아니라 DL 채널과 UL 채널 간의 간섭 레벨이 상당히 다르기 때문에, 단말이 UL 송신에 적용하기 어려울 수 있다.
더하여, 예를 들어, MCS 레벨에 따라 메시지A 에 필요한 PUSCH 자원의 양이 변경될 수 있다. 따라서, 예를 들어, 여러 (several) MCS 레벨이 허용되는 경우, 많은 유형의 PUSCH 자원이 정의 및/또는 사전에 지정되어야 하여, 자원 활용 측면에서 좋지 않을 수 있다.
따라서, 예를 들어, 메시지A 에 포함되는 PUSCH 의 경우, 매우 제한된 수의 MCS 레벨이 사용되는 것이 바람직할 수 있다. 예를 들어, 메시지A 에 포함되는 PUSCH 에 대해서는 하나 및/또는 두 개의 MCS 레벨이 사용될 수 있다. 예를 들어, CP-OFDM 을 위한 QPSK 만이 메시지A 에 포함되는 PUSCH 에 적용될 수 있으며, 두 가지 종류의 코딩 레이트가 사용될 수 있다.
본 개시의 다양한 실시예들에 따르면, 다수의 MCS 레벨이 (메시지A 에 포함되는) PUSCH 송신을 위하여 허용되는 경우, MCS 레벨에 따라 PUSCH 자원을 위한 다수의 종류들이 정의될 수 있다. 예를 들어, RAPID 는 MCS 레벨과 연관될 수 있다.
보다 상세히 설명하면 아래와 같다.
상술한 바와 같이, 예를 들어, 다수의 MCS 레벨이 (메시지A 에 포함되는) PUSCH 송신을 위하여 허용되는 경우, MCS 레벨에 따라 PUSCH 자원을 위한 다수의 종류들이 정의될 수 있다.
따라서, 예를 들어, PUSCH 자원이 RAPID 와 대응하면, RAPID 는MCS 레벨과 대응할 수 있다. 따라서, 예를 들어, 단말이 PUSCH 송신에 적합한 MCS 레벨을 결정하면, 단말은 MCS 레벨과 연관된 RAPID 를 선택할 수 있다.
3.3.2. MCS level related to DM-RS for MsgA PUSCH
본 개시의 다양한 실시예들에 따르면, DM-RS 주파수 자원의 다수의 집합들이 허용되면, 각 DM-RS 주파수 자원이 MCS 레벨과 연관되는 것으로 정의될 수 있다.
예를 들어, 두 개의 다른 PUSCH 자원 (집합) (예를 들어, 더 낮은 MCS 레벨을 위한 더 큰 제1 주파수 자원 (집합) / 더 높은 MCS 레벨을 위한 더 작은 제2 주파수 자원 (집합)) 을 가정하면, 두 개의 다른 주파수 자원 집합이 각 PUSCH 자원에 대하여 지정될 수 있다.
<실시예>
도 24 는 본 개시의 다양한 실시예들에 따른 메시지A 를 위한 자원 구성의 일 예를 나타낸 도면이다.
보다 구체적으로, 도 24 는 메시지A 에 포함되는 PUSCH 를 위한 PUSCH 자원 구성과 해당 PUSCH 를 위한 DM-RS 자원 구성의 일 예를 나타낸 도면이다.
도 24 를 참조하면, 예를 들어, 메시지A 에 포함되는 PUSCH 를 위하여 상대적으로 높은 MCS 레벨이 사용되는 경우, 하나의 RB 로 구성되는 상대적으로 작은 주파수 자원이 메시지 A 에 포함되는 PUSCH 를 위하여 사용될 수 있다. 즉, 예를 들어, 메시지A 에 포함되는 PUSCH 를 위하여 상대적으로 높은 MCS 레벨이 사용되는 경우, 하나의 RB 로 구성되는 상대적으로 작은 주파수 자원에 메시지A 에 포함되는 PUSCH 가 할당될 수 있다.
예를 들어, 메시지A 에 포함되는 PUSCH 를 위하여 상대적으로 낮은 MCS 레벨이 사용되는 경우, 두 개의 RB 들로 구성되는 상대적으로 큰 주파수 자원이 메시지 A 에 포함되는 PUSCH 를 위하여 사용될 수 있다. 즉, 예를 들어, 메시지A 에 포함되는 PUSCH 를 위하여 상대적으로 낮은 MCS 레벨이 사용되는 경우, 두 개의 RB 들로 구성되는 상대적으로 큰 주파수 자원 내에 메시지A 에 포함되는 PUSCH 가 할당될 수 있다.
예를 들어, 짝수 인덱스를 갖는 RE 들의 집합을 포함하는 1 st comb, 홀수 인덱스를 갖는 RE 들의 집합을 포함하는 2 nd comb 이 설정될 수 있다.
예를 들어, 메시지A 에 포함되는 PUSCH 를 위하여 상대적으로 높은 MCS 레벨이 사용되는 경우, DM-RS 는 1 st comb 에 할당될 수 있다.
예를 들어, 메시지 A 에 포함되는 PUSCH 를 위하여 상대적으로 낮은 MCS 레벨이 사용되는 경우, DM-RS 는 2 nd comb 에 할당될 수 있다.
즉, 예를 들어, MCS 레벨에 기초하여 메시지A 에 포함되는 PUSCH 를 위한 DM-RS 자원 (예를 들어, DM-RS 포트) 가 결정될 수 있다.
또는, 예를 들어, 중복된 DM-RS 심볼 (overlapped DM-RS symbols) 을 갖는 다수의 PUSCH 설정의 경우, 기지국 (및/또는 네트워크) 는 각 메시지A PUSCH 설정에 대하여 서로 다른 CDM 그룹을 할당할 수 있다.
3.3.3. MCS and payload size
본 개시의 다양한 실시예들에 따르면, MCS 및/또는 페이로드 크기에 따라 사용 가능한 PUSCH 자원이 서로 다를 수 있다.
예를 들어, 각 페이로드에 관계 없이 동일한 디코딩 성능을 얻기 위해서는, 상대적으로 많은 비트의 전송에 대하여 (특히, UL 과 같이 단말의 전송 전력에 제약이 있는 경우) 더 많은 시간 자원이 요구될 수 있다. 예를 들어, 페이로드 사이즈가 56 비트 또는 72 비트라고 가정하면, 56 비트의 전송 보다 72 비트의 전송을 위하여 더 많은 시간 자원이 요구될 수 있다.
예를 들어, 해당 자원은 시간적으로 구분되어 할당될 수 있다.
예를 들어, 해당 자원은 RACH 기회 및/또는 SSB to RO 매핑 구간 (mapping period) 및/또는 특정 구간 등에 따라 매핑될 수 있다.
예를 들어, 단말이 특정 MCS 및/또는 특정 페이로드 및/또는 특정 PUSCH 자원을 선택할 때, 시간적으로 구분된 매핑을 고려하여 RO 을 선택하고, 그 RO 에 해당하는 메시지A PUSCH 자원을 사용할 수 있다.
3.4. RO mapping for 2-step RACH
2-스텝 RACH 절차에서는, 메시지 A (PRACH 프리앰블+PUSCH) 를 구성함에 있어서, RACH 의 송신/수신 시점 및/또는 PUSCH 송신/수신 시점이 결정될 필요가 있으며, 이에 따라 PRACH 프리앰블과 PUSCH 의 멀티플렉싱 (multiplexing, 다중화) 이 필요하게 된다.
본 개시의 다양한 실시예들은, 2-스텝 RACH 절차를 지원하기 위한 RACH 기회 (occasion) (또는 PRACH 기회) (RO) to PUSCH (또는 PUSCH 기회) 매핑 방법과 관련될 수 있다.
본 개시의 다양한 실시예들에 따르면, RO 가 2-스텝 RACH 와 4-스텝 RACH 간에 공유 (이하, RO 공유 (RO sharing)) 가 허용되는지 여부에 기초하여 RO 가 구성 내지 매핑될 수 있다.
예를 들어, RO 공유가 허용되면, 4-스텝 RACH 절차를 위한 PRACH 프리앰블과 2-스텝 RACH 절차를 위한 PRACH 프리앰블이 별개로 설정/지정될 수 있다. 예를 들어, 64 개의 PRACH 프리앰블이 마련된 경우, 앞선 32 개의 PRACH 프리앰블은 4-스텝 RACH 절차를 위한 PRACH 프리앰블, 뒤의 32 개의 PRACH 프리앰블은 2-스텝 RACH 절차를 위한 PRACH 프리앰블인 것으로 설정/지정될 수 있다. 예를 들어, 해당 설정/지시는 systeminformationblocktype1 (SIB1) 및/또는 단말-특정 (UE-specific) RRC 시그널링에 포함되는 RACH 설정(configuration)에 기초할 수 있다.
예를 들어, PRACH 프리앰블은 코드-도메인 자원으로 이해될 수 있으며, CP (cyclic prefix) 에 기초하여 구별될 수 있다. 예를 들어, PRACH 프리앰블을 수신한 기지국은 해당 PRACH 프리앰블이 4-스텝 RACH 를 위한 PRACH 프리앰블인지 및/또는 2-스텝 RACH 를 위한 PRACH 프리앰블인지를 확인하여, PRACH 프리앰블을 송신한 단말이 2-스텝 RACH 절차를 개시한 것인지 및/또는 4-스텝 RACH 절차를 개시한 것인지를 식별할 수 있다.
반면, 예를 들어, RO 공유가 허용되지 않는 경우는 (RO 분리 (separate)), 4-스텝 RACH 절차를 RO과 2-스텝 RACH 절차를 위한 RO 가 구별되어, 기지국은 해당 RO 에 기초하여 PRACH 프리앰블을 송신한 단말이 2-스텝 RACH 절차를 개시한 것인지 및/또는 4-스텝 RACH 절차를 개시한 것인지를 식별할 수 있다.
예를 들어, 2-스텝 RACH 와 4-스텝 RACH 간에 RO 공유가 허용되면, (경쟁 기반) 4-스텝 RACH를 위한 RO 내에, 4-스텝 RACH 를 위한 PRACH 프리앰블 외 나머지 PRACH 프리앰블 중에서 (경쟁 기반) 2-스텝 RACH 를 위한 PRACH 프리앰블이 설정될 수 있다. 예를 들어, 해당 PRACH 프리앰블 송신의 목적 (예를 들어, 2-스텝 RACH 또는 4-스텝 RACH) 이 기지국으로부터 식별될 수 있다. 즉, 상술한 예시에서, 4-스텝 RACH 를 위한 PRACH 프리앰블 외 나머지 PRACH 프리앰블 중에서 2-스텝 RACH 를 위한 PRACH 프리앰블이 설정되므로, 기지국은 해당 PRACH 프리앰블에 기초하여 단말이 송신한 PRACH 프리앰블이 2-스텝 RACH 를 위한 것인지 4-스텝 RACH 를 위한 것인지 식별할 수 있다.
예를 들어, 2-스텝 RACH 와 4-스텝 RACH 간에 RO 공유가 허용되면, 메시지A 의 PUSCH (또는 PUSCH 기회) 는 RACH 슬롯 다음의 PUSCH 슬롯 (PUSCH slot following the RACH slot) 내에 할당될 수 있다.
예를 들어, 2-스텝 RACH 와 4-스텝 RACH 간에 RO 공유가 허용되지 않으면, (경쟁 기반) 2-스텝 RACH 를 위한 RO 가 구성될 수 있다.
예를 들어, 2-스텝 RACH 를 위한 RO 구성에 있어서는 아래와 같은 두 가지 방식 내지 방법 내지 대안 (alternative) 중 하나 이상이 적용될 수 있다:
(1) 제 1 방식 - 슬롯 레벨 TDM (slot level TDM)
예를 들어, 메시지A 를 위한 RO 및 메시지 A 를 위한 PUSCH (또는 PUSCH 기회) 의 멀티플렉싱은, 슬롯 레벨 멀티플렉싱에 기초할 수 있다.
예를 들어, 4-스텝 RACH를 위하여 구성된 RACH 설정 테이블 (RACH configuration table) 이 재사용될 수 있다.
예를 들어, RACH 설정 테이블의 일 예는 아래 표 16 내지 표 20와 같을 수 있다. 해당 표 16 내지 표 20은 NR 주파수 대역 FR1 및 언페어드 스펙트럼(unpaired spectrum) 을 위한 RACH 설정 테이블의 일 예를 나타낼 수 있다.
예를 들어, RACH 설정 테이블은 RACH 슬롯 또는 두 번째 (2 nd) RACH 하프-슬롯 (half-slot) 내의 대부분의 OFDM 심볼 (most of OFDM symbols) 이 RO 로 사용된다는 가정 하에 설계될 수 있다.
따라서, 이 경우, 예를 들어, RO 와 PUSCH (또는 PUSCH 기회) 는 상이한 슬롯에서 멀티플렉싱될 수 있다.
도 25 은 본 개시의 다양한 실시예들에 따른 메시지A 구성의 예시를 나타낸 도면이다.
보다 구체적으로, 도 25 은 상술한 메시지A 를 위한 RO 및 메시지 A 를 위한 PUSCH (또는 PUSCH 기회) 가 슬롯 레벨 멀티플렉싱 되는 제1 방식의 일 예를 나타낸 도면이다.
도 25을 참조하면, 메시지 A 에 포함된 PRACH 프리앰블 송신을 위한 RO 와 메시지 A 에 포함된 PUSCH 송신을 위한 PUSCH 기회는 슬롯 레벨 (slot level) 에서 TDM 될 수 있다.
예를 들어, RO 는 시간 도메인 상에서 PUSCH 슬롯보다 먼저 위치하는 RACH 슬롯 내에 포함 내지 매핑될 수 있다. 예를 들어, PUSCH 기회는 시간 도메인 상에서 RACH 슬롯보다 뒤에 위치하는 PUSCH 슬롯 내에 포함 내지 매핑될 수 있다.
예를 들어, 각 슬롯 내에서, RO 및/또는 PUSCH 기회는 각각 다양한 방식으로 다중화 될 수 있다.
예를 들어, 도 25 (a) 는 RACH 슬롯 내에서 RO 가 TDM 되고 PUSCH 슬롯 내에서 PUSCH 가 FDM/TDM 되는 예시를 나타낸다.
예를 들어, 도 25 (b) 는 RACH 슬롯 내에서 RO 가 FDM/TDM 되고 PUSCH 슬롯 내에서 PUSCH 가 FDM 되는 예시를 나타낸다.
예를 들어, 도 25 (c) 는 RACH 슬롯 내에서 RO 가 FDM 되고 PUSCH 슬롯 내에서 PUSCH 가 TDM 되는 예시를 나타낸다.
예를 들어, 도 25 (d) 는 RACH 슬롯 내에서 RO 가 TDM 되고 PUSCH 슬롯 내에서 PUSCH 가 TDM/CDM 되는 예시를 나타낸다.
예를 들어, 시간 도메인 상에서 RO 와 PUSCH 기회들 간에는 일정 시간 오프셋이 설정될 수 있다. 즉, 예를 들어, 시간 도메인 상에서 RO 가 포함되는 RACH 슬롯과 PUSCH 기회가 포함되는 PUSCH 슬롯 사이에는 일정 시간 오프셋이 설정될 수 있다.
예를 들어, 해당 시간 오프셋은 일정 개수의 슬롯으로 구성될 수 있다.
반대 예시로, 해당 시간 오프셋이 설정되지 않은 경우, 시간 도메인 상에서 RACH 슬롯과 PUSCH 슬롯이 연속될 수도 있다.
(2) 제 2 방식 - 심볼 레벨 TDM (symbol level TDM)
예를 들어, 메시지A 를 위한 RO 및 메시지 A 를 위한 PUSCH (또는 PUSCH 기회) 의 멀티플렉싱은, 심볼 레벨 멀티플렉싱에 기초할 수 있다.
예를 들어, (메시지A 를 위한 슬롯의) 첫 번째 (1 st) RACH 하프-슬롯 내의 OFDM 심볼이 RO 로 사용되는 설정이 고려될 수 있다.
예를 들어, (해당 슬롯 내의) RO OFDM 심볼 이후의 OFDM 심볼에는 메시지A 를 위한 PUSCH (또는 PUSCH 기회) 가 할당될 수 있다.
도 26 은 본 개시의 다양한 실시예들에 따른 메시지A 구성의 예시를 나타낸 도면이다.
보다 구체적으로, 도 26 은 상술한 메시지A 를 위한 RO 및 메시지 A 를 위한 PUSCH (또는 PUSCH 기회) 가 심볼 레벨 멀티플렉싱 되는 제2 방식의 일 예를 나타낸 도면이다.
도 26 을 참조하면, 메시지 A 에 포함된 PRACH 프리앰블 송신을 위한 RO 와 메시지 A 에 포함된 PUSCH 송신을 위한 PUSCH 기회는 심볼 레벨 (slot level) 에서 TDM 될 수 있다.
예를 들어, RO 와 PUSCH 기회는 하나의 슬롯 내에 포함될 수 있다.
예를 들어, RO 는 시간 도메인 상에서 PUSCH 하프-슬롯보다 먼저 위치하는 RACH 하프-슬롯 내에 포함 내지 매핑될 수 있다. 예를 들어, PUSCH 기회는 시간 도메인 상에서 RACH 하프-슬롯보다 뒤에 위치하는 PUSCH 하프-슬롯 내에 포함 내지 매핑될 수 있다.
예를 들어, RO 는 RACH 하프-슬롯 내의 하나 이상의 OFDM 심볼에 포함 내지 매핑될 수 있다. 예를 들어, PUSCH 기회는 PUSCH 하프-슬롯 내의 하나 이상의 OFDM 심볼에 포함 내지 매핑될 수 있다.
예를 들어, 각 하프-슬롯 내에서, RO 및/또는 PUSCH 기회는 각각 다양한 방식으로 다중화 될 수 있다.
예를 들어, 도 26 (a) 는 RACH 하프-슬롯 내에서 RO 가 하나로 구성되고 PUSCH 하프-슬롯 내에서 PUSCH 가 FDM 되는 예시를 나타낸다.
예를 들어, 도 26 (b) 는 RACH 하프-슬롯 내에서 RO 가 FDM 되고 PUSCH 하프-슬롯 내에서 PUSCH 가 TDM 되는 예시를 나타낸다.
예를 들어, 도 26 (c) 는 RACH 하프-슬롯 내에서 RO 가 TDM 되고 PUSCH 하프-슬롯 내에서 PUSCH 가 FDM/TDM 되는 예시를 나타낸다.
예를 들어, 도 26 (d) 는 RACH 하프-슬롯 내에서 RO 가 FDM/TDM 되고 PUSCH 하프-슬롯 내에서 PUSCH 가 TDM/CDM 되는 예시를 나타낸다.
요약하면, 본 개시의 다양한 실시예들에 따르면, 2-스텝 RACH 와 4-스텝 RACH 간에 RO 공유가 허용되는지 여부에 기초한 RO 가 구성 내지 매핑될 수 있다.
예를 들어, RO 공유가 허용되는 경우, 4-스텝 RACH 를 위한 PRACH 프리앰블 외 나머지 PRACH 프리앰블 중에서 2-스텝 RACH 를 위한 PRACH 프리앰블이 설정될 수 있다.
예를 들어, RO 공유가 허용되지 않는 경우, 아래와 같은 두 가지 방식 내지 방법 내지 대안 중 하나 이상이 적용될 수 있다:
(1) 제 1 방식 - 슬롯 레벨 TDM (slot level TDM)
예를 들어, 4-스텝 RACH를 위하여 구성된 RACH 설정 테이블 (RACH configuration table) 이 재사용될 수 있다. 예를 들어, 메시지A 를 위한 RO 및 메시지 A 를 위한 PUSCH (또는 PUSCH 기회) 의 멀티플렉싱은, 슬롯 레벨 멀티플렉싱에 기초할 수 있다.
(2) 제 2 방식 - 심볼 레벨 TDM (symbol level TDM)
예를 들어, (메시지A 를 위한 슬롯의) 첫 번째 RACH 하프-슬롯 내의 OFDM 심볼이 RO 로 사용되는 설정이 고려될 수 있다. 예를 들어, 메시지A 를 위한 RO 및 메시지 A 를 위한 PUSCH (또는 PUSCH 기회) 의 멀티플렉싱은, 심볼 레벨 멀티플렉싱에 기초할 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 다양한 실시예들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
3.5. 네트워크 초기 접속 및 통신 과정
본 개시의 다양한 실시예들에 따른 단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위해 네트워크 접속 과정을 수행할 수 있다. 예를 들어, 단말은 네트워크(예, 기지국)에 접속을 수행하면서, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들을 수신하여 메모리에 저장할 수 있다. 본 개시의 다양한 실시예들에 필요한 구성 정보들은 상위 계층(예, RRC layer; Medium Access Control, MAC, layer 등) 시그널링을 통해 수신될 수 있다.
도 27은 본 개시의 다양한 실시예들에 따른 네트워크 초기 접속 및 이후의 통신 과정을 간단히 나타낸 도면이다. 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서 물리 채널, 참조 신호는 빔-포밍을 이용하여 전송될 수 있다. 빔-포밍 기반의 신호 전송이 지원되는 경우, 기지국과 단말 간에 빔을 정렬하기 위해 빔-관리(beam management) 과정이 수반될 수 있다. 또한, 본 개시의 다양한 실시예들에서 제안하는 신호는 빔-포밍을 이용하여 전송/수신될 수 있다. RRC(Radio Resource Control) IDLE 모드에서 빔 정렬은 SSB(또는 SS/PBCH 블록)를 기반하여 수행될 수 있다. 반면, RRC CONNECTED 모드에서 빔 정렬은 CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 한편, 빔-포밍 기반의 신호 전송이 지원되지 않는 경우, 이하의 설명에서 빔과 관련된 동작은 생략될 수 있다.
도 27 에 도시된 바와 같이, 기지국(예, BS)는 SSB를 주기적으로 전송할 수 있다(2702). 여기서, SSB는 PSS/SSS/PBCH를 포함한다. SSB는 빔 스위핑을 이용하여 전송될 수 있다. 이후, 기지국은 RMSI(Remaining Minimum System Information)와 OSI(Other System Information)를 전송할 수 있다(2704). RMSI는 단말이 기지국에 초기 접속하는데 필요한 정보(예, PRACH 구성 정보)를 포함할 수 있다. 한편, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블(Message 1, Msg1)을 기지국에게 전송할 수 있다(2706). RACH 프리앰블의 빔 방향은 PRACH 자원과 연관된다. PRACH 자원 (및/또는 RACH 프리앰블)과 SSB (인덱스)간 연관성(association)은 시스템 정보(예, RMSI)를 통해 설정될 수 있다. 이후, RACH 과정의 일환으로, 기지국은 RACH 프리앰블에 대한 응답으로 RAR(Random Access Response)(Msg2)를 전송하고(2708), 단말은 RAR 내 UL 그랜트를 이용하여 Msg3(예, RRC Connection Request)을 전송하고(2710), 기지국은 충돌 해결(contention resolution) 메세지(Msg4)를 전송할 수 있다(2712). Msg4는 RRC Connection Setup을 포함할 수 있다.
RACH 과정을 통해 기지국과 단말 간에 RRC 연결이 설정되면, 그 이후의 빔 정렬은 SSB/CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 예를 들어, 단말은 SSB/CSI-RS를 수신할 수 있다(2714). SSB/CSI-RS는 단말이 빔/CSI 보고를 생성하는데 사용될 수 있다. 한편, 기지국은 DCI를 통해 빔/CSI 보고를 단말에게 요청할 수 있다(2716). 이 경우, 단말은 SSB/CSI-RS에 기반하여 빔/CSI 보고를 생성하고, 생성된 빔/CSI 보고를 PUSCH/PUCCH를 통해 기지국에게 전송할 수 있다(2718). 빔/CSI 보고는 빔 측정 결과, 선호하는 빔에 관한 정보 등을 포함할 수 있다. 기지국과 단말은 빔/CSI 보고에 기반하여 빔을 스위칭 할 수 있다(2720a, 2720b).
이후, 단말과 기지국은 앞에서 설명/제안한 절차 및/또는 방법들을 수행할 수 있다. 예를 들어, 단말과 기지국은 네트워크 접속 과정(예, 시스템 정보 획득 과정, RACH를 통한 RRC 연결 과정 등)에서 얻은 구성 정보에 기반하여, 본 개시의 다양한 실시예들에 따라 메모리에 있는 정보를 처리하여 무선 신호를 전송하거나, 수신된 무선 신호를 처리하여 메모리에 저장할 수 있다. 여기서, 무선 신호는 하향링크의 경우 PDCCH, PDSCH, RS(Reference Signal) 중 적어도 하나를 포함하고, 상향링크의 경우 PUCCH, PUSCH, SRS 중 적어도 하나를 포함할 수 있다.
3.6. DRX (Discontinuous Reception) 동작
도 28 은 본 개시의 다양한 실시예들에 따른 DRX 동작을 예시한 도면이다.
본 개시의 다양한 실시예들에 따른 단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다.
3.6.1. RRC_CONNECTED DRX
RRC_CONNECTED 상태에서 DRX는 PDCCH의 불연속 수신에 사용된다. 편의상, RRC_CONNECTED 상태에서 수행되는 DRX를 RRC_CONNECTED DRX라고 지칭한다.
도 28(a)를 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 개시의 다양한 실시예들에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 개시의 다양한 실시예들에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
표 21은 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 21을 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 본 개시의 다양한 실시예들에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.
- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.
3.6.2. RRC_IDLE DRX
RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 편의상, RRC_IDLE (또는 RRC_INACTIVE) 상태에서 수행되는 DRX를 RRC_IDLE DRX라고 지칭한다.
따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다.
도 28(b)를 참조하면, 페이징 신호의 불연속 수신을 위해 DRX가 구성될 수 있다. 단말은 상위 계층(예, RRC) 시그널링을 통해 기지국으로부터 DRX 구성 정보(DRX configuration information)를 수신할 수 있다. DRX 구성 정보는 DRX 사이클, DRX 오프셋, DRX 타이머에 대한 구성 정보 등을 포함할 수 있다. 단말은 DRX 사이클에 따라 On Duration과 Sleep duration을 반복한다. 단말은 On duration에서 웨이크업(wakeup) 모드로 동작하고, Sleep duration에서 슬립 모드로 동작할 수 있다. 웨이크업 모드에서 단말은 페이징 메시지를 수신하기 위해 PO(Paging Occasion)를 모니터링 할 수 있다. PO는 단말이 페이징 메시지의 수신을 기대하는 시간 자원/구간(예, 서브프레임, 슬롯)을 의미한다. PO 모니터링은 PO에서 P-RNTI로 스크램블링된 PDCCH (또는, MPDCCH, NPDCCH)(이하, 페이징 PDCCH)를 모니터링 하는 것을 포함한다. 페이징 메시지는 페이징 PDCCH에 포함되거나, 페이징 PDCCH에 의해 스케줄링 되는 PDSCH에 포함될 수 있다. PF(Paging Frame) 내에 하나 혹은 복수의 PO(들)이 포함되며, PF는 UE ID에 기반하여 주기적으로 설정될 수 있다. 여기서, PF는 하나의 무선 프레임에 해당하고, UE ID는 단말의 IMSI(International Mobile Subscriber Identity)에 기반하여 결정될 수 있다. DRX가 설정된 경우, 단말은 DRX 사이클 당 하나의 PO만을 모니터링 한다. 단말은 PO에서 자신의 ID 및/또는 시스템 정보의 변경을 지시하는 페이징 메시지를 수신한 경우, 기지국과의 연결을 초기화(또는 재설정) 하기 위해 RACH 과정을 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)할 수 있다. 따라서, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 기지국과의 연결을 위해 RACH를 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)하기 위해 PO 모니터링이 시간 도메인에서 불연속적으로 수행될 수 있다.
상술한 초기 접속 과정 및/또는 DRX 동작은 상술한 제 1 절 내지 제 3 절의 내용과 결합되어 본 개시의 또 다른 다양한 실시예들을 구성할 수도 있으며, 이는 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.
도 29 은 본 개시의 다양한 실시예들에 따른 단말과 기지국의 동작 방법을 간단히 나타낸 도면이다.
도 30 는 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 나타낸 흐름도이다.
도 31 은 본 개시의 다양한 실시예들에 따른 기지국의 동작 방법을 나타낸 흐름도이다.
도 29 내지 도 31 을 참조하면, 예시적 실시예에 따른 동작 2701, 2801 에서, 단말은 PRACH (physical random access channel) 프리앰블 (preamble) 과 PUSCH (physical uplink shared channel) 을 포함하는 메시지 A (message A) 를 획득/생성할 수 있다.
예시적 실시예에서, 메시지A 는 임의 접속 절차 (random access procedure) 와 관련될 수 있다.
예시적 실시예에 따른 동작 2703, 2803, 2903 에서, 단말은 메시지A 를 송신하고, 기지국은 해당 메시지A 를 수신할 수 있다.
예시적 실시예에 따른 동작 2705, 2905 에서, 기지국은 메시지A 에 포함된 PRACH 프리앰블과 PUSCH 를 획득할 수 있다.
예시적 실시예에 따른 동작 2707, 2807, 2907 에서, 기지국은 메시지B 를 송신할 수 있으며, 단말은 이를 수신할 수 있다. 예시적 실시예에서, 메시지B 는 임의 접속 절차와 관련될 수 있다.
예시적 실시예에서, PUSCH 는 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 내에서 연속적인 PUSCH 기회들 (occasions) 중 하나 이상의 PUSCH 기회에서 송수신될 수 있다.
예시적 실시예에서, PRACH 프리앰블은, 미리 설정된 하나 이상의 PRACH 프리앰블 중에서 획득될 수 있다.
예시적 실시예에서, PUSCH 는 DM-RS (demodulation reference signal) 를 포함할 수 있다.
예시적 실시예에서, 상기 DM-RS 는, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스와 관련될 수 있다.
예시적 실시예에서, 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 하나 이상의 DM-RS 포트 각각의 인덱스 (index) 및 (ii) 하나 이상의 DM-RS 시퀀스 각각의 인덱스에 기초하여, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
상술한 본 개시의 다양한 실시예들에 따른 기지국 및/또는 단말의 보다 구체적인 동작은 앞서 설명한 제1 절 내지 제3 절의 내용에 기반하여 설명되고 수행될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 다양한 실시예들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
4. 본 개시의 다양한 실시예들이 구현되는 장치 구성 예
4.1. 본 개시의 다양한 실시예들이 적용되는 장치 구성 예
도 32는 본 개시의 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.
도 32에 도시된 장치는 상술한 매커니즘을 수행하도록 적응된 사용자 장치(User Equipment, UE) 및/또는 기지국 (예: eNB 또는 gNB)이거나, 동일한 작업을 수행하는 임의의 장치일 수 있다.
도 32를 참조하면, 장치는 DSP(Digital Signal Processor)/마이크로프로세서(210) 및 RF(Radio Frequency) 모듈(송수신기, Transceiver)(235)을 포함할 수도 있다. DSP/마이크로프로세서(210)는 송수신기(235)에 전기적으로 연결되어 송수신기(235)를 제어한다. 장치는, 설계자의 선택에 따라서, 전력 관리 모듈(205), 베터리(255), 디스플레이(215), 키패드(220), SIM 카드(225), 메모리 디바이스(230), 안테나(240), 스피커(245) 및 입력 디바이스(250)을 더 포함할 수도 있다.
특히, 도 32는 네트워크로부터 요청 메시지를 수신하도록 구성된 수신기(235) 및 네트워크로 타이밍 송/수신 타이밍 정보를 송신하도록 구성된 송신기(235)를 포함하는 단말을 나타낼 수도 있다. 이러한 수신기와 송신기는 송수신기(235)를 구성할 수 있다. 단말은 송수신기(235)에 연결된 프로세서(210)를 더 포함할 수도 있다.
또한, 도 32는 단말로 요청 메시지를 송신하도록 구성된 송신기(235) 및 단말로부터 송수신 타이밍 정보를 수신하도록 구성된 수신기(235)를 포함하는 네트워크 장치를 나타낼 수도 있다. 송신기 및 수신기는 송수신기(235)를 구성할 수도 있다. 네트워크는 송신기 및 수신기에 연결된 프로세서(210)를 더 포함한다. 이 프로세서(210)는 송수신 타이밍 정보에 기초하여 지연(latency)을 계산할 수도 있다.
이에, 본 개시의 다양한 실시예들에 따른 단말 (또는 상기 단말에 포함된 통신 장치) 및 기지국 (또는 상기 기지국에 포함된 통신 장치)에 포함된 프로세서는 메모리를 제어하며 다음과 같이 동작할 수 있다.
본 개시의 다양한 실시예들에 있어, 단말 또는 기지국은, 하나 이상(at least one)의 송수신기(Transceiver); 하나 이상의 메모리(Memory); 및 송수신기 및 메모리와 연결된 하나 이상의 프로세서(Processor)를 포함할 수 있다. 메모리는 하나 이상의 프로세서가 하기 동작을 수행할 수 있도록 하는 명령들(instructions)을 저장할 수 있다.
이때, 상기 단말 또는 기지국에 포함된 통신 장치라 함은, 상기 하나 이상의 프로세서 및 상기 하나 이상의 메모리를 포함하도록 구성될 수 있고, 상기 통신 장치는 상기 하나 이상의 송수신기를 포함하거나 상기 하나 이상의 송수신기를 포함하지 않고 상기 하나 이상의 송수신기와 연결되도록 구성될 수 있다.
본 개시의 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서 (또는 상기 단말에 포함된 통신 장치의 하나 이상의 프로세서)는, PRACH (physical random access channel) 프리앰블 (preamble) 과 PUSCH (physical uplink shared channel) 을 포함하는 메시지 A (message A) 를 획득할 수 있다.
본 개시의 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서는, 메시지 A 를 송신할 수 있다.
예시적 실시예에서, 메시지A 는 임의 접속 절차 (random access procedure) 와 관련될 수 있다.
본 개시의 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서는, 메시지 B 를 수신할 수 있다.
예시적 실시예에서, 메시지B 는 임의 접속 절차와 관련될 수 있다.
예시적 실시예에서, PUSCH 는 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 내에서 연속적인 PUSCH 기회들 (occasions) 중 하나 이상의 PUSCH 기회에서 송신될 수 있다.
예시적 실시예에서, PRACH 프리앰블은, 미리 설정된 하나 이상의 PRACH 프리앰블 중에서 획득될 수 있다.
예시적 실시예에서, PUSCH 는 DM-RS (demodulation reference signal) 를 포함할 수 있다.
예시적 실시예에서, 상기 DM-RS 는, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스와 관련될 수 있다.
예시적 실시예에서, 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 하나 이상의 DM-RS 포트 각각의 인덱스 (index) 및 (ii) 하나 이상의 DM-RS 시퀀스 각각의 인덱스에 기초하여, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
본 개시의 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서 (또는 상기 기지국에 포함된 통신 장치의 하나 이상의 프로세서)는, 메시지A 를 수신할 수 있다.
본 개시의 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서는, 메시지 A 에 포함된 PRACH (physical random access channel) 프리앰블 (preamble) 과 PUSCH (physical uplink shared channel) 을 획득할 수 있다.
예시적 실시예에서, 메시지A 는 임의 접속 절차 (random access procedure) 와 관련될 수 있다.
본 개시의 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서는, 메시지 B 를 송신할 수 있다.
예시적 실시예에서, 메시지B 는 임의 접속 절차와 관련될 수 있다.
예시적 실시예에서, PUSCH 는 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 내에서 연속적인 PUSCH 기회들 (occasions) 중 하나 이상의 PUSCH 기회에서 수신될 수 있다.
예시적 실시예에서, PRACH 프리앰블은, 미리 설정된 하나 이상의 PRACH 프리앰블 중에서 획득될 수 있다.
예시적 실시예에서, PUSCH 는 DM-RS (demodulation reference signal) 를 포함할 수 있다.
예시적 실시예에서, 상기 DM-RS 는, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스와 관련될 수 있다.
예시적 실시예에서, 미리 설정된 하나 이상의 PRACH 프리앰블은, (i) 하나 이상의 DM-RS 포트 각각의 인덱스 (index) 및 (ii) 하나 이상의 DM-RS 시퀀스 각각의 인덱스에 기초하여, (i) 하나 이상의 DM-RS 포트 및 (ii) 하나 이상의 DM-RS 시퀀스에 매핑될 수 있다.
상술한 본 개시의 다양한 실시예들에 따른 기지국 및/또는 단말에 포함된 프로세서의 보다 구체적인 동작은 앞서 설명한 제1 절 내지 제3 절의 내용에 기반하여 설명되고 수행될 수 있다.
한편, 본 개시의 다양한 실시예들은 서로 양립이 불가능하지 않는 한 서로 조합/결합되어 실시될 수 있다. 예를 들어, 본 개시의 다양한 실시예들에 따른 기지국 및/또는 단말(에 포함된 프로세서 등)은 앞서 설명한 제 1 절 내지 제 3 절의 실시예들이 양립 불가능하지 않는 한 이들의 조합/결합된 동작을 수행할 수 있다.
4.2. 본 개시의 다양한 실시예들이 적용되는 통신 시스템 예
본 명세서에서 본 개시의 다양한 실시예들은 무선 통신 시스템에서 기지국과 단말 간의 데이터 송수신 관계를 중심으로 설명되었다. 다만 본 개시의 다양한 실시예들이 이에 한정되는 것은 아니다. 예를 들어, 본 개시의 다양한 실시예들은 다음의 기술 구성들과도 관련될 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 33은 본 개시의 다양한 실시예들에 적용되는 통신 시스템을 예시한다.
도 33을 참조하면, 본 개시의 다양한 실시예들에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
4.2.1 본 개시의 다양한 실시예들이 적용되는 무선 기기 예
도 34은 본 개시의 다양한 실시예들에 적용될 수 있는 무선 기기를 예시한다.
도 34을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 33의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시의 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시의 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어(instruction, 인스트럭션) 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 개시의 다양한 실시예들에 따르면, 하나 이상의 메모리(예, 104 또는 204)는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 하나 이상의 메모리에 작동가능하게(operably) 연결되는 하나 이상의 하나의 프로세서로 하여금 본 개시의 다양한 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 개시의 다양한 실시예들에 따르면, 컴퓨터 판독가능한(readable) 저장(storage) 매체(medium)은 하나 이상의 지시 또는 컴퓨터 프로그램을 저장할 수 있으며, 상기 하나 이상의 지시 또는 컴퓨터 프로그램은 하나 이상의 프로세서에 의해 실행될 때 상기 하나 이상의 프로세서로 하여금 본 개시의 다양한 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 개시의 다양한 실시예들에 따르면, 프로세싱 기기(device) 또는 장치(apparatus)는 하나 이상의 프로세서와 상기 하나 이상의 프로세서와 연결 가능한 하나 이상의 컴퓨터 메모리를 포함할 수 있다. 상기 하나 이상의 컴퓨터 메모리는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 하나 이상의 메모리에 작동가능하게(operably) 연결되는 하나 이상의 프로세서로 하여금 본 개시의 다양한 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
4.2.2. 본 개시의 다양한 실시예들이 적용되는 무선 기기 활용 예
도 35은 본 개시의 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 33 참조).
도 35을 참조하면, 무선 기기(100, 200)는 도 34의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 34의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 34의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 33, 100a), 차량(도 33, 100b-1, 100b-2), XR 기기(도 33, 100c), 휴대 기기(도 33, 100d), 가전(도 33, 100e), IoT 기기(도 33, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 33, 400), 기지국(도 33, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 35에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 35의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
4.2.3. 본 개시의 다양한 실시예들이 적용되는 휴대기기 예
도 36는 본 개시의 다양한 실시예들에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 36를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 35의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
4.2.4. 본 개시의 다양한 실시예들이 적용되는 차량 또는 자율 주행 차량 예
도 37는 본 개시의 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 37를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 35의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
4.2.5. 본 개시의 다양한 실시예들이 적용되는 AR/VR 및 차량 예
도 38은 본 개시의 다양한 실시예들에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.
도 38을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. 여기서, 블록 110~130/140a~140b는 각각 도 35의 블록 110~130/140에 대응한다.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다.
요약하면, 본 개시의 다양한 실시예들은 일정 장치 및/또는 단말을 통해 구현될 수 있다.
예를 들어, 일정 장치는, 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론 (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) 모듈, 로봇, AR (Augmented Reality) 장치, VR (Virtual Reality) 장치 또는 그 이외의 장치일 수 있다.
예를 들어, 단말은 개인 휴대 단말기 (PDA: Personal Digital Assistant), 셀룰러 폰, 개인 통신 서비스 (PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA (Wideband CDMA) 폰, MBS (Mobile Broadband System) 폰, 스마트 (Smart) 폰 또는 멀티모드 멀티밴드 (MM-MB: Multi Mode-Multi Band) 단말기 등일 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
또는, 단말은 노트북 PC, 핸드헬드 PC (Hand-Held PC), 태블릿 PC (tablet PC), 울트라북 (ultrabook), 슬레이트 PC (slate PC), 디지털 방송용 단말기, PMP (portable multimedia player), 네비게이션, 웨어러블 디바이스 (wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD (head mounted display) 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR 또는 AR을 구현하기 위해 사용될 수 있다.
본 개시의 다양한 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 개시의 다양한 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 개시의 다양한 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 개시의 다양한 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 개시의 다양한 실시예들은 그 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 다양한 실시예들의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 다양한 실시예들의 등가적 범위 내에서의 모든 변경은 본 개시의 다양한 실시예들의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 개시의 다양한 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 개시의 다양한 실시예들은 상기 다양한 무선접속 시스템 뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (7)

  1. 무선 통신 시스템에서 단말에 의하여 수행되는 방법에 있어서,
    타입 (type)-2 RA (random access) 절차와 관련된 메시지 A (message A)에 관한 설정 정보를 수신;
    PRACH (physical random access channel)와 PUSCH (physical uplink shared channel)를 포함하는 상기 메시지 A를 송신; 및
    상기 메시지 A 에 대한 응답으로, 상기 타입-2 RA 절차와 관련된 메시지 B (message B)를 수신하는 것을 포함하고,
    상기 PUSCH와 관련된 복수의 PUSCH 기회들 (occasions)이 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 상에 설정되고,
    상기 복수의 PUSCH 기회들은 상기 설정 정보에 기반하여 결정되며,
    복수의 PRACH 프리앰블들은 적어도 하나의 PUSCH 기회와 적어도 하나의 DM-RS (demodulation reference signal) 자원에 맵핑되고,
    상기 적어도 하나의 PUSCH 기회는 상기 적어도 하나의 DM-RS 자원과 각각 연관되며,
    상기 적어도 하나의 DM-RS 자원 각각은 DM-RS 자원 인덱스에 기반하여 결정되고,
    상기 DM-RS 자원 인덱스는 DM-RS 포트 인덱스의 오름차순으로 결정된 후 DM-RS 시퀀스 인덱스의 오름차순으로 결정되는,
    방법.
  2. 제 1 항에 있어서,
    상기 적어도 하나의 DM-RS 자원이 하나의 OFDM (orthogonal frequency division multiplexing) 심볼 내에 설정됨에 기초하여, DM-RS 포트 개수의 최대값은 4 인,
    방법.
  3. 제 1 항에 있어서,
    상기 설정 정보는,
    상기 시간 도메인 내의 상기 복수의 PUSCH 기회들의 개수와 관련된 정보, 상기 주파수 도메인 내의 상기 복수의 PUSCH 기회들의 개수와 관련된 정보, 상기 복수의 PUSCH 기회들의 시작 RB (resource block)과 관련된 정보 중 적어도 하나를 포함하는,
    방법.
  4. 제 1 항에 있어서,
    상기 DM-RS 자원 인덱스의 증가 순서는,
    상기 복수의 PRACH 프리앰블들을 상기 적어도 하나의 PUSCH 기회 및 상기 적어도 하나의 DM-RS 자원에 맵핑 시 고려되는,
    방법.
  5. 무선 통신 시스템에서 동작하는 단말에 있어서,
    송수신기; 및
    상기 송수신기와 연결된 하나 이상의 프로세서 (processor) 를 포함하고,
    상기 하나 이상의 프로세서는:
    타입 (type)-2 RA (random access) 절차와 관련된 메시지 A (message A)에 관한 설정 정보를 수신;
    PRACH (physical random access channel)와 PUSCH (physical uplink shared channel)를 포함하는 상기 메시지 A를 송신; 및
    상기 메시지 A 에 대한 응답으로, 상기 타입-2 RA 절차와 관련된 메시지 B (message B)를 수신하도록 설정되고,
    상기 PUSCH와 관련된 복수의 PUSCH 기회들 (occasions)이 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 상에 설정되고,
    상기 복수의 PUSCH 기회들은 상기 설정 정보에 기반하여 결정되며,
    복수의 PRACH 프리앰블들은 적어도 하나의 PUSCH 기회와 적어도 하나의 DM-RS (demodulation reference signal) 자원에 맵핑되고,
    상기 적어도 하나의 PUSCH 기회는 상기 적어도 하나의 DM-RS 자원과 각각 연관되며,
    상기 적어도 하나의 DM-RS 자원 각각은 DM-RS 자원 인덱스에 기반하여 결정되고,
    상기 DM-RS 자원 인덱스는 DM-RS 포트 인덱스의 오름차순으로 결정된 후 DM-RS 시퀀스 인덱스의 오름차순으로 결정되는,
    단말.
  6. 무선 통신 시스템에서 기지국에 의하여 수행되는 방법에 있어서,
    타입 (type)-2 RA (random access) 절차와 관련된 메시지 A (message A)에 관한 설정 정보를 송신;
    PRACH (physical random access channel)와 PUSCH (physical uplink shared channel)를 포함하는 상기 메시지 A를 수신; 및
    상기 메시지 A 에 대한 응답으로, 상기 타입-2 RA 절차와 관련된 메시지 B (message B)를 송신하는 것을 포함하고,
    상기 PUSCH와 관련된 복수의 PUSCH 기회들 (occasions)이 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 상에 설정되고,
    상기 복수의 PUSCH 기회들은 상기 설정 정보에 기반하여 결정되며,
    복수의 PRACH 프리앰블들은 적어도 하나의 PUSCH 기회와 적어도 하나의 DM-RS (demodulation reference signal) 자원에 맵핑되고,
    상기 적어도 하나의 PUSCH 기회는 상기 적어도 하나의 DM-RS 자원과 각각 연관되며,
    상기 적어도 하나의 DM-RS 자원 각각은 DM-RS 자원 인덱스에 기반하여 결정되고,
    상기 DM-RS 자원 인덱스는 DM-RS 포트 인덱스의 오름차순으로 결정된 후 DM-RS 시퀀스 인덱스의 오름차순으로 결정되는,
    방법.
  7. 무선 통신 시스템에서 동작하는 기지국에 있어서,
    송수신기; 및
    상기 송수신기와 연결된 하나 이상의 프로세서 (processor) 를 포함하고,
    상기 하나 이상의 프로세서는:
    타입 (type)-2 RA (random access) 절차와 관련된 메시지 A (message A)에 관한 설정 정보를 송신;
    PRACH (physical random access channel)와 PUSCH (physical uplink shared channel)를 포함하는 상기 메시지 A를 수신; 및
    상기 메시지 A 에 대한 응답으로, 상기 타입-2 RA 절차와 관련된 메시지 B (message B)를 송신하도록 설정되고,
    상기 PUSCH와 관련된 복수의 PUSCH 기회들 (occasions)이 주파수 도메인 (frequency domain) 과 시간 도메인 (time domain) 상에 설정되고,
    상기 복수의 PUSCH 기회들은 상기 설정 정보에 기반하여 결정되며,
    복수의 PRACH 프리앰블들은 적어도 하나의 PUSCH 기회와 적어도 하나의 DM-RS (demodulation reference signal) 자원에 맵핑되고,
    상기 적어도 하나의 PUSCH 기회는 상기 적어도 하나의 DM-RS 자원과 각각 연관되며,
    상기 적어도 하나의 DM-RS 자원 각각은 DM-RS 자원 인덱스에 기반하여 결정되고,
    상기 DM-RS 자원 인덱스는 DM-RS 포트 인덱스의 오름차순으로 결정된 후 DM-RS 시퀀스 인덱스의 오름차순으로 결정되는,
    기지국.
KR1020227045009A 2019-02-15 2020-02-14 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 KR102622889B1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201962806622P 2019-02-15 2019-02-15
US201962806624P 2019-02-15 2019-02-15
US62/806,624 2019-02-15
US62/806,622 2019-02-15
US201962842612P 2019-05-03 2019-05-03
US62/842,612 2019-05-03
PCT/KR2020/002155 WO2020167060A1 (ko) 2019-02-15 2020-02-14 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
KR1020217029871A KR102483711B1 (ko) 2019-02-15 2020-02-14 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217029871A Division KR102483711B1 (ko) 2019-02-15 2020-02-14 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치

Publications (2)

Publication Number Publication Date
KR20230003442A KR20230003442A (ko) 2023-01-05
KR102622889B1 true KR102622889B1 (ko) 2024-01-09

Family

ID=72044216

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227045009A KR102622889B1 (ko) 2019-02-15 2020-02-14 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
KR1020217029871A KR102483711B1 (ko) 2019-02-15 2020-02-14 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020217029871A KR102483711B1 (ko) 2019-02-15 2020-02-14 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치

Country Status (3)

Country Link
US (3) US20220132595A1 (ko)
KR (2) KR102622889B1 (ko)
WO (1) WO2020167060A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225989A1 (ko) * 2017-06-04 2018-12-13 엘지전자 주식회사 무선 통신 시스템에서, 시스템 정보를 수신하는 방법 및 이를 위한 장치
WO2020167060A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020223836A1 (en) * 2019-05-03 2020-11-12 Qualcomm Incorporated Techniques for selecting random access preambles and payload formats in wireless communications
US11864241B2 (en) * 2019-07-25 2024-01-02 Beijing Xiaomi Mobile Software Co., Ltd. Random access method and apparatus, and storage medium
CN112399627B (zh) * 2019-08-14 2023-09-01 华为技术有限公司 一种dmrs端口确定方法及通信装置
EP4085535A1 (en) * 2020-01-07 2022-11-09 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
EP4098067A4 (en) * 2020-02-03 2023-07-12 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR PERFORMING COMMUNICATION IN A WIRELESS COMMUNICATION SYSTEM
US11659600B2 (en) * 2020-02-28 2023-05-23 Samsung Electronics Co., Ltd. Method and apparatus for random access procedure
US11683840B2 (en) * 2020-04-15 2023-06-20 Qualcomm Incorporated Techniques for user equipment (UE) procedures for random access channel (RACH) type selection and random access response (RAR) monitoring in a wireless communication system
US20220210798A1 (en) * 2020-12-29 2022-06-30 FG Innovation Company Limited Method of small data transmission and related device
US20220295569A1 (en) * 2021-03-15 2022-09-15 Qualcomm Incorporated Random access channel process using single carrier waveforms
US20220361254A1 (en) * 2021-05-07 2022-11-10 Qualcomm Incorporated Coverage enhancement and configuration for two-step rach in non-terrestrial networks
WO2023150373A1 (en) * 2022-02-07 2023-08-10 Intel Corporation Dmrs configuration for small data transmissions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160219624A1 (en) 2015-01-23 2016-07-28 Mediatek Inc. LTE RACH Procedure Enhancement
US20180139787A1 (en) 2016-11-14 2018-05-17 Qualcomm Incorporated Two step random-access channel (rach) procedure in millimeter wave (mmw)
US20180198646A1 (en) 2017-01-09 2018-07-12 Mediatek Inc. Method for Data Transmission and Reception of Random Access Procedure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0606692D0 (en) * 2006-04-03 2006-05-10 Vodafone Plc Telecommunications networks
LT2070365T (lt) * 2006-09-27 2017-02-10 Nokia Technologies Oy Aparatas, būdas ir kompiuterinės programos produktas, leidžiantis nesinchronizuotą laisvosios kreipties perdavimą
KR101447750B1 (ko) * 2008-01-04 2014-10-06 엘지전자 주식회사 랜덤 액세스 과정을 수행하는 방법
CN107197516B (zh) * 2011-08-05 2020-05-15 太阳专利信托公司 终端装置及通信方法
US10575338B2 (en) * 2016-02-04 2020-02-25 Samsung Electronics Co., Ltd. Method and apparatus for UE signal transmission in 5G cellular communications
CN107147945B (zh) * 2016-03-01 2021-01-01 腾讯科技(深圳)有限公司 多媒体资源播放系统、方法及装置
CN107347084B (zh) * 2016-05-05 2020-08-25 华为技术有限公司 分布式锁管理的方法、装置及系统
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN111586861B (zh) * 2019-02-15 2022-11-18 华为技术有限公司 一种随机接入方法、设备及系统
CN113574824B (zh) * 2019-02-15 2023-08-22 Lg 电子株式会社 在无线通信系统中发送和接收信号的方法及支持其的设备
WO2020167060A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
CN113645643B (zh) * 2019-03-29 2023-09-12 Oppo广东移动通信有限公司 一种资源配置方法、设备及存储介质
CN111278156B (zh) * 2019-03-29 2022-02-15 维沃移动通信有限公司 随机接入过程的信息传输方法及终端
US20220210844A1 (en) * 2020-12-31 2022-06-30 Samsung Electronics Co., Ltd. Method and apparatus for random access in wireless communication systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160219624A1 (en) 2015-01-23 2016-07-28 Mediatek Inc. LTE RACH Procedure Enhancement
US20180139787A1 (en) 2016-11-14 2018-05-17 Qualcomm Incorporated Two step random-access channel (rach) procedure in millimeter wave (mmw)
US20180198646A1 (en) 2017-01-09 2018-07-12 Mediatek Inc. Method for Data Transmission and Reception of Random Access Procedure

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP R1-1700186
3GPP R1-1800727
3GPP R1-1900739
3GPP R1-1901192
3GPP R2-1818260

Also Published As

Publication number Publication date
KR20210129134A (ko) 2021-10-27
US20230046124A1 (en) 2023-02-16
KR102483711B1 (ko) 2023-01-02
US11864244B2 (en) 2024-01-02
KR20230003442A (ko) 2023-01-05
US20220159746A1 (en) 2022-05-19
WO2020167060A1 (ko) 2020-08-20
US20220132595A1 (en) 2022-04-28
US11464053B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
KR102622889B1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
JP7411668B2 (ja) 無線通信システムにおいて信号を送受信する方法及びそれを支援する装置
KR102434107B1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
US20220271817A1 (en) Method for transmitting beam information by user equipment in wireless communication system, and user equipment and base station supporting same
EP3920451B1 (en) Method for transmitting and receiving signal in wireless communication system, and device for supporting same
CN113796152B (zh) 在无线通信系统中发送和接收信号的方法及支持其的设备
EP3930209A1 (en) Method for performing beam management by ue in wireless communication system, and ue and base station supporting same
US20220132583A1 (en) Method for transmitting/receiving signal in wireless communication system, and device supporting same
EP3913818A1 (en) Method for transmitting uplink feedback information related to beam of user equipment in wireless communication system, and user equipment and base station for supporting same
US20220240324A1 (en) Method for transmitting and receiving signals in wireless communication system, and device supporting same
US11856618B2 (en) Method for transmitting and receiving signal in wireless communication system, and device supporting same
US20240049289A1 (en) Method for transmitting and receiving signal in wireless communication system, and device supporting same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant