WO2019080656A1 - 丢包率计算方法、网络设备及终端 - Google Patents

丢包率计算方法、网络设备及终端

Info

Publication number
WO2019080656A1
WO2019080656A1 PCT/CN2018/104959 CN2018104959W WO2019080656A1 WO 2019080656 A1 WO2019080656 A1 WO 2019080656A1 CN 2018104959 W CN2018104959 W CN 2018104959W WO 2019080656 A1 WO2019080656 A1 WO 2019080656A1
Authority
WO
WIPO (PCT)
Prior art keywords
loss rate
packet loss
data packet
downlink data
entity
Prior art date
Application number
PCT/CN2018/104959
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019080656A1 publication Critical patent/WO2019080656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a packet loss rate calculation method, a network device, and a terminal.
  • the master cell group (MCG) carries, splits, bearers and secondary cell groups (SCGs).
  • SCGs secondary cell groups
  • a fifth-generation (5 th Generation, 5G) mobile communication system or a new air interface called DC architectures (New Radio, NR) system, and not only supports the SCG MCG, further supports packet data convergence protocol (Packet Data Convergence Protocol , PDCP) copy function, thus producing different bear type.
  • the types of bearers supported in the DC architecture of the 5G system include the following:
  • an MCG bearer corresponds to an MCG of an entity such as a PDCP, a Radio Link Control (RLC), and a Medium Access Control (MAC).
  • a PDCP Packet Control Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the SCG bearer which bears the SCG of the PDCP, the RLC, and the MAC entity.
  • the split bearer, the PDCP entity corresponding to the bearer is in a cell group, that is, the PDCP entity corresponding to the bearer is in the MCG or the SCG, and the two RLC entities and the two MAC entities corresponding to the bearer are respectively Different cell groups, that is, one RLC entity or MAC entity corresponding to the bearer, one in the MCG and the other in the SCG.
  • a Duplicate bearer, the PDCP entity, the 2 RLC entities, and the 1 MAC entity corresponding to the bearer are all in one cell group, that is, one PDCP entity and two RLCs corresponding to the bearer. Both the entity and 1 MAC entity are in the MCG or SCG.
  • the network device in the NR system can obtain the result of layer 2 (Lyer-2, L2) measurement by means of self-calculation or by means of terminal reporting, in order for the network device to be able to configure the relevant radio resource configuration parameters to the terminal.
  • the L2 measurement calculated by the network device includes: a physical resource block (PRB) usage rate, a received random access preamble, and a number of active UEs.
  • PRB physical resource block
  • Downlink Packet Delay Data Loss, Scheduled IP Throughput, Scheduled Minimized Drive Test (MDT) IP Throughput (Scheduled IP Throughput) For MDT), Data Volume, and Data Volume for Shared Networks.
  • the L2 measurement reported by the terminal includes an uplink packet delay rate (Packet Delay).
  • the pre-processing function is also added to the 5G system. Specifically, when the terminal does not receive the uplink transmission authorization sent by the network device, the terminal may pre-process the data to generate a corresponding data packet to be sent, such as MAC layer packet data. Packet Data Unit (PDU).
  • PDU Packet Data Unit
  • QoS Quality-of-Service
  • DRB Data Radio Bearer
  • the Service Data Unit is a data packet received by a protocol layer from a higher layer protocol layer, or a data packet sent to a higher layer protocol layer, for example, a data packet received by the MAC layer from the RLC layer is called a MAC SDU.
  • a PDU is a data packet sent by a protocol layer to a lower layer protocol layer, or a data packet received from a lower layer protocol layer, such as a MAC PDU sent by a MAC layer to a physical layer.
  • the packet loss rate calculation method in the traditional system cannot accurately determine the packet loss rate of data transmission.
  • an embodiment of the present disclosure provides a method for calculating a packet loss rate, which is applied to a network device side, and includes:
  • the packet loss rate under the current transmission is determined according to at least one of a service bearer type and a packet type.
  • an embodiment of the present disclosure further provides a network device, including:
  • a first acquiring module configured to acquire at least one of a service bearer type and a data packet type under current transmission
  • the first processing module is configured to determine a packet loss rate under the current transmission according to at least one of a service bearer type and a data packet type.
  • an embodiment of the present disclosure provides a network device, where the network device includes a processor, a memory, and a program stored on the memory and operable on the processor, and the foregoing method for calculating a packet loss rate is implemented when the processor executes the program. A step of.
  • an embodiment of the present disclosure provides a method for calculating a packet loss rate, which is applied to a terminal side, and includes:
  • an embodiment of the present disclosure further provides a terminal, including:
  • the first receiving module is configured to receive at least one of a service bearer type and a data packet type that are sent by the network device to calculate a downlink data packet loss rate;
  • a calculation module configured to calculate a downlink data packet loss rate according to at least one of a service bearer type and a data packet type
  • the first sending module is configured to send the downlink data packet loss rate to the network device.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes a processor, a memory, and a program stored on the memory and executable on the processor, where the program is implemented by the processor to implement the packet loss rate calculation method. step.
  • an embodiment of the present disclosure provides a computer readable storage medium, where a program is stored on a computer readable storage medium, and the step of implementing the packet loss rate calculation method is implemented when the program is executed by the processor.
  • FIG. 1 is a schematic diagram showing an entity architecture of an MCG bearer and an SCG bearer in a DC architecture of a 5G system;
  • FIG. 2 is a schematic diagram showing an entity architecture of a Split bearer in a DC architecture of a 5G system
  • FIG. 3 is a schematic diagram showing an entity architecture of a Duplicate bearer in a DC architecture of a 5G system
  • FIG. 4 is a schematic diagram showing an entity architecture of a SDAP protocol in a 5G system
  • FIG. 5 is a schematic flowchart diagram of a method for calculating a packet loss rate on a network device side according to an embodiment of the present disclosure
  • FIG. 6 is a block diagram showing a network device of an embodiment of the present disclosure.
  • Figure 7 is a block diagram showing a network device of an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of a method for calculating a packet loss rate on a terminal side according to an embodiment of the present disclosure
  • FIG. 9 is a block diagram showing a terminal of an embodiment of the present disclosure.
  • Figure 10 shows a block diagram of a terminal of an embodiment of the present disclosure.
  • the present disclosure provides a packet loss rate calculation method, a network device, and a terminal, for the problem that the packet loss rate cannot be calculated due to the introduction of different bearer types, pre-processing functions, and a new protocol SDAP layer.
  • the packet loss rate calculation method in the embodiment of the present disclosure is applied to a network device, and specifically includes steps 51 to 52.
  • Step 51 Obtain at least one of a service bearer type and a data packet type under the current transmission.
  • the service bearer type is the bearer type to which the current data transmission belongs
  • the data packet type is the data packet type of the entity layer to which the current data transmission belongs.
  • the service bearer type includes one of an MCG bearer, an SCG bearer, an MCG branch of the split bearer, an SCG branch of the split bearer, and a replica bearer.
  • the data packet type is used to indicate data packets in different physical layers, and specifically includes: a data packet of a service data unit SDU in a service data adaptation protocol SDAP entity, a data packet of a packet data unit PDU in a SDAP entity, and a packet data convergence.
  • a data packet of an SDU in a protocol PDCP entity (available for a network entity without a SDAP entity), a data packet of a PDU in a PDCP entity (a network entity that can be used without a SDAP entity), and a data packet of an SDU in a radio link control RLC entity (available)
  • the data packet of the PDU in the RLC entity (which can be used to split the network entity without the PDCP entity) and the data packet of the SDU in the medium access control MAC entity (can be used for the split bearer without the RLC entity)
  • the network entity) and at least one of the data packets of the PDU in the MAC entity (which can be used to split the network entity without the RLC entity).
  • Step 52 Determine a packet loss rate under current transmission according to at least one of a service bearer type and a data packet type.
  • the network device can determine the packet loss rate of the current transmission based on the service bearer type, and can also determine the current packet loss rate based on the packet type, and can also determine the different service bearer types under the current transmission based on the packet type. Packet loss rate.
  • the transmission resource and the transmission mode may be configured for the next transmission according to the packet loss rate.
  • the network device determines the packet loss rate of the current transmission based on at least one of different service bearer types and different packet types, and is applicable to the packet loss rate determination in each scenario in the 5G system, and is not limited by the specific scenario. In this way, the network device configures the corresponding transmission resource and the transmission mode according to the packet loss rate for the next transmission, which is more in line with the actual transmission environment, for example, sending the data packet on a better transmission path, or changing the radio resource configuration to reduce the loss. Packet rate, thereby improving the reliability of packet transmission and the like.
  • step 52 includes: calculating, according to the number of data packets discarded in a specific time interval and the number of received data packets, at least one of a service bearer type and a data packet type, calculating a loss in a specific time interval under the current transmission.
  • Package rate is the calculation period of the packet loss rate.
  • the packet loss rate includes: a packet loss rate of a specific terminal, a packet loss rate based on a QoS Class Identifier (QCI), a packet loss rate based on a bearer type, and a packet loss based on a bearer type At least one of a rate, a packet loss rate based on a bearer, and a packet loss rate based on a quality of service QoS flow. That is, the network device can calculate the packet loss rate for a certain terminal or the loss for a certain QCI based on the number of discarded data packets and the number of received data packets in different service packet types or different data packet types in a specific time interval. The packet rate, or the packet loss rate for a certain service bearer type, or the packet loss rate for a certain service bearer type, or the packet loss rate for a certain bearer, or the packet loss rate for a certain QoS flow. .
  • QCI QoS Class Identifier
  • the type of the packet loss rate includes at least one of a packet loss rate of a specific target and a packet loss rate associated with the specific bearer type.
  • the packet loss rate of the specific target includes: a packet loss rate of the specific terminal, a packet loss rate based on a QoS Class Identifier (QCI), and a packet loss rate based on the QoS flow of the QoS.
  • QCI QoS Class Identifier
  • the packet loss rate associated with a specific bearer type includes: a packet loss rate based on a bearer type, a packet loss rate based on a bearer type, and a packet loss rate based on a bearer type.
  • the packet loss rate of a specific target can be calculated by any one or any of a plurality of different types of data packets, that is, the packet loss rate of a specific target can be calculated by different data packets of different physical layers, for example:
  • the packet loss rate of the terminal may be the data packet of the SDU in the SDAP entity, the data packet of the PDU in the SDAP entity in the SDAP entity, the data packet of the SDU in the PDCP entity, the data packet of the PDU in the PDCP entity, the data packet of the SDU in the RLC entity, The data packet of the PDU in the RLC entity, the data packet of the SDU in the MAC entity, and the data packet of the PDU in the MAC entity are calculated.
  • the packet loss rate of other specific targets may also pass the above 8 At least one of the different types of data packets is calculated and will not be described here.
  • the packet loss rate associated with a specific bearer type can also be calculated by any one or any of a plurality of different types of data packets, that is, the packet loss rate associated with a specific bearer type can be performed by different data packets of different physical layers.
  • the packet loss rate of a certain bearer type may pass through a data packet of an SDU in a SDAP entity, a data packet of a PDU in a SDAP entity in a SDAP entity, a data packet of an SDU in a PDCP entity, or a PDU in a PDCP entity.
  • the data packet, the data packet of the SDU in the RLC entity, the data packet of the PDU in the RLC entity, the data packet of the SDU in the MAC entity, and the data packet of the PDU in the MAC entity are calculated, it is worth noting that the other
  • the packet loss rate related to the bearer type can also be calculated by using at least one of the above eight different types of data packets, and therefore will not be described here.
  • the following describes how to determine the packet loss rate of the current transmission according to different service bearer types or different packet types.
  • Scenario 1 The network device calculates the downlink data packet loss rate.
  • the packet rate step includes: calculating downlink data in a specific time interval according to the number of downlink data packets discarded before air interface transmission and the number of received data packets in different service bearer types or different data packet types in a specific time interval. Packet loss rate.
  • the network device can refer to the formula Calculate the downlink data loss rate in a specific time interval.
  • the M(T, qci) indicates the downlink data packet loss rate in the specific time interval T during the current transmission; Ddisc(T, qci) indicates the number of downlink data packets discarded before the air interface transmission is started in the specific time interval T; N(T, qci) represents the number of packets received before the air interface transmission is not started within a certain time interval T.
  • the type of the downlink data packet loss rate includes one or more of the following: a downlink data packet loss rate of a terminal, or a downlink data packet loss rate for a certain QCI, or a certain service bearer type (The downlink data loss rate of the MCG bearer, the SCG bearer, the split bearer, or the replica bearer, or the downlink data loss of the transmit path of a certain service bearer type, such as each branch path of the split or the branch path of the replication bearer. Packet rate, or the downlink data packet loss rate for a bearer, or the downlink data packet loss rate for a QoS flow.
  • Scenario 2 The network device calculates the packet loss rate of the uplink data.
  • the packet loss rate in a specific time interval under the current transmission is calculated according to the number of discarded data packets and the number of received data packets in different service bearer types or different packet types in a specific time interval.
  • the step includes: calculating an uplink data packet in a specific time interval according to the number of missing data packets and the total number of data packets submitted by the current protocol entity to the higher layer protocol entity in different service bearer types or different data packet types in a specific time interval. Packet loss rate.
  • the current protocol entity refers to a layer entity in each protocol layer in the 5G system. Specifically, the current protocol entity is: a SDAP entity, a PDCP entity, an RLC entity, or a MAC entity.
  • a higher layer protocol entity refers to a higher layer entity than the current protocol entity.
  • the network device can refer to the formula. Calculate the uplink packet loss rate in a specific time interval.
  • M(T, qci) represents the uplink data packet loss rate in a specific time interval T
  • Ddisc(T, qci) indicates that the current protocol entity is delivered to the upper layer protocol under different service bearer types or different packet types in a specific time interval T.
  • the number of missing data packets in the entity; N(T, qci) represents the total number of data packets submitted by the current protocol entity to the higher layer protocol entity under different service bearer types or different packet types in a specific time interval T.
  • the number of missing data packets from the current protocol entity to the higher layer protocol entity in a specific time interval is determined according to the missing serial number in the total data packet submitted by the current protocol entity to the higher layer protocol entity within a specific time interval. That is, Ddisc(T, qci) can be determined by the serial number lost in the total data packet delivered by the current protocol entity to the upper layer protocol entity in a specific time interval, and specifically, can be submitted by counting the current protocol entity within a specific time interval T.
  • the serial number lost in the total packet of the higher layer protocol entity is determined, such as the "total packet submitted to the upper layer protocol entity", the number range is [1, 10], where the sequence numbers with SN numbers 5 and 6 are lost. , to determine the number of "missing packets" is 2.
  • the total number of data packets submitted from the current protocol entity to the higher layer protocol entity in a specific time interval is determined according to the sequence number of the data packet in the current protocol entity. That is, N(T, qci) can be determined by the sequence number of the data packet in the current protocol entity. Specifically, it can be determined by counting the data packet sequence number of the current protocol entity, such as the starting SN number 1, and the last SN number 10, then the total The number of packets is 10.
  • the type of the uplink data packet loss rate includes one or more of the following: an uplink data packet loss rate of a terminal, or an uplink data packet loss rate for a certain QCI, or a certain service bearer type (The uplink data loss rate of the MCG bearer, the SCG bearer, the split bearer, or the replica bearer, or the uplink data loss of the transmit path of a certain service bearer type, such as each branch path of the split or the branch path of the replication bearer. Packet rate, or the uplink data packet loss rate for a bearer, or the uplink data packet loss rate for a QoS flow.
  • Scenario 3 The network device calculates the packet loss rate of the downlink air interface data.
  • the current transmission is a downlink air interface transmission
  • the current transmission is calculated in a specific time interval.
  • the packet loss rate includes: the number of downlink data packets transmitted on the air interface but not receiving the transmission success confirmation information according to different service bearer types or different data packet types in a specific time interval, and the transmission is successfully performed on the air interface and the transmission is successfully received.
  • the number of downlink packets of the acknowledgment information is calculated, and the downlink air interface data packet loss rate in a specific time interval is calculated.
  • the network device can refer to the formula. Calculate the downlink air interface data loss rate in a specific time interval.
  • M(T,qci) represents the downlink air interface data loss rate in a specific time interval T
  • Dloss(T, qci) indicates that the traffic is transmitted in the air interface under different service bearer types or different packet types in a specific time interval T.
  • the number of downlink data packets that have received the transmission success acknowledgment information; N(T, qci) indicates the downlink data packet transmitted in the air interface and receiving the transmission success acknowledgment information under different service bearer types or different data packet types in a specific time interval T quantity.
  • the type of the downlink air interface data packet loss rate includes one or more of the following: a downlink air interface data packet loss rate of a terminal, or a downlink air interface data packet loss rate for a certain QCI, or for a certain service.
  • the downlink air interface data packet loss rate of the bearer type such as the MCG bearer, the SCG bearer, the split bearer, or the replica bearer, or the transmit path of a certain service bearer type (such as each branch path of the split or the branch path of the replication bearer)
  • the transmission success confirmation information includes at least one of Hybrid Automatic Repeat reQuest (HARQ) confirmation information, RLC confirmation information, and packet data convergence protocol PDCP confirmation information.
  • HARQ Hybrid Automatic Repeat reQuest
  • Scenario 4 The network device receives the downlink data packet loss rate calculated by the terminal device.
  • the step 52 includes: receiving, by the terminal, a downlink data packet loss rate calculated and transmitted according to different service bearer types or different data packet types in a specific time interval.
  • the network device receives the downlink data packet loss rate calculated and sent by the terminal according to different service bearer types or different data packet types.
  • the step of the downlink data loss rate calculated and sent by the receiving terminal according to different service bearer types or different data packet types in a specific time interval is specifically: the receiving terminal according to different service bearer types or different data packet types in a specific time interval
  • the downlink data packet loss rate in a specific time interval calculated and transmitted is calculated from the number of missing packets and the total number of data packets when the current protocol entity submits to the upper layer protocol entity.
  • the current protocol entity refers to an entity in a certain layer of each protocol layer in the 5G system. Specifically, the current protocol entity is: a SDAP entity, a PDCP entity, an RLC entity, or a MAC entity.
  • a higher layer protocol entity refers to a higher layer entity than the current protocol entity.
  • the terminal can refer to the formula
  • the downlink data packet loss rate in a specific time interval is calculated and reported to the network device.
  • M(T, qci) represents the downlink data packet loss rate in a specific time interval T
  • Ddisc(T, qci) represents that different service bearer types or different packet types in the time interval T are submitted from the current protocol entity to the upper layer.
  • the number of packets missing in the protocol entity; N(T, qci) indicates the total number of packets submitted from the current protocol entity to the higher layer protocol entity under different service bearer types or different packet types in a specific time interval T.
  • the number of missing data packets from the current protocol entity to the higher layer protocol entity in a specific time interval is determined according to the missing serial number in the total data packet submitted by the current protocol entity to the higher layer protocol entity within a specific time interval. That is, Ddisc(T, qci) can be determined by the serial number lost in the total data packet delivered by the current protocol entity to the upper layer protocol entity in a specific time interval, and specifically, can be submitted by counting the current protocol entity within a specific time interval T.
  • the serial number lost in the total packet of the higher layer protocol entity is determined, such as the "total packet submitted to the upper layer protocol entity", the number range is [1, 10], where the sequence numbers with SN numbers 5 and 6 are lost. , to determine the number of "missing packets" is 2.
  • the total number of data packets submitted from the current protocol entity to the higher layer protocol entity in a specific time interval is determined according to the sequence number of the data packet in the current protocol entity. That is, N(T, qci) can be determined by the sequence number of the data packet in the current protocol entity. Specifically, it can be determined by counting the data packet sequence number of the current protocol entity, such as the starting SN number 1, and the last SN number 10, then the total The number of packets is 10.
  • the packet loss rate is calculated by the terminal and reported to the network device side.
  • the network device before the network device calculates and reports the downlink data packet loss rate, the network device further includes: sending and downlink data loss to the terminal.
  • Packet rate related configuration information The related to the downlink data packet loss rate mentioned here refers to the correlation with the calculation of the downlink data packet loss rate or the reporting of the downlink data packet loss.
  • the configuration information includes at least one of a measurement quantity identifier, a measurement object identifier, and a trigger report configuration.
  • the foregoing measurement quantity identifier includes a downlink data loss rate measurement quantity identifier.
  • the measurement object identifier includes: a radio bearer (RB) identifier, a QoS QoS flow identifier, a path identifier of the split split bearer (such as a logical channel identifier or a cell group identifier of the bearer corresponding path), and a path identifier of the duplicate bearer ( At least one of a logical channel identifier of the bearer corresponding path, a cell group identifier (such as MCG or SCG), and a service bearer type identifier (such as an MCG bearer, an SCG bearer, a split bearer, or a replica bearer).
  • RB radio bearer
  • QoS QoS flow identifier such as a logical channel identifier or a cell group identifier of the bearer corresponding path
  • a path identifier of the duplicate bearer At least one of a logical channel identifier of the bearer corresponding path, a cell group identifier (such as MCG or SCG), and
  • the trigger report configuration is used to indicate when the terminal is reported when the condition is met.
  • the triggering report configuration includes: a periodic report configuration, a configuration in which a downlink data packet loss rate exceeds a first threshold, a downlink data loss rate lower than a second threshold, and a downlink data loss rate. At least one of the configuration that is periodically reported after the third threshold is exceeded, and the configuration in which the downlink data packet loss rate is lower than the fourth threshold and periodically reported. It is worth noting that the specific values of the first threshold value, the second threshold value, the third threshold value, and the fourth threshold value may be determined according to actual needs, and generally, the first threshold value It is greater than the second threshold, and the third threshold is greater than the fourth threshold.
  • each configuration in the triggering report configuration includes at least one of a calculation time window of a downlink data packet loss rate, a reporting period of a downlink data packet loss rate, and a packet loss rate threshold of a downlink data packet loss rate, where
  • the calculation time window of the downlink data packet loss rate is the above specific time interval, and the length thereof may be set according to actual needs, for example, set to 10 ms.
  • the size of the calculation time window may also be predefined by a protocol.
  • the threshold of the downlink data packet loss rate indicates the threshold value in each trigger report configuration.
  • the threshold value is specifically proportional, such as 10%.
  • the reporting period of the downlink data packet loss rate may indicate the time period of periodic reporting in each trigger reporting configuration, such as 50 ms.
  • the network device acquires at least one of a service bearer type and a data packet type under the current transmission, and determines, according to at least one of a service bearer type and a data packet type, the current transmission.
  • the packet loss rate can be applied to various application scenarios in the 5G system, thereby ensuring that the network device in the 5G system optimizes the transmission resource and transmission mode according to the accurate packet loss rate, such as the data packet is better. Send on the transmission path, or change the radio resource configuration to reduce the packet loss rate, thereby improving the reliability of packet transmission and the like.
  • the network device 600 of the embodiment of the present disclosure can implement at least one of the service bearer type and the data packet type in the current transmission in the foregoing embodiment; and at least one of the service bearer type and the data packet type.
  • the details of the method for determining the packet loss rate under the current transmission are achieved, and the network board device 600 specifically includes the following functional modules:
  • the first obtaining module 610 is configured to acquire at least one of a service bearer type and a data packet type under current transmission;
  • the first processing module 620 is configured to determine, according to at least one of a service bearer type and a data packet type, a packet loss rate under current transmission.
  • the first processing module 620 includes:
  • a first processing submodule configured to calculate, according to at least one of the service bearer type and the packet type, a number of data packets discarded in a specific time interval and the number of received data packets, and calculate a current time interval within a specific time interval Packet loss rate.
  • the packet loss rate includes: a packet loss rate of the specific terminal, a packet loss rate of the QCI based on the service quality level, a packet loss rate based on the bearer type, a packet loss rate of the transmission path based on the bearer type, and a bearer loss based on the bearer type. At least one of a packet rate and a packet loss rate based on the quality of service QoS flow.
  • the data packet type includes: a data packet of the service data unit SDU in the SDAP entity, a data packet of the packet data unit PDU in the SDAP entity, a data packet of the SDU in the packet data convergence protocol PDCP entity, and a data packet of the PDU in the PDCP entity.
  • the radio link controls at least one of a data packet of the SDU in the RLC entity, a data packet of the PDU in the RLC entity, a data packet of the SDU in the medium access control MAC entity, and a data packet of the PDU in the MAC entity.
  • the first processing submodule includes:
  • a first processing unit configured to: when the current transmission is a downlink transmission, according to different service bearer types or different data packet types in a specific time interval, the number of downlink data packets discarded before the air interface transmission is not started, and the number of received data packets Calculating the downlink data loss rate in a specific time interval;
  • a second processing unit configured to: when the current transmission is an uplink transmission, according to different service bearer types or different data packet types in a specific time interval, the number of missing data packets and total data packets submitted by the current protocol entity to the upper protocol entity The number of uplink packets to calculate the packet loss rate in a specific time interval;
  • a third processing unit configured to: when the current transmission is a downlink air interface transmission, according to different service bearer types or different data packet types in a specific time interval, the number of downlink data packets transmitted on the air interface but not receiving the transmission success confirmation information, and The number of downlink data packets transmitted on the air interface and receiving the transmission success confirmation information is used to calculate the downlink air interface data packet loss rate in a specific time interval.
  • the multiple units in the first processing sub-module may be separately configured or may be combined.
  • the transmission success confirmation information includes at least one of a hybrid automatic repeat request HARQ acknowledgement information, an RLC acknowledgement information, and a packet data convergence protocol PDCP acknowledgement information.
  • the first processing module 620 further includes:
  • the first receiving submodule is configured to receive a downlink data packet loss rate calculated and sent by the terminal according to different service bearer types or different data packet types in a specific time interval.
  • the first receiving submodule includes:
  • a first receiving unit configured to receive, according to different service bearer types or different data packet types in a specific time interval, the number of data packets that are missing from the current protocol entity and the total number of data packets, and the total number of data packets The downlink data loss rate in a specific time interval sent.
  • the current protocol entity is: a SDAP entity, a PDCP entity, an RLC entity, or a MAC entity.
  • the number of missing data packets is determined according to the missing serial number in the total data packet submitted by the current protocol entity to the higher layer protocol entity in a specific time interval; the total number of data packets is according to the data packet in the current protocol entity.
  • the serial number is determined.
  • the first processing module 620 further includes:
  • a first sending submodule configured to send configuration information related to a downlink data packet loss rate to the terminal
  • the configuration information includes at least one of a measurement quantity identifier, a measurement object identifier, and a trigger report configuration.
  • the measurement quantity identifier includes: a downlink data loss rate measurement quantity identifier.
  • the measurement object identifier includes at least one of a radio bearer RB identifier, a QoS quality QoS flow identifier, a path identifier of the split split bearer, a path identifier of the duplicate bearer, a cell group identifier, and a service bearer type identifier.
  • the configuration of the triggering report includes: a configuration that is periodically reported, a configuration in which the downlink data packet loss rate exceeds the first threshold, a configuration in which the downlink data packet loss rate is lower than the second threshold, and a downlink data packet loss. At least one of the configuration that is periodically reported after the rate exceeds the third threshold, and the configuration in which the downlink data packet loss rate is lower than the fourth threshold and periodically reported.
  • each configuration in the triggering report configuration includes at least one of a calculation time window of a downlink data packet loss rate, a reporting period of a downlink data packet loss rate, and a packet loss rate threshold of a downlink data packet loss rate.
  • the network device of the embodiment of the present disclosure acquires at least one of a service bearer type and a data packet type under the current transmission, and determines a lost current transmission according to at least one of a service bearer type and a data packet type.
  • the packet rate can be applied to various application scenarios in the 5G system, thereby ensuring that the network device in the 5G system optimizes the transmission resource and transmission mode according to the accurate packet loss rate, for example, the data packet is better transmitted. Send on the path, or change the radio resource configuration to reduce the packet loss rate, thereby improving the reliability of packet transmission and the like.
  • an embodiment of the present disclosure further provides a network device, including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • a network device including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • the steps in the packet loss rate calculation method as described above are implemented.
  • Embodiments of the invention also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the packet loss rate calculation method as described above.
  • the network device 700 includes an antenna 71, a radio frequency device 72, and a baseband device 73.
  • the antenna 71 is connected to the radio frequency device 72.
  • the radio frequency device 72 receives information through the antenna 71 and transmits the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be transmitted and transmits it to the radio frequency device 72.
  • the radio frequency device 72 processes the received information and transmits it via the antenna 71.
  • the above-described band processing device may be located in the baseband device 73, and the method performed by the network device in the above embodiment may be implemented in the baseband device 73, which includes the processor 74 and the memory 75.
  • the baseband device 73 may include, for example, at least one baseband board having a plurality of chips disposed thereon, as shown in FIG. 7, one of which is, for example, a processor 74, coupled to the memory 75 to invoke a program in the memory 75 to execute The network device operation shown in the above method embodiment.
  • the baseband device 73 can also include a network interface 76 for interacting with the radio frequency device 72, such as a common public radio interface (CPRI).
  • a network interface 76 for interacting with the radio frequency device 72, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the method performed by the above network device.
  • An integrated circuit such as one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • Memory 75 can be either volatile memory or non-volatile memory, or can include both volatile and non-volatile memory.
  • the non-volatile memory may be a Read-Only Memory (ROM), a Programmable ROM (Programmable ROM), or an Erasable PROM (EPROM). , electrically erasable programmable read only memory (EEPROM) or flash memory.
  • the volatile memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous).
  • DRAM double data rate synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchlink DRAM
  • DRRAM Direct Memory Bus
  • the network device of the embodiment of the present disclosure further includes: a computer program stored on the memory 75 and operable on the processor 74, and the processor 74 calls a computer program in the memory 75 to execute the method executed by each module shown in FIG. .
  • the method can be used to: obtain at least one of a service bearer type and a data packet type under the current transmission;
  • the packet loss rate under the current transmission is determined according to at least one of a service bearer type and a packet type.
  • the method can be used to: calculate the current number of data packets discarded in a specific time interval according to at least one of the service bearer type and the data packet type, and the number of received data packets.
  • the packet loss rate includes: a packet loss rate of the specific terminal, a packet loss rate of the QCI based on the service quality level, a packet loss rate based on the bearer type, a packet loss rate of the transmission path based on the bearer type, and a bearer loss based on the bearer type. At least one of a packet rate and a packet loss rate based on the quality of service QoS flow.
  • the data packet type includes: a data packet of the service data unit SDU in the SDAP entity, a data packet of the packet data unit PDU in the SDAP entity, a data packet of the SDU in the packet data convergence protocol PDCP entity, and a data packet of the PDU in the PDCP entity.
  • the radio link controls at least one of a data packet of the SDU in the RLC entity, a data packet of the PDU in the RLC entity, a data packet of the SDU in the medium access control MAC entity, and a data packet of the PDU in the MAC entity.
  • the method can be used to perform: when the current transmission is a downlink transmission, according to different service bearer types in different time intervals or different data packet types, the number of downlink data packets discarded before air interface transmission is not started. And calculating the downlink data packet loss rate in a specific time interval according to the number of received data packets;
  • the specific time interval is calculated according to the number of missing data packets and the total number of data packets submitted by the current protocol entity to the higher layer protocol entity under different service bearer types or different packet types in a specific time interval.
  • the uplink packet loss rate within.
  • the current transmission is a downlink air interface transmission
  • the number of downlink data packets transmitted on the air interface but not receiving the transmission success confirmation information is transmitted and received in the air interface.
  • the number of downlink packets for which the success confirmation information is transmitted, and the downlink air interface data packet loss rate in a specific time interval is calculated.
  • the transmission success confirmation information includes at least one of a hybrid automatic repeat request HARQ acknowledgement information, an RLC acknowledgement information, and a packet data convergence protocol PDCP acknowledgement information.
  • the computer program is used by the processor 74 to perform: the downlink data packet loss rate calculated and transmitted by the receiving terminal according to different service bearer types or different data packet types in a specific time interval.
  • the method can be used to perform: receiving, by the terminal, the number and total number of data packets that are missing when submitting from the current protocol entity to the upper layer protocol entity according to different service bearer types or different packet types in a specific time interval.
  • the number of packets is calculated and sent to the downlink data packet loss rate within a specific time interval.
  • the current protocol entity is one of a SDAP entity, a PDCP entity, an RLC entity, or a MAC entity.
  • the number of missing data packets is determined according to the missing serial number in the total data packet that the current protocol entity submits to the higher layer protocol entity in a specific time interval; the total number of data packets is based on the sequence of data packets in the current protocol entity. No.
  • the system program may be configured to: send configuration information related to a downlink data packet loss rate to the terminal;
  • the configuration information includes at least one of a measurement quantity identifier, a measurement object identifier, and a trigger report configuration.
  • the measurement quantity identifier includes: a downlink data loss rate measurement quantity identifier.
  • the measurement object identifier includes at least one of a radio bearer RB identifier, a QoS quality QoS flow identifier, a path identifier of the split split bearer, a path identifier of the duplicate bearer, a cell group identifier, and a service bearer type identifier.
  • the triggering report configuration includes: a periodic report configuration, a configuration in which a downlink data packet loss rate exceeds a first threshold, a downlink data loss rate lower than a second threshold, and a downlink data loss rate. At least one of the configuration that is periodically reported after the third threshold is exceeded, and the configuration in which the downlink data packet loss rate is lower than the fourth threshold and periodically reported.
  • each configuration in the triggering report configuration includes at least one of a calculation time window of a downlink data packet loss rate, a reporting period of a downlink data packet loss rate, and a packet loss rate threshold of a downlink data packet loss rate.
  • the network device may be a Global System of Mobile communication (GSM) or a Code Division Multiple Access (CDMA) base station (Base Transceiver Station, BTS for short) or a wideband code.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB evolved Node B
  • eNodeB evolved Node B
  • a base station or the like in a future 5G network is not limited herein.
  • the network device in the embodiment of the present disclosure determines at least one of a service bearer type and a data packet type under the current transmission, and determines a packet loss rate under the current transmission according to at least one of a service bearer type and a data packet type. It can be applied to various application scenarios in the 5G system, so as to ensure that the network device in the 5G system optimizes the transmission resource and transmission mode according to the accurate packet loss rate, for example, the data packet is transmitted on a better transmission path. Send, or change the radio resource configuration to reduce the packet loss rate, thereby improving the reliability of packet transmission and the like.
  • the packet loss rate calculation method in the embodiment of the present disclosure is applied to a terminal, and specifically includes steps 81 to 83.
  • Step 81 Receive at least one of a service bearer type and a data packet type that are sent by the network device to calculate a downlink data packet loss rate.
  • the terminal determines the service bearer type and the packet type according to the indication of the network device.
  • the service bearer type is the bearer type to which the current data transmission belongs
  • the data packet type is the data packet type of the entity layer to which the current data transmission belongs.
  • the service bearer type includes one of an MCG bearer, an SCG bearer, an MCG branch of the split bearer, an SCG branch of the split bearer, and a replica bearer.
  • the data packet type is used to indicate data packets in different physical layers, and specifically includes: a data packet of a service data unit SDU in a service data adaptation protocol SDAP entity, a data packet of a packet data unit PDU in a SDAP entity, and a packet data convergence.
  • a data packet of an SDU in a protocol PDCP entity (available for a network entity without a SDAP entity), a data packet of a PDU in a PDCP entity (a network entity that can be used without a SDAP entity), and a data packet of an SDU in a radio link control RLC entity (available)
  • the data packet of the PDU in the RLC entity (which can be used to split the network entity without the PDCP entity) and the data packet of the SDU in the medium access control MAC entity (can be used for the split bearer without the RLC entity)
  • the network entity) and at least one of the data packets of the PDU in the MAC entity (which can be used to split the network entity without the RLC entity).
  • Step 82 Calculate a downlink data packet loss rate according to at least one of a service bearer type and a data packet type.
  • the terminal can determine the packet loss rate of the current transmission based on the service bearer type, and can also determine the packet loss rate of the current transmission based on the packet type, and can also determine the loss of the different service bearer types under the current transmission based on the packet type.
  • Package rate the packet loss rate mentioned herein includes: a packet loss rate of a specific terminal, a packet loss rate of the QCI based on the QoS level, a packet loss rate based on the bearer type, and a packet loss rate of the transmission path based on the bearer type. At least one of a packet loss rate based on a bearer and a packet loss rate based on a quality of service QoS flow.
  • Step 83 Send the downlink data packet loss rate to the network device.
  • the terminal After calculating the downlink data packet loss rate, the terminal sends the downlink data packet loss rate to the network device, so that the network device performs the next transmission resource configuration and transmission mode configuration to optimize the network.
  • step 82 is specifically: calculating a specific number of data packets and total number of data packets that are missing when the current protocol entity submits the high-level protocol entity from the current protocol entity according to different service bearer types or different packet types in a specific time interval. Downlink data loss rate in the time interval.
  • the current protocol entity refers to an entity of a certain layer in each protocol layer in the 5G system. Specifically, the current protocol entity is: a SDAP entity, a PDCP entity, an RLC entity, or a MAC entity.
  • a higher layer protocol entity refers to a higher layer entity than the current protocol entity.
  • the terminal can refer to the formula
  • the downlink data packet loss rate in a specific time interval is calculated and reported to the network device.
  • M(T, qci) represents the downlink data packet loss rate in a specific time interval T
  • Ddisc(T, qci) represents the delivery from the current protocol entity under different service bearer types or different packet types in the time interval T
  • N(T, qci) indicates the total number of packets submitted from the current protocol entity to the higher layer protocol entity under different service bearer types or different packet types in a specific time interval T .
  • the number of missing data packets from the current protocol entity to the higher layer protocol entity in a specific time interval is determined according to the missing serial number in the total data packet submitted by the current protocol entity to the higher layer protocol entity within a specific time interval. That is, Ddisc(T, qci) can be determined by the serial number lost in the total data packet delivered by the current protocol entity to the upper layer protocol entity in a specific time interval, and specifically, can be submitted by counting the current protocol entity within a specific time interval T.
  • the serial number lost in the total packet of the higher layer protocol entity is determined, such as the "total packet submitted to the upper layer protocol entity", the number range is [1, 10], where the sequence numbers with SN numbers 5 and 6 are lost. , to determine the number of "missing packets" is 2.
  • the total number of data packets submitted from the current protocol entity to the higher layer protocol entity in a specific time interval is determined according to the sequence number of the data packet in the current protocol entity. That is, N(T, qci) can be determined by the sequence number of the data packet in the current protocol entity. Specifically, it can be determined by counting the data packet sequence number of the current protocol entity, such as the starting SN number 1, and the last SN number 10, then the total The number of packets is 10.
  • the method further includes: receiving configuration information related to a downlink data packet loss rate sent by the network device.
  • the configuration information includes at least one of a measurement quantity identifier, a measurement object identifier, and a trigger report configuration.
  • the foregoing measurement quantity identifier includes a downlink data loss rate measurement quantity identifier.
  • the measurement object identifier includes: a radio bearer (RB) identifier, a QoS QoS flow identifier, a path identifier of the split split bearer (such as a logical channel identifier or a cell group identifier of the bearer corresponding path), and a path identifier of the duplicate bearer ( At least one of a logical channel identifier of the bearer corresponding path, a cell group identifier (such as MCG or SCG), and a service bearer type identifier (such as an MCG bearer, an SCG bearer, a split bearer, or a replica bearer).
  • RB radio bearer
  • QoS QoS flow identifier such as a logical channel identifier or a cell group identifier of the bearer corresponding path
  • a path identifier of the duplicate bearer At least one of a logical channel identifier of the bearer corresponding path, a cell group identifier (such as MCG or SCG), and
  • the trigger report configuration is used to indicate when the terminal is reported when the condition is met.
  • the triggering report configuration includes: a periodic report configuration, a configuration in which a downlink data packet loss rate exceeds a first threshold, a downlink data loss rate lower than a second threshold, and a downlink data loss rate. At least one of the configuration that is periodically reported after the third threshold is exceeded, and the configuration in which the downlink data packet loss rate is lower than the fourth threshold and periodically reported. It is worth noting that the specific values of the first threshold value, the second threshold value, the third threshold value, and the fourth threshold value may be determined according to actual needs, and generally, the first threshold value It is greater than the second threshold, and the third threshold is greater than the fourth threshold.
  • each configuration in the triggering report configuration includes at least one of a calculation time window of a downlink data packet loss rate, a reporting period of a downlink data packet loss rate, and a packet loss rate threshold of a downlink data packet loss rate, where
  • the calculation time window of the downlink data packet loss rate is the above specific time interval, and the length thereof may be set according to actual needs, for example, set to 10 ms. Further, the size of the calculation time window may also be predefined by a protocol.
  • the threshold of the downlink data packet loss rate indicates the threshold value in each trigger report configuration. The threshold value is specifically proportional, such as 10%.
  • the reporting period of the downlink data packet loss rate may indicate the time period of periodic reporting in each trigger reporting configuration, such as 50 ms.
  • the triggering reporting configuration is used to trigger the reporting behavior of the terminal.
  • the reporting conditions for triggering the reporting configuration indication are different, the reporting timing of the terminal is different.
  • the following embodiment will introduce the reporting mechanism of the terminal in combination with different trigger reporting configurations.
  • the step 83 is: sending the downlink data packet loss rate to the network device according to the period configured in the configuration information.
  • the network device indicates that the periodic reporting period of the terminal is 10 ms, and the terminal sends the calculated downlink data packet loss rate to the network device according to the 10 ms period.
  • the step 83 is: performing measurement according to the configuration information, and when the downlink data packet loss rate exceeds the first threshold, Send the downlink data packet loss rate to the network device.
  • the network device indicates that the downlink data packet loss rate is higher than 10%
  • the terminal triggers the reporting, and when determining that the downlink data packet loss rate is higher than 10%, the terminal sends the downlink data packet loss rate to the network device, and determines the downlink data packet loss rate. When it is less than 10%, it will not be reported.
  • step 83 is: performing measurement according to the configuration information, and measuring that the downlink data packet loss rate is lower than the second threshold value
  • the downlink data packet loss rate is sent to the network device. For example, when the network device indicates that the downlink data packet loss rate is less than 5%, the terminal triggers the reporting, and when determining that the downlink data packet loss rate is less than 5%, the terminal sends the downlink data packet loss rate to the network device, and determines the downlink data packet loss rate. When it is higher than 5%, it will not be reported.
  • the terminal triggers reporting, and the terminal determines that the downlink data packet loss rate is less than 5% or When the downlink data packet loss rate is higher than 10%, the downlink data packet loss rate is sent to the network device. When the downlink data packet loss rate is determined to be higher than 5% and lower than 10%, the report processing is not performed.
  • step 83 is: performing measurement according to the configuration information, and measuring that the downlink data packet loss rate exceeds the third threshold.
  • the downlink data packet loss rate is sent to the network device according to the period configured in the configuration information. For example, when the network device indicates that the downlink data packet loss rate is higher than 10% and is reported in a period of 10 ms, the terminal sends a downlink data packet loss rate to the network device according to a 10 ms period when determining that the downlink data packet loss rate is higher than 10%. When it is determined that the downlink data loss rate is less than 10%, the report processing is not performed.
  • the step 83 is: performing measurement according to the configuration information, and measuring the downlink data packet loss rate is lower than the fourth.
  • the downlink data packet loss rate is sent to the network device according to the period configured in the configuration information. For example, when the network device indicates that the downlink data packet loss rate is less than 5% and is reported in a period of 10 ms, the terminal sends a downlink data packet loss rate to the network device according to a 10 ms period when determining that the downlink data packet loss rate is less than 5%. When it is determined that the downlink data packet loss rate is higher than 5%, the report processing is not performed.
  • the terminal reports the downlink data loss rate.
  • the downlink data packet loss rate is sent to the network device according to the 10ms period.
  • the downlink data packet loss rate is determined to be higher than 5% and lower than 10%, the network data is not used. Report processing. It should be noted that, in the above-mentioned trigger reporting configuration, different reporting configurations can be arbitrarily combined as long as no reporting conflict occurs.
  • the terminal receives at least one of a service bearer type and a data packet type sent by the network device, so that the packet loss rate is calculated according to at least one of a service bearer type and a data packet type. It can be applied to various application scenarios in the 5G system, so as to ensure that the accurate packet loss rate in the 5G system is calculated, and then the packet loss rate is sent to the network device, so that the network device configures the optimized transmission resource for the next transmission. Transmission methods, such as sending packets on a better transmission path, or changing the radio resource configuration to reduce the packet loss rate, thereby improving the reliability of packet transmission.
  • the terminal 900 of the embodiment of the present disclosure can implement at least one of a service bearer type and a data packet type used by the receiving network device to calculate a downlink data packet loss rate according to the foregoing embodiment; At least one of the type and the packet type, the downlink data packet loss rate is calculated; the downlink data packet loss rate is sent to the network device method, and the same effect is achieved.
  • the terminal 900 specifically includes the following functional modules:
  • the first receiving module 910 is configured to receive, by the network device, at least one of a service bearer type and a data packet type used to calculate a downlink data packet loss rate;
  • the calculating module 920 is configured to calculate a downlink data packet loss rate according to at least one of a service bearer type and a data packet type;
  • the first sending module 930 is configured to send a downlink data packet loss rate to the network device.
  • the calculating module 920 includes:
  • the calculation sub-module is configured to calculate the number of missing data packets and the total number of data packets when the current protocol entity is delivered to the upper layer protocol entity according to different service bearer types or different packet types in a specific time interval, and calculate the specific time interval.
  • the downlink data loss rate is configured to calculate the number of missing data packets and the total number of data packets when the current protocol entity is delivered to the upper layer protocol entity according to different service bearer types or different packet types in a specific time interval, and calculate the specific time interval.
  • the packet loss rate includes: a packet loss rate of the specific terminal, a packet loss rate of the QCI based on the service quality level, a packet loss rate based on the bearer type, a packet loss rate of the transmission path based on the bearer type, and a bearer loss based on the bearer type. At least one of a packet rate and a packet loss rate based on the quality of service QoS flow.
  • the data packet type includes: a data packet of the service data unit SDU in the service data adaptation protocol SDAP entity, a data packet of the packet data unit PDU in the SDAP entity, a data packet of the SDU in the packet data convergence protocol PDCP entity, and a PDCP entity.
  • the terminal 900 further includes:
  • a second receiving module configured to receive configuration information related to a downlink data packet loss rate sent by the network device
  • the configuration information includes at least one of a measurement quantity identifier, a measurement object identifier, and a trigger report configuration.
  • the configuration of the triggering report includes: a configuration that is periodically reported, a configuration in which the downlink data packet loss rate exceeds the first threshold, a configuration in which the downlink data packet loss rate is lower than the second threshold, and a downlink data packet loss. At least one of the configuration that is periodically reported after the rate exceeds the third threshold, and the configuration in which the downlink data packet loss rate is lower than the fourth threshold and periodically reported.
  • the first sending module 930 includes:
  • the first sending sub-module is configured to send the downlink data packet loss rate to the network device according to the period configured in the configuration information when the configuration of the reporting, including the periodic reporting, is triggered;
  • the second sending sub-module is configured to perform measurement according to the configuration information when the triggering report configuration includes the configuration that the downlink data packet loss rate exceeds the first threshold, and when the downlink data packet loss rate exceeds the first threshold, Transmitting the downlink data packet loss rate to the network device;
  • the third sending sub-module is configured to perform measurement according to the configuration information when the triggering report configuration includes the configuration that the downlink data loss rate is lower than the second threshold, and the downlink data loss rate is lower than the second threshold.
  • the downlink data packet loss rate is sent to the network device;
  • the fourth sending sub-module is configured to perform measurement according to the configuration information when the configuration of the triggering report includes the periodic reporting of the downlink data loss rate exceeding the third threshold, and the downlink data loss rate exceeds the third gate.
  • the limit is sent to the network device according to the period configured in the configuration information.
  • the fifth sending sub-module is configured to perform measurement according to the configuration information when the configuration of the reporting, including the downlink data packet loss rate is lower than the fourth threshold, is performed, and the downlink data loss rate is lower than the measured When the threshold is four, the downlink data packet loss rate is sent to the network device according to the period configured in the configuration information. It is worth noting that the plurality of submodules in the first sending module may be separately set or may be combined.
  • the terminal in the embodiment of the present disclosure receives at least one of a service bearer type and a data packet type sent by the network device, so that the packet loss rate is calculated according to at least one of a service bearer type and a data packet type, and is applicable.
  • Various application scenarios in the 5G system ensure that the accurate packet loss rate in the 5G system is calculated, and then the packet loss rate is sent to the network device, so that the network device configures the optimized transmission resource and transmission mode for the next transmission configuration. For example, the data packet is sent on a better transmission path, or the radio resource configuration is changed to reduce the packet loss rate, thereby improving the reliability of packet transmission and the like.
  • each module of the above network device and terminal is only a division of logical functions. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. And these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors ( A digital signal processor (DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 100 includes, but is not limited to, a radio frequency unit 101, a network module 102, and an audio output unit 103.
  • the terminal structure shown in FIG. 10 does not constitute a limitation to the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the radio frequency unit 101 is configured to receive at least one of a service bearer type and a data packet type that are sent by the network device to calculate a downlink data packet loss rate.
  • the processor 1010 is configured to calculate a downlink data packet loss rate according to at least one of a service bearer type and a data packet type, and control the radio frequency unit 101 to send the downlink data packet loss rate to the network device.
  • the terminal of the embodiment of the present disclosure receives at least one of a service bearer type and a data packet type sent by the network device, so that the packet loss rate is calculated according to at least one of a service bearer type and a data packet type, and is applicable to the 5G system.
  • Various application scenarios so as to ensure that the accurate packet loss rate in the 5G system is calculated, and then the packet loss rate is sent to the network device, so that the network device configures the optimized transmission resource and transmission mode for the next transmission, such as the data packet. Send on a better transmission path, or change the radio resource configuration to reduce the packet loss rate, thereby improving the reliability of packet transmission and the like.
  • the radio frequency unit 101 may be used for receiving and transmitting signals during and after receiving or receiving information or during a call, and specifically, after receiving downlink data from the base station, processing the processor 1010; The uplink data is sent to the base station.
  • radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 101 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides the user with wireless broadband Internet access through the network module 102, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 103 can convert the audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into an audio signal and output as sound. Moreover, the audio output unit 103 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 100.
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is for receiving an audio or video signal.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 106.
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or transmitted via the radio unit 101 or the network module 102.
  • the microphone 1042 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 101 in the case of a telephone call mode.
  • Terminal 100 also includes at least one type of sensor 105, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 1061 and/or when the terminal 100 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 105 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 106 is for displaying information input by the user or information provided to the user.
  • the display unit 106 can include a display panel 1061.
  • the display panel 1061 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 107 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1071 or near the touch panel 1071. operating).
  • the touch panel 1071 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1010 receives the commands from the processor 1010 and executes them.
  • the touch panel 1071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 107 may also include other input devices 1072.
  • the other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein.
  • the touch panel 1071 can be overlaid on the display panel 1061. After the touch panel 1071 detects a touch operation thereon or nearby, the touch panel 1071 transmits to the processor 1010 to determine the type of the touch event, and then the processor 1010 according to the touch. The type of event provides a corresponding visual output on display panel 1061.
  • the touch panel 1071 and the display panel 1061 are two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 1071 and the display panel 1061 may be integrated. The input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 108 is an interface in which an external device is connected to the terminal 100.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 108 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 100 or can be used at the terminal 100 and external devices Transfer data between.
  • Memory 109 can be used to store software programs as well as various data.
  • the memory 109 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • the memory 109 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 1010 is a control center of the terminal, which connects various parts of the entire terminal using various interfaces and lines, and executes by executing or executing software programs and/or modules stored in the memory 109, and calling data stored in the memory 109.
  • Processor 1010 can include one or more processing units.
  • the processor 1010 can integrate an application processor and a modem processor, wherein the application processor primarily processes an operating system, a user interface, an application, etc., and the modem processor primarily processes wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1010.
  • the terminal 100 may also include a power source 1011 (such as a battery) that supplies power to the various components.
  • a power source 1011 such as a battery
  • the power supply 1011 can be logically coupled to the processor 1010 through a power management system to implement functions such as managing charging, discharging, and power management through the power management system.
  • the terminal 100 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 1010, a memory 109, a computer program stored on the memory 109 and executable on the processor 1010, when the computer program is executed by the processor 1010.
  • the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal digital assistant
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements the processes of the foregoing packet loss rate calculation method embodiment, and can achieve the same The technical effect, in order to avoid duplication, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种丢包率计算方法、网络设备及终端,计算方法包括:获取当前传输下的业务承载类型和数据包类型中的至少一项;以及根据业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率。

Description

丢包率计算方法、网络设备及终端
相关申请的交叉引用
本申请主张在2017年10月27日在中国提交的中国专利申请号No.201711025535.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种丢包率计算方法、网络设备及终端。
背景技术
在第四代(4 th Generation,4G)移动通信系统,或称为长期演进(Long Term Evolution,LTE)系统的双连接(Dual Connectivity,DC)系统中,包括三种不同的承载类型,具体为:主小区群组(Master Cell Group,MCG)承载,分离(split)承载和辅小区群组(Secondary Cell Group,SCG)承载。在第五代(5 th Generation,5G)移动通信系统,或称为新空口(New Radio,NR)系统的DC架构中,不仅支持MCG和SCG,还进一步支持分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)复制功能,因此产生不同的承载类型(bear type)。具体的,5G系统的DC架构中支持的承载类型包括以下:
如图1所示,MCG承载,该承载对应PDCP、无线链路控制(Radio Link Control,RLC)和媒体接入控制(Medium Access Control,MAC)等实体的MCG。
如图1所示,SCG承载,该承载对应PDCP、RLC和MAC实体的SCG。
如图2所示,Split承载,该承载对应的PDCP实体在1个小区组,即该承载对应的PDCP实体均在MCG或SCG中,该承载对应的2个RLC实体和2个MAC实体分别在不同的小区组,即该承载对应的RLC实体或MAC实体一个在MCG中另一个在SCG中。
如图3所示,复制(Duplicate)承载,该承载对应的1个PDCP实体、2个RLC实体和1个MAC实体均在1个小区组,即该承载对应的1个PDCP 实体、2个RLC实体和1个MAC实体均在MCG或SCG中。
此外,为了网络设备能够更好地为配置相关的无线资源配置参数给终端,NR系统中的网络设备可以通过自行计算或通过终端上报的方式获取层2(Layer-2,L2)测量的结果。其中,网络设备自行计算的L2测量包括:物理资源块(Physical Resource Block,PRB)使用率(usage)、随机接入前导码(Received Random Access Preamble)、激活终端的数量(Number of active UEs)、下行数据包延迟率(Packet Delay)、丢包率(Data Loss)、调度的IP吞吐量(Scheduled IP Throughput)、调度的最小化路测(Minimization Drive Test,MDT)的IP吞吐量(Scheduled IP Throughput for MDT)、数据量(Data Volume)和共享网络数据量(Data Volume for Shared Networks)。终端上报的L2测量包括上行数据包延迟率(Packet Delay)。
此外,在5G系统中还增加了预处理功能,具体地,终端在未收到网络设备发送的上行发送授权时,可对数据进行预处理,生成对应的待发送数据包,如MAC层分组数据单元(Packet Data Unit,PDU)。
进一步地,在5G系统中引入了服务质量(Quality-of-Service,QoS)的网络设备侧指示机制,需要在上行和下行数据的发送过程中加入终端的IP数据流的QoS指示信息,如QoS流标识(QoS flow ID)。如图4所示,业务数据适配协议(Service Data Adaptation Protocol,SDAP)层位于PDCP层之上,1个SDAP实体对应1个PDU会话(PDU session),1个SDAP实体对应多个数据无线承载(Data Radio Bearer,DRB),即1个SDAP实体对应多个PDCP实体,网络设备为每个DRB配置相应的服务流(flow)。其中,服务数据单元(Service Data Unit,SDU)为某协议层从高层协议层接收的数据包,或向高层协议层发送的数据包,如MAC层从RLC层接收到的数据包称为MAC SDU。PDU为某协议层向低层协议层发送的数据包,或从低层协议层接收的数据包,如MAC层向物理层发送到的数据包称为MAC PDU。
由于引入了不同的承载类型、预处理功能以及新的协议SDAP层,采用传统系统中的丢包率计算方式,无法准确确定数据传输的丢包率。
发明内容
第一方面,本公开实施例提供了一种丢包率计算方法,应用于网络设备侧,包括:
获取当前传输下的业务承载类型和数据包类型中的至少一项;以及
根据业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率。
第二方面,本公开实施例还提供了一种网络设备,包括:
第一获取模块,用于获取当前传输下的业务承载类型和数据包类型中的至少一项;以及
第一处理模块,用于根据业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率。
第三方面,本公开实施例提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的程序,处理器执行程序时实现上述的丢包率计算方法的步骤。
第四方面,本公开实施例提供了一种丢包率计算方法,应用于终端侧,包括:
接收网络设备发送的用于计算下行数据丢包率的业务承载类型和数据包类型中的至少一项;
根据业务承载类型和数据包类型中的至少一项,计算下行数据丢包率;
将下行数据丢包率发送至网络设备。
第五方面,本公开实施例还提供了一种终端,包括:
第一接收模块,用于接收网络设备发送的用于计算下行数据丢包率的业务承载类型和数据包类型中的至少一项;
计算模块,用于根据业务承载类型和数据包类型中的至少一项,计算下行数据丢包率;
第一发送模块,用于将下行数据丢包率发送至网络设备。
第六方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并可在处理器上运行的程序,程序被处理器执行时实现上述的丢包率计算方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读 存储介质上存储有程序,程序被处理器执行时实现上述的丢包率计算方法的步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示5G系统的DC架构下MCG承载和SCG承载的实体架构示意图;
图2表示5G系统的DC架构下Split承载的实体架构示意图;
图3表示5G系统的DC架构下Duplicate承载的实体架构示意图;
图4表示5G系统中SDAP协议的实体架构示意图;
图5表示本公开实施例中网络设备侧的丢包率计算方法的流程示意图;
图6表示本公开实施例的网络设备的模块示意图;
图7表示本公开实施例的网络设备框图;
图8表示本公开实施例的终端侧的丢包率计算方法的流程示意图;
图9表示本公开实施例的终端的模块示意图;
图10表示本公开实施例的终端框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及 他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
针对因引入了不同的承载类型、预处理功能以及新的协议SDAP层而无法计算数据传输丢包率的问题,本公开实施例提供了一种丢包率计算方法、网络设备及终端。
如图5所示,本公开实施例的丢包率计算方法,应用于网络设备,具体包括步骤51至52。
步骤51:获取当前传输下的业务承载类型和数据包类型中的至少一项。
其中,业务承载类型为当前数据传输所属的承载类型,数据包类型为当前数据传输所属实体层的数据包类型。具体地,业务承载类型包括:MCG承载、SCG承载、split承载的MCG分支、split承载的SCG分支以及复制承载中的一项。进一步地,数据包类型用于指示不同实体层中的数据包,具体包括:业务数据适配协议SDAP实体中服务数据单元SDU的数据包、SDAP实体中分组数据单元PDU的数据包、分组数据汇聚协议PDCP实体中SDU的数据包(可用于没有SDAP实体的网络实体)、PDCP实体中PDU的数据包(可用于没有SDAP实体的网络实体)、无线链路控制RLC实体中SDU的数据包(可用于split承载没有PDCP实体的网络实体)、RLC实体中PDU的数据包(可用于split承载没有PDCP实体的网络实体)、媒体接入控制MAC实体中SDU的数据包(可用于split承载没有RLC实体的网络实体)和MAC实体中PDU的数据包(可用于split承载没有RLC实体的网络实体)中的至少一项。
步骤52:根据业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率。
这里指的是,网络设备可基于业务承载类型确定当前传输的丢包率,还可基于数据包类型确定当前传输的丢包率,还可基于数据包类型确定当前传输下不同业务承载类型下的丢包率。
在网络设备确定当前传输下的丢包率后,可根据该丢包率,为下一传输 配置传输资源及传输方式。
由于网络设备是基于不同业务承载类型和不同数据包类型中的至少一项确定当前传输的丢包率,因此可适用于5G系统中各个场景下的丢包率确定,而不受特定场景的限制,这样,网络设备基于该丢包率为下一传输配置相应的传输资源及传输方式更符合实际传输环境,例如将数据包在更好的传输路径上进行发送,或更改无线资源配置以降低丢包率,从而提高数据包发送的可靠性等。
可选地,步骤52包括:根据业务承载类型和数据包类型中的至少一项在特定时间区间内丢弃的数据包数量以及接收到的数据包数量,计算当前传输下在特定时间区间内的丢包率。其中,特定时间区间为丢包率的计算周期。
可选地,丢包率包括:特定终端的丢包率、基于服务质量级别标识(QoS Class Identifier,QCI)的丢包率、基于承载类型的丢包率、基于承载类型的发送路径的丢包率、基于承载的丢包率和基于服务质量QoS流的丢包率中的至少一项。即网络设备能够基于特定时间区间内不同业务承载类型或不同数据包类型下丢弃的数据包数量以及接收到的数据包数量,计算出针对某个终端的丢包率,或针对某个QCI的丢包率,或针对某种业务承载类型的丢包率,或针对某种业务承载类型的发送路径的丢包率,或针对某个承载的丢包率,或针对某个QoS flow的丢包率。
具体地,丢包率的类型包括:特定目标的丢包率以及与特定承载类型相关的丢包率中的至少一项。可选地,特定目标的丢包率包括:特定终端的丢包率、基于服务质量级别标识(QoS Class Identifier,QCI)的丢包率和基于服务质量QoS流的丢包率中的至少一项。与特定承载类型相关的丢包率包括:基于承载类型的丢包率、基于承载类型的发送路径的丢包率和基于承载的丢包率。其中值得指出的是,特定目标的丢包率可通过任意一个或任意多个不同类型的数据包进行计算,即特定目标的丢包率可通过不同实体层的不同数据包进行计算,例如:某个终端的丢包率可通过SDAP实体中SDU的数据包、SDAP实体中SDAP中PDU的数据包、PDCP实体中SDU的数据包、PDCP实体中PDU的数据包、RLC实体中SDU的数据包、RLC实体中PDU的数据包、MAC实体中SDU的数据包和MAC实体中PDU的数据包中的至少一 种数据包计算得到,值得指出的是,其他特定目标的丢包率亦可通过以上8种不同类型的数据包中的至少一种计算得到,故不在此赘述。同理,与某特定承载类型相关的丢包率亦可通过任意一个或任意多个不同类型的数据包进行计算,即与特定承载类型相关的丢包率可通过不同实体层的不同数据包进行计算,例如:某个承载类型(如MCG承载)的丢包率可通过SDAP实体中SDU的数据包、SDAP实体中SDAP中PDU的数据包、PDCP实体中SDU的数据包、PDCP实体中PDU的数据包、RLC实体中SDU的数据包、RLC实体中PDU的数据包、MAC实体中SDU的数据包和MAC实体中PDU的数据包中的至少一种数据包计算得到,值得指出的是,其他与承载类型相关的丢包率亦可通过以上8种不同类型的数据包中的至少一种计算得到,故不在此赘述。
进一步地,下面将结合具体应用场景进一步介绍如何根据不同业务承载类型或不同数据包类型确定当前传输的丢包率。
场景一、网络设备计算下行数据丢包率。
这里指的是网络设备计算非空口的下行传输的丢包率。
具体地,当当前传输为下行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下丢弃的数据包数量以及接收到的数据包数量,计算当前传输下在特定时间区间内的丢包率的步骤包括:根据特定时间区间内不同业务承载类型或不同数据包类型下未开始空口传输前丢弃的下行数据包的数量和接收到的数据包的数量,计算特定时间区间内的下行数据丢包率。
进一步地,网络设备可参照公式
Figure PCTCN2018104959-appb-000001
计算特定时间区间内的下行数据丢包率。
其中,M(T,qci)表示当前传输下在特定时间区间T内的下行数据丢包率;Ddisc(T,qci)表示特定时间区间T内未开始空口传输前丢弃的下行数据包的数量;N(T,qci)表示特定时间区间T内未开始空口传输前接收到的数据包的数量。
可选地,上述下行数据丢包率的类型包括以下一种或多种:某个终端的下行数据丢包率,或针对某个QCI的下行数据丢包率,或针对某个业务承载类型(如MCG承载、SCG承载、split承载或复制承载)的下行数据丢包率, 或针对某个业务承载类型的发送路径(如split承载的各分支路径或复制承载的各分支路径)的下行数据丢包率,或针对某个承载的下行数据丢包率,或针对某个QoS flow的下行数据丢包率。
场景二、网络设备计算上行数据丢包率。
当当前传输为上行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下丢弃的数据包数量以及接收到的数据包数量,计算当前传输下在特定时间区间内的丢包率的步骤包括:根据特定时间区间内不同业务承载类型或不同数据包类型下当前协议实体递交到高层协议实体中缺失的数据包的数量和总的数据包的数量,计算特定时间区间内的上行数据包丢包率。
其中,当前协议实体指的是5G系统中各协议层中的某一层实体,具体地,当前协议实体为:SDAP实体、PDCP实体、RLC实体或MAC实体。高层协议实体指的是较当前协议实体更高层的实体。
具体地,网络设备可参照公式
Figure PCTCN2018104959-appb-000002
计算特定时间区间内的上行数据包丢包率。
其中,M(T,qci)表示特定时间区间T内的上行数据丢包率,Ddisc(T,qci)表示特定时间区间T内不同业务承载类型或不同数据包类型下当前协议实体递交到高层协议实体中缺失的数据包的数量;N(T,qci)表示特定时间区间T内不同业务承载类型或不同数据包类型下当前协议实体递交到高层协议实体的总的数据包的数量。
进一步地,特定时间区间内从当前协议实体递交到高层协议实体时缺失的数据包的数量,根据当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定。即Ddisc(T,qci)可通过当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定,具体地,可通过统计当前协议实体在特定时间区间T内递交到高层协议实体的总的数据包中丢失的序列号确定,如“递交到高层协议实体的总的数据包”的编号范围为[1,10],其中SN编号为5和6的序列号丢失,则判断“缺失的数据包”数量为2。
进一步地,特定时间区间内从当前协议实体递交到高层协议实体的总的数据包的数量,根据当前协议实体中数据包的序列号确定。即N(T,qci)可通 过当前协议实体中数据包的序列号确定,具体地,可通过统计当前协议实体的数据包序列号确定,如起始SN号1,最后SN号10,则总的数据包的数量为10。
可选地,上述上行数据丢包率的类型包括以下一种或多种:某个终端的上行数据丢包率,或针对某个QCI的上行数据丢包率,或针对某个业务承载类型(如MCG承载、SCG承载、split承载或复制承载)的上行数据丢包率,或针对某个业务承载类型的发送路径(如split承载的各分支路径或复制承载的各分支路径)的上行数据丢包率,或针对某个承载的上行数据丢包率,或针对某个QoS flow的上行数据丢包率。
场景三、网络设备计算下行空口数据丢包率。
具体地,当当前传输为下行空口传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下丢弃的数据包数量以及接收到的数据包数量,计算当前传输下在特定时间区间内的丢包率的步骤包括:根据特定时间区间内不同业务承载类型或不同数据包类型下在空口传输了但未接收到传输成功确认信息的下行数据包的数量以及在空口传输了且接收到传输成功确认信息的下行数据包的数量,计算特定时间区间内的下行空口数据丢包率。
具体地,网络设备可参照公式
Figure PCTCN2018104959-appb-000003
计算特定时间区间内的下行空口数据丢包率。
其中,M(T,qci)表示特定时间区间T内的下行空口数据丢包率,Dloss(T,qci)表示特定时间区间T内不同业务承载类型或不同数据包类型下在空口传输了但未接收到传输成功确认信息的下行数据包的数量;N(T,qci)表示特定时间区间T内不同业务承载类型或不同数据包类型下在空口传输了且接收到传输成功确认信息的下行数据包的数量。
可选地,上述下行空口数据丢包率的类型包括以下一种或多种:某个终端的下行空口数据丢包率,或针对某个QCI的下行空口数据丢包率,或针对某个业务承载类型(如MCG承载、SCG承载、split承载或复制承载)的下行空口数据丢包率,或针对某个业务承载类型的发送路径(如split承载的各分支路径或复制承载的各分支路径)的下行空口数据丢包率,或针对某个承载的下行空口数据丢包率,或针对某个QoS flow的下行空口数据丢包率。
进一步地,传输成功确认信息包括:混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)确认信息、RLC确认信息和分组数据汇聚协议PDCP确认信息中的至少一项。
场景四、网络设备接收终端设备计算的下行数据丢包率。
具体地,步骤52包括:接收终端根据特定时间区间内不同业务承载类型或不同数据包类型计算得到并发送的下行数据丢包率。
这里网络设备接收终端根据不同业务承载类型或不同数据包类型计算得到并发送的下行数据丢包率。
具体地,接收终端根据特定时间区间内不同业务承载类型或不同数据包类型计算得到并发送的下行数据丢包率的步骤具体为:接收终端根据特定时间区间内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量和总的数据包的数量计算得到并发送的特定时间区间内的下行数据丢包率。
其中,当前协议实体指的是5G系统中各协议层中的某一层中的实体,具体地,当前协议实体为:SDAP实体、PDCP实体、RLC实体或MAC实体。高层协议实体指的是较当前协议实体更高层的实体。
具体地,终端可参照公式
Figure PCTCN2018104959-appb-000004
计算特定时间区间内的下行数据丢包率并上报至网络设备。
其中,M(T,qci)表示在特定时间区间T内的下行数据丢包率;Ddisc(T,qci)表示时间区间T内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量;N(T,qci)表示特定时间区间T内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体的总的数据包的数量。
进一步地,特定时间区间内从当前协议实体递交到高层协议实体时缺失的数据包的数量,根据当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定。即Ddisc(T,qci)可通过当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定,具体地,可通过统计当前协议实体在特定时间区间T内递交到高层协议实体的总的数据包中丢失的序列号确定,如“递交到高层协议实体的总的数据包”的编 号范围为[1,10],其中SN编号为5和6的序列号丢失,则判断“缺失的数据包”数量为2。
进一步地,特定时间区间内从当前协议实体递交到高层协议实体的总的数据包的数量,根据当前协议实体中数据包的序列号确定。即N(T,qci)可通过当前协议实体中数据包的序列号确定,具体地,可通过统计当前协议实体的数据包序列号确定,如起始SN号1,最后SN号10,则总的数据包的数量为10。
在场景四下,丢包率为终端计算并上报至网络设备侧的,在该场景下,网络设备在接收终端计算并上报的下行数据丢包率之前,还包括:向终端发送与下行数据丢包率相关的配置信息。其中这里所说的与下行数据丢包率相关指的是与计算下行数据丢包率相关或与上报下行数据丢包相关。具体地,所述配置信息包括:测量量标识、测量对象标识和触发上报配置中的至少一项
可选地,上述测量量标识包括下行数据丢包率测量量标识。
上述测量对象标识包括:无线承载(Radio Bearer,RB)标识、服务质量QoS流标识、分离split承载的路径标识(如该承载对应路径的逻辑信道标识或小区组标识)、复制承载的路径标识(如该承载对应路径的逻辑信道标识)、小区群组标识(如MCG或SCG)和业务承载类型标识(如MCG承载、SCG承载、split承载或复制承载)中的至少一项。
其中,触发上报配置用于指示终端在满足何种条件时在何时上报。具体地,触发上报配置包括:周期性上报的配置、下行数据丢包率超过第一门限值上报的配置、下行数据丢包率低于第二门限值上报的配置、下行数据丢包率超过第三门限值后周期性上报的配置和下行数据丢包率低于第四门限值后周期性上报的配置中的至少一项。其中,值得指出的是,第一门限值、第二门限值、第三门限值和第四门限值的具体取值可根据实际需要而定,且一般地,第一门限值大于第二门限值,第三门限值大于第四门限值。
可选地,触发上报配置中的各配置包括下行数据丢包率的计算时间窗口、下行数据丢包率的上报周期和下行数据丢包率的丢包率门限值中的至少一项,其中,下行数据丢包率的计算时间窗口为上述特定时间区间,其长度可根据 实际需要进行设定,如设定为10ms,此外,该计算时间窗口的大小还可由协议预先定义。下行数据丢包率的门限值可指示各触发上报配置中的门限值,门限值具体为比例,如10%。下行数据丢包率的上报周期可指示各触发上报配置中的周期性上报的时间周期,如50ms。
本公开实施例的丢包率计算方法中,网络设备获取当前传输下的业务承载类型和数据包类型中的至少一项,根据业务承载类型和数据包类型中的至少一项确定当前传输下的丢包率,能够适用于5G系统中的各种应用场景,从而保证5G系统中网络设备根据精确的丢包率为下一传输配置优化的传输资源及传输方式,如将数据包在更好的传输路径上进行发送,或更改无线资源配置以降低丢包率,从而提高数据包发送的可靠性等。
以上实施例分别详细介绍了不同场景下的丢包率计算方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图6所示,本公开实施例的网络设备600,能实现上述实施例中获取当前传输下的业务承载类型和数据包类型中的至少一项;根据业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率方法的细节,并达到相同的效果,该网络设备600具体包括以下功能模块:
第一获取模块610,用于获取当前传输下的业务承载类型和数据包类型中的至少一项;以及
第一处理模块620,用于根据业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率。
可选地,第一处理模块620包括:
第一处理子模块,用于根据所述业务承载类型和数据包类型中的至少一项在特定时间区间内丢弃的数据包数量以及接收到的数据包数量,计算当前传输下在特定时间区间内的丢包率。
可选地,丢包率包括:特定终端的丢包率、基于服务质量级别标识QCI的丢包率、基于承载类型的丢包率、基于承载类型的发送路径的丢包率、基于承载的丢包率和基于服务质量QoS流的丢包率中的至少一项。
可选地,数据包类型包括:SDAP实体中服务数据单元SDU的数据包、SDAP实体中分组数据单元PDU的数据包、分组数据汇聚协议PDCP实体中 SDU的数据包、PDCP实体中PDU的数据包、无线链路控制RLC实体中SDU的数据包、RLC实体中PDU的数据包、媒体接入控制MAC实体中SDU的数据包和MAC实体中PDU的数据包中的至少一项。
可选地,第一处理子模块包括:
第一处理单元,用于当当前传输为下行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下未开始空口传输前丢弃的下行数据包的数量和接收到的数据包的数量,计算特定时间区间内的下行数据丢包率;
或者,
第二处理单元,用于当当前传输为上行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下当前协议实体递交到高层协议实体中缺失的数据包的数量和总的数据包的数量,计算特定时间区间内的上行数据包丢包率;
或者,
第三处理单元,用于当当前传输为下行空口传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下在空口传输了但未接收到传输成功确认信息的下行数据包的数量以及在空口传输了且接收到传输成功确认信息的下行数据包的数量,计算特定时间区间内的下行空口数据丢包率。其中,值得指出的是,第一处理子模块中的多个单元可以是分离设置的,亦可以是合并设置的。
可选地,传输成功确认信息包括:混合自动重传请求HARQ确认信息、RLC确认信息和分组数据汇聚协议PDCP确认信息中的至少一项。
可选地,当当前传输为下行传输时,第一处理模块620还包括:
第一接收子模块,用于接收终端根据特定时间区间内不同业务承载类型或不同数据包类型计算得到并发送的下行数据丢包率。
可选地,第一接收子模块包括:
第一接收单元,用于接收终端根据特定时间区间内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量和总的数据包的数量计算得到并发送的特定时间区间内的下行数据丢包率。
可选地,当前协议实体为:SDAP实体、PDCP实体、RLC实体或MAC 实体。
可选地,缺失的数据包的数量根据当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定;总的数据包的数量根据当前协议实体中数据包的序列号确定。
可选地,第一处理模块620还包括:
第一发送子模块,用于向终端发送与下行数据丢包率相关的配置信息;
其中,配置信息包括:测量量标识、测量对象标识和触发上报配置中的至少一项。
可选地,测量量标识包括:下行数据丢包率测量量标识。
可选地,测量对象标识包括:无线承载RB标识、服务质量QoS流标识、分离split承载的路径标识、复制承载的路径标识、小区群组标识和业务承载类型标识中的至少一项。
可选地,触发上报配置包括:周期性上报的配置、下行数据丢包率超过第一门限值上报的配置、下行数据丢包率低于第二门限值上报的配置、下行数据丢包率超过第三门限值后周期性上报的配置和下行数据丢包率低于第四门限值后周期性上报的配置中的至少一项。可选地,触发上报配置中的各配置包括:下行数据丢包率的计算时间窗口、下行数据丢包率的上报周期和下行数据丢包率的丢包率门限值中的至少一项。
值得指出的是,本公开实施例的网络设备,获取当前传输下的业务承载类型和数据包类型中的至少一项,根据业务承载类型和数据包类型中的至少一项确定当前传输下的丢包率,能够适用于5G系统中的各种应用场景,从而保证5G系统中网络设备根据精确的丢包率为下一传输配置优化的传输资源及传输方式,如将数据包在更好的传输路径上进行发送,或更改无线资源配置以降低丢包率,从而提高数据包发送的可靠性等。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的丢包率计算方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的丢包率计 算方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图7所示,该网络设备700包括:天线71、射频装置72、基带装置73。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络设备执行的方法可以在基带装置73中实现,该基带装置73包括处理器74和存储器75。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器74,与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置73还可以包括网络接口76,用于与射频装置72交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器75可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、 双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DRRAM)。本公开描述的存储器75旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器75上并可在处理器74上运行的计算机程序,处理器74调用存储器75中的计算机程序执行图6所示各模块执行的方法。
具体地,计算机程序被处理器74调用时可用于执行:获取当前传输下的业务承载类型和数据包类型中的至少一项;
根据业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率。
具体地,计算机程序被处理器74调用时可用于执行:根据所述业务承载类型和数据包类型中的至少一项在特定时间区间内丢弃的数据包数量以及接收到的数据包数量,计算当前传输下在特定时间区间内的丢包率。
可选地,丢包率包括:特定终端的丢包率、基于服务质量级别标识QCI的丢包率、基于承载类型的丢包率、基于承载类型的发送路径的丢包率、基于承载的丢包率和基于服务质量QoS流的丢包率中的至少一项。
可选地,数据包类型包括:SDAP实体中服务数据单元SDU的数据包、SDAP实体中分组数据单元PDU的数据包、分组数据汇聚协议PDCP实体中SDU的数据包、PDCP实体中PDU的数据包、无线链路控制RLC实体中SDU的数据包、RLC实体中PDU的数据包、媒体接入控制MAC实体中SDU的数据包和MAC实体中PDU的数据包中的至少一项。
具体地,计算机程序被处理器74调用时可用于执行:当当前传输为下行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下未开始空口传输前丢弃的下行数据包的数量和接收到的数据包的数量,计算特定时间区间内的下行数据丢包率;
当当前传输为上行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下当前协议实体递交到高层协议实体中缺失的数据包的数量和 总的数据包的数量,计算特定时间区间内的上行数据包丢包率。
当当前传输为下行空口传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下在空口传输了但未接收到传输成功确认信息的下行数据包的数量以及在空口传输了且接收到传输成功确认信息的下行数据包的数量,计算特定时间区间内的下行空口数据丢包率。
可选地,传输成功确认信息包括:混合自动重传请求HARQ确认信息、RLC确认信息和分组数据汇聚协议PDCP确认信息中的至少一项。
当当前传输为下行传输时,计算机程序被处理器74调用时可用于执行:接收终端根据特定时间区间内不同业务承载类型或不同数据包类型计算得到并发送的下行数据丢包率。
具体地,计算机程序被处理器74调用时可用于执行:接收终端根据特定时间区间内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量和总的数据包的数量计算得到并发送的特定时间区间内的下行数据丢包率。
具体地,当前协议实体为:SDAP实体、PDCP实体、RLC实体或MAC实体中的一项。
具体地,缺失的数据包的数量根据当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定;总的数据包的数量根据当前协议实体中数据包的序列号确定。
具体地,计算机程序被处理器74调用时可用于执行:向终端发送与下行数据丢包率相关的配置信息;
其中,配置信息包括:测量量标识、测量对象标识和触发上报配置中的至少一项。
具体地,测量量标识包括:下行数据丢包率测量量标识。
具体地,测量对象标识包括:无线承载RB标识、服务质量QoS流标识、分离split承载的路径标识、复制承载的路径标识、小区群组标识和业务承载类型标识中的至少一项。
具体地,触发上报配置包括:周期性上报的配置、下行数据丢包率超过第一门限值上报的配置、下行数据丢包率低于第二门限值上报的配置、下行 数据丢包率超过第三门限值后周期性上报的配置和下行数据丢包率低于第四门限值后周期性上报的配置中的至少一项。可选地,触发上报配置中的各配置包括:下行数据丢包率的计算时间窗口、下行数据丢包率的上报周期和下行数据丢包率的丢包率门限值中的至少一项。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
本公开实施例中的网络设备,通过获取当前传输下的业务承载类型和数据包类型中的至少一项,根据业务承载类型和数据包类型中的至少一项确定当前传输下的丢包率,能够适用于5G系统中的各种应用场景,从而保证5G系统中网络设备根据精确的丢包率为下一传输配置优化的传输资源及传输方式,如将数据包在更好的传输路径上进行发送,或更改无线资源配置以降低丢包率,从而提高数据包发送的可靠性等。
以上实施例从网络设备侧介绍了本公开的丢包率计算方法,下面本实施例将结合附图对终端侧的丢包率计算方法做进一步介绍。
如图8所示,本公开实施例的丢包率计算方法,应用于终端,具体包括步骤81至83。
步骤81:接收网络设备发送的用于计算下行数据丢包率的业务承载类型和数据包类型中的至少一项。
这里是说终端根据网络设备的指示,确定业务承载类型和数据包类型。其中,业务承载类型为当前数据传输所属的承载类型,数据包类型为当前数据传输所属实体层的数据包类型。具体地,业务承载类型包括:MCG承载、SCG承载、split承载的MCG分支、split承载的SCG分支以及复制承载中的一项。进一步地,数据包类型用于指示不同实体层中的数据包,具体包括:业务数据适配协议SDAP实体中服务数据单元SDU的数据包、SDAP实体中 分组数据单元PDU的数据包、分组数据汇聚协议PDCP实体中SDU的数据包(可用于没有SDAP实体的网络实体)、PDCP实体中PDU的数据包(可用于没有SDAP实体的网络实体)、无线链路控制RLC实体中SDU的数据包(可用于split承载没有PDCP实体的网络实体)、RLC实体中PDU的数据包(可用于split承载没有PDCP实体的网络实体)、媒体接入控制MAC实体中SDU的数据包(可用于split承载没有RLC实体的网络实体)和MAC实体中PDU的数据包(可用于split承载没有RLC实体的网络实体)中的至少一项。
步骤82:根据业务承载类型和数据包类型中的至少一项,计算下行数据丢包率。
这里指的是,终端可基于业务承载类型确定当前传输的丢包率,还可基于数据包类型确定当前传输的丢包率,还可基于数据包类型确定当前传输下不同业务承载类型下的丢包率。可选地,这里所说的丢包率包括:特定终端的丢包率、基于服务质量级别标识QCI的丢包率、基于承载类型的丢包率、基于承载类型的发送路径的丢包率、基于承载的丢包率和基于服务质量QoS流的丢包率中的至少一项。
步骤83:将下行数据丢包率发送至网络设备。
终端在计算得到下行数据丢包率后,将该下行数据丢包率发送至网络设备,以使网络设备进行下一次传输的传输资源配置和传输方式配置,以优化网络。
可选地,步骤82具体为:根据特定时间区间内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量和总的数据包的数量,计算特定时间区间内的下行数据丢包率。
其中,当前协议实体指的是5G系统中各协议层中的某一层的实体,具体地,当前协议实体为:SDAP实体、PDCP实体、RLC实体或MAC实体。高层协议实体指的是较当前协议实体更高层的实体。
具体地,终端可参照公式
Figure PCTCN2018104959-appb-000005
计算特定时间区间内的下行数据丢包率并上报至网络设备。
其中,其中,M(T,qci)表示在特定时间区间T内的下行数据丢包率; Ddisc(T,qci)表示时间区间T内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量;N(T,qci)表示特定时间区间T内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体的总的数据包的数量。
进一步地,特定时间区间内从当前协议实体递交到高层协议实体时缺失的数据包的数量,根据当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定。即Ddisc(T,qci)可通过当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定,具体地,可通过统计当前协议实体在特定时间区间T内递交到高层协议实体的总的数据包中丢失的序列号确定,如“递交到高层协议实体的总的数据包”的编号范围为[1,10],其中SN编号为5和6的序列号丢失,则判断“缺失的数据包”数量为2。
进一步地,特定时间区间内从当前协议实体递交到高层协议实体的总的数据包的数量,根据当前协议实体中数据包的序列号确定。即N(T,qci)可通过当前协议实体中数据包的序列号确定,具体地,可通过统计当前协议实体的数据包序列号确定,如起始SN号1,最后SN号10,则总的数据包的数量为10。
进一步地,在步骤83之前,该方法还包括:接收网络设备发送的与下行数据丢包率相关的配置信息。其中,配置信息包括:测量量标识、测量对象标识和触发上报配置中的至少一项。
可选地,上述测量量标识包括下行数据丢包率测量量标识。
上述测量对象标识包括:无线承载(Radio Bearer,RB)标识、服务质量QoS流标识、分离split承载的路径标识(如该承载对应路径的逻辑信道标识或小区组标识)、复制承载的路径标识(如该承载对应路径的逻辑信道标识)、小区群组标识(如MCG或SCG)和业务承载类型标识(如MCG承载、SCG承载、split承载或复制承载)中的至少一项。
其中,触发上报配置用于指示终端在满足何种条件时在何时上报。具体地,触发上报配置包括:周期性上报的配置、下行数据丢包率超过第一门限值上报的配置、下行数据丢包率低于第二门限值上报的配置、下行数据丢包 率超过第三门限值后周期性上报的配置和下行数据丢包率低于第四门限值后周期性上报的配置中的至少一项。其中,值得指出的是,第一门限值、第二门限值、第三门限值和第四门限值的具体取值可根据实际需要而定,且一般地,第一门限值大于第二门限值,第三门限值大于第四门限值。
可选地,触发上报配置中的各配置包括下行数据丢包率的计算时间窗口、下行数据丢包率的上报周期和下行数据丢包率的丢包率门限值中的至少一项,其中,下行数据丢包率的计算时间窗口为上述特定时间区间,其长度可根据实际需要进行设定,如设定为10ms,进一步地,该计算时间窗口的大小还可由协议预先定义。下行数据丢包率的门限值可指示各触发上报配置中的门限值,门限值具体为比例,如10%。下行数据丢包率的上报周期可指示各触发上报配置中的周期性上报的时间周期,如50ms。
具体地,由于触发上报配置用于触发终端的上报行为,当触发上报配置指示的上报条件不同时,终端的上报时机不同。下面本实施例将结合不同触发上报配置介绍终端的上报机制。
具体地,当触发上报配置包括周期性上报的配置时,步骤83为:按照配置信息中配置的周期,将下行数据丢包率发送至网络设备。例如网络设备指示终端周期性上报的周期为10ms,那么终端按照10ms的周期向网络设备发送自己计算得到的下行数据丢包率。
具体地,当触发上报配置包括下行数据丢包率超过第一门限值上报的配置时,步骤83为:根据配置信息进行测量,在测量到下行数据丢包率超过第一门限值时,将下行数据丢包率发送至网络设备。例如,网络设备指示下行数据丢包率高于10%时触发上报,那么终端在确定下行数据丢包率高于10%时,向网络设备发送下行数据丢包率,在确定下行数据丢包率低于10%时,不做上报处理。
具体地,当触发上报配置包括下行数据丢包率低于第二门限值上报的配置时,步骤83为:根据配置信息进行测量,在测量到下行数据丢包率低于第二门限值时,将下行数据丢包率发送至网络设备。例如,网络设备指示下行数据丢包率低于5%时触发上报,那么终端在确定下行数据丢包率低于5%时,向网络设备发送下行数据丢包率,在确定下行数据丢包率高于5%时,不做上 报处理。
其中,值得指出的时,若网络设备同时指示了下行数据丢包率低于5%和下行数据丢包率高于10%时触发上报,那么终端在确定下行数据丢包率低于5%或确定下行数据丢包率高于10%时,向网络设备发送下行数据丢包率,在确定下行数据丢包率高于5%且低于10%时,不做上报处理。
具体地,当触发上报配置包括下行数据丢包率超过第三门限值后周期性上报的配置时,步骤83为:根据配置信息进行测量,在测量到下行数据丢包率超过第三门限值时,按照配置信息中配置的周期,将下行数据丢包率发送至网络设备。例如,网络设备指示下行数据丢包率高于10%时按照10ms为周期进行上报,那么终端在确定下行数据丢包率高于10%时,按照10ms为周期向网络设备发送下行数据丢包率,在确定下行数据丢包率低于10%时,不做上报处理。
具体地,当触发上报配置包括下行数据丢包率低于第四门限值后周期性上报的配置时,步骤83为:根据配置信息进行测量,在测量到下行数据丢包率低于第四门限值时,按照配置信息中配置的周期,将下行数据丢包率发送至网络设备。例如,网络设备指示下行数据丢包率低于5%时按照10ms为周期进行上报,那么终端在确定下行数据丢包率低于5%时,按照10ms的周期向网络设备发送下行数据丢包率,在确定下行数据丢包率高于5%时,不做上报处理。
其中,值得指出的时,若网络设备同时指示了下行数据丢包率低于5%和下行数据丢包率高于10%时按照10ms为周期进行上报,那么终端在确定下行数据丢包率低于5%或确定下行数据丢包率高于10%时,按照10ms为周期向网络设备发送下行数据丢包率,在确定下行数据丢包率高于5%且低于10%时,不做上报处理。其中,值得指出的是,上述触发上报配置中不同的上报配置只要不发生上报冲突均可进行任意组合。
本公开实施例的丢包率计算方法中,终端接收网络设备发送的业务承载类型和数据包类型中的至少一项,从而根据业务承载类型和数据包类型中的至少一项计算丢包率,可适用于5G系统中的各种应用场景,从而保证计算得到5G系统中精确的丢包率,进而将该丢包率发送至网络设备,以使得网 络设备为下一传输配置优化的传输资源及传输方式,如将数据包在更好的传输路径上进行发送,或更改无线资源配置以降低丢包率,从而提高数据包发送的可靠性等。
以上实施例介绍了不同场景下的丢包率计算方法,下面将结合附图对与其对应的终端做进一步介绍。
如图9所示,本公开实施例的终端900,能实现上述实施例中接收网络设备发送的用于计算下行数据丢包率的业务承载类型和数据包类型中的至少一项;根据业务承载类型和数据包类型中的至少一项,计算下行数据丢包率;将下行数据丢包率发送至网络设备方法的细节,并达到相同的效果,该终端900具体包括以下功能模块:
第一接收模块910,用于接收网络设备发送的用于计算下行数据丢包率的业务承载类型和数据包类型中的至少一项;
计算模块920,用于根据业务承载类型和数据包类型中的至少一项,计算下行数据丢包率;以及
第一发送模块930,用于将下行数据丢包率发送至网络设备。
可选地,计算模块920包括:
计算子模块,用于根据特定时间区间内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量和总的数据包的数量,计算特定时间区间内的下行数据丢包率。
可选地,丢包率包括:特定终端的丢包率、基于服务质量级别标识QCI的丢包率、基于承载类型的丢包率、基于承载类型的发送路径的丢包率、基于承载的丢包率和基于服务质量QoS流的丢包率中的至少一项。
可选地,数据包类型包括:业务数据适配协议SDAP实体中服务数据单元SDU的数据包、SDAP实体中分组数据单元PDU的数据包、分组数据汇聚协议PDCP实体中SDU的数据包、PDCP实体中PDU的数据包、无线链路控制RLC实体中SDU的数据包、RLC实体中PDU的数据包、媒体接入控制MAC实体中SDU的数据包和MAC实体中PDU的数据包中的至少一项。
可选地,终端900还包括:
第二接收模块,用于接收网络设备发送的与下行数据丢包率相关的配置 信息;
其中,配置信息包括:测量量标识、测量对象标识和触发上报配置中的至少一项。
可选地,触发上报配置包括:周期性上报的配置、下行数据丢包率超过第一门限值上报的配置、下行数据丢包率低于第二门限值上报的配置、下行数据丢包率超过第三门限值后周期性上报的配置和下行数据丢包率低于第四门限值后周期性上报的配置中的至少一项。
可选地,第一发送模块930包括:
第一发送子模块,用于当触发上报配置包括周期性上报的配置时,按照配置信息中配置的周期,将下行数据丢包率发送至网络设备;
或者,
第二发送子模块,用于当触发上报配置包括下行数据丢包率超过第一门限值上报的配置时,根据配置信息进行测量,在测量到下行数据丢包率超过第一门限值时,将下行数据丢包率发送至网络设备;
或者,
第三发送子模块,用于当触发上报配置包括下行数据丢包率低于第二门限值上报的配置时,根据配置信息进行测量,在测量到下行数据丢包率低于第二门限值时,将下行数据丢包率发送至网络设备;
或者,
第四发送子模块,用于当触发上报配置包括下行数据丢包率超过第三门限值后周期性上报的配置时,根据配置信息进行测量,在测量到下行数据丢包率超过第三门限值时,按照配置信息中配置的周期,将下行数据丢包率发送至网络设备;
或者,
第五发送子模块,用于当触发上报配置包括下行数据丢包率低于第四门限值后周期性上报的配置时,根据配置信息进行测量,在测量到下行数据丢包率低于第四门限值时,按照配置信息中配置的周期,将下行数据丢包率发送至网络设备。其中值得指出的是,第一发送模块中的多个子模块可以是分离设置的,亦可以是合并设置的。
值得指出的是,本公开实施例的终端接收网络设备发送的业务承载类型和数据包类型中的至少一项,从而根据业务承载类型和数据包类型中的至少一项计算丢包率,可适用于5G系统中的各种应用场景,从而保证计算得到5G系统中精确的丢包率,进而将该丢包率发送至网络设备,以使得网络设备为下一传输配置优化的传输资源及传输方式,如将数据包在更好的传输路径上进行发送,或更改无线资源配置以降低丢包率,从而提高数据包发送的可靠性等。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital signal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
为了更好的实现上述目的,进一步地,图10为实现本公开各个实施例的一种终端的硬件结构示意图,该终端100包括但不限于:射频单元101、网 络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器1010、以及电源1011等部件。本领域技术人员可以理解,图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元101,用于接收网络设备发送的用于计算下行数据丢包率的业务承载类型和数据包类型中的至少一项;
处理器1010,用于根据业务承载类型和数据包类型中的至少一项,计算下行数据丢包率;并控制射频单元101将下行数据丢包率发送至网络设备。
本公开实施例的终端接收网络设备发送的业务承载类型和数据包类型中的至少一项,从而根据业务承载类型和数据包类型中的至少一项计算丢包率,可适用于5G系统中的各种应用场景,从而保证计算得到5G系统中精确的丢包率,进而将该丢包率发送至网络设备,以使得网络设备为下一传输配置优化的传输资源及传输方式,如将数据包在更好的传输路径上进行发送,或更改无线资源配置以降低丢包率,从而提高数据包发送的可靠性等。
应理解的是,本公开实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处 理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
终端100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送 给处理器1010,接收处理器1010发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器1010以确定触摸事件的类型,随后处理器1010根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图10中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与终端100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端100内的一个或多个元件或者可以用于在终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1010是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1010可包括一个或多个处理单元。可选地,处理器 1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
终端100还可以包括给各个部件供电的电源1011(比如电池)。可选地,电源1011可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端100包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种终端,包括处理器1010,存储器109,存储在存储器109上并可在所述处理器1010上运行的计算机程序,该计算机程序被处理器1010执行时实现上述丢包率计算方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述丢包率计算方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简 称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网 络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (45)

  1. 一种丢包率计算方法,应用于网络设备侧,包括:
    获取当前传输下的业务承载类型和数据包类型中的至少一项;以及
    根据所述业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率。
  2. 根据权利要求1所述的丢包率计算方法,其中,所述根据所述业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率的步骤,包括:
    根据所述业务承载类型和数据包类型中的至少一项在特定时间区间内丢弃的数据包数量以及接收到的数据包数量,计算当前传输下在特定时间区间内的丢包率。
  3. 根据权利要求1或2所述的丢包率计算方法,其中,所述丢包率包括:特定终端的丢包率、基于服务质量级别标识QCI的丢包率、基于承载类型的丢包率、基于承载类型的发送路径的丢包率、基于承载的丢包率和基于服务质量QoS流的丢包率中的至少一项。
  4. 根据权利要求1或2所述的丢包率计算方法,其中,所述数据包类型包括:业务数据适配协议SDAP实体中服务数据单元SDU的数据包、SDAP实体中分组数据单元PDU的数据包、分组数据汇聚协议PDCP实体中SDU的数据包、PDCP实体中PDU的数据包、无线链路控制RLC实体中SDU的数据包、RLC实体中PDU的数据包、媒体接入控制MAC实体中SDU的数据包和MAC实体中PDU的数据包中的至少一项。
  5. 根据权利要求2所述的丢包率计算方法,其中,所述根据所述业务承载类型和数据包类型中的至少一项在特定时间区间内丢弃的数据包数量以及接收到的数据包数量,计算当前传输下在特定时间区间内的丢包率的步骤,包括:
    当当前传输为下行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下未开始空口传输前丢弃的下行数据包的数量和接收到的数据包的数量,计算特定时间区间内的下行数据丢包率;
    或者,
    当当前传输为上行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下当前协议实体递交到高层协议实体中缺失的数据包的数量和总的数据包的数量,计算特定时间区间内的上行数据包丢包率;
    或者,
    当当前传输为下行空口传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下在空口传输了但未接收到传输成功确认信息的下行数据包的数量以及在空口传输了且接收到传输成功确认信息的下行数据包的数量,计算特定时间区间内的下行空口数据丢包率。
  6. 根据权利要求5所述的丢包率计算方法,其中,所述传输成功确认信息包括:混合自动重传请求HARQ确认信息、RLC确认信息和分组数据汇聚协议PDCP确认信息中的至少一项。
  7. 根据权利要求1所述的丢包率计算方法,其中,当当前传输为下行传输时,所述根据所述业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率的步骤,包括:
    接收终端根据特定时间区间内不同业务承载类型或不同数据包类型计算得到并发送的下行数据丢包率。
  8. 根据权利要求7所述的丢包率计算方法,其中,所述接收终端根据特定时间区间内不同业务承载类型或不同数据包类型计算得到并发送的下行数据丢包率的步骤,包括:
    接收终端根据特定时间区间内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量和总的数据包的数量计算得到并发送的特定时间区间内的下行数据丢包率。
  9. 根据权利要求5或8所述的丢包率计算方法,其中,当前协议实体为:SDAP实体、PDCP实体、RLC实体或MAC实体。
  10. 根据权利要求5或8所述的丢包率计算方法,其中,所述缺失的数据包的数量根据当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定;所述总的数据包的数量根据当前协议实体中数据包的序列号确定。
  11. 根据权利要求7所述的丢包率计算方法,其中,在所述接收终端根 据特定时间区间内不同业务承载类型或不同数据包类型计算得到并发送的下行数据丢包率的步骤之前,还包括:
    向所述终端发送与所述下行数据丢包率相关的配置信息;
    其中,所述配置信息包括:测量量标识、测量对象标识和触发上报配置中的至少一项。
  12. 根据权利要求11所述的丢包率计算方法,其中,所述测量量标识包括:下行数据丢包率测量量标识。
  13. 根据权利要求11所述的丢包率计算方法,其中,所述测量对象标识包括:无线承载RB标识、服务质量QoS流标识、分离(split)承载的路径标识、复制承载的路径标识、小区群组标识和业务承载类型标识中的至少一项。
  14. 根据权利要求11所述的丢包率计算方法,其中,所述触发上报配置包括:周期性上报的配置、下行数据丢包率超过第一门限值上报的配置、下行数据丢包率低于第二门限值上报的配置、下行数据丢包率超过第三门限值后周期性上报的配置和下行数据丢包率低于第四门限值后周期性上报的配置中的至少一项;其中,所述触发上报配置中的各配置包括:下行数据丢包率的计算时间窗口、下行数据丢包率的上报周期和下行数据丢包率的丢包率门限值中的至少一项。
  15. 一种网络设备,包括:
    第一获取模块,用于获取当前传输下的业务承载类型和数据包类型中的至少一项;以及
    第一处理模块,用于根据所述业务承载类型和数据包类型中的至少一项,确定当前传输下的丢包率。
  16. 根据权利要求15所述的网络设备,其中,所述第一处理模块包括:
    第一处理子模块,用于根据所述业务承载类型和数据包类型中的至少一项在特定时间区间内丢弃的数据包数量以及接收到的数据包数量,计算当前传输下在特定时间区间内的丢包率。
  17. 根据权利要求15或16所述的网络设备,其中,所述丢包率包括:特定终端的丢包率、基于服务质量级别标识QCI的丢包率、基于承载类型的丢包率、基于承载类型的发送路径的丢包率、基于承载的丢包率和基于服务 质量QoS流的丢包率中的至少一项。
  18. 根据权利要求15或16所述的网络设备,其中,所述数据包类型包括:SDAP实体中服务数据单元SDU的数据包、SDAP实体中分组数据单元PDU的数据包、分组数据汇聚协议PDCP实体中SDU的数据包、PDCP实体中PDU的数据包、无线链路控制RLC实体中SDU的数据包、RLC实体中PDU的数据包、媒体接入控制MAC实体中SDU的数据包和MAC实体中PDU的数据包中的至少一项。
  19. 根据权利要求16所述的网络设备,其中,所述第一处理子模块包括:
    第一处理单元,用于当当前传输为下行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下未开始空口传输前丢弃的下行数据包的数量和接收到的数据包的数量,计算特定时间区间内的下行数据丢包率;
    或者,
    第二处理单元,用于当当前传输为上行传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下当前协议实体递交到高层协议实体中缺失的数据包的数量和总的数据包的数量,计算特定时间区间内的上行数据包丢包率;
    或者,
    第三处理单元,用于当当前传输为下行空口传输时,根据特定时间区间内不同业务承载类型或不同数据包类型下在空口传输了但未接收到传输成功确认信息的下行数据包的数量以及在空口传输了且接收到传输成功确认信息的下行数据包的数量,计算特定时间区间内的下行空口数据丢包率。
  20. 根据权利要求19所述的网络设备,其中,所述传输成功确认信息包括:混合自动重传请求HARQ确认信息、RLC确认信息和分组数据汇聚协议PDCP确认信息中的至少一项。
  21. 根据权利要求15所述的网络设备,其中,当当前传输为下行传输时,所述第一处理模块还包括:
    第一接收子模块,用于接收终端根据特定时间区间内不同业务承载类型或不同数据包类型计算得到并发送的下行数据丢包率。
  22. 根据权利要求21所述的网络设备,其中,所述第一接收子模块包括:
    第一接收单元,用于接收终端根据特定时间区间内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量和总的数据包的数量计算得到并发送的特定时间区间内的下行数据丢包率。
  23. 根据权利要求19或22所述的网络设备,其中,当前协议实体为:SDAP实体、PDCP实体、RLC实体或MAC实体。
  24. 根据权利要求19或22所述的网络设备,其中,所述缺失的数据包的数量根据当前协议实体在特定时间区间内递交到高层协议实体的总的数据包中丢失的序列号确定;所述总的数据包的数量根据当前协议实体中数据包的序列号确定。
  25. 根据权利要求21所述的网络设备,其中,第一处理模块还包括:
    第一发送子模块,用于向所述终端发送与所述下行数据丢包率相关的配置信息;
    其中,所述配置信息包括:测量量标识、测量对象标识和触发上报配置中的至少一项。
  26. 根据权利要求25所述的网络设备,其中,所述测量量标识包括:下行数据丢包率测量量标识。
  27. 根据权利要求25所述的网络设备,其中,所述测量对象标识包括:无线承载RB标识、服务质量QoS流标识、分离split承载的路径标识、复制承载的路径标识、小区群组标识和业务承载类型标识中的至少一项。
  28. 根据权利要求25所述的网络设备,其中,所述触发上报配置包括:周期性上报的配置、下行数据丢包率超过第一门限值上报的配置、下行数据丢包率低于第二门限值上报的配置、下行数据丢包率超过第三门限值后周期性上报的配置和下行数据丢包率低于第四门限值后周期性上报的配置中的至少一项;其中,所述触发上报配置中的各配置包括:下行数据丢包率的计算时间窗口、下行数据丢包率的上报周期和下行数据丢包率的丢包率门限值中的至少一项。
  29. 一种网络设备,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的程序,所述处理器执行所述程序时实现如权利要求1至14任一项所述的丢包率计算方法的步骤。
  30. 一种丢包率计算方法,应用于终端侧,包括:
    接收网络设备发送的用于计算下行数据丢包率的业务承载类型和数据包类型中的至少一项;
    根据所述业务承载类型和数据包类型中的至少一项,计算下行数据丢包率;以及
    将所述下行数据丢包率发送至网络设备。
  31. 根据权利要求30所述的丢包率计算方法,其中,所述根据所述业务承载类型和数据包类型中的至少一项,计算下行数据丢包率的步骤,包括:
    根据特定时间区间内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量和总的数据包的数量,计算特定时间区间内的下行数据丢包率。
  32. 根据权利要求30或31所述的丢包率计算方法,其中,所述丢包率包括:特定终端的丢包率、基于服务质量级别标识QCI的丢包率、基于承载类型的丢包率、基于承载类型的发送路径的丢包率、基于承载的丢包率和基于服务质量QoS流的丢包率中的至少一项。
  33. 根据权利要求30或31所述的丢包率计算方法,其中,所述数据包类型包括:业务数据适配协议SDAP实体中服务数据单元SDU的数据包、SDAP实体中分组数据单元PDU的数据包、分组数据汇聚协议PDCP实体中SDU的数据包、PDCP实体中PDU的数据包、无线链路控制RLC实体中SDU的数据包、RLC实体中PDU的数据包、媒体接入控制MAC实体中SDU的数据包和MAC实体中PDU的数据包中的至少一项。
  34. 根据权利要求31所述的丢包率计算方法,其中,所述将所述下行数据丢包率发送至网络设备的步骤之前,还包括:
    接收所述网络设备发送的与所述下行数据丢包率相关的配置信息;
    其中,所述配置信息包括:测量量标识、测量对象标识和触发上报配置中的至少一项。
  35. 根据权利要求34所述的丢包率计算方法,其中,所述触发上报配置包括:周期性上报的配置、下行数据丢包率超过第一门限值上报的配置、下行数据丢包率低于第二门限值上报的配置、下行数据丢包率超过第三门限值 后周期性上报的配置和下行数据丢包率低于第四门限值后周期性上报的配置中的至少一项。
  36. 根据权利要求34所述的丢包率计算方法,其中,所述将所述下行数据丢包率发送至网络设备的步骤,包括:
    当所述触发上报配置包括周期性上报的配置时,按照所述配置信息中配置的周期,将所述下行数据丢包率发送至网络设备;
    或者,
    当所述触发上报配置包括下行数据丢包率超过第一门限值上报的配置时,根据所述配置信息进行测量,在测量到下行数据丢包率超过第一门限值时,将所述下行数据丢包率发送至网络设备;
    或者,
    当所述触发上报配置包括下行数据丢包率低于第二门限值上报的配置时,根据所述配置信息进行测量,在测量到下行数据丢包率低于第二门限值时,将所述下行数据丢包率发送至网络设备;
    或者,
    当所述触发上报配置包括下行数据丢包率超过第三门限值后周期性上报的配置时,根据所述配置信息进行测量,在测量到下行数据丢包率超过第三门限值时,按照所述配置信息中配置的周期,将所述下行数据丢包率发送至网络设备;
    或者,
    当所述触发上报配置包括下行数据丢包率低于第四门限值后周期性上报的配置时,根据所述配置信息进行测量,在测量到下行数据丢包率低于第四门限值时,按照所述配置信息中配置的周期,将所述下行数据丢包率发送至网络设备。
  37. 一种终端,包括:
    第一接收模块,用于接收网络设备发送的用于计算下行数据丢包率的业务承载类型和数据包类型中的至少一项;
    计算模块,用于根据所述业务承载类型和数据包类型中的至少一项,计算下行数据丢包率;以及
    第一发送模块,用于将所述下行数据丢包率发送至网络设备。
  38. 根据权利要求37所述的终端,其中,所述计算模块包括:
    计算子模块,用于根据特定时间区间内不同业务承载类型或不同数据包类型下从当前协议实体递交到高层协议实体时缺失的数据包的数量和总的数据包的数量,计算特定时间区间内的下行数据丢包率。
  39. 根据权利要求37或38所述的终端,其中,所述丢包率包括:特定终端的丢包率、基于服务质量级别标识QCI的丢包率、基于承载类型的丢包率、基于承载类型的发送路径的丢包率、基于承载的丢包率和基于服务质量QoS流的丢包率中的至少一项。
  40. 根据权利要求37或38所述的终端,其中,所述数据包类型包括:业务数据适配协议SDAP实体中服务数据单元SDU的数据包、SDAP实体中分组数据单元PDU的数据包、分组数据汇聚协议PDCP实体中SDU的数据包、PDCP实体中PDU的数据包、无线链路控制RLC实体中SDU的数据包、RLC实体中PDU的数据包、媒体接入控制MAC实体中SDU的数据包和MAC实体中PDU的数据包中的至少一项。
  41. 根据权利要求37所述的终端,还包括:
    第二接收模块,用于接收所述网络设备发送的与所述下行数据丢包率相关的配置信息;
    其中,所述配置信息包括:测量量标识、测量对象标识和触发上报配置中的至少一项。
  42. 根据权利要求41所述的终端,其中,所述触发上报配置包括:周期性上报的配置、下行数据丢包率超过第一门限值上报的配置、下行数据丢包率低于第二门限值上报的配置、下行数据丢包率超过第三门限值后周期性上报的配置和下行数据丢包率低于第四门限值后周期性上报的配置中的至少一项。
  43. 根据权利要求42所述的终端,其中,所述第一发送模块包括:
    第一发送子模块,用于当所述触发上报配置包括周期性上报的配置时,按照所述配置信息中配置的周期,将所述下行数据丢包率发送至网络设备;
    或者,
    第二发送子模块,用于当所述触发上报配置包括下行数据丢包率超过第一门限值上报的配置时,根据所述配置信息进行测量,在测量到下行数据丢包率超过第一门限值时,将所述下行数据丢包率发送至网络设备;
    或者,
    第三发送子模块,用于当所述触发上报配置包括下行数据丢包率低于第二门限值上报的配置时,根据所述配置信息进行测量,在测量到下行数据丢包率低于第二门限值时,将所述下行数据丢包率发送至网络设备;
    或者,
    第四发送子模块,用于当所述触发上报配置包括下行数据丢包率超过第三门限值后周期性上报的配置时,根据所述配置信息进行测量,在测量到下行数据丢包率超过第三门限值时,按照所述配置信息中配置的周期,将所述下行数据丢包率发送至网络设备;
    或者,
    第五发送子模块,用于当所述触发上报配置包括下行数据丢包率低于第四门限值后周期性上报的配置时,根据所述配置信息进行测量,在测量到下行数据丢包率低于第四门限值时,按照所述配置信息中配置的周期,将所述下行数据丢包率发送至网络设备。
  44. 一种终端,包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求30至36中任一项所述的丢包率计算方法的步骤。
  45. 一种计算机可读存储介质,,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至14或30至36中任一项所述的丢包率计算方法的步骤。
PCT/CN2018/104959 2017-10-27 2018-09-11 丢包率计算方法、网络设备及终端 WO2019080656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711025535.4A CN109729544B (zh) 2017-10-27 2017-10-27 丢包率计算方法、网络设备及终端
CN201711025535.4 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019080656A1 true WO2019080656A1 (zh) 2019-05-02

Family

ID=66247726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104959 WO2019080656A1 (zh) 2017-10-27 2018-09-11 丢包率计算方法、网络设备及终端

Country Status (2)

Country Link
CN (1) CN109729544B (zh)
WO (1) WO2019080656A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112153710A (zh) * 2020-09-23 2020-12-29 Oppo广东移动通信有限公司 数据传输方法、装置、电子设备及存储介质
CN112469085A (zh) * 2020-11-18 2021-03-09 杭州红岭通信息科技有限公司 5g基站f1-u接口下行流量控制方法
CN113079532A (zh) * 2021-04-07 2021-07-06 恒安嘉新(北京)科技股份公司 数据业务掉线频率分析方法、装置、设备及存储介质
CN113839830A (zh) * 2021-07-15 2021-12-24 腾讯科技(深圳)有限公司 数据包多发参数的预测方法、装置与存储介质
CN114125907A (zh) * 2020-08-28 2022-03-01 上海华为技术有限公司 一种可靠性保障方法及相关装置
CN114466397A (zh) * 2021-07-30 2022-05-10 荣耀终端有限公司 Tcp通信质量评估方法、装置及电子设备
CN114615164A (zh) * 2022-03-09 2022-06-10 网易(杭州)网络有限公司 丢包率探测方法及装置、存储介质、电子设备
CN114710814A (zh) * 2022-03-16 2022-07-05 达闼机器人股份有限公司 终端设备的控制方法、装置、系统、存储介质及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728966B (zh) * 2017-10-31 2022-05-17 维沃移动通信有限公司 数据传输量计算方法及网络设备
CN114979312B (zh) * 2022-05-27 2024-05-28 山东闻远通信技术有限公司 一种高层业务类型检测方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648058A (zh) * 2013-10-28 2014-03-19 南京邮电大学 基于信道测量的3g媒体流跨层速率控制方法
WO2015143704A1 (zh) * 2014-03-28 2015-10-01 富士通株式会社 参数测量装置、基站及通信系统
US20160028585A1 (en) * 2014-01-31 2016-01-28 Telefonaktiebolaget L M Ericsson (Publ) A Master and Second Evolved Node B and Method Performed Thereby for Modifying a Radio Resource of the SENB with Respect to a UE Currently Being Connected to the MENB

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596213B (zh) * 2012-08-17 2017-03-29 电信科学技术研究院 异构网络下的层二测量及信息交互方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648058A (zh) * 2013-10-28 2014-03-19 南京邮电大学 基于信道测量的3g媒体流跨层速率控制方法
US20160028585A1 (en) * 2014-01-31 2016-01-28 Telefonaktiebolaget L M Ericsson (Publ) A Master and Second Evolved Node B and Method Performed Thereby for Modifying a Radio Resource of the SENB with Respect to a UE Currently Being Connected to the MENB
WO2015143704A1 (zh) * 2014-03-28 2015-10-01 富士通株式会社 参数测量装置、基站及通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "UL Path Change Conditions for Split Bearer", 3GPP TSG-RAN WG2 MEETING #99, R2-1708505, 25 August 2017 (2017-08-25), pages 2, XP051318360 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125907A (zh) * 2020-08-28 2022-03-01 上海华为技术有限公司 一种可靠性保障方法及相关装置
CN112153710A (zh) * 2020-09-23 2020-12-29 Oppo广东移动通信有限公司 数据传输方法、装置、电子设备及存储介质
CN112153710B (zh) * 2020-09-23 2023-06-27 Oppo广东移动通信有限公司 数据传输方法、装置、电子设备及存储介质
CN112469085A (zh) * 2020-11-18 2021-03-09 杭州红岭通信息科技有限公司 5g基站f1-u接口下行流量控制方法
CN113079532A (zh) * 2021-04-07 2021-07-06 恒安嘉新(北京)科技股份公司 数据业务掉线频率分析方法、装置、设备及存储介质
CN113839830A (zh) * 2021-07-15 2021-12-24 腾讯科技(深圳)有限公司 数据包多发参数的预测方法、装置与存储介质
CN113839830B (zh) * 2021-07-15 2023-10-24 腾讯科技(深圳)有限公司 数据包多发参数的预测方法、装置与存储介质
CN114466397A (zh) * 2021-07-30 2022-05-10 荣耀终端有限公司 Tcp通信质量评估方法、装置及电子设备
CN114466397B (zh) * 2021-07-30 2022-12-16 荣耀终端有限公司 Tcp通信质量评估方法、装置及电子设备
CN114615164A (zh) * 2022-03-09 2022-06-10 网易(杭州)网络有限公司 丢包率探测方法及装置、存储介质、电子设备
CN114615164B (zh) * 2022-03-09 2023-12-29 网易(杭州)网络有限公司 丢包率探测方法及装置、存储介质、电子设备
CN114710814A (zh) * 2022-03-16 2022-07-05 达闼机器人股份有限公司 终端设备的控制方法、装置、系统、存储介质及电子设备

Also Published As

Publication number Publication date
CN109729544A (zh) 2019-05-07
CN109729544B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2019080656A1 (zh) 丢包率计算方法、网络设备及终端
WO2019141057A1 (zh) 上行功率控制参数配置方法、终端及网络设备
US11576066B2 (en) Method for measuring packet loss rate, method for obtaining packet loss rate, terminal, and network device
WO2019184716A1 (zh) 波束失败处理方法、终端及网络设备
WO2019174446A1 (zh) 测量方法、测量配置方法、终端及网络设备
WO2019184692A1 (zh) 波束失败处理方法、终端及网络设备
WO2019192472A1 (zh) 信道传输方法、终端及网络设备
WO2019201199A1 (zh) 波束失败检测方法、信息配置方法、终端及网络设备
WO2019095896A1 (zh) 波束失败恢复请求发送、接收方法、装置及系统
WO2019076171A1 (zh) 非授权频段下的信息传输方法、终端及网络设备
WO2019095900A1 (zh) 非对称频谱的带宽部分bwp切换方法、终端及网络设备
US11963211B2 (en) Radio resource configuration method, base station and user equipment
WO2019192473A1 (zh) 波束失败恢复方法、终端及网络设备
CN110958653A (zh) 一种双连接切换方法、终端及网络设备
WO2019134642A1 (zh) 无线链路恢复方法及终端
WO2019218910A1 (zh) 多载波系统中的波束失败恢复方法及装置
WO2020192514A1 (zh) 传输路径的选择方法、信息配置方法、终端及网络设备
WO2019076170A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
WO2019242465A1 (zh) 一种资源请求方法及用户设备
WO2019184763A1 (zh) 通信范围信息的处理方法及终端
US20210377771A1 (en) Information processing method, device, and system
WO2019062502A1 (zh) 信息传输方法、终端、网络设备及计算机可读存储介质
WO2020253744A1 (zh) 信息上报、获取方法、终端及网络侧设备
WO2019137425A1 (zh) 重配置方法、终端及基站
CN110620640B (zh) 一种数据传输方法、终端及节点设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870073

Country of ref document: EP

Kind code of ref document: A1