WO2021088032A1 - 链路质量监测方法及装置 - Google Patents

链路质量监测方法及装置 Download PDF

Info

Publication number
WO2021088032A1
WO2021088032A1 PCT/CN2019/116819 CN2019116819W WO2021088032A1 WO 2021088032 A1 WO2021088032 A1 WO 2021088032A1 CN 2019116819 W CN2019116819 W CN 2019116819W WO 2021088032 A1 WO2021088032 A1 WO 2021088032A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signals
transmission node
control resource
resource set
processor
Prior art date
Application number
PCT/CN2019/116819
Other languages
English (en)
French (fr)
Inventor
管鹏
樊波
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/116819 priority Critical patent/WO2021088032A1/zh
Publication of WO2021088032A1 publication Critical patent/WO2021088032A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for link quality monitoring.
  • network equipment and terminal equipment In high-frequency communication systems, network equipment and terminal equipment usually use directional high-gain antenna arrays to form analog beams for communication. Generally speaking, the analog beam has directivity, so the main lobe direction and the 3dB beam width can be used to describe an analog beam pattern; among them, the narrower the beam width, the greater the antenna gain.
  • network equipment and terminal equipment can send and receive signals in a specific direction. Take the following communication as an example. A network device sends a signal in a specific direction, and a terminal device receives a signal in the specific direction. When the signal sending direction and the signal receiving direction are aligned, the network device and the terminal device can realize normal communication.
  • beam training is required. For example, when the communication beam is blocked, it is necessary to switch to a new beam for communication. This process can be called beam failure recovery (BFR, or link recovery procedures).
  • BFR beam failure recovery
  • the signal used for beam failure detection can be called beam failure detection reference signal (BFD RS).
  • the configuration method of the beam failure detection signal for example, can be configured by a network device; and if the network device is not configured, it is determined by the terminal device according to the configuration information.
  • the number of beam failure detection signals determined by the terminal device according to the configuration information is often large, thereby increasing the monitoring complexity of the terminal device.
  • the present application provides a link quality detection method and device, which can reduce the monitoring complexity of terminal equipment.
  • the present application provides a link quality monitoring method, the method includes: determining M reference signals from N reference signals; wherein the quasi-co-location of the N reference signals , QCL)
  • the type D is the same, and the transmission node information corresponding to the M reference signals is the same, where N ⁇ 2, M ⁇ N, and M ⁇ quantity threshold; the M reference signals are used to monitor the quality of the wireless link.
  • the link quality monitoring method provided by this application may further include: determining M reference signals from N reference signals; wherein, the N reference signals are control resource sets (control resource set, CORESET) transmission configuration index (transmission configuration index, TCI) state includes reference signals corresponding to quasi-co-location (QCL) type D, and the transmission node information corresponding to the M reference signals is the same , Where N ⁇ 2, M ⁇ N, M ⁇ quantity threshold; the M reference signals are used to monitor the quality of the wireless link.
  • the N reference signals are control resource sets (control resource set, CORESET) transmission configuration index (transmission configuration index, TCI) state includes reference signals corresponding to quasi-co-location (QCL) type D, and the transmission node information corresponding to the M reference signals is the same , Where N ⁇ 2, M ⁇ N, M ⁇ quantity threshold; the M reference signals are used to monitor the quality of the wireless link.
  • the present application can be applied to a communication device, and the communication device may include a terminal device, or a chip in the terminal device, and so on.
  • the communication device may include a terminal device, or a chip in the terminal device, and so on.
  • the following will take terminal equipment as an example.
  • the terminal device can determine M reference signals from the N reference signals, thereby using the M reference signals to monitor the link quality, avoiding the realization of the terminal device by monitoring the link quality through the N reference signals.
  • the problem of high complexity not only reduces the monitoring complexity of the terminal equipment; but also monitors the link quality through a smaller number (ie, M) of reference signals, which also effectively reduces the power loss of the terminal equipment.
  • the transmission node information is used to indicate the identity of the transmission node.
  • the identifier is configured by the network device through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the transmission node information is included in a control resource set, the control resource set is obtained according to configuration information, and the configuration information is configured by the network device.
  • control resource set may include transmission node information, and different control resource sets may include the same transmission node information, or may also include different transmission node information, etc.
  • the embodiment of this application is for control resources
  • the correspondence between the set and the transmission node information is not limited.
  • the control resource set includes transmission node information, which can also be understood as the configuration of the control resource set includes transmission node information.
  • the following takes the transmission node information included in the control resource set as an example for description, but it should not be understood as a limitation of the present application.
  • the determining M reference signals from the N reference signals includes: determining M1 reference signals corresponding to the first transmission node from the N reference signals; when M1>M, The M reference signals are determined from the M1 reference signals according to the period size of the search space associated with the control resource set corresponding to the first transmission node.
  • the N reference signals may come from different control resource sets, and the transmission node information included in each control resource set in the different control resource sets may be different. Therefore, the transmission in different control resource sets The identification of the transmission node indicated by the node information may be different.
  • a communication device such as a terminal device can determine a transmission node, such as a first transmission node, and then determine M reference signals according to the period size of the search space associated with the control resource set corresponding to the first transmission node.
  • the first transmission node is the transmission node information corresponding to the M reference signals, that is, the transmission node information corresponding to the M1 reference signals is the same, and the transmission node information corresponding to the M1 reference signals is the same as the transmission node information corresponding to the M reference signals.
  • the transmission node information corresponding to the signal is the same.
  • the first transmission node includes a transmission node that serves the terminal device when the terminal device is initially accessed; or, the first transmission node includes the terminal device configured by the network device to return When returning to a single transmission node, the transmission node serving the terminal device.
  • the first transmission node is a node that transmits important system messages, and the terminal device maintains a connection with the first transmission node, which can help improve the stability of signal transmission.
  • the terminal device is not configured with a reference signal used to monitor the quality of the wireless link.
  • the method further includes: initiating a beam failure recovery procedure when the quality of the wireless link is lower than a threshold value.
  • the method further includes: determining a target period according to the periods corresponding to the M reference signals; wherein the target period is a period for reporting indication information, and the indication information is used to indicate The quality of the wireless link is lower than the threshold, and one reference signal corresponds to one cycle.
  • the target period satisfies the following conditions:
  • T2 min ⁇ T2 1 ,T2 2 ,..., T2 M ⁇
  • the T1 is the absolute time
  • the T2 M is the period of the M-th reference signal.
  • the present application provides a link quality monitoring method, the method includes: determining M reference signals from N reference signals; wherein the quasi co-location types D of the N reference signals are the same, and all The transmission node information corresponding to each of the M reference signals is different, where N ⁇ 2, M ⁇ N, and M ⁇ quantity threshold; the M reference signals are used to monitor the quality of the wireless link.
  • the link quality monitoring method provided in this application may further include: determining M reference signals from N reference signals; wherein, the N reference signals are the resource control set CORESET transmission
  • the configuration number TCI state includes the reference signal corresponding to the quasi co-located QCL type D, and the transmission node information corresponding to each reference signal in the M reference signals is different, where N ⁇ 2, M ⁇ N, M ⁇ quantity threshold ; Use the M reference signals to monitor the quality of the wireless link.
  • the transmission node information is used to indicate the identity of the transmission node.
  • the identifier is configured by the network device through radio resource control RRC signaling.
  • the transmission node information is included in a control resource set, the control resource set is obtained according to configuration information, and the configuration information is configured by the network device.
  • the determining M reference signals from the N reference signals includes: determining M1 reference signals corresponding to the first transmission node from the N reference signals, and the first transmission node Is any one of the transmission nodes in the transmission node information corresponding to the control resource set; when M1>1, according to the period size of the search space associated with the control resource set corresponding to the first transmission node from the M1 reference signals To determine one of the M reference signals.
  • the terminal device is not configured with a reference signal used to monitor the quality of the wireless link.
  • the method further includes: initiating a beam failure recovery procedure when the quality of the wireless link is lower than a threshold value.
  • the method further includes: determining a target period according to the periods corresponding to the M reference signals; wherein the target period is a period for reporting indication information, and the indication information is used to indicate The quality of the wireless link is lower than the threshold, and one reference signal corresponds to one cycle.
  • the target period satisfies the following conditions:
  • T2 min ⁇ T2 1 ,T2 2 ,..., T2 M ⁇
  • the T1 is the absolute time
  • the T2 M is the period of the M-th reference signal.
  • the present application provides a communication device, the device includes: a processing unit, configured to determine M reference signals from N reference signals; wherein, the quasi co-location types D of the N reference signals are the same, And the transmission node information corresponding to the M reference signals is the same, where N ⁇ 2, M ⁇ N, and M ⁇ a number threshold; the processing unit is further configured to use the M reference signals to monitor the quality of the wireless link.
  • the processing unit is configured to determine M reference signals from N reference signals; wherein, the N reference signals are control resource set (control resource set, CORESET) transmission configuration numbers (transmission configuration numbers).
  • the configuration index (TCI) state includes reference signals corresponding to quasi-co-location (QCL) type D, and the transmission node information corresponding to the M reference signals is the same, where N ⁇ 2, M ⁇ N , M ⁇ quantity threshold; and also used to monitor the quality of the wireless link by using the M reference signals.
  • the transmission node information is used to indicate the identity of the transmission node.
  • the identifier is configured by the network device through radio resource control RRC signaling.
  • the transmission node information is included in a control resource set, the control resource set is obtained according to configuration information, and the configuration information is configured by the network device.
  • the processing unit is specifically configured to determine M1 reference signals corresponding to the first transmission node from the N reference signals; and when M1>M, according to the first transmission
  • the period size of the search space associated with the control resource set corresponding to the node determines the M reference signals from the M1 reference signals.
  • the first transmission node includes a transmission node that serves the communication device when the communication device is initially accessed; or, the first transmission node includes the terminal configured by a network device When the device falls back to a single transmission node, the transmission node serving the communication device.
  • the communication device is not configured with a reference signal for monitoring the quality of the wireless link.
  • the device further includes: a transceiver unit, configured to initiate a beam failure recovery process when the quality of the wireless link is lower than a threshold value.
  • the processing unit is further configured to determine a target period according to the periods corresponding to the M reference signals; wherein, the target period is a period for reporting indication information, and the indication information is used for Indicate that the quality of the wireless link is lower than the threshold value, and one reference signal corresponds to one period.
  • the target period satisfies the following conditions:
  • T2 min ⁇ T2 1 ,T2 2 ,..., T2 M ⁇
  • the T1 is the absolute time
  • the T2 M is the period of the M-th reference signal.
  • the present application provides a communication device, the device includes: a processing unit configured to determine M reference signals from N reference signals; wherein, the quasi co-location types D of the N reference signals are the same, And the transmission node information corresponding to each of the M reference signals is different, where N ⁇ 2, M ⁇ N, and M ⁇ the number threshold; the processing unit is further configured to use the M reference signals to monitor Wireless link quality.
  • the processing unit is configured to determine M reference signals from the N reference signals; wherein, the N reference signals are the quasi co-located QCL included in the resource control set CORESET transmission configuration number TCI state
  • the reference signal corresponding to type D, and the transmission node information corresponding to each of the M reference signals is different, where N ⁇ 2, M ⁇ N, and M ⁇ the number threshold; it is also used to use the M reference signals
  • the signal monitors the quality of the wireless link.
  • the transmission node information is used to indicate the identity of the transmission node.
  • the identifier is configured by the network device through radio resource control RRC signaling.
  • the transmission node information is included in a control resource set, the control resource set is obtained according to configuration information, and the configuration information is configured by the network device.
  • the processing unit is further configured to determine M1 reference signals corresponding to the first transmission node from the N reference signals, and the first transmission node corresponds to the control resource set Any one of the transmission nodes in the transmission node information; and when M1>1, determine the M from the M1 reference signals according to the period size of the search space associated with the control resource set corresponding to the first transmission node One of the reference signals.
  • the communication device is not configured with a reference signal for monitoring the quality of the wireless link.
  • the device further includes: a transceiver unit, configured to initiate a beam failure recovery process when the quality of the wireless link is lower than a threshold value.
  • the processing unit is further configured to determine a target period according to the periods corresponding to the M reference signals; wherein, the target period is a period for reporting indication information, and the indication information is used for Indicate that the quality of the wireless link is lower than the threshold value, and one reference signal corresponds to one period.
  • the target period satisfies the following conditions:
  • T2 min ⁇ T2 1 ,T2 2 ,..., T2 M ⁇
  • the T1 is the absolute time
  • the T2 M is the period of the M-th reference signal.
  • the present application provides a communication device that includes a processor, and when the processor executes a computer program or instruction in a memory, the method described in the first aspect is executed.
  • the present application provides a communication device including a processor, and when the processor invokes a computer program or instruction in a memory, the method described in the second aspect is executed.
  • the present application provides a communication device.
  • the communication device includes a processor and a memory, where the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory to enable The communication device executes the corresponding method as shown in the first aspect.
  • the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory to enable The communication device executes the corresponding method as shown in the second aspect.
  • the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive or send a signal;
  • the memory is used to store program code;
  • the processor is configured to execute the program code, so that the communication device executes the method described in the first aspect.
  • the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive or send a signal;
  • the memory is used to store program code;
  • the processor is configured to execute the program code, so that the communication device executes the method described in the second aspect.
  • the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code Instructions to perform the corresponding method as shown in the first aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code Instructions to perform the corresponding method as shown in the second aspect.
  • the present application provides a computer-readable storage medium for storing instructions or computer programs. When the instructions or the computer programs are executed, the The method is implemented.
  • the present application provides a computer-readable storage medium for storing instructions or computer programs. When the instructions or the computer program are executed, the The method is implemented.
  • the present application provides a computer program product, the computer program product includes an instruction or a computer program, and when the instruction or the computer program is executed, the method described in the first aspect is realized.
  • the present application provides a computer program product, the computer program product includes instructions or computer programs, and when the instructions or the computer programs are executed, the method described in the second aspect is realized.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a beam failure recovery method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the content of a TCI provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a beam failure recovery method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a link quality monitoring method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a link quality monitoring method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • At least one (item) refers to one or more
  • multiple refers to two or more than two
  • at least two (item) refers to two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships.
  • a and/or B can mean: there is only A, only B, and both A and B. In this case, A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the communication system used in this application can be understood as a wireless cellular communication system, or as a wireless communication system based on a cellular network architecture, and so on.
  • the methods provided in this application can be applied to various communication systems, for example, the Internet of Things (IoT) system, the narrowband Internet of Things (NB-IoT) system, and the long-term evolution (long-term evolution) system.
  • term evolution, LTE) system it can also be the fifth generation (5th-generation, 5G) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be a 5G new radio (NR) system, and future communication development New communication systems (such as 6G) appearing in the Internet and so on.
  • the method provided in the embodiment of the present application can be used.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application, and the solution in the present application can be applied to the communication system.
  • the communication system may include at least one network device, and only one is shown, such as the next generation Node B (gNB) in FIG. 1; and one or more terminal devices connected to the network device, as shown in FIG. Terminal device 1 and terminal device 2.
  • the network device may be a device that can communicate with a terminal device.
  • the network device can be any device with wireless transceiver functions, including but not limited to a base station.
  • the base station may be a gNB, or the base station may be a base station in a future communication system.
  • the network device may also be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless fidelity (WiFi) system.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a wearable device or a vehicle-mounted device.
  • the network device may also be a small station, a transmission reception point (TRP) (or may also be referred to as a transmission reception point), etc.
  • TRP transmission reception point
  • the base station may also be a base station in a public land mobile network (PLMN) that will evolve in the future, and so on.
  • PLMN public land mobile network
  • Terminal equipment may also be referred to as user equipment (UE), terminal, and so on.
  • a terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, for example, in the air. Airplanes, balloons, or satellites.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device may also be a terminal device in a future 6G network or a terminal device in a future evolved PLMN, etc.
  • FIG. 1 is only an exemplary illustration, and does not specifically limit the number of terminal devices, network devices, and the number of cells covered by the network devices included in the communication system.
  • the terminal device 1 and the terminal device 2 can also communicate with anything (vehicle-to-everything, V2X) or machine-to-device (device-to-device, D2D), vehicle-to-everything (V2X), or machine-to-device (D2D) or machine-to-everything (V2X) communication system shown in Figure Machine to machine (M2M) and other technologies perform communication.
  • V2X vehicle-to-everything
  • D2D vehicle-to-everything
  • V2X vehicle-to-everything
  • D2D vehicle-to-everything
  • D2D machine-to-device
  • V2X machine-to-everything
  • M2M machine to machine
  • the network device and the terminal device 1 can be used to execute the method provided in the embodiment of the present application.
  • the network device and the terminal device 2 can also be used to execute the method provided in the embodiment of the present application.
  • the following will take the terminal device as the UE and the network device as the base station as an example to illustrate the various methods provided in this application.
  • FIG. 2 is a schematic flowchart of a beam failure recovery method provided by an embodiment of the present application. As shown in FIG. 2, the method includes:
  • the UE physical layer monitors the radio link quality based on the beam failure detection reference signal (BFD RS). For example, the physical layer of the UE detects the BFD RS, and when the quality of the reference signal (ie BFD RS) detected by the UE is lower than the threshold (such as the beam failure threshold), the physical layer of the UE reports an indication to the upper layer of the UE. Beam failure instance indication (beam failure instance indication).
  • BFD RS beam failure detection reference signal
  • the higher layers of the UE can be understood as layer 2 in the UE.
  • the higher layer may include a data link layer or a MAC layer, and so on.
  • the high-level can be understood as all parts of the open system interconnection model (OSI) that are higher than the physical layer.
  • OSI open system interconnection model
  • the base station uses the transmit beam to send the reference signal
  • the UE uses the receive beam to receive the reference signal. Therefore, the quality of the reference signal is lower than the threshold, which can also be understood as the beam quality is lower than the threshold.
  • the indication sent by the physical layer of the UE to the higher layer of the UE may be called a beam failure instance indication, or may be called a link failure instance indication (link failure instance indication), etc.
  • the embodiment of the application does not limit the name of the indication.
  • the BFD RS there are two ways to configure the BFD RS: the first is that it is configured by the base station, which can also be understood as an explicit method; the second is that the base station is not configured, which can also be understood as an implicit method.
  • the UE can transfer the physical downlink control channel (physical downlink control channel, PDCCH) control resource set (control resource set, CORESET) to the transmission configuration index (TCI) state (state)
  • the reference signal in quasi-co-location (QCL) type D is determined as BFD RS.
  • the base station may configure a BFD RS for each component carrier (CC) or each bandwidth part (bandwidth part, BWP) of the UE.
  • CC component carrier
  • BWP bandwidth part
  • the embodiments of the present application take BWP as an example for description, and the method on each BWP can be understood to be the same.
  • Parity relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics. For multiple resources with parity relationship, the same or similar communication configuration can be used. For example, if two antenna ports have a co-location relationship, the large-scale characteristics of the channel for one port to transmit a symbol can be inferred from the large-scale characteristics of the channel for the other port to transmit a symbol. Large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal device receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver antenna Spatial correlation, main angle of arrival (angel-of-arrival, AoA), average angle of arrival, expansion of AoA, etc.
  • the base station can give beam instructions to the terminal device through different signaling, instruct the terminal device on how to receive the downlink physical channel or physical signal, and instruct the terminal device on how to send the uplink physical channel or Physical signal.
  • the base station can configure a TCI state list for each CORESET through RRC. If this list contains more than one TCI state, the base station also needs to send a medium access control-control element. , MAC CE) signaling to select a TCI state for each CORESET, and this TCI state can be referred to as the activated TCI state of the CORESET. If the TCI state list configured by the RRC includes a TCI state, the TCI state can also be referred to as an activated TCI state.
  • the TCI mainly includes the type of QCL (for example, two different QCL types can be configured) and the reference signal of each QCL type.
  • the reference signal specifically includes the reference The carrier component (CC) identification (ID) or BWP ID of the carrier component (CC) where the signal is located, and the number of each reference signal resource (ssb-index, or CSI-RS resource index).
  • the division of QCL types can be as follows:
  • QCL typeA delay, Doppler shift, delay spread, Doppler spread
  • QCL typeB Doppler shift, Doppler extension
  • QCL typeC delay, Doppler shift
  • QCL typeD airspace receiving parameter, that is, receiving beam.
  • the UE physical layer reports candidate beams that meet the conditions to the higher layer of the UE.
  • candidate beams that meet the conditions may include beams with beam quality higher than a threshold.
  • the set of candidate beams can be configured by the base station.
  • the upper layer of the UE determines the newly available beam q_new from the candidate beams, and notifies the physical layer of the UE of random access channel (RACH) resources associated with q_new.
  • RACH random access channel
  • the base station can know that the UE has a beam failure after receiving the RACH, and the base station can obtain Know which beam is associated with RACH. Therefore, the RACH can also be understood as BFRQ.
  • BFRQ beam failure recovery request
  • the UE starts Through q_new monitoring the configured CORESET and the search space (search space, SS) corresponding to the CORESET, the response of the base station to the BFRQ is obtained, and the response may be a PDCCH.
  • the UE receives the reconfiguration beam related information sent by the base station.
  • the reconfiguration beam related information indicates the beam information of each physical channel that is reconfigured.
  • the physical channel may include PDCCH, physical downlink shared channel (physical downlink shared channel, PDSCH), or physical uplink control channel (physical uplink control channel, PUCCH). Any one or more. That is to say, due to the beam failure, the originally configured beam may no longer be valid, and the base station needs to reconfigure the receiving and transmitting beams of each physical channel. It can be understood that the beam reconfigured by the base station may include the newly available beam q_new; or the base station may reconfigure the UE, etc., which is not limited in the embodiment of the present application.
  • the UE may use q_new to receive PDCCH and PDSCH, and use the transmission beam of RACH to transmit PUCCH.
  • the method shown above is how to perform beam failure recovery for the primary cell.
  • the beam failure recovery method for the secondary cell may be as shown in Figure 4.
  • the method includes:
  • the UE physical layer monitors the radio link quality based on the beam failure detection reference signal (BFD RS). For example, the physical layer of the UE detects the BFD RS, and when the quality of the reference signal (ie BFD RS) detected by the UE is lower than the threshold, the physical layer of the UE reports a beam failure instance indication to the upper layer of the UE.
  • BFD RS beam failure detection reference signal
  • the UE physical layer reports information including candidate beams that meet the conditions to the higher layer of the UE.
  • candidate beams that meet the conditions are determined from the set of candidate beams.
  • the set of candidate beams is configured by the base station or predefined by the protocol.
  • the UE physical layer reports to the higher layer of the UE that there is no candidate beam that meets the condition.
  • the UE sends a beam failure recovery request to the base station. Specifically, it may include the following steps: the UE sends a PUCCH to the base station, and the base station receives the PUCCH; the PUCCH can be used to indicate that the UE has beam failure and request uplink transmission resources, which are used to transmit MAC CE.
  • the MAC CE includes cell beam failure information and newly available beam q_new information, and the MAC CE signaling is carried in the PUSCH.
  • the newly available beam q_new may be a beam determined from candidate beams.
  • the field of the newly available beam information in the MAC CE can be set to a special value to indicate that no newly available beam is found.
  • the special value can be all 0s, or all 1s, or an abnormal value that cannot identify the beam.
  • a timer for beam failure recovery is started.
  • the timer can be predefined by the protocol or configured by the base station. If the timer expires, the UE initiates random access.
  • the specific description of the PUCCH and MAC CE in the above 403 may be as follows:
  • the PUCCH may be a scheduling request (scheduling request, SR), that is, the scheduling request may request the base station to schedule uplink transmission resources for the UE, and the uplink transmission resources are the foregoing resources for transmitting MAC CE.
  • SR scheduling request
  • the PUCCH since the PUCCH is used to notify the secondary cell of the beam failure, it may also be called a beam failure recovery request (BFRQ) or a link recovery request (link recovery request, LRR).
  • BFRQ beam failure recovery request
  • LRR link recovery request
  • the PUCCH may also be used to indicate the number of uplink resources requested.
  • the requested number of uplink resources may include one or more of the following: the size of data to be transmitted, the required time resources, the number of frequency resources, the number of required HARQ processes, and the required modulation and coding mode.
  • the UE sends the PUCCH step can also be called the first beam failure recovery request (BFRQ step1, BFRQ1), Or the first step link recovery request (LRR step1, LRR1) and so on.
  • the PUCCH resource may be PUCCH resources of other cells.
  • the PUCCH resource may be the PUCCH resource of the primary cell.
  • the PUCCH resources may also be PUCCH resources of other secondary cells.
  • the PUCCH resource is PUCCH resources of other secondary cells in the cell group (cell group) where the secondary cell where the beam failure occurs.
  • the PUCCH resource is the PUCCH resource of another secondary cell, and the other secondary cell is not in the same cell group as the secondary cell where the beam failure occurred.
  • the cell group may be pre-defined by the protocol, the base station configuration or the UE may be determined, or the base station and the UE may negotiate, etc.
  • the PUCCH resource can be configured with a repetition factor.
  • the repetition factor indicates the number of times the UE repeatedly transmits PUCCH. Therefore, the UE repeatedly sends the PUCCH multiple times to improve the probability that the PUCCH is correctly received by the base station.
  • the PUCCH resource can be configured with a frequency hopping factor. For example, UE sending PUCCH on different frequencies can effectively improve the anti-interference performance, making PUCCH sending more robust. It can be understood that the PUCCH resources in the embodiments of the present application can be understood as PUCCH resources, that is, resources used to transmit PUCCH.
  • the MAC CE since the MAC CE is used to indicate the beam failure of the secondary cell, it can also be called the second step beam failure recovery request (BFRQ step2, BFRQ2), or the second step link recovery request (LRR step2). , LRR2).
  • the PUSCH resources used to carry the MAC CE signaling may be PUCCH resources of other cells.
  • the PUSCH resource may be the PUSCH resource of the primary cell or the PUSCH resource of other secondary cells.
  • the PUSCH resource is the PUSCH resource of other secondary cells in the cell group (cell group) where the secondary cell where the beam failure occurs.
  • the PUSCH resource is the PUSCH resource of another secondary cell, and the secondary cell and the secondary cell where the beam failure occurs are not in the same cell group.
  • the cell group may be predefined by a protocol, configured by the base station or determined by the UE, or configured by the base station according to feedback from the UE, and so on.
  • the PUSCH resource can be configured with a repetition factor.
  • the UE repeatedly transmits the PUSCH multiple times to improve the probability that the PUSCH is correctly received by the base station.
  • the PUSCH resource can be configured with a frequency hopping factor. The UE sending the PUSCH at different frequencies can effectively improve the anti-interference performance, making the PUSCH transmission more robust.
  • the MAC CE signaling may include information about one or more cell beam failures.
  • the MAC CE signaling may include information about one or more newly available beams.
  • the UE may not send PUCCH and directly send MAC CE signaling if the UE has available PUSCH resources, such as UL-grant PUSCH resources, or configured-grant PUSCH resources.
  • the transmission of the PUSCH is in units of TB (Transport Block, transport block), and each TB has a corresponding HARQ process.
  • a TB may include one or more code block groups (CBG), and a code block group may include one or more code blocks (CB). Therefore, the MAC CE can be carried by multiple TBs.
  • the MAC CE can be carried by one TB.
  • the MAC CE may be carried by the first or the first N TBs transmitted by the PUSCH.
  • the MAC CE may be carried by the first or the first N most significant TB (most significant TB) transmitted by the PUSCH.
  • the MAC CE may be carried by multiple CBGs or CBs.
  • the MAC CE may be carried by multiple CBGs or CBs.
  • the MAC CE may be carried by the first or the first N CBGs or CBs.
  • the MAC CE may be carried by the first or the first N most significant CBG or CB (most significant CBG/CB).
  • the UE may determine whether the MAC CE is one TB/CBG/CB or multiple TBs according to the logical channel group (logic channel group, LCG) or logical channel priority (logic channel Prioritization, LCP) associated with the MAC CE.
  • the uplink resource used to transmit the MAC CE may include an uplink transmission resource with the lowest modulation and coding mode indicator value or an uplink transmission resource with the lowest code rate.
  • the UE detects the downlink control information (DCI, which can also be understood as UL grant) for scheduling uplink transmission.
  • DCI downlink control information
  • the hybrid automatic repeat request (HARQ) process number in DCI is the same as the uplink transmission MAC CE in 403.
  • the HARQ process number is the same, and the new data indicator (NDI) field in the DCI is toggled (toggling means that the value of the NDI field is different from the NDI field of the same process number last time). In the above case, it may indicate that the cell beam failure information and the newly available beam information included in the MAC CE signaling are correctly received.
  • the UE determines that the beam failure recovery request is received correctly, it stops the timer for beam failure recovery.
  • the UE needs to Resend the MAC CE.
  • the method for judging whether the MAC CE is received correctly may also include:
  • the MAC CE in 403 above is carried by multiple TBs.
  • the UE detects that the multiple HARQ process numbers contained in one or more DCIs are the same as the multiple HARQ process numbers of the uplink transmission MAC CE in 403, and the new data indication field associated with each HARQ process number is reversed. In this case, it may indicate that the cell beam failure information and the newly available beam information included in the MAC CE are correctly received.
  • the UE detects that the HARQ process number in the DCI is the same as the process number of the uplink transmission MAC CE signaling in the above 403, and the new data indication fields in the DCI are all overturned. In the above case, it can indicate the MAC CE signaling included in the above The cell beam failure information and the newly available beam information are correctly received. In addition, the UE detects that the HARQ process number in the DCI is the same as the process number of the uplink transmission MAC CE signaling in the above 403. The new data indication field in the DCI is not flipped, but the CBGTI (Code block group transmission information) field identifier in the DCI contains MAC CE.
  • CBGTI Code block group transmission information
  • One or more of the CBGs have been correctly received. In the above case, it may indicate that the cell beam failure information and newly available beam information included in the MAC CE signaling are correctly received, and the UE determines that the beam failure recovery request is correctly received, Stop the timer for beam failure recovery.
  • the MAC CE in the above 403 is carried by CBG1 and CBG2.
  • CBG3 and CBG4 are other data information.
  • CBG1, 2, 3, and 4 belong to TB1 and correspond to HARQ process number 1. If CBG1 and 2 are received correctly and CBG3 and 4 are not received correctly, the base station can use the DCI to include HARQ process number 1, NDI is not reversed, and CGBTI is 0011 to confirm to the UE that CBG1 and 2 times are received correctly, but the UE is scheduled to retransmit CBG3, 4. In the above case, the UE determines that the beam failure recovery request is received correctly.
  • the UE receives the reconfiguration beam related information sent by the base station.
  • primary cell belongs to the primary cell group (master cell group, MCG), works on the main frequency band, and the UE is available Perform initial connection or re-establish connection
  • primary cell The MCG cell, operating on the primary frequency, in which the UE or performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
  • secondary cell If the UE is configured with carrier aggregation, a cell that provides additional radio resources outside of the special cell (secondary cell: For a UE configured with CA, a cell providing additional radio resources on top of Special Cell.) .
  • the reconfiguration beam-related information indicates beam information of each physical channel of the secondary cell that failed to reconfigure the beam.
  • the physical channel may include PDCCH, physical downlink shared channel (PDSCH), or physical uplink control channel ( Any one or more of physical uplink control channel, PUCCH).
  • the UE determines that the beam failure recovery request is correctly received, and then stops the timer for beam failure recovery.
  • the UE resends a beam failure recovery request or initiates random access.
  • the maximum number of BFD RSs is 2; however, the maximum number of CORESET for each BWP is 3, so the UE Two BFD RSs need to be determined according to the RS in the CORESET TCI state.
  • the maximum number of BFD RSs is the number threshold, that is, for each BWP or each CC, the number of BFD RSs is less than or equal to the number threshold.
  • the quantity threshold may be stipulated by an agreement, etc. The embodiment of the present application does not limit how to set the quantity threshold.
  • the base station may not configure the BFD RS, that is, the base station does not configure the 2 BFD RS for BFRQ for the UE, that is, the UE is not configured with reference signals for monitoring the quality of the radio link.
  • the UE needs to monitor three CORESETs at the same time, which not only increases the complexity of UE monitoring, but also increases power consumption.
  • the configurable CORESET for each BWP may increase to 5. In this case, the complexity of UE monitoring may be further increased.
  • the embodiment of the present application provides a link quality monitoring method, which can reduce the complexity of UE monitoring and reduce power consumption.
  • FIG. 5 is a schematic flowchart of a link quality monitoring method provided by an embodiment of the present application. The method can be applied to the communication system shown in FIG. 1. As shown in FIG. 5, the method includes:
  • a base station sends configuration information to a UE through radio resource control (radio resource control, RRC) signaling, and the UE receives the configuration information.
  • RRC radio resource control
  • the configuration information may include the configuration related to the reference signal, the configuration related to the control channel CORESET(s), and so on.
  • the configuration related to the reference signal in the configuration information may include a threshold value, a timer, and a counter.
  • the configuration related to the control channel CORESET in the configuration information may include transmission node information.
  • the transmission node information may include higher layer index information, and the higher layer index information may be used to identify different transmission nodes.
  • CORESET-related configuration can also include CORESET resource pool or CORESET group related information, such as CORESET pool index (CORESET pool index), which can be used to identify different transmission nodes, that is, to identify different CORESET grouping or different CORESET resource pools.
  • CORESET pool index CORESET pool index
  • the embodiment of the present application does not limit the specific name of the transmission node information.
  • the relationship between the transmission node and the CORESET resource pool can be such as a transmission node is associated with a CORESET resource pool and so on.
  • the configuration related to the control channel CORESET(s) may also include CORESETID and CORESET TCI status.
  • the configuration related to the control channel CORESET(s) can be used for the UE to determine the reference signal for link quality monitoring.
  • the configuration related to the control channel CORESET may also include the TCI state.
  • the configuration information may include CORESET
  • the CORESET may include the TCI state
  • the TCI state may include multiple QCL types, as shown in FIG. 3 QCL-Type, ENUMERATED ⁇ typeA, typeB, typeC, typeD ⁇ .
  • the TCI state in CORESET includes multiple QCL types.
  • the UE is provided with a high-level parameter ControlResourceSet, including, provided by the TCI status, one antenna port QCL from a set of antenna ports QCL, which is used to indicate the demodulation reference signal (demodulation reference signal) of the PDCCH received in the corresponding CORESET.
  • reference signal, DMRS demodulation reference signal
  • QCL information of the antenna port For each DL BWP configured to a UE in a serving cell, a UE can be provided by higher layer signalling with CORESETs.
  • the UE For each CORESET, the UE is provided Set, including the following Control antenna port quasi co-location, from a set of antenna port quasi co-locations provided by TCI-State, indicating quasi co-location information of the DM-RS antenna port for PDCCH reception in a specific CORESET.
  • the UE determines the BFD RS refer to the following steps.
  • the following takes the reference signal used for link quality monitoring as the BFD RS as an example to illustrate the method provided in the embodiment of the present application.
  • the UE determines N RSs according to the configuration information, where N ⁇ 2.
  • the UE may determine N RSs according to the configuration information. As an example, as shown in FIG. 3, the UE may determine the reference signal corresponding to the QCL type D of the CORESET activated TCI state as an RS, such as N, where N ⁇ 2, such as N may be greater than 2, or N also Can be equal to 2. It can be understood that the N RSs can also be understood as candidate BFD RSs, etc. The embodiment of the present application does not limit the name of the RS. In other words, M RSs can be determined from N RSs, and the M RSs can be understood as M BFD RSs used to monitor the quality of the radio link.
  • the UE determines M RSs from the N RSs, the QCL types D of the N RSs are the same, and the transmission node information corresponding to the M RSs are the same, M ⁇ N, and M ⁇ the number threshold.
  • the transmission node information can be used to indicate the identity of the transmission node.
  • the identity can be configured by the base station through RRC signaling, etc.
  • the transmission node information can include a high-level index (or control resource set resource). Pool or control resource set grouping, etc.).
  • the number threshold can be used to measure the maximum number of BFD RSs for each BWP.
  • the specific value of the number threshold can be pre-defined by the agreement, or the number threshold can also be set by the base station, or the number threshold can be set by the UE and The base station negotiates and determines, etc.
  • the embodiment of the present application does not limit how to set the number threshold and the specific value of the number threshold. Among them, M can be equal to the number threshold, or M can also be less than the number threshold.
  • the QCL type D of the N RSs are the same, which can also be replaced by: the N RSs are RSs corresponding to the QCL type D included in the TCI state of the control resource set. That is, the N RSs can be understood as the RSs corresponding to QCL type D included in the TCI state of the control resource set obtained by the UE from the configuration information.
  • the configuration information may include n control resource sets, and the TCI state of each control resource set may include different QCL types.
  • the TCI state of each control resource set may include QCL type A, QCL type D, and so on.
  • the UE may determine the reference signals corresponding to the QCL type D included in the TCI state of the control resource set in the configuration information as the N reference signals. It can be understood that the embodiment of the present application does not limit the source of the N reference signals.
  • the method for how the UE determines M RSs from N RSs may be as follows:
  • the UE determines M1 reference signals corresponding to the first transmission node
  • M RSs are determined from M1 RSs according to the period size of the search space associated with the control resource set corresponding to the first transmission node.
  • the UE may determine the M RSs from the M1 RSs according to the monitoring period of the search space in ascending order; or, the UE may also determine the M1 RSs in the descending order of the monitoring period of the search space. M RSs are determined in the middle; or, the UE may determine M RSs from M1 RSs and so on according to whether the size of the monitoring period of the search space meets the condition of the period range, etc.
  • the embodiment of the present application does not limit how the UE determines the search space.
  • the UE may also determine M RSs from the M1 RSs according to the identification size of the control resource set corresponding to the first transmission node.
  • the UE may also determine M RSs from the M1 RSs according to the identification size of the search space associated with the control resource set corresponding to the first transmission node. Alternatively, the UE may also determine M RSs from the M1 RSs according to the period size of the M1 reference signals. Alternatively, the UE may also determine M RSs from the M1 RSs according to the identification size of the M1 reference signals, etc.
  • the embodiment of the present application does not limit the method for how the UE determines the M reference signals from the M1 reference signals.
  • the first transmission node may include a transmission node that serves the terminal device when the terminal device is initially connected; or, the first transmission node includes a network device configured to serve the terminal when the terminal device falls back to a single transmission node
  • the transmission node of the device may be a transmission node used to schedule a control resource set of system information (system information).
  • system information system information
  • the first transmission node may also be a transmission node used to transmit a control resource set of a common control channel (PDCCH).
  • the first transmission node may include a transmission node associated with a PUCCH for transmitting a beam failure recovery request.
  • the first transmission node may include a transmission node that is not associated with a PUCCH for sending a beam failure recovery request. It can be understood that the first transmission node is the transmission node information corresponding to the M reference signals, that is, the transmission node information corresponding to the M1 reference signals is the same, and the transmission node information corresponding to the M1 reference signals is the same as the transmission node information corresponding to the M reference signals. The transmission node information corresponding to the signal is the same.
  • each control resource set may include high-level index information, but whether the high-level index information included in each control resource set is the same is not limited in the embodiment of the present application.
  • the number of corresponding control resource sets can be multiple.
  • whether the search space associated with the control resource set is the same is not limited in the embodiment of the present application.
  • the relationship between the control resource set and the search space is not limited.
  • one control resource set can be associated with one search space; for another example, one control resource set can also be associated with multiple search spaces; for another example, search spaces associated with multiple control resource sets have intersections.
  • the control resource set corresponding to the first transmission node is one such as control resource set 1, and the search space associated with the control resource set 1 is one, such as search space 1. Then the UE can be based on the control resource set 1 associated with the search space 1. Select M RSs from the QCL type D RS corresponding to the activated TCI state to monitor the quality of the radio link.
  • the UE may
  • the activated TCI state of the one or more control resource sets corresponds to If the number of RSs of QCL type D is 3, the UE can randomly select 2 from 3 RSs; or, the UE can select M RSs according to the ID of the control resource set, and so on.
  • the UE may select the corresponding control resource set according to the control resource set ID in descending order, thereby determining M RSs; for another example, the UE may also determine the M RS according to the control resource set ID in descending order; Alternatively, the UE may also randomly select from the control resource set ID, etc.
  • the control resource set corresponding to the first transmission node is one such as control resource set 1, and there are multiple search spaces associated with the control resource set 1, such as search space 1, search space 2, and search space 3.
  • the search space 1 is determined in the order of the size of the monitoring period from small to large; and M RSs are selected from the QCL type D RSs corresponding to the activated TCI state of the control resource set 1 associated with the search space 1.
  • the control resource set corresponding to the first transmission node is one.
  • the UE can select M RSs from the QCL type D RS corresponding to the activated TCI state of the control resource set as the BFD RS. Monitor the quality of the wireless link.
  • control resource set 1 and control resource set 2 There are multiple control resource sets corresponding to the first transmission node, such as control resource set 1 and control resource set 2.
  • the search space associated with the control resource set 1 is one, such as search space 1, and the search space associated with the control resource set 2 Is one, such as search space 2; the UE can determine search space 1 according to the size of the monitoring period of the search space from small to large; and according to the activated TCI state of the control resource set 1 associated with search space 1, the QCL type D BFD Select M BFD RS from RS.
  • control resource set 1 there are multiple control resource sets corresponding to the first transmission node, such as control resource set 1, control resource set 2,..., control resource set x1; wherein, the search spaces associated with the multiple control resource sets overlap
  • control resource set 1 there is one search space associated with control resource set 1, such as search space 1
  • one search space is associated with control resource set 2, such as search space 1, and so on.
  • the UE may select M from the QCL type D RS corresponding to the activated TCI state of the control resource set 1 and the control resource set 2 associated with the search space 1.
  • control resource set 1 There are multiple control resource sets corresponding to the first transmission node, and there are multiple search spaces associated with each control resource set.
  • the search spaces associated with control resource set 1 are search space 1 and search space 2
  • control resource set 2 is associated
  • the search space of is search space 3 and search space 4.
  • the UE may determine the search space 1 according to the order of the monitoring period of the search space from small to large. For example, M RSs of QCL type D corresponding to the activated TCI state of the control resource set 1 associated with the search space 1 are selected.
  • control resource set 1 is associated with search space 1 and search space 2
  • control resource set 2 is associated with search space 1, search space 2 and search space 3.
  • the UE may select M from the QCL type D RS corresponding to the activated TCI state of the control resource set 1 and the control resource set 2 associated with the search space 1 according to the order of the monitoring period of the search space from small to large.
  • the method shown above is combined with the method in which the UE selects the corresponding control resource set according to the control resource set ID in ascending order, as shown below:
  • control resource sets There are multiple control resource sets corresponding to the first transmission node, and there are multiple search spaces associated with each control resource set.
  • the search spaces associated with control resource set 1 are search space 1 and search space 2
  • control resource set 2 is associated
  • the search spaces of are search space 3 and search space 4
  • the search spaces associated with control resource set 3 are search space 5 and search space 6.
  • the QCL type D RSs corresponding to the activated TCI state of each control resource set are RS1, RS2, and RS3 respectively.
  • the UE has the smallest period determined by the monitoring period of the search space in ascending order of search space 1, and the second smallest period is search space 3 and search space 5 (the two are the same), then the UE determines RS1 in addition to , It is also necessary to determine a control resource set in the control resource set 2 and control resource set 3 in the order of the identification of the control resource sets associated with the search space 3 and search space 5 respectively, that is, the control resource set of control resource set 2. Activate the QCL type D RS corresponding to the TCI state, that is, RS2.
  • the certain search space may also correspond to multiple control resource sets, and the number of RSs corresponding to the multiple control resource sets is still greater than M.
  • the UE may also determine M RSs according to the ID of the control resource set.
  • the control resource set associated with a certain search space includes control resource set 1, control resource set 2, and control resource set 3, and the sum of the number of RSs in these three control resource sets is greater than M. Therefore, the UE can download from M RSs in the control resource set 1 are selected. If the number of RSs in the control resource set 1 is less than M, the UE may select M from the RSs in the control resource set 1 and the control resource set 2.
  • the base station sends an RS, and the UE receives (or measures) the RS. It can be understood that the RS may be understood as the RS among the determined M RSs received by the UE.
  • the physical layer of the UE reports a beam failure instance indication to the higher layer of the UE.
  • the embodiment of the present application also provides a method of when to report the indication information, such as:
  • the UE determines the target period according to the periods corresponding to the M RSs; where the target period is a period for reporting indication information, the indication information is used to indicate that the radio link quality is lower than a threshold, and one reference signal corresponds to one period.
  • the base station uses the transmitting beam to send the reference signal, and the UE uses the receiving beam to receive the reference signal. Therefore, the quality of the reference signal is lower than the threshold, which can also be understood as the beam quality below the threshold.
  • the beam failure instance indication reported by the physical layer of the UE to the higher layer of the UE may also be referred to as a link failure instance indication (link failure instance indication), etc.
  • the embodiment of the application does not limit the name of the indication.
  • the target period can meet the following conditions:
  • T2 min ⁇ T2 1 ,T2 2 ,..., T2 M ⁇
  • the T1 is an absolute time, such as 2ms or 10ms.
  • This T2 M is the period of the M-th RS.
  • the embodiment of the present application does not limit when the UE determines the target period.
  • the UE may determine the target period after determining M RSs, or the UE may determine the target period before reporting the beam failure instance indication, and so on.
  • the upper layer of the UE determines that the beam fails, and instructs the physical layer of the UE to initiate beam failure recovery.
  • the upper layer of the UE may determine that the beam has failed.
  • the UE physical layer can report once every 2ms. If the upper layer of the UE receives 4 (or 4 consecutive times) beam failure instance indications within 100ms, the upper layer of the UE can obtain the beam failure.
  • the UE may determine the certain time through a timer configured by the base station, and determine the certain number through a counter configured by the base station.
  • the method used by the upper layer of the UE to determine the beam failure is such as: when the UE uses BFD RS to monitor the radio link quality, the radio link quality is below the threshold.
  • the UE initiates a beam failure recovery request.
  • the specific method for the UE to initiate a beam failure recovery request can refer to the method shown in Figures 2 to 4, that is, the UE can perform the beam failure recovery process with the base station according to the method shown in Figures 2 to 4, for this The specific process of beam failure recovery will not be detailed here.
  • the PUCCH resource used to send the beam failure recovery request may be associated with the transmission node.
  • the PUCCH resource can be associated with a high-level index (or CORESET pool index, etc.).
  • the UE selects PUCCH resources according to the CORESET pool index corresponding to the CORESET associated with the BFD RS.
  • the PUCCH resource can be associated with a CORESET, and the CORESET can be associated with a high-level index (or CORESET pool index). The UE determines the PUCCH resource according to the CORESET associated with the BFD RS.
  • the UE selects the PUCCH resource used to send the beam failure recovery request according to the transmission node information
  • the BFD RS is associated with the transmission node 1
  • it can select the PUCCH resource associated with the transmission node 2 to send the beam failure recovery request. This is because the UE determines that the beam failure occurs according to the measurement of the RS of the transmission node 1, indicating that the quality of the communication link between the transmission node 1 and the UE is not good, and is no longer suitable for receiving the beam failure recovery request.
  • the UE when the UE selects the PUCCH resource used to send the beam failure recovery request according to the transmission node information, if the BFD RS is associated with the transmission node 1, it can also select the PUCCH resource associated with the transmission node 1 to send the beam failure recovery request . This is because the UE needs to resume communication with the transmission node 1 first.
  • the PUSCH resource (resource for sending the MAC CE) used to send the beam failure recovery request may be associated with the transmission node.
  • the UE determines the PUSCH used to transmit the MAC CE according to the CORESET corresponding to the DCI of the scheduled PUSCH.
  • the BFD RS is associated with the transmission node 1
  • the PUSCH used to send the beam failure recovery request can be determined according to the CORESET associated with the transmission node 2.
  • the PUCCH/PUSCH resource used to send the beam failure recovery request is associated with the newly available beam. If the UE determines that the newly available beam is associated with the transmission node 1, the PUCCH resource associated with the transmission node 1 can be selected to send the beam failure recovery request. This is because the UE has determined that the transmission node 1 and the UE can communicate through the newly available beam.
  • the CORESET pool index corresponding to the CORESET associated with the BFD RS is selected to detect the CORESET and search for the DCI. space. For example, if the BFD RS is associated with the transmission node 1, the CORESET and search space associated with the transmission node 2 can be selected to detect the DCI to determine whether the PUCCH/PUSCH of the transmission beam failure recovery request is correctly received by the base station.
  • the CORESET and search space associated with the transmission node 1 can be selected to detect the DCI to determine whether the PUCCH/PUSCH of the transmission beam failure recovery request is correctly received by the base station.
  • the UE when the UE detects the downlink control information DCI for scheduling uplink transmission to determine whether the PUCCH/PUSCH for sending the beam failure recovery request is correctly received by the base station, it selects the CORESET and CORESET and the CORESET pool index associated with the newly available beam to detect DCI. Search space.
  • the embodiments of this application can be applied to solve the scenario where the UE is not configured with BFD RS for monitoring radio link quality. How does the UE determine M RSs from the N RSs for monitoring radio link quality, thereby not only reducing The monitoring complexity of the UE satisfies that the number of monitored BFD RSs is less than the number threshold; and by monitoring the same transmission node, it is beneficial to ensure the robustness of the connection between the UE and the base station and ensure that the UE can be connected to a transmission node. In addition, monitoring wireless quality through M BFD RSs can effectively reduce UE power consumption and improve user satisfaction.
  • the maximum number of BFD RSs that can be configured for each BWP of each secondary cell is 2. If the base station does not provide the beamFailureDetectionResourceList parameter to the UE, when the UE determines the BFD RS set q0, it should include the same periodic CSI-identity as the reference signal identifier in the reference signal set in the TCI state of the control channel resource set CORESET of the PDCCH it monitors. RS resources. Note that the maximum number of CORESETs that can be configured for one BWP in a secondary cell is 3. If the multi-transport node mode is turned on, the maximum number of CORESETs that can be configured is 5.
  • a remaining question from the last standard meeting is whether to regulate UE behavior when the maximum number of CORESET is greater than 2.
  • the UE needs a clear and low-complexity method to evaluate the quality of the radio link.
  • a stable connection with the UE should have a higher priority than the simultaneous use of multiple transmission nodes to serve a UE. Therefore, if a choice must be made to meet the requirement that the maximum number of BFD and RS is 2, the UE can monitor a TRP reference signal, which can be determined by the high-level parameter CORESETPoolIndex associated with the CORESET configuration.
  • the UE selects the reference signals in the activated TCI state of the CORESET associated with the search space in the descending order of the search space monitoring period. If the number of CORESETs associated with the same search space monitoring period is greater than 1, the UE selects from large to small according to the CORESET ID (For SCell BFR, in the last meeting, the maximum number of BFD RS is set to 2per BWP per SCell.
  • UE determines the BFD RS set to include periodic CSI-RS resource configuration indexes with same values as the RS indexes in the RS sets indicated by TCI-State for respective CORESETs that it is used for the UE.
  • the number of configured CORESETs can be up to 3per BWP for a SCell.
  • the number of configured CORESETs can be up to 5per BWP for a SCell.
  • a FFS from the last point to decide whether to specify UE behaviour if number of configured CORESETs is more than 2in RAN1. From UE implementation perspective, it is required to have a method to clear assets quality with radio link from network with specific link to clearassess quality.
  • UE should monitor only the RSs from one TRP, which can be CO identified from the RESET layer, which can be CO identified from the RESET layer, which can be CO identified from the high layer number of RSs for relevant CORESETs associated with the same CORESETPoolIndex is still larger than 2, the UE selects 2RSs provided for active TCI states for PDCCH receptions in CORESETs associated with the shortest one order than the search for the space than the shortest one.
  • CORESETs are associated with search space sets having same monitoring periodicity, the UE determines the order of the CORESET from the highest CORESET index.).
  • the UE determines the BFD RS set, it should include the reference signal of QCL Type D in the TCI state of the control channel resource set CORESET associated with the same CORESETPoolIndex (Support UE to determine BFD RS set to include RS indexes with QCL-TypeD configuration for the corresponding TCI states for respective CORESETs associated with the same CORESETPoolIndex.).
  • FIG. 6 is a schematic flowchart of a link quality monitoring method provided by an embodiment of the present application. The method can be applied to the communication system shown in FIG. 1. As shown in FIG. 6, the method includes:
  • the base station sends configuration information to the UE through radio resource control (radio resource control, RRC) signaling, and the UE receives the configuration information.
  • RRC radio resource control
  • the UE determines N RSs according to the configuration information, where N ⁇ 2.
  • the UE determines M RSs from the N RSs, the QCL types D of the N RSs are the same, and the transmission node information corresponding to the M RSs are different, M ⁇ N, and M ⁇ the number threshold.
  • the above 603 can be replaced by: determining M RSs from N RSs, where the N RSs are RSs corresponding to QCL type D included in the TCI state of the control resource set, and the transmission node information corresponding to the M RSs is different, M ⁇ N, and M ⁇ quantity threshold.
  • the method for how the UE determines M RSs from N RSs may be as follows:
  • the UE determines M1 reference signals corresponding to the first transmission node from the N reference signals, where the first transmission node is any transmission node in the transmission node information corresponding to the control resource set;
  • one of the M reference signals is determined from the M1 reference signals according to the period size of the search space associated with the control resource set corresponding to the first transmission node.
  • the UE may determine M RSs according to the RSs corresponding to the X transmission nodes respectively.
  • the UE determines the M1 RS corresponding to the first transmission node from the N RSs
  • determines the M2 corresponding to the second transmission node from the N RSs RS (M1+M2 N).
  • the UE can determine M1 RSs and M2 RSs from the first transmission node and the second transmission node respectively, or the UE can determine from the first transmission node and the second transmission node at the same time.
  • the embodiment does not limit the specific implementation manner.
  • M1>1 one RS is determined from M1 RSs according to the size of the monitoring period of the search space associated with the control resource set corresponding to the first transmission node.
  • M2>1 one RS is determined according to the control resource set corresponding to the second transmission node.
  • the size of the monitoring period of the search space of M2 determines one RS from among M2 RSs.
  • M 2, and the number threshold is 2, or the number threshold is greater than 2.
  • the control resource set corresponding to the first transmission node is one such as control resource set 1, and the search space associated with the control resource set 1 is one, such as search space 1.
  • the control resource set corresponding to the second transmission node is one such as control resource set 1, and the search space associated with the control resource set 1 is one, such as search space 2.
  • the UE can select an RS from the QCL type D RS corresponding to the activated TCI state of the control resource set 1 associated with the search space 1 to monitor the radio link quality, and according to the control resource set 1 associated with the search space 1. Select an RS from the QCL type D RS corresponding to the activated TCI state.
  • the control resource set corresponding to the first transmission node is one such as control resource set 1, and there are multiple search spaces associated with the control resource set 1, such as search space 1, search space 2, and search space 3; the second transmission node corresponds to The control resource set is one such as control resource set 2, and there are multiple search spaces associated with the control resource set 2, such as search space 4 and search space 5.
  • the UE can determine the search space associated with the control resource set corresponding to the first transmission node, namely search space 1, according to the order of the size of the monitoring period of the search space from small to large; and determine the search space associated with the control resource set corresponding to the second transmission node , That is, the search space 4.
  • the UE selects an RS from the QCL type D RS corresponding to the activated TCI state of the control resource set 1 associated with the search space 1, and the QCL type D RS corresponding to the activated TCI state of the control resource set 2 associated with the search space 4 Choose an RS.
  • the UE may also determine the M RSs according to the second method. For example, according to the size of the monitoring period of the search space, it is determined that the search spaces associated with the control resource sets corresponding to the first transmission node and the second transmission node are both search space 2, and the UE can select the QCL type corresponding to the activated TCI state of the control resource set 1. Select one RS from the RS of D, and select one RS from the RS of QCL type D corresponding to the activated TCI state of the control resource set 2.
  • the UE can also directly activate the control resource set corresponding to the first transmission node. Select one RS from the QCL type D RS corresponding to the TCI state, and select one RS from the QCL type D RS corresponding to the activated TCI state of the control resource set corresponding to the second transmission node.
  • control resource set 1 There are multiple control resource sets corresponding to the first transmission node, such as control resource set 1 and control resource set 2.
  • the search space associated with the control resource set 1 is one or more, such as search space 1 and search space 2.
  • the UE may determine the control resource set according to the ID of the control resource set, etc., and reference may be made to the description of the above embodiment. And the UE may determine one RS according to the control resource set corresponding to the second transmission node. Similarly, there is one control resource set corresponding to the first transmission node, and there are multiple control resource sets corresponding to the second transmission node. The UE can also determine two RSs in the manner shown above.
  • control resource sets corresponding to the first transmission node such as control resource set 1 and control resource set 2, where control resource set 1 is associated with search space 1, and control resource set 2 is associated with search space 2 and search space 3.
  • control resource sets corresponding to the second transmission node such as control resource set 3 and control resource set 4, where control resource set 3 is associated with search space 4, and control resource set 4 is associated with search space 3 and search space 5.
  • the UE can determine the search space according to the order of the monitoring period of the search space from small to large. For example, the search space 1 is associated with the control resource set 1 and the QCL type D RS corresponding to the activated TCI state is selected, and the search space 4 is associated Select an RS from the control resource set 4.
  • the UE may select one RS from the control resource set corresponding to the first transmission node.
  • the search space is determined according to the size of the monitoring period of the search space, and an RS is selected from the RS in the set of control resources associated with the determined search space.
  • the UE may determine the search space according to the size of the monitoring period of the search space, and select one of the RSs in the control resource set associated with the determined search space. RS.
  • the base station sends an RS, and the UE receives (or measures) the RS. It can be understood that the RS may be understood as the RS among the determined M RSs received by the UE.
  • the physical layer of the UE reports a beam failure instance indication to the higher layer of the UE.
  • the embodiment of the present application also provides a method of when to report the indication information, such as:
  • the UE determines the target period according to the periods corresponding to the M RSs; where the target period is a period for reporting indication information, the indication information is used to indicate that the radio link quality is lower than a threshold, and one reference signal corresponds to one period.
  • the indication information may include a beam failure instance indication.
  • the target period can meet the following conditions:
  • T2 min ⁇ T2 1 ,T2 2 ,..., T2 M ⁇
  • the T1 is the absolute time
  • the T2 M is the period of the M-th RS.
  • the embodiment of the present application does not limit when the UE determines the target period.
  • the UE may determine the target period after determining M RSs, or the UE may also determine the target period before reporting the beam failure instance indication, and so on.
  • the upper layer of the UE determines that the beam fails, and instructs the physical layer of the UE to initiate beam failure recovery.
  • the UE initiates a beam failure recovery request.
  • the embodiments of this application can be applied to solve the scenario where the UE is not configured with BFD RS for monitoring radio link quality. How does the UE determine M RSs from the N RSs for monitoring radio link quality, thereby not only reducing The monitoring complexity of the UE meets that the number of monitored RSs is less than the number threshold; and by monitoring the RSs corresponding to different transmission nodes, it is beneficial to ensure that the UE is connected to different transmission nodes at the same time. In addition, monitoring wireless quality through M RSs can effectively reduce UE power consumption and improve user satisfaction.
  • the UE when the method shown in FIG. 5 is executed by the UE and when the method shown in FIG. 6 is executed in the method shown in FIG. 5 or FIG. 6, the UE may be as follows:
  • Figure 6 When the UE has a single antenna panel capability, execute Figure 5. When the UE has multiple single-antenna panel capabilities, Figure 6 is executed.
  • the UE can execute the method of determining M reference signals from N reference signals shown in FIG. 5 according to the conditions it meets, or execute the method of determining M reference signals from N reference signals shown in FIG. 6 The method of determining M reference signals.
  • the methods and operations implemented by the terminal device may also be implemented by components (for example, a chip or a circuit) that can be used for the terminal device.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a chip.
  • the communication device is used to execute the method described in the embodiment of the present application. As shown in FIG. 7, the communication device includes:
  • the processing unit 701 is configured to determine M reference signals from N reference signals; wherein, the quasi co-location type D of the N reference signals is the same, and the transmission node information corresponding to the M reference signals is the same, and the N ⁇ 2 , The M ⁇ the N, the M ⁇ the number threshold; the processing unit 701 is further configured to use the M reference signals to monitor the quality of the wireless link.
  • the processing unit 701 is configured to determine M reference signals from N reference signals; wherein, the N reference signals are control resource set (control resource set, CORESET) transmission configuration numbers (
  • the transmission configuration index (TCI) state includes reference signals corresponding to quasi-co-location (QCL) type D, and the transmission node information corresponding to the M reference signals is the same, where N ⁇ 2, M ⁇ N, M ⁇ quantity threshold; and also used for monitoring the quality of the wireless link by using the M reference signals.
  • the transmission node information is used to indicate the identity of the transmission node, and the identity is configured by the network device through radio resource control RRC signaling.
  • the transmission node information is included in a control resource set, the control resource set is obtained according to configuration information, and the configuration information is configured by the network device.
  • the processing unit 701 is specifically configured to determine the M1 reference signals corresponding to the first transmission node from the N reference signals; and when the M1>the M, according to the first transmission The period size of the search space associated with the control resource set corresponding to the node determines the M reference signals from the M1 reference signals.
  • the first transmission node includes a transmission node that serves the communication device when the communication device is initially connected; or, the first transmission node includes a network device configured by the communication device to fall back to a single When the transmission node, the transmission node that serves the communication device.
  • the communication device is not configured with a reference signal for monitoring the quality of the wireless link.
  • the device further includes: a transceiver unit 702, configured to initiate a beam failure recovery procedure when the quality of the wireless link is lower than a threshold value.
  • the processing unit 701 is further configured to determine a target period according to the periods corresponding to the M reference signals; wherein, the target period is a period for reporting indication information, and the indication information is used to indicate the wireless The link quality is lower than the threshold, and one reference signal corresponds to one cycle.
  • the target period satisfies the following conditions:
  • T2 min ⁇ T2 1 ,T2 2 ,..., T2 M ⁇
  • the T1 is the absolute time
  • the T2 M is the period of the M-th reference signal.
  • the processing unit 701 may also be used to determine M reference signals from the N reference signals; wherein, the quasi co-location type D of the N reference signals is the same, and the M reference signals
  • the transmission node information corresponding to each reference signal is different, the N ⁇ 2, the M ⁇ the N, and the M ⁇ the number threshold; the processing unit is also used to monitor the quality of the wireless link by using the M reference signals.
  • the processing unit 701 is configured to determine M reference signals from N reference signals; wherein, the N reference signals are control resource set (control resource set, CORESET) transmission configuration numbers (
  • the transmission configuration index (TCI) state includes reference signals corresponding to quasi-co-location (QCL) type D, and the transmission node information corresponding to the M reference signals is different, where N ⁇ 2, M ⁇ N, M ⁇ quantity threshold; and also used for monitoring the quality of the wireless link by using the M reference signals.
  • the transmission node information is used to indicate the identity of the transmission node, and the identity is configured by the network device through radio resource control RRC signaling.
  • the transmission node information is included in a control resource set, the control resource set is obtained according to configuration information, and the configuration information is configured by the network device.
  • the processing unit 701 is further configured to determine M1 reference signals corresponding to the first transmission node from the N reference signals according to the transmission node information, and the first transmission node is the transmission node Any one of the transmission nodes corresponding to the information; and when the M1>1, determine the M reference signals from the M1 reference signals according to the period size of the search space associated with the control resource set corresponding to the first transmission node A reference signal in the signal.
  • the communication device is not configured with a reference signal for monitoring the quality of the wireless link.
  • the transceiver unit 702 is further configured to initiate a beam failure recovery procedure when the quality of the wireless link is lower than a threshold value.
  • the processing unit 701 is further configured to determine a target period according to the periods corresponding to the M reference signals; wherein, the target period is a period for reporting indication information, and the indication information is used to indicate the wireless The link quality is lower than the threshold, and one reference signal corresponds to one cycle.
  • the target period satisfies the following conditions:
  • T2 min ⁇ T2 1 ,T2 2 ,..., T2 M ⁇
  • the T1 is the absolute time
  • the T2 M is the period of the M-th reference signal.
  • the processing unit 701 may be one or more processors, and the transceiving unit 702 may be a transceiver, or the transceiving unit may also be a transmitter.
  • the unit and the receiving unit, the sending unit can be a transmitter, the receiving unit can be a receiver, or the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processing unit 701 may be one or more processors, and the transceiver unit 702 may be an input/output interface, or also called a communication interface, or an interface circuit, or an interface, and so on.
  • the transceiver unit can also be a sending unit and a receiving unit, the sending unit can be an output interface, and the receiving unit can be an input interface, or the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
  • the receiving unit may be used to execute the methods shown in 501 and 504 shown in FIG. 5.
  • the receiving unit may also be used to execute the methods shown in 601 and 604 shown in FIG. 6.
  • the receiving unit executes the corresponding method shown in FIG. 2 and/or FIG. 4.
  • the processing unit 701 can also be used to execute the corresponding method shown in FIG. 2 and/or FIG. 4.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device can also be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 80 includes at least one processor 820, which is configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
  • the device 80 may also include a communication interface 810.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, which is used to communicate with other devices through a transmission medium.
  • the communication interface 810 is used for the device in the device 80 to communicate with other devices.
  • the processor 820 uses the communication interface 810 to send and receive data, and is used to implement the method described in the foregoing method embodiment.
  • the device 80 may also include at least one memory 830 for storing program instructions and/or data.
  • the memory 830 and the processor 820 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 820 may cooperate with the memory 830 to operate.
  • the processor 820 may execute program instructions stored in the memory 830. At least one of the at least one memory may be included in the processor.
  • the specific connection medium between the aforementioned communication interface 810, the processor 820, and the memory 830 is not limited in the embodiment of the present application.
  • the memory 830, the processor 820, and the communication interface 810 are connected by a bus 840 in FIG. 8.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • FIG. 9 is a schematic structural diagram of a terminal device 90 provided in an embodiment of this application.
  • the terminal device can perform the method shown in FIGS. 2-6, or the terminal device can also perform the operation of the terminal device shown in FIG. 7.
  • FIG. 9 only shows the main components of the terminal device.
  • the terminal device 90 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to execute the processes described in FIGS. 2-6.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the terminal device 90 may also include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 9 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
  • the equipment controls, executes the software program, and processes the data of the software program.
  • the processor may also be a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • electrically available Erase programmable read-only memory electrically available Erase programmable read-only memory
  • EEPROM electrically available Erase programmable read-only memory
  • flash memory electrically available Erase programmable read-only memory
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit 801 of the terminal device 90, and the processor with the processing function can be regarded as the processing unit 902 of the terminal device 90.
  • the terminal device 90 may include a transceiving unit 901 and a processing unit 902.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiving unit 901 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiving unit 901 can be regarded as the sending unit, that is, the transceiving unit 901 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 901 and the processing unit 902 may be integrated into one device or separated into different devices.
  • the processor and the memory may also be integrated into one device or separate into different devices.
  • the transceiver unit 901 can be used to execute the methods shown in 501 and 504 shown in FIG. 5.
  • the transceiver unit 901 may be used to execute the methods shown in 601 and 604 shown in FIG. 6.
  • the processing unit 902 may also be used to execute the methods shown in 502 and 503 shown in FIG. 5.
  • the processing unit 902 may also be used to execute the methods shown in 602 and 603 and so on shown in FIG. 6.
  • the transceiver unit 901 may also be used to execute the methods shown in 204 and 205 shown in FIG. 2.
  • the transceiver unit 901 may also be used to execute the methods shown in 404 and 405 shown in FIG. 4.
  • the processing unit 902 may be used to execute the methods shown in 201, 202, and 204 shown in FIG. 2.
  • the processing unit 902 may also be used to execute the methods shown in 401, 402, and 404 shown in FIG. 4.
  • the transceiving unit 901 may also be used to execute the method shown by the transceiving unit 702.
  • the device shown in FIG. 10 can also be referred to.
  • the device includes a processor 1010, a data sending processor 1020, and a data receiving processor 1030.
  • the processing unit 701 in the foregoing embodiment may be the processor 1010 in FIG. 10, and completes corresponding functions.
  • the receiving unit in the foregoing embodiment may be the receiving data processor 1030 in FIG. 10, and the sending unit may be the sending data processor 1020 in FIG. 10.
  • the channel encoder and the channel decoder are shown in FIG. 10, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are merely illustrative.
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute Figure 2- Figure 6 shows the method in the embodiment. Further, the computer can be made to execute the methods shown in FIGS. 2 to 6 according to various scenarios provided in the embodiments of the present application.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in Figure 2-6. Show the method in the embodiment. Further, the computer can be made to execute the methods shown in FIGS. 2 to 6 according to various scenarios provided in the embodiments of the present application.
  • the present application also provides a system, which includes the aforementioned terminal device and network device.
  • the terminal device can be used to execute the methods shown in FIG. 2 to FIG. 6 provided by the embodiments of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种链路质量监测方法及装置,该方法包括:从N个参考信号中确定M个参考信号;其中,该N个参考信号为控制资源集合CORESET传输配置编号TCI状态包括的准共址类型QCL D对应的参考信号,且该M个参考信号对应的传输节点信息相同,该N≥2,M<N,且M≤数量阈值;利用该M个参考信号监测无线链路质量。可用于解决终端设备未被配置用于监测链路质量的参考信号时,该终端设备如何从多个参考信号中选择一定数量的参考信号的问题,通过该一定数量的参考信号来监测链路质量,可降低终端设备的监测复杂度。本申请实施例还提供了对应的通信装置。

Description

链路质量监测方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种链路质量监测方法及装置。
背景技术
在高频通信系统中,网络设备和终端设备通常会使用具有方向性的高增益的天线阵列形成模拟波束来进行通信。一般来说,模拟波束具有方向性,由此可以用主瓣方向和3dB波束宽度来描述一个模拟波束形状(beam pattern);其中,波束宽度越窄,天线增益越大。基于模拟波束,网络设备和终端设备可以朝向特定的方向发送信号和接收信号。以下行通信为例,网络设备朝向特定方向发送信号,终端设备朝向该特定方向接收信号,当发送信号的方向和接收信号的方向对齐时,该网络设备和该终端设备可实现正常通信。
为了实现波束对齐(即发送端和接收端的波束方向对齐),需要进行波束训练。例如,当通信波束被阻挡时,需要切换到新的波束进行通信,这一过程可称为波束失败恢复(beam failure recovery,BFR,或者又叫link recovery procedures)。在波束失败恢复过程中,用于波束失败检测的信号可称为波束失败检测信号(beam failure detection reference signal,BFD RS)。该波束失败检测信号的配置方法,如可以由网络设备配置;又如网络设备不配置,而是由终端设备根据配置信息来确定。
然而,终端设备根据配置信息确定出的波束失败检测信号的数量往往较多,从而增加终端设备的监测复杂度。
发明内容
本申请提供一种链路质量检测方法及装置,可降低终端设备的监测复杂度。
第一方面,本申请提供一种链路质量监测方法,所述方法包括:从N个参考信号中确定M个参考信号;其中,所述N个参考信号的准共址(quasi-co-location,QCL)类型D相同,且所述M个参考信号对应的传输节点信息相同,其中,N≥2,M<N,M≤数量阈值;利用所述M个参考信号监测无线链路质量。
在一种可能的实现方式中,本申请所提供的链路质量监测方法,还可以包括:从N个参考信号中确定M个参考信号;其中,所述N个参考信号为控制资源集合(control resource set,CORESET)传输配置编号(transmission configuration index,TCI)状态包括的准共址(quasi-co-location,QCL)类型D对应的参考信号,且所述M个参考信号对应的传输节点信息相同,其中,N≥2,M<N,M≤数量阈值;利用所述M个参考信号监测无线链路质量。
可理解,本申请可应用于通信装置,该通信装置可包括终端设备,或者终端设备中的芯片等等。以下将以终端设备为例说明。
本申请实施例中,终端设备可从N个参考信号中确定M个参考信号,从而利用该M个参考信号来监测链路质量,避免了通过N个参考信号监测链路质量导致终端设备的实现 复杂度高的问题,从而不仅减少了终端设备的监测复杂度;而且通过更少数量(即M个)的参考信号监测链路质量,还有效降低了终端设备的功耗损失。
在一种可能的实现方式中,所述传输节点信息用于指示传输节点的标识。
在一种可能的实现方式中,所述标识由网络设备通过无线资源控制(radio resource control,RRC)信令配置。
在一种可能的实现方式中,所述传输节点信息包含于控制资源集合中,所述控制资源集合根据配置信息得到,所述配置信息由所述网络设备配置。
本申请实施例中,控制资源集合中可包括传输节点信息,不同的控制资源集合中可能包括同一个传输节点信息,或者,也可能包括不同的传输节点信息等等,本申请实施例对于控制资源集合与传输节点信息的对应关系不作限定。其中,控制资源集合中包括传输节点信息,也可理解为控制资源集合的配置中包括传输节点信息。为描述方便,以下以控制资源集合中包括传输节点信息为例来说明,但是不应将其理解为对本申请的限定。
在一种可能的实现方式中,所述从N个参考信号中确定M个参考信号,包括:从所述N个参考信号中确定第一传输节点对应的M1个参考信号;M1>M时,根据所述第一传输节点对应的控制资源集合关联的搜索空间的周期大小从所述M1个参考信号中确定所述M个参考信号。
本申请实施例中,N个参考信号可能来自不同的控制资源集合,该不同的控制资源集合中的每个控制资源集合中包括的传输节点信息可能不同,因此,不同的控制资源集合中的传输节点信息指示的传输节点的标识可能不同。由此,通信装置如终端设备可从中确定一个传输节点如第一传输节点,然后根据该第一传输节点对应的控制资源集合关联的搜索空间的周期大小来确定M个参考信号。可理解,该第一传输节点即为该M个参考信号对应的传输节点信息,即该M1个参考信号对应的传输节点信息相同,且该M1个参考信号对应的传输节点信息与该M个参考信号对应的传输节点信息相同。
在一种可能的实现方式中,所述第一传输节点包括终端设备初始接入时,服务所述终端设备的传输节点;或者,所述第一传输节点包括网络设备配置的所述终端设备回退到单传输节点时,服务所述终端设备的传输节点。
本申请实施例中,第一传输节点即为传输重要的系统消息的节点,终端设备保持与该第一传输节点的连接,可有助于提高信号传输的稳定性。
在一种可能的实现方式中,所述终端设备未被配置用于监测所述无线链路质量的参考信号。
在一种可能的实现方式中,所述方法还包括:在所述无线链路质量低于门限值的情况下,发起波束失败恢复流程。
在一种可能的实现方式中,所述方法还包括:根据所述M个参考信号对应的周期确定目标周期;其中,所述目标周期为上报指示信息的周期,所述指示信息用于指示所述无线链路质量低于所述门限值,一个参考信号对应一个周期。
在一种可能的实现方式中,所述目标周期满足如下条件:
T=max{T1,T2}
T2=min{T2 1,T2 2,…,T2 M}
其中,所述T1为绝对时间,所述T2 M为第M个参考信号的周期。
第二方面,本申请提供一种链路质量监测方法,所述方法包括:从N个参考信号中确定M个参考信号;其中,所述N个参考信号的准共址类型D相同,且所述M个参考信号中每个参考信号对应的传输节点信息不同,其中,N≥2,M<N,M≤数量阈值;利用所述M个参考信号监测无线链路质量。
在一种可能的实现方式中,本申请所提供的链路质量监测方法,还可以包括:从N个参考信号中确定M个参考信号;其中,所述N个参考信号为资源控制集合CORESET传输配置编号TCI状态包括的准共址QCL类型D对应的参考信号,且所述M个参考信号中每个参考信号对应的传输节点信息不同,其中,N≥2,M<N,M≤数量阈值;利用所述M个参考信号监测无线链路质量。
在一种可能的实现方式中,所述传输节点信息用于指示传输节点的标识。
在一种可能的实现方式中,所述标识由网络设备通过无线资源控制RRC信令配置。
在一种可能的实现方式中,所述传输节点信息包含于控制资源集合中,所述控制资源集合根据配置信息得到,所述配置信息由所述网络设备配置。
在一种可能的实现方式中,所述从N个参考信号中确定M个参考信号包括:从所述N个参考信号中确定第一传输节点对应的M1个参考信号,所述第一传输节点为所述控制资源集合对应的传输节点信息中的任意一个传输节点;当M1>1时,根据所述第一传输节点对应的控制资源集合关联的搜索空间的周期大小从所述M1个参考信号中确定所述M个参考信号中的一个参考信号。
在一种可能的实现方式中,终端设备未被配置用于监测所述无线链路质量的参考信号。
在一种可能的实现方式中,所述方法还包括:在所述无线链路质量低于门限值的情况下,发起波束失败恢复流程。
在一种可能的实现方式中,所述方法还包括:根据所述M个参考信号对应的周期确定目标周期;其中,所述目标周期为上报指示信息的周期,所述指示信息用于指示所述无线链路质量低于所述门限值,一个参考信号对应一个周期。
在一种可能的实现方式中,所述目标周期满足如下条件:
T=max{T1,T2}
T2=min{T2 1,T2 2,…,T2 M}
其中,所述T1为绝对时间,所述T2 M为第M个参考信号的周期。
第三方面,本申请提供一种通信装置,所述装置包括:处理单元,用于从N个参考信号中确定M个参考信号;其中,所述N个参考信号的准共址类型D相同,且所述M个参考信号对应的传输节点信息相同,其中,N≥2,M<N,M≤数量阈值;所述处理单元,还用于利用所述M个参考信号监测无线链路质量。
在一种可能的实现方式中,处理单元,用于从N个参考信号中确定M个参考信号;其中,所述N个参考信号为控制资源集合(control resource set,CORESET)传输配置编号(transmission configuration index,TCI)状态包括的准共址(quasi-co-location,QCL)类型D对应的参考信号,且所述M个参考信号对应的传输节点信息相同,其中,N≥2,M<N,M≤数量阈值;以及还用于利用所述M个参考信号监测无线链路质量。
在一种可能的实现方式中,所述传输节点信息用于指示传输节点的标识。
在一种可能的实现方式中,所述标识由网络设备通过无线资源控制RRC信令配置。
在一种可能的实现方式中,所述传输节点信息包含于控制资源集合中,所述控制资源集合根据配置信息得到,所述配置信息由所述网络设备配置。
在一种可能的实现方式中,所述处理单元,具体用于从所述N个参考信号中确定第一传输节点对应的M1个参考信号;以及当M1>M时,根据所述第一传输节点对应的控制资源集合关联的搜索空间的周期大小从所述M1个参考信号中确定所述M个参考信号。
在一种可能的实现方式中,所述第一传输节点包括所述通信装置初始接入时,服务所述通信装置的传输节点;或者,所述第一传输节点包括网络设备配置的所述终端设备回退到单传输节点时,服务所述通信装置的传输节点。
在一种可能的实现方式中,所述通信装置未被配置用于监测所述无线链路质量的参考信号。
在一种可能的实现方式中,所述装置还包括:收发单元,用于在所述无线链路质量低于门限值的情况下,发起波束失败恢复流程。
在一种可能的实现方式中,所述处理单元,还用于根据所述M个参考信号对应的周期确定目标周期;其中,所述目标周期为上报指示信息的周期,所述指示信息用于指示所述无线链路质量低于所述门限值,一个参考信号对应一个周期。
在一种可能的实现方式中,所述目标周期满足如下条件:
T=max{T1,T2}
T2=min{T2 1,T2 2,…,T2 M}
其中,所述T1为绝对时间,所述T2 M为第M个参考信号的周期。
第四方面,本申请提供一种通信装置,所述装置包括:处理单元,用于从N个参考信号中确定M个参考信号;其中,所述N个参考信号的准共址类型D相同,且所述M个参考信号中每个参考信号对应的传输节点信息不同,其中,N≥2,M<N,M≤数量阈值;所述处理单元,还用于利用所述M个参考信号监测无线链路质量。
在一种可能的实现方式中,处理单元,用于从N个参考信号中确定M个参考信号;其中,所述N个参考信号为资源控制集合CORESET传输配置编号TCI状态包括的准共址QCL类型D对应的参考信号,且所述M个参考信号中每个参考信号对应的传输节点信息不同,其中,N≥2,M<N,M≤数量阈值;还用于利用所述M个参考信号监测无线链路质量。
在一种可能的实现方式中,所述传输节点信息用于指示传输节点的标识。
在一种可能的实现方式中,所述标识由网络设备通过无线资源控制RRC信令配置。
在一种可能的实现方式中,所述传输节点信息包含于控制资源集合中,所述控制资源集合根据配置信息得到,所述配置信息由所述网络设备配置。
在一种可能的实现方式中,所述处理单元,还用于从所述N个参考信号中确定第一传输节点对应的M1个参考信号,所述第一传输节点为所述控制资源集合对应的传输节点信息中的任意一个传输节点;以及当M1>1时,根据所述第一传输节点对应的控制资源集合关联的搜索空间的周期大小从所述M1个参考信号中确定所述M个参考信号中的一个参考 信号。
在一种可能的实现方式中,所述通信装置未被配置用于监测所述无线链路质量的参考信号。
在一种可能的实现方式中,所述装置还包括:收发单元,用于在所述无线链路质量低于门限值的情况下,发起波束失败恢复流程。
在一种可能的实现方式中,所述处理单元,还用于根据所述M个参考信号对应的周期确定目标周期;其中,所述目标周期为上报指示信息的周期,所述指示信息用于指示所述无线链路质量低于所述门限值,一个参考信号对应一个周期。
在一种可能的实现方式中,所述目标周期满足如下条件:
T=max{T1,T2}
T2=min{T2 1,T2 2,…,T2 M}
其中,所述T1为绝对时间,所述T2 M为第M个参考信号的周期。
第五方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第一方面所述的方法被执行。
第六方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序或指令时,如第二方面所述的方法被执行。
第七方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面中所示的相应的方法。
第八方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第二方面中所示的相应的方法。
第九方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于执行所述程序代码,以使所述通信装置执行如第一方面所述的方法。
第十方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于执行所述程序代码,以使所述通信装置执行如第二方面所述的方法。
第十一方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面所示的相应的方法。
第十二方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第二方面所示的相应的方法。
第十三方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令或计算机程序,当所述指令或所述计算机程序被执行时,使得第一方面所述的方法被实现。
第十四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存 储指令或计算机程序,当所述指令或所述计算机程序被执行时,使得第二方面所述的方法被实现。
第十五方面,本申请提供一种计算机程序产品,所述计算机程序产品包括指令或计算机程序,当所述指令或所述计算机程序被执行时,使得第一方面所述的方法被实现。
第十六方面,本申请提供一种计算机程序产品,所述计算机程序产品包括指令或计算机程序,当所述指令或所述计算机程序被执行时,使得第二方面所述的方法被实现。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种波束失败恢复方法的流程示意图;
图3是本申请实施例提供的一种TCI的内容示意图;
图4是本申请实施例提供的一种波束失败恢复方法的流程示意图;
图5是本申请实施例提供的一种链路质量监测方法的流程示意图;
图6是本申请实施例提供的一种链路质量监测方法的流程示意图;
图7是本申请实施例提供的一种通信装置的结构示意图;
图8是本申请实施例提供的一种终端设备的结构示意图;
图9是本申请实施例提供的一种终端设备的结构示意图;
图10是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图对本申请实施例进行描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以下将介绍本申请实施例所涉及的网络架构。
本申请使用的通信系统可理解为无线蜂窝通信系统,又或者理解为基于蜂窝网络架构的无线通信系统等等。本申请提供的各方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统,以及未来通信发展中出现的新的通信系统(如6G)等。只要通信系统中需要通过参考信号监测链路质量,均可以采用本申请实施例提供的方法。
图1是本申请实施例提供的一种通信系统的架构示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括至少一个网络设备,仅示出一个,如图1中的基站(the next generation Node B,gNB);以及与该网络设备连接的一个或多个终端设备,如图1中的终端设备1和终端设备2。其中,网络设备可以是能和终端设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备,包括但不限于基站。例如,该基站可以为gNB,又或者该基站为未来通信系统中的基站。可选的,该网络设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备还可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输节点(transmission reception point,TRP)(或也可以称为传输接收点)等。可理解,该基站还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站等等。
终端设备,也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。可理解,该终端设备还可是未来6G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可理解,图1仅是一种示例性说明,并不对通信系统中包括的终端设备、网络设备的数量、网络设备覆盖的小区数量进行具体限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
作为示例,图1所示的通信系统中,终端设备1和终端设备2也可以通过设备到设备(device to device,D2D)、车与任何事物通信(vehicle-to-everything,V2X)或机器到机器 (machine to machine,M2M)等技术进行通信,本申请实施例对于终端设备1与终端设备2之间的通信方法不作限定。
图1所示的通信系统中,网络设备和终端设备1可用于执行本申请实施例所提供的方法。以及,网络设备和终端设备2也可用于执行本申请实施例提供的方法。作为示例,以下将以终端设备为UE,网络设备为基站为例来说明本申请所提供的各个方法。
以下将介绍本申请实施例所涉及的背景。
图2是本申请实施例提供的一种波束失败恢复方法的流程示意图,如图2所示,该方法包括:
201、UE物理层基于波束失败检测参考信号(beam failure detection reference signal,BFD RS)监测无线链路质量。如UE物理层检测BFD RS,在UE检测到的参考信号(即BFD RS)的质量低于门限值(如波束失败门限值)的情况下,UE物理层向UE高层上报指示,该指示可波束失败实例指示(beam failure instance indication)。
可理解,UE高层可理解为UE中的层2。例如,该高层可包括数据链路层或MAC层等等。或者,该高层可理解为开放式系统互联模型(open system interconnection model,OSI)中所有高于物理层的部分。
需要说明的是,由于在高频通信中,基站使用发送波束发送参考信号,UE使用接收波束接收参考信号,因此参考信号的质量低于门限值,也可理解为波束质量低于门限值。其中,UE物理层向UE高层发送的指示可以称为波束失败实例指示,也可以称为链路失败实例指示(link failure instance indication)等等,本申请实施例对于该指示的名称不作限定。
其中,BFD RS的配置方法有两种:第一是由基站配置,也可以理解为显式的方法;第二是基站不配置,也可理解为隐式的方法。基站不配置BFD RS的情况下,UE可将物理下行控制信道(physical downlink control channel,PDCCH)控制资源集合(control resource set,CORESET)传输配置编号(transmission configuration index,TCI)状态(state)中的准共址(quasi-co-location,QCL)类型(type)D中的参考信号确定为BFD RS。例如,在由基站配置的情况下,基站可为UE的每个载波分量(component carrier,CC)或每个带宽部分(bandwidth part,BWP)配置BFD RS。本申请实施例以BWP为例进行说明,且每个BWP上的方法可理解为是相同的。
QCL:同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,则一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等等。
TCI:例如,对于每一个物理信道或者物理信号,基站都可以通过不同的信令对终端设备进行波束指示,指导终端设备如何接收下行物理信道或者物理信号,以及指导终端设备如何发送上行物理信道或者物理信号。本申请实施例中,基站可通过RRC为每个CORESET配置一个TCI状态列表,如果这个列表中包含多于一个TCI状态,则基站还需要发送介质 接入控制-控制元素(medium access control-control element,MAC CE)信令,从而为每个CORESET选择一个TCI状态,该一个TCI状态可以称为该CORESET的激活TCI状态。如果RRC配置的TCI状态列表中包括一个TCI状态,那么该一个TCI状态也可以称为激活的TCI状态。
作为示例,如图3所示出的TCI的内容示意图,该TCI中主要包括了QCL的类型(如可配置两种不同的QCL类型)以及每种QCL类型的参考信号,该参考信号具体包括参考信号所在的载波分量(carrier component,CC)标识(identification,ID)或BWP ID,以及每个参考信号资源的编号(ssb-index,或CSI-RS resource index)。图3中,QCL类型的划分可如下所示:
QCL typeA:时延,多普勒偏移,时延扩展,多普勒扩展;
QCL typeB:多普勒偏移,多普勒扩展;
QCL typeC:时延,多普勒偏移;
QCL typeD:空域接收参数,即接收波束。
202、UE物理层向UE高层上报满足条件的备选波束。
其中,满足条件的备选波束可包括波束质量高于门限值的波束。备选波束的集合(candidate beam RS)可由基站配置。
203、UE高层从备选波束中确定新可用波束q_new,并将q_new关联的随机接入信道(random access channel,RACH)资源通知给UE物理层。UE向基站发送RACH。
由于该RACH被配置用于波束失败恢复请求(beam failure recovery request,BFRQ),且该RACH关联q_new,因此,基站接收到该RACH便可得知UE发生了波束失败的情况,且该基站可得知RACH关联的波束是哪个。因此,该RACH也可理解为BFRQ。
204、在UE发送BFRQ的第m(如m=4)个时隙(slot)开始,或者第m(如m=4)个时隙之后的第一次PDCCH监测机会(PDCCH occasion)开始,UE通过q_new监听配置的CORESET和该CORESET对应的搜索空间(search space,SS),获得基站对BFRQ的响应,该响应可为PDCCH。
205、UE接收基站发送的重配波束相关信息。
该重配波束相关信息表示重配各个物理信道的波束信息,该物理信道可包括PDCCH、物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行控制信道(physical uplink control channel,PUCCH)中的任一个或多个。也就是说,由于波束失败导致原有配置的波束可能不再有效,基站需要重配各个物理信道的接收和发送波束。可理解,基站重配的波束中可包括新可用波束q_new;或者,基站可重新为UE配置等等,本申请实施例不作限定。
作为示例,在步骤205之前,步骤204之后,UE可使用q_new接收PDCCH和PDSCH,以及使用RACH的发送波束发送PUCCH。
以上示出的是如何为主小区进行波束失败恢复的方法,对于辅小区的波束失败恢复的方法可如图4所示,该方法包括:
401、UE物理层基于波束失败检测参考信号(beam failure detection reference signal,BFD RS)监测无线链路质量。如UE物理层检测BFD RS,在UE检测到的参考信号(即 BFD RS)的质量低于门限值的情况下,UE物理层向UE高层上报波束失败实例指示(beam failure instance indication)。
402、UE物理层向UE高层上报包括满足条件的备选波束的信息。
其中,满足条件的备选波束从备选波束的集合中确定。作为示例,该备选波束的集合由基站配置,或者协议预定义。
可选的,如果没有满足条件的备选波束,则UE物理层向UE高层上报没有满足条件的备选波束。
403、UE向基站发送波束失败恢复请求。具体可包括以下步骤:UE向基站发送PUCCH,基站接收该PUCCH;该PUCCH可用于指示UE出现了波束失败的情况,且请求上行传输资源,该上行传输资源用于传输MAC CE。该MAC CE中包括小区波束失败信息和新可用波束q_new信息,该MAC CE信令承载于PUSCH中。
其中,新可用波束q_new可为从备选波束中确定的波束。
可选的,如果没有满足条件的备选波束,则MAC CE中新可用波束信息的字段可以设置为特殊值,从而来指示没有找到新可用波束。特殊值可以为全0,或者为全1,或者为一个不能标识波束的异常值。
可选的,在UE发送波束失败恢复请求的同时,开启用于波束失败恢复的计时器。该计时器可以是协议预定义或者基站配置。若计时器超时,则UE发起随机接入。
本申请实施例中,对于上述403中的PUCCH以及MAC CE的具体描述可如下所示:
可选的,该PUCCH可以为一个调度请求(scheduling request,SR),即该调度请求可请求基站为UE调度上行传输资源,该上行传输资源即为上述用于传输MAC CE的资源。可选的,由于该PUCCH用于通知辅小区出现了波束失败,因此也可以称为波束失败恢复请求(beam failure recovery request,BFRQ),或者链路恢复请求(link recovery request,LRR)。可选的,该PUCCH还可以用于指示请求的上行资源数目。例如,请求的上行资源数目可包括以下一项或多项:所需传输的数据大小,所需时间资源,频率资源数目,所需HARQ进程数目,所需调制编码方式。
另外,由于UE发送PUCCH的步骤与发送的MAC CE的步骤联合起来才能完成波束失败恢复请求的功能,因此UE发送PUCCH的步骤又可以称为第一步波束失败恢复请求(BFRQ step1,BFRQ1),或者第一步链路恢复请求(LRR step1,LRR1)等等。
可选的,该PUCCH资源可以是其他小区的PUCCH资源。例如,该PUCCH资源可以是主小区的PUCCH资源。又例如,该PUCCH资源还可以是其他辅小区的PUCCH资源。又例如,该PUCCH资源是发生波束失败的辅小区所在的小区组(cell group)中其他辅小区的PUCCH资源。又例如,该PUCCH资源是其他辅小区的PUCCH资源,该其他辅小区与发生波束失败的辅小区不在同一个小区组中。其中,小区组可以由协议预定义,基站配置或者UE确定,或者由基站与UE协商等等,本申请实施例对于该小区组如何定义不作限定。可选的,该PUCCH资源可以被配置重复因子。例如,该重复因子表示UE重复发送PUCCH的次数。由此,UE重复发送多次PUCCH有利于提高PUCCH被基站正确接收的概率。可选的,该PUCCH资源可以被配置跳频因子。如UE在不同的频率发送PUCCH能够有效的提高抗干扰性能,使得PUCCH的发送更加鲁棒。可理解,本申请实施例中的 PUCCH资源可理解为PUCCH的资源即用于传输PUCCH的资源。
进一步的,可选的,由于MAC CE用于指示辅小区出现了波束失败,因此也可以称为第二步波束失败恢复请求(BFRQ step2,BFRQ2),或者第二步链路恢复请求(LRR step2,LRR2)。可选的,用于承载该MAC CE信令的PUSCH资源可以是其他小区的PUCCH资源。例如,该PUSCH资源可以是主小区的PUSCH资源,也可以是其他辅小区的PUSCH资源。又例如,该PUSCH资源是发生波束失败的辅小区所在的小区组(cell group)中其他辅小区的PUSCH资源。又例如,该PUSCH资源是其他辅小区的PUSCH资源,该辅小区与发生波束失败的辅小区不在同一个小区组。其中,小区组可以由协议预定义,基站配置或者UE确定,或者也可以由基站根据UE的反馈进行配置等等。可选的,该PUSCH资源可以被配置重复因子。例如,UE重复发送多次PUSCH有利于提高PUSCH被基站正确接收的概率。可选的,该PUSCH资源可以被配置跳频因子。UE在不同的频率发送PUSCH能够有效的提高抗干扰性能,使得PUSCH的发送更加鲁棒。
可选的,MAC CE信令中可以包括一个或多个小区波束失败的信息。可选的,MAC CE信令中可以包括一个或多个新可用波束的信息。
可选的,如果UE有可用的PUSCH资源,例如被上行许可调度(UL grant)的PUSCH资源,或者配置调度(configured grant)的PUSCH资源,则UE也可以不发送PUCCH,直接发送MAC CE信令。
其中,PUSCH的传输是以TB(Transport Block,传输块)为单位的,每一个TB都有一个对应的HARQ进程。一个TB可以包括一个或多个码块组(code block group,CBG),一个码块组中可以包括一个或多个码块(code block,CB)。由此,MAC CE可以由多个TB承载。可选的,MAC CE可以由一个TB承载。可选的,MAC CE可以由PUSCH传输的第一个或者前N个TB承载。可选的,MAC CE可以由PUSCH传输的第一个或者前N个最重要TB(most significant TB)承载。可选的,MAC CE可以由多个CBG或CB承载。可选的,MAC CE可以由多个CBG或CB承载。可选的,MAC CE可以由第一个或者前N个CBG或CB承载。可选的,MAC CE可以由第一个或者前N个最重要CBG或CB(most significant CBG/CB)承载。可选的,UE可以根据该MAC CE关联的逻辑信道组(logic channel group,LCG)或者逻辑信道优先级(logic channel Prioritization,LCP)来确定该MAC CE由一个TB/CBG/CB还是多个TB/CBG/CB来承载,和/或该MAC CE是否需要承载于一个或者前N个CBG或CB,和/或该MAC CE是否需要承载于一个或者前N个最重要CBG或CB。可选的,如果有多个可用的上行传输资源,则用于传输MAC CE的上行资源可包括调制编码方式指示值最低的一个上行传输资源或者码率最低的一个上行传输资源。
404、UE检测调度上行传输的下行控制信息(DCI,也可理解为UL grant),其中,DCI中的混合自动重传(hybrid automatic repeat request,HARQ)进程号与上述403中上行传输MAC CE的HARQ进程号相同,并且,DCI中的新数据指示(new data indicator,NDI)字段翻转(toggled)(翻转是指NDI字段与上一次相同进程号的NDI字段取值不同)。在上述情况下,可表示上述MAC CE信令中所包括的小区波束失败信息和新可用波束信息被正确接收。
其中,如果UE确定波束失败恢复请求被正确接收,则停止用于波束失败恢复的计时 器。
可选的,若UE接收到DCI中的HARQ进程号与上述403中上行传输MAC CE的HARQ进程号相同,但是,DCI中的新数据指示(new data indicator,NDI)字段未翻转,则UE需要重新发送MAC CE。
作为示例,对于上述MAC CE是否被正确接收的判断方法还可包括:
可选的,如果上述403中MAC CE由多个TB承载。UE检测到一个或者多个DCI中包含的多个HARQ进程号与上述403中上行传输MAC CE的多个HARQ进程号相同,并且,每一个HARQ进程号关联的新数据指示字段都翻转,在上述情况下,可表示上述MAC CE中所包括的小区波束失败信息和新可用波束信息被正确接收。
可选的,如果上述403中MAC CE由一个或者多个CBG承载。UE检测到DCI中HARQ进程号与上述403中上行传输MAC CE信令的进程号相同,并且,DCI中新数据指示字段都翻转,在上述情况下,可表示上述MAC CE信令中所包括的小区波束失败信息和新可用波束信息被正确接收。另外,UE检测到DCI中HARQ进程号与上述403中上行传输MAC CE信令的进程号相同,DCI中新数据指示字段没有翻转,但是DCI中CBGTI(Code block group transmission information)字段标识包含MAC CE的一个或多个CBG已被正确接收,在上述情况下,可表示上述MAC CE信令中所包括的小区波束失败信息和新可用波束信息被正确接收,UE确定波束失败恢复请求被正确接收,停止用于波束失败恢复的计时器。
例如,上述403中MAC CE由CBG1,CBG2承载,CBG3和CBG4是其他数据信息,CBG1、2、3、4属于TB1,对应HARQ进程号1。如果CBG1、2被正确接收,CBG3、4没有被正确接收,基站可以通过DCI中包括HARQ进程号1,NDI不翻转,CGBTI为0011向UE确定CBG1、2倍正确接收,但调度UE进行重传CBG3、4。在上述情况下,UE确定波束失败恢复请求被正确接收。
405、UE接收基站发送的重配波束相关信息。
作为示例,对于主小区(primary cell,PCell)和辅小区(secondary cell,SCell)的区分方法;例如,主小区:属于主小区组(master cell group,MCG),工作在主频段上,UE可用于执行初始连接或重建连接(primary cell:The MCG cell,operating on the primary frequency,in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure)。又例如,辅小区:如果UE配置了载波聚合功能,在特殊小区之外提供额外的无线资源的小区(secondary cell:For a UE configured with CA,a cell providing additional radio resources on top of Special Cell.)。
可选的,重配波束相关信息表示重配波束失败的辅小区的各个物理信道的波束信息,该物理信道可包括PDCCH、物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行控制信道(physical uplink control channel,PUCCH)中的任一个或多个。
可选的,在UE接收到基站发送的重配波束相关信息时,UE确定波束失败恢复请求被正确接收,则停止用于波束失败恢复的计时器。可选的,若用于波束失败恢复的计时器超时,则UE重新发送波束失败恢复请求或者发起随机接入。
可理解,对于图4所示的方法的具体描述可参考图2所示的方法,这里不再一一详述。可理解,对于图2和图4所示的方法仅为一种示例,在具体实现中,可能还包括其他步骤 等等,本申请实施例对于图2和图4所示的方法步骤不作限定。
在以上所示的方法中,作为示例,对于每个带宽部分(bandwidth part,BWP)(或每个CC),BFD RS的数目最大为2;但是每个BWP的CORESET数目最大为3,因此UE需要根据CORESET TCI状态中的RS来确定2个BFD RS。本申请实施例中,对于每个BWP或每个CC,BFD RS的数目最大为数量阈值,即对于每个BWP或每个CC,BFD RS的数目小于或等于数量阈值。其中,该数量阈值可由协议规定等等,本申请实施例对于该数量阈值如何设置不作限定。
一般地,基站可能不会配置BFD RS,也就是说,基站不为UE配置用于BFRQ的2个BFD RS,即UE未被配置用于监测无线链路质量的参考信号。该情况下,UE就需要同时对3个CORESET进行监测,不仅增加UE监测的复杂度,还会增加功耗。进一步的,在多点传输(multi-TRP)场景下,每个BWP可配置的CORESET可能会增加到5个,该情况下,可能会进一步增加UE监测的复杂度。
因此,本申请实施例提供一种链路质量监测方法,可降低UE监测的复杂度,以及减少功耗。
以下将详细介绍本申请实施例所涉及的链路质量监测方法。
图5是本申请实施例提供的一种链路质量监测方法的流程示意图,该方法可应用于图1所示的通信系统,如图5所示,该方法包括:
501、基站通过无线资源控制(radio resource control,RRC)信令向UE发送配置信息,该UE接收该配置信息。
本申请实施例中,该配置信息可包括与参考信号相关的配置和与控制信道CORESET(s)相关的配置等等。作为示例,该配置信息中与参考信号相关的配置可包括门限值、计时器和计数器。作为示例,该配置信息中与控制信道CORESET相关的配置可包括传输节点信息,该传输节点信息如可包括高层索引(higher layer index)信息,该高层索引信息可用于标识不同的传输节点。或者,CORESET相关的配置还可包括CORESET资源池或者CORESET分组相关信息,如CORESET资源池(pool)索引(CORESET pool index),该CORESET资源池索引可用于标识不同的传输节点,即可用于标识不同的CORESET分组或者不同的CORESET资源池。可理解,本申请实施例对于该传输节点信息的具体名称不作限定。作为示例,传输节点与CORESET资源池的关系可如一个传输节点关联一个CORESET资源池等等。例如,该与控制信道CORESET(s)相关的配置还可包括CORESETID和CORESET TCI状态。该与控制信道CORESET(s)相关的配置可用于UE确定用于链路质量监测的参考信号。
作为示例,上述与控制信道CORESET相关的配置还可包括TCI状态,例如,该配置信息中可包括CORESET,该CORESET中可包括TCI状态,该TCI状态可包括多个QCL类型,如图3中的QCL-Type,ENUMERATED{typeA,typeB,typeC,typeD}。
作为示例,也可理解为CORESET中的TCI状态中包括多个QCL类型。
作为示例,对于每一个服务小区的每一个下行BWP,UE都可以被配置小于或等于y(如y=3,或5等)个CORESET。对于每个CORESET,UE被提供高层参数ControlResourceSet,包括,由TCI状态提供的,从一个集合的天线端口QCL中的一个天线端口QCL,用于指 示对应的CORESET中接收PDCCH的解调参考信号(demodulation reference signal,DMRS)天线端口的QCL信息(For each DL BWP configured to a UE in a serving cell,a UE can be provided by higher layer signalling with CORESETs.For each CORESET,the UE is provided the following by ControlResourceSet,includingan antenna port quasi co-location,from a set of antenna port quasi co-locations provided by TCI-State,indicating quasi co-location information of the DM-RS antenna port for PDCCH reception in a respective CORESET)。
至于UE如何来确定BFD RS可参考以下步骤。为描述方便,以下以用于链路质量监测的参考信号为BFD RS为例来说明本申请实施例所提供的方法。
502、UE根据配置信息确定N个RS,N≥2。
由于本申请实施例中UE中可以没有被配置用于链路质量监测的参考信号,因此,UE可根据配置信息来确定N个RS。作为示例,如图3所示,UE可将CORESET的激活TCI状态的QCL类型D对应的参考信号可确定为RS,如为N个,该N≥2,如N可大于2,或者,N也可以等于2。可理解,该N个RS还可理解为候选BFD RS等等,本申请实施例对于该RS的名称不作限定。也就是说,可将从N个RS中确定出的M个RS,该M个RS可理解为M个用于监测无线链路质量的BFD RS。
503、UE从N个RS中确定M个RS,该N个RS的QCL类型D相同,且该M个RS对应的传输节点信息相同,M<N,且M≤数量阈值。
本申请实施例中,该传输节点信息可用于指示传输节点的标识,可选的,该标识可由基站通过RRC信令配置等等,例如,该传输节点信息可包括高层索引(或控制资源集资源池或控制资源集分组等)。数量阈值可用于衡量每个BWP的BFD RS的最大数量,该数量阈值的具体取值,如该数量阈值可由协议预先规定,或者,该数量阈值也可由基站设置,或者,该数量阈值可由UE和基站协商确定等等,本申请实施例对于如何设置该数量阈值以及该数量阈值的具体取值不作限定。其中,M可等于数量阈值,或者,M也可以小于数量阈值。
本申请实施例中,该N个RS的QCL类型D相同,也可替换为:该N个RS为控制资源集合TCI状态包括的QCL类型D对应的RS。即该N个RS可理解为UE从配置信息中得到的控制资源集合的TCI状态包括的QCL类型D对应的RS。例如,配置信息中可包括n个控制资源集合,每个控制资源集合的TCI状态可包括不同的QCL类型,如每个控制资源集合的TCI状态可包括QCL类型A和QCL类型D等等。又例如,UE接收到配置信息后,可将配置信息中的控制资源集合的TCI状态包括的QCL类型D所对应的参考信号确定为该N个参考信号。可理解,本申请实施例对于该N个参考信号的来源不作限定。
本申请的一些实施例中,对于UE如何从N个RS中确定M个RS的方法可如下所示:
UE确定第一传输节点对应的M1个参考信号;
当M1>M时,根据第一传输节点对应的控制资源集合关联的搜索空间的周期大小从M1个RS中确定M个RS。
本申请实施例中,UE可根据搜索空间的监测周期从大到小的顺序从M1个RS中确定M个RS;或者,UE还可根据搜索空间的监测周期从小到大的顺序从M1个RS中确定M个RS;或者,UE可根据搜索空间的监测周期大小是否符合周期范围的条件从M1个RS 中确定M个RS等等,本申请实施例对于UE如何确定搜索空间不作限定。可选的,UE还可根据第一传输节点对应的控制资源集合的标识大小从M1个RS中确定M个RS。或者,UE还可根据第一传输节点对应的控制资源集合关联的搜索空间的标识大小从M1个RS中确定M个RS。或者,UE还可根据该M1个参考信号的周期大小从M1个RS中确定M个RS。或者,UE还可根据M1个参考信号的标识大小从M1个RS中确定M个RS等等,本申请实施例对于UE如何从M1个参考信号中确定M个参考信号的方法不作限定。
作为示例,第一传输节点可包括终端设备初始接入时,服务该终端设备的传输节点;或者,该第一传输节点包括网络设备配置的该终端设备回退到单传输节点时,服务该终端设备的传输节点。例如,第一传输节点可为用于调度系统消息(system information)的控制资源集合的传输节点。又例如,该第一传输节点还可为用于传输公共控制信道(common PDCCH)的控制资源集合的传输节点。作为示例,第一传输节点可包括关联用于发送波束失败恢复请求的PUCCH的传输节点。作为示例,第一传输节点可包括没有关联用于发送波束失败恢复请求的PUCCH的传输节点。可理解,该第一传输节点即为该M个参考信号对应的传输节点信息,即该M1个参考信号对应的传输节点信息相同,且该M1个参考信号对应的传输节点信息与该M个参考信号对应的传输节点信息相同。
本申请实施例中,每个控制资源集合中可包括高层索引信息,但是每个控制资源集合中包括的高层索引信息是否相同,本申请实施例不作限定。也就是说,对于同一个高层索引如higher layer index=1时,对应的控制资源集合的个数可为多个。又如,对于higher layer index=0时,对应的控制资源集合的个数也可为多个。另外,本申请实施例中,控制资源集合关联的搜索空间是否相同,本申请实施例也不作限定。以及对于控制资源集合与搜索空间的关联关系也不作限定。例如,一个控制资源集合可关联一个搜索空间;又例如,一个控制资源集合也可关联多个搜索空间;又例如,多个控制资源集合关联的搜索空间存在交集。
因此,对于不同的关联关系,本申请实施例所提供的方法可分为如下几种方式:
方式一、
第一传输节点对应的控制资源集合为一个如控制资源集合1,且该控制资源集合1关联的搜索空间为一个,如搜索空间1;则UE可根据该搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的RS中选择M个RS用于监测无线链路质量。
作为示例,对于一个控制资源集合的激活TCI状态对应的QCL类型D的RS的数目小于数量阈值的情况下,如数量阈值=2,一个制资源集合的激活TCI状态对应的QCL类型D的RS的数目为1,则UE可将该一个制资源集合的激活TCI状态对应的QCL类型D的一个RS确定为用于监测无线链路质量的BFD RS,即利用该一个BFD RS来监测无线链路质量,其中,M=1。又或者,如数量阈值=3,而根据搜索空间的周期大小确定的多个控制资源集合的激活TCI状态对应的QCL类型D的RS的数目为2,则UE可将该多个控制资源集合的激活TCI状态对应的QCL类型D的两个RS确定为监测无线链路质量的BFD RS,其中,M=2。
作为示例,对于一个或多个控制资源集合的激活TCI状态对应的QCL类型D的RS的数目大于数量阈值的情况下,如数量阈值=2,该一个或多个控制资源集合的激活TCI状态 对应的QCL类型D的RS的数目为3,则UE可随机从3个RS中选择2个;或者,UE可根据控制资源集合的ID来选择M个RS等等。例如UE可根据控制资源集合ID从小到大的顺序选择相应的控制资源集合,从而确定出M个RS;又例如,UE还可根据控制资源集合ID从大到小的顺序确定出M个RS;又或者,UE还可随机从控制资源集合ID中选择等等,本申请实施例对于UE如何从符合条件的一个或多个控制资源集合中选择相应的控制资源集合来确定M个RS的方法,不作限定。其中,M=2。可理解,以上示例中的一个或多个控制资源集合可理解为根据搜索空间的监测周期大小确定出的控制资源集合。
可理解,对于以上各个情况,以下各个方式同样适用。
方式二、
第一传输节点对应的控制资源集合为一个如控制资源集合1,且该控制资源集合1关联的搜索空间为多个,如搜索空间1、搜索空间2和搜索空间3;则UE可根据搜索空间的监测周期大小从小到大的顺序确定搜索空间1;以及根据搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的RS中选择M个RS。
方式一和方式二中,第一传输节点对应的控制资源集合为一个,该情况下,UE可从该控制资源集合的激活TCI状态对应的QCL类型D的RS中选择M个RS作为BFD RS来监测无线链路质量。
方式三、
第一传输节点对应的控制资源集合为多个,如控制资源集合1和控制资源集合2;该控制资源集合1关联的搜索空间为一个,如搜索空间1,该控制资源集合2关联的搜索空间为一个,如搜索空间2;则UE可根据搜索空间的监测周期大小从小到大的顺序确定搜索空间1;以及根据搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的BFD RS中选择M个BFD RS。
在方式三中,第一传输节点对应的控制资源集合为多个,如控制资源集合1、控制资源集合2、…,控制资源集合x1;其中,该多个控制资源集合关联的搜索空间存在交集,如控制资源集合1关联的搜索空间为一个,如搜索空间1,控制资源集合2关联的搜索空间为一个,如搜索空间1等等。则UE可根据搜索空间1关联的控制资源集合1和控制资源集合2的激活TCI状态对应的QCL类型D的RS中选择M个。
方式四、
第一传输节点对应的控制资源集合为多个,且每个控制资源集合关联的搜索空间为多个,如控制资源集合1关联的搜索空间为搜索空间1和搜索空间2,控制资源集合2关联的搜索空间为搜索空间3和搜索空间4。则UE可根据搜索空间的监测周期从小到大的顺序确定搜索空间1,如搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的RS中选择M个。
在方式四中,多个控制资源集合中关联的搜索空间存在交集时,如控制资源集合1关联搜索空间1和搜索空间2,控制资源集合2关联搜索空间1、搜索空间2和搜索空间3。则UE可根据搜索空间的监测周期从小到大的顺序选择搜索空间1关联的控制资源集合1和控制资源集合2的激活TCI状态对应的QCL类型D的RS中选择M个。
作为示例,以方式四为例,将以上所示的方法与UE根据控制资源集合ID从小到大的 顺序选择相应的控制资源集合的方法结合,如下所示:
第一传输节点对应的控制资源集合为多个,且每个控制资源集合关联的搜索空间为多个,如控制资源集合1关联的搜索空间为搜索空间1和搜索空间2,控制资源集合2关联的搜索空间为搜索空间3和搜索空间4,控制资源集合3关联的搜索空间为搜索空间5和搜索空间6。每个控制资源集合的激活TCI状态对应的QCL类型D的RS分别为RS1,RS2,RS3,UE从这三个RS中选择M=2个RS的方法是,UE可根据搜索空间的监测周期从小到大的顺序确定搜索空间1和搜索空间3,将搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的RS,即RS1,与搜索空间3关联的控制资源集合2的激活TCI状态对应的QCL类型D的RS,即RS2,作为2个RS(即M=2为例)。又如UE根据搜索空间的监测周期从小到大的顺序确定的周期最小的是搜索空间1,周期第二小的是搜索空间3和搜索空间5(两者相同),那么UE除了确定RS1之外,还需要按照搜索空间3和搜索空间5分别关联的控制资源集合的标识从小到大的顺序,在控制资源集合2和控制资源集合3,来确定一个控制资源集合,即控制资源集合2的的激活TCI状态对应的QCL类型D的RS,即RS2。
可理解,以上所示的各个控制资源集合和搜索空间仅为示例,不应将其理解为对本申请实施例的限定。
进一步的,在UE根据搜索空间的监测周期大小确定了某个搜索空间后,该某个搜索空间可能还会对应多个控制资源集合,且该多个控制资源集合对应的RS的个数仍大于M,该情况下,UE还可根据控制资源集合的ID来确定M个RS。如该某个搜索空间关联的控制资源集合包括控制资源集合1、控制资源集合2和控制资源集合3,且这三个控制资源集合中的RS的数目之和大于M,由此,UE可从控制资源集合1中的RS中选择M个,若该控制资源集合1中的RS的数量小于M,则UE可从控制资源集合1和控制资源集合2中的RS中选择M个。
504、基站发送RS,UE接收(或测量)该RS。可理解,该RS可理解为UE接收确定的M个RS中的RS。
505、UE物理层向UE高层上报波束失败实例指示。
可理解,本申请实施例还提供了一种何时上报指示信息的方法,如:
UE根据该M个RS对应的周期确定目标周期;其中,该目标周期为上报指示信息的周期,该指示信息用于指示该无线链路质量低于门限值,一个参考信号对应一个周期。
由于在高频通信中,基站使用发送波束发送参考信号,UE使用接收波束接收参考信号,因此参考信号的质量低于门限值,也可理解为波束质量低于门限值。其中,UE物理层向UE高层上报的波束失败实例指示,也可以称为链路失败实例指示(link failure instance indication)等等,本申请实施例对于该指示的名称不作限定。
其中,该目标周期可满足如下条件:
T=max{T1,T2}
T2=min{T2 1,T2 2,…,T2 M}
其中,该T1为绝对时间,例如2ms或者10ms。该T2 M为第M个RS的周期。
可理解,对于UE何时确定目标周期,本申请实施例不作限定。例如,UE可以在确定 M个RS之后确定目标周期,或者,UE也可以在上报波束失败实例指示之前确定目标周期等等。
506、UE高层确定波束失败,指示UE物理层发起波束失败恢复。
本申请实施例中,UE高层可在一定时间内接收到一定数目的波束失败实例指示后,确定波束失败。作为示例,UE物理层可2ms上报一次,若UE高层在100ms内接收到了4次(或连续4次)波束失败实例指示,则UE高层可取得波束失败。其中,UE可通过基站配置的计时器来确定该一定时间,以及通过基站配置的计数器来确定该一定数目。
作为示例,UE高层确定波束失败的方法如:UE利用BFD RS监测无线链路质量时,该无线链路质量低于门限值。
507、UE发起波束失败恢复请求。
可理解,对于UE发起波束失败恢复请求的具体方法可参考图2-图4所示的方法,即UE可根据图2-图4所示的方法与基站之间执行波束失败恢复流程,对于该波束失败恢复的具体流程这里不作一一详述。
可选的,用于发送波束失败恢复请求的PUCCH资源可以与传输节点关联。例如,该PUCCH资源可以关联一个高层索引(或CORESET pool index等)。在配置了多个用于发送波束失败恢复请求的PUCCH资源的情况下,UE根据BFD RS关联的CORESET对应的CORESET pool index选择PUCCH资源。又例如,该PUCCH资源可以关联一个CORESET,而CORESET关联一个高层索引(或CORESET pool index)。UE根据BFD RS关联的CORESET来确定PUCCH资源。例如,UE根据传输节点信息选择用于发送波束失败恢复请求的PUCCH资源时,如果BFD RS关联的是传输节点1,可以选择传输节点2关联的PUCCH资源来用于发送波束失败恢复请求。这是因为UE根据传输节点1的RS的测量确定出现波束失败的情况,说明传输节点1与UE的通信链路质量不好,不再适合接收波束失败恢复请求。可选的,UE根据传输节点信息选择用于发送波束失败恢复请求的PUCCH资源时,如果BFD RS关联的是传输节点1,也可以选择传输节点1关联的PUCCH资源来用于发送波束失败恢复请求。这是因为UE需要优先恢复与传输节点1的通信。
可选的,用于发送波束失败恢复请求的PUSCH资源(发送MAC CE的资源)可以与传输节点关联。例如,在有多个上行资源的情况下,UE根据调度PUSCH的DCI对应的CORESET确定用于发送MAC CE的PUSCH。例如,BFD RS关联的是传输节点1,可以根据传输节点2关联的CORESET来确定用于发送波束失败恢复请求的PUSCH。
可选的,用于发送波束失败恢复请求的PUCCH/PUSCH资源与新可用波束关联。如果UE确定的新可用波束关联的是传输节点1,可以选择传输节点1关联的PUCCH资源来用于发送波束失败恢复请求。这是因为UE已经确定传输节点1与UE能够通过新可用波束进行通信。
可选的,UE检测调度上行传输的下行控制信息DCI来确定发送波束失败恢复请求的PUCCH/PUSCH是否被基站正确接收时,根据BFD RS关联的CORESET对应的CORESET pool index选择检测DCI的CORESET和搜索空间。例如,如果BFD RS关联的是传输节点1,可以选择传输节点2关联的CORESET和搜索空间来检测DCI用于确定发送波束失败恢复请求的PUCCH/PUSCH是否被基站正确接收。例如,如果BFD RS关联的是传输节点1, 可以选择传输节点1关联的CORESET和搜索空间来检测DCI用于确定发送波束失败恢复请求的PUCCH/PUSCH是否被基站正确接收。
可选的,UE检测调度上行传输的下行控制信息DCI来确定发送波束失败恢复请求的PUCCH/PUSCH是否被基站正确接收时,根据与新可用波束关联的CORESET或者CORESET pool index选择检测DCI的CORESET和搜索空间。
本申请实施例可应用于解决UE未被配置用于监测无线链路质量的BFD RS的场景下,UE如何从N个RS中确定出M个RS用于监测无线链路质量,从而不仅可减少UE的监测复杂度,满足监测出的的BFD RS的数量小于数量阈值;而且通过对同一个传输节点进行监测,有利于保证UE与基站连接的鲁棒性,保证UE能够与一个传输节点连接。另外,通过M个BFD RS监测无线无线质量,可有效降低UE功耗,提高用户满意度。
在最近一次标准会议中,对于辅小区BFR,每个辅小区每个BWP最大能配置的BFD RS数目为2。如果基站不向UE提供beamFailureDetectionResourceList参数,那么UE确定BFD RS集合q0时,应该包括与其所监测PDCCH的控制信道资源集合CORESET的TCI状态中的参考信号集合中的参考信号标识相同的周期性的CSI-RS资源。注意到一个辅小区一个BWP最大能配置的CORESET数目是3个,如果开启了多传输节点模式,那么最大可配置的CORESET数目是5个。所以,上次标准会议的一个遗留问题是,在最大CORESET数目大于2时,是否规范UE行为。从UE角度看,UE需要一个清晰和低复杂度的方法来评估无线链路质量。从网络设备角度看,一个与UE稳定的连接应该比同时使用多个传输节点服务一个UE有更高的优先级。因此,如果一定要作出选择来满足最大BFD RS数目为2的要求,UE可监测一个TRP的参考信号,这一点可以通过CORESET配置中关联的高层参数CORESETPoolIndex来确定。如果关联一个相同的CORESETPoolIndex的CORESET的参考信号数目仍然大于2,那么UE按照搜索空间监测周期从小到大的顺序选择搜索空间关联的CORESET的激活TCI状态中的参考信号。如果相同的搜索空间监测周期关联的CORESET数目大于1,那么UE按照CORESET ID从大到小选择(For SCell BFR,in the last meeting,the maximum number of BFD RS is set to 2per BWP per SCell.If beamFailureDetectionResourceList is not provided,UE determines the BFD RS set to include periodic CSI-RS resource configuration indexes with same values as the RS indexes in the RS sets indicated by TCI-State for respective CORESETs that the UE uses for monitoring PDCCH.It is noticed that the number of configured CORESETs can be up to 3per BWP for a SCell.In addition,if multi TRP mode is enabled,the number of configured CORESETs can be up to 5per BWP for a SCell.Therefore,a FFS point from the last meeting is to decide whether to specify UE behaviour if number of configured CORESETs is more than 2in RAN1.From UE implementation perspective,it is needed to have a clear and low-complexity method to assess radio link quality.From network perspective,a stable connection with UE has a higher priority than serving a UE with multiple TRPs.Therefore,if a down-selection has to be done to satisfy the requirement of the maximum number of BFD RS per BWP per SCell,UE should monitor only the RSs from one TRP,which can be identified from higher layer parameter CORESETPoolIndex per CORESET configuration.If the number of RSs for respective CORESETs associated with the  same CORESETPoolIndex is still larger than 2,the UE selects 2RSs provided for active TCI states for PDCCH receptions in CORESETs associated with the search space sets in an order from the shortest monitoring periodicity.If more than one CORESETs are associated with search space sets having same monitoring periodicity,the UE determines the order of the CORESET from the highest CORESET index.)。
对于图5所示的方法,还可理解为:UE确定BFD RS集合时,应包括关联了相同CORESETPoolIndex的控制信道资源集合CORESET的TCI状态中QCL Type D的参考信号(Support UE to determine BFD RS set to include RS indexes with QCL-TypeD configuration for the corresponding TCI states for respective CORESETs associated with the same CORESETPoolIndex.)。
图6是本申请实施例提供的一种链路质量监测方法的流程示意图,该方法可应用于图1所示的通信系统,如图6所示,该方法包括:
601、基站通过无线资源控制(radio resource control,RRC)信令向UE发送配置信息,该UE接收该配置信息。
602、UE根据配置信息确定N个RS,N≥2。
可理解,对于上述配置信息,以及上述N个RS的具体描述可参考前述实施例,这里不再一一详述。
603、UE从N个RS中确定M个RS,该N个RS的QCL类型D相同,且该M个RS对应的传输节点信息不同,M<N,且M≤数量阈值。
可理解,上述603可替换为:从N个RS中确定M个RS,该N个RS为控制资源集合TCI状态包括的QCL类型D对应的RS,且该M个RS对应的传输节点信息不同,M<N,且M≤数量阈值。对于该N个RS的具体描述可参考前述实施例,这里不作详述。
本申请的一些实施例中,对于UE如何从N个RS中确定M个RS的方法可如下所示:
UE从N个参考信号中确定第一传输节点对应的M1个参考信号,第一传输节点为控制资源集合对应的传输节点信息中的任意一个传输节点;
当M1>1时,根据第一传输节点对应的控制资源集合关联的搜索空间的周期大小从M1个参考信号中确定M个参考信号中的一个参考信号。
本申请实施例中,如控制资源集合配置的传输节点信息中的传输节点包括X个,则UE可根据该X个传输节点分别对应的RS来确定M个RS。作为示例,X=2,即传输节点信息中包括两个传输节点,则UE从N个RS中确定第一传输节点对应的M1个RS,以及从N个RS中确定第二传输节点对应的M2个RS(M1+M2=N)。可理解,该UE可分别从第一传输节点和第二传输节点中确定M1个RS和M2个RS,或者,该UE可同时从第一传输节点和第二传输节点中确定等等,本申请实施例对于具体的实现方式不作限定。当M1>1时,根据第一传输节点对应的控制资源集合关联的搜索空间的监测周期大小从M1个RS中确定一个RS,当M2>1时,根据第二传输节点对应的控制资源集合关联的搜索空间的监测周期大小从M2个RS中确定一个RS。其中,M=2,且数量阈值为2,或者,数量阈值大于2。可理解,对于UE从M1个RS中确定一个RS的其他方式可参考图5所示的方法,这里不再详述。
对于不同的控制资源集合与搜索空间的关联关系,本申请实施例提供的方法可分为如下几种方式:
可理解,以下以传输节点信息对应的传输节点的个数为2(也可理解为M=2)为例,在具体实现中,传输节点信息对应的传输节点的个数可能会更多。
方式一、
第一传输节点对应的控制资源集合为一个如控制资源集合1,且该控制资源集合1关联的搜索空间为一个,如搜索空间1;第二传输节点对应的控制资源集合为一个如控制资源集合1,且该控制资源集合1关联的搜索空间为一个,如搜索空间2。则UE可根据该搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的RS中选择一个RS用于监测无线链路质量,以及根据该搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的RS中选择一个RS。
方式二、
第一传输节点对应的控制资源集合为一个如控制资源集合1,且该控制资源集合1关联的搜索空间为多个,如搜索空间1、搜索空间2和搜索空间3;第二传输节点对应的控制资源集合为一个如控制资源集合2,且该控制资源集合2关联的搜索空间为多个,如搜索空间4和搜索空间5。则UE可根据搜索空间的监测周期大小从小到大的顺序确定第一传输节点对应的控制资源集合关联的搜索空间,即搜索空间1;以及确定第二传输节点对应的控制资源集合关联的搜索空间,即搜索空间4。以及UE根据搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的RS中选择一个RS,根据搜索空间4关联的控制资源集合2的激活TCI状态对应的QCL类型D的RS中选择一个RS。
可理解,在控制资源集合关联的搜索空间之间存在交集的情况下,UE也可根据方式二确定M个RS。例如,根据搜索空间的监测周期大小确定第一传输节点和第二传输节点对应的控制资源集合关联的搜索空间均为搜索空间2,则UE可从控制资源集合1的激活TCI状态对应的QCL类型D的RS中选择一个RS,以及从控制资源集合2的激活TCI状态对应的QCL类型D的RS中选择一个RS。
方式一、方式二中,第一传输节点对应的控制资源集合和第二传输节点对应的控制资源集合分别为一个,该情况下,UE还可以直接从第一传输节点对应的控制资源集合的激活TCI状态对应的QCL类型D的RS中选择一个RS,以及从第二传输节点对应的控制资源集合的激活TCI状态对应的QCL类型D的RS中选择一个RS。
方式三、
第一传输节点对应的控制资源集合为多个,如控制资源集合1和控制资源集合2;该控制资源集合1关联的搜索空间为一个或多个,如搜索空间1和搜索空间2,该控制资源集合2关联的搜索空间为一个或多个,如搜索空间2和搜索空间3(或者不存在交集,等等)。第二传输节点对应的控制资源集合为一个,则UE可根据搜索空间的监测周期大小从小到大的顺序确定搜索空间1;以及根据搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的RS中选择一个RS。又或者,UE确定的搜索空间为搜索空间2,则UE可根据控制资源集合的ID来确定控制资源集合等,可参考以上实施例的描述。以及UE可根据从第二传输节点对应的控制资源集合中确定一个RS。同样的,对于第一传输节 点对应的控制资源集合为一个,第二传输节对应的控制资源集合为多个,UE也可利用以上所示方式确定两个RS。
方式四、
第一传输节点对应的控制资源集合为多个,如控制资源集合1和控制资源集合2,其中,控制资源集合1关联搜索空间1,控制资源集合2关联搜索空间2和搜索空间3。以及第二传输节点对应的控制资源集合为多个,如控制资源集合3和控制资源集合4,其中,控制资源集合3关联搜索空间4,控制资源集合4关联搜索空间3和搜索空间5。则UE可分别根据搜索空间的监测周期从小到大的顺序确定搜索空间,如搜索空间1关联的控制资源集合1的激活TCI状态对应的QCL类型D的RS中选择一个RS,以及搜索空间4关联的控制资源集合4中选择一个RS。或者,若UE确定的搜索空间为搜索空间3,则UE可分别从控制资源集合2和控制资源集合4中选择一个;或者,UE可根据控制资源集合的ID选择控制资源集合2,从而从控制资源集合2中选择一个(该情况下,M=1)。
方式三和方式四中,第一传输节点和第二传输节点关联的控制资源集合中,至少有一个传输节点关联的控制资源集合为一个。该情况下,例如,在有一个传输节点关联的控制资源集合为一个的情况下如第一传输节点,UE可从该第一传输节点对应的控制资源集合中选择一个RS。以及根据搜索空间的监测周期大小来确定搜索空间,以及根据该确定的搜索空间关联的控制资源集合中的RS中选择一个RS。又例如,在均关联多个控制资源集合的情况下,UE便可根据搜索空间的监测周期大小来分别确定搜索空间,以及分别根据该确定的搜索空间关联的控制资源集合中的RS中选择一个RS。
可理解,以上所示的各个控制资源集合和搜索空间仅为示例,不应将其理解为对本申请实施例的限定。
604、基站发送RS,UE接收(或测量)该RS。可理解,该RS可理解为UE接收确定的M个RS中的RS。
605、UE物理层向UE高层上报波束失败实例指示。
可理解,本申请实施例还提供了一种何时上报指示信息的方法,如:
UE根据该M个RS对应的周期确定目标周期;其中,该目标周期为上报指示信息的周期,该指示信息用于指示该无线链路质量低于门限值,一个参考信号对应一个周期。
该实施例中,指示信息可包括波束失败实例指示。
其中,该目标周期可满足如下条件:
T=max{T1,T2}
T2=min{T2 1,T2 2,…,T2 M}
其中,该T1为绝对时间,该T2 M为第M个RS的周期。
可理解,对于UE何时确定目标周期,本申请实施例不作限定。例如,UE可以在确定M个RS之后确定目标周期,或者,UE也可以在上报波束失败实例指示之前确定目标周期等等。
606、UE高层确定波束失败,指示UE物理层发起波束失败恢复。
607、UE发起波束失败恢复请求。
可理解,对于UE发起波束失败恢复请求的具体方法可参考图2-图4所示的方法,这 里不作一一详述。
本申请实施例可应用于解决UE未被配置用于监测无线链路质量的BFD RS的场景下,UE如何从N个RS中确定出M个RS用于监测无线链路质量,从而不仅可减少UE的监测复杂度,满足监测出的的RS的数量小于数量阈值;而且通过对不同传输节点对应的RS进行监测,有利于保证UE同时与不同的传输节点连接。另外,通过M个RS监测无线无线质量,可有效降低UE功耗,提高用户满意度。
本申请实施例中,对于执行图5或图6的方法中,UE何时执行图5所示的方法,何时执行图6所示的方法,可如下所示:
1.为UE配置的多个CORESET,如果关联CORESETPoolIndex(还可称为高层索引等等)相同,则执行图5。为UE配置的多个CORESET,如果关联CORESETPoolIndex不全相同,则执行图6。
2.为UE配置的用于发送波束恢复失败请求的PUCCH资源为一个时,则执行图5。为UE配置的用于发送波束恢复失败请求的PUCCH资源多于一个时,则执行图6。
3.为UE配置的用于发送波束恢复失败请求的PUCCH资源关联CORESETPoolIndex相同时,则执行图5。为UE配置的用于发送波束恢复失败请求的PUCCH资源关联CORESETPoolIndex不全相同时,则执行图6。
4.为UE配置的用于发送波束恢复失败请求的PUCCH资源位于高频(frequency range2,>7.125GHz)小区时,则执行图5。为UE配置的用于发送波束恢复失败请求的PUCCH资源资源位于低频(frequency range 1,<=7.125GHz)小区时,则执行图6。
5.为UE配置了回退模式时,则执行图5。没为UE配置回退模式时,则执行图6。
6.UE具有单天线面板能力时,执行图5。UE具多单天线面板能力时,则执行图6。
根据以上所示的方法,UE可根据自身所满足的条件,执行图5所示的从N个参考信号中确定M个参考信号的方法,或者,执行图6所示的从N个参考信号中确定M个参考信号的方法。
可理解,以上各个实施例各有侧重,其中一个实施例中未详细描述的实现方式可参考其他实施例,这里不再一一赘述。例如,对于图6所示方法的具体实现方式,可参考图5所示方法的描述。进一步的,本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现。
以下将详细描述本申请实施例所提供的通信装置。
图7是本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为终端设备,也可以为芯片。该通信装置用于执行本申请实施例所描述的方法,如图7所示,该通信装置包括:
处理单元701,用于从N个参考信号中确定M个参考信号;其中,该N个参考信号的准共址类型D相同,且该M个参考信号对应的传输节点信息相同,该N≥2,该M<该N,该M≤数量阈值;该处理单元701,还用于利用该M个参考信号监测无线链路质量。
在一种可能的实现方式中,处理单元701,用于从N个参考信号中确定M个参考信号; 其中,所述N个参考信号为控制资源集合(control resource set,CORESET)传输配置编号(transmission configuration index,TCI)状态包括的准共址(quasi-co-location,QCL)类型D对应的参考信号,且所述M个参考信号对应的传输节点信息相同,其中,N≥2,M<N,M≤数量阈值;以及还用于利用所述M个参考信号监测无线链路质量。
在一种可能的实现方式中,该传输节点信息用于指示传输节点的标识,该标识由网络设备通过无线资源控制RRC信令配置。
在一种可能的实现方式中,该传输节点信息包含于控制资源集合中,该控制资源集合根据配置信息得到,该配置信息由该网络设备配置。
在一种可能的实现方式中,该处理单元701,具体用于从该N个参考信号中确定第一传输节点对应的M1个参考信号;以及当该M1>该M时,根据该第一传输节点对应的控制资源集合关联的搜索空间的周期大小从该M1个参考信号中确定该M个参考信号。
在一种可能的实现方式中,该第一传输节点包括该通信装置初始接入时,服务该通信装置的传输节点;或者,该第一传输节点包括网络设备配置的该通信装置回退到单传输节点时,服务该通信装置的传输节点。
在一种可能的实现方式中,该通信装置未被配置用于监测该无线链路质量的参考信号。
在一种可能的实现方式中,该装置还包括:收发单元702,用于在该无线链路质量低于门限值的情况下,发起波束失败恢复流程。
在一种可能的实现方式中,该处理单元701,还用于根据该M个参考信号对应的周期确定目标周期;其中,该目标周期为上报指示信息的周期,该指示信息用于指示该无线链路质量低于该门限值,一个参考信号对应一个周期。
在一种可能的实现方式中,该目标周期满足如下条件:
T=max{T1,T2}
T2=min{T2 1,T2 2,…,T2 M}
其中,该T1为绝对时间,该T2 M为第M个参考信号的周期。
在本申请的一些实施例中,处理单元701,还可用于从N个参考信号中确定M个参考信号;其中,该N个参考信号的准共址类型D相同,且该M个参考信号中每个参考信号对应的传输节点信息不同,该N≥2,该M<该N,该M≤数量阈值;该处理单元,还用于利用该M个参考信号监测无线链路质量。
在一种可能的实现方式中,处理单元701,用于从N个参考信号中确定M个参考信号;其中,所述N个参考信号为控制资源集合(control resource set,CORESET)传输配置编号(transmission configuration index,TCI)状态包括的准共址(quasi-co-location,QCL)类型D对应的参考信号,且所述M个参考信号对应的传输节点信息不同,其中,N≥2,M<N,M≤数量阈值;以及还用于利用所述M个参考信号监测无线链路质量。
在一种可能的实现方式中,该传输节点信息用于指示传输节点的标识,该标识由网络设备通过无线资源控制RRC信令配置。
在一种可能的实现方式中,该传输节点信息包含于控制资源集合中,该控制资源集合根据配置信息得到,该配置信息由该网络设备配置。
在一种可能的实现方式中,该处理单元701,还用于根据该传输节点信息从该N个参 考信号中确定第一传输节点对应的M1个参考信号,该第一传输节点为该传输节点信息对应的传输节点中的任意一个传输节点;以及当该M1>1时,根据该第一传输节点对应的控制资源集合关联的搜索空间的周期大小从该M1个参考信号中确定该M个参考信号中的一个参考信号。
在一种可能的实现方式中,该通信装置未被配置用于监测该无线链路质量的参考信号。
在一种可能的实现方式中,该收发单元702,还用于在该无线链路质量低于门限值的情况下,发起波束失败恢复流程。
在一种可能的实现方式中,该处理单元701,还用于根据该M个参考信号对应的周期确定目标周期;其中,该目标周期为上报指示信息的周期,该指示信息用于指示该无线链路质量低于该门限值,一个参考信号对应一个周期。
在一种可能的实现方式中,该目标周期满足如下条件:
T=max{T1,T2}
T2=min{T2 1,T2 2,…,T2 M}
其中,该T1为绝对时间,该T2 M为第M个参考信号的周期。
需要理解的是,当上述通信装置是终端设备或终端设备中实现上述功能的部件时,处理单元701可以是一个或多个处理器,收发单元702可以是收发器,或者收发单元还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,或者发送单元和接收单元集成于一个器件,例如收发器。
当上述通信装置是芯片时,处理单元701可以是一个或多个处理器,收发单元702可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,或者发送单元和接收单元集成于一个单元,例如输入输出接口。
例如,接收单元可用于执行图5所示的501和504所示的方法。又例如,接收单元还可用于执行图6所示的601和604所示的方法。又或者,接收单元执行图2和/或图4所示的相应的方法。以及处理单元701还可用于执行图2和/或图4所示的相应的方法。
可理解,对于图7所示的各个单元的实现可以参考前述实施例的相应描述。
如图8所示为本申请实施例提供的一种通信装置80,用于实现上述方法中终端设备的功能。当实现终端设备的功能时,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该装置还可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置80包括至少一个处理器820,用于实现本申请实施例提供的方法中终端设备的功能。装置80还可以包括通信接口810。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口810用于装置80中的装置可以和其它设备进行通信。处理器820利用通信接口810收发数据,并用于实现上述方法实施例所述的方法。
装置80还可以包括至少一个存储器830,用于存储程序指令和/或数据。存储器830和处理器820耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器820可 能和存储器830协同操作。处理器820可能执行存储器830中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口810、处理器820以及存储器830之间的具体连接介质。本申请实施例在图8中以存储器830、处理器820以及通信接口810之间通过总线840连接,总线在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
装置80具体是芯片或者芯片系统时,通信接口810所输出或接收的可以是基带信号。装置80具体是设备时,通信接口810所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
作为示例,图9为本申请实施例提供的一种终端设备90的结构示意图。该终端设备可执行如图2-图6所示的方法,或者,该终端设备也可执行如图7所示的终端设备的操作。
为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,终端设备90包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图2-图6所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备90还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻 辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
示例性的,在申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备90的收发单元801,将具有处理功能的处理器视为终端设备90的处理单元902。
如图9所示,终端设备90可以包括收发单元901和处理单元902。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元901中用于实现接收功能的器件视为接收单元,将收发单元901中用于实现发送功能的器件视为发送单元,即收发单元901包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,收发单元901、处理单元902可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。
例如,收发单元901可用于执行图5所示的501和504所示的方法。又例如,收发单元901可用于执行图6所示的601和604所示的方法。例如,处理单元902还可用于执行图5所示的502和503等等所示的方法。又例如,处理单元902还可用于执行图6所示的602和603等等所示的方法。
例如,收发单元901还可用于执行图2所示的204和205所示的方法。又例如,收发单元901还可用于执行图4所示的404和405所示的方法。例如,处理单元902可用于执行图2所示的201、202和204所示的方法。又例如,处理单元902还可用于执行图4所示的401、402和404所示的方法。
又如,在一个实施例中,收发单元901还可用于执行收发单元702所示的方法。
本申请实施例中的通信装置为终端设备时,还可以参照图10所示的设备。该设备包括处理器1010,发送数据处理器1020,接收数据处理器1030。上述实施例中的处理单元701可以是图10中的处理器1010,并完成相应的功能。上述实施例中的接收单元可以是图10中的接收数据处理器1030,发送单元可以是图10中的发送数据处理器1020。虽然图10中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
可理解的是,本申请实施例中的终端设备的实现方式,具体可参考前述各个实施例,这里不再详述。
可理解,根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2-图6所示实施例中的方法。进一步的,可使得该计算机根据本申请实施例提供的各个场景来执行图2-图6所示的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2-图6所示实施例中的方法。进一步的,可使得该计算机根据本申请实施例提供的各个场景来执行图2-图6所示的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的终端设备以及网络设备。其中,终端设备可用于执行本申请实施例提供的图2-图6所示的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬 件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (46)

  1. 一种链路质量监测方法,其特征在于,所述方法包括:
    从N个参考信号中确定M个参考信号;其中,所述N个参考信号为控制资源集合CORESET传输配置编号TCI状态包括的准共址QCL类型D对应的参考信号,且所述M个参考信号对应的传输节点信息相同,其中,N≥2,M<N,M≤数量阈值;
    利用所述M个参考信号监测无线链路质量。
  2. 根据权利要求1所述的方法,其特征在于,所述传输节点信息用于指示传输节点的标识。
  3. 根据权利要求1或2所述的方法,其特征在于,所述传输节点信息包含于所述控制资源集合中,所述控制资源集合根据配置信息得到,所述配置信息由网络设备配置。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述从N个参考信号中确定M个参考信号,包括:
    从所述N个参考信号中确定第一传输节点对应的M1个参考信号;
    当M1>M时,根据所述第一传输节点对应的控制资源集合关联的搜索空间的周期大小从所述M1个参考信号中确定所述M个参考信号。
  5. 根据权利要求4所述的方法,其特征在于,所述第一传输节点包括终端设备初始接入时,服务所述终端设备的传输节点;或者,所述第一传输节点包括网络设备配置的所述终端设备回退到单传输节点时,服务所述终端设备的传输节点。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,终端设备未被配置用于监测所述无线链路质量的参考信号。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    在所述无线链路质量低于门限值的情况下,发起波束失败恢复流程。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    根据所述M个参考信号对应的周期确定目标周期;其中,所述目标周期为上报指示信息的周期,所述指示信息用于指示所述无线链路质量低于所述门限值,一个参考信号对应一个周期。
  9. 根据权利要求8所述的方法,其特征在于,所述目标周期满足如下条件:
    T=max{T1,T2}
    T2=min{T2 1,T2 2,…,T2 M}
    其中,所述T1为绝对时间,所述T2 M为第M个参考信号的周期。
  10. 一种链路质量监测方法,其特征在于,所述方法包括:
    从N个参考信号中确定M个参考信号;其中,所述N个参考信号为资源控制集合CORESET传输配置编号TCI状态包括的准共址QCL类型D对应的参考信号,且所述M个参考信号中每个参考信号对应的传输节点信息不同,其中,N≥2,M<N,M≤数量阈值;
    利用所述M个参考信号监测无线链路质量。
  11. 根据权利要求10所述的方法,其特征在于,所述传输节点信息用于指示传输节点的标识。
  12. 根据权利要求10或11所述的方法,其特征在于,所述传输节点信息包含于所述控制资源集合中,所述控制资源集合根据配置信息得到,所述配置信息由所述网络设备配置。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述从N个参考信号中确定M个参考信号包括:
    从所述N个参考信号中确定第一传输节点对应的M1个参考信号,所述第一传输节点为所述控制资源集合的传输节点信息中的任意一个传输节点;
    当M1>1时,根据所述第一传输节点对应的控制资源集合关联的搜索空间的周期大小从所述M1个参考信号中确定所述M个参考信号中的一个参考信号。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,终端设备未被配置用于监测所述无线链路质量的参考信号。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述方法还包括:
    在所述无线链路质量低于门限值的情况下,发起波束失败恢复流程。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    根据所述M个参考信号对应的周期确定目标周期;其中,所述目标周期为上报指示信息的周期,所述指示信息用于指示所述无线链路质量低于所述门限值,一个参考信号对应一个周期。
  17. 根据权利要求16所述的方法,其特征在于,所述目标周期满足如下条件:
    T=max{T1,T2}
    T2=min{T2 1,T2 2,…,T2 M}
    其中,所述T1为绝对时间,所述T2 M为第M个参考信号的周期。
  18. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于从N个参考信号中确定M个参考信号;其中,所述N个参考信号为控制资源集合CORESET传输配置编号TCI状态包括的准共址QCL类型D对应的参考信号,且所述M个参考信号对应的传输节点信息相同,其中,N≥2,M<N,M≤数量阈值;
    所述处理单元,还用于利用所述M个参考信号监测无线链路质量。
  19. 根据权利要求18所述的装置,其特征在于,所述传输节点信息用于指示传输节点的标识。
  20. 根据权利要求18或19所述的装置,其特征在于,所述传输节点信息包含于所述控制资源集合中,所述控制资源集合根据配置信息得到,所述配置信息由所述网络设备配置。
  21. 根据权利要求18-20任一项所述的装置,其特征在于,
    所述处理单元,具体用于从所述N个参考信号中确定第一传输节点对应的M1个参考信号;以及当M1>M时,根据所述第一传输节点对应的控制资源集合关联的搜索空间的周期大小从所述M1个参考信号中确定所述M个参考信号。
  22. 根据权利要求21所述的装置,其特征在于,所述第一传输节点包括通信装置初始接入时,服务所述通信装置的传输节点;或者,所述第一传输节点包括网络设备配置的所述通信装置回退到单传输节点时,服务所述通信装置的传输节点。
  23. 根据权利要求18-22任一项所述的装置,其特征在于,所述通信装置未被配置用于监测所述无线链路质量的参考信号。
  24. 根据权利要求18-23任一项所述的装置,其特征在于,所述装置还包括:
    收发单元,用于在所述无线链路质量低于门限值的情况下,发起波束失败恢复流程。
  25. 根据权利要求24所述的装置,其特征在于,
    所述处理单元,还用于根据所述M个参考信号对应的周期确定目标周期;其中,所述目标周期为上报指示信息的周期,所述指示信息用于指示所述无线链路质量低于所述门限值,一个参考信号对应一个周期。
  26. 根据权利要求25所述的装置,其特征在于,所述目标周期满足如下条件:
    T=max{T1,T2}
    T2=min{T2 1,T2 2,…,T2 M}
    其中,所述T1为绝对时间,所述T2 M为第M个参考信号的周期。
  27. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于从N个参考信号中确定M个参考信号;其中,所述N个参考信号为控制资源集合CORESET传输配置编号TCI状态包括的准共址QCL类型D对应的参考信号,且所述M个参考信号中每个参考信号对应的传输节点信息不同,其中,N≥2,M<N,M≤数量阈值;
    所述处理单元,还用于利用所述M个参考信号监测无线链路质量。
  28. 根据权利要求27所述的装置,其特征在于,所述传输节点信息用于指示传输节点的标识。
  29. 根据权利要求27或28所述的装置,其特征在于,所述传输节点信息包含于控制资源集合中,所述控制资源集合根据配置信息得到,所述配置信息由所述网络设备配置。
  30. 根据权利要求27-29任一项所述的装置,其特征在于,
    所述处理单元,还用于从所述N个参考信号中确定第一传输节点对应的M1个参考信号,所述第一传输节点为所述控制资源集合的传输节点信息中的任意一个传输节点;以及当M1>1时,根据所述第一传输节点对应的控制资源集合关联的搜索空间的周期大小从所述M1个参考信号中确定所述M个参考信号中的一个参考信号。
  31. 根据权利要求27-30任一项所述的装置,其特征在于,所述通信装置未被配置用于监测所述无线链路质量的参考信号。
  32. 根据权利要求27-31任一项所述的装置,其特征在于,所述装置还包括:
    收发单元,用于在所述无线链路质量低于门限值的情况下,发起波束失败恢复流程。
  33. 根据权利要求32所述的装置,其特征在于,
    所述处理单元,还用于根据所述M个参考信号对应的周期确定目标周期;其中,所述目标周期为上报指示信息的周期,所述指示信息用于指示所述无线链路质量低于所述门限值,一个参考信号对应一个周期。
  34. 根据权利要求33所述的装置,其特征在于,所述目标周期满足如下条件:
    T=max{T1,T2}
    T2=min{T2 1,T2 2,…,T2 M}
    其中,所述T1为绝对时间,所述T2 M为第M个参考信号的周期。
  35. 一种通信装置,其特征在于,包括:处理器,当所述处理器执行存储器中的计算机程序或指令时,如权利要求1-9任一项所述的方法被执行。
  36. 一种通信装置,其特征在于,包括:处理器,当所述处理器执行存储器中的计算机程序或指令时,如权利要求10-17任一项所述的方法被执行。
  37. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1-9任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求10-17任一项所述的方法。
  39. 一种通信装置,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于接收信号或者发送信号;
    所述存储器,用于存储程序代码;
    所述处理器,用于执行所述所述程序代码,以使所述通信装置执行如权利要求1-9任一项所述的方法。
  40. 一种通信装置,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于接收信号或者发送信号;
    所述存储器,用于存储程序代码;
    所述处理器,用于执行所述程序代码,以使所述通信装置执行如权利要求10-17任一项所述的方法。
  41. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1-9任一项所述的方法。
  42. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求10-17任一项所述的方法。
  43. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1-9任一项所述的方法被实现。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使如权利要求10-17任一项所述的方法被实现。
  45. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被执行时,使如权利要求1-9任一项所述的方法被实现。
  46. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被执行时,使如权利要求10-17任一项所述的方法被实现。
PCT/CN2019/116819 2019-11-08 2019-11-08 链路质量监测方法及装置 WO2021088032A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116819 WO2021088032A1 (zh) 2019-11-08 2019-11-08 链路质量监测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116819 WO2021088032A1 (zh) 2019-11-08 2019-11-08 链路质量监测方法及装置

Publications (1)

Publication Number Publication Date
WO2021088032A1 true WO2021088032A1 (zh) 2021-05-14

Family

ID=75849496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116819 WO2021088032A1 (zh) 2019-11-08 2019-11-08 链路质量监测方法及装置

Country Status (1)

Country Link
WO (1) WO2021088032A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224802A (zh) * 2018-09-28 2019-09-10 华为技术有限公司 传输信号的方法和通信装置
WO2019197044A1 (en) * 2018-04-13 2019-10-17 Nokia Technologies Oy Channel state information reciprocity support for beam based operation
CN110351756A (zh) * 2018-04-04 2019-10-18 维沃移动通信有限公司 波束失败恢复方法、终端及网络设备
CN110351112A (zh) * 2018-03-27 2019-10-18 英特尔公司 用于新空口中的波束故障检测的设备和方法
CN110392380A (zh) * 2018-04-16 2019-10-29 英特尔公司 用于drx模式中的波束管理和波束故障恢复的装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351112A (zh) * 2018-03-27 2019-10-18 英特尔公司 用于新空口中的波束故障检测的设备和方法
CN110351756A (zh) * 2018-04-04 2019-10-18 维沃移动通信有限公司 波束失败恢复方法、终端及网络设备
WO2019197044A1 (en) * 2018-04-13 2019-10-17 Nokia Technologies Oy Channel state information reciprocity support for beam based operation
CN110392380A (zh) * 2018-04-16 2019-10-29 英特尔公司 用于drx模式中的波束管理和波束故障恢复的装置和方法
CN110224802A (zh) * 2018-09-28 2019-09-10 华为技术有限公司 传输信号的方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Remaining issues on beam measurement and reporting", 3GPP DRAFT; R1-1808221_REMAINING ISSUES ON BEAM MANAGEMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051515606 *

Similar Documents

Publication Publication Date Title
US11477838B2 (en) Communication method and communications apparatus for handling beam failure
WO2020164601A1 (zh) 传输配置编号状态指示的方法和通信装置
WO2019096292A1 (zh) 参考信号信道特征配置方法和装置、及通信设备
EP3614715B1 (en) Method for receiving beam recovery request, and network device
CN111510267B (zh) 波束指示的方法和通信装置
WO2018001113A1 (zh) 通信方法、装置和系统
WO2018228542A1 (zh) 通信方法和装置
WO2020024756A1 (zh) 通信方法及装置
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2021052179A1 (zh) 一种上行数据传输方法及装置
WO2020192566A1 (zh) 波束失败恢复方法和通信装置
US11985679B2 (en) Wireless communication method and device
KR20200142062A (ko) 데이터 전송 방법, 장치, 및 컴퓨터-판독 가능 저장 매체
WO2022007967A1 (zh) 一种参考信号资源的配置方法和装置
WO2020221349A1 (zh) 波束失败上报的方法和装置
CN109842499A (zh) 一种无线通信方法及装置
WO2021087889A1 (zh) 一种配置cli测量的方法及通信装置
WO2022077387A1 (zh) 一种通信方法及通信装置
US20220167339A1 (en) Beam failure recovery method and apparatus
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
WO2022199346A1 (zh) 指示方法及相关产品
WO2021088032A1 (zh) 链路质量监测方法及装置
WO2022099660A1 (zh) 一种波束切换的方法及装置
CN110149189B (zh) 一种信息传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951502

Country of ref document: EP

Kind code of ref document: A1