WO2018202010A1 - 一种接收波束恢复请求的方法及网络设备 - Google Patents

一种接收波束恢复请求的方法及网络设备 Download PDF

Info

Publication number
WO2018202010A1
WO2018202010A1 PCT/CN2018/085113 CN2018085113W WO2018202010A1 WO 2018202010 A1 WO2018202010 A1 WO 2018202010A1 CN 2018085113 W CN2018085113 W CN 2018085113W WO 2018202010 A1 WO2018202010 A1 WO 2018202010A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal device
network device
request sequence
index
Prior art date
Application number
PCT/CN2018/085113
Other languages
English (en)
French (fr)
Inventor
周恩治
向高
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18793913.7A priority Critical patent/EP3614715B1/en
Publication of WO2018202010A1 publication Critical patent/WO2018202010A1/zh
Priority to US16/673,498 priority patent/US10893566B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a network device for receiving a beam recovery request.
  • the above problem can be solved by using a high frequency band.
  • the 5th generation (5G) mobile communication system that is undergoing standardization work will be considered to be deployed in a high frequency band with a carrier frequency greater than 6 GHz.
  • the high frequency band contains a large amount of available frequency resources, which can solve the problem of the current lack of frequency in the mobile communication system, thereby realizing the system. A large increase in capacity.
  • the path loss of the signal is greatly increased, and a method of increasing the power of the received signal needs to be found.
  • Figure 1 is a schematic diagram of a transmitted signal.
  • the signal when using the low frequency or intermediate frequency band, the signal can be transmitted omnidirectionally or transmitted through a wide angle, and when using the high frequency band, the carrier of the high frequency communication system is benefited.
  • Wavelength an antenna array composed of a plurality of antenna elements can be arranged at the transmitting end and the receiving end, and the transmitting end transmits a signal with a certain beam shaping weight, so that the transmitting signal forms a beam with spatial directivity, and at the receiving end, the antenna array is fixed.
  • the beamforming weight is received, which can improve the received power of the signal at the receiving end and counter the path loss.
  • the terminal device may detect the beam failure due to the movement, rotation, or environment change of the terminal device. At this time, the terminal device initiates a beam recovery request to the network device, but when the network device passes When the adjusted beam communicates with the terminal device, the terminal device may not know which time-frequency resource to initiate a beam recovery request to the network device.
  • the embodiment of the present application provides a method for receiving a beam recovery request, which is applied to a network device, including: sending a first signal to a terminal device by using a first beam; An index information, wherein the first index information indicates an index number of the first signal; and the first notification message is sent to the terminal device according to the first index information, where the first notification message includes second index information, and the second index information indicates The index number of the second signal, the index number of the second signal corresponds to the first beam; and the beam recovery request sent by the terminal device is received on the time-frequency resource corresponding to the first beam.
  • the network device sends a notification message to the terminal device to notify the terminal device of the index number of the adjusted periodic scanning beam.
  • the terminal device may determine an index number of the periodic scanning beam aligned by the beam used to initiate the beam recovery request, and then determine a time-frequency resource corresponding to the periodic scanning beam, so that the correct time is The request sequence is sent on the frequency resource, so that the network device can correctly receive the beam recovery request initiated by the terminal device.
  • the method before the first signal is sent to the terminal device by using the first beam, the method further includes: sending, by using the first beam, the second signal to the terminal device; receiving the third index sent by the terminal device Information, wherein the third index information indicates an index number of the second signal.
  • the method further includes: sending, by using the second beam, the third signal to the terminal device; receiving the fourth index sent by the terminal device Information, wherein the fourth index information indicates an index number of the third signal; and the second notification message is sent to the terminal device according to the fourth index information, where the second notification message includes fifth index information, and the fifth index information indicates fourth The difference between the index number of the signal and the index number of the second signal, and the index number of the fourth signal corresponds to the second beam.
  • the network device sends a notification message to the terminal device to notify the terminal device of the adjusted index number of the periodic scanning beam and the index number of the periodic scanning beam before the adjustment in the last notification message.
  • the difference between the downlink signaling resources can be saved compared to the index number of the periodic scanning beam adjusted by the terminal device.
  • the second index information indicates that the index number of the second signal includes: the second index information indicates that the first signal and the second signal are in parity.
  • the first signal includes a first channel state information reference signal CSI-RS
  • the second signal includes a second CSI-RS or a first synchronization signal block SS Block
  • the third signal includes a third CSI-RS
  • the fourth signal includes a fourth CSI-RS or a second SS Block.
  • the embodiment of the present application provides a method for sending a message, which is applied to a terminal device, including: sending a request sequence to a network device; receiving a response message sent by the network device, where the response message indicates that the network device responds to the request sequence And transmitting, by the time-frequency resource, an indication message to the network device, where the indication message indicates that the request sequence is used for at least one of: request beam recovery, request data scheduling, and request beam adjustment.
  • the request sequence sent by the terminal device to the network device is not necessarily used for requesting beam recovery, but may be used for request beam adjustment and/or request data scheduling.
  • the network device allocates a time-frequency resource to the terminal device in response to the request sequence, and the terminal device sends an indication message to the network device on the allocated time-frequency resource, and indicates an actual function of the request sequence in the indication message. Multiplexing the request sequence into several possible requests saves a lot of sequence resources.
  • the indication message when the request sequence is used at least for requesting beam recovery, the indication message further includes at least one of the following: a beam failure reason, a number of failed beams, a beam failure condition, and an available Beam index number and available beam quality.
  • the indication message indicates the auxiliary information while indicating the actual function of the request sequence, thereby further saving signaling resources.
  • the number of failed beams is represented by a number of failed beams, and when the number of failed beams is 00, 01, 10, and 11, the number of failed beams is 1, 2, respectively. 3, 4.
  • the failed beam situation is represented by a failed beam condition field, and when the failed beam condition field is 00 and 01, respectively, the failed beam condition is the current service beam failure, and all services are The beam failed.
  • the method further includes: receiving, by the network device, the first one sent by using the first beam a signal; detecting that the received signal strength of the first signal is less than or equal to a first predetermined threshold.
  • the method further includes: receiving, by the network device, the second beam by using the second beam a signal; detecting that the received signal strength of the second signal is greater than or equal to a second preset threshold; transmitting first index information to the network device, where the first index information indicates an index number of the second signal.
  • the terminal device detects that the beam fails, the terminal device needs to further detect the available beam, and then initiates a beam recovery request to the network device, which may prevent the terminal device from initiating the beam recovery request, because no available beam is generated. Signaling resources are wasted.
  • the indication message when the request sequence is used at least for requesting data scheduling, the indication message further includes a buffer status report BSR.
  • the indication message indicates the auxiliary information while indicating the actual function of the request sequence, thereby further saving signaling resources.
  • the method further includes: if the response message is not received within the preset time, resending the request sequence to the network device; When the number of times the request sequence is sent to the network device reaches the preset maximum number of transmissions, one of the following is performed: a random access procedure is initiated, a report beam recovery failure, and a report radio link failure are reported.
  • the response message is scrambled by a radio network temporary identifier RNTI, where the RNTI is obtained by using a preset function and at least one variable: an index number of the request sequence, An index number of a time resource for transmitting the request sequence, and an index number of a frequency resource for transmitting the request sequence.
  • the network device has a certain probability to determine which terminal device the error request sequence comes from, and the terminal device that does not send the request sequence decodes the response message after receiving the response message.
  • the network device can use a RNTI to scramble the response message. In this case, after receiving the response message, the terminal device that does not send the request sequence does not decode the response message after detecting the RNTI.
  • the indication message is carried by at least one media access layer control unit MAC CE.
  • an embodiment of the present application provides a network device, including: a transceiver; a memory, configured to store program code including a computer operation instruction; and a processor, configured to execute a computer operation instruction, to control transceiver execution: receiving The first index information sent by the terminal device, where the first index information indicates an index number of the first signal; and the first notification message is sent to the terminal device according to the first index information, where the first notification message includes the second index information, The second index information indicates an index number of the second signal, and the index number of the second signal corresponds to the first beam; and the beam recovery request sent by the terminal device is received on the time-frequency resource corresponding to the first beam.
  • the processor is further configured to control the transceiver to perform: sending the second signal to the terminal device by using the first beam; and receiving the third index information sent by the terminal device, where The third index information indicates an index number of the second signal.
  • the processor is further configured to control the transceiver to perform: sending the third signal to the terminal device by using the second beam; and receiving the fourth index information sent by the terminal device, where The fourth index information indicates an index number of the third signal; and the second notification message is sent to the terminal device according to the fourth index information, where the second notification message includes fifth index information, and the fifth index information indicates an index of the fourth signal.
  • the difference between the index number of the second signal and the second signal, and the index number of the fourth signal corresponds to the second beam.
  • the second index information indicates that the index number of the second signal includes: the second index information indicates that the first signal and the second signal are in parity.
  • the first signal includes a first channel state information reference signal CSI-RS
  • the second signal includes a second CSI-RS or a first synchronization signal block SS Block
  • the third signal includes a third CSI-RS
  • the fourth signal includes a fourth CSI-RS or a second SS Block.
  • an embodiment of the present application provides a terminal device, including: a transceiver; a memory, configured to store program code including a computer operation instruction; and a processor, configured to execute a computer operation instruction, to control transceiver execution:
  • the network device sends a request sequence, and receives a response message sent by the network device, where the response message indicates a time-frequency resource allocated by the network device to the terminal device in response to the request sequence, and sends an indication message to the network device on the time-frequency resource, where the indication message is
  • the request sequence is indicated for at least one of: request beam recovery, request data scheduling, and request beam adjustment.
  • the indication message when the request sequence is used at least for requesting beam recovery, the indication message further includes at least one of the following: a beam failure reason, a number of failed beams, a beam failure condition, and an available Beam index number and available beam quality.
  • the number of failed beams is represented by a number of failed beams, and when the number of failed beams is 00, 01, 10, and 11, the number of failed beams is 1, 2, respectively. 3, 4.
  • the failed beam situation is represented by a failed beam condition field, and when the failed beam condition field is 00 and 01, respectively, the failed beam condition is a current service beam failure, and all services are The beam failed.
  • the processor when the request sequence is used at least for requesting beam recovery, is further configured to control the transceiver to perform: receiving, by the network device, the first signal sent by using the first beam. And detecting that the received signal strength of the first signal is less than or equal to a first preset threshold.
  • the processor is further configured to control transceiver execution:
  • the indication message when the request sequence is used at least for requesting data scheduling, the indication message further includes a buffer status report BSR.
  • the processor is further configured to control, by the transceiver, to: if the response message is not received within the preset time, resend the request sequence to the network device; When the number of times the network device sends the request sequence reaches the preset maximum number of transmissions, one of the following is performed: the random access procedure is initiated, the beam recovery failure is reported, and the radio link failure is reported.
  • the response message is scrambled by a radio network temporary identifier RNTI, where the RNTI is obtained by using a preset function and at least one variable: an index number of the request sequence, An index number of a time resource for transmitting the request sequence, and an index number of a frequency resource for transmitting the request sequence.
  • RNTI radio network temporary identifier
  • the indication message is carried by at least one media access layer control unit MAC CE.
  • the embodiment of the present application provides a method for receiving a beam recovery request, including: sending a request sequence to a network device; receiving a response message sent by the network device, where the response message indicates that the network device responds to the request sequence; The device sends an indication message, wherein the indication message indicates that the request sequence is used for at least one of: request beam recovery, request data scheduling, and request beam adjustment.
  • the request sequence sent by the terminal device to the network device is not necessarily used for requesting beam recovery, but may be used for request beam adjustment and/or request data scheduling.
  • Yet another aspect of an embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • Yet another aspect of an embodiment of the present application provides a communication chip in which instructions are stored that, when run on a network device or terminal device, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of an embodiment of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Figure 1 is a schematic diagram of a transmission signal
  • FIG. 2 is a schematic diagram of a scenario applied by a technical solution according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a general hardware architecture of a base station according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a general hardware architecture of a mobile phone according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for a network device and a terminal device to communicate using a beam pair according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of periodic beam scanning performed by a network device
  • FIG. 7 is a schematic diagram of beam adjustment according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of sending a request sequence on a time-frequency resource when beam adjustment is not performed according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of sending a request sequence on a time-frequency resource after beam adjustment according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a method for sending a message according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of an indication message according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an apparatus for a network device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an apparatus for a terminal device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of another apparatus for a network device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of another apparatus for a terminal device according to an embodiment of the present disclosure.
  • Beamforming Also known as beamforming, spatial filtering, is a signal processing technique that uses an antenna array to direct transmit and receive signals. Beamforming by setting the beam shaping weight of the antenna array enables constructive interference of signals at certain angles and destructive interference of signals at other angles. Beamforming can be used both for transmitting signals at the transmitting end and for receiving signals at the receiving end.
  • the transmitting end with the antenna array sets a specific amplitude and phase on each antenna element of the antenna array when transmitting the signal, so that the transmitted signal has a certain spatial directivity, that is, the signal in some directions
  • the power is high, the signal power is low in some directions, and the direction of the highest signal power is the direction of the transmitting beam.
  • the antenna array includes a plurality of antenna elements, and the specific amplitude and phase added are beamforming weights.
  • the transmitting end transmits a signal with a certain beam shaping weight to make a spatially directional beam formed by the transmitting signal.
  • Receive beamforming when the receiving end of the antenna array receives a signal, a specific amplitude and phase are set on each antenna element of the antenna array, so that the power gain of the received signal is directional, that is, receiving in certain directions. When the signal is high, the power gain is high. When receiving signals in some directions, the power gain is low. The direction with the highest power gain when receiving the signal is the direction of the receiving beam.
  • the antenna array includes a plurality of antenna elements, and the specific amplitude and phase added are beamforming weights.
  • Receive beam The receiver transmits a signal with a certain beamforming weight to form a spatially directional beam formed by the received signal.
  • Send a signal using a transmit beam Send a signal using a beamforming weight.
  • Receive a signal using a receive beam Receive a signal using a beamforming weight.
  • a beam pair consists of a transmit beam and a receive beam.
  • the beam pair can also be divided into an uplink beam pair and a downlink beam pair.
  • the downlink beam pair refers to the transmit beam of the network device and the receive beam of the terminal device.
  • the uplink beam pair refers to the transmit beam of the terminal device and the receive beam of the network device.
  • the transmitting end uses different transmitting beams to send signals to the receiving end.
  • the receiving end uses a specific receiving beam to receive the signal sent by the transmitting end, and measures the signal gain of the received signal. When one of the transmitting beams transmits the signal, When the signal gain is greater than a preset threshold, the transmit beam and the particular receive beam used by the receive end achieve beam alignment, or the transmit beam and the particular receive beam used by the receive end are aligned.
  • Beam correspondence The beam and the receive beam are beam-aligned, that is, in the downlink communication, the transmit beam of the network device is beam A, and the receive beam of the terminal device is beam B. Beam A and beam B achieve beam alignment. In uplink communication, the terminal device uses beam B as the transmission beam, and the network device uses beam A as the reception beam. According to beam consistency, beam B and beam A are also aligned.
  • FIG. 2 is a schematic diagram of a scenario in which the technical solution of the embodiment of the present application is applied.
  • the network device has six different transmit beams B1-B6 on the radio channel and different transmit beamforming for the six beams.
  • the terminal device 1 has one type of beam A1 as the receiving end of the radio frequency channel, and the terminal device 2 has two kinds of beams A1 and A2 as the receiving end of the radio frequency channel, and the beam pair information is established between the network device and the terminal device 1 through B1-B4 and A1.
  • the network device and the terminal device 2 establish beam pair information through the B5-B6 and the A1-A2, and use the communication between the network device and the terminal device 2.
  • the network device may be a device that can communicate with the terminal device.
  • the network device can be a base station, a relay station, or an access point.
  • the base station may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, or may be
  • the NB (NodeB) in the wideband code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the network device may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device may also be a network device in a future 5G network or a network device in a future evolved PLMN network; or may be a wearable device or an in-vehicle device or the like.
  • the terminal device 1 or the terminal device 2 may be a UE, an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a terminal, a wireless communication device, a UE proxy or a UE device. Wait.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, or a personal digital assistant (PDA).
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a handheld device having a wireless communication function, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a terminal device in a future evolved PLMN network.
  • the network device 100 is a base station
  • the terminal device 200 is a UE as an example.
  • FIG. 3 is a schematic diagram of a general hardware architecture of a base station according to an embodiment of the present disclosure.
  • the base station may include an indoor baseband unit (BBU) and a remote radio unit (RRU), and the RRU and at least one antenna feeder system (ie, an antenna) are connected, and the BBU and the BBU are connected.
  • the RRU can be used as needed.
  • FIG. 4 is a schematic diagram of a general hardware architecture of a mobile phone according to an embodiment of the present application.
  • the mobile phone may include: a radio frequency (RF) circuit 110, a memory 120, other input devices 130, a display screen 140, a sensor 150, an audio circuit 160, an I/O subsystem 170, a processor 180, And components such as power supply 190.
  • RF radio frequency
  • FIG. 4 does not constitute a limitation on the mobile phone, and may include more or less components than those illustrated, or combine some components, or split some components, or Different parts are arranged.
  • the display screen 140 belongs to a user interface (UI), and the display screen 140 can include a display panel 141 and a touch panel 142.
  • the handset can include more or fewer components than shown.
  • the mobile phone may also include functional modules or devices such as a camera and a Bluetooth module, and details are not described herein.
  • the processor 180 is connected to the RF circuit 110, the memory 120, the audio circuit 160, the I/O subsystem 170, and the power supply 190, respectively.
  • the I/O subsystem 170 is connected to other input devices 130, display 140, and sensor 150, respectively.
  • the RF circuit 110 can be used for receiving and transmitting signals during and after receiving or transmitting information, and in particular, receiving downlink information of the base station and processing it to the processor 180.
  • the memory 120 can be used to store program code including computer operating instructions.
  • the processor 180 executes various functional applications and data processing of the mobile phone by running program code stored in the memory 120.
  • Other input devices 130 can be used to receive input numeric or character information, as well as to generate key signal inputs related to user settings and function controls of the handset.
  • the display screen 140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone, and can also accept user input.
  • Sensor 150 can be a light sensor, a motion sensor, or other sensor.
  • the audio circuit 160 can provide an audio interface between the user and the handset.
  • the I/O subsystem 170 is used to control external devices for input and output, and the external devices may include other device input controllers, sensor controllers, and display controllers.
  • the processor 180 is a control center of the mobile phone 200, and connects various parts of the entire mobile phone by using various interfaces and lines, and executes the mobile phone 200 by running or executing program code stored in the memory 120 and calling data stored in the memory 120. A variety of functions and processing data to monitor the phone as a whole.
  • a power source 190 (such as a battery) is used to power the various components described above.
  • the power source can be logically coupled to the processor 180 through a power management system to manage functions such as charging, discharging, and power consumption through the power management system.
  • FIG. 5 is a schematic flowchart of a method for a network device and a terminal device to communicate using a beam pair according to an embodiment of the present disclosure. As shown in Figure 5, the following steps are included:
  • S51 The network device and the terminal device establish a beam pair set that can be used for communication;
  • the network device and the terminal device can establish a beam pair set by the following steps:
  • S511 The network device performs periodic beam scanning.
  • FIG. 6 is a schematic diagram of periodic beam scanning performed by a network device.
  • the network device performs periodic beam scanning, that is, the network device periodically uses N transmit beams (hereinafter referred to as periodic scan beams) to respectively transmit N periodic scan signals, and types of periodic scan signals. It may include a synchronization signal block (SS Block) or a channel state information-reference signal (CSI-RS), where N is a positive integer.
  • SS Block synchronization signal block
  • CSI-RS channel state information-reference signal
  • the network device can also use a different number of periodic scanning beams to transmit periodic scanning signals during different scanning periods.
  • the N periodic scan signals and the N periodic scan beams are in one-to-one correspondence, and each of the N periodic scan signals has an index number, and the network device and the terminal device can all be based on a periodicity.
  • the index number of the scan signal determines its corresponding periodic scan beam.
  • the index number of a periodic scan signal is the index number of the periodic scan beam corresponding to it. For example, if the network device uses the periodic scanning beams numbered 1-10 to send the periodic scanning signals with the index number 1-10, the terminal device may determine the number 5 according to the periodic scanning signal with the index number 5. Periodically scan the beam.
  • the index number of the SS Block may be a natural code (for example, a positive integer such as 1, 2, or 3), or may be expressed by using at least one of a frame index number, a subframe index number, a slot index number, and an OFDM symbol index number.
  • the index number of the CSI-RS may be a natural coding, or may be expressed by using at least one of: a frame index number, a subframe index number, a slot index number, an OFDM symbol index number, a CSI-RS resource index number, and a CSI-RS. Port index number.
  • S512 The terminal device reports the index information of the periodic scan signal to the network device.
  • the terminal device uses at least one receiving beam to receive the periodic scanning signals sent by the network device, and measures the received signal strength of the periodic scanning signals, for example, reference signal received power (reference signal received power, Referring to the RSRP, when the terminal device detects that the received signal strength of a periodic scan signal is greater than or equal to a preset threshold, the index value of the periodic scan signal is reported to the network device, and the record is used to receive the The receiving beam of the periodic scanning signal, the periodic scanning beam corresponding to the received periodic scanning signal, forms a beam pair that can be used for communication.
  • the index information of the periodic scan signal reported by the terminal device to the network device may include an index number of the plurality of periodic scan signals.
  • the network device in FIG. 2 sends four periodic scan signals to the terminal device 1 respectively by using the transmit beams B1-B4 in one scan period, and the index numbers of the four periodic scan signals are 1, 2, respectively. 3, 4, the terminal device receives the four periodic scan signals by using the receive beam A1, and the terminal device detects that the received signal strength of the periodic scan signal 2 and the periodic scan signal 3 is greater than or equal to a preset threshold, the terminal The device reports the periodic scan signal 2 and the periodic scan signal 3 to the network device, and records the receive beam A1. At this time, the network device and the terminal device establish an available communication including the beam pair B2 and A1, the beam pair B3 and A1. Beam pair set.
  • the network device allocates, to the terminal device, a request sequence for indicating a beam recovery request.
  • This step can occur at any time before the terminal device initiates a beam recovery request.
  • the network device allocates a terminal-specific (UE-Specific) request sequence for the terminal device, and the request sequence of the different terminal devices is orthogonal, and the network device can know which terminal device initiates beam recovery according to the received request sequence. request.
  • the network device allocates a request sequence to the terminal device, and further allocates a terminal device-specific time-frequency resource, the request sequence may not be specific to the terminal device, and multiple terminal devices may share a request sequence, and the network device according to which The request sequence received on the time-frequency resource knows which terminal device initiated the beam recovery request.
  • the network device may also allocate a terminal device specific request sequence and time-frequency resources to the terminal device.
  • S53 performing network beam adjustment on the network device and the terminal device
  • the network device can dynamically select a partial beam pair in the set of beam pairs as a service beam pair, and other beam pairs serve as candidate beam pairs, and the service beam pair refers to between the network device and the terminal device.
  • a pair of beams currently used to transmit control signals or data signals which are pairs of beams that are not currently used to transmit control signals and data signals.
  • the network device and the terminal device After establishing a set of beam pairs available for communication, the network device and the terminal device adjust at least one beam pair (including a service beam pair and an alternate beam pair) in the set of beam pairs to track movement, rotation, or environment occurrence of the terminal device Channel changes caused by changes.
  • the beam adjustment may be initiated by the network device, or may be initiated by the terminal device, which is not limited in this embodiment.
  • the network device and the terminal device can perform beam adjustment by the following steps:
  • the network device sends K reference signals by using K periodic scanning beams.
  • the network device transmits K reference signals respectively using K periodic scanning beams for periodic scanning beams (hereinafter referred to as target beams) in a specific beam pair in the set of beam pairs.
  • the K periodic scanning beams are a subset of the N periodic scanning beams in S511, where K is a positive integer, and K ⁇ N relative to the N periodic scanning beams in S511, but usually In order to save the number of reference signals, K is less than N.
  • the embodiment of the present application is also described by taking K ⁇ N as an example.
  • the reference signal is for example but not limited to being a CSI-RS.
  • the K reference signals and the N periodic reference signals in S511 are different, and each of the K reference signals has an index number, but the index number and the index number of the periodic scanning beam are different, and the terminal device The periodic scan beam cannot be determined from the index number of any one of the K reference signals. It should be noted that the network device will indicate which target beam the terminal device is adjusted for.
  • S532 The terminal device reports the index information of the reference signal to the network device.
  • the terminal device uses at least one receiving beam to receive the reference signal sent by the network device, and measures the received signal strength of the reference signals.
  • the terminal device may The index number of the reference signal is reported to the network device, and the receiving beam used by the reference signal is received, and the periodic scanning beam corresponding to the received beam and the reported reference signal forms a new beam pair, and the beam The target beam pair in the set is also adjusted to the new beam pair.
  • FIG. 7 is a schematic diagram of beam adjustment according to an embodiment of the present application.
  • the set of beam pairs that can be used for communication established by the network device and the terminal device includes a beam pair 1 and a beam pair 2 (as shown in FIG. 7(a)), wherein the beam pair 1 includes a network device side beam x.
  • the terminal device side beam x', the beam pair 2 includes a network device side beam y and a terminal device side beam y', and the network device side beams x and y are both periodic scanning beams.
  • the network device may separately transmit K CSI-RSs using K periodic scanning beams around the network device side beam y (as shown in FIG.
  • the original beam pair shown in Fig. 7(a) is adjusted to the dotted beam pair shown in Fig. 7(c) (as shown in Fig. 7(c)), and the adjusted beam pair 2 includes the network device side beam z and the terminal device. Side beam z'.
  • the network device sends a notification message to the terminal device.
  • the service beam pair may be occluded to cause failure.
  • the terminal device detects that the received signal strength of the downlink signal is lower than a preset threshold, the terminal device detects the beam failure.
  • the terminal device detects that the beam fails, the terminal device initiates a beam recovery request, and the terminal device initiates a beam recovery request by transmitting a request sequence allocated by the network device in S52 to the network device.
  • the terminal device transmits the request sequence using the downlink receive beam in one of the current beam pair sets as the uplink transmit beam.
  • FIG. 8 is a schematic diagram of sending a request sequence on a time-frequency resource without beam adjustment according to an embodiment of the present disclosure.
  • the set of beam pairs that can be used for communication established by the network device and the terminal device includes a beam pair 1 and a beam pair 2, wherein the beam pair 1 includes a network device side beam x and a terminal device side beam x', and the beam pair 2 includes a network device side beam y and a terminal device side beam y'.
  • the network device side beams x and y are periodic scanning beams, beam pair 1 is a service beam pair, and beam pair 2 is an alternate beam pair.
  • the beam x' or y' may be used to transmit a request sequence to the network device, and accordingly, the network device may use the periodic scanning beam x or y to receive the request sequence transmitted by the terminal device. Since the network device needs to know in time whether each terminal device initiates a beam recovery request, different periodic scanning beams are used as receiving beams on different time-frequency resources for detection.
  • the time-frequency resource used by the terminal device to send the request sequence and the periodic scan beam have a corresponding relationship (or it can be said that the time-frequency resource used by the terminal device to send the request sequence and the periodic scan signal have a corresponding relationship), as shown in FIG.
  • the periodic scanning beam 1 corresponds to the time-frequency resource 1
  • the periodic scanning beam x corresponds to the time-frequency resource x
  • the periodic scanning beam y corresponds to the time-frequency resource y
  • the periodic scanning beam N and the time-frequency resource are N corresponds. It should be noted that whether the time-frequency resource 1, x, y or N, a resource element (RE) or multiple REs may be included.
  • RE resource element
  • the terminal device needs to transmit the request sequence on the correct time-frequency resource, and still takes FIG. 8 as an example. It is assumed that the transmitting beam of the request sequence is the beam x′, and the terminal-side beam x′ is aligned with the beam x of the network device side.
  • the network device uses the beam x to receive on the time-frequency resource x, so the network device can detect the request sequence only when the terminal device sends the request sequence on the time-frequency resource x.
  • the terminal device sends a request on the wrong time-frequency resource, for example, the terminal device sends the request sequence on the time-frequency resource y
  • the beam used by the network device to receive the request sequence on the time-frequency resource y will be the beam y, and the beam y and the transmission beam x' of the terminal device are not aligned, and the network device cannot receive the request sequence sent by the terminal device.
  • the terminal transmits the request sequence using the beam y' it should transmit on the time-frequency resource y.
  • FIG. 9 is a schematic diagram of sending a request sequence on a time-frequency resource after beam adjustment according to an embodiment of the present disclosure.
  • the set of beam pairs established by the network device and the terminal device includes a beam pair 1, wherein the beam pair 1 includes a network device side beam x and a terminal device side beam x', and after beam adjustment, the beam pair 1 is Adjusted to beam pair 2, beam pair 2 includes network device side beam y and terminal device side beam y'.
  • the terminal device wants to initiate a beam recovery request on beam y', according to the above description, the terminal device needs to be in the beam and the beam.
  • the request sequence is sent on the corresponding time-frequency resource y.
  • the terminal device does not know the index number of the beam y aligned with the beam y', and thus does not know which time-frequency resource the request sequence should be transmitted on.
  • the network device needs to send a notification message to the terminal device, where the notification message includes an index number of all periodic scanning beams in the current beam pair set, that is, when the network device performs periodic beam scanning, using the current beam pair set.
  • the notification message can be sent periodically.
  • the terminal device may determine an index number of the periodic scanning beam that is used by the beam for initiating the beam recovery request, and then determine the time-frequency resource corresponding to the periodic scanning beam, so that the correct time-frequency is obtained.
  • the request sequence is sent on the resource, so that the network device can correctly receive the beam recovery request initiated by the terminal device.
  • the current beam pair set includes beam pair 1 and beam pair 2, wherein beam pair 1 includes a network device side beam x and a terminal device side beam x', and beam pair 2 includes a network device side beam y and a terminal device side beam y'
  • the network side beams x and y are both periodic scanning beams, and the index number of the beams x and y is included in the notification message.
  • the notification message includes an index number of all the adjusted periodic scanning beams in the current beam pair set, and is not sent to the terminal device for the index number of the unadjusted periodic scanning beam in the current beam pair set.
  • the downlink signaling resources can be saved relative to the index number of all periodic scanning beams.
  • the current beam pair set includes beam pair 1 and beam pair 2, wherein beam pair 1 includes a network device side beam x and a terminal device side beam x', and beam pair 2 includes a network device side beam y and a terminal device side beam y'
  • the network side beams x and y are both periodic scanning beams, and the beam pair 2 is adjusted by the beam pair 3.
  • the beam pair 3 includes the network device side beam z and the terminal device side beam z', and the beam pair 1 is not.
  • the notification message only includes the index number of the beam y.
  • the notification message includes a difference between an index number of each periodic scanning beam in the current beam pair set and a corresponding periodic scanning beam in the last transmitted notification message.
  • the current beam pair set includes beam pair 1 and beam pair 2, wherein beam pair 1 includes a network device side beam x and a terminal device side beam x', and beam pair 2 includes a network device side beam y and a terminal device side beam y'
  • the network side beams x and y are both periodic scanning beams, and the beam pair 2 is adjusted by the beam pair 3.
  • the beam pair 3 includes the network device side beam z and the terminal device side beam z', and the beam pair 1 does not pass. Adjusting, the last sent notification message includes the index numbers of the beam x and the beam z. At this time, the notification message includes the difference between the index numbers of the beam x and the beam x, and the difference between the index numbers of the beam y and the beam z.
  • the notification message includes a difference between each adjusted periodic scanning beam in the current beam pair set and an index number of the periodic scanning beam before adjustment in the last transmitted notification message.
  • the notification message only includes the difference between the index numbers of the beam y and the beam z.
  • the notification message includes indication information, where the indication information is used to indicate each periodic scanning beam or each adjusted periodic scanning beam in the current beam pair set, and the reference signal and N cycles are sent during beam adjustment.
  • One of the sexual scan signals is about a certain parameter quasi co-located (QCL).
  • the parameter may include one of the following: average gain, average delay, delay spread, Doppler shift, Doppler spread, channel correlation, receive beam or angle of arrival.
  • the current beam pair set includes beam pair 1 and beam pair 2, wherein beam pair 1 includes a network device side beam x and a terminal device side beam x', and beam pair 2 includes a network device side beam y and a terminal device side beam y'
  • the network side beams x and y are both periodic scanning beams, and the beam pair 2 is adjusted by the beam pair 3.
  • the beam pair 3 includes the network device side beam z and the terminal device side beam z', and the beam pair 1 does not pass. If the adjustment is made, the indication information may indicate that one of the reference signal and the N periodic scan signals transmitted by the beam y at the time of beam adjustment is related to a certain parameter QCL.
  • S55 The terminal device initiates a beam recovery request.
  • the terminal device After receiving the notification message sent by the network device, the terminal device sends the request sequence on the correct time-frequency resource.
  • the network device sends a notification message to the terminal device to notify the terminal device of the index number of the adjusted periodic scanning beam.
  • the terminal device may determine an index number of the periodic scanning beam aligned by the beam used to initiate the beam recovery request, and then determine a time-frequency resource corresponding to the periodic scanning beam, so that the correct time is The request sequence is sent on the frequency resource, so that the network device can correctly receive the beam recovery request initiated by the terminal device.
  • the network device and the terminal device may be in the set of beam pairs (hereinafter referred to as a first-order beam). Based on the first level beam pairs included in the set), a plurality of second level beam pairs are established to establish a second level beam pair set available for communication.
  • the beam in the first-stage beam pair is a wide beam
  • the beam in the second-stage beam pair is a narrow beam.
  • the transmission and reception angle of the narrow beam is within a range of the transmission and reception angle of the wide beam, for example, the transmission angle of the wide beam is 20 to 40 degrees, and if the wide beam is established based on the wide beam
  • the transmission and reception angles of the four narrow beams may be 20 to 25 degrees, 25 to 30 degrees, 30 to 35 degrees, and 35 to 40 degrees, respectively.
  • the scanning beam has a corresponding relationship, and the second-stage beam pair formed by the second-stage beam of the network device side and the second-stage beam of the aligned terminal-device side thereof, and the periodic scanning beam and the terminal device side aligned thereto
  • the first stage beam pairs of the first stage beamforming also have a corresponding relationship.
  • the network device and the terminal device adjust at least one second-level beam pair in the second-stage beam pair set.
  • the network device is for a network device side beam (hereinafter referred to as a second level target beam) in a specific second level beam pair (hereinafter referred to as a second level target beam pair) in the second level beam pair set, in which K reference signals are separately transmitted using K second-order beams.
  • the terminal device feeds back the index number of the selected reference signal, and records the receiving beam that is used by the terminal device to receive the reference signal, and the network device side beam corresponding to the received beam and the reported reference signal forms a new second level.
  • the beam pair, and the second-level target beam pair in the second-stage beam pair set is also adjusted to the new second-stage beam pair.
  • the new second-level beam pair may deviate from the first-stage beam pair corresponding to the second-level target beam pair, that is, the transmission angle of the second-stage beam on the network device side in the new second-stage beam pair.
  • the range is not within the range of the transmission and reception angle of the periodic beam in the first-stage beam pair corresponding to the second-level target beam pair.
  • the first-stage beam pair 1 includes the first-stage beam pair 1 , wherein the first-stage beam pair 1 includes the network device-side first-stage beam x and the terminal-device first-level beam x′, and the network-side first-level
  • the beam x is a periodic scanning beam
  • the second-order beam pair 2 is established based on the first-stage beam pair 1.
  • the second-stage beam pair 2 includes a second-stage beam x1 on the network device side and a first-order beam x1' on the terminal-side side.
  • the second-order beam x1 and the periodic scanning beam x have a corresponding relationship
  • the second-stage beam pair 2 and the first-order beam pair 1 also have a corresponding relationship.
  • the second-stage beam pair 2 is adjusted to the second-stage beam pair 3, and the second-stage beam pair 3 includes the network device-side second-stage beam y1 and the terminal-device second-stage beam y1', and the second stage
  • the beam pair 3 does not correspond to the first-order beam pair 1, but corresponds to the first-stage beam pair 4, that is, the second-stage beam pair 3 deviates from the first-order beam pair 1.
  • the first stage beam pair 4 includes a network device side first stage beam y and a terminal device side first stage beam y', wherein the network device side first stage beam y is a periodic scanning beam.
  • the terminal device if the terminal device is to send the request sequence, for the purpose of reliability or coverage, the terminal side first-order beam (beam y') corresponding to the adjusted second-stage beam (beam y1') of the terminal side needs to be used.
  • the request sequence is transmitted, but the terminal device does not know the index number of the periodic scanning beam y aligned with the beam y' at this time, and thus does not know which time-frequency resource the request sequence should be transmitted.
  • the network device and the terminal device establish a second-level beam pair set that can be used for communication, and beam adjustment is performed on at least one second-level beam pair, the network device also needs to go to the terminal.
  • the device sends a notification message to indicate the index number of the periodic scanning beam corresponding to all or the adjusted network device side second-order beams in the current second-level beam pair set.
  • FIG. 10 is a schematic flowchart of a method for sending a message according to an embodiment of the present disclosure. As shown in FIG. 10, the following steps are included:
  • S101 The network device allocates a request sequence to the terminal device.
  • the network device allocates a terminal-specific (UE-Specific) request sequence to the terminal device, and the request sequence of the different terminal devices is orthogonal, and the network device can know which terminal device the request sequence comes from according to the received request sequence.
  • the network device allocates a terminal device-specific time-frequency resource to the terminal device, and allocates a request sequence to the terminal device, the request sequence may not be specific to the terminal device, and multiple terminal devices may share a request sequence, and the network device may On which time-frequency resource the request sequence is received knows which terminal device the request sequence came from.
  • the network device may also allocate a terminal device specific request sequence and terminal device specific time frequency resources to the terminal device.
  • the dedicated time-frequency resource may be carried on a different channel, such as a physical uplink control channel (physical uplink).
  • the control channel PUCCH for short
  • the physical random access channel PRACH
  • PRACH-like the channel with the same time slot but different frequency bands
  • the request sequence is not necessarily used to indicate a beam recovery request, or the request sequence is not necessarily used to request beam recovery.
  • S102 The terminal device sends a request sequence to the network device.
  • S103 The network device sends a response message to the terminal device in response to the received request sequence.
  • the response message indicates a time-frequency resource allocated by the network device to the terminal device in response to the request sequence, and the time-frequency resource is used for subsequent uplink transmission.
  • the network device has a certain probability to determine which terminal device the error request sequence comes from, and the terminal device that does not send the request sequence decodes the response message after receiving the response message.
  • the network device may use a radio network temporary identity (RNTI) to scramble the response message.
  • RNTI radio network temporary identity
  • the terminal device that does not send the request sequence detects the response message.
  • the RNTI will not decode the response message.
  • the RNTI may be obtained by using a preset function and at least one variable: an index number of the request sequence, an index number of a time resource for transmitting the request sequence, and an index number of a frequency resource used to send the request sequence .
  • S104 The terminal device sends an indication message to the network device.
  • the terminal device When receiving the response message sent by the network device, the terminal device sends an indication message to the network device on the time-frequency resource indicated by the response message, where the indication message indicates the actual function or use of the request sequence sent by the terminal device in S102.
  • the request sequence is a beam recovery request, a data scheduling request, or a beam adjustment request
  • the request sequence may also be multiplexed into at least two of a beam recovery request, a data scheduling request, and a beam adjustment request.
  • the beam recovery request refers to that when the terminal device moves, rotates, or changes the environment, the service beam pair between the terminal device and the network device may be blocked, causing failure, and the terminal device detects the received signal strength of the downlink signal.
  • the terminal device detects the beam failure and initiates a beam recovery request.
  • the data scheduling request refers to a request for allocating a data transmission resource to a network device when the terminal device has data to transmit.
  • the beam adjustment request refers to a request for the network device and the terminal device to adjust at least one beam pair in the set of beam pairs after establishing a set of beam pairs usable for communication.
  • the embodiment of the present application also has the step that the terminal device detects the beam failure, that is, the terminal device receives the signal sent by the network device using the service beam, and detects the reception of the signal.
  • the signal strength is less than or equal to a preset threshold.
  • the terminal device detects a beam failure it may first determine whether there is currently a available beam pair. When there is currently a available beam pair, a request sequence for requesting beam recovery is sent. The terminal device determines that a beam pair is currently available, and can receive a signal sent by the network device using an arbitrary beam.
  • the indication message may further include at least one of the following: a beam failure reason, a number of failed beams, a beam failure condition, an available beam index number, and an available beam quality.
  • the indication message further includes a buffer status report (BSR) for indicating the amount of data to be sent by the terminal device or the requested resource amount.
  • BSR buffer status report
  • FIG. 11 is a schematic diagram of an indication message according to an embodiment of the present application.
  • the indication message may be implemented by using at least one medium access control-control element (MAC CE), and one MAC CE includes 8-bit or 8-bit integer multiples.
  • FIG. 11 shows a MAC CE 111 and a MAC CE 112.
  • the indication message may be implemented by using the MAC CE 111, where the S1S0 bit in the MAC CE 111 indicates the function of the request sequence, and when S1S0 is 01, the request sequence is used to request beam recovery. Accordingly, the B1B0 bit in the MAC CE 111 indicates the cause of the beam failure.
  • the C1C0 bit indicates the number of failed beams, and the D1D0 bit indicates the available beam index number.
  • the indication message may be implemented by using the MAC CE 112.
  • the S1S0 bit in the MAC CE 112 indicates the function of the request sequence. When S1S0 is 00, the request sequence is used to request data scheduling. Accordingly, the B5-B0 bit in the MAC CE 112 indicates the buffer status information. .
  • the indication message can also be implemented by using both the MAC CE 111 and the MAC CE 112. In this case, the indication request sequence is used to request data scheduling and request beam recovery, that is, the terminal device simultaneously initiates the data scheduling request and the beam recovery request.
  • the MAC CE 111 there may be no special bits in the MAC CE 111 to indicate the function of the request sequence. Only the bits indicating the failure of the beam, the number of failed beams, and the available beam index number may be used in the MAC CE 111. Indicates the function of the request sequence, only the bits indicating the cache status information. Further, when there is no special bit in the MAC CE 111 or the MAC CE 112 to indicate the function of the request sequence, the function of the request sequence may be indicated by the logical channel value in the MAC CE 111 or the MAC CE 112, for example, when the logical channel value is 0, the indication is The request sequence is used to request beam recovery, and when the logical channel value is not 0, the request sequence is used to request data scheduling.
  • the function of the request sequence may also be indicated by the value of the buffer status information in the MAC CE 111 or the MAC CE 112. For example, when the value of the buffer status information is 0, the request sequence is used to request beam recovery, and when the value of the buffer status information is not 0, the request is indicated. The sequence is used to request data scheduling.
  • S140' the terminal device resends the request sequence to the network device
  • the terminal device When the terminal device does not receive the response message sent by the network device within the preset time, the terminal device sends the request sequence to the network device again, until the number of times the request sequence is sent reaches the preset maximum number of transmissions, and one of the following is performed: Incoming process, reporting beam recovery failure, and reporting radio link failure.
  • the network device after receiving the request sequence from the terminal device, the network device allocates a time-frequency resource for the uplink transmission to the terminal device, and the terminal device reports the actual sequence of the request sequence to the network device on the time-frequency resource allocated by the network device.
  • the terminal device may also report auxiliary information corresponding to the actual function of the request sequence, for example, when the actual function of the request sequence is a beam recovery request, the auxiliary information includes a beam failure reason, a number of failed beams, a beam failure condition, and an available At least one of a beam index number and an available beam quality, the auxiliary signal includes a BSR when the actual function of the request sequence is a data scheduling request.
  • the request sequence sent by the terminal device to the network device is not necessarily used for requesting beam recovery, but may be used for request beam adjustment and/or request data scheduling.
  • the network device allocates a time-frequency resource to the terminal device in response to the request sequence, and the terminal device sends an indication message to the network device on the allocated time-frequency resource, and indicates an actual function of the request sequence in the indication message. Multiplexing the request sequence into several possible requests saves a lot of sequence resources.
  • FIG. 12 is a schematic diagram of an apparatus for a network device according to an embodiment of the present disclosure.
  • the network device 120 includes a transmitting unit 1200 and a receiving unit 1201, wherein the transmitting unit 1200 is operable to execute S511, S531, and S54, and the receiving unit 1201 is operable to execute S512, S532, and S55.
  • FIG. 13 is a schematic diagram of an apparatus for a terminal device according to an embodiment of the present disclosure.
  • the network device 130 includes a sending unit 1300 and a receiving unit 1301, wherein the sending unit 1300 is configured to execute S102, S104, and the receiving unit 1301 is configured to execute S101, S103.
  • FIG. 14 is a schematic diagram of another apparatus of a network device according to an embodiment of the present disclosure.
  • the network device 140 includes a memory 1400, a transceiver 1401, a processor 1402, and may further include a bus 1403 and at least one antenna 1404.
  • the memory 1400 is configured to store program code including computer operation instructions
  • the processor 1402 is configured to execute the computer operation instructions to control the transceiver to execute S51-S55 as shown in FIG. 5.
  • FIG. 15 is also a schematic diagram of another apparatus for a terminal device according to an embodiment of the present application.
  • the terminal device 150 includes a memory 1500, a transceiver 1501, a processor 1502, and further includes a bus 1503 and at least one antenna 1504.
  • the memory 1500 is configured to store program code including computer operation instructions
  • the processor 1502 is configured to execute the computer operation instructions to control the transceiver to execute S101-S104 as shown in FIG.
  • the transceiver described above can include a transmitter and a receiver.
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the memory can be a separate device or integrated into the processor.
  • the above various devices or parts of the device can be integrated into the chip for implementation, such as integration into a baseband chip.
  • the device of the embodiment of the present invention may be a Field-Programmable Gate Array (FPGA), may be an Application Specific Integrated Circuit (ASIC), or may be a System on Chip (SoC). It can also be a Central Processor Unit (CPU), a Network Processor (NP), a Digital Signal Processor (DSP), or a Microcontroller (Micro).
  • the Controller Unit (MCU) can also be a Programmable Logic Device (PLD) or other integrated chip.
  • the term "plurality” as used herein refers to two or more.
  • the terms "first”, “second”, etc. are used herein to distinguish different objects and are not intended to limit the order.
  • the first symbol group and the second symbol group are merely for distinguishing different symbol groups, and their order is not limited.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character “/" in this article generally indicates that the contextual object is an "or” relationship; in the formula, the character "/” indicates that the contextual object is a "divide” relationship.
  • the preset thresholds mentioned in the embodiment of the present application may be the same preset threshold or different preset thresholds.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种发送消息的方法,应用于终端设备,包括:向网络设备发送请求序列;接收网络设备发送的响应消息,其中响应消息指示了网络设备响应于请求序列,为终端设备分配的时频资源;在时频资源上向网络设备发送指示消息,其中指示消息指示了请求序列用于以下至少之一:请求波束恢复、请求数据调度和请求波束调整。

Description

一种接收波束恢复请求的方法及网络设备 技术领域
本发明涉及通信技术领域,尤其涉及一种接收波束恢复请求的方法及网络设备。
背景技术
为了满足不断增长的通信业务的需求,移动通信系统正在发展以便解决目前移动通信系统频谱资源匮乏的问题,例如提高频谱效率等。然而,仅仅提高频谱效率,仍然难以满足不断增长的通信业务需求。
通过采用高频频段可以解决上述问题。正在进行标准化工作的第5代(5G)移动通信系统将考虑部署在载波频率大于6GHz的高频频段,高频频段含有大量可用频率资源,可以解决目前移动通信系统频率匮乏的问题,从而实现系统容量的大量提升。但是,在高频频段,信号的路径损耗会大大增加,需要找到提高接收信号功率的方法。
图1为一种发送信号示意图。如图1所示,在使用低频或中频频段时,可以全向发送信号或者通过一个较宽的角度来发送信号,而在使用高频频段时,得益于高频通信系统较小的载波波长,可以在发送端和接收端布置很多天线阵子构成的天线阵列,发送端以一定波束赋形权值发送信号,使发送信号形成具有空间指向性的波束,同时在接收端用天线阵列以一定波束赋形权值进行接收,可以提高信号在接收端的接收功率,对抗路径损耗。
发明内容
网络设备通过波束和终端设备进行通信时,由于终端设备的移动、旋转或者环境发生变化,终端设备可能会检测到波束失败,此时终端设备会向网络设备发起波束恢复请求,但是当网络设备通过调整后的波束和终端设备进行通信时,终端设备会无法得知在哪个时频资源上向网络设备发起波束恢复请求。
为解决上述技术问题,第一方面,本申请实施例提供了一种接收波束恢复请求的方法,应用于网络设备,包括:使用第一波束向终端设备发送第一信号;接收终端设备发送的第一索引信息,其中第一索引信息指示了第一信号的索引号;根据第一索引信息,向终端设备发送第一通知消息,其中第一通知消息包括第二索引信息,第二索引信息指示了第二信号的索引号,第二信号的索引号和第一波束相对应;在第一波束对应的时频资源上接收终端设备发送的波束恢复请求。本申请实施例中,网络设备在波束调整后,向终端设备发送通知消息,以通知终端设备调整后的周期性扫描波束的索引号。终端设备收到该通知消息后,就可以确定用于发起波束恢复请求的波束所对准的周期性扫描波束的索引号,进而确定该周期性扫描波束对应的时频资源,从而在正确的时频资源上发送请求序列,使得网络设备可以正确的接收到终端设备发起的波束恢复请求。
结合第一方面,在一种可能的实施方式中,使用第一波束向终端设备发送第一信号之前,还包括:使用第一波束向终端设备发送第二信号;接收终端设备发送的第三索引信息,其中第三索引信息指示了第二信号的索引号。
结合第一方面及其所有实施方式,在一种可能的实施方式中,向终端设备发送通知消息之后,还包括:使用第二波束向终端设备发送第三信号;接收终端设备发送的第四索引信息, 其中第四索引信息指示了第三信号的索引号;根据第四索引信息,向终端设备发送第二通知消息,其中第二通知消息包括第五索引信息,第五索引信息指示了第四信号的索引号和第二信号的索引号的差值,第四信号的索引号和第二波束相对应。本申请实施例中,网络设备在波束调整后,向终端设备发送通知消息,以通知终端设备调整后的周期性扫描波束的索引号和上一次通知消息中调整前的周期性扫描波束的索引号的差值,相比于通知终端设备调整后的周期性扫描波束的索引号,可以节省下行信令资源。
结合第一方面及其所有实现方式,在一种实现方式中,第二索引信息指示了第二信号的索引号包括:第二索引信息指示了第一信号和第二信号准同位。
结合第一方面及其所有实现方式,在一种实现方式中,第一信号包括第一信道状态信息参考信号CSI-RS,第二信号包括第二CSI-RS或者第一同步信号块SS Block,第三信号包括第三CSI-RS,第四信号包括第四CSI-RS或者第二SS Block。
第二方面,本申请实施例提供了一种发送消息的方法,应用于终端设备,包括:向网络设备发送请求序列;接收网络设备发送的响应消息,其中响应消息指示了网络设备响应于请求序列,为终端设备分配的时频资源;在时频资源上向网络设备发送指示消息,其中指示消息指示了请求序列用于以下至少之一:请求波束恢复、请求数据调度和请求波束调整。本申请实施例中,终端设备向网络设备发送的请求序列并不是必然用于请求波束恢复,而是可以复用于请求波束调整和/或请求数据调度。网络设备响应于该请求序列,为终端设备分配时频资源,终端设备在分配的时频资源上向网络设备发送指示消息,并在指示消息中指示请求序列的实际功能。将请求序列复用为几种可能的请求,节省了大量的序列资源。
结合第二方面及其所有实现方式,在一种实现方式中,当请求序列至少用于请求波束恢复时,指示消息还包括以下至少之一:波束失败原因、失败波束数量、波束失败情况、可用波束索引号和可用波束质量。本申请实施例中,指示消息在指示请求序列的实际功能的同时,指示了辅助信息,进一步节省了信令资源。
结合第二方面及其所有实现方式,在一种实现方式中,失败波束数量使用失败波束数量字段表示,失败波束数量字段为00、01、10、11时,分别表示失败波束数量为1、2、3、4。
结合第二方面及其所有实现方式,在一种实现方式中,失败波束情况使用失败波束情况字段表示,失败波束情况字段为00、01时,分别表示失败波束情况为当前服务波束失败、所有服务波束失败。
结合第二方面及其所有实现方式,在一种实现方式中,当请求序列至少用于请求波束恢复时,向网络设备发送请求序列之前,还包括:接收网络设备使用第一波束发送的第一信号;检测到第一信号的接收信号强度小于或等于第一预设阈值。
结合第二方面及其所有实现方式,在一种实现方式中,检测到第一信号的接收信号强度小于或等于第一预设阈值之后,还包括:接收网络设备使用第二波束发送的第二信号;检测到第二信号的接收信号强度大于或等于第二预设阈值;向网络设备发送第一索引信息,其中第一索引信息指示了第二信号的索引号。本申请实施例中,终端设备在检测到波束失败时,还需要进一步检测到有可用波束时,才向网络设备发起波束恢复请求,可以避免终端设备发起波束恢复请求后,由于没有可用波束造成的信令资源浪费。
结合第二方面及其所有实现方式,在一种实现方式中,当请求序列至少用于请求数据调度时,指示消息还包括缓存状态报告BSR。本申请实施例中,指示消息在指示请求序列的实 际功能的同时,指示了辅助信息,进一步节省了信令资源。
结合第二方面及其所有实现方式,在一种实现方式中,向网络设备发送请求序列之后,还包括:若在预设时间内没有接收到响应消息,则重新向网络设备发送请求序列;当向网络设备发送请求序列的次数达到预设的最大发送次数时,执行以下之一:发起随机接入过程、报告波束恢复失败和报告无线链路失败。
结合第二方面及其所有实现方式,在一种实现方式中,响应消息由一个无线网络临时标识RNTI进行了加扰,其中RNTI通过预设函数和以下至少一个变量得到:请求序列的索引号、用于发送请求序列的时间资源的索引号、和用于发送请求序列的频率资源的索引号。本申请实施例中,网络设备会有一定几率判断错误请求序列来自哪一个终端设备,而没有发送请求序列的终端设备在收到响应消息后也会解码该响应消息。为了避免这种情况,网络设备可以用一个RNTI对响应消息进行加扰,这样的话,没有发送请求序列的终端设备在收到响应消息后,检测到该RNTI就不会去解码该响应消息。
结合第二方面及其所有实现方式,在一种实现方式中,指示消息由至少一个媒体接入层控制单元MAC CE承载。
第三方面,本申请实施例提供了一种网络设备,包括:收发器;存储器,用于存储包括计算机操作指令的程序代码;处理器,用于执行计算机操作指令,以控制收发器执行:接收终端设备发送的第一索引信息,其中第一索引信息指示了第一信号的索引号;根据第一索引信息,向终端设备发送第一通知消息,其中第一通知消息包括第二索引信息,第二索引信息指示了第二信号的索引号,第二信号的索引号和第一波束相对应;在第一波束对应的时频资源上接收终端设备发送的波束恢复请求。
结合第三方面及其所有实现方式,在一种实现方式中,处理器还用于控制收发器执行:使用第一波束向终端设备发送第二信号;接收终端设备发送的第三索引信息,其中第三索引信息指示了第二信号的索引号。
结合第三方面及其所有实现方式,在一种实现方式中,处理器还用于控制收发器执行:使用第二波束向终端设备发送第三信号;接收终端设备发送的第四索引信息,其中第四索引信息指示了第三信号的索引号;根据第四索引信息,向终端设备发送第二通知消息,其中第二通知消息包括第五索引信息,第五索引信息指示了第四信号的索引号和第二信号的索引号的差值,第四信号的索引号和第二波束相对应。
结合第三方面及其所有实现方式,在一种实现方式中,第二索引信息指示了第二信号的索引号包括:第二索引信息指示了第一信号和第二信号准同位。
结合第三方面及其所有实现方式,在一种实现方式中,第一信号包括第一信道状态信息参考信号CSI-RS,第二信号包括第二CSI-RS或者第一同步信号块SS Block,第三信号包括第三CSI-RS,第四信号包括第四CSI-RS或者第二SS Block。
第四方面,本申请实施例提供了一种终端设备,包括:收发器;存储器,用于存储包括计算机操作指令的程序代码;处理器,用于执行计算机操作指令,以控制收发器执行:向网络设备发送请求序列;接收网络设备发送的响应消息,其中响应消息指示了网络设备响应于请求序列,为终端设备分配的时频资源;在时频资源上向网络设备发送指示消息,其中指示消息指示了请求序列用于以下至少之一:请求波束恢复、请求数据调度和请求波束调整。
结合第四方面及其所有实现方式,在一种实现方式中,当请求序列至少用于请求波束恢 复时,指示消息还包括以下至少之一:波束失败原因、失败波束数量、波束失败情况、可用波束索引号和可用波束质量。
结合第四方面及其所有实现方式,在一种实现方式中,失败波束数量使用失败波束数量字段表示,失败波束数量字段为00、01、10、11时,分别表示失败波束数量为1、2、3、4。
结合第四方面及其所有实现方式,在一种实现方式中,失败波束情况使用失败波束情况字段表示,失败波束情况字段为00、01时,分别表示失败波束情况为当前服务波束失败、所有服务波束失败。
结合第四方面及其所有实现方式,在一种实现方式中,当请求序列至少用于请求波束恢复时,处理器还用于控制收发器执行:接收网络设备使用第一波束发送的第一信号;检测到第一信号的接收信号强度小于或等于第一预设阈值。
结合第四方面及其所有实现方式,在一种实现方式中,处理器还用于控制收发器执行:
接收网络设备使用第二波束发送的第二信号;检测到第二信号的接收信号强度大于或等于第二预设阈值;向网络设备发送第一索引信息,其中第一索引信息指示了第二信号的索引号。
结合第四方面及其所有实现方式,在一种实现方式中,当请求序列至少用于请求数据调度时,指示消息还包括缓存状态报告BSR。
结合第四方面及其所有实现方式,在一种实现方式中,处理器还用于控制收发器执行:若在预设时间内没有接收到响应消息,则重新向网络设备发送请求序列;当向网络设备发送请求序列的次数达到预设的最大发送次数时,执行以下之一:发起随机接入过程、报告波束恢复失败和报告无线链路失败。
结合第四方面及其所有实现方式,在一种实现方式中,响应消息由一个无线网络临时标识RNTI进行了加扰,其中RNTI通过预设函数和以下至少一个变量得到:请求序列的索引号、用于发送请求序列的时间资源的索引号、和用于发送请求序列的频率资源的索引号。
结合第四方面及其所有实现方式,在一种实现方式中,指示消息由至少一个媒体接入层控制单元MAC CE承载。
第五方面,本申请实施例提供了一种接收波束恢复请求的方法,包括:向网络设备发送请求序列;接收网络设备发送的响应消息,其中响应消息指示了网络设备响应于请求序列;向网络设备发送指示消息,其中指示消息指示了请求序列用于以下至少之一:请求波束恢复、请求数据调度和请求波束调整。本申请实施例中,终端设备向网络设备发送的请求序列并不是必然用于请求波束恢复,而是可以复用于请求波束调整和/或请求数据调度。
本申请实施例的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例的又一方面提供了一种通信芯片,其中存储有指令,当其在网络设备或终端设备上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为一种发送信号示意图;
图2为本申请实施例的技术方案应用的场景的示意图;
图3为本申请实施例提供的一种基站的通用硬件架构示意图;
图4为本申请实施例提供的一种手机的通用硬件架构示意图;
图5为本申请实施例提供的一种网络设备和终端设备使用波束对进行通信的方法流程示意图;
图6为网络设备进行周期性的波束扫描示意图;
图7为本申请实施例提供的一种波束调整示意图;
图8为本申请实施例提供的一种未经过波束调整时在时频资源上发送请求序列的示意图;
图9为本申请实施例提供的一种经过波束调整后在时频资源上发送请求序列的示意图;
图10为本申请实施例提供的一种发送消息的方法流程示意图;
图11为本申请实施例提供的一种指示消息的示意图;
图12为本申请实施例提供的一种网络设备的装置示意图;
图13为本申请实施例提供的一种终端设备的装置示意图;
图14为本申请实施例提供的另一种网络设备的装置示意图;
图15为本申请实施例提供的另一种终端设备的装置示意图。
具体实施方式
在描述本申请实施例之前,首先对本申请实施例涉及的相关技术及相关术语进行简单介绍,以方便理解:
波束赋形(beamforming):也可以称为波束成形、空域滤波,是一种使用天线阵列定向发送和接收信号的信号处理技术。波束赋形通过设置天线阵列的波束赋形权值,使得某些角度的信号获得相长干涉,而另一些角度的信号获得相消干涉。波束赋形既可以用于发送端发送信号,又可以用于接收端接收信号。
发送波束赋形:具有天线阵列的发送端在发送信号时,在天线阵列的每个天线阵子上设置一个特定的幅度和相位,使得发送信号具有一定的空间指向性,即在某些方向上信号功率高,在某些方向上信号功率低,信号功率最高的方向就是发送波束的方向。该天线阵列包括多个天线阵子,所附加的特定的幅度和相位即为波束赋形权值。
发送波束:发送端以一定的波束赋形权值发送信号,使发送信号形成的具有空间指向性的波束。
接收波束赋形:具有天线阵列的接收端在接收信号时,在天线阵列的每个天线阵子上设置一个特定的幅度和相位,使得接收信号的功率增益具有方向性,即接收某些方向上的信号时功率增益高,接收某些方向上的信号时功率增益低,接收信号时功率增益最高的方向就是接收波束的方向。该天线阵列包括多个天线阵子,所附加的特定的幅度和相位即为波束赋形权值。
接收波束:接收端以一定的波束赋形权值发送信号,使接收信号形成的具有空间指向性的波束。
使用某个发送波束发送信号:使用某个波束赋形权值发送信号。
使用某个接收波束接收信号:使用某个波束赋形权值接收信号。
波束对(beam pair link):一个波束对包括一个发送波束和一个接收波束。波束对还可以分为上行波束对和下行波束对,下行波束对是指网络设备的发送波束和终端设备的接收波束,上行波束对是指终端设备的发送波束和网络设备的接收波束。
波束对准:发送端使用不同的发送波束向接收端发送信号,接收端使用特定的接收波束来接收发送端发送的信号,并测量所接收信号的信号增益,当其中一个发送波束所发送的信号的信号增益大于预设的阈值时,该发送波束和接收端所使用的特定的接收波束实现了波束对准,或者说,该发送波束和接收端所使用的特定的接收波束是对准的。
波束一致性(beam correspondence):实现了波束对准的发送波束和接收波束具备波束一致性,即,假设在下行通信中,网络设备的发送波束为波束A,终端设备的接收波束为波束B,波束A和波束B实现了波束对准,那么在上行通信中,终端设备采用波束B作为发送波束,网络设备采用波束A作为接收波束,根据波束一致性,波束B和波束A也是对准的。
下面将结合附图,对本申请实施例的技术方案应用的场景和设备进行描述。
图2给出了本申请实施例的技术方案应用的场景的示意图。如图2所示,网络设备在射频通道上存在6种不同的发送波束B1-B6,并对6种波束采用不同的发送波束赋形。终端设备1作为射频通道的接收端存在1种波束A1,终端设备2作为射频通道的接收端存在2种波束A1和A2,网络设备与终端设备1之间通过B1-B4和A1建立波束对信息,用于网络设备和终端设备1的通信,网络设备与终端设备2之间通过B5-B6和A1-A2建立波束对信息,用于网络设备和终端设备2的通信,应理解,本申请应用于任何基于波束赋形下的网络设备与终端设备的通信。图2中只示出了在下行通信中,网络设备作为发送端,终端设备作为接收端的场景,但在上行通信中,终端设备也可以作为发送端,网络设备作为接收端。
其中,网络设备可以是能和终端设备通信的设备。网络设备可以是基站、中继站或接入点等。基站可以是全球移动通信系统(global system for mobile communication,简称GSM)或码分多址(code division multiple access,简称CDMA)网络中的基站收发信台(base transceiver station,简称BTS),也可以是宽带码分多址(wideband code division multiple access,简称WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,简称CRAN)场景下的无线控制器。网络设备还可以是未来5G网络中的网络设备或未来演进的PLMN网络中的网络设备;还可以是可穿戴设备或车载设备等。
终端设备1或终端设备2可以是UE、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,简称SIP)电话、无线本地环路(wireless local loop,简称WLL)站、个人数字处理(personal digital assistant,简称PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
需要说明的是,本文中均是以网络设备100是基站,终端设备200是UE为例进行说明。
以网络设备100为基站为例,对基站的通用硬件架构进行说明。图3为本申请实施例提供的一种基站的通用硬件架构示意图。如图3所示,基站可以包括室内基带处理单元(building baseband unit,简称BBU)和远端射频模块(remote radio unit,简称RRU),RRU和至少一 个天馈系统(即天线)连接,BBU和RRU可以根据需要拆开使用。
以终端设备200为手机为例,对手机的通用硬件架构进行说明。图4为本申请实施例提供的一种手机的通用硬件架构示意图。如图4所示,手机可以包括:射频(radio Frequency,RF)电路110、存储器120、其他输入设备130、显示屏140、传感器150、音频电路160、I/O子系统170、处理器180、以及电源190等部件。本领域技术人员可以理解,图4所示的手机的结构并不构成对手机的限定,可以包括比图示更多或者更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领域技术人员可以理解显示屏140属于用户界面(user Interface,UI),显示屏140可以包括显示面板141和触摸面板142。且手机可以包括比图示更多或者更少的部件。尽管未示出,手机还可以包括摄像头、蓝牙模块等功能模块或器件,在此不再赘述。
进一步地,处理器180分别与RF电路110、存储器120、音频电路160、I/O子系统170、以及电源190均连接。I/O子系统170分别与其他输入设备130、显示屏140、传感器150均连接。其中,RF电路110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器180处理。存储器120可用于存储包括计算机操作指令的程序代码。处理器180通过运行存储在存储器120的程序代码,从而执行手机的各种功能应用以及数据处理。其他输入设备130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。显示屏140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单,还可以接受用户输入。传感器150可以为光传感器、运动传感器或者其他传感器。音频电路160可提供用户与手机之间的音频接口。I/O子系统170用来控制输入输出的外部设备,外部设备可以包括其他设备输入控制器、传感器控制器、显示控制器。处理器180是手机200的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的程序代码,以及调用存储在存储器120内的数据,执行手机200的各种功能和处理数据,从而对手机进行整体监控。电源190(比如电池)用于给上述各个部件供电,优选的,电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
下面将结合附图,对本申请实施例的技术方案进行描述。
图5为本申请实施例提供的一种网络设备和终端设备使用波束对进行通信的方法流程示意图。如图5所示,包括如下步骤:
S51:网络设备和终端设备建立可用于通信的波束对集合;
网络设备和终端设备可以通过如下步骤建立波束对集合:
S511:网络设备进行周期性的波束扫描;
图6为网络设备进行周期性的波束扫描示意图。如图6所示,网络设备进行周期性的波束扫描是指网络设备周期性的使用N个发送波束(以下称为周期性扫描波束)分别发送N个周期性扫描信号,周期性扫描信号的类型可以包括同步信号块(synchronization signal block,简称SS Block)或者信号状态信息参考信号(channel state information-reference signal,简称CSI-RS),N为正整数。网络设备也可以在不同的扫描周期使用不同数量的周期性扫描波束来发送周期性扫描信号。
其中,N个周期性扫描信号和N个周期性扫描波束一一对应,并且N个周期性扫描信号中的每个周期性扫描信号都有索引号,网络设备和终端设备都可以根据一个周期性扫描信号 的索引号确定其对应的周期性扫描波束,一个周期性扫描信号的索引号即为其所对应的周期性扫描波束的索引号。举例来说,网络设备使用编号为1-10的周期性扫描波束分别发送索引号为1-10的周期性扫描信号,则终端设备可以根据索引号为5的周期性扫描信号确定编号为5的周期性扫描波束。
SS Block的索引号可以是自然编码(例如1、2、3等正整数),也可以是使用以下至少一来表示:帧索引号、子帧索引号、时隙索引号、OFDM符号索引号。CSI-RS的索引号可以是自然编码,也可以是使用以下至少一来表示:帧索引号、子帧索引号、时隙索引号、OFDM符号索引号、CSI-RS资源索引号、CSI-RS端口索引号。
S512:终端设备向网络设备上报周期性扫描信号的索引信息;
网络设备在进行波束扫描时,终端设备会使用至少一个接收波束来接收网络设备发送的周期性扫描信号,并测量这些周期性扫描信号的接收信号强度,例如参考信号接收功率(reference signal received power,简称RSRP),当终端设备检测到某个周期性扫描信号的接收信号强度大于或等于预设的阈值时,会将该周期性扫描信号的索引号上报给网络设备,同时记录自己用来接收该周期性扫描信号的接收波束,该接收波束和所上报的周期性扫描信号对应的周期性扫描波束即形成了一个可用于通信的波束对。终端设备向网络设备上报的周期性扫描信号的索引信息中可以包括多个周期性扫描信号的索引号。
举例来说,假设图2中网络设备在一个扫描周期中使用发送波束B1-B4分别向终端设备1发送4个周期性扫描信号,这4个周期性扫描信号的索引号分别为1、2、3、4,终端设备使用接收波束A1分别接收这4个周期性扫描信号,并且终端设备检测到周期性扫描信号2和周期性扫描信号3的接收信号强度大于或等于预设的阈值时,终端设备会向网络设备上报周期性扫描信号2和周期性扫描信号3,并记录接收波束A1,此时网络设备和终端设备就建立了包括波束对B2和A1、波束对B3和A1的可用于通信的波束对集合。
S52:网络设备为终端设备分配用于指示波束恢复请求的请求序列;
此步骤可以发生在终端设备发起波束恢复请求之前的任何时刻。网络设备为终端设备分配一个终端设备特定(UE-Specific)的请求序列,不同的终端设备的请求序列是正交的,网络设备可以根据接收到的请求序列知道是哪一个终端设备发起了波束恢复请求。或者,网络设备为终端设备分配一个请求序列,并进一步分配一个终端设备特定的时频资源,该请求序列可能并不是终端设备特定的,多个终端设备可能共有一个请求序列,网络设备根据在哪个时频资源上接收到请求序列知道是哪一个终端设备发起了波束恢复请求。或者,网络设备也可以为终端设备分配一个终端设备特定的请求序列和时频资源。
S53:网络设备和终端设备进行波束调整;
建立可用于通信的波束对集合后,网络设备可以动态的选择波束对集合中的部分波束对作为服务波束对,其他波束对作为备选波束对,服务波束对是指网络设备和终端设备之间当前用于传输控制信号或数据信号的波束对,备选波束对是指当前不用于传输控制信号和数据信号的波束对。
建立可用于通信的波束对集合后,网络设备和终端设备对波束对集合中的至少一个波束对(包括服务波束对和备选波束对)进行调整,以便跟踪终端设备的移动、旋转或者环境发生变化造成的信道改变。波束调整可以是网络设备发起的,也可以是终端设备主动发起的,本申请实施例对此不做限定。
网络设备和终端设备可以通过如下步骤进行波束调整:
S531:网络设备使用K个周期性扫描波束分别发送K个参考信号;
网络设备针对波束对集合中的特定波束对中的周期性扫描波束(以下称为目标波束),在其周围使用K个周期性扫描波束分别发送K个参考信号。其中,K个周期性扫描波束为S511中的N个周期性扫描波束的子集,K为正整数,且相对于S511中的N个周期性扫描波束来说,K≤N,但通常情况下,为节省参考信号的数量,K是小于N的,本申请实施例也以K<N为例进行说明。参考信号例如但不限于是CSI-RS。K个参考信号和S511中的N个周期性参考信号各不相同,K个参考信号中的每个参考信号都有索引号,但该索引号和周期性扫描波束的索引号不相同,终端设备无法根据K个参考信号中任一个参考信号的索引号确定周期性扫描波束。需要指出的是,网络设备会指示终端设备是针对哪个目标波束进行调整。
S532:终端设备向网络设备上报参考信号的索引信息;
终端设备使用至少一个接收波束来接收网络设备发送的参考信号,并测量这些参考信号的接收信号强度,当终端设备检测到某个参考信号的接收信号强度大于或等于预设的阈值时,会将该参考信号的索引号上报给网络设备,同时记录自己用来接收该参考信号的接收波束,该接收波束和所上报的参考信号对应的周期性扫描波束就形成了一个新的波束对,而波束对集合中的目标波束对也会被调整为该新的波束对。
图7为本申请实施例提供的一种波束调整示意图。如图7所示,网络设备和终端设备建立的可用于通信的波束对集合中包括波束对1和波束对2(如图7(a)所示),其中波束对1包括网络设备侧波束x和终端设备侧波束x’,波束对2包括网络设备侧波束y和终端设备侧波束y’,网络设备侧波束x和y都为周期性扫描波束。当要对波束对2进行调整时,网络设备可以在网络设备侧波束y周围使用K个周期性扫描波束分别发送K个CSI-RS(如图7(b)所示),最后波束对2从图7(a)所示原来的波束对调整为了图7(c)所示的虚线波束对(如图7(c)所示),调整后的波束对2包括网络设备侧波束z和终端设备侧波束z’。
S54:网络设备向终端设备发送通知消息;
当终端设备在移动、旋转时,或者环境发生变化时,服务波束对可能被遮挡导致失效,当终端设备检测到下行信号的接收信号强度低于预设阈值时,终端设备即检测到波束失败。终端设备检测到波束失败时,会发起波束恢复请求,终端设备通过向网络设备发送S52中网络设备分配的请求序列来发起波束恢复请求。终端设备使用当前波束对集合中的某个波束对中的下行接收波束作为上行发送波束来发送请求序列。
图8为本申请实施例提供的一种未经过波束调整时在时频资源上发送请求序列的示意图。如图8所示,网络设备和终端设备建立的可用于通信的波束对集合中包括波束对1和波束对2,其中波束对1包括网络设备侧波束x和终端设备侧波束x’,波束对2包括网络设备侧波束y和终端设备侧波束y’,网络设备侧波束x和y都为周期性扫描波束,波束对1为服务波束对,波束对2为备选波束对。当终端设备检测到波束失败时,可以使用波束x’或y’来向网络设备发送请求序列,相应地,网络设备会使用周期性扫描波束x或y来接收终端设备发送的请求序列。由于网络设备需要及时的知道各个终端设备是否发起了波束恢复请求,因此会在不同的时频资源上上使用不同的周期性扫描波束作为接收波束来进行检测。终端设备用于发送请求序列的时频资源和周期性扫描波束存在对应关系(或者也可以说,终端设备用于发送请求序列的时频资源和周期性扫描信号存在对应关系),如图8所示,周期性扫描波束 1和时频资源1相对应,周期性扫描波束x和时频资源x相对应,周期性扫描波束y和时频资源y相对应,周期性扫描波束N和时频资源N相对应。需要指出的是,无论是时频资源1、x、y还是N,都可以包括一个资源单元(resource element,简称RE)或多个RE。
终端设备需要在正确的时频资源上发射请求序列,仍以图8为例,假设终端发送请求序列的发送波束为波束x’,终端侧波束x’是和网络设备侧波束x对准的,网络设备会在时频资源x上使用波束x进行接收,所以终端设备只有在时频资源x上发送请求序列时,网络设备才能检测到该请求序列。如果终端设备在错误的时频资源上发送了请求,例如终端设备在时频资源y上发送了请求序列,网络设备在时频资源y上用来接收请求序列的波束将是波束y,而波束y和终端设备的发送波束x’没有对准,网络设备就无法接收到终端设备发送的请求序列。同理,如果终端使用波束y’发送请求序列,则应该在时频资源y上发送。
图9为本申请实施例提供的一种经过波束调整后在时频资源上发送请求序列的示意图。如图9所示,网络设备和终端设备建立的波束对集合中包括波束对1,其中波束对1包括网络设备侧波束x和终端设备侧波束x’,假设经过波束调整后,波束对1被调整为波束对2,波束对2包括网络设备侧波束y和终端设备侧波束y’,此时若终端设备要在波束y’上发起波束恢复请求,根据上文描述,终端设备需要在和波束y相对应的时频资源y上发送请求序列。但如S531中所述,终端设备不知道和波束y’对准的波束y的索引号,进而也不知道应该在哪个时频资源上发送请求序列。
因此,网络设备需要向终端设备发送通知消息,该通知消息包括当前波束对集合中的所有周期性扫描波束的索引号,也即网络设备进行周期性的波束扫描时,使用当前波束对集合中的所有周期性扫描波束发送的周期性扫描信号的索引号。该通知消息可以周期性的发送。终端设备收到该通知消息后,就可以确定用于发起波束恢复请求的波束所对准的周期性扫描波束的索引号,进而确定周期性扫描波束对应的时频资源,从而在正确的时频资源上发送请求序列,使得网络设备可以正确的接收到终端设备发起的波束恢复请求。例如,当前波束对集合中包括波束对1和波束对2,其中波束对1包括网络设备侧波束x和终端设备侧波束x’,波束对2包括网络设备侧波束y和终端设备侧波束y’,网络侧波束x和y都为周期性扫描波束,那么通知消息中会包括波束x和y的索引号。
或者,该通知消息包括当前波束对集合中的所有调整后的周期性扫描波束的索引号,对于当前波束对集合中的未调整的周期性扫描波束的索引号,则不向终端设备发送。相对于发送所有周期性扫描波束的索引号,可以节省下行信令资源。例如,当前波束对集合中包括波束对1和波束对2,其中波束对1包括网络设备侧波束x和终端设备侧波束x’,波束对2包括网络设备侧波束y和终端设备侧波束y’,网络侧波束x和y都为周期性扫描波束,并且波束对2是由波束对3调整得来的,波束对3包括网络设备侧波束z和终端设备侧波束z’,波束对1则未经过调整(即在上一次波束调整之前,网络设备和终端设备之间的波束对集合中包括波束对1,波束对3),则此时通知消息中只包括波束y的索引号。
或者,该通知消息包括当前波束对集合中的每个周期性扫描波束和上一次发送的通知消息中对应的周期性扫描波束的索引号的差值。例如,当前波束对集合中包括波束对1和波束对2,其中波束对1包括网络设备侧波束x和终端设备侧波束x’,波束对2包括网络设备侧波束y和终端设备侧波束y’,网络侧波束x和y都为周期性扫描波束,并且波束对2是由波束对3调整得来的,波束对3包括网络设备侧波束z和终端设备侧波束z’,波束对1未经过 调整,上一次发送的通知消息包括波束x和波束z的索引号,则此时通知消息中包括波束x和波束x的索引号的差值,以及波束y和波束z的索引号的差值。
或者,该通知消息包括当前波束对集合中的每个调整后的周期性扫描波束和上一次发送的通知消息中调整前的周期性扫描波束的索引号的差值。参考上面的例子中,此时通知消息中只包括波束y和波束z的索引号的差值。
或者,该通知消息包括指示信息,该指示信息用于指示当前波束对集合中的每个周期性扫描波束或每个调整后的周期性扫描波束,在波束调整时发送的参考信号和N个周期性扫描信号中的一个是关于某个参数准同位(quasi co-located,简称QCL)的。其中,该参数可以包括以下之一:平均增益、平均时延、时延扩展、多普勒频偏、多普勒扩展、信道相关性、接收波束或到达角。例如,当前波束对集合中包括波束对1和波束对2,其中波束对1包括网络设备侧波束x和终端设备侧波束x’,波束对2包括网络设备侧波束y和终端设备侧波束y’,网络侧波束x和y都为周期性扫描波束,并且波束对2是由波束对3调整得来的,波束对3包括网络设备侧波束z和终端设备侧波束z’,波束对1未经过调整,则指示信息可以指示波束y在波束调整时发送的参考信号和N个周期性扫描信号中的一个是关于某个参数QCL的。
S55:终端设备发起波束恢复请求;
终端设备接收到网络设备发送的通知消息后,在正确的时频资源上发送请求序列。
本申请实施例中,网络设备在波束调整后,向终端设备发送通知消息,以通知终端设备调整后的周期性扫描波束的索引号。终端设备收到该通知消息后,就可以确定用于发起波束恢复请求的波束所对准的周期性扫描波束的索引号,进而确定该周期性扫描波束对应的时频资源,从而在正确的时频资源上发送请求序列,使得网络设备可以正确的接收到终端设备发起的波束恢复请求。
本申请实施例中,在S51中建立了可用于通信的波束对集合后,为了提供高信号增益以提高数据传输速率,网络设备和终端设备可以在该波束对集合(以下称为第一级波束对集合)中包括的第一级波束对的基础上,建立多个第二级波束对,以建立可用于通信的第二级波束对集合。第一级波束对中的波束为宽波束,第二级波束对中的波束为窄波束。其中,若一个窄波束是基于一个宽波束建立的,则该窄波束的收发角度在该宽波束的收发角度范围内,比如宽波束的收发角度为20~40度,若基于该宽波束建立了四个窄波束,则四个窄波束对应的收发角度分别可以为20~25度、25~30度、30~35度和35~40度。当一个网络设备侧第二级波束的收发角度范围在一个网络设备侧第一级波束(也即周期性扫描波束)的收发角度范围内时,称该网络设备侧第二级波束和该周期性扫描波束具有对应关系,此时该网络设备侧第二级波束和其对准的终端设备侧第二级波束形成的第二级波束对,和该周期性扫描波束和其对准的终端设备侧第一级波束形成的第一级波束对也具有对应关系。
建立了可用于通信的第二级波束对集合后,网络设备和终端设备会对第二级波束对集合中的至少一个第二级波束对进行调整。具体地,网络设备针对第二级波束对集合中的特定第二级波束对(以下称为第二级目标波束对)中的网络设备侧波束(以下称为第二级目标波束),在其周围使用K个第二级波束分别发送K个参考信号。然后终端设备反馈所选择的参考信号的索引号,同时记录自己用来接收该参考信号的接收波束,该接收波束和所上报的参考信号对应的网络设备侧波束就形成了一个新的第二级波束对,而第二级波束对集合中的第二级目 标波束对也会被调整为该新的第二级波束对。
需要注意的是,新的第二级波束对可能会偏离第二级目标波束对对应的第一级波束对,即,新的第二级波束对中的网络设备侧第二级波束的收发角度范围,不在第二级目标波束对对应的第一级波束对中的周期性波束的收发角度范围内。例如:假设第一级波束对集合中包括第一级波束对1,其中第一级波束对1包括网络设备侧第一级波束x和终端设备侧第一级波束x’,网络侧第一级波束x为周期性扫描波束,基于第一级波束对1建立了第二级波束对2,第二级波束对2包括网络设备侧第二级波束x1和终端设备侧第一级波束x1’,此时,第二级波束x1和周期性扫描波束x具有对应关系,第二级波束对2和第一级波束对1也具有对应关系。在波束调整时,第二级波束对2被调整为第二级波束对3,第二级波束对3包括网络设备侧第二级波束y1和终端设备侧第二级波束y1’,第二级波束对3不对应第一级波束对1,而是对应第一级波束对4,即第二级波束对3偏离了第一级波束对1。第一级波束对4包括网络设备侧第一级波束y和终端设备侧第一级波束y’,其中网络设备侧第一级波束y为周期性扫描波束。此时,如果终端设备要发送请求序列,出于可靠性或覆盖面的考虑,需要使用调整后的终端侧第二级波束(波束y1’)对应的终端侧第一级波束(波束y’)来发送该请求序列,但是终端设备此时并不知道和波束y’对准的周期性扫描波束y的索引号,进而也不知道应该在哪个时频资源上发送请求序列。
因此,本申请实施例中,如果网络设备和终端设备建立了可用于通信的第二级波束对集合,并对其中的至少一个第二级波束对进行了波束调整后,网络设备也需要向终端设备发送通知消息,以指示当前第二级波束对集合中所有或调整后的网络设备侧第二级波束所对应的周期性扫描波束的索引号。具体的通知方式可参考S54中的相关描述,在此不再赘述。
图10为本申请实施例提供的一种发送消息的方法流程示意图。如图10所示,包括如下步骤:
S101:网络设备为终端设备分配请求序列;
网络设备为终端设备分配一个终端设备特定(UE-Specific)的请求序列,不同的终端设备的请求序列是正交的,网络设备可以根据接收到的请求序列知道该请求序列来自哪一个终端设备。或者,网络设备为终端设备分配一个终端设备特定的时频资源,并为终端设备分配一个请求序列,该请求序列可能并不是终端设备特定的,多个终端设备可能共有一个请求序列,网络设备根据在哪个时频资源上接收到请求序列知道该请求序列来自哪一个终端设备。或者,网络设备也可以为终端设备分配一个终端设备特定的请求序列和终端设备特定的时频资源。
当网络设备为终端设备分配一个终端设备特定的时频资源(或者说,终端设备的专用时频资源)时,该专用时频资源可以承载在不同的信道上,例如物理上行控制信道(physical uplink control channel,简称PUCCH),物理随机接入信道(physical random access channel,简称PRACH)以及和物理随机接入信道有相同时隙但不同频带的信道(PRACH-like)。
本步骤中,请求序列并不必然用于指示波束恢复请求,或者说,该请求序列并不必然用于请求波束恢复。
S102:终端设备向网络设备发送请求序列;
S103:响应于接收到的请求序列,网络设备向终端设备发送响应消息;
其中,该响应消息指示了网络设备响应于该请求序列,为终端设备分配的时频资源,该 时频资源用于后续的上行传输。
可选地,网络设备会有一定几率判断错误请求序列来自哪一个终端设备,而没有发送请求序列的终端设备在收到响应消息后也会解码该响应消息。为了避免这种情况,网络设备可以用一个无线网络临时标识(radio network temporary identity,简称RNTI)对响应消息进行加扰,这样的话,没有发送请求序列的终端设备在收到响应消息后,检测到该RNTI就不会去解码该响应消息。该RNTI可以通过预设函数和如下至少一个变量得到:所述请求序列的索引号、用于发送所述请求序列的时间资源的索引号、和用于发送所述请求序列的频率资源的索引号。
S104:终端设备向网络设备发送指示消息;
终端设备在接收到网络设备发送的响应消息时,在该响应消息所指示的时频资源上向网络设备发送指示消息,该指示消息指示了S102中终端设备所发送的请求序列的实际功能或用途。例如:该请求序列是波束恢复请求、数据调度请求或者波束调整请求,该请求序列还可以复用为波束恢复请求、数据调度请求和波束调整请求中的至少两个请求。其中,波束恢复请求是指当终端设备在移动、旋转时,或者环境发生变化时,终端设备和网络设备之间的服务波束对可能被遮挡导致失效,当终端设备检测到下行信号的接收信号强度低于预设阈值时,终端设备即检测到波束失败,并发起波束恢复请求。数据调度请求是指终端设备有数据要发送时,向网络设备发送的请求分配数据传输资源的请求。波束调整请求是指网络设备和终端设备建立可用于通信的波束对集合后,对波束对集合中的至少一个波束对进行调整的请求。
当请求序列至少用于请求波束恢复时,本申请实施例在S101之前,还有终端设备检测到波束失败的步骤,即终端设备接收网络设备使用服务波束发送的信号,并检测到该信号的接收信号强度小于或等于预设阈值。当终端设备检测到波束失败时,可以先确定当前是否有可用的波束对,当前有可用的波束对时,再发送用于请求波束恢复的请求序列。终端设备确定当前有可用的波束对,可以接收网络设备使用任意波束发送的信号,当检测到该信号的接收信号强度大于或等于预设阈值时,即确定当前有可用的波束对,并向网络设备发送该信号的索引号。此外,指示消息中还可以包括以下至少之一:波束失败原因、失败波束数量、波束失败情况、可用波束索引号和可用波束质量。
当请求序列至少用于请求数据调度时,指示消息中还包括缓存状态报告(buffer status report,简称BSR),用于指示终端设备待发送的数据量或请求的资源量。
图11为本申请实施例提供的一种指示消息的示意图。如图11所示,指示消息可以使用至少一个媒体接入控制层控制单元(media access control-control element,简称MAC CE)来实现,一个MAC CE包括8比特或8比特的整数倍比特。图11示出了MAC CE111和MAC CE112。指示消息可以使用MAC CE111来实现,其中MAC CE111中的S1S0比特指示了请求序列的功能,S1S0为01时指示请求序列用于请求波束恢复,相应地,MAC CE111中的B1B0比特指示波束失败的原因,C1C0比特指示失败波束的个数,D1D0比特指示可用波束索引号。指示消息可以使用MAC CE112来实现,MAC CE112中的S1S0比特指示了请求序列的功能,S1S0为00时指示请求序列用于请求数据调度,相应地,MAC CE112中的B5-B0比特指示缓存状态信息。指示消息还可以同时使用MAC CE111和MAC CE112来实现,此时指示请求序列复用于请求数据调度和请求波束恢复,也即终端设备同时发起了数据调度请求和波束恢复请求。
图11中,MAC CE111中还可以没有专门的比特来指示请求序列的功能,只有指示波束失败的原因、失败波束的个数和可用波束索引号的比特,MAC CE111中也可以没有专门的比特来指示请求序列的功能,只有指示缓存状态信息的比特。进一步的,当MAC CE111或MAC CE112中没有专门的比特来指示请求序列的功能时,可以用MAC CE111或MAC CE112中的逻辑信道值来指示请求序列的功能,例如逻辑信道值为0时,指示请求序列用于请求波束恢复,逻辑信道值不为0时,指示请求序列用于请求数据调度。也可以用MAC CE111或MAC CE112中的缓存状态信息值来指示请求序列的功能,例如缓存状态信息值为0时,指示请求序列用于请求波束恢复,缓存状态信息值不为0时,指示请求序列用于请求数据调度。
S140’:终端设备重新向网络设备发送请求序列;
当终端设备在预设时间内未接收到网络设备发送的响应消息时,重新向网络设备发送请求序列,直到发送请求序列的次数达到预设的最大发送次数时,执行以下之一:发起随机接入过程、报告波束恢复失败和报告无线链路失败。
本申请实施例中,在从终端设备接收到请求序列后,网络设备为终端设备分配用于上行传输的时频资源,终端设备在网络设备分配的时频资源上向网络设备上报请求序列的实际功能。进一步的,终端设备还可以同时上报和请求序列的实际功能相应的辅助信息,例如:当请求序列的实际功能为波束恢复请求时,辅助信息包括波束失败原因、失败波束数量、波束失败情况、可用波束索引号和可用波束质量中的至少之一,当请求序列的实际功能为数据调度请求时,辅助信号包括BSR。
本申请实施例中,终端设备向网络设备发送的请求序列并不是必然用于请求波束恢复,而是可以复用于请求波束调整和/或请求数据调度。网络设备响应于该请求序列,为终端设备分配时频资源,终端设备在分配的时频资源上向网络设备发送指示消息,并在指示消息中指示请求序列的实际功能。将请求序列复用为几种可能的请求,节省了大量的序列资源。
图12为本申请实施例提供的一种网络设备的装置示意图。如图12所示,网络设备120包括发送单元1200和接收单元1201,其中发送单元1200可用于执行S511、S531和S54,接收单元1201可用于执行S512、S532和S55。
图13为本申请实施例提供的一种终端设备的装置示意图。如图13所示,网络设备130包括发送单元1300和接收单元1301,其中发送单元1300可用于执行S102、S104,接收单元1301可用于执行S101、S103。
图14为本申请实施例提供的另一种网络设备的装置示意图。如图14所示,网络设备140包括:存储器1400、收发器1401、处理器1402,此外还可以包括总线1403和至少一个天线1404。其中,存储器1400用于存储包括计算机操作指令的程序代码,处理器1402用于执行所述计算机操作指令,以控制所述收发器执行如图5所示的S51-S55。
图15也为本申请实施例提供的另一种终端设备的装置示意图。如图15所示,终端设备150包括:存储器1500、收发器1501、处理器1502,此外还可以包括总线1503和至少一个天线1504。其中,存储器1500用于存储包括计算机操作指令的程序代码,处理器1502用于执行所述计算机操作指令,以控制所述收发器执行如图10所示的S101-S104。
应理解,上述的收发器可以包括发射机和接收机。收发器还可以进一步包括天线,天线的数量可以为一个或多个。存储器可以是一个单独的器件,也可以集成在处理器中。上述的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
本申请实施方式的装置可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA),可以是专用集成芯片(Application Specific Integrated Circuit,ASIC),还可以是系统芯片(System on Chip,SoC),还可以是中央处理器(Central Processor Unit,CPU),还可以是网络处理器(Network Processor,NP),还可以是数字信号处理电路(Digital Signal Processor,DSP),还可以是微控制器(Micro Controller Unit,MCU),还可以是可编程控制器(Programmable Logic Device,PLD)或其他集成芯片。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。各方法实施例为了方便简洁,也可以互为参考引用,不再赘述。
本文中的术语“多个”是指两个或两个以上。本文中的术语“第一”、“第二”等仅是为了区分不同的对象,并不对其顺序进行限定。例如,第一符号组和第二符号组仅仅是为了区分不同的符号组,并不对其先后顺序进行限定。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。本申请实施例中所提及的预设阈值,可以为同一个预设阈值,也可以为不同的预设阈值。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种接收波束恢复请求的方法,应用于网络设备,其特征在于,包括:
    使用第一波束向终端设备发送第一信号;
    接收所述终端设备发送的第一索引信息,其中所述第一索引信息指示了所述第一信号的索引号;
    根据所述第一索引信息,向所述终端设备发送第一通知消息,其中所述第一通知消息包括第二索引信息,所述第二索引信息指示了第二信号的索引号,所述第二信号的索引号和所述第一波束相对应;
    在所述第一波束对应的时频资源上接收所述终端设备发送的所述波束恢复请求。
  2. 根据权利要求1所述的方法,其特征在于,所述使用第一波束向终端设备发送第一信号之前,还包括:
    使用所述第一波束向终端设备发送所述第二信号;
    接收所述终端设备发送的第三索引信息,其中所述第三索引信息指示了所述第二信号的索引号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述向所述终端设备发送通知消息之后,还包括:
    使用第二波束向所述终端设备发送第三信号;
    接收所述终端设备发送的第四索引信息,其中所述第四索引信息指示了所述第三信号的索引号;
    根据所述第四索引信息,向所述终端设备发送第二通知消息,其中所述第二通知消息包括第五索引信息,所述第五索引信息指示了第四信号的索引号和所述第二信号的索引号的差值,所述第四信号的索引号和所述第二波束相对应。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第二索引信息指示了第二信号的索引号包括:
    所述第二索引信息指示了所述第一信号和所述第二信号准同位。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第一信号包括第一信道状态信息参考信号CSI-RS,所述第二信号包括第二CSI-RS或者第一同步信号块SS Block,所述第三信号包括第三CSI-RS,所述第四信号包括第四CSI-RS或者第二SS Block。
  6. 一种发送消息的方法,应用于终端设备,其特征在于,包括:
    向网络设备发送请求序列;
    接收所述网络设备发送的响应消息,其中所述响应消息指示了所述网络设备响应于所述请求序列,为所述终端设备分配的时频资源;
    在所述时频资源上向所述网络设备发送指示消息,其中所述指示消息指示了所述请求序列用于以下至少之一:请求波束恢复、请求数据调度和请求波束调整。
  7. 根据权利要求6所述的方法,其特征在于,当所述请求序列至少用于请求波束恢复时,所述指示消息还包括以下至少之一:
    波束失败原因、失败波束数量、波束失败情况、可用波束索引号和可用波束质量。
  8. 根据权利要求7所述的方法,其特征在于,所述失败波束数量使用失败波束数量字段 表示,所述失败波束数量字段为00、01、10、11时,分别表示失败波束数量为1、2、3、4。
  9. 根据权利要求7所述的方法,其特征在于,所述失败波束情况使用失败波束情况字段表示,所述失败波束情况字段为00、01时,分别表示失败波束情况为当前服务波束失败、所有服务波束失败。
  10. 根据权利要求6所述的方法,其特征在于,当所述请求序列至少用于请求波束恢复时,所述向网络设备发送请求序列之前,还包括:
    接收所述网络设备使用第一波束发送的第一信号;
    检测到所述第一信号的接收信号强度小于或等于第一预设阈值。
  11. 根据权利要求10所述的方法,其特征在于,所述检测到所述第一信号的接收信号强度小于或等于第一预设阈值之后,还包括:
    接收所述网络设备使用第二波束发送的第二信号;
    检测到所述第二信号的接收信号强度大于或等于第二预设阈值;
    向所述网络设备发送第一索引信息,其中所述第一索引信息指示了所述第二信号的索引号。
  12. 根据权利要求6所述的方法,其特征在于,当所述请求序列至少用于请求数据调度时,所述指示消息还包括缓存状态报告BSR。
  13. 根据权利要求6-12任一项所述的方法,其特征在于,所述向网络设备发送请求序列之后,还包括:
    若在预设时间内没有接收到所述响应消息,则重新向所述网络设备发送所述请求序列;
    当向所述网络设备发送所述请求序列的次数达到预设的最大发送次数时,执行以下之一:
    发起随机接入过程、报告波束恢复失败和报告无线链路失败。
  14. 根据权利要求6-13任一项所述的方法,其特征在于,所述响应消息由一个无线网络临时标识RNTI进行了加扰,其中所述RNTI通过预设函数和以下至少一个变量得到:
    所述请求序列的索引号、用于发送所述请求序列的时间资源的索引号、和用于发送所述请求序列的频率资源的索引号。
  15. 根据权利要求6-15任一项所述的方法,其特征在于,所述指示消息由至少一个媒体接入层控制单元MAC CE承载。
  16. 一种网络设备,其特征在于,包括:
    收发器;
    存储器,用于存储包括计算机操作指令的程序代码;
    处理器,用于执行所述计算机操作指令,以控制所述收发器执行:
    接收所述终端设备发送的第一索引信息,其中所述第一索引信息指示了所述第一信号的索引号;
    根据所述第一索引信息,向所述终端设备发送第一通知消息,其中所述第一通知消息包括第二索引信息,所述第二索引信息指示了第二信号的索引号,所述第二信号的索引号和所述第一波束相对应;
    在所述第一波束对应的时频资源上接收所述终端设备发送的所述波束恢复请求。
  17. 根据权利要求16所述的网络设备,其特征在于,所述处理器还用于控制所述收发器执行:
    使用所述第一波束向终端设备发送所述第二信号;
    接收所述终端设备发送的第三索引信息,其中所述第三索引信息指示了所述第二信号的索引号。
  18. 根据权利要求16或17所述的网络设备,其特征在于,所述处理器还用于控制所述收发器执行:
    使用第二波束向所述终端设备发送第三信号;
    接收所述终端设备发送的第四索引信息,其中所述第四索引信息指示了所述第三信号的索引号;
    根据所述第四索引信息,向所述终端设备发送第二通知消息,其中所述第二通知消息包括第五索引信息,所述第五索引信息指示了第四信号的索引号和所述第二信号的索引号的差值,所述第四信号的索引号和所述第二波束相对应。
  19. 根据权利要求16或17所述的网络设备,其特征在于,所述第二索引信息指示了第二信号的索引号包括:
    所述第二索引信息指示了所述第一信号和所述第二信号准同位。
  20. 根据权利要求16或17所述的网络设备,其特征在于,所述第一信号包括第一信道状态信息参考信号CSI-RS,所述第二信号包括第二CSI-RS或者第一同步信号块SS Block,所述第三信号包括第三CSI-RS,所述第四信号包括第四CSI-RS或者第二SS Block。
  21. 一种终端设备,其特征在于,包括:
    收发器;
    存储器,用于存储包括计算机操作指令的程序代码;
    处理器,用于执行所述计算机操作指令,以控制所述收发器执行:
    向网络设备发送请求序列;
    接收所述网络设备发送的响应消息,其中所述响应消息指示了所述网络设备响应于所述请求序列,为所述终端设备分配的时频资源;
    在所述时频资源上向所述网络设备发送指示消息,其中所述指示消息指示了所述请求序列用于以下至少之一:请求波束恢复、请求数据调度和请求波束调整。
  22. 根据权利要求21所述的终端设备,其特征在于,当所述请求序列至少用于请求波束恢复时,所述指示消息还包括以下至少之一:
    波束失败原因、失败波束数量、波束失败情况、可用波束索引号和可用波束质量。
  23. 根据权利要求22所述的终端设备,其特征在于,所述失败波束数量使用失败波束数量字段表示,所述失败波束数量字段为00、01、10、11时,分别表示失败波束数量为1、2、3、4。
  24. 根据权利要求22所述的终端设备,其特征在于,所述失败波束情况使用失败波束情况字段表示,所述失败波束情况字段为00、01时,分别表示失败波束情况为当前服务波束失败、所有服务波束失败。
  25. 根据权利要求21所述的终端设备,其特征在于,当所述请求序列至少用于请求波束恢复时,所述处理器还用于控制所述收发器执行:
    接收所述网络设备使用第一波束发送的第一信号;
    检测到所述第一信号的接收信号强度小于或等于第一预设阈值。
  26. 根据权利要求25所述的终端设备,其特征在于,所述处理器还用于控制所述收发器执行:
    接收所述网络设备使用第二波束发送的第二信号;
    检测到所述第二信号的接收信号强度大于或等于第二预设阈值;
    向所述网络设备发送第一索引信息,其中所述第一索引信息指示了所述第二信号的索引号。
  27. 根据权利要求21所述的终端设备,其特征在于,当所述请求序列至少用于请求数据调度时,所述指示消息还包括缓存状态报告BSR。
  28. 根据权利要求21-27任一项所述的终端设备,其特征在于,所述处理器还用于控制所述收发器执行:
    若在预设时间内没有接收到所述响应消息,则重新向所述网络设备发送所述请求序列;
    当向所述网络设备发送所述请求序列的次数达到预设的最大发送次数时,执行以下之一:
    发起随机接入过程、报告波束恢复失败和报告无线链路失败。
  29. 根据权利要求21-27任一项所述的终端设备,其特征在于,所述响应消息由一个无线网络临时标识RNTI进行了加扰,其中所述RNTI通过预设函数和以下至少一个变量得到:
    所述请求序列的索引号、用于发送所述请求序列的时间资源的索引号、和用于发送所述请求序列的频率资源的索引号。
  30. 根据权利要求21-29任一项所述的终端设备,其特征在于,所述指示消息由至少一个媒体接入层控制单元MAC CE承载。
PCT/CN2018/085113 2017-05-05 2018-04-28 一种接收波束恢复请求的方法及网络设备 WO2018202010A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18793913.7A EP3614715B1 (en) 2017-05-05 2018-04-28 Method for receiving beam recovery request, and network device
US16/673,498 US10893566B2 (en) 2017-05-05 2019-11-04 Method for receiving beam recovery request and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710312732.8 2017-05-05
CN201710312732.8A CN108810928B (zh) 2017-05-05 2017-05-05 一种接收波束恢复请求的方法及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/673,498 Continuation US10893566B2 (en) 2017-05-05 2019-11-04 Method for receiving beam recovery request and network device

Publications (1)

Publication Number Publication Date
WO2018202010A1 true WO2018202010A1 (zh) 2018-11-08

Family

ID=64015844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085113 WO2018202010A1 (zh) 2017-05-05 2018-04-28 一种接收波束恢复请求的方法及网络设备

Country Status (4)

Country Link
US (1) US10893566B2 (zh)
EP (1) EP3614715B1 (zh)
CN (2) CN108810928B (zh)
WO (1) WO2018202010A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210127428A1 (en) * 2017-07-28 2021-04-29 Qualcomm Incorporated Random access channel procedures with multiple carriers
CN113383594A (zh) * 2019-08-02 2021-09-10 Oppo广东移动通信有限公司 无线通信方法和终端设备

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039530A (zh) * 2017-06-09 2018-12-18 索尼公司 无线通信系统中的装置和方法
EP3462633A1 (en) * 2017-09-28 2019-04-03 Panasonic Intellectual Property Corporation of America Resource allocation for the beam failure recovery procedure
EP3900214A1 (en) * 2018-12-21 2021-10-27 Qualcomm Incorporated State-based beam switching
CN111385890B (zh) * 2018-12-29 2023-05-02 成都华为技术有限公司 一种波束失败恢复方法及装置
CN111447681B (zh) * 2019-01-17 2023-03-28 中国移动通信有限公司研究院 一种波束恢复方法、装置、介质和设备
CN111479333B (zh) * 2019-01-23 2022-09-02 华为技术有限公司 通信方法和通信装置
WO2020155094A1 (en) * 2019-02-01 2020-08-06 Qualcomm Incorporated Techniques for communicating mobility information
CN111867071B (zh) * 2019-04-30 2023-12-22 中国信息通信研究院 一种基于数据调度的波束失败指示和恢复的方法和设备
CN111918416B (zh) * 2019-05-10 2023-10-10 华为技术有限公司 通信方法和通信装置
US11856570B2 (en) 2020-01-27 2023-12-26 Qualcomm Incorporated Dynamic mixed mode beam correspondence in upper millimeter wave bands
US11831383B2 (en) 2020-01-27 2023-11-28 Qualcomm Incorporated Beam failure recovery assistance in upper band millimeter wave wireless communications
CN115699844A (zh) * 2020-06-19 2023-02-03 深圳传音控股股份有限公司 辅小区波束失败处理方法、设备及存储介质
US11228469B1 (en) * 2020-07-16 2022-01-18 Deeyook Location Technologies Ltd. Apparatus, system and method for providing locationing multipath mitigation
CN115039363B (zh) * 2021-01-05 2023-12-12 Lg电子株式会社 无线通信系统中的波束故障恢复方法及设备
WO2023137584A1 (en) * 2022-01-18 2023-07-27 Apple Inc. Systems and methods for conserving network power with a beam pattern update for transmitted synchronization signal blocks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102396164A (zh) * 2009-04-17 2012-03-28 马维尔国际贸易有限公司 分段波束成形
CN103596195A (zh) * 2010-07-06 2014-02-19 英特尔公司 通过波束形成的通信链路的无线通信的设备、系统和方法
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统
CN104205911A (zh) * 2012-03-27 2014-12-10 三星电子株式会社 在无线通信系统中发送波束信息的方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678184B1 (ko) * 2004-05-19 2007-02-02 삼성전자주식회사 이동통신 시스템에서 향상된 역방향 전용채널의 스케줄링방법 및 장치
EP2405594A4 (en) * 2009-03-06 2017-05-17 LG Electronics Inc. Bandwidth request preamble sequence selection method and random access method
KR101944796B1 (ko) * 2012-01-17 2019-04-17 삼성전자주식회사 빔포밍 기반 무선통신 시스템의 상향링크 빔 트래킹 방법 및 장치
JP6596580B2 (ja) 2015-05-30 2019-10-23 華為技術有限公司 通信方法、基地局およびユーザ機器
ES2926484T3 (es) * 2015-09-25 2022-10-26 Huawei Tech Co Ltd Método de envío de datos, equipo de usuario y dispositivo de red
CN113329509B (zh) * 2017-03-24 2022-08-23 北京紫光展锐通信技术有限公司 一种波束恢复方法及装置
JP6973502B2 (ja) * 2017-04-28 2021-12-01 日本電気株式会社 ランダムアクセスプロセスの方法、端末デバイス、ネットワーク要素、および装置
CN109246732B (zh) * 2017-04-28 2020-05-15 维沃移动通信有限公司 波束失败恢复方法和终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102396164A (zh) * 2009-04-17 2012-03-28 马维尔国际贸易有限公司 分段波束成形
CN103596195A (zh) * 2010-07-06 2014-02-19 英特尔公司 通过波束形成的通信链路的无线通信的设备、系统和方法
CN104205911A (zh) * 2012-03-27 2014-12-10 三星电子株式会社 在无线通信系统中发送波束信息的方法和装置
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on Beam Measurement and Tracking for 5G New Radio Interface in mmWave Frequency Bands", 3GPP TSG RAN WG2 #93BIS R2-162226, 15 April 2016 (2016-04-15), XP051082013 *
See also references of EP3614715A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210127428A1 (en) * 2017-07-28 2021-04-29 Qualcomm Incorporated Random access channel procedures with multiple carriers
CN113383594A (zh) * 2019-08-02 2021-09-10 Oppo广东移动通信有限公司 无线通信方法和终端设备

Also Published As

Publication number Publication date
US10893566B2 (en) 2021-01-12
CN108810928B (zh) 2023-12-15
CN117880987A (zh) 2024-04-12
EP3614715A4 (en) 2020-07-29
EP3614715B1 (en) 2021-08-25
EP3614715A1 (en) 2020-02-26
US20200068644A1 (en) 2020-02-27
CN108810928A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2018202010A1 (zh) 一种接收波束恢复请求的方法及网络设备
US20230362911A1 (en) System and Method for Indicating Wireless Channel Status
AU2018407973B2 (en) System and method for periodic beam failure measurements
TWI806834B (zh) 用於獨立鏈路的波束資訊
US10555359B2 (en) System and method for beam failure recovery
WO2019214611A1 (zh) 通信方法及装置
US9992725B2 (en) Method and apparatus for implementing high-frequency communication
WO2019137346A1 (zh) 监控信道质量的方法和终端设备
WO2018223972A1 (zh) 一种信道质量信息的上报方法及装置
WO2019214725A1 (zh) 一种波束训练的方法、装置及系统
WO2020034877A1 (zh) 链路失败恢复方法及相关设备
WO2018228468A1 (zh) 一种无线链路监控方法和装置
US20210099270A1 (en) Resource Indicating Method, Device, And System
WO2018202137A1 (zh) 一种通信方法及装置
WO2020134984A1 (zh) 一种波束失败恢复方法及装置
US20220167339A1 (en) Beam failure recovery method and apparatus
JP7016429B2 (ja) ミリ波mimoモード選択のための方法および装置
WO2021077372A1 (en) Method and access network node for beam management
WO2019096395A1 (en) Processing device and methods thereof
US11984939B2 (en) Methods and devices for inter-cell interference estimation
EP4038784A1 (en) Method to decode uplink control channel for ultra reliable low latency applications
US20220159490A1 (en) Detection of a skipped uplink transmission
TWI829266B (zh) 波束組報告之方法及其使用者設備
WO2018170909A1 (zh) 信息配置装置、监测装置、方法及通信系统
WO2022151214A1 (zh) 波束失败恢复方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18793913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018793913

Country of ref document: EP

Effective date: 20191118