WO2018139679A1 - 癌浸潤または転移阻害核酸薬および癌バイオマーカー - Google Patents

癌浸潤または転移阻害核酸薬および癌バイオマーカー Download PDF

Info

Publication number
WO2018139679A1
WO2018139679A1 PCT/JP2018/003055 JP2018003055W WO2018139679A1 WO 2018139679 A1 WO2018139679 A1 WO 2018139679A1 JP 2018003055 W JP2018003055 W JP 2018003055W WO 2018139679 A1 WO2018139679 A1 WO 2018139679A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
snora23
cells
hlmc
aso
Prior art date
Application number
PCT/JP2018/003055
Other languages
English (en)
French (fr)
Inventor
賢二 中野
林 崔
聡 小比賀
剛史 山本
Original Assignee
賢二 中野
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 賢二 中野, 国立大学法人大阪大学 filed Critical 賢二 中野
Publication of WO2018139679A1 publication Critical patent/WO2018139679A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a nucleic acid capable of inhibiting cancer invasion or metastasis and an anticancer agent containing the nucleic acid.
  • Pancreatic cancer or pancreatic ductal adenocarcinoma is invasive, has high metastatic potential, and has a poor prognosis. From ancient times, it has been known by pathological examination that the degree of malignancy and poor prognosis of cancer cells are related to the degree of nuclear and nucleolus atypia.
  • RNA Nucleolar small molecule RNA
  • SNORA42 Non-Patent Document 1
  • SNORA55 Non-Patent Document 2
  • h5sn2 Non-Patent Document 3
  • SNORD44 Non-Patent Document 4
  • SNORD50A / B Non-Patent Document 5
  • RNA interference for example, use of siRNA or miRNA
  • antisense method for example, use of siRNA or miRNA
  • nucleic acids such as nucleic acid utilization 0.
  • various artificial nucleic acids are used.
  • ASO antisense oligonucleotide
  • AmNA amide-bridged nucleic acid
  • snoRNA which is nuclear non-translated RNA
  • a nucleic acid agent capable of suppressing snoRNA expression in vivo has not been established yet.
  • an effective therapeutic agent for eliminating cancer invasion and metastasis such as PDAC is used as a target gene.
  • an object of the present invention is to provide a nucleic acid agent capable of suppressing the expression of nuclear untranslated RNA in vivo. Furthermore, an object of the present invention is to provide an antitumor agent comprising an expression inhibitor of snoRNA involved in cancer invasion and metastasis.
  • the present invention provides an antitumor agent containing a SNORA23 gene expression inhibitor.
  • the SNOR23 gene expression inhibitor includes a nucleic acid molecule that can bind to the SNORA23 gene and has an activity of suppressing the expression of the SNOR23 gene.
  • the nucleic acid molecule is an oligonucleotide that is complementary to the target region that is part of the base sequence of the SNORA23 gene shown in SEQ ID NO: 1 and is 12 to 20 bases in length, or Including pharmacologically acceptable salts thereof.
  • the oligonucleotide or pharmacologically acceptable salt thereof comprises one or more nucleotides containing a sugar modifying moiety.
  • the oligonucleotide or a pharmacologically acceptable salt thereof is A nucleoside structure represented by the following formula (I):
  • Base may have one or more purine-9-yl groups optionally having one or more arbitrary substituents selected from the ⁇ group, or may have one or more arbitrary substituents selected from the ⁇ group 2
  • a divalent group represented by R 1 is selected from a hydrogen atom, an alkyl group having 1 to 7 carbon atoms that may form a branch or a ring, an alkenyl group having 2 to 7 carbon atoms that may form a branch or a ring, and the ⁇ group
  • the aryl group having 3 to 12 carbon atoms which may contain one or more of the optional substituents and may contain a hetero atom, and one or more optional substituents selected from the ⁇ group Represents an aralkyl group having an aryl moiety having 3 to 12 carbon atoms which may contain a hetero atom, or an amino-protecting group for nucleic acid synthesis;
  • R 13 and R 14 are each independently a hydrogen atom; a hydroxyl group; an alkyl group having 1 to 7 carbon atoms that may form a branch or a ring; A group selected from the group consisting of: an alkoxy group of 7; an amino group; and an amino group protected with a protecting group for nu
  • nucleoside structure represented by the formula (I) is
  • the nucleoside structure represented by the formula (I) is a structure represented by the formula (I ′), and in the formula (I ′), the m is 0, and R 1 is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group, or a benzyl group.
  • the oligonucleotide is a gapmer consisting of a 6-10 base gap region, 3-5 base 5 ′ wings and 3-5 base 3 ′ wings, The gap region is positioned between the 5 ′ wing and the 3 ′ wing, and the 5 ′ wing and the 3 ′ wing include a nucleoside structure represented by the above formula (I).
  • the SNORA23 gene expression inhibitor suppresses the expression of SYNE2.
  • the present invention also provides an antitumor agent containing a SYNE2 expression inhibitor.
  • the SYNE2 expression inhibitor includes a nucleic acid molecule capable of binding to SYNE2 and having an activity of suppressing the expression of SYN2.
  • the anti-tumor agent is an anti-tumor agent used for tumors having invasive or metastatic potential.
  • the antitumor agent is an antitumor agent used for the treatment or prevention of pancreatic cancer, liver cancer, lung cancer, ovarian cancer or gastric cancer.
  • the present invention further provides a pharmaceutical composition containing the antitumor agent.
  • the present invention still further provides the use of SNORA23 as a biomarker, characterized by measuring SNORA23 in blood samples to detect cancer invasion or metastasis.
  • RNA nuclear untranslated RNA
  • the present invention makes it possible to suppress the expression of snoRNA, which is an intranuclear untranslated RNA, in vivo. Furthermore, according to the present invention, the expression of snoRNA involved in cancer invasion or metastasis can be suppressed, and a therapeutic agent based on the antitumor effect can be provided.
  • FIG. 1a The figure which shows the result of cDNA microarray analysis of mRNA and untranslated RNA for the HLMC cells and parental cells of Suite2 and MIA PaCa2 cancer cells (FIG. 1a), CEA mRNA by qRT-PCR (FIG. 1b), and SNORA23 RNA (FIG. 1c) ); And a graph showing SNOR23 expression levels in various pancreatic cancer cell lines, normal pancreatic ductal epithelial (NPDE) cells, and cancer-associated fibroblasts (CAF) (FIG. 1d).
  • NPDE normal pancreatic ductal epithelial
  • CAF cancer-associated fibroblasts
  • FIG. 2 is a labeled fluorescence microscope image obtained by transfecting HLMC cells and parental cells of SNIT23 and MIA PaCa2 cancer cells and SNORA23 knockdown cells with a fluorescently labeled probe.
  • FIG. 2 is a boxplot of relative expression of SNORA23 in PDAC and normal liver and pancreatic tissues by qRT-PCR analysis. It is a graph which shows each survival curve of a disease-free survival rate and a total survival rate about each PDAC patient group of SNOR23 high expression produced according to the Kaplan-Meier method.
  • transfection with SNORA23 ASO # 1 (“SN-ASO # 1”)
  • transfection with SNORA23 ASO # 2 (“SN-ASO # 2”)
  • control ASO 2 is a graph showing the relative expression level of RNA by qRT-PCR analysis when each of the transfections (“Ctrl”) is performed. It is a graph which shows the typical image of the Matrigel invasion assay of HLMC cell ("HLMC”) and a parent cell (“WT”), and the number of infiltrating cells about Suite2 and MIA PaCa2.
  • a representative image of a soft agar colony formation assay and its magnified image for the transfection with SNORA23 pDNA (“SN-OE”) and mock pDNA transfection (“Mock”) for Sweet2 cells and MIA PaCa2 cells. is there.
  • SNORA23 pDNA SNORA23 pDNA
  • Mock mock pDNA transfection
  • IVIS image of mice treated with SNORA23 ASO # 1 (“SN-KD”: square) and their control mice (“Ctrl”: rhombus) for Suite2-HLMC cells and MIA PaCa2-HLMC cells 2 is a graph showing daily changes in the amount of luciferase signal in the whole body of a mouse measured by crystallization, and a representative image showing a signal distribution.
  • MIA PaCa2-HLMC cells For MIA PaCa2-HLMC cells, representative images showing the signal distribution by IVIS imaging of liver and pancreas excised from SNOR23 ASO # 1 treated mice (SN-KD) and control mice (Ctrl) were measured and measured. It is a graph which shows the amount of luciferase signals (photon / second). Heat of cDNA microarray analysis when Suite2-HLMC cells and MIA PaCa2-HLMC cells were transfected with SNORA23ASO (“SN-KD”) and control ASO (“Ctrl”), respectively. A map (A) and a heat map (B) for proteomic analysis are shown.
  • SNORA23 ASO # 1 For Sweet2-HLMC cells and MIA PaCa2-HLMC cells, in the case of their parent cells (WT) and untreated (HLMC), transfection with SNORA23 ASO # 1 (“SN-ASO # 1”), SNORA23 ASO # 2 is a graph showing the relative expression level of SYNE2 mRNA in the case of transfection with 2 (“SN-ASO # 2”), transfection with control ASO (“Ctrl ASO”), and untreated cases, respectively. is there.
  • SNORA23 ASO and SYNE2 pDNA transfection (“SNORA-ASO + SYNE2-pDNA”), SNORA23 ASO and mock pDNA transfection (“SNORA-ASO + Mock”), and control ASO and mock pDNA transfection (“Ctrl-ASO + Mock”)
  • SNORA-ASO + SYNE2-pDNA SNORA23 ASO and SYNE2 pDNA transfection
  • SNORA-ASO + Mock SNORA23 ASO and mock pDNA transfection
  • Ctrl-ASO + Mock A representative image of a Matrigel invasion assay of Suite2-HLMC cells and MIA PaCa2-HLMC cells 48 hours after, and a graph showing the number of infiltrating cells are shown.
  • the first day when the transfection with SYN2 siRNA (SYNE2-KD; square) and the transfection with control siRNA (Ctrl: rhombus) was performed on the Suite2-HLMC cells and MIA PaCa2-HLMC cells ( 4 is a graph showing spheroid formation fluctuations on D1) to 4th day (D4).
  • SNORA23 ASO and SYNE2 pDNA transfection SYNE-OE + SN-KD
  • SNORA23 ASO and mock pDNA transfection SNORA23 ASO and mock pDNA transfection
  • control ASO and mock pDNA transfection 6 is a graph showing the spheroid formation variation on the first day (D1) to the fourth day (D4) when each of (Ctrl) is performed.
  • MNA PaCa2-HLMC cells, Suite2-HLMC cells, Hs766T cells, and S2-013 cell lines were transfected with SNORA23 ASO # 3 ((A) "SNORA23 # 153" or (B) "AN-ASO # 3 "), 48 hours after transfection (MIA PaCa2-HLMC cells and Hs766T cells) or 72 hours (Suit2-HLMC cells and S2-013) when transfection was performed with control ASO (" Ctrl "), respectively.
  • 2 is a graph showing a representative image (A) and the number of infiltrating cells (B) of a cell (matrigel invasion assay).
  • FIG. 4 is a graph showing the expression levels of SNORA23, SYNE2 and CEA in tumor tissue samples of spleen, pancreas and liver after 4 weeks and 5 weeks later. It is a photograph of tumor tissues of the spleen and liver after 3 weeks, 4 weeks and 5 weeks after the start of subcutaneous administration of ASO for each of the SNORA23 ASO subcutaneously administered mice and control mice. It is a graph which shows each survival curve of a disease-free survival rate and a total survival rate about each PDAC patient group of SNOR23 high expression produced according to the Kaplan-Meier method.
  • linear alkyl group having 1 to 6 carbon atoms refers to any linear alkyl group having 1 to 6 carbon atoms, specifically a methyl group, an ethyl group, an n-propyl group, An n-butyl group, an n-pentyl group, or an n-hexyl group.
  • linear alkoxy group having 1 to 6 carbon atoms includes an alkoxy group having an arbitrary linear alkyl group having 1 to 6 carbon atoms. Examples thereof include a methyloxy group, an ethyloxy group, and an n-propyloxy group.
  • a linear or branched alkoxy group having 1 to 6 carbon atoms includes an alkoxy group having an arbitrary linear or branched alkyl group having 1 to 6 carbon atoms.
  • Examples thereof include a methyloxy group, an ethyloxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a tert-butyloxy group, an n-pentyloxy group, and an isopentyloxy group.
  • linear alkylthio group having 1 to 6 carbon atoms includes an alkylthio group having an arbitrary linear alkyl group having 1 to 6 carbon atoms. Examples thereof include a methylthio group, an ethylthio group, and an n-propylthio group.
  • a linear or branched alkylthio group having 1 to 6 carbon atoms includes an alkylthio group having an arbitrary linear or branched alkyl group having 1 to 6 carbon atoms.
  • Examples include a methylthio group, an ethylthio group, an n-propylthio group, an isopropylthio group, an n-butylthio group, an isobutylthio group, a tert-butylthio group, an n-pentylthio group, and an isopentylthio group.
  • C1-C6 cyanoalkoxy group refers to a group in which at least one hydrogen atom constituting the straight-chain alkoxy group having 1 to 6 carbon atoms is substituted with a cyano group.
  • linear alkylamino group having 1 to 6 carbon atoms means a group in which one or two hydrogen atoms constituting the amino group are substituted with a linear alkyl group having 1 to 6 carbon atoms. Is included. Examples thereof include a methylamino group, a dimethylamino group, an ethylamino group, a methylethylamino group, and a diethylamino group.
  • a linear or branched alkylamino group having 1 to 6 carbon atoms means any linear or branched group in which one or two hydrogen atoms constituting the amino group are 1 to 6 carbon atoms. Includes groups substituted with chain alkyl groups.
  • Examples include methylamino group, dimethylamino group, ethylamino group, methylethylamino group, diethylamino group, n-propylamino group, di-n-propylamino group, isopropylamino group, diisopropylamino group and the like.
  • an alkyl group having 1 to 7 carbon atoms which may form a branch or a ring means any linear alkyl group having 1 to 7 carbon atoms, any branch having 3 to 7 carbon atoms. Includes a chain alkyl group and any cyclic alkyl group having 3 to 7 carbon atoms. It may be simply referred to as “lower alkyl group”.
  • arbitrary linear alkyl groups having 1 to 7 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, and n-heptyl group.
  • Examples of the branched alkyl group having 3 to 7 carbon atoms include isopropyl group, isobutyl group, tert-butyl group, isopentyl group and the like, and optional cyclic alkyl group having 3 to 7 carbon atoms include A cyclobutyl group, a cyclopentyl group, a cyclohexyl group, etc. are mentioned.
  • an alkenyl group having 2 to 7 carbon atoms which may form a branch or a ring means any linear alkenyl group having 2 to 7 carbon atoms, any branch having 3 to 7 carbon atoms. Chain alkenyl groups, and any cyclic alkenyl group having 3 to 7 carbon atoms are included. It may be simply referred to as “lower alkenyl group”.
  • Examples of the branched alkenyl group having 3 to 7 carbon atoms include isopropenyl group, 1-methyl-1-propenyl group, 1-methyl -2-propenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-methyl-2-butenyl group, etc., and any cyclic alkenyl group having 3 to 7 carbon atoms includes a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, and the like.
  • an alkoxy group having 1 to 7 carbon atoms which may form a branch or a ring means any linear alkoxy group having 1 to 7 carbon atoms, any branch having 3 to 7 carbon atoms. It includes a chain alkoxy group and any cyclic alkoxy group having 3 to 7 carbon atoms. It may be simply referred to as “lower alkoxy group”.
  • any linear alkoxy group having 1 to 7 carbon atoms includes a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy, an n-pentyloxy group, an n-hexyloxy group, and an n-heptyloxy group.
  • Examples of the branched alkoxy group having 3 to 7 carbon atoms include isopropoxy group, isobutoxy group, tert-butoxy group, isopentyloxy group, etc., and any cyclic group having 3 to 7 carbon atoms
  • Examples of the alkoxy group include a cyclobutoxy group, a cyclopentyloxy group, and a cyclohexyloxy group.
  • an aryl group having 3 to 12 carbon atoms that may contain a heteroatom refers to any aryl group having 6 to 12 carbon atoms, which is composed of only hydrocarbons, and the aryl group. Including any heteroaryl group having 3 to 12 carbon atoms in which at least one carbon atom constituting the ring structure is substituted with a heteroatom (eg, a nitrogen atom, an oxygen atom, and a sulfur atom, and combinations thereof) To do.
  • a heteroatom eg, a nitrogen atom, an oxygen atom, and a sulfur atom, and combinations thereof
  • Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a naphthyl group, an indenyl group, and an azulenyl group, and examples of the heteroaryl group having 3 to 12 carbon atoms include a pyridyl group, a pyrrolyl group, A quinolyl group, an indolyl group, an imidazolyl group, a furyl group, a thienyl group, and the like can be given.
  • aralkyl group having an aryl moiety having 3 to 12 carbon atoms which may contain a hetero atom examples include a benzyl group, a phenethyl group, a naphthylmethyl group, a 3-phenylpropyl group, -Phenylpropyl, 4-phenylbutyl, 2-phenylbutyl, pyridylmethyl, indolylmethyl, furylmethyl, thienylmethyl, pyrrolylmethyl, 2-pyridylethyl, 1-pyridylethyl, 3 -Thienylpropyl group and the like.
  • examples of the term “acyl group” include aliphatic acyl groups and aromatic acyl groups.
  • examples of the aliphatic acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, pentanoyl group, pivaloyl group, valeryl group, isovaleryl group, octanoyl group, nonanoyl group, decanoyl group, 3-methylnonanoyl group, 8-methylnonanoyl group, 3-ethyloctanoyl group, 3,7-dimethyloctanoyl group, undecanoyl group, dodecanoyl group, tridecanoyl group, tetradecanoyl group, pentadecanoyl group, hexadecanoyl group, 1-methylpentadecanoyl group, 14-methylpentadecanoyl group, 13,13-
  • aromatic acyl group examples include arylcarbonyl groups such as benzoyl group, ⁇ -naphthoyl group and ⁇ -naphthoyl group; halogenoarylcarbonyl groups such as 2-bromobenzoyl group and 4-chlorobenzoyl group; 2 , 4,6-trimethylbenzoyl group, lower alkylated arylcarbonyl group such as 4-toluoyl group; lower alkoxylated arylcarbonyl group such as 4-anisoyl group; 2-carboxybenzoyl group, 3-carboxybenzoyl group, 4 A carboxylated arylcarbonyl group such as a carboxybenzoyl group; a nitrated arylcarbonyl group such as a 4-nitrobenzoyl group or a 2-nitrobenzoyl group; a lower alkoxycarbonylated arylcarbonyl such as a 2- (methoxycarbonyl) benzoyl
  • sil group examples include trimethylsilyl group, triethylsilyl group, isopropyldimethylsilyl group, t-butyldimethylsilyl group, methyldiisopropylsilyl group, methyldi-t-butylsilyl group, and triisopropylsilyl group.
  • a tri-lower alkylsilyl group such as diphenylmethylsilyl group, butyldiphenylbutylsilyl group, diphenylisopropylsilyl group, tri-lower alkylsilyl group substituted with 1 to 2 aryl groups such as phenyldiisopropylsilyl group, etc.
  • a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a t-butyldimethylsilyl group, and a t-butyldiphenylsilyl group are preferable, and a trimethylsilyl group is more preferable.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Preferable is a fluorine atom or a chlorine atom.
  • protecting group for amino group for nucleic acid synthesis is capable of stably protecting an amino group, a hydroxyl group, a phosphate group or a mercapto group during nucleic acid synthesis. If it is, it will not be restrict
  • protecting group that is stable under acidic or neutral conditions and can be cleaved by chemical methods such as hydrogenolysis, hydrolysis, electrolysis, and photolysis.
  • protecting groups include lower alkyl groups, lower alkenyl groups, acyl groups, tetrahydropyranyl or tetrahydrothiopyranyl groups, tetrahydrofuranyl or tetrahydrothiofuranyl groups, silyl groups, lower alkoxymethyl groups, lower alkoxy groups.
  • examples of the tetrahydropyranyl group or tetrahydrothiopyranyl group include a tetrahydropyran-2-yl group, a 3-bromotetrahydropyran-2-yl group, a 4-methoxytetrahydropyran-4-yl group, a tetrahydro Examples include a thiopyran-4-yl group and a 4-methoxytetrahydrothiopyran-4-yl group.
  • examples of the tetrahydrofuranyl group or the tetrahydrothiofuranyl group include a tetrahydrofuran-2-yl group and a tetrahydrothiofuran-2-yl group.
  • Examples of the lower alkoxymethyl group include a methoxymethyl group, a 1,1-dimethyl-1-methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, an isopropoxymethyl group, a butoxymethyl group, and a t-butoxymethyl group.
  • Examples of the lower alkoxylated lower alkoxymethyl group include 2-methoxyethoxymethyl group.
  • Examples of the halogeno lower alkoxymethyl group include 2,2,2-trichloroethoxymethyl group and bis (2-chloroethoxy) methyl group.
  • Examples of the lower alkoxylated ethyl group include 1-ethoxyethyl group and 1- (isopropoxy) ethyl group.
  • Examples of the halogenated ethyl group include 2,2,2-trichloroethyl group.
  • Examples of the methyl group substituted with 1 to 3 aryl groups include benzyl group, ⁇ -naphthylmethyl group, ⁇ -naphthylmethyl group, diphenylmethyl group, triphenylmethyl group, ⁇ -naphthyldiphenylmethyl group, 9-anne.
  • Examples include a thrylmethyl group.
  • Examples of the “methyl group substituted with 1 to 3 aryl groups in which the aryl ring is substituted with a lower alkyl group, lower alkoxy group, halogen atom or cyano group” include 4-methylbenzyl group, 2,4,6- Trimethylbenzyl group, 3,4,5-trimethylbenzyl group, 4-methoxybenzyl group, 4-methoxyphenyldiphenylmethyl group, 4,4'-dimethoxytriphenylmethyl group, 2-nitrobenzyl group, 4-nitrobenzyl group 4-chlorobenzyl group, 4-bromobenzyl group, 4-cyanobenzyl group and the like.
  • Examples of the lower alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group, and an isobutoxycarbonyl group.
  • Examples of the “aryl group substituted with a halogen atom, lower alkoxy group or nitro group” include 4-chlorophenyl group, 2-fluorophenyl group, 4-methoxyphenyl group, 4-nitrophenyl group, 2,4-dinitrophenyl group Etc.
  • Examples of the “lower alkoxycarbonyl group substituted with a halogen atom or tri-lower alkylsilyl group” include 2,2,2-trichloroethoxycarbonyl group, 2-trimethylsilylethoxycarbonyl group and the like.
  • Examples of the alkenyloxycarbonyl group include a vinyloxycarbonyl group and an aryloxycarbonyl group.
  • Examples of the “aralkyloxycarbonyl group whose aryl ring may be substituted with a lower alkoxy or nitro group” include benzyloxycarbonyl group, 4-methoxybenzyloxycarbonyl group, 3,4-dimethoxybenzyloxycarbonyl group, 2-nitro Examples include benzyloxycarbonyl group, 4-nitrobenzyloxycarbonyl group and the like.
  • Examples of the “lower alkoxycarbonyl group substituted with a cyano group” include a cyanoethoxycarbonyl group.
  • Examples of the “benzenesulfonyl group substituted with 1 to 4 nitro groups” include 2-nitrobenzenesulfonyl group, 2,4-dinitrobenzenesulfonyl group and the like.
  • the “hydroxyl-protecting group for nucleic acid synthesis” is preferably an aliphatic acyl group, an aromatic acyl group, a methyl group substituted with 1 to 3 aryl groups, “lower alkyl, lower alkoxy, halogen, cyano” A methyl group substituted with 1 to 3 aryl groups substituted with an aryl ring by a group ”, or a silyl group, and more preferably an acetyl group, a benzoyl group, a benzyl group, a p-methoxybenzoyl group, a dimethoxy group A trityl group, a monomethoxytrityl group or a tert-butyldiphenylsilyl group;
  • Preferred examples of the protecting group for the “hydroxyl group protected with a protecting group for nucleic acid synthesis” include aliphatic acyl groups, aromatic acyl groups, “methyl groups substituted with 1 to 3 aryl groups
  • the “protecting group for the amino group for nucleic acid synthesis” is preferably an acyl group, more preferably a benzoyl group.
  • the “protecting group” of the “phosphate group protected with a protecting group for nucleic acid synthesis” is preferably a lower alkyl group, a lower alkyl group substituted with a cyano group, an aralkyl group, a “nitro group or a halogen atom”.
  • the protecting group constituting the “phosphate group protected with a protecting group for nucleic acid synthesis” may be one or more.
  • the “protecting group” of the “mercapto group protected with a protecting group for nucleic acid synthesis” is preferably an aliphatic acyl group or an aromatic acyl group, and more preferably a benzoyl group.
  • —P (R 24 ) R 25 wherein R 24 and R 25 are each independently a hydroxyl group, a hydroxyl group protected with a protecting group for nucleic acid synthesis, a mercapto group, or a protecting group for nucleic acid synthesis.
  • R 24 can be represented as —OR 24a and R 25 can be represented as —N (R 25a ) 2. It is called “phosphoramidite group”.
  • the phosphoramidite group is preferably a group represented by the formula —P (OC 2 H 4 CN) (N (iPr) 2 ) or a formula —P (OCH 3 ) (N (iPr) 2 ). And the group represented.
  • iPr represents an isopropyl group.
  • nucleoside refers to a “nucleoside” in which a purine or pyrimidine base is linked to a sugar, and substitution of a purine or pyrimidine base with aromatic heterocycles and aromatic hydrocarbon rings other than purine and pyrimidine. And “nucleosides” with sugars attached. Natural nucleosides are also referred to as “natural nucleosides”. A modified non-natural nucleoside is also referred to as a “modified nucleoside”, and a nucleotide having a modified sugar moiety is particularly referred to as a “sugar-modified nucleoside”. “Nucleotide” means a compound in which a phosphate group is bonded to a nucleoside sugar.
  • oligonucleotide is a polymer of “nucleotide” in which 2 to 50 identical or different “nucleosides” are linked by a phosphodiester bond or other bond, and is a natural type and a non-natural type. Includes types.
  • a sugar derivative in which the sugar moiety is modified a thioate derivative in which the phosphodiester moiety is thioated; an ester in which the terminal phosphate moiety is esterified; Examples include amides in which the amino group on the base is amidated, and more preferably, sugar derivatives in which the sugar moiety is modified.
  • a salt thereof refers to a salt of a compound represented by the following formula (II).
  • examples of such salts include alkali metal salts such as sodium salt, potassium salt and lithium salt, alkaline earth metal salts such as calcium salt and magnesium salt, aluminum salt, iron salt, zinc salt, copper salt, Metal salts such as nickel salts and cobalt salts; inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts, morpholine salts, glucosamine salts, phenylglycine alkyl ester salts, ethylenediamine salts, N-methylglucamine salts Guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzyl-phenethylamine salt, piperazine
  • the term “pharmacologically acceptable salt thereof” refers to a salt of an oligonucleotide analog containing at least one nucleoside structure represented by the formula (I) of the present invention.
  • Physiologically and pharmaceutically acceptable salts of the oligonucleotides i.e., salts that retain the desired biological activity of the oligonucleotide and do not impart undesired toxicological effects there.
  • salts include alkali metal salts such as sodium salt, potassium salt and lithium salt, alkaline earth metal salts such as calcium salt and magnesium salt, aluminum salt, iron salt, zinc salt, copper salt, Metal salts such as nickel salts and cobalt salts; inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts, morpholine salts, glucosamine salts, phenylglycine alkyl ester salts, ethylenediamine salts, N-methylglucamine salts Guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzyl-phenethylamine salt, piperazine salt, tetramethylammonium salt, tris (Hydroxy Amine salts such as organic salts such as
  • the present invention provides an antitumor agent containing a SNORA23 gene expression inhibitor.
  • the SNORA23 gene expression inhibitor includes a nucleic acid molecule that can bind to the SNORA23 gene and has an activity of suppressing the expression of the SNORA23.
  • binding to the SNORA23 gene includes, for example, direct binding to the SNORA23 gene and binding to RNA expressed from the SNORA23 gene.
  • Activity capable of binding to the SNORA23 gene and suppressing the expression of the SNORA23 means, for example, that an expression inhibitor binds to the SNORA23 RNA, which is a non-coding RNA expressed from the SNORA23 gene, and then the RNA is RNase H. It includes that the amount of RNA expressed by SNORA23 is suppressed as a result of degradation by action.
  • can bind means that a plurality of different single-stranded oligonucleotides or nucleic acids can form a nucleic acid having two or more strands by complementation of nucleobases. Preferably, it means that a double-stranded nucleic acid can be formed.
  • T m melting temperature
  • the melting temperature (T m ) of the double-stranded nucleic acid can be determined, for example, as follows: Buffer (8.1 mM Na 2 HPO 4 , 2.68 mM KCl, 1.47 mM KH 2 PO 4 , pH 7.2) ), The oligonucleotide and the target RNA are mixed in an equimolar amount, heated at 95 ° C. for 5 minutes, and then slowly cooled to room temperature and annealed to form a double-stranded nucleic acid. The temperature of the double-stranded nucleic acid was heated from 20 ° C. to 95 ° C.
  • Tm Melting temperature ( Tm ) is 40 degreeC or more, for example, Preferably it is 50 degreeC or more.
  • “complementary” means that two different single-stranded oligonucleotides or nucleic acids have a pairing relationship capable of forming a double-stranded nucleic acid.
  • the base sequence of the region forming the double strand is completely complementary, but may have one or several mismatches as long as it can form the double-stranded nucleic acid and has the effect of suppressing expression.
  • One or several mismatches may depend on the length of the oligonucleotide, but means 1 to 4, preferably 1 to 3, more preferably 1 or 2 mismatches.
  • the oligonucleotide of the present invention preferably has complete (100%) complementarity to the base sequence of the region forming a double strand.
  • an antisense oligonucleotide As a nucleic acid molecule capable of binding to the SNORA23 gene and having an activity of suppressing the expression of the SNORA23 gene, an antisense oligonucleotide (ASO), siRNA, shRNA, DNA / RNA hybrid targeting the SNORA23 gene or Examples include chimeric oligonucleotides and aptamers.
  • An antisense oligonucleotide (ASO) is a gene that can bind to RNA / DNA of a target gene, has an activity of suppressing the expression of the target gene, and is complementary to the RNA / DNA sequence of the target gene. A single-stranded oligonucleotide.
  • siRNA small interfering RNA
  • shRNA small hairpin RNA: small hairpin RNA or short hairpin RNA: short hairpin RNA
  • shRNA small hairpin RNA sequence used for gene silencing by RNA interference.
  • a double-stranded oligonucleotide composed of DNA and RNA that inhibits expression of a target gene for example, Japanese Patent Application Laid-Open No.
  • RNA is a DNA / RNA in which one of the double strands is DNA and the other is RNA Even a hybrid may be a DNA / RNA chimera in which part of the same strand is DNA and the other part is RNA.
  • a double-stranded oligonucleotide is preferably 19 to 25 base pairs, more preferably 19 to 23 base pairs, and even more preferably 19 to 21 base pairs in length.
  • the sense strand is preferably DNA and the antisense strand is preferably RNA.
  • a part of the upstream of the double-stranded oligonucleotide is RNA. Some are preferred.
  • Such an oligonucleotide can be prepared as having an arbitrary sequence according to a known chemical synthesis method.
  • An aptamer may be a generic term for nucleic acid molecules or peptides that specifically bind to a specific molecule, and the nucleic acid may be either RNA or DNA.
  • SNOR23 gene expression inhibitor can bind to a target region that is an arbitrary part of SEQ ID NO: 1.
  • the target region is particularly preferably a region related to the activity of suppressing the expression of SNORA23 or the knockdown activity.
  • the target region is, for example, 12 to 25 bases long, preferably 12 to 23 bases long, more preferably 13 to 23 bases long, more preferably 14 to 23 bases long, particularly preferably 15 to 23 bases long, particularly preferably.
  • the region may be 15-20 bases long.
  • Nucleic acid molecule or oligonucleotide binds to target region means that the nucleic acid molecule or oligonucleotide does not necessarily form two or more strands (preferably double strands) with the entire target region, and the expression of SNORA23 gene As long as it exhibits the activity of suppressing or knockdown activity, it may form two or more chains (preferably two chains) with a region that is a part of the target region.
  • the nucleic acid molecule of the SNORA23 gene expression inhibitor is complementary to the target region, for example, and preferably has perfect complementarity.
  • the nucleic acid molecule is an oligonucleotide that is complementary to the target region that is part of the base sequence of the SNORA23 gene shown in SEQ ID NO: 1 and is 12-20 bases in length, or Including pharmacologically acceptable salts thereof.
  • the term “complementary to the target region” means either or both of the case where it is complementary to the target region on the SNORA23 gene and the case where it is complementary to the base of the region on the RNA corresponding to the target region. including.
  • Such an oligonucleotide (for example, an antisense oligonucleotide) is, for example, 12 to 20 bases, preferably 13 to 20 bases, more preferably 14 to 20 bases, particularly preferably 15 to 18 bases in length. Due to the length of the oligonucleotide as described above, binding to the nuclear non-translated RNA SNORA23 gene and suppression of nuclear non-translated RNA expression (for example, knockdown) can be performed more effectively.
  • target region for example, a region consisting of a sequence of 12 to 20 bases in the region from position 1 to position 35, position 71 to position 100, position 131 to position 170 of SEQ ID NO: 1 can be selected. .
  • nucleotide sequence of the SNOR23 gene expression inhibitor oligonucleotide examples include the following sequences: gatagaact atgca (SEQ ID NO: 2); gccaggtggta gagt (SEQ ID NO: 3); tggcccagtgg tagat (SEQ ID NO: 4).
  • the oligonucleotide of SEQ ID NO: 2 targets the 19th to 33rd region from the 5 ′ terminal site of the SNORA23 gene base sequence shown in SEQ ID NO: 1, and has a sequence complementary to the base sequence of the region It can be an antisense oligonucleotide.
  • the oligonucleotide of SEQ ID NO: 3 targets the 151st to 165th region from the 5 'end of the nucleotide sequence of the SNORA23 gene shown in SEQ ID NO: 1, and has a sequence complementary to the nucleotide sequence of the region It can be an antisense oligonucleotide.
  • the oligonucleotide of SEQ ID NO: 4 targets the 153rd to 167th region from the 5 ′ end site of the base sequence of the SNORA23 gene shown in SEQ ID NO: 1, and has a sequence complementary to the base sequence of the region It can be a sense oligonucleotide.
  • Each base sequence of SEQ ID NOs: 2 to 4 is represented in the 5 ′ to 3 ′ direction (5 ′ ⁇ 3 ′), and is a reverse complementary sequence to each target region sequence in SEQ ID NO: 1.
  • SNOR23 gene expression inhibitory activity (knockdown activity) can be measured by a known method (for example, quantitative reverse transcription polymerase chain reaction (qRT-PCR)).
  • qRT-PCR quantitative reverse transcription polymerase chain reaction
  • oligonucleotide includes an oligonucleotide in which naturally occurring DNA or RNA is chemically modified. Such modifications alter the activity of the oligonucleotide. For example, it increases affinity for target nucleic acids, increases resistance to nucleases, and alters the pharmacokinetics or tissue distribution of oligonucleotides. Increasing the affinity of the oligonucleotide for its target may allow the use of shorter oligonucleotides.
  • the oligonucleotide of the present invention or a pharmacologically acceptable salt thereof comprises one or more nucleotides containing a sugar modifying moiety.
  • the present invention includes oligonucleotides as described below and pharmacologically acceptable salts thereof.
  • the oligonucleotide of the present invention contains at least one sugar-modified nucleoside at any position.
  • This sugar-modified nucleoside has a predetermined bridge between the 2-position and 4-position of the sugar ring.
  • the sugar-modified nucleoside in the present invention will be described below.
  • the sugar-modified nucleoside in the present invention has a nucleoside structure represented by the following formula (I):
  • Base may have one or more purine-9-yl groups optionally having one or more arbitrary substituents selected from the ⁇ group, or may have one or more arbitrary substituents selected from the ⁇ group 2
  • a divalent group represented by R 1 is selected from a hydrogen atom, an alkyl group having 1 to 7 carbon atoms that may form a branch or a ring, an alkenyl group having 2 to 7 carbon atoms that may form a branch or a ring, and the ⁇ group
  • the aryl group having 3 to 12 carbon atoms which may contain one or more of the optional substituents and may contain a hetero atom, and one or more optional substituents selected from the ⁇ group Represents an aralkyl group having an aryl moiety having 3 to 12 carbon atoms which may contain a hetero atom, or an amino-protecting group for nucleic acid synthesis;
  • R 1 is selected from a hydrogen atom, an alkyl group having 1 to 7 carbon atoms that may form a branch or a ring, an alkenyl group having 2 to 7 carbon atoms that may form a branch or a ring, and the ⁇ group
  • nucleoside structure represented by the formula (I) is
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 7 carbon atoms that may form a branch or a ring, and a carbon number that may form a branch or a ring.
  • Ar 1 is an aralkyl group having an aryl moiety having 3 to 12 carbon atoms which may have one or more optional substituents and may contain a hetero atom, and more preferably R 1 is hydrogen An atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group, or a benzyl group, and more preferably, R 1 is a hydrogen atom or a methyl group.
  • m is an integer from 0 to 2; and in formula (I ′′), n is an integer from 0 to 1. That is, 2 ′ position, 3 ′ position, 4 ′ position. , And the ring containing the bridge is a 5-membered to 7-membered ring.
  • X is an oxygen atom, a sulfur atom, an amino group, or a methylene group.
  • X is an oxygen atom or an amino group.
  • X is an amino group or a methylene group. In some cases, it may be substituted with a lower alkyl group.
  • the nucleoside structure represented by the above formula (I) is a structure represented by the above formula (I ′), and in this formula (I ′), m is 0, and R 1 is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group, or a benzyl group.
  • Such a nucleoside structure is also referred to as amide-bridged nucleic acid, amide BNA (Bridged Nucleic Acid), or AmNA.
  • nucleoside structure represented by the above formula (I) examples include the following formula (II) in addition to the above formulas (I ′) and (I ′′):
  • R 13 and R 14 are as described above.
  • R 13 and R 14 are hydrogen atoms, 2 ′, 4′-BNA or LNA (Locked Nucleic Acid) (in this specification, “2 ′, 4′-BNA / LNA” or simply (Also referred to as “LNA”).
  • LNA Locked Nucleic Acid
  • the “Base” is a purine base (ie, purin-9-yl group) or a pyrimidine base (ie, 2-oxo-1,2-dihydropyrimidin-1-yl group). These bases are a hydroxyl group, a linear alkyl group having 1 to 6 carbon atoms, a linear alkoxy group having 1 to 6 carbon atoms, a mercapto group, a linear alkylthio group having 1 to 6 carbon atoms, an amino group, and 1 to carbon atoms. It may have one or more arbitrary substituents selected from the ⁇ group consisting of 6 linear alkylamino groups and halogen atoms.
  • Base examples include adenylyl group, guaninyl group, cytosynyl group, urasilyl group, and thyminyl group, 6-aminopurin-9-yl group, 2,6-diaminopurin-9-yl group, 2 -Amino-6-chloropurin-9-yl group, 2-amino-6-fluoropurin-9-yl group, 2-amino-6-bromopurin-9-yl group, 2-amino-6-hydroxypurine- 9-yl group, 6-amino-2-methoxypurin-9-yl group, 6-amino-2-chloropurin-9-yl group, 6-amino-2-fluoropurin-9-yl group, 2,6 -Dimethoxypurin-9-yl group, 2,6-dichloropurin-9-yl group, 6-mercaptopurin-9-yl group, 2-oxo-4-amino-1,2-d
  • Base has the following structural formula from the viewpoint of introduction into nucleic acid medicine:
  • a thyminyl group, a cytosynyl group, an adenylyl group, a guaninyl group, a 5-methylcytosinyl group and a urasilyl group 2-oxo-4-hydroxy-5-methyl-1,2-dihydropyrimidine- 1-yl group, 2-oxo-4-amino-1,2-dihydropyrimidin-1-yl group, 6-aminopurin-9-yl group, 2-amino-6-hydroxypurin-9-yl group, 4 -Amino-5-methyl-2-oxo-1,2-dihydropyrimidin-1-yl group and 2-oxo-4-hydroxy-1,2-dihydropyrimidin-1-yl group are preferred, 2-Oxo-4-hydroxy-5-methyl-1,2-dihydropyrimidin-1-yl and thyminyl groups are preferred. Further, in the synthesis of the oligonucleotide, it is preferable that
  • Oligonucleotides containing at least one sugar-modified nucleoside structure as described above can be obtained using, for example, sugar-modified nucleoside compounds, for example, WO 2011/052436, JP-A No. 2014-043462, and International Publication No. 2014/2014 / Can be synthesized using methods such as those described in US Pat.
  • sugar-modified nucleoside compounds include compounds represented by the following formula (III) or salts thereof:
  • Base may have one or more purine-9-yl groups optionally having one or more arbitrary substituents selected from the ⁇ group, or may have one or more arbitrary substituents selected from the ⁇ group 2
  • a divalent group represented by R 1 is selected from a hydrogen atom, an alkyl group having 1 to 7 carbon atoms that may form a branch or a ring, an alkenyl group having 2 to 7 carbon atoms that may form a branch or a ring, and the ⁇ group
  • the aryl group having 3 to 12 carbon atoms which may contain one or more of the optional substituents and may contain a hetero atom, and one or more optional substituents selected from the ⁇ group Represents an aralkyl group having an aryl moiety having 3 to 12 carbon atoms which may contain a hetero atom, or an amino-protecting group for nucleic acid synthesis;
  • R 13 and R 14 are each independently a hydrogen atom; a hydroxyl group; an alkyl group having 1 to 7 carbon atoms that may form a branch or a ring; A group selected from the group consisting of: an alkoxy group of 7; an amino group; and an amino group protected with a protecting group for nu
  • a silyl group selected from the ⁇ group
  • a phosphate group optionally having one or more substituents, a phosphate group protected with a protecting group for nucleic acid synthesis, -P (R 24 ) R 25 [wherein R 24 and R 25 are each Independently, a hydroxyl group, a hydroxyl group protected with a protecting group for nucleic acid synthesis
  • a sugar-modified nucleotide can be easily prepared from the sugar-modified nucleoside as described above.
  • triphosphorylation can be easily performed according to the method described in M. Kuwahara et al., Nucleic Acids Res., 2008, vol.36, No.13, pp.4257-65.
  • Nuclear non-translated RNA is one of non-coding RNAs and refers to RNA that exists in the nucleus and functions without being translated into protein.
  • Such nuclear non-translated RNA nucleolar small molecule RNA (snoRNA)
  • snoRNA nucleolar small molecule RNA
  • the snoRNA is localized in the nucleolus in the nucleus, forms a complex with the protein (nuclear small ribonucleic acid protein (snoRNP)), and can catalyze the modification of the RNA molecule.
  • the snoRNA is mainly divided into two types, boxC / D and boxH / ACA, depending on the sequence.
  • the sequence information of snoRNA can be obtained from a gene database (for example, GenBank by the National Center for Biotechnology Information (NCBI), snOPY of Miyazaki University, etc.).
  • SNORA23 is a nucleolar small molecule RNA identified as "ACA23 snoRNA” or "small nucleolar RNA, H / ACA box 23".
  • the nucleotide sequence information of the human SNORA23 gene is GenBank accession number: AJ609438 ("Homo sapience ACA23 snoRNA gene"), NCBI reference sequence accession number: NR_002962 (Homo sapiens small nucleoRNA, NOHA23SRNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNORNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23, SNARNA23,
  • nucleotide modification known in the art other than the above sugar modification can be used for the antisense oligonucleotide of the present invention.
  • Known modifications of nucleotides include phosphate modification and nucleobase modification. Such nucleic acid modification can be performed based on a method known in the art.
  • Examples of phosphoric acid modifications include phosphodiester bonds, S-oligos (phosphorothioates), D-oligos (phosphodiesters), M-oligos (methyl phosphonates), boranophosphates, etc. possessed by natural nucleic acids.
  • S-oligo (phosphorothioate) has a PS skeleton in which the oxygen atom of the phosphate group of the phosphodiester bond between nucleosides is replaced with a sulfur atom. This modification is incorporated into the oligonucleotide according to known methods.
  • An antisense oligonucleotide having one or more of these modifications in the oligonucleotide is called S-oligo type (phosphorothioate type).
  • nucleobase modification examples include 5-methylcytosine, 5-hydroxymethylcytosine, 5-propynylcytosine and the like.
  • the position and number of sugar-modified nucleosides are not particularly limited and can be appropriately designed according to the purpose.
  • Two or more sugar-modified nucleosides include, for example, the same as each other or different from each other.
  • the oligonucleotide of the present invention (especially in the case of a single-stranded oligonucleotide) is preferably a gapmer.
  • a gapmer is an oligonucleotide comprising a central “gap” and regions on both sides of the gap, two wings, that is, a “5 ′ wing” on the 5 ′ side and a “3 ′ wing” on the 3 ′ side. means.
  • the gap region can be 6-10 bases long and the wing region can be 3-5 bases long.
  • the gap is made up of natural nucleosides and the wing can contain at least one modified nucleotide.
  • the oligonucleotide of the present invention contains at least one, preferably 1 to 5, more preferably 2 to 3, sugar-modified nucleosides in “5 ′ wing” and / or “3 ′ wing”.
  • the gapmer consists of a 6-10 base gap region, a 3-5 base 5 ′ wing, and a 3-5 base 3 ′ wing, where the gap region is between the 5 ′ wing and the 3 ′ wing.
  • the 5 ′ wing and the 3 ′ wing may contain at least one nucleoside structure represented by the above formula (I).
  • phosphoric acid modification, base modification, etc. may be included.
  • the type, number, and position of the modification in one wing may be the same as or different from the type, number, and position of the modification in the other wing.
  • gapmers examples include 3-8-3-1, 3-9-3-1, 3-10-2-1, 3-10-3, 5-10-5, and the like.
  • the 8 bases of the gap are natural nucleosides (DNA)
  • the 5 ′ wing (3 bases from the 5 ′ end) is a sugar-modified nucleoside
  • the 3 ′ wing 3 bases from the center side among 3 bases from the 3 ′ end are sugar-modified nucleosides
  • the last 1 base (3 ′ terminal base) is a natural nucleoside (DNA).
  • 3-8-3-1 is preferred.
  • the oligonucleotide of the present invention can be synthesized by a conventional method using the sugar-modified nucleoside and the natural nucleoside as described above.
  • a commercially available automatic nucleic acid synthesizer for example, Applied Biosystems, Gene Design Co., Ltd.). Etc.
  • Examples of the synthesis method include a solid phase synthesis method using phosphoramidite and a solid phase synthesis method using hydrogen phosphonate. For example, it is disclosed in Tetrahedron Letters, 1981, vol. 22. pp.1859-1862, International Publication No. 2011/052436, and the like.
  • the single-stranded antisense oligonucleotide of the present invention can be incorporated into cells by administration alone without using a delivery device.
  • Non-nuclear untranslated RNA or snoRNA antisense oligonucleotides, such as SNORA23, are produced in vivo due to nuclease resistance and in vivo stability when made using, for example, 2 ′, 4′-BNA / LNA.
  • SNOR23 is a highly metastatic cancer cell (for example, a highly metastatic pancreatic ductal adenocarcinoma (PDAC) cell (for example, a Suit2-HLMC cell and MIA PaCa2- cell established according to “In vivo selection of a highly metastatic PDAC cell line” in the following Examples).
  • HLMC cells highly metastatic pancreatic ductal adenocarcinoma
  • SNOR23 gene expression and the degree of expression suppression can be measured by a known method (for example, qRT-PCR).
  • SNORA23 may be involved in tumor cell proliferation and cancer cell (malignant tumor cell) invasiveness and metastatic potential.
  • SNORA23 expression suppression suppresses tumor cell growth suppression (decrease in tumor formation ability), suppression of cancer cell (malignant tumor cell) seeding (decrease in invasiveness), and reduction of metastasis (reduction in metastasis ability). Can occur. Tumor cell growth, invasion and metastasis can be determined based on the procedures described in the examples below.
  • anti-tumor refers to tumor cell growth suppression (decrease in tumor formation ability), cancer cell (malignant tumor cell) dissemination suppression (invasion reduction) and metastasis reduction (metastasis ability reduction). Exhibit at least one effect, preferably all these effects.
  • the expression of snoRNA (SNARA23) specifically highly expressed in cancer can be suppressed in vivo.
  • the antitumor agent of the present invention is an antisense oligonucleotide, such expression suppression can be carried out by single administration without using a delivery device.
  • the SNORA23 gene expression inhibitor can suppress the expression of the SYNE2 gene.
  • SYNE2 gene is “Homo sapiens spectrin repeat containing nuclear envelope protein 2 (SYNE2), RefSeqGene on chromosome 14" (GenBank accession number: NG_011756); (GenBank accession number: NM_015180); “Homo sapiens spectrin repeat containing, nuclear envelope 2 (SYNE2), transcript variant 2, ⁇ mRNA ”(GenBank accession number: NM_182910). Is possible.
  • protein amino acid sequence information can be obtained from “nesprin-2 isoform 1 [Homo sapiens]” (GenBank registration number: NP_055995) and “nesprin-2 isoform 2 [Homo sapiens]” (GenBank registration number: NP_878914). is there. Variant 1 and variant 2 may have different transcription start sites. SYNE2 may also be referred to as EDMD5, NUA, NUANCE, Nesp2, Nesprin-2, SYNE-2, TROPH.
  • SYN2, variant 2, mRNA (GenBank accession number: NM — 182910) described in the following examples is shown in SEQ ID NO: 8
  • SEQ ID NO: 9 The nucleotide sequence of SYN2, variant 2, mRNA (GenBank accession number: NM — 182910) described in the following examples is shown in SEQ ID NO: 8
  • the corresponding amino acid sequence (GenBank accession number: NP — 878914) is shown in SEQ ID NO: 9.
  • the present invention also provides an antitumor agent comprising a SYNE2 gene expression inhibitor.
  • the SYNE2 gene expression inhibitor includes a nucleic acid molecule capable of binding to the SYNE2 gene and having an activity of suppressing the SYNE2 gene expression.
  • nucleic acid molecules include siRNA, DNA / RNA hybrid or chimeric polynucleotide, antisense oligonucleotide and the like as described above.
  • binding to the SYNE2 gene includes direct binding to the SYNE2 gene and binding of the SYNE2 gene to mRNA or mRNA precursor.
  • the nucleic acid molecule that can bind to the SYNE2 gene and has an activity of suppressing the expression of the SYNE2 gene is an siRNA of the SYNE2 gene.
  • SYNE2 siRNA is available from various suppliers (for example, Thermo Fisher Scientific). As an example, siRNA manufactured by Thermo Fisher Scientific has an siRNA ID number: s23328.
  • the antitumor agent of the present invention is a SNORA23 gene expression inhibitor (for example, a nucleic acid molecule capable of binding to SNORA23 and having the activity of suppressing the expression of SNOR23 gene, a SNORA23 antisense oligonucleotide, etc.) or a SYNE2 gene expression inhibitor (for example, , A nucleic acid molecule capable of binding to the SYNE2 gene and having an activity of suppressing the expression of the SYNE2 gene, siRNA of the SYNE2 gene, and the like.
  • the antitumor agent may contain both of these.
  • the antitumor agent of the present invention can be formulated to produce a pharmaceutical composition.
  • the antitumor agent and the pharmaceutical composition of the present invention can be administered by administration methods known in the art. They can be administered in a variety of ways depending on the local or systemic treatment or the area to be treated.
  • the present invention further provides a method for treating a tumor or cancer disease, comprising administering an effective amount of the antitumor agent to a subject in need thereof.
  • treatment includes all medically acceptable types of prophylactic and / or therapeutic interventions intended to cure, temporarily ameliorate, or prevent a disease (in the present invention a tumor or cancer disease). It shall be.
  • the term “subject” means any living individual, preferably an animal, more preferably a mammal, and more preferably a human individual.
  • a subject can be a subject suffering from or at risk of suffering from a tumor or cancer disease.
  • the antitumor agent of the present invention is used for tumors having invasive or metastatic potential.
  • the antitumor agent of the present invention can be used for treatment of various cancers: for example, brain tumor, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, esophageal cancer, stomach cancer, appendix cancer, colon cancer, liver cancer, gallbladder cancer , Bile duct cancer, pancreatic cancer, adrenal cancer, gastrointestinal stromal tumor, mesothelioma (pleura, peritoneum, pericardium, etc.), head and neck cancer, laryngeal cancer, oral cancer, gingival cancer, tongue cancer, buccal mucosa cancer, salivary gland cancer , Sinus cancer, thyroid cancer, kidney cancer, lung cancer, osteosarcoma, prostate cancer, testicular cancer (testicular cancer), renal cell cancer, bladder cancer, rhab
  • the antitumor agent of the present invention can be applied medically as a therapeutic agent that inhibits the progression of cancer in patients with intractable cancer such as pancreatic cancer, lung cancer, and peritoneal dissemination (ovarian cancer / gastric cancer) and prolongs survival.
  • the antitumor agent of the present invention is used for the treatment of pancreatic cancer, liver cancer, lung cancer, ovarian cancer or gastric cancer.
  • the “effective amount” is an amount that reduces the onset of the target disease, reduces symptoms, or prevents progression, and preferably is an amount that prevents the onset of the target disease or cures the target disease. In addition, an amount that does not cause adverse effects exceeding the benefits of administration is preferred. Such an amount can be appropriately determined by an in vitro test using cultured cells or the like, or a test in a model animal such as a mouse, rat, dog or pig. Such test methods are well known to those skilled in the art.
  • the specific dose of medication to be administered depends on various conditions related to the subject requiring treatment, such as severity of symptoms, general health of the subject, age, weight, subject sex, diet, method of administration, timing and frequency. It can be determined in consideration of combination drugs, therapeutic response, compliance with therapy, and the like.
  • the administration method may be, for example, topical (including eye drops, intravaginal, rectal, intranasal, transdermal), oral, or parenteral.
  • Parenteral administration includes intravenous injection or infusion, subcutaneous, intraperitoneal or intramuscular injection, pulmonary administration by inhalation or inhalation, intrathecal administration, intraventricular administration, and the like.
  • preparations such as transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, powders and the like can be used.
  • Oral administration agents include powders, granules, suspensions or solutions dissolved in water or non-aqueous media, capsules, powders, tablets and the like.
  • parenteral, intrathecal, or intraventricular administration agent examples include sterile aqueous solutions containing buffers, diluents, and other appropriate additives.
  • the medicament of the present invention is an antitumor agent of the present invention, or a SNORA23 gene expression inhibitor (for example, a nucleic acid molecule capable of binding to the SNORA23 gene and having an activity of suppressing the SNORA23 gene expression, a SNORA23 antisense oligonucleotide, etc.)
  • a SNORA23 gene expression inhibitor for example, a nucleic acid molecule capable of binding to the SNORA23 gene and having an activity of suppressing the SNORA23 gene expression, a SNORA23 antisense oligonucleotide, etc.
  • An excipient for example, a binder, a wetting agent, a disintegrating agent, a lubricant suitable for the dosage form in an effective amount of a SYNE2 expression inhibitor (for example, a nucleic acid molecule capable of binding to SYN2 and having an activity of suppressing the expression of SYN2).
  • Various pharmaceutical additives such as a bulking agent and a
  • Excipients include lactose, sucrose, glucose, starch, calcium carbonate, crystalline cellulose and the like.
  • binder include methyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, gelatin, and polyvinyl pyrrolidone.
  • disintegrant include carboxymethyl cellulose, sodium carboxymethyl cellulose, starch, sodium alginate, agar powder, or sodium lauryl sulfate.
  • examples of the lubricant include talc, magnesium stearate or macrogol. As a suppository base, cocoa butter, macrogol, methylcellulose or the like can be used.
  • solubilizers when preparing as liquid or emulsion or suspension injections, commonly used solubilizers, suspending agents, emulsifiers, stabilizers, preservatives, isotonic agents, etc. are added as appropriate. May be. In the case of oral administration, flavoring agents, fragrances and the like may be added.
  • SNORA23 can be a biomarker for detecting invasion or metastasis of the above-mentioned tumor or cancer. SNORA23 in the blood sample is used as such a biomarker.
  • SNORA23 as a biomarker, characterized by measuring SNORA23 in a blood sample in order to detect tumor invasion or metastasis.
  • a method for detecting tumor invasion or metastasis comprising the step of measuring SNORA23 in a blood sample may also be provided.
  • a blood sample collected from a subject can be used as a blood sample for measuring SNORA23.
  • the blood sample includes whole blood, serum, plasma and the like.
  • Measurement of SNORA23 in a blood sample is performed, for example, by extracting SNORA23 RNA from a blood sample (for example, extraction using high pure RNA isolation kit (Roche Diagnostics GmbH)) and measuring the RNA amount by a known method (eg, qRT-PCR). ).
  • the amount of SNOR23 in the blood sample can be related to the presence or progression of tumor invasion or metastasis.
  • An increase in the amount of SNOR23 in the blood sample can be an indicator of increased tumor invasion or progression of metastasis. For example, by measuring the amount of SNORA23 in a blood sample over time, the increase in tumor invasion or the progress of metastasis can be monitored. An increase in the amount of SNORA23 over time may indicate that tumor invasion or metastasis is progressing.
  • biomarkers can also be used for monitoring the anti-tumor effect of administration of anti-tumor agents to cancer patients.
  • Base is a 5-methylcytosinyl group (mC: 5-methylcytosine), a thyminyl group (T: thymine), an adeninyl group (A: adenine) or a guaninyl group (G: guanine).)
  • Base is a 5-methylcytosinyl group (mC: 5-methylcytosine), a thyminyl group (T: thymine), an adeninyl group (A: adenine) or a guaninyl group (G: guanine), and Me is a methyl group. .
  • the DMTr group was removed by acid treatment, followed by base treatment to cut out the target product from the solid phase carrier. After neutralization with dilute acid, the solvent was distilled off, and the resulting crude product was purified by gel filtration column chromatography and reverse phase HPLC to obtain the desired product.
  • Cell line Human pancreatic ductal adenocarcinoma (PDAC) cell lines (AsPC-1, MIA PaCa-2, PANC-1, CFPAC-1, Hs766T, SW1990, BxPC-3, CAPAN-1, CAPAN-2, Suite-2, KP-2 And KP-3) were purchased from the American Type Culture Collection or the Health Science Research Resources Bank. H48N cell line, KP-1N cell and HPC-3 cell provided by Dr. H. Iguchi (National Hospital Organization Kyushu Cancer Center) and Dr. Takahiro Yasoshima (Sapporo Medical University) It was. NPDE cells were obtained from DS Pharma Biomedical. The HPDE cell line was provided by Dr.
  • Suit2-luc cells or MIA PaCa2-luc cells (1 ⁇ 10 6 cells per mouse (in 50 ⁇ l PBS) were transplanted into the pancreatic tail of nude mice. After 3-6 weeks, metastatic nodules in the liver were collected, digested with type I collagenase (Roche), and subjected to in vitro cancer cell isolation and culture. Subsequently, the cultured cancer cells were transplanted again into the pancreatic tail of nude mice. This process was repeated 5 times to establish a high liver metastatic cell line. These were termed Suite2-HLMC and MIA PaCa2-HLMC.
  • RNA samples were extracted from the cells. The quality of the RNA samples was assessed using the Experion RNA Analysis Kit and an automated electrophoresis system (Bio-Rad Laboratories) according to the manufacturer's protocol. Biotinylated cRNA was prepared from 0.5 ⁇ g total RNA using Ambion WT Expression Kit (Thermo Fisher Scientific) and hybridized with the Human Gene 2.1 ST Array strip. Array slides were washed and stained and scanned in the GeneAtlas System (Affymetrix) for 16 hours at 45 ° C. Microarray data analysis was performed using GeneSpring GX 13.1 software (Digital Biology).
  • RNA was extracted using a high pure RNA isolation kit (Roche Diagnostics GmbH).
  • qRT-PCR quantitative reverse transcription polymerase chain reaction: qRT-PCR
  • RNA isolation kit Roche Diagnostics GmbH
  • One-step qRT-PCR was performed as described previously (Fujita-Sato S et al., Cancer Res 2015; 75: 2851-62) using the LightCycler480 II System (Roche Diagnostics GmbH) with the primer set QuantiTect SYBR Green Reverse Transcription PCR Kit (stock) Company Qiagen).
  • EmGFP green fluorescent protein
  • a cDNA fragment was excised from the cloning vector with a BamHI / HindIII restriction enzyme and inserted between the restriction sites of BAMHI and HindIII of pBApo-CMV Neo plasmid (Takara Bio) to construct a SNORA23 expression plasmid.
  • Human SYN2 artificially synthesized cDNA (codon optimized sequence from position 891 to position 2180 of SEQ ID NO: 8) was commissioned to Eurofin to recognize restriction enzymes BamHI at the 5 'end and HindIII at the 3' end.
  • a cloning vector containing a nucleotide sequence added (SEQ ID NO: 12 (corresponding amino acid sequence is shown in SEQ ID NO: 13).
  • a cDNA fragment was excised from the cloning vector with a BamHI / HindIII restriction enzyme, A SYNE2 expression plasmid was constructed by inserting the restriction site between BamHI and HindIII of pBApo-CMV Neo plasmid (Takara Bio) Mock pDNA (a plasmid not containing an open reading frame such as SNORA23 or SYNE2) as a control Tran in It was carried out transfection.
  • Fluorescently labeled LNA probes are 5 ′-[Alexa488]-[amino linker] -GAAacttatgmCAmCa-3 ′ (SEQ ID NO: 14) and 5′-mCTACaccacamCAGa- [amino linker]-[Alexa647] -3 ′ (SEQ ID NO: 15) ( Uppercase letters: LNA; lowercase letters: DNA; mC: 5′-methylcytosine; Gene Design Co., Ltd.), which are 17 to 30 and 32 from the 5 ′ terminal site of the base sequence of SNORA23 shown in SEQ ID NO: 1, respectively. Designed to target the ⁇ 45th adjacent sequence region. After 16 hours, the intracellular SNORA23 signal was observed with a C2 confocal laser microscope (Nikon Corporation).
  • the upper surface of the filter (pore size: 8.0 ⁇ m) was coated with matrigel (20 ⁇ g / well, BD Biosciences).
  • matrigel 20 ⁇ g / well, BD Biosciences.
  • ASO transfection 48 hours after transfection or 72 hours after transfection when transfection with pDNA expression plasmid, cells are placed in the upper chamber at a density of 2.5 ⁇ 10 4 cells / well. And incubated for 48 hours (MIA PaCa2 cells and MIA PaCa2-HLMC cells) or 72 hours (Suit2 cells and Suite2-HLMC cells). Cells that migrated to the lower side of the filter were fixed, stained with hematoxylin-eosin, and then counted under an Eclipse 55i light microscope (Nikon Corporation).
  • SNORA23 ASO or control ASO was administered subcutaneously (sc) to the mouse neck once a week for 3 weeks (10 mg / kg body weight).
  • D-luciferin 100 mg / kg
  • the bioluminescence signal luciferase activity
  • Tumor growth in the mouse body was also evaluated. Mice were euthanized on day 28, their pancreas and liver were removed, and the level of tumor invasion and liver metastasis was quantified by IVIS imaging.
  • Tumor tissue samples were collected from xenograft tumor-bearing mice, cut to 5 ⁇ m thickness, and fixed with 4% paraformaldehyde at 4 ° C. for 15 minutes. Sections were stained with hematoxylin and eosin and analyzed for tumor invasion.
  • Proteomics analysis Proteomic data was obtained as follows and subjected to analysis using a spectrum counting method or a label-free quantification method.
  • the remaining solution (50 ⁇ l) was diluted with 50 ⁇ l of water and digested with lysyl endopeptidase (registered trademark) (2 ⁇ g, Wako Pure Chemical Industries, Ltd.) at 37 ° C. for 4 hours. After adding 100 ⁇ l of water, the sample was further digested with trypsin (2 ⁇ g, Thermo Fisher Scientific) at 37 ° C. for 4 hours. To block cysteine / cystine residues, the digest was treated with 0.625 mM Tris (2-carboxyethyl) phosphine hydrochloride (Thermo Fisher Scientific) for 30 minutes at 37 ° C.
  • lysyl endopeptidase registered trademark
  • trypsin 2 ⁇ g, Thermo Fisher Scientific
  • the peptide was eluted with a linear gradient of 5% to 40% B for 100 minutes, 40% to 95% B for 1 minute at a flow rate of 250 nL / min, and maintained in 95% B for 9 minutes.
  • Collision induced dissociation (CID) spectra were automatically acquired in a data dependent scan mode with a dynamic exclusion option.
  • Full MS spectra were obtained using an Orbitrap in the mass / charge (m / z) range of 300-2000 (with a resolution of 60,000 at m / z 400).
  • the 12 strongest precursor ions in the full MS spectrum (minimum ion count threshold 1,000) were selected for subsequent ion capture MS / MS analysis (automatic gain control (AGC) mode).
  • AGC was set to 1 ⁇ 10 6 for full MS and 1 ⁇ 10 4 for CID MS / MS.
  • the normalized collision energy value was set to 35%.
  • the lock mass function was enabled to minimize mass during the analysis.
  • the raw file was processed by ProteomeDiscovere 1.4 (Thermo Fisher Scientific) using MASCOT algorithm (ver. 2.4.1) against IPI human database version 3.1.6. Trypsin was selected as the enzyme used, the allowable number of Missed Cleavage was set to 2, and carbamidomethylation for cysteine was selected as a fixed modification. Oxidized methionine and acetylation to the N-terminus were investigated as variable modifications.
  • the precursor mass tolerance was 10 ppm, and the tolerance for MS / MS ions was 0.8 Da.
  • FDR false discovery rate
  • Example 1 Detection of SNORA23 RNA overexpression in a PDAC cell line with a metastatic phenotype Highly metastatic pancreatic ductal adenocarcinoma (PDAC) cells (Suit2-HLMC and MIA PaCa2-HLMC) were established.
  • the Suite2-HLMC cell line and MIA PaCa2-HLMC cell line produced liver metastases at a higher rate in all five mice (100%), whereas each parent cell line produced liver metastases at 5 There were 2 mice (40%) out of 5 and 0 out of 5 (0%).
  • FIG. 1-1 a is a schematic diagram showing a gene in which mRNA and untranslated RNA in the HLMC cell (“HLMC”) are twice or more that of the parent cell (“WT”) in Suite2 and MIA PaCa2 cancer cells. It is.
  • Fig. 1-1 a 8 genes (6 genes + SNORA23 RNA and CEA mRNA) are present in Suite2-HLMC cells, and 6 genes (4 genes + SNORA23 RNA and CEA mRNA) are present in MIA PaCa2-HLMC cells. Up-regulated more than twice their respective parental cells. Among these genes, carcinoembryonic antigen (CEA) and SNORA23 were commonly up-regulated in both the Suite2-HMLC and MIA PaCa2-HMLC cell lines.
  • CEA carcinoembryonic antigen
  • the primer sets used are: (SNORA23) forward: 5′-TCATGCGGCCAAAGAGTAAC-3 ′ (SEQ ID NO: 16) reverse: 5′-GGCCAGTGGTTAGATGTCC-3 ′ (SEQ ID NO: 17) (18S rRNA) forward: 5′-GTAACCCGTTGAACCCCATT-3 ′ (SEQ ID NO: 18) reverse: 5′-CCATCCAATCGGTAGTAGCG-3 ′ (SEQ ID NO: 19)
  • FIG. 1-1 show highly metastatic PDAC cells (“HLMC”) when the parent cell (“WT”) is 1 for each of Suite 2 and MIA PaCa 2 obtained by measurement by qRT-PCR. ) Of CEA mRNA (FIG. 1b) and SNORA23 RNA (FIG. 1c).
  • D SNOR23 expression in various pancreatic cancer cell lines, normal pancreatic ductal epithelial (NPDE) cells, and cancer-associated fibroblasts (CAF) was measured by qRT-PCR.
  • NPDE normal pancreatic ductal epithelial
  • CAF cancer-associated fibroblasts
  • pancreatic cancer (PDAC) cell lines (AsPC-1, MIA PaCa-2, PANC-1, CFPAC-1, Hs766T, SW1990, BxPC-3, CAPAN-1, CAPAN-2). , Suite-2, H48N, KP-2, KP-3, KP-1N, and HPC-3), non-cancerous immortalized human pancreatic ductal epithelial (HPDE) cells, normal pancreatic ductal epithelial (NPDE) cells, and three types of 2 is a graph showing the relative expression level of SNORA23 RNA in cancer-related fibroblasts (CAF-1, CAF-2, CAF-3). SNORA23 RNA expression was normalized with 18S rRNA.
  • PDAC pancreatic cancer
  • the SNORA23 expression level in PDAC cells was significantly higher than that in NPDE cells and CAF (15 to 62 times).
  • Expression levels in immortalized human pancreatic ductal epithelial (HPDE) cell lines were similar to several PDAC cell lines with low levels of SNORA23 expression.
  • qRT-PCR analysis shows that SNORA23 RNA is of moderate to high expression level in 15 pancreatic cancer cell lines and medium expression level in non-cancerous immortalized pancreatic ductal epithelial cells (HPDE), whereas normal human pancreatic duct epithelium. It was demonstrated that cells (NPDE) or three types of cancer-associated fibroblasts (CAF-1, CAF-2, CAF-3) were at a low expression level.
  • 1-2e shows Alexa- of parental cells (“WT”), highly metastatic PDAC cells (“HLMC”) and SNORA23 knockdown cells (“HLMC-SN-KD”) for each of Suite 2 and MIA PaCa2.
  • WT parental cells
  • HLMC highly metastatic PDAC cells
  • HLMC-SN-KD SNORA23 knockdown cells
  • SNORA23 signal was higher in Suite2 cells and MIA PaCa2 cells (“WT” and “HLMC”) than in NPDE cells (both “FITC” and “Alexa-647” were not observed for fluorescence).
  • WT MIA PaCa2-HLMC cells
  • HLMC MIA PaCa2-HLMC cells
  • WT parent cell line
  • the fluorescence signal disappeared in the Sweet2-HLMC cells and MIA PaCa2-HLMC cells transfected with SNORA23 ASO (fluorescence was observed in “HLMC” (particularly in the merged image), whereas in “HLMC-SN-KD”, fluorescence was lost. Is not observed). This confirmed the specificity of the SNORA23 signal.
  • Example 2 Detection of SNOR23 overexpression in PDAC patients and inverse correlation with disease-free survival
  • FIG. 2b shows the survival curves of disease-free survival rate (DFS) and overall survival rate (OS) for each PDAC patient group with high and low expression of SNORA23 prepared according to the Kaplan-Meier method.
  • Example 3 Design of SNORA23 antisense oligonucleotide and study of RNA expression by SNORA23 knockdown
  • ASO antisense oligonucleotide
  • SNORA23 ASO # 1 (SEQ ID NO: 5) and ASO # 2 (SEQ ID NO: 6) are the 19th to 33rd regions and the 151st to 165th regions from the 5 'end of the nucleotide sequence of the SNORA23 gene shown in SEQ ID NO: 1. Designed to target each of the regions.
  • Each base sequence of SEQ ID NO: 5 and SEQ ID NO: 6 is represented in the 5 'to 3' direction (5 ' ⁇ 3'), and is a reverse complementary sequence to each target region sequence in SEQ ID NO: 1.
  • the sequence of the control ASO (SEQ ID NO: 20) was designed to bind to the firefly luciferase gene base sequence that has no homology with mammalian cell mRNA and not to alter the gene expression of mammalian cells.
  • FIG. 3 shows the transfection with SNORA23 ASO # 1 (SEQ ID NO: 5) (“SN-ASO # 1”) and SNORA23 ASO # 2 (SEQ ID NO: 6) with respect to Suite2-HLMC cells and MIA PaCa2-HLMC cells.
  • FIG. 6 is a graph showing the relative expression level of RNA by qRT-PCR analysis when transfection (“SN-ASO # 2”) and transfection (“Ctrl”) in control ASO (SEQ ID NO: 20) are performed, respectively. is there. The RNA expression level was expressed as a relative value with the expression level of transfection (“Ctrl”) in control ASO as 1.
  • SNORA23 ASO # 1 SEQ ID NO: 5
  • SNORA23 ASO # 2 SEQ ID NO: 6
  • FIG. 4a shows representative images of Matrigel invasion assay of HLMC cells (“HLMC”) and parent cells (“WT”) and a graph showing the number of infiltrating cells for Suite2 and MIA PaCa2. Scale bar: 100 ⁇ m. The image shows that more infiltrated cells were observed in “HLMC” than “WT” in both Suite2 and MIA PaCa2.
  • the number of infiltrating cells was significantly increased in Suite2-HLMC and MIA PaCa2-HLMC compared to their parent cell lines (both P ⁇ 0.0001).
  • FIG. 4b shows the Matrigel invasion assay of Suite2-HLMC and MIA PaCa2-HLMC cells 48 hours after either transfection with SNORA23ASO (“SN-KD”) or control ASO (“Ctrl”). And a graph showing the number of infiltrating cells. Scale bar: 100 ⁇ m.
  • SN-KD SNORA23ASO
  • Ctrl control ASO
  • FIG. 4c shows representative images of Matrigel invasion assay of Suite2 cells and MIA PaCa2 cells 72 hours after either SNORA23 pDNA transfection (“SN-OE”) or mock pDNA transfection (“Mock”). And a graph showing the number of infiltrating cells. Scale bar: 100 ⁇ m. In the image, it is shown that a larger number of infiltrating cells were observed in “SNORA23-OE” compared to “Mock” in both Suite2 and MIA PaCa2.
  • the number of cells infiltrating Matrigel was significantly increased in both Suite 2 cells and MIA PaCa 2 cells (“SN-OE”) overexpressing SNORA23 compared to mock pDNA transfected cells (“Mock”) (both P ⁇ 0.0001).
  • Example 5 Involvement of SNORA23 in anchorage-dependent survival in PDAC
  • the cells of (a) to (c) of Example 4 above were used for anchorage-dependent cell proliferation (assay using CCK-8) and anchorage-independent cell proliferation (soft agar colony formation assay). evaluated.
  • HLMC HLMC cells
  • WT parent cells
  • FIG. 5a is a graph showing the time course of cell proliferation in an anchorage-dependent cell proliferation assay for Sweet2 and MIA PaCa2 and their HLMC cells (“HLMC”: squares) and their parent cells (“WT”: diamonds). It is. As a result, there was no difference between the Suit2-HLMC cells and MIA PaCa2-HLMC cells and their parent cells in anchorage-dependent proliferation.
  • FIG. 5b is a graph showing representative images of the soft agar colony formation assay and the number of colonies formed for Sweet2 and MIA PaCa2 for their HLMC cells (“HLMC”) and their parent cells (“WT”). It shows. The image shows that for both Suite2 and MIA PaCa2, “HLMC” formed a larger number of colonies compared to “WT”.
  • FIG. 5c is an anchorage dependence for transfection with SNORA23ASO (“SN-KD”: square) and transfection with control ASO (“Ctrl”: diamond) for Suite2-HLMC cells and MIA PaCa2-HLMC. It is a graph which shows the time-dependent change of the cell proliferation in a sex cell proliferation assay. In FIG. 5c, ** P ⁇ 0.01, + P ⁇ 0.001.
  • Anchorage-dependent proliferation was significantly suppressed in MIA PaCa2-HLMC cells treated with SNORA23 knockdown compared to controls, but no difference was clearly seen in Suite2-HLMC cells.
  • FIG. 5d shows a soft agar colony formation assay for Sweet2-HLMC cells and MIA PaCa2-HLMC for their transfection with SNORA23ASO (“SN-KD”) and control ASO (“Ctrl”).
  • SN-KD SNORA23ASO
  • Ctrl control ASO
  • FIG. 5e is a scaffold-dependent cell proliferation assay for Sweet2 cells and MIA PaCa2 for transfection with SNORA23 pDNA (“SN-OE”: square) and mock pDNA transfection (“Ctrl”: diamond). It is a graph which shows a time-dependent change of cell proliferation.
  • the anchorage-dependent growth was significantly suppressed compared to the mock control in Suite2 cells and MIA PaCa2 cells transfected with SNORA23 pDNA. * P ⁇ 0.01.
  • FIG. 5f shows representative images of soft agar colony formation assays for Sweet2 cells and MIA PaCa2 and their transfection with SNARA23 pDNA (“SN-OE”) and mock pDNA transfection (“Mock”) and their An enlarged image is shown.
  • FIG. 5g shows the total number of colonies and large colonies (greater than 1 mm in diameter) for Sweet2 cells and MIA PaCa2 for their SNORA23 pDNA transfection (“SN-OE”) and mock pDNA transfection (“Mock”).
  • Example 6 Effect of SNORA23 knockdown on spheroid formation of Suite2-HLMC cells and MIA PaCa2-HLMC cells
  • SNORA23 ASO # 1 SEQ ID NO: 5
  • SNORA-KD control ASO (SEQ ID NO: 20) for transfection
  • LGR5-KD leucine-rich repeat-containing G protein-coupled receptor 5
  • siRNA Thermo Fisher Scientific, siRNA ID: s16275
  • LGR5-KD leucine-rich repeat-containing G protein-coupled receptor 5
  • LGR5-KD leucine-rich repeat-containing G protein-coupled receptor 5
  • siRNA Thermo Fisher Scientific, siRNA ID: s16275
  • LGR5-KD leucine-rich repeat-containing G protein-coupled receptor 5
  • FIG. 6 shows (a) transfection with SNORA23ASO (SNORA-KD: square) and control ASO transfection (Ctrl: diamond) and (b) LGR5 siRNA for Suite2-HLMC cells and MIA PaCa2-HLMC cells. It is a graph which shows the spheroid formation fluctuation
  • the spheroid formation value was expressed as a relative value where the amount of the first day (D1) was 1.
  • spheroid formation was significantly suppressed by knockdown of SNORA23 in Suite2-HLMC cells and MIA PaCa2-HLMC cells. This suppression level was greater than the suppression level due to LGR5 knockdown.
  • Example 7 Inhibition of SNORA23 expression in tumor tissue after SNORA23 targeting ASO treatment
  • MIA PaCa2-HLMC cells into which SNORA23 ASO # 1 (SEQ ID NO: 5) has been introduced ex vivo are transplanted into the flank of nude mice, and one week later, SNORA23 ASO # 1 (SEQ ID NO: 5) or A solution of control ASO (SEQ ID NO: 20) (10 mg / kg BW) was injected subcutaneously once a week for 2 weeks. Tumor tissue was excised from the mice and removed for qRT-PCR analysis for SNOR23 expression at various time points.
  • FIG. 7 shows the first week (“1 week”) and the second week (“2 weeks”) in which ASO ex vivo transplantation (“ASO ( ⁇ )”) and ASO ex vivo transplantation (“ASO (+) ex vivo”) were performed.
  • ASO ex vivo transplantation (“ASO ( ⁇ )”)
  • ASO (+) ex vivo transplantation (“ASO (+) ex vivo”)
  • the expression level of SNOR23 RNA was expressed as a relative expression level with 1 before ASO transplantation (ASO ( ⁇ )).
  • * P ⁇ 0.05 (in each case n 3).
  • the SNOR23 RNA expression level in the tumor tissue was significantly higher in the first week after the ASO ex vivo transplantation and in the second and third weeks after the subcutaneous injection than before the ASO transplantation. Decreased (P ⁇ 0.05).
  • Example 8 Inoculation of mouse PDAC and suppression of liver metastasis by SNORA23 targeting ASO
  • SNORA23 ASO # 1 SEQ ID NO: 5
  • control ASO SEQ ID NO: 20
  • FIG. 8a is measured by IVIS imaging of SNORA23 ASO-treated mice (“SN-KD”: square) and control mice (“Ctrl”: rhombus) for Suite2-HLMC cells and MIA PaCa2-HLMC cells. It is the typical image which shows the graph which shows the daily change of the amount of luciferase signals of a mouse
  • tumor volume increase (increased luciferase activity) assessed by IVIS imaging was observed in Suite2-HLMC cells and MIA PaCa2-HLMC cells treated by ex vivo transfection with SNORA23 ASO # 1.
  • FIG. 8 b shows the tumor tissue collected from SNORA23 ASO-treated mice (“SN-KD”) and control mice (“Ctrl”) for Suite2-HLMC cells and MIA PaCa2-HLMC cells, respectively, after matoxylin and eosin staining. It is the phase-contrast micrograph and enlarged photograph of a sample.
  • the scale bar in the phase contrast micrograph represents 500 ⁇ m (double line), and the scale bar in the enlarged photograph represents 100 ⁇ m (single line).
  • pancreas and liver were removed from the euthanized mouse, and the pancreas and liver were subjected to luciferase activity measurement using IVIS Imaging System to quantify the level of tumor invasion and liver metastasis.
  • FIG. 8c is a representative diagram showing signal distribution by IVIS imaging of liver and pancreas excised from a mouse treated with SNORA23 ASO # 1 (SN-KD) and a control mouse (Ctrl) for MIA PaCa2-HLMC cells. It is a graph which shows an image and the measured amount of luciferase signals (photons / second). The images show that SNORA23 ASO-treated mice (“SN-KD”) showed reduced luciferase signal activity in the adjacent pancreas and distant liver compared to control mice (“Ctrl”).
  • MIA PaCa2-HLMC tumor luciferase activity
  • SNORA23-ASO SNORA23-ASO treated mice compared to control mice in both adjacent pancreas and distant liver.
  • Example 9 Gene and protein expression profiling in PDAC cells treated with SNORA23 knockdown To identify the downstream factors of SNORA23, SNORA23 knockdown was performed (transfected with SNORA23ASO (ASO # 1: SEQ ID NO: 5)) or not (transfected with control ASO (SEQ ID NO: 20)), Suite2- CDNA microarray analysis was performed on HLMC cells and MIA PaCa2-HLMC cells.
  • FIG. 9 shows the cDNAs of Suit2-HLMC cells and MIA PaCa2-HLMC cells when transfection with SNORA23ASO (“SN-KD”) and transfection with control ASO (“Ctrl”) were performed, respectively.
  • a heat map (A) for microarray analysis and a heat map (B) for proteomic analysis are shown.
  • 12 genes SNORA23, PRKDC, BUB1, PUPN12, GPR126, LGR5, WWC2, HS2ST1, ZCCHC11, PEAK1, IPO7, HMGCS2
  • 6 types Genes CDKN1A, LAMB3, LAMC2, FAM25C, AGO2, and MYO1B were up-regulated (A in FIG. 9).
  • proteomic data was analyzed using a spectrum counting method and a label-free quantification method usually used for screening purposes.
  • FIG. 10 shows the results of examining the number of proteins up-regulated and the number of proteins down-regulated by SNORA23 knockdown in Suite2-HLMC cells and MIA PaCa2-HLMC cells using a spectrum counting method and a label-free quantification method. It is a schematic diagram which shows.
  • FIG. 11 shows, for Proteomics data analyzed using label-free quantification, transfection with SNORA23ASO (“SN-KD”) and control ASO for Suite2-HLMC cells and MIA PaCa2-HLMC cells.
  • the heat map at the time of performing each of (“Ctrl") is shown.
  • SYNE2 SYNE2 / nesprin-2
  • PCDH11X protocadherin-11 X-linked protein
  • Example 10 Verification of SNORA23-regulated mRNA and protein
  • SNORA23 knock by qRT-PCR using 2 SNORA23ASOs ASO # 1: SEQ ID NO: 5 and ASO # 2: SEQ ID NO: 6
  • ASO # 1 SEQ ID NO: 5
  • ASO # 2 SEQ ID NO: 6
  • Changes in mRNA expression due to down were examined.
  • FIG. 12 shows transfection of Suite2-HLMC cells and MIA PaCa2-HLMC cells with their parent cells (WT), SNORA23 ASO # 1 (SEQ ID NO: 5), and control ASO. (“Ctrl ASO”) and Western blot of SYNE2 and the relative expression level of protein when untreated.
  • FIG. 13 shows the transfection (“SN-”) of Suite2-HLMC cells and MIA PaCa2-HLMC cells in the case of their parent cells (WT) and untreated (HLMC), and SNORA23 ASO # 1 (SEQ ID NO: 5).
  • ASO # 1 "), SNORA23 ASO # 2 (SEQ ID NO: 6) transfection (" SN-ASO # 2 "), control ASO transfection (" Ctrl ASO "), and untreated It is a graph which shows the mRNA relative expression level of SYNE2 in the case of.
  • * P ⁇ 0.05, ** P ⁇ 0.01 (relative to control ASO: n 4).
  • SYNE2 protein was significantly increased 2-fold in HLMC type cells compared to parental cells (FIG. 12), but mRNA expression did not change according to protein expression (FIG. 13).
  • SNOR23 knockdown decreased SYNNE2 expression by 50% and 40% in Suite2-HLMC cells and MIA PaCa2-HLMC cells, respectively (FIG. 12), accompanied by suppression of mRNA expression (FIG. 13).
  • Example 11 Effect of SYNE2 expression on infiltration and anchorage-independent growth of Suite2-HLMC cells and MIA PaCa2-HLMC cells
  • A For Suite2-HLMC cells and MIA PaCa2-HLMC cells, transfection with SYNE2 siRNA (Thermo Fisher Scientific, siRNA ID: s23328) ("SYNE2-siRNA”) and control siRNA (Thermo Fisher Scientific) Fick, negative control # 1) transfections (“Ctrl”)) were examined by matrigel invasion assay.
  • the siRNA used for transfection had a final concentration of 20 nM.
  • FIG. 14A shows matrigels of Suite2-HLMC cells and MIA PaCa2-HLMC cells 48 hours after either transfection with SYNE2 siRNA (“SYNE2-siRNA”) or transfection with control siRNA (“Ctrl”).
  • SYNE2 siRNA SYNE2 siRNA
  • Ctrl control siRNA
  • SYNE2 siRNA SYNE2 siRNA
  • Ctrl control siRNA
  • FIG. 14B shows SNORA23 ASO and SYNE2 pDNA transfection (“SNORA-ASO + SYNE2-pDNA”), SNORA23 ASO and mock pDNA transfection (“SNORA-ASO + Mock”), and control ASO and mock pDNA transfection (“Ctrl-ASO + Mock”). ”) Representative images of Matrigel invasion assay of Suite2-HLMC cells and MIA PaCa2-HLMC cells 48 hours after any of the above, and a graph showing the number of infiltrating cells.
  • FIG. 14C shows the softness obtained when transfection with SYN2 siRNA (“SYNE2-siRNA”) and transfection with control siRNA (“Ctrl”) were performed on Suite2-HLMC cells and MIA PaCa2-HLMC cells.
  • SYNE2-siRNA SYN2 siRNA
  • Ctrl control siRNA
  • SYNE2-siRNA SYNE2 siRNA
  • FIG. 14D shows the results of transfection with SYN2 siRNA (SYNE2-KD; square) and transfection with control siRNA (Ctrl: diamond) for Suite2-HLMC cells and MIA PaCa2-HLMC cells.
  • 3 is a graph showing fluctuations in spheroid formation from day 1 (D1) to day 4 (D4). The spheroid formation value was expressed as a relative value where the amount of the first day (D1) was 1.
  • Spheroid formation was reduced to about 14% and 30% of control by SYN2 siRNA (SYNE2 knockdown) in Suite2-HLMC cells and MIA PaCa2-HLMC cells (both P ⁇ 0.001 (Day 4); FIG. 14D). )
  • FIG. 14E shows SNORA23 ASO and SYNE2 pDNA transfection (“SYNE-OE + SN-KD”), SNORA23 ASO and mock pDNA transfection (“SN-KD”), and Suite2-HLMC cells and MIA PaCa2-HLMC cells, and It is a graph which shows the spheroid formation fluctuation
  • the spheroid formation value was expressed as a relative value where the amount of the first day (D1) was 1.
  • Spheroid formation is suppressed by SNORA23 knockdown (“SN-KD”) when both SYNE2 expression plasmid and SNORA23 ASO are transfected in Sweet2-HLMC cells and MIA PaCa2-HLMC cells (“SYNE-OE + SN-KD”) Fully recovered to the level of the control (“Ctrl”) (FIG. 14E).
  • Example 11 Verification of SNORA23 knockdown with additional SNORA23 ASO
  • SNORA23 silencing an antisense oligonucleotide SNORA23 ASO # 3 of the following sequence was designed:
  • SNORA23 ASO # 3 (SEQ ID NO: 7) was designed to target the 153rd to 167th region from the 5 'end of the base sequence of the SNORA23 gene shown in SEQ ID NO: 1.
  • the base sequence of SEQ ID NO: 7 is represented in the 5 'to 3' direction (5 ' ⁇ 3'), and is a reverse complementary sequence to each target region sequence in SEQ ID NO: 1.
  • transfection with control ASO SEQ ID NO: 20
  • MIA PaCa2-HLMC cells By qRT-PCR analysis, MIA PaCa2-HLMC cells, Suite2-HLMC cells, Hs766T cells and S2-013 cells (obtained from Medical Cell Resource Center, Institute of Aging Medicine, Tohoku University) for SNORA23 ASO # 3 (SEQ ID NO: 7) SNOR23 RNA expression and SYNE2 mRNA expression when each cell line was transfected were verified.
  • FIG. 15 shows MIA PaCa2-HLMC cell, Suite2-HLMC cell, Hs766T cell, and S2-013 cell line transfection with SNORA23 ASO # 3 (“SN-ASO # 3”) and control ASO. It is a graph which shows SNORA23 RNA expression (A) and SYNE2 mRNA expression (B) at the time of performing each of transfection (“Ctrl”). The RNA expression level was expressed as a relative value with the expression level of transfection (“Ctrl”) in control ASO as 1. In FIG. 15, * P ⁇ 0.05.
  • FIG. 16 shows transfection of SNORA23 ASO # 3 ( ⁇ : “SN-ASO # 3”) and transfection with control ASO (diamonds: each cell line of CAPAN-2 cells, Hs766T cells, and S2-013 cells). It is a graph which shows a time-dependent change of the cell proliferation (A) and spheroid formation (B) in an anchorage dependence cell proliferation assay at the time of performing each of "Ctrl”).
  • A cell proliferation
  • B spheroid formation
  • FIG. 17 shows the transfection of SNORA23, ASO # 3 ((A) “SNORA23 # 153” or (B) “AN” in each cell line of MIA PaCa2-HLMC cells, Suite2-HLMC cells, Hs766T cells, and S2-013 cells.
  • -ASO # 3 ") 48 hours after transfection with control ASO (“ Ctrl ") (MIA PaCa2-HLMC cells and Hs766T cells) or 72 hours after (Suit2-HLMC cells) And S2-013 cells) is a graph showing a representative image (A) and the number of infiltrating cells (B) of the matrigel invasion assay.
  • Hs766T cells and S2-013 cells showed many infiltrating cells with “Ctrl”, whereas “SNORA23 # 153” hardly observed any infiltrating cells, and MIA PaCa2-HLMC cells and Suite2 -HLMC cells showed many infiltrating cells with "Ctrl”, but with "SNORA23 # 153" only a reduced number of infiltrating cells were observed.
  • Example 12 Reduction of SNOR23 concentration in blood by SNORA23 ASO
  • Suit2-HLMC cells or MIA PaCa2-HLMC cells were transplanted into the subcapsular region of the spleen of nude mice, and the following day, SNORA23 ASO # 1 (SEQ ID NO: 5) or control ASO (SEQ ID NO: 20) was given to the mice at 10 mg / kg
  • Subcutaneous administration was performed at the body weight, and then further subcutaneous administration was performed once a week (10 mg / kg body weight each time) 1 week, 2 weeks, 3 weeks, and 4 weeks after the first administration.
  • mice administered with SNORA23 ASO # 1 subcutaneously are also referred to as “SNOR23 ASO subcutaneously administered mice”, and mice administered with control ASO subcutaneously are also referred to as “control mice”.
  • mice administered with control ASO subcutaneously are also referred to as “control mice”.
  • Three, four or five dose mice were sacrificed one week after the last dose, so blood samples from mice three weeks, four weeks or five weeks after the start of subcutaneous administration and Spleen, pancreas and liver tumor tissue samples were collected. Total RNA was extracted from each sample collected using a high pure RNA isolation kit (Roche Diagnostics GmbH).
  • the expression levels of SNORA23 and CEA in the blood samples at 4 and 5 weeks after the start of subcutaneous administration, and 3 weeks after the start of subcutaneous administration were compared with the primer sets described above (SEQ ID NO: 16 and SEQ ID NO: 17 for SNORA23; SEQ ID NO: 17 for SYNE2). 21 and SEQ ID NO: 22; for CEA, SEQ ID NO: 18 and SEQ ID NO: 19) were used to measure by qRT-PCR.
  • FIG. 18 shows the qRT-PCR measurement results.
  • “Ctrl” is “control mouse”
  • “SN KD” is “SNORA23 ASO subcutaneously administered mouse”
  • “3w”, “4w” and “5w” are 3 weeks after the start of subcutaneous administration, respectively. After, 4 weeks and 5 weeks later are shown. For each result, the results after 3 weeks, 4 weeks, and 5 weeks are shown in order from the left (however, the results in the blood samples show the results after 4 weeks and 5 weeks in order from the left) ).
  • SNORA23 RNA in the blood sample of the control mouse increases with the progression of such a tumor, and in the mouse administered with SNORA23 ASO subcutaneously, where such tumor growth and metastasis were not observed, The amount of SNORA23 RNA was hardly seen. Therefore, SNORA23 RNA in the blood sample can be used as a tumor biomarker.
  • Example 13 Correlation between SNOR23 expression level in pancreatic cancer patients and prognosis of pancreatic cancer patients
  • SNOR23 expression in clinical specimens PDAC tissue
  • n 133: normal pancreatic cancer excluding IMPN / MCN-related cancer
  • FIG. 20 shows the respective survival curves of disease-free survival rate (DFS) and overall survival rate (OS) for each PDAC patient group with high and low expression of SNORA23 prepared according to the Kaplan-Meier method.
  • the present invention can contribute to the development of therapeutic agents based on nucleic acids that can inhibit cancer invasion or metastasis. Furthermore, the present invention is useful for the manufacture of a medicament for the treatment or prevention of various cancers including refractory cancers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Reproductive Health (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Endocrinology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

SNORA23遺伝子発現抑制剤を含む抗腫瘍剤が開示される。SNORA23発現抑制剤は、以下の式(I)で表されるヌクレオシド構造: (式中BaseおよびAは所定の置換基または構造である)を少なくとも1つ含むオリゴヌクレオチドまたはその薬理学上許容される塩であり得る。SYNE2遺伝子発現抑制剤を含む抗腫瘍剤もまた開示される。腫瘍の浸潤または転移を検出するため、血液試料中のSNORA23を測定することを特徴とする、SNORA23のバイオマーカーとしての使用もまた開示される。

Description

癌浸潤または転移阻害核酸薬および癌バイオマーカー
 本発明は、癌浸潤または転移を阻害し得る核酸および当該核酸を含む抗癌剤に関する。
 膵癌または膵管腺癌(PDAC)は、浸潤性で転移能が高く、予後が不良である。古より病理学的検討によって、癌細胞の悪性度および予後不良に、核および核小体の異型度が関与することが知られている。
 核内に存在する非翻訳RNAである核小体小分子RNA(snoRNA)は、リボソームやリボソームRNAの合成および代謝を制御するハウスキーピング因子として考えられてきたが、近年、癌特異的に異常発現するsnoRNAの報告がなされている。このようなsnoRNAとして、例えば、SNORA42(非特許文献1)、SNORA55(非特許文献2)、h5sn2(非特許文献3)、SNORD44(非特許文献4)およびSNORD50A/B(非特許文献5)が報告されている。
 癌の治療において、RNA干渉(RNAi)(例えば、siRNAまたはmiRNAの利用)、アンチセンス法などが核酸利用0などの核酸を利用した標的遺伝子発現抑制が試みられている。アンチセンス法においては、種々の人工核酸が利用されている。例えば、アミド架橋核酸(AmNA:特許文献1)を用いたアンチセンスオリゴヌクレオチド(ASO)の癌治療への応用が試みられている(非特許文献6)。
国際公開第2011/052436号
Mei YPら、Oncogene 2012;31:2794-804 Crea Fら、Mol Oncol 2016;10:693-703 Chang LSら、Biochem Biophys Res Commun 2002;299:196-200 Appaiah HNら、Breast Cancer Res 2011;13:R86 Siprashvili Zら、Nat Genet 2016;48:53-8 Shinkai Kら、Int J Cancer 2016;139:433-45
 しかし、核内非翻訳RNAであるsnoRNAを標的遺伝子とする場合、生体内でsnoRNAの発現を抑制可能な核酸剤は未だ確立されていない。そして、PDACのような癌の浸潤および転移を解消するために有効な治療剤が求められている。
 したがって、本発明は、核内非翻訳RNAの発現を生体内で抑制可能な核酸剤を提供することを目的とする。さらに、本発明は、癌の浸潤および転移に関与するsnoRNAの発現抑制剤を含む抗腫瘍剤を提供することを目的とする。
 本発明は、SNORA23遺伝子発現抑制剤を含む、抗腫瘍剤を提供する。
 1つの実施形態では、上記SNORA23遺伝子発現抑制剤は、SNORA23遺伝子と結合し得、該SNORA23遺伝子の発現を抑制する活性を有する核酸分子を含む。
 1つの実施形態では、上記核酸分子は、配列番号1に示されるSNORA23遺伝子の塩基配列の一部である標的領域に相補的な配列でありかつ12~20塩基の長さであるオリゴヌクレオチド、またはその薬理学上許容される塩を含む。
 1つの実施形態では、上記オリゴヌクレオチドまたはその薬理学上許容される塩は、糖修飾部分を含む1個または2個以上のヌクレオチドを含む。
 1つの実施形態では、上記オリゴヌクレオチドまたはその薬理学上許容される塩は、
以下の式(I)で表されるヌクレオシド構造:
Figure JPOXMLDOC01-appb-C000004
を少なくとも1つ含み、
 ここで、
 Baseは、α群から選択される任意の置換基を1以上有していてもよいプリン-9-イル基、またはα群から選択される任意の置換基を1以上有していてもよい2-オキソ-1,2-ジヒドロピリミジン-1-イル基を表し、ここで、該α群は、水酸基、核酸合成の保護基で保護された水酸基、炭素数1から6の直鎖アルキル基、炭素数1から6の直鎖アルコキシ基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、炭素数1から6の直鎖アルキルチオ基、アミノ基、炭素数1から6の直鎖アルキルアミノ基、核酸合成の保護基で保護されたアミノ基、およびハロゲン原子からなり、
 Aは、以下:
Figure JPOXMLDOC01-appb-C000005
で表される二価の基であり、
 Rは、水素原子、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基、または核酸合成のアミノ基の保護基を表し;
 R13およびR14は、それぞれ独立して、水素原子;水酸基;分岐または環を形成していてもよい炭素数1から7のアルキル基;分岐または環を形成していてもよい炭素数1から7のアルコキシ基;アミノ基;および核酸合成の保護基で保護されたアミノ基;からなる群から選択される基であり;
 mは、0から2の整数であり;
 nは、0から1の整数であり;
 Xは、酸素原子、硫黄原子、またはアミノ基である。
 1つの実施形態では、上記式(I)で表されるヌクレオシド構造は、
Figure JPOXMLDOC01-appb-C000006
で表される構造である。
 1つの実施形態では、上記式(I)で表されるヌクレオシド構造は、上記式(I’)で表される構造であり、そして該式(I’)において、上記mは0であり、そして上記Rは、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基、またはベンジル基である。
 1つの実施形態では、上記オリゴヌクレオチドは、6~10塩基のギャップ領域、3~5塩基の5’ウイングおよび3~5塩基の3’ウイングからなるギャップマーであり、
 該ギャップ領域が、該5’ウイングと該3’ウイングの間に位置づけられ、そして
 該5’ウイングおよび該3’ウイングは、上記式(I)で表されるヌクレオシド構造を含む。
 1つの実施形態では、上記SNORA23遺伝子発現抑制剤はSYNE2の発現を抑制する。
 本発明はまた、SYNE2発現抑制剤を含む、抗腫瘍剤を提供する。
 1つの実施形態では、上記SYNE2発現抑制剤は、SYNE2と結合し得、該SYNE2の発現を抑制する活性を有する核酸分子を含む。
 1つの実施形態では、上記抗腫瘍剤は、浸潤性または転移能のある腫瘍に対して用いられる抗腫瘍剤である。
 1つの実施形態では、上記抗腫瘍剤は、膵癌、肝癌、肺癌、卵巣癌または胃癌の治療または予防に用いられる抗腫瘍剤である。
 本発明はさらに、上記抗腫瘍剤を含有する医薬組成物を提供する。
 本発明はなおさらに、癌浸潤または転移を検出するため、血液試料中のSNORA23を測定することを特徴とする、SNORA23のバイオマーカーとしての使用を提供する。
 本発明によれば、核内非翻訳RNAの発現抑制が可能となる。本発明によって、核内非翻訳RNAであるsnoRNAの生体内における発現の抑制が可能となる。さらに、本発明によれば、癌の浸潤または転移に関与するsnoRNAの発現が抑制でき、その抗腫瘍効果に基づく治療剤を提供することができる。
Suit2およびMIA PaCa2癌細胞のHLMC細胞および親細胞について、mRNAおよび非翻訳RNAのcDNAマイクロアレイ解析の結果を示す図(図1a)、ならびにqRT-PCRによるCEA mRNA(図1b)およびSNORA23 RNA(図1c)の相対的発現量を示すグラフ;ならびに種々の膵癌細胞株、正常膵管上皮(NPDE)細胞、および癌関連線維芽細胞(CAF)におけるSNORA23発現量を示すグラフ(図1d)である。 Suit2およびMIA PaCa2癌細胞のHLMC細胞および親細胞ならびにSNORA23ノックダウン細胞を蛍光標識プローブでトランスフェクトしたもの標識蛍光顕微鏡画像である。 qRT-PCR解析によるPDACならびに正常な肝臓組織および膵臓組織におけるSNORA23の相対的発現についての箱ひげ図(ボックスプロット)である。 カプラン・メイヤー法に従って作成した、SNORA23高発現および低発現の各PDAC患者群についての無病生存率および全生存率のそれぞれの生存曲線を示すグラフである。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SNORA23 ASO#1でのトランスフェクション(「SN-ASO#1」)、SNORA23 ASO#2でのトランスフェクション(「SN-ASO#2」)、コントロールASOでのトランスフェクション(「Ctrl」)のそれぞれを行った場合のqRT-PCR解析によるRNAの相対的発現量を示すグラフである。 Suit2およびMIA PaCa2について、HLMC細胞(「HLMC」)および親細胞(「WT」)のmatrigel浸潤アッセイの代表的な画像ならびに浸潤細胞数を示すグラフである。 SNORA23ASOでのトランスフェクション(「SN-KD」)およびコントロールASOでのトランスフェクション(「Ctrl」)のいずれかから48時間後のSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞のmatrigel浸潤アッセイの代表的な画像ならびに浸潤細胞数を示すグラフである。 SNORA23 pDNAのトランスフェクション(「SN-OE」)およびモックpDNAトランスフェクション(「Mock」)のいずれかから72時間後のSuit2細胞およびMIA PaCa2細胞のmatrigel浸潤アッセイの代表的な画像ならびに浸潤細胞数を示すグラフである。 Suit2およびMIA PaCa2につき、それらのHLMC細胞(「HLMC」:四角)とその親細胞(「WT」:菱形)についての、足場依存性細胞増殖アッセイにおける細胞増殖の経時変化を示すグラフである。 Suit2およびMIA PaCa2につき、それらのHLMC細胞(「HLMC」)とその親細胞(「WT」)についての軟寒天コロニー形成アッセイの代表的な画像および形成されたコロニー数を示すグラフである。 Suit2-HLMC細胞およびMIA PaCa2-HLMCにつき、それらのSNORA23ASOでのトランスフェクション(「SN-KD」:四角)とコントロールASOでのトランスフェクション(「Ctrl」:菱形)についての、足場依存性細胞増殖アッセイにおける細胞増殖の経時変化を示すグラフである。 Suit2-HLMC細胞およびMIA PaCa2-HLMCにつき、それらのSNORA23ASOでのトランスフェクション(「SN-KD」)とコントロールASOでのトランスフェクション(「Ctrl」)についての、軟寒天コロニー形成アッセイの代表的な画像および形成されたコロニー数を示すグラフである。 Suit2細胞およびMIA PaCa2細胞につき、それらのSNORA23 pDNAでのトランスフェクション(「SN-OE」:四角)とモックpDNAトランスフェクション(「Ctrl」:菱形)についての、足場依存性細胞増殖アッセイにおける細胞増殖の経時変化を示すグラフである。 Suit2細胞およびMIA PaCa2細胞につき、それらのSNORA23 pDNAでのトランスフェクション(「SN-OE」)とモックpDNAトランスフェクション(「Mock」)についての軟寒天コロニー形成アッセイの代表的な画像およびその拡大画像である。 Suit2細胞およびMIA PaCa2につき、それらのSNORA23 pDNAでのトランスフェクション(「SN-OE」)とモックpDNAトランスフェクション(「Mock」)についての全コロニーの数および大コロニー(1mmを超える直径を有する)の数を示すグラフである。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞につき、(a)SNORA23ASOでのトランスフェクション(SNORA-KD:四角)およびコントロールASOのトランスフェクション(Ctrl:菱形)ならびに(b)LGR5 siRNAでのトランスフェクション(LGR5-KD:四角)およびコントロールsiRNAでのトランスフェクション(Ctrl:菱形)についての、1日目(D1)~4日目(D4)におけるスフェロイド形成変動を示すグラフである。 ASO移植前(「ASO(-)」)、ASOエクスビボ移植(「ASO(+)エクスビボ」)を行った1週目(「1週」)および2週目(「2週」)、ならびにさらに皮下注射(「エクスビボ+皮下注射」)を行ってから2週目(「2週」)および3週目(「3週」)の腫瘍組織におけるSNORA23 RNA発現量を示すグラフである。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞につき、それらのSNORA23 ASO#1で処理したマウス(「SN-KD」:四角)と、それらのコントロールマウス(「Ctrl」:菱形)とについての、IVIS画像化により測定したマウス全身のルシフェラーゼシグナル量の経日変化を示すグラフおよびシグナル分布を示す代表的な画像である。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞につき、SNORA23 ASO#1で処理したマウス(「SN-KD」)と、コントロールマウス(「Ctrl」)とからそれぞれ採取した腫瘍組織のマトキシリンおよびエオシン染色後の試料の位相差顕微鏡写真および拡大写真である。 MIA PaCa2-HLMC細胞につき、SNORA23 ASO#1で処理したマウス(SN-KD)と、コントロールマウス(Ctrl)とから切除した肝臓および膵臓のIVIS画像化によるシグナル分布を示す代表的な画像および測定したルシフェラーゼシグナル量(フォトン/秒)を示すグラフである。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、それらのSNORA23ASOでのトランスフェクション(「SN-KD」)およびコントロールASOでのトランスフェクション(「Ctrl」)のそれぞれを行った場合のcDNAマイクロアレイ解析のヒートマップ(A)およびプロテオミクス解析のヒートマップ(B)を示す。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞においてSNORA23ノックダウンによりアップレギュレートされたタンパク質数およびダウンレギュレートされたタンパク質数について、スペクトルカウント法およびラベルフリー定量法を用いて調べた結果を示す模式図である。 ラベルフリー定量法を用いて分析したプロテオミクスデータに関して、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、それらのSNORA23ASOでのトランスフェクション(「SN-KD」)およびコントロールASOでのトランスフェクション(「Ctrl」)のそれぞれを行った場合のヒートマップを示す。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、それらの親細胞(WT)、SNORA23 ASOでのトランスフェクション(「SNORA ASO」)、コントロールASOでのトランスフェクション(「Ctrl ASO」)および未処理の場合のそれぞれを行った場合のSYNE2のウェスタンブロット、ならびにタンパク質の相対的発現量を示すグラフである。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、それらの親細胞(WT)および未処理(HLMC)の場合、ならびにSNORA23 ASO#1でのトランスフェクション(「SN-ASO#1」)、SNORA23 ASO#2でのトランスフェクション(「SN-ASO#2」)、コントロールASOでのトランスフェクション(「Ctrl ASO」)および未処理の場合のそれぞれを行った場合のSYNE2のmRNA相対的発現量を示すグラフである。 SYNE2 siRNAでのトランスフェクション(「SYNE2-siRNA」)およびコントロールsiRNAでのトランスフェクション(「Ctrl」))のいずれかから48時間後のSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞のmatrigel浸潤アッセイの代表的な画像と、浸潤細胞数を示すグラフとを示す。 SNORA23 ASOおよびSYNE2 pDNAのトランスフェクション(「SNORA-ASO+SYNE2-pDNA」)、SNORA23 ASOおよびモックpDNAトランスフェクション(「SNORA-ASO+Mock」)、ならびにコントロールASOおよびモックpDNAトランスフェクション(「Ctrl-ASO+Mock」)のいずれかから48時間後のSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞のmatrigel浸潤アッセイの代表的な画像と、浸潤細胞数を示すグラフとを示す。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SYNE2 siRNAでのトランスフェクション(「SYNE2-siRNA」)およびコントロールsiRNAでのトランスフェクション(「Ctrl」))のそれぞれを行った場合の軟寒天コロニー形成アッセイの代表的な画像と、形成されたコロニー数を示すグラフとを示す。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SYNE2 siRNAでのトランスフェクション(SYNE2-KD;四角)およびコントロールsiRNAでのトランスフェクション(Ctrl:菱形)のそれぞれを行った場合についての、1日目(D1)~4日目(D4)におけるスフェロイド形成変動を示すグラフである。 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SNORA23 ASOおよびSYNE2 pDNAのトランスフェクション(SYNE-OE+SN-KD)、SNORA23 ASOおよびモックpDNAトランスフェクション(SN-KD)、ならびにコントロールASOおよびモックpDNAトランスフェクション(Ctrl)のそれぞれを行った場合についての、1日目(D1)~4日目(D4)におけるスフェロイド形成変動を示すグラフである。 MIA PaCa2-HLMC細胞、Suit2-HLMC細胞、Hs766T細胞およびS2-013細胞の各細胞株について、SNORA23 ASO#3でのトランスフェクション(「SN-ASO#3」)、コントロールASOでのトランスフェクション(「Ctrl」)のそれぞれを行った場合のSNORA23 RNA発現(A)およびSYNE2 mRNA発現(B)を示すグラフである。 CAPAN-2細胞、Hs766T細胞およびS2-013細胞の各細胞株につき、SNORA23 ASO#3のトランスフェクション(×:「SN-ASO#3」)、コントロールASOでのトランスフェクション(菱形:「Ctrl」)のそれぞれを行った場合の足場依存性細胞増殖アッセイにおける細胞増殖(A)およびスフェロイド形成(B)の経時変化を示すグラフである。 MIA PaCa2-HLMC細胞、Suit2-HLMC細胞、Hs766T細胞およびS2-013細胞の各細胞株において、SNORA23 ASO#3のトランスフェクション((A)「SNORA23 #153」または(B)「AN-ASO#3」)、コントロールASOでのトランスフェクション(「Ctrl」)のそれぞれを行った場合のトランスフェクションの48時間後(MIA PaCa2-HLMC細胞およびHs766T細胞)または72時間後(Suit2-HLMC細胞およびS2-013細胞)の細胞のmatrigel浸潤アッセイの代表的な画像(A)および浸潤細胞数(B)を示すグラフである。 SNORA23 ASO皮下投与マウスおよびコントロールマウスのそれぞれにつき、ASO皮下投与を開始してから4週間後および5週間後における血液試料中のSNORA23およびCEAの発現レベル、ならびにASO皮下投与を開始してから3週間後、4週間後および5週間後における脾臓、膵臓、肝臓の腫瘍組織試料中のSNORA23、SYNE2およびCEAの発現レベルを示すグラフである。 SNORA23 ASO皮下投与マウスおよびコントロールマウスのそれぞれにつき、ASO皮下投与を開始してから3週間後、4週間後および5週間後における脾臓および肝臓の腫瘍組織の写真である。 カプラン・メイヤー法に従って作成した、SNORA23高発現および低発現の各PDAC患者群についての無病生存率および全生存率のそれぞれの生存曲線を示すグラフである。
 まず、本明細書中で用いられる用語を定義する。
 本明細書において、用語「炭素数1から6の直鎖アルキル基」は、炭素数1から6の任意の直鎖アルキル基をいい、具体的にはメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、またはn-ヘキシル基をいう。
 本明細書において、用語「炭素数1から6の直鎖アルコキシ基」は、炭素数1から6の任意の直鎖アルキル基を有するアルコキシ基を包含する。例えば、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基などが挙げられる。本明細書において、用語「炭素数1から6の直鎖または分岐鎖アルコキシ基」は、炭素数1から6の任意の直鎖または分岐鎖アルキル基を有するアルコキシ基を包含する。例えば、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、イソペンチルオキシ基などが挙げられる。
 本明細書において、用語「炭素数1から6の直鎖アルキルチオ基」は、炭素数1から6の任意の直鎖アルキル基を有するアルキルチオ基を包含する。例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基などが挙げられる。本明細書において、用語「炭素数1から6の直鎖または分岐鎖アルキルチオ基」は、炭素数1から6の任意の直鎖または分岐鎖アルキル基を有するアルキルチオ基を包含する。例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、n-ペンチルチオ基、イソペンチルチオ基などが挙げられる。
 本明細書において、用語「炭素数1から6のシアノアルコキシ基」は、上記炭素数1から6の直鎖アルコキシ基を構成する少なくとも1つの水素原子がシアノ基で置換された基をいう。
 本明細書において、用語「炭素数1から6の直鎖アルキルアミノ基」は、アミノ基を構成する水素原子の1つまたは2つが、炭素数1から6の直鎖アルキル基で置換された基を包含する。例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、メチルエチルアミノ基、ジエチルアミノ基などが挙げられる。本明細書において、用語「炭素数1から6の直鎖または分岐鎖アルキルアミノ基」は、アミノ基を構成する水素原子の1つまたは2つが、炭素数1から6の任意の直鎖または分岐鎖アルキル基で置換された基を包含する。例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、メチルエチルアミノ基、ジエチルアミノ基、n-プロピルアミノ基、ジn-プロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基などが挙げられる。
 本明細書において、用語「分岐または環を形成していてもよい炭素数1から7のアルキル基」は、炭素数1から7の任意の直鎖アルキル基、炭素数3から7の任意の分岐鎖アルキル基、および炭素数3から7の任意の環状アルキル基を包含する。単に、「低級アルキル基」という場合もある。例えば、炭素数1から7の任意の直鎖アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、およびn-ヘプチル基が挙げられ、炭素数3から7の任意の分岐鎖アルキル基としては、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基などが挙げられ、そして炭素数3から7の任意の環状アルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 本明細書において、用語「分岐または環を形成していてもよい炭素数2から7のアルケニル基」は、炭素数2から7の任意の直鎖アルケニル基、炭素数3から7の任意の分岐鎖アルケニル基、および炭素数3から7の任意の環状アルケニル基を包含する。単に、「低級アルケニル基」という場合もある。例えば、炭素数2から7の任意の直鎖アルケニル基としては、エテニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基などが挙げられ、炭素数3から7の任意の分岐鎖アルケニル基としては、イソプロペニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-メチル-2-ブテニル基などが挙げられ、そして炭素数3から7の任意の環状アルケニル基としては、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。
 本明細書において、用語「分岐または環を形成していてもよい炭素数1から7のアルコキシ基」は、炭素数1から7の任意の直鎖アルコキシ基、炭素数3から7の任意の分岐鎖アルコキシ基、および炭素数3から7の任意の環状アルコキシ基を包含する。単に、「低級アルコキシ基」という場合もある。例えば、炭素数1から7の任意の直鎖アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、n-ブチロキシ、n-ペンチルオキシ基、n-ヘキシルオキシ基、およびn-ヘプチルオキシ基が挙げられ、炭素数3から7の任意の分岐鎖アルコキシ基としては、イソプロポキシ基、イソブチロキシ基、tert-ブチロキシ基、イソペンチルオキシ基などが挙げられ、そして炭素数3から7の任意の環状アルコキシ基としては、シクロブチロキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基などが挙げられる。
 本明細書において、用語「ヘテロ原子を含んでいてもよい炭素数3から12のアリール基」は、炭化水素のみで構成された、炭素数6から12の任意のアリール基と、当アリール基の環構造を構成する少なくとも1つの炭素原子がヘテロ原子(例えば、窒素原子、酸素原子、および硫黄原子、ならびにこれらの組合せ)で置換された、炭素数3から12の任意のヘテロアリール基とを包含する。当該炭素数6から12のアリール基としては、フェニル基、ナフチル基、インデニル基、アズレニル基などが挙げられ、そして当該炭素数3から12の任意のヘテロアリール基としては、ピリジル基、ピロリル基、キノリル基、インドリル基、イミダゾリル基、フリル基、チエニル基などが挙げられる。
 本明細書において、用語「ヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基」の例としては、ベンジル基、フェネチル基、ナフチルメチル基、3-フェニルプロピル基、2-フェニルプロピル基、4-フェニルブチル基、2-フェニルブチル基、ピリジルメチル基、インドリルメチル基、フリルメチル基、チエニルメチル基、ピロリルメチル基、2-ピリジルエチル基、1-ピリジルエチル基、3-チエニルプロピル基などが挙げられる。
 本明細書において、用語「アシル基」の例としては、脂肪族アシル基および芳香族アシル基が挙げられる。具体的には、脂肪族アシル基の例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ピバロイル基、バレリル基、イソバレリル基、オクタノイル基、ノナノイル基、デカノイル基、3-メチルノナノイル基、8-メチルノナノイル基、3-エチルオクタノイル基、3,7-ジメチルオクタノイル基、ウンデカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ペンタデカノイル基、ヘキサデカノイル基、1-メチルペンタデカノイル基、14-メチルペンタデカノイル基、13,13-ジメチルテトラデカノイル基、ヘプタデカノイル基、15-メチルヘキサデカノイル基、オクタデカノイル基、1-メチルヘプタデカノイル基、ノナデカノイル基、アイコサノイル基およびヘナイコサノイル基のようなアルキルカルボニル基;スクシノイル基、グルタロイル基、アジポイル基のようなカルボキシ化アルキルカルボニル基;クロロアセチル基、ジクロロアセチル基、トリクロロアセチル基、トリフルオロアセチル基のようなハロゲノ低級アルキルカルボニル基;メトキシアセチル基のような低級アルコキシ低級アルキルカルボニル基;(E)-2-メチル-2-ブテノイル基のような不飽和アルキルカルボニル基が挙げられる。また、芳香族アシル基の例としては、ベンゾイル基、α-ナフトイル基、β-ナフトイル基のようなアリールカルボニル基;2-ブロモベンゾイル基、4-クロロベンゾイル基のようなハロゲノアリールカルボニル基;2,4,6-トリメチルベンゾイル基、4-トルオイル基のような低級アルキル化アリールカルボニル基;4-アニソイル基のような低級アルコキシ化アリールカルボニル基;2-カルボキシベンゾイル基、3-カルボキシベンゾイル基、4-カルボキシベンゾイル基のようなカルボキシ化アリールカルボニル基;4-ニトロベンゾイル基、2-ニトロベンゾイル基のようなニトロ化アリールカルボニル基;2-(メトキシカルボニル)ベンゾイル基のような低級アルコキシカルボニル化アリールカルボニル基;4-フェニルベンゾイル基のようなアリール化アリールカルボニル基などが挙げられる。好適には、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ピバロイル基、ベンゾイル基である。
 本明細書において、用語「シリル基」の例としては、トリメチルシリル基、トリエチルシリル基、イソプロピルジメチルシリル基、t-ブチルジメチルシリル基、メチルジイソプロピルシリル基、メチルジ-t-ブチルシリル基、トリイソプロピルシリル基のようなトリ低級アルキルシリル基;ジフェニルメチルシリル基、ブチルジフェニルブチルシリル基、ジフェニルイソプロピルシリル基、フェニルジイソプロピルシリル基のような1~2個のアリール基で置換されたトリ低級アルキルシリル基などが挙げられる。好適には、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基であり、さらに好適にはトリメチルシリル基である。
 本明細書において、用語「ハロゲン原子」としては、例えば、フッ素原子、塩素原子、臭素原子、またはヨウ素原子が挙げられる。好適には、フッ素原子または塩素原子である。
 本明細書において、用語「核酸合成のアミノ基の保護基」、「核酸合成の水酸基の保護基」、「核酸合成の保護基で保護された水酸基」、「核酸合成の保護基で保護されたリン酸基」、「核酸合成の保護基で保護されたメルカプト基」の「保護基」とは、核酸合成の際に安定してアミノ基、水酸基、リン酸基またはメルカプト基を保護し得るものであれば、特に制限されない。具体的には、酸性または中性条件で安定であり、加水素分解、加水分解、電気分解、および光分解のような化学的方法により開裂し得る保護基のことをいう。このような保護基としては、例えば、低級アルキル基、低級アルケニル基、アシル基、テトラヒドロピラニルまたはテトラヒドロチオピラニル基、テトラヒドロフラニルまたはテトラヒドロチオフラニル基、シリル基、低級アルコキシメチル基、低級アルコキシ化低級アルコキシメチル基、ハロゲノ低級アルコキシメチル基、低級アルコキシ化エチル基、ハロゲン化エチル基、1~3個のアリール基で置換されたメチル基、「低級アルキル基、低級アルコキシ基、ハロゲン原子またはシアノ基でアリール環が置換された1~3個のアリール基で置換されたメチル基」、低級アルコキシカルボニル基、「ハロゲン原子、低級アルコキシ基またはニトロ基で置換されたアリール基」、「ハロゲン原子またはトリ低級アルキルシリル基で置換された低級アルコキシカルボニル基」、アルケニルオキシカルボニル基、「低級アルコキシまたはニトロ基でアリール環が置換されていてもよいアラルキルオキシカルボニル基」、「シアノ基で置換された低級アルコキシカルボニル基」、「1~4個のニトロ基で置換されたベンゼンスルホニル基」などが挙げられる。
 より具体的には、テトラヒドロピラニル基またはテトラヒドロチオピラニル基としては、テトラヒドロピラン-2-イル基、3-ブロモテトラヒドロピラン-2-イル基、4-メトキシテトラヒドロピラン-4-イル基、テトラヒドロチオピラン-4-イル基、4-メトキシテトラヒドロチオピラン-4-イル基などが挙げられる。テトラヒドロフラニル基またはテトラヒドロチオフラニル基としては、テトラヒドロフラン-2-イル基、テトラヒドロチオフラン-2-イル基が挙げられる。低級アルコキシメチル基としては、メトキシメチル基、1,1-ジメチル-1-メトキシメチル基、エトキシメチル基、プロポキシメチル基、イソプロポキシメチル基、ブトキシメチル基、t-ブトキシメチル基などが挙げられる。低級アルコキシ化低級アルコキシメチル基としては、2-メトキシエトキシメチル基などが挙げられる。ハロゲノ低級アルコキシメチル基としては、2,2,2-トリクロロエトキシメチル基、ビス(2-クロロエトキシ)メチル基などが挙げられる。低級アルコキシ化エチル基としては、1-エトキシエチル基、1-(イソプロポキシ)エチル基などが挙げられる。ハロゲン化エチル基としては、2,2,2-トリクロロエチル基などが挙げられる。1~3個のアリール基で置換されたメチル基としては、ベンジル基、α-ナフチルメチル基、β-ナフチルメチル基、ジフェニルメチル基、トリフェニルメチル基、α-ナフチルジフェニルメチル基、9-アンスリルメチル基などが挙げられる。「低級アルキル基、低級アルコキシ基、ハロゲン原子またはシアノ基でアリール環が置換された1~3個のアリール基で置換されたメチル基」としては、4-メチルベンジル基、2,4,6-トリメチルベンジル基、3,4,5-トリメチルベンジル基、4-メトキシベンジル基、4-メトキシフェニルジフェニルメチル基、4,4’-ジメトキシトリフェニルメチル基、2-ニトロベンジル基、4-ニトロベンジル基、4-クロロベンジル基、4-ブロモベンジル基、4-シアノベンジル基などが挙げられる。低級アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、t-ブトキシカルボニル基、イソブトキシカルボニル基などが挙げられる。「ハロゲン原子、低級アルコキシ基またはニトロ基で置換されたアリール基」としては、4-クロロフェニル基、2-フロロフェニル基、4-メトキシフェニル基、4-ニトロフェニル基、2,4-ジニトロフェニル基などが挙げられる。「ハロゲン原子またはトリ低級アルキルシリル基で置換された低級アルコキシカルボニル基」としては、2,2,2-トリクロロエトキシカルボニル基、2-トリメチルシリルエトキシカルボニル基などが挙げられる。アルケニルオキシカルボニル基としては、ビニルオキシカルボニル基、アリールオキシカルボニル基などが挙げられる。「低級アルコキシまたはニトロ基でアリール環が置換されていてもよいアラルキルオキシカルボニル基」としては、ベンジルオキシカルボニル基、4-メトキシベンジルオキシカルボニル基、3,4-ジメトキシベンジルオキシカルボニル基、2-ニトロベンジルオキシカルボニル基、4-ニトロベンジルオキシカルボニル基などが挙げられる。「シアノ基で置換された低級アルコキシカルボニル基」としては、シアノエトキシカルボニル基などが挙げられる。「1~4個のニトロ基で置換されたベンゼンスルホニル基」としては、2-ニトロベンゼンスルホニル基、2,4-ジニトロベンゼンスルホニル基などが挙げられる。
 「核酸合成の水酸基の保護基」としては、好適には、脂肪族アシル基、芳香族アシル基、1~3個のアリール基で置換されたメチル基、「低級アルキル、低級アルコキシ、ハロゲン、シアノ基でアリール環が置換された1~3個のアリール基で置換されたメチル基」、またはシリル基であり、さらに好適には、アセチル基、ベンゾイル基、ベンジル基、p-メトキシベンゾイル基、ジメトキシトリチル基、モノメトキシトリチル基またはtert-ブチルジフェニルシリル基である。「核酸合成の保護基で保護された水酸基」の保護基としては、好適には、脂肪族アシル基、芳香族アシル基、「1~3個のアリール基で置換されたメチル基」、「ハロゲン原子、低級アルコキシ基またはニトロ基で置換されたアリール基」、低級アルキル基、または低級アルケニル基であり、さらに好適には、ベンゾイル基、ベンジル基、2-クロロフェニル基、4-クロロフェニル基または2-プロペニル基である。「核酸合成のアミノ基の保護基」としては、好適には、アシル基であり、さらに好適には、ベンゾイル基である。「核酸合成の保護基で保護されたリン酸基」の「保護基」としては、好適には、低級アルキル基、シアノ基で置換された低級アルキル基、アラルキル基、「ニトロ基またはハロゲン原子でアリール環が置換されたアラルキル基」または「低級アルキル基、ハロゲン原子、またはニトロ基で置換されたアリール基」であり、さらに好適には、2-シアノエチル基、2,2,2-トリクロロエチル基、ベンジル基、2-クロロフェニル基または4-クロロフェニル基である。「核酸合成の保護基で保護されたリン酸基」を構成する保護基は1つまたはそれ以上であり得る。「核酸合成の保護基で保護されたメルカプト基」の「保護基」としては、好適には、脂肪族アシル基または芳香族アシル基であり、さらに好適には、ベンゾイル基である。
 本明細書において、-P(R24)R25[式中、R24およびR25は、それぞれ独立して、水酸基、核酸合成の保護基で保護された水酸基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、アミノ基、炭素数1から6の直鎖または分岐鎖アルコキシ基、炭素数1から6の直鎖または分岐鎖アルキルチオ基、炭素数1から6のシアノアルコキシ基、または炭素数1から6の直鎖または分岐鎖アルキルアミノ基を表す]で表される基のうち、R24が-OR24aそしてR25が-N(R25aとして表すことができる基は、「ホスホロアミダイト基」という。ホスホロアミダイト基としては、好適には、式-P(OCCN)(N(iPr))で表される基、または式-P(OCH)(N(iPr))で表される基が挙げられる。ここで、iPrはイソプロピル基を表す。
 本明細書において、用語「ヌクレオシド」は、プリンまたはピリミジン塩基と糖とが結合した「ヌクレオシド」、ならびに、プリンおよびピリミジン以外の芳香族複素環および芳香族炭化水素環でプリンまたはピリミジン塩基との代用が可能なものと糖が結合した「ヌクレオシド」を含む。天然型のヌクレオシドを「天然ヌクレオシド」ともいう。修飾された非天然型のヌクレオシドを「修飾ヌクレオシド」ともいい、特に糖部分が修飾されたヌクレオチドを「糖修飾ヌクレオシド」という。「ヌクレオチド」とは、ヌクレオシドの糖にリン酸基が結合した化合物を意味する。
 本明細書において、用語「オリゴヌクレオチド」とは、同一または異なる「ヌクレオシド」がリン酸ジエステル結合または他の結合で2~50個結合した「ヌクレオチド」のポリマーであり、天然型のものと非天然型のものを含む。非天然型の「オリゴヌクレオチド」としては、好適には、糖部分が修飾された糖誘導体;リン酸ジエステル部分がチオエート化されたチオエート誘導体;末端のリン酸部分がエステル化されたエステル体;プリン塩基上のアミノ基がアミド化されたアミド体が挙げられ、さらに好適には、糖部分が修飾された糖誘導体が挙げられる。
 本明細書において、用語「その塩」とは、後述の式(II)で表される化合物の塩をいう。そのような塩としては、例えば、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩などの金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン原子化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、リンゴ酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;および、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩が挙げられる。
 本明細書において、用語「その薬理学上許容される塩」とは、本発明の式(I)で表されるヌクレオシド構造を少なくとも1つ含有するオリゴヌクレオチド類縁体の塩であって、本発明のオリゴヌクレオチドの生理学的におよび製薬上許容される塩、すなわち、当該オリゴヌクレオチドの所望される生物学的な活性を保持し、そこで望まれない毒物学的効果を与えない塩のことをいう。そのような塩としては、例えば、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩などの金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン原子化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、リンゴ酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;および、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩が挙げられる。
 以下、本発明について詳述する。
 本発明は、SNORA23遺伝子発現抑制剤を含む、抗腫瘍剤を提供する。本発明の1つの実施形態では、SNORA23遺伝子発現抑制剤は、SNORA23遺伝子と結合し得、該SNORA23の発現を抑制する活性を有する核酸分子を含む。本明細書において、「SNORA23遺伝子との結合」とは、例えば、SNORA23遺伝子への直接結合、およびSNORA23遺伝子より発現したRNAへの結合が挙げられる。「SNORA23遺伝子と結合し得、該SNORA23の発現を抑制する活性」とは、例えば、発現抑制剤が、SNORA23遺伝子より発現したノンコーディングRNAであるSNORA23 RNAに結合し、次いで当該RNAをRNase Hの働きにより分解した結果、SNORA23の発現RNA量が抑制されることを包含する。
 ここで、「結合し得る」とは、異なる複数の1本鎖のオリゴヌクレオチドまたは核酸が、核酸塩基の相補性により2本鎖以上の鎖の核酸を形成し得ることをいう。好適には、2本鎖の核酸を形成し得ることをいう。結合の熱安定性の指標である2本鎖以上の鎖の核酸の融解温度(T)は特に限定されない。2本鎖核酸の融解温度(T)は、例えば、下記のように決定され得る:緩衝液(8.1mM NaHPO,2.68mM KCl,1.47mM KHPO,pH7.2)中で、オリゴヌクレオチドと標的RNAとを等モル混合し、95℃にて5分間加熱後、室温まで徐冷してアニーリングさせ、2本鎖核酸を形成させる。2本鎖核酸の温度を20℃から95℃まで0.5℃/分の速度で加温していき、260nmにおける吸光度(A)の温度(T)による変化を測定し、この測定結果よりdA/dT vs Tのグラフを描き、dA/dTの値が最も大きくなる温度、つまりAのTによる変化が最も大きくなる温度を、2本鎖核酸のTとする。融解温度(T)は、例えば、40℃以上であり、好ましくは50℃以上である。
 本明細書においては「相補的」とは、異なる2つの1本鎖のオリゴヌクレオチドまたは核酸が2本鎖核酸を形成することができる対合関係にあることをいう。好ましくは、2本鎖を形成する領域の塩基配列が完全に相補性を有するが、当該2本鎖核酸を形成し得、発現抑制効果作用を有する限り、1もしくは数個のミスマッチを有し得る。1もしくは数個のミスマッチとは、オリゴヌクレオチドの長さに依存し得るが、1~4個、好ましくは1~3個、さらに好ましくは1または2個のミスマッチを意味している。本発明のオリゴヌクレオチドは、好ましくは、2本鎖を形成する領域の塩基配列に対して完全に(100%)相補性を有するものである。
 このように、SNORA23遺伝子と結合し得、かつ該SNORA23遺伝子の発現を抑制する活性を有する核酸分子として、SNORA23遺伝子を標的とするアンチセンスオリゴヌクレオチド(ASO)、siRNA、shRNA、DNA/RNAハイブリッドもしくはキメラオリゴヌクレオチド、アプタマーなどが挙げられる。アンチセンスオリゴヌクレオチド(ASO)とは、標的遺伝子のRNA/DNAと結合し得、当該標的遺伝子の発現を抑制する活性を有し、そしてその標的遺伝子のRNA/DNAの配列に相補的である一本鎖オリゴヌクレオチドをいう。siRNA(small interfering RNA)とは、通常21~23塩基対からなる低分子二本鎖RNAである。siRNAは、RNA干渉(RNAi)と呼ばれる現象に関与しており、mRNAの破壊によって配列特異的に遺伝子の発現を抑制し得る。shRNA(small hairpin RNA:小ヘアピンRNAもしくはshort hairpin RNA:短ヘアピンRNA)とは、RNA干渉による遺伝子サイレンシングのために用いられるヘアピン型のRNA配列である。また、標的遺伝子の発現を阻害するDNAとRNAとからなる2本鎖オリゴヌクレオチド(例えば、特開2003-219893号公報)は、2本鎖の一方がDNAで、他方がRNAであるDNA/RNAハイブリッドであっても、同じ鎖の一部がDNAで、他の部分がRNAであるDNA/RNAキメラであってもよい。このような2本鎖オリゴヌクレオチドは、好ましくは19~25塩基対、より好ましくは19~23塩基対、さらに好ましくは19~21塩基対の長さである。DNA/RNAハイブリッドの場合は、センス鎖がDNAであり、アンチセンス鎖がRNAであるものが好ましく、また、DNA/RNAキメラの場合は、二本鎖オリゴヌクレオチドの上流側の一部がRNAであるものが好ましい。このようなオリゴヌクレオチドは、公知の化学合成法に従って、任意の配列を有するものとして作製され得る。アプタマーとは、特定の分子と特異的に結合する核酸分子またはペプチドを総称していい、核酸はRNAまたはDNAのいずれでもよい。
 SNORA23遺伝子発現抑制剤は、配列番号1の任意の一部である標的領域と結合し得る。上記標的領域は、ヒトSNORA23において、特に、SNORA23の発現を抑制する活性またはノックダウン活性に関連する領域であることが好ましい。標的領域は、例えば、12~25塩基長、好ましくは12~23塩基長、より好ましくは13~23塩基長、より好ましくは14~23塩基長、特に好ましくは15~23塩基長、特に好ましくは15~20塩基長の領域であり得る。核酸分子またはオリゴヌクレオチドが「標的領域と結合」とは、当該核酸分子またはオリゴヌクレオチドが標的領域全体と必ずしも2本以上の鎖(好ましくは2本鎖)を形成する必要はなく、SNORA23遺伝子の発現を抑制する活性またはノックダウン活性を発揮する限り、標的領域の一部である領域と2本以上の鎖(好ましくは2本鎖)を形成するものであってもよい。SNORA23遺伝子発現抑制剤の核酸分子は、例えば、標的領域と相補的であり、好ましくは完全な相補性を有する。
 本発明の1つの実施形態では、核酸分子は、配列番号1に示されるSNORA23遺伝子の塩基配列の一部である標的領域に相補的でありかつ12~20塩基の長さであるオリゴヌクレオチド、またはその薬理学上許容される塩を含む。この「標的領域に相補的」とは、SNORA23遺伝子上の標的領域に相補的である場合、および、当該標的領域に対応するRNA上の領域の塩基と相補的である場合の両方またはいずれか一方を含む。このようなオリゴヌクレオチド(例えば、アンチセンスオリゴヌクレオチド)は、例えば12~20塩基、好ましくは13~20塩基、より好ましくは14~20塩基、特に好ましくは15~18塩基の長さである。オリゴヌクレオチドが上記のような長さであることにより、核内非翻訳RNAであるSNORA23遺伝子への結合および核内非翻訳RNA発現抑制(例えば、ノックダウン)をより効果的に行い得る。
 標的領域として、例えば、配列番号1の1位から35位まで、71位から100位まで、131位から170位までの領域の中の12~20塩基の連続した配列からなる領域が選択され得る。
 SNORA23遺伝子発現抑制剤のオリゴヌクレオチドの塩基配列としては、例えば、下記の配列が挙げられる:
gatgaaacct atgca(配列番号2);
gccagtggta gatgt(配列番号3);
tggccagtgg tagat(配列番号4)。
 配列番号2のオリゴヌクレオチドは、配列番号1に示されるSNORA23遺伝子の塩基配列の5’末端部位から19番目~33番目の領域を標的とし、当該領域の塩基配列に対して相補的な配列を有するアンチセンスオリゴヌクレオチドであり得る。配列番号3のオリゴヌクレオチドは、配列番号1に示されるSNORA23遺伝子の塩基配列の5’末端部位から151番目~165番目の領域を標的とし、当該領域の塩基配列に対して相補的な配列を有するアンチセンスオリゴヌクレオチドであり得る。配列番号4のオリゴヌクレオチドは配列番号1に示されるSNORA23遺伝子の塩基配列の5’末端部位から153番目~167番目の領域を標的とし、当該領域の塩基配列に対して相補的な配列を有するアンチセンスオリゴヌクレオチドであり得る。配列番号2~4の各塩基配列は5’から3’方向(5’→3’)で表したものであり、配列番号1中の各標的領域配列に対する逆相補配列である。
 SNORA23遺伝子発現抑制活性(ノックダウン活性)は、公知の方法(例えば、定量的逆転写ポリメラーゼ連鎖反応(qRT-PCR))により測定することが可能である。
 本発明において「オリゴヌクレオチド」は、天然に存在するDNAまたはRNAが化学的に修飾されたオリゴヌクレオチドを含む。このような修飾は、オリゴヌクレオチドの活性を変更する。例えば、標的核酸に対する親和性を高め、核酸分解酵素(ヌクレアーゼ)に対する耐性を高め、オリゴヌクレオチドの薬物動態または組織分布を変更する。その標的に対するオリゴヌクレオチドの親和性を高めることにより、より短いオリゴヌクレオチドの使用を可能にし得る。
 1つの実施形態では、本発明のオリゴヌクレオチドまたはその薬理学上許容される塩は、糖修飾部分を含む1個または2個以上のヌクレオチドを含む。本発明は、下述するようなオリゴヌクレオチドおよびその薬理学上許容され得る塩を包含する。
 本発明のオリゴヌクレオチドは、糖修飾ヌクレオシドを任意の位置に少なくとも1つ含む。この糖修飾ヌクレオシドは、その糖環の2位と4位との間で所定の架橋を有する。本発明における糖修飾ヌクレオシドについて、以下に説明する。
 本発明における糖修飾ヌクレオシドは、以下の式(I)で表されるヌクレオシド構造:
Figure JPOXMLDOC01-appb-C000007
(ここで、
 Baseは、α群から選択される任意の置換基を1以上有していてもよいプリン-9-イル基、またはα群から選択される任意の置換基を1以上有していてもよい2-オキソ-1,2-ジヒドロピリミジン-1-イル基を表し、ここで、該α群は、水酸基、核酸合成の保護基で保護された水酸基、炭素数1から6の直鎖アルキル基、炭素数1から6の直鎖アルコキシ基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、炭素数1から6の直鎖アルキルチオ基、アミノ基、炭素数1から6の直鎖アルキルアミノ基、核酸合成の保護基で保護されたアミノ基、およびハロゲン原子からなり、
 Aは、以下:
Figure JPOXMLDOC01-appb-C000008
で表される二価の基であり、
 Rは、水素原子、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基、または核酸合成のアミノ基の保護基を表し;
 Rは、水素原子、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基、または核酸合成のアミノ基の保護基を表し;
 R13およびR14は、それぞれ独立して、水素原子;水酸基;分岐または環を形成していてもよい炭素数1から7のアルキル基;分岐または環を形成していてもよい炭素数1から7のアルコキシ基;アミノ基;および核酸合成の保護基で保護されたアミノ基;からなる群から選択される基であり;
 mは、0から2の整数であり;
 nは、0から1の整数であり;
 Xは、酸素原子、硫黄原子、またはアミノ基であり;そして
 該オリゴヌクレオチドが、核内非翻訳RNAに結合して発現を抑制し得、該核内非翻訳RNAの配列に相補的であり、そして12~20塩基の長さである。)
を含む。
 1つの実施形態では、上記式(I)で表されるヌクレオシド構造は、
Figure JPOXMLDOC01-appb-C000009
で表される構造である。式(I’)および(I”)中のBase、R、X、mおよびnは、上述したとおりである。
 式(I’)および(I”)において、Rは、水素原子、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール基、または該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基である。より好適には、Rは、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基、またはベンジル基であり、さらに好適には、Rは、水素原子またはメチル基である。
 式(I’)において、mは、0から2の整数であり;そして式(I”)において、nは、0から1の整数である。すなわち、2’位、3’位、4’位、および架橋部を含む環は、5員環~7員環である。
 式(I”)において、Xは、酸素原子、硫黄原子、アミノ基、またはメチレン基である。好適には、Xは、酸素原子またはアミノ基である。なお、Xがアミノ基またはメチレン基である場合、低級アルキル基で置換されていてもよい。
 1つの実施形態では、上記式(I)で表されるヌクレオシド構造は、上記式(I’)で表される構造であり、そしてこの式(I’)において、mは0であり、そしてRは、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基、またはベンジル基である。このようなヌクレオシド構造を、アミド架橋型核酸、アミドBNA(Bridged Nucleic Acid)、またはAmNAともいう。
 式(I’)および(I”)にてそれぞれ表される化合物においては、糖部の2’位のアミノ基と4’位から伸長したカルボニル基との間にアミド結合が形成されている。このように、構造的に揺らぎが少なくかつ親水性に優れるアミド結合を有するため、ヌクレオシドの糖部の構造が、架橋により固定化されている。
 上記式(I)で表されるヌクレオシド構造としては、上記式(I’)および(I”)に加えて、例えば、以下の式(II)が挙げられる:
Figure JPOXMLDOC01-appb-C000010
 上記式(II)中、Base、R13およびR14は上述したとおりである。ここで、R13およびR14がともに水素原子である場合、2’,4’-BNAまたはLNA(Locked Nucleic Acid)(本明細書においては、「2’,4’-BNA/LNA」または単に「LNA」ともいう)と称される核酸に該当する。
 上記「Base」は、プリン塩基(すなわち、プリン-9-イル基)またはピリミジン塩基(すなわち、2-オキソ-1,2-ジヒドロピリミジン-1-イル基)である。これらの塩基は、水酸基、炭素数1から6の直鎖アルキル基、炭素数1から6の直鎖アルコキシ基、メルカプト基、炭素数1から6の直鎖アルキルチオ基、アミノ基、炭素数1から6の直鎖アルキルアミノ基、およびハロゲン原子からなるα群より選択される任意の置換基を1以上有していてもよい。
 上記「Base」の具体例としては、アデニニル基、グアニニル基、シトシニル基、ウラシリル基、およびチミニル基、ならびに6-アミノプリン-9-イル基、2,6-ジアミノプリン-9-イル基、2-アミノ-6-クロロプリン-9-イル基、2-アミノ-6-フルオロプリン-9-イル基、2-アミノ-6-ブロモプリン-9-イル基、2-アミノ-6-ヒドロキシプリン-9-イル基、6-アミノ-2-メトキシプリン-9-イル基、6-アミノ-2-クロロプリン-9-イル基、6-アミノ-2-フルオロプリン-9-イル基、2,6-ジメトキシプリン-9-イル基、2,6-ジクロロプリン-9-イル基、6-メルカプトプリン-9-イル基、2-オキソ-4-アミノ-1,2-ジヒドロピリミジン-1-イル基、4-アミノ-2-オキソ-5-フルオロ-1,2-ジヒドロピリミジン-1-イル基、4-アミノ-2-オキソ-5-クロロ-1,2-ジヒドロピリミジン-1-イル基、2-オキソ-4-メトキシ-1,2-ジヒドロピリミジン-1-イル基、2-オキソ-4-メルカプト-1,2-ジヒドロピリミジン-1-イル基、2-オキソ-4-ヒドロキシ-1,2-ジヒドロピリミジン-1-イル基、2-オキソ-4-ヒドロキシ-5-メチル-1,2-ジヒドロピリミジン-1-イル基、および4-アミノ-5-メチル-2-オキソ-1,2-ジヒドロピリミジン-1-イル基が挙げられる。
 中でも、「Base」は、核酸医薬への導入という観点から、以下の構造式:
Figure JPOXMLDOC01-appb-C000011
でそれぞれ表される基(すなわち、チミニル基、シトシニル基、アデニニル基、グアニニル基、5-メチルシトシニル基およびウラシリル基)、ならびに2-オキソ-4-ヒドロキシ-5-メチル-1,2-ジヒドロピリミジン-1-イル基、2-オキソ-4-アミノ-1,2-ジヒドロピリミジン-1-イル基、6-アミノプリン-9-イル基、2-アミノ-6-ヒドロキシプリン-9-イル基、4-アミノ-5-メチル-2-オキソ-1,2-ジヒドロピリミジン-1-イル基、および2-オキソ-4-ヒドロキシ-1,2-ジヒドロピリミジン-1-イル基が好適であり、特に、2-オキソ-4-ヒドロキシ-5-メチル-1,2-ジヒドロピリミジン-1-イル基およびチミニル基が好適である。また、オリゴヌクレオチドの合成の際には、水酸基およびアミノ基が保護基により保護されていることが好ましい。
 上記のような糖修飾ヌクレオシド構造を少なくとも1つ含むオリゴヌクレオチドは、例えば、糖修飾ヌクレオシド化合物を用いて、例えば、国際公開第2011/052436号、特開2014-043462号公報および国際公開第2014/046212号に記載されるような方法を用いて合成することができる。
 糖修飾ヌクレオシド化合物の例としては、以下の式(III)で表される化合物またはその塩:
Figure JPOXMLDOC01-appb-C000012
(ここで、
 Baseは、α群から選択される任意の置換基を1以上有していてもよいプリン-9-イル基、またはα群から選択される任意の置換基を1以上有していてもよい2-オキソ-1,2-ジヒドロピリミジン-1-イル基を表し、ここで、該α群は、水酸基、核酸合成の保護基で保護された水酸基、炭素数1から6の直鎖アルキル基、炭素数1から6の直鎖アルコキシ基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、炭素数1から6の直鎖アルキルチオ基、アミノ基、炭素数1から6の直鎖アルキルアミノ基、核酸合成の保護基で保護されたアミノ基、およびハロゲン原子からなり、
 Aは、以下:
Figure JPOXMLDOC01-appb-C000013
で表される二価の基であり、
 Rは、水素原子、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基、または核酸合成のアミノ基の保護基を表し;
 R13およびR14は、それぞれ独立して、水素原子;水酸基;分岐または環を形成していてもよい炭素数1から7のアルキル基;分岐または環を形成していてもよい炭素数1から7のアルコキシ基;アミノ基;および核酸合成の保護基で保護されたアミノ基;からなる群から選択される基であり;
 mは、0から2の整数であり;
 nは、0から1の整数であり;
 Xは、酸素原子、硫黄原子、またはアミノ基であり;そして
 R22およびR23は、それぞれ独立して、水素原子、核酸合成の水酸基の保護基、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基、該α群から選択される任意の置換基を1以上有していてもよいアシル基、該α群から選択される任意の置換基を1以上有していてもよいシリル基、該α群から選択される任意の置換基を1以上有していてもよいリン酸基、核酸合成の保護基で保護されたリン酸基、-P(R24)R25[式中、R24およびR25は、それぞれ独立して、水酸基、核酸合成の保護基で保護された水酸基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、アミノ基、炭素数1から5のアルコキシ基、炭素数1から5のアルキルチオ基、炭素数1から6のシアノアルコキシ基、または炭素数1から6のアルキル基で置換されたアミノ基を表す]を表す)
が挙げられる。
 上記のような糖修飾ヌクレオシドから、糖修飾ヌクレオチドを容易に調製することができる。例えば、三リン酸化は、M. Kuwaharaら、Nucleic Acids Res.,2008,vol.36, No.13,pp.4257-65に記載の方法に従って容易に行われ得る。
 核内非翻訳RNAは、ノンコーディングRNAの1つであり、核内に存在し、タンパク質へ翻訳されずに機能するRNAをいう。このような核内非翻訳RNAである核小体小分子RNA(snoRNA)は、リボソームRNAおよびその他のRNAの化学修飾(例えば、メチル化、シュードウリジン化)を導く小さなRNA分子の一群である。snoRNAは核内の核小体に局在し、タンパク質と複合体(核小体低分子リボ核酸蛋白質(snoRNP))を形成し、RNA分子の修飾を触媒し得る。snoRNAは、その配列によって主にboxC/DとboxH/ACAの2種に分けられている。snoRNAの配列情報は遺伝子データベース(例えば、米国国立生物工学情報センター(NCBI)によるGenBank、国立大学法人宮崎大学のsnOPY等)から入手可能である。
 SNORA23は、「ACA23 snoRNA」または「small nucleolar RNA,H/ACA box 23」として同定された核小体小分子RNAである。ヒトSNORA23遺伝子の塩基配列情報は、GenBank登録番号:AJ609438(「Homo sapience ACA23 snoRNA gene」)、NCBI参照配列登録番号:NR_002962(Homo sapiens small nucleolar RNA, H/ACA box 23(SNORA23),small nucleolar RNA)により入手可能であり、配列表の配列番号1に示した通りである。
 上記糖修飾以外の当該分野で公知のヌクレオチドの修飾は、いずれも本発明のアンチセンスオリゴヌクレオチドに利用可能である。ヌクレオチドの修飾としては、リン酸修飾、核酸塩基修飾が知られている。このような核酸修飾は、当該分野で公知の方法に基づいて行うことができる。
 リン酸修飾としては、例えば、天然の核酸が有するリン酸ジエステル結合、S-オリゴ(ホスホロチオエート)、D-オリゴ(ホスホジエステル)、M-オリゴ(メチルフォスフォネイト)、ボラノホスフェート等が挙げられる。S-オリゴ(ホスホロチオエート)は、ヌクレオシド間のホスホジエステル結合のリン酸基部の酸素原子が硫黄原子で置換されたPS骨格を有する。この修飾は公知の方法に従って、オリゴヌクレオチドに取り込まれる。この修飾をオリゴヌクレオチド中に1もしくは複数もつアンチセンスオリゴヌクレオチドをS-オリゴ型(ホスホロチオエート型)という。
 核酸塩基修飾としては、例えば、5-メチルシトシン、5-ヒドロキシメチルシトシン、5-プロピニルシトシン等が挙げられる。
 本発明のオリゴヌクレオチドにおいて、糖修飾ヌクレオシドの位置および数は、特に限定されず、目的に応じて適宜設計され得る。2つ以上の糖修飾ヌクレオシドは、例えば、互いに同じものを含むか、または異なるものを含む。
 本発明のオリゴヌクレオチド(特に1本鎖オリゴヌクレオチドの場合)は、ギャップマーであることが好ましい。ギャップマーとは、中心領域となる「ギャップ」と該ギャップの両側の領域、2つのウイング、すなわち、5’側の「5’ウイング」および3’側の「3’ウイング」を含むオリゴヌクレオチドを意味する。ギャップ領域は6~10塩基長、そしてウイング領域は3~5塩基長であり得る。ギャップは、天然ヌクレオシドから構成されており、ウイングには、少なくとも1つの修飾ヌクレオチドが含まれ得る。本発明のオリゴヌクレオチドは、「5’ウイング」および/または「3’ウイング」に、糖修飾ヌクレオシドを少なくとも1つ、好ましくは1~5、さらに好ましくは2~3含む。1つの実施形態では、ギャップマーは、6~10塩基のギャップ領域、3~5塩基の5’ウイングおよび3~5塩基の3’ウイングからなり、ギャップ領域が5’ウイングと3’ウイングの間に位置づけられ、5’ウイングおよび3’ウイングは、少なくとも1つの上記式(I)で表されるヌクレオシド構造を含み得る。さらに、リン酸修飾、塩基修飾などを含んでいてもよい。一方のウイング内の修飾の種類、数、位置は、他方のウイングにおける修飾の種類、数、位置と同じであってもまたは異なっていてもよい。
 このようなギャップマーとしては、例えば、3-8-3-1、3-9-3-1、3-10-2-1、3-10-3、5-10-5などが挙げられる。例えば、3-8-3-1の表記の場合、ギャップの8塩基が天然ヌクレオシド(DNA)であり、5’ウイング(5’末端から3塩基)が糖修飾ヌクレオシドであり、そして3’ウイング(3’末端から3塩基)のうち中心側からの3塩基が糖修飾ヌクレオシドであり、最後の1塩基(3’末端塩基)が天然ヌクレオシド(DNA)である。配列に依存し得るが、3-8-3-1が好ましい。
 上述したSNORA23遺伝子発現抑制剤のオリゴヌクレオチド、すなわち、配列番号2~4のそれぞれについて、糖修飾ヌクレオシドにAmNAを用いて3-8-3-1のギャップマーを作製した場合、下記のように表され得る:
G^A^T^g^a^a^a^c^c^t^a^T^G^mC^a(配列番号5)
G^mC^mC^a^g^t^g^g^t^a^g^A^T^G^t(配列番号6)
T^G^G^c^c^a^g^t^g^g^t^A^G^A^t(配列番号7)
(上記の大文字はAmNAであり、小文字はDNAであり、「^」はホスホロチオエート結合を示す。なおmCは5-メチルシトシンである)。
 本発明のオリゴヌクレオチドは、上述したような糖修飾ヌクレオシドおよび天然ヌクレオシドを用いて、常法によって合成することができ、例えば、市販の核酸自動合成装置(例えば、Applied Biosystems社製、株式会社ジーンデザイン製など)によって容易に合成することができる。合成法はホスホロアミダイトを用いた固相合成法、ハイドロジェンホスホネートを用いた固相合成法等がある。例えば、Tetrahedron Letters,1981, vol. 22. pp.1859-1862、国際公開第2011/052436号等に開示されている。
 本発明の1本鎖のアンチセンスオリゴヌクレオチドは、デリバリーデバイスを用いることなく単体での投与により、細胞内に取り込まれ得る。SNORA23のような核内非翻訳RNAまたはsnoRNAのアンチセンスオリゴヌクレオチドは、例えば、2’,4’-BNA/LNAを用いて作製された場合、ヌクレアーゼ耐性および生体内での安定性により、インビボでの核内非翻訳RNAまたはsnoRNAの発現抑制を達成し得、AmNAを用いて作製された場合、ヌクレアーゼ(3’-エキソヌクレアーゼ)に対する分解耐性能を有し、よりRNA特異的であり、生体内での発現抑制効率および安全性の向上を示し得、インビボでの核内非翻訳RNAまたはsnoRNAの発現抑制を達成し得る。
 SNORA23は、高転移性癌細胞(例えば、高転移性膵管腺癌(PDAC)細胞(例えば、下記実施例の「高転移性PDAC細胞株のインビボ選択」に従って樹立したSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞))において特異的に高発現される。SNORA23遺伝子発現および発現抑制の程度は、上述したように、公知の方法(例えば、qRT-PCR)により測定することが可能である。SNORA23は腫瘍細胞の増殖、ならびに癌細胞(悪性腫瘍細胞)の浸潤性および転移能に関与し得る。SNORA23の発現抑制(例えば、ノックダウン)により、腫瘍細胞の増殖抑制(腫瘍形成能の低下)、癌細胞(悪性腫瘍細胞)の播種抑制(浸潤性低下)および転移の減少(転移能低下)が生じ得る。腫瘍細胞増殖、浸潤および転移については、下記の実施例に記載の手順に基づいて決定し得る。本明細書において、「抗腫瘍」とは、腫瘍細胞の増殖抑制(腫瘍形成能の低下)、癌細胞(悪性腫瘍細胞)の播種抑制(浸潤性低下)および転移の減少(転移能低下)の少なくとも1つの効果を示し、好ましくはこれらの全ての効果を示す。
 本発明の抗腫瘍剤によれば、生体内において、癌に特異的に高発現するsnoRNA(SNARA23)の発現が抑制され得る。本発明の抗腫瘍剤がアンチセンスオリゴヌクレオチドである場合、デリバリーデバイスを用いることなく単体投与により、そのような発現抑制を実施し得る。
 本発明の抗腫瘍剤によれば、SNORA23遺伝子発現抑制剤は、SYNE2遺伝子の発現を抑制し得る。SYNE2遺伝子は、「Homo sapiens spectrin repeat containing nuclear envelope protein 2 (SYNE2), RefSeqGene on chromosome 14」(GenBank登録番号:NG_011756);「Homo sapiens spectrin repeat containing nuclear envelope protein 2 (SYNE2), transcript variant 1, mRNA」(GenBank登録番号:NM_015180);「Homo sapiens spectrin repeat containing, nuclear envelope 2 (SYNE2), transcript variant 2, mRNA」(GenBank登録番号:NM_182910)として同定され、その塩基配列情報は当該登録番号により入手可能である。また、タンパク質のアミノ酸配列情報は、「nesprin-2 isoform 1 [Homo sapiens]」(GenBank登録番号:NP_055995)および「nesprin-2 isoform 2 [Homo sapiens]」(GenBank登録番号:NP_878914)により入手可能である。Variant1と、variant2とは、転写開始部位が異なり得る。SYNE2は、別にEDMD5、NUA、NUANCE、Nesp2、Nesprin-2、SYNE-2、TROPHとも称され得る。下記の実施例に記載のSYNE2、variant 2, mRNA(GenBank登録番号:NM_182910)の塩基配列を配列番号8に示し、対応するアミノ酸配列(GenBank登録番号:NP_878914)を配列番号9に示す。
 本発明は、SYNE2遺伝子発現抑制剤を含む抗腫瘍剤もまた提供する。1つの実施形態では、SYNE2遺伝子発現抑制剤は、SYNE2遺伝子と結合し得、かつ該SYNE2遺伝子発現を抑制する活性を有する核酸分子を含む。このような核酸分子としては、上述したようなsiRNA、DNA/RNAハイブリッドもしくはキメラポリヌクレオチド、アンチセンスオリゴヌクレオチドなどが挙げられる。本明細書において、「SYNE2遺伝子との結合」は、SYNE2遺伝子への直接結合、およびSYNE2遺伝子のmRNAもしくはmRNA前駆体への結合を包含する。
 1つの実施形態では、SYNE2遺伝子と結合し得、該SYNE2遺伝子の発現を抑制する活性を有する核酸分子は、SYNE2遺伝子のsiRNAである。SYNE2のsiRNAは、種々の供給会社(例えば、サーモフィッシャー・サイエンティフィック)より入手可能であり、一例として、サーモフィッシャー・サイエンティフィック製のsiRNA ID番号:s23328のsiRNAが挙げられる。
 本発明の抗腫瘍剤は、SNORA23遺伝子発現抑制剤(例えば、SNORA23と結合し得、該SNORA23遺伝子発現を抑制する活性を有する核酸分子、SNORA23アンチセンスオリゴヌクレオチドなど)またはSYNE2遺伝子発現抑制剤(例えば、SYNE2遺伝子と結合し得、該SYNE2遺伝子の発現を抑制する活性を有する核酸分子、SYNE2遺伝子のsiRNAなど)を含有する。上記抗腫瘍剤は、これらの両方を含有してもよい。本発明の抗腫瘍剤は製剤化されて、医薬組成物を製造し得る。
 また、本発明の抗腫瘍剤および医薬組成物は、当該分野で公知の投与方法により投与され得る。これらは、局所的あるいは全身的な処置、または処置すべき領域に応じて様々な方法により投与することができる。
 本発明は、前記抗腫瘍剤の有効量を、それを必要とする対象に投与することを含む、腫瘍または癌疾患を処置するための方法もさらに提供する。用語「処置」は、疾患(本発明においては腫瘍または癌疾患)の治癒、一時的寛解または予防などを目的とする医学的に許容される全てのタイプの予防的および/または治療的介入を包含するものとする。
 本発明の方法において、用語「対象」は、任意の生物個体を意味し、好ましくは動物、さらに好ましくは哺乳動物、さらに好ましくはヒトの個体である。本発明において、対象は、腫瘍または癌疾患に罹患しているか、罹患するリスクを有する対象であり得る。
 本発明の抗腫瘍剤によれば、腫瘍形成、浸潤および転移の抑制効果が示され得る。1つの実施形態としては、本発明の抗腫瘍剤は、浸潤性または転移能のある腫瘍に対して用いられる。本発明の抗腫瘍剤は、種々の癌の処置に用いられ得る:例えば、脳腫瘍、乳癌、子宮体癌、子宮頸癌、卵巣癌、食道癌、胃癌、虫垂癌、大腸癌、肝癌、胆嚢癌、胆管癌、膵癌、副腎癌、消化管間質腫瘍、中皮腫(胸膜、腹膜、心膜など)、頭頚部癌、喉頭癌、口腔癌、歯肉癌、舌癌、頬粘膜癌、唾液腺癌、副鼻腔癌、甲状腺癌、腎臓癌、肺癌、骨肉腫、前立腺癌、精巣腫瘍(睾丸がん)、腎細胞癌、膀胱癌、横紋筋肉腫、皮膚癌、肛門癌など。本発明の抗腫瘍剤は、例えば、膵癌、肺癌、腹膜播種(卵巣癌・胃癌)のような難治癌患者の癌の進展を阻害し、生存期間の延長をもたらす治療薬として医療応用できる。1つの実施形態としては、本発明の抗腫瘍剤は、膵癌、肝癌、肺癌、卵巣癌または胃癌の処置に用いられる。
 「有効量」とは、対象疾患の発症を低減し、症状を軽減し、または進行を防止する量であり、好ましくは、対象疾患の発症を予防し、または対象疾患を治癒する量である。また、投与による利益を超える悪影響が生じない量が好ましい。このような量は、培養細胞などを用いたインビトロ試験、マウス、ラット、イヌまたはブタなどのモデル動物における試験により適宜決定することができる。このような試験法は当業者にはよく知られている。
 投与する医薬の具体的な用量は、処置を要する対象に関する種々の条件、例えば、症状の重篤度、対象の一般健康状態、年齢、体重、対象の性別、食事、投与の方法、時期および頻度、併用医薬、治療反応性、および治療に対するコンプライアンスなどを考慮して決定され得る。
 投与の方法としては、例えば、局所的(点眼、膣内、直腸内、鼻腔内、経皮を含む)、経口的、または、非経口的であってもよい。非経口的投与としては、静脈内注射もしくは点滴、皮下、腹腔内もしくは筋肉内注入、吸引もしくは吸入による肺投与、髄腔内投与、脳室内投与等が挙げられる。
 本発明の抗腫瘍剤を局所投与する場合、経皮パッチ、軟膏、ローション、クリーム、ゲル、滴下剤、坐剤、噴霧剤、液剤、散剤等の製剤を用いることができる。
 経口投与用剤としては、散剤、顆粒剤、水もしくは非水性媒体に溶解させた懸濁液または溶液、カプセル、粉末剤、錠剤等が挙げられる。
 非経口、髄腔内、または、脳室内投与用剤としては、バッファー、希釈剤およびその他の適当な添加剤を含む無菌水溶液等が挙げられる。
 本発明の医薬は、本発明の抗腫瘍剤、またはSNORA23遺伝子発現抑制剤(例えば、SNORA23遺伝子と結合し得、該SNORA23遺伝子発現を抑制する活性を有する核酸分子、SNORA23アンチセンスオリゴヌクレオチドなど)もしくはSYNE2発現抑制剤(例えば、SYNE2と結合し得、該SYNE2の発現を抑制する活性を有する核酸分子)の有効量にその剤型に適した賦形剤、結合剤、湿潤剤、崩壊剤、滑沢剤、希釈剤等の各種医薬用添加剤を必要に応じて混合して得ることができる。注射剤の場合には適当な担体と共に滅菌処理を行なって製剤とすればよい。
 賦形剤としては、乳糖、白糖、ブドウ糖、デンプン、炭酸カルシウムまたは結晶セルロース等が挙げられる。結合剤としては、メチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ゼラチンまたはポリビニルピロリドン等が挙げられる。崩壊剤としてはカルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、デンプン、アルギン酸ナトリウム、カンテン末またはラウリル硫酸ナトリウム等が挙げられる。滑沢剤としてはタルク、ステアリン酸マグネシウムまたはマクロゴール等が挙げられる。坐剤の基剤としてはカカオ脂、マクロゴールまたはメチルセルロース等を用いることができる。また、液剤または乳濁性、懸濁性の注射剤として調製する場合には通常使用されている溶解補助剤、懸濁化剤、乳化剤、安定化剤、保存剤、等張剤等を適宜添加してもよい。経口投与の場合には嬌味剤、芳香剤等を加えてもよい。
 SNORA23は、上記の腫瘍または癌の浸潤または転移を検出するためのバイオマーカーとなり得る。血液試料中のSNORA23が、このようなバイオマーカーとして用いられる。
 本発明によれば、腫瘍の浸潤または転移を検出するため、血液試料中のSNORA23を測定することを特徴とする、SNORA23のバイオマーカーとしての使用がさらに提供される。本発明によれば、血液試料中のSNORA23を測定する工程を含む、腫瘍の浸潤または転移を検出する方法もまた提供され得る。
 SNORA23を測定する血液試料として、対象から採取した血液試料を用いることができる。血液試料は、全血、血清、血漿などが挙げられる。血液試料中のSNORA23の測定は、例えば、血液試料からSNORA23 RNAを抽出し(例えば、high pure RNA isolation kit(Roche Diagnostics GmbH)を用いて抽出)、RNA量を公知の方法(例えば、qRT-PCR)によって測定することでなされ得る。
 血液試料中のSNORA23量は、腫瘍の浸潤または転移の存在または進行と関連し得る。血液試料中のSNORA23量の増大は、腫瘍の浸潤の増大または転移の進行の指標となり得る。例えば、経時的に血液試料中のSNORA23量を測定することにより、腫瘍の浸潤の増大または転移の進行をモニタリングすることができる。経時的なSNORA23量の増大が、腫瘍の浸潤または転移が進行していることを表し得る。このようなバイオマーカーは、癌患者への抗腫瘍剤の投与の抗腫瘍効果のモニタリングにも用いられ得る。
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。
 本実施例において用いた材料および手法について以下に説明する。
 (オリゴヌクレオチド合成)
 オリゴヌクレオチドは、既報(特許文献1)に準じて合成した。
 具体的には、下記の2’,4’-BNA/LNA含有オリゴヌクレオチド(蛍光標識LNAプローブ、LNA含有アンチセンスオリゴヌクレオチド)の合成は、株式会社ジーンデザインに委託した。本実施例で使用した2’,4’-BNA/LNAの構造を、以下の式(a)に示す:
Figure JPOXMLDOC01-appb-C000014
(式中、Baseは5-メチルシトシニル基(mC:5-メチルシトシン)、チミニル基(T:チミン)、アデニニル基(A:アデニン)またはグアニニル基(G:グアニン)である。)
 下記のアミドBNA(AmNA)含有オリゴヌクレオチド(AmNA含有アンチセンスオリゴヌクレオチド)の合成は、特許文献1に記載の方法を参照して行った。本実施例で使用したAmNAの構造を、以下の式(b)に示す:
Figure JPOXMLDOC01-appb-C000015
(式中、Baseは、5-メチルシトシニル基(mC:5-メチルシトシン)、チミニル基(T:チミン)、アデニニル基(A:アデニン)またはグアニニル基(G:グアニン)であり、Meはメチル基である。)
 2’,4’-BNA/LNAまたはAmNAを含有する14mer~20merのオリゴヌクレオチドは、核酸自動合成機(nS-8型、株式会社ジーンデザイン製)を用いて、0.2μmolスケールで合成した。鎖長の伸長は標準的なホスホロアミダイトプロトコール(固相担体:CPGレジン、硫化はDDT(3H-1,2-Benzodithiole-3-one,1,1-dioxide)等を使用)にて実施し、末端の5’位の水酸基がDMTr(ジメトキシトリチル)基で保護され、かつ3’位が固相に担持されたオリゴヌクレオチドを得た。続いて、酸処理により、DMTr基を除去した後、塩基処理することにより、目的物を固相担体から切り出した。希酸にて中和後、溶媒を留去し、得られた粗生成物をゲルろ過カラムクロマト、逆相HPLCにて精製することにより目的物を得た。
 本実施例で使用した2’,4’-BNA/LNAまたはAmNAの架橋構造、ならびに得られた各オリゴヌクレオチドの純度および構造をHPLCおよびMALDI-TOF-MS(BRUKER DALTONICS社製)により確認した。
 (細胞株)
 ヒト膵管腺癌(PDAC)細胞株(AsPC-1、MIA PaCa-2、PANC-1、CFPAC-1、Hs766T、SW1990、BxPC-3、CAPAN-1、CAPAN-2、Suit-2、KP-2およびKP-3)をアメリカンタイプカルチャーコレクション(American Type Culture Collection)またはヒューマンサイエンス研究資源バンク(Health Science Research Resources Bank)から購入した。H48N細胞株、KP-1N細胞およびHPC-3細胞をDr. H. Iguchi(独立行政法人国立病院機構九州がんセンター)およびDr. Takahiro Yasoshima(北海道公立大学法人札幌医科大学)のそれぞれから提供いただいた。NPDE細胞をDSファーマバイオメディカル株式会社から入手した。HPDE細胞株をDr. Ming-Sound Tsao(トロント大学)より提供を受けた。3つのヒトCAF細胞株(CAF-1/-2/-3)は既報に従って入手した(Cui Lら, PLoS One 2010;5:e12121)。高転移性のPDAC細胞(Suit2-HLMCおよびMIA PaCa2-HLMC)を下記の「高転移性PDAC細胞株のインビボ選択」に説明した通りに樹立した。細胞を、5%COを含む加湿空気中37℃にてダルベッコ改変イーグル培地(DMEM;ナカライテスク株式会社)(10%熱不活性化ウシ胎児血清(FBS;Gibco-Life Technologies)、ペニシリン(100U/mL)およびストレプトマイシン(100μg/mL)を補充)中で培養した。
 (高転移性PDAC細胞株のインビボ選択)
 Suit2-luc細胞またはMIA PaCa2-luc細胞(マウス当たり1×10細胞(50μl PBS中))をヌードマウスの膵尾部に移植した。3~6週後、肝臓中の転移結節を採取し、I型コラゲナーゼ(ロシェ)で消化し、そしてインビトロでの癌細胞の単離および培養に供した。続いて、培養した癌細胞を再度ヌードマウスの膵尾部に移植した。このプロセスを5回繰り返し、高肝転移性細胞株を樹立した。これらを、Suit2-HLMCおよびMIA PaCa2-HLMCと称した。
 (患者検体)
 膵臓組織検体をPDAC(n=133)、IPMN(n=16)およびMCN(n=1)を罹患する患者から得た。正常な膵臓(n=8)および肝臓(n=3)組織検体を、2004年から2008年までに国立研究開発法人国立がん研究センターで膵臓の外科的切除を受けた中から腫瘍、炎症のいずれも有さない被検体から得た。IV期疾患である全患者の診断は、傍大動脈リンパ節関与に基づいた。検体の使用は、国立研究開発法人国立がん研究センターの臨床研究の倫理審査委員会の指針に従って全ての患者から許可を受けた。
 (cDNAマイクロアレイ)
 RNA試料を細胞から抽出した。RNA試料の品質をExperion RNA Analysis Kitおよび自動電気泳動システム(Bio-Rad Laboratories)を製造会社のプロトコルに従って用いて評価した。ビオチン化cRNAをAmbion WT Expression Kit(サーモフィッシャー・サイエンティフィック)を用いて0.5μg総RNAから調製し、Human Gene 2.1 ST Arrayストリップとハイブリダイズさせた。Arrayスライドを洗浄して染色し、そして45℃にて16時間GeneAtlas System(アフィメトリクス)中で走査した。マイクロアレイデータ解析をGeneSpring GX 13.1ソフトウェア(Digital Biology)を用いて行った。
 (定量的逆転写ポリメラーゼ連鎖反応:qRT-PCR)
 総RNAをhigh pure RNA isolation kit(Roche Diagnostics GmbH)を用いて抽出した。ワンステップqRT-PCRを、既報(Fujita-Sato Sら、Cancer Res 2015;75:2851-62)の通り、LightCycler480 II System(Roche Diagnostics GmbH)で、プライマーセットと共にQuantiTect SYBR Green Reverse Transcription PCR Kit(株式会社キアゲン)を用いて行った。
 (ASO、siRNAおよびpDNAのトランスフェクション)
 細胞を6ウェルまたは24ウェルのプレート中に70%コンフルエンスで播種した。16時間後、細胞を以下の分析のためにLipofectamin RNAiMaxまたはLipofectamin 2000試薬(サーモフィッシャー・サイエンティフィック)を用いて、以下でトランスフェクトした:その両端に2’,4’-BNA/LNAまたはAmNAを配置したアンチセンスオリゴヌクレオチド(ASO)、siRNA、またはSNORA23またはSYNE2発現プラスミド(pDNA)(ASO、siRNAおよびpDNAについては最終濃度20nMで用いた)。
 3’UTR領域にSNORA23配列を有する緑色蛍光タンパク質(EmGFP)の人工合成cDNAをタカラバイオ社に合成委託し、その5’末端にBamHIおよび3’末端にHindIIIの制限酵素認識塩基配列が付加されたもの(この塩基配列を配列番号10に示す。配列番号10の1位~723位がEmGFP(対応アミノ酸配列を配列番号11に示す)、730位~918位がSNORA23である。)を含むクローニングベクターの形態で入手した。クローニングベクターからcDNA断片をBamHI/HindIIIの制限酵素で切り出し、pBApo-CMV Neo plasmid(タカラバイオ)のBamHIとHindIIIとの制限部位の間に挿入して、SNORA23発現プラスミドを構築した。ヒトSYNE2の人工合成cDNA(配列番号8の891位~2180位の塩基配列をコドン最適化した配列)をEurofin社に合成委託し、その5’末端にBamHIおよび3’末端にHindIIIの制限酵素認識塩基配列が付加されたもの(配列番号12(対応アミノ酸配列を配列番号13に示す)を含むクローニングベクターの形態で入手した。同様に、クローニングベクターからcDNA断片をBamHI/HindIIIの制限酵素で切り出し、pBApo-CMV Neo plasmid(タカラバイオ)のBamHIとHindIIIとの制限部位の間に挿入して、SYNE2発現プラスミドを構築した。コントロールとして、モックpDNA(SNORA23やSYNE2等のオープンリーディングフレームを含まないプラスミド)でのトランスフェクションを行った。
 (細胞内SNORA23 RNA検出のための共焦点レーザ顕微鏡観察)
 SNORA23 RNAの細胞内局在を調べるために、細胞をLipofectamine RNAiMaxおよび下記の2つの蛍光標識LNAプローブ(20nM)を用いてトランスフェクトした。蛍光標識LNAプローブは、5’-[Alexa488]-[アミノリンカー]-GAAacctatgmCAmCa-3’(配列番号14)および5’-mCTAccagacamCAGa-[アミノリンカー]-[Alexa647]-3’(配列番号15)(大文字:LNA;小文字:DNA;mC:5’-メチルシトシン;ジーンデザイン株式会社)であり、これらはそれぞれ、配列番号1に示されるSNORA23の塩基配列の5’末端部位から17~30番目および32~45番目の隣接する配列領域を標的とするように設計したものである。16時間後、細胞内SNORA23シグナルをC2共焦点レーザ顕微鏡(株式会社ニコン)によって観察した。
 (足場依存性細胞増殖アッセイ)
 細胞を96ウェルプレートに5×10細胞/ウェルの密度で播種し、増殖率をCell Counting kit-8(CCK-8;株式会社同仁化学研究所)を用いて決定した。簡単には、10μlのCCK-8溶液を各ウェルに添加した後、2時間インキュベートした。反応液の450nm(参照600nm)での吸光度をGloMax-Multi+(プロメガ株式会社)で測定した。
 (軟寒天コロニー形成アッセイ)
 足場非依存性細胞増殖を以下に記載のように軟寒天コロニー形成アッセイにより評価した。
 予め温めておいた0.75mlの2×DMEM(20%FBS、200U/mlペニシリン、および200μg/mlストレプトマイシンを含有する)および0.75mlの融解した1.2%アガロースゲル溶液を混合し、6ウェルプレートのウェルに移した。簡単には、示したASOでトランスフェクトした細胞(1×10細胞/ウェル)を0.75mlの2×DMEM(0.6%寒天、および20%FBS、200U/mlペニシリン、および200μg/mlストレプトマイシンを含む)の上層に混合した。3週間後、培養した細胞をクリスタルバイオレット(シグマアルドリッチ)で染色し、コロニーの数を計数した。
 (スフェロイド形成アッセイ)
 足場非依存性細胞増殖をスフェロイド形成アッセイにより評価した。5×10細胞/mlの細胞懸濁液をUltra-Low Attachment Surface 96ウェルプレート(カタログ番号3474.コーニング)上に100μl/ウェルで播種した。細胞を加湿インキュベータ中5%COで37℃にてインキュベートした。スフェロイド増殖を上記のようにCCK-8キットを用いて4日間毎日モニタリングした。
 (細胞浸潤アッセイ)
 若干の変更を加えた以外は既報(Cui Lら、PLoS One 2010;5:e12121)通りにPDAC細胞の浸潤性を評価した。
 フィルター(孔サイズ:8.0μm)の上部表面をmatrigel(20μg/ウェル,BD Biosciences)でコーティングした。ASOトランスフェクションを行う場合はそのトランスフェクションから48時間後またはpDNA発現プラスミドでのトランスフェクションを行う場合はトランスフェクションから72時間後、細胞を上部チャンバー中に2.5×10細胞/ウェルの密度で播種し、48時間(MIA PaCa2細胞およびMIA PaCa2-HLMC細胞)または72時間(Suit2細胞およびSuit2-HLMC細胞)インキュベートした。フィルターの下側に移動した細胞を固定し、ヘマトキシリン-エオシンで染色し、次いでEclipse 55i光学顕微鏡(株式会社ニコン)下で計数した。
 (動物処理)
 全ての動物実験を国立大学法人九州大学の動物実験委員会により認可されたプロトコルに従って行った。雌の6週齢無胸線ヌードマウス(BALB/cAnNCrj-nu)を日本チャールズリバー株式会社から購入し、実験開始前1週間、馴化させた。外科的手順は、動物の苦痛を最小限にするためにイソフルラン麻酔下で行った。
 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、Lipofectamine RNAiMAX(インビトロジェン)を製造会社のプロトコルに従って用いてSNORA23 ASO#1(配列番号5)またはコントロールASO(配列番号18)(下記実施例3の表1:最終濃度20nM)でトランスフェクトした。48時間後、Suit2-HLMCにつき1×10細胞またはMIA PaCa2-HLMCにつき2×10細胞にて細胞を懸濁し、ヌードマウスの脾臓の被膜下領域に移植した(各群につきn=5)。1週間後、SNORA23 ASOまたはコントロールASOを、3週間の間、週に一度でマウス頸部に皮下(s.c.)投与した(10mg/kg体重)。イソフルラン麻酔下でD-ルシフェリン(100mg/kg)を皮下注射後、4週まで、週に一度でIVIS Imaging System(パーキンエルマー)を用いてマウス全身の生物発光シグナル(ルシフェラーゼ活性)を測定し(「IVIS画像化」ともいう)、マウス体内における腫瘍増殖を評価した。マウスを28日目に安楽死させ、その膵臓および肝臓を摘出し、IVIS画像化により腫瘍の浸潤および肝転移のレベルを定量した。
 (組織化学)
 腫瘍組織試料を異種移植腫瘍保有マウスから採取し、5μm厚に切断し、4%パラホルムアルデヒドで4℃にて15分間固定した。切片をヘマトキシリンおよびエオシンで染色し、腫瘍浸潤の状態を解析した。
 (統計学的解析)
 JMP Pro 12.2.0ソフトウェア(SAS Institute)を用いて統計学的解析を行った。平均値±標準偏差として結果を示す。スチューデントt検定またはマン・ホイットニーU検定を用いて2群間の差を統計学的に解析した。ピアソンのχ検定を適用してSNORA23発現と臨床病理学的パラメーターとの間の相関を解析した。カプラン・マイヤー法によって生存曲線を作成し、ログランク検定を用いて解析した。P値が0.05未満であるとき統計学的に有意であるとした。
 (ウェスタンブロット解析) 培養細胞をSDS緩衝液(60mM Tris-HCl(pH6.8)、0.5%グリセロール、2%SDS)中に採取した。抽出タンパク質試料(15μg)を、既報(Shinkai Kら、Int J Cancer 2016;139:433-45)通りに、NuPAGEドデシル硫酸ナトリウムポリアクリルアミド電気泳動ゲル(Invitrogen)上で電気泳動し、二フッ化ポリビニリデン膜に転写し、以下の一次抗体を用いてウェスタンブロット解析に供した:(標的、供給会社、カタログ番号、力価の順に示す)SYNE2、Proteintech、25265-1-AP、1:1000;IPO7、Santa Cruz、SC-134913、1:1000;LGR5、Abcam、ab75732、1:1000;p21/Cip、BD Pharmingen、556431、1:1000;PDCH11X、Proteintech、20070-1-AP、1:1000。
 (プロテオミクス解析)
 プロテオミクスデータを下記のようにして得、スペクトルカウント法またはラベルフリー定量法を用いて解析に供した。
 2%SDS、7M尿素、および100mM Tris-HCl(pH8.8)からなる200μl溶液に細胞(2×10)を溶解し、次いでBioruptor(Diagenode社)を用いて超音波処理(5回処理。各回30秒で間に30秒)に供した。試料を等容量の水で希釈し、再度超音波処理に供した。タンパク質濃度をBCAアッセイ(バイオ・ラッド)を用いて決定した。タンパク質試料(200μg)をメタノール-クロロホルム沈降に供した。生じたペレットを消化緩衝液(0.5M炭酸水素トリエチルアンモニウム:7M水酸化グアニジンを含有する)中に溶解し、次いで56℃にて30分間加熱した。各試料を等容量の水で希釈し、タンパク質濃度をBCAアッセイを用いて決定した。
 残りの溶液(50μl)を50μlの水で希釈し、リシルエンドペプチダーゼ(登録商標)(2μg,和光純薬工業株式会社)により37℃にて4時間消化に供した。100μlの水を添加後、試料をトリプシン(2μg,サーモフィッシャー・サイエンティフィック)で37℃にて4時間さらに消化した。システイン/シスチン残基をブロックするために、消化物を0.625mM トリス(2-カルボキシエチル)ホスフィン塩酸塩(サーモフィッシャー・サイエンティフィック)で37℃にて30分間処理し、次いで3.125mM 2-ヨードアセトアミド(シグマアルドリッチ)で室温にて30分間アルキル化し、2.5mM N-アセチル-L-システイン(シグマアルドリッチ)で反応停止した。
 得られたペプチドを、ナノnanoLC装置(Advance LC,Michrom BioResources社)およびHTC-PALオートサンプラー(CTC Analytics)と連結したLTQ Orbitrap Velos Pro質量分析計(サーモフィッシャー・サイエンティフィック)からなるシステムを用いてナノスケール液体クロマトグラフィー(ナノLC)-MS/MS分析に供した。ペプチド分離を、3μm C18L-column(化学物質評価研究機構)を充填したヒューズドシリカキャピラリー(内径0.1mm;長さ15cm;先端内径0.05mm)を用いて行った。移動相は0.1%ギ酸/2%アセトニトリル(A)および0.1%ギ酸/90%アセトニトリル(B)であった。ペプチドを250nL/分の流速にてリニアグラジエント5%~40%Bで100分、40%~95%Bで1分間溶出し、95%B中で9分間維持した。衝突誘起解離(CID)スペクトルを動的排除オプションによるデータ依存スキャンモードで自動取得した。フルMSスペクトルを300~2000の質量/電荷(m/z)範囲でOrbitrapを用いて得た(m/z400で60,000の分解能であった)。フルMSスペクトル中の12の最も強い前駆イオン(最小イオンカウント閾値1,000)を引き続くイオン捕捉MS/MS分析(自動利得制御(AGC)モード)のために選択した。AGCをフルMSについて1×10、CID MS/MSについて1×10に設定した。正規化した衝突エネルギー値を35%に設定した。分析の間質量を最小化するようにロック質量関数を有効にした。生ファイルを、IPI human database version 3.1.6に対してMASCOTアルゴリズム(ver.2.4.1)を用いてProteomeDiscovere 1.4(サーモフィッシャー・サイエンティフィック)によって加工処理した。使用酵素としてトリプシンを選択し、切れ残り(Missed Cleavage)の許容数を2に設定し、固定修飾としてシステインに対するカルバミドメチル化を選択した。N末端に対する酸化したメチオニンおよびアセチル化を変動修飾として調査した。前駆体質量許容差は10ppmであり、MS/MSイオンの許容差は0.8Daであった。FDR(false discovery rate) をPercolatorアルゴリズムによって決定した(q値<0.01)。
 (実施例1:転移性表現型のPDAC細胞株におけるSNORA23 RNAの過剰発現の検出)
 高転移性の膵管腺癌(PDAC)細胞(Suit2-HLMCおよびMIA PaCa2-HLMC)を樹立した。Suit2-HLMC細胞株およびMIA PaCa2-HLMC細胞株は5匹全てのマウス(100%)においてより高い割合で肝臓転移を生じたのに対し、それぞれの親細胞株では肝転移が生じたのは5匹のうち2匹のマウス(40%)および5匹のうち0匹(0%)であった。
(a)肝転移の原因となる要因を同定するために、Suit2-HLMC細胞、MIA PaCa2-HLMC細胞およびそれらの親細胞株中のmRNAおよび非翻訳RNAのcDNAマイクロアレイ解析を行った。
 図1-1のaは、Suit2およびMIA PaCa2癌細胞について、HLMC細胞(「HLMC」)中のmRNAおよび非翻訳RNAが親細胞(「WT」)の2倍以上であった遺伝子を表す模式図である。
 図1-1のaに示されるように、Suit2-HLMC細胞においては8遺伝子(6遺伝子+SNORA23 RNAおよびCEA mRNA)、MIA PaCa2-HLMC細胞においては6遺伝子(4遺伝子+SNORA23 RNAおよびCEA mRNA)が、それらのそれぞれの親細胞の2倍以上にアップレギュレートされた。また、これらの遺伝子の中で癌胎児性抗原(CEA)およびSNORA23が、Suit2-HMLC およびMIA PaCa2-HMLC細胞株の両方において共通にアップレギュレートされた。
(b,c)CEA mRNAおよびSNORA23 RNA発現のqRT-PCR解析によって、マイクロアレイ解析の結果を検証した。
 qRT-PCR解析によるSNORA23の発現測定に関して、用いたプライマーセットは下記である:
(SNORA23)
フォワード:
5’-TCATGCGGCCAAAGAGTAAC-3’(配列番号16)
リバース:
5’-GGCCAGTGGTAGATGTGTCC-3’(配列番号17)
(18S rRNA)
フォワード:
5’-GTAACCCGTTGAACCCCATT-3’(配列番号18)
リバース:
5’-CCATCCAATCGGTAGTAGCG-3’(配列番号19)
 図1-1のbおよびcは、qRT-PCRによる測定により得られた、Suit2およびMIA PaCa2の各々について、親細胞(「WT」)を1とした場合の高転移性PDAC細胞(「HLMC」)のCEA mRNA(図1b)およびSNORA23 RNA(図1c)の相対的発現量を示すグラフである。
 図1-1のbおよびcに示されるように、qRT-PCR解析により、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞において、CEAおよびSNORA23ともに、それらの親細胞よりも発現がアップレギュレートされたことが確認された(CEAについては、Suit2-HLMC細胞は6.74倍であり、およびMIA PaCa2-HLMC細胞は2.69倍;SNORA23については、Suit2-HLMC細胞は1.63倍であり、およびMIA PaCa2-HLMC細胞は1.72倍)。
(d)qRT-PCRによって、種々の膵癌細胞株、正常膵管上皮(NPDE)細胞、および癌関連線維芽細胞(CAF)におけるSNORA23発現を測定した。
 図1-1のdは、15種の膵癌(PDAC)細胞株(AsPC-1、MIA PaCa-2、PANC-1、CFPAC-1、Hs766T、SW1990、BxPC-3、CAPAN-1、CAPAN-2、Suit-2、H48N、KP-2、KP-3、KP-1N、およびHPC-3)、非癌性不死化ヒト膵管上皮(HPDE)細胞、正常膵管上皮(NPDE)細胞、および3種の癌関連線維芽細胞(CAF-1、CAF-2、CAF-3)におけるSNORA23 RNAの相対的発現量を示すグラフである。SNORA23 RNA発現を18S rRNAによって正規化した。
 図1-1のdに示されるように、PDAC細胞におけるSNORA23発現レベルはNPDE細胞およびCAFにおけるよりも有意に高かった(15~62倍)。不死化ヒト膵管上皮(HPDE)細胞株中の発現レベルは、低いレベルのSNORA23発現を伴ういくつかのPDAC細胞株と同様であった。
 したがって、qRT-PCR解析は、SNORA23 RNAが、15種の膵癌細胞株で中~高発現レベル、非癌性不死化膵管上皮細胞(HPDE)で中発現レベルであるのに対し、正常ヒト膵管上皮細胞(NPDE)または3種の癌関連線維芽細胞(CAF-1、CAF-2、CAF-3)では微発現レベルであることを実証した。
(e)SNORA23の細胞下局在を調べるために、SNORA23に結合する蛍光標識プローブをSuit2-HLMC細胞、MIA PaCa2-HLMC細胞、それらの親細胞および、ならびにNPDE細胞にトランスフェクトした。SNORA23シグナルを正確に検出するために、SNORA23中の近接する配列にそれぞれ結合する2種の蛍光標識2’,4’-BNA/LNAプローブを用いた(それぞれAlexa-488およびAlexa-647で標識した。共に存在すれば、より多くのSNORA23特異的シグナルが示される)。Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SNORA23をノックダウンした細胞(SNORA23 ASO#1(下記実施例3参照)でトランスフェクトした細胞)にも同様に2種の蛍光標識プローブをトランスフェクトした。
 図1-2のeは、Suit2およびMIA PaCa2の各々について親細胞(「WT」)、高転移性PDAC細胞(「HLMC」)およびSNORA23ノックダウン細胞(「HLMC-SN-KD」)のAlexa-488標識蛍光顕微鏡画像(「Alexa-488」)、Alexa-647標識蛍光顕微鏡画像(「Alexa-647」)、およびそれらの合併画像(「合併」)、ならびにNPDE細胞のAlexa-488標識蛍光顕微鏡画像(「Alexa-488」)、Alexa-647標識蛍光顕微鏡画像(「Alexa-647」)および位相差顕微鏡画像、そして破線による四角部分に、MIA PaCa2の親細胞(「WT」)および高転移性PDAC細胞(「HLMC」)の合併画像中の破断線四角部の拡大画像として、位相差顕微鏡画像および蛍光合併画像を示す。スケールバー:100μm。
 SNORA23シグナルは、NPDE細胞(「FITC」および「Alexa-647」のいずれも蛍光が観察されなかった)よりも、Suit2細胞およびMIA PaCa2細胞で高かった(「WT」および「HLMC」)。Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞(「HLMC」)で、それらの親細胞株(「WT」)に比較してより強い核局在SNORA23シグナルが観察された。SNORA23 ASOでトランスフェクトしたSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞では蛍光シグナルが消失した(「HLMC」では蛍光が観察されるのに対し(特に合併画像)、「HLMC-SN-KD」では蛍光が観察されない)。これによってSNORA23シグナルの特異性が確認された。
 (実施例2:PDAC患者におけるSNORA23過剰発現の検出および無病生存率との逆相関)
(a)PDAC罹患患者(n=150)(その中に、膵管内乳頭粘液性腫瘍(IPMN;n=16)および粘液性嚢胞腫瘍(MCN;n=1)に関連した浸潤癌を含む)から外科的に切除した臨床検体中のSNORA23発現を、qRT-PCRによって評価した。比較のために、正常な肝臓組織(n=3)および膵臓組織(n=8)におけるSNORA23発現もまた調べた。
 図2aは、qRT-PCR解析によるPDAC(n=150;IMPN/MCN関連癌を含む)ならびに正常な肝臓組織(n=3)および膵臓組織(n=8)におけるSNORA23の相対的発現についての箱ひげ図(ボックスプロット)である。箱の中央の横線は中央値を示し、ひげ(箱の上下の短い横線)は範囲を示す(P<0.001,マン・ホイットニーU検定)。
 SNORA23発現の強さは、PDAC組織において正常な膵臓組織および肝臓組織よりも有意に高かった(0.53±0.43(PDAC組織)対0.043±0.016(正常膵臓組織)および0.055±0.015(正常肝臓組織)、それぞれP<0.001およびP=0.004)。共通型のPDACにおけるSNORA23のレベル(n=133(IMPN/MCN関連癌を除いたもの),0.52±0.39)は、IPMN/MCN関連癌のPDAC(n=17,0.53±0.73)と有意差はなかった(P=0.12)。
(b)PDAC患者を、qRT-PCR解析で決定した0.45のカットオフ値によって、SNORA23高発現(n=76)またはSNORA23低発現(n=74)のいずれかの群に振り分けた。
 SNORA23発現の強さは、化学療法歴との相関は有意であったが、性別、齢、CEA/CA19-9腫瘍マーカー、腫瘍の大きさ、またはTNM(腫瘍進行度分類)およびUICC(国際対がん連合)の病期の臨床パラメーターとは有意に関連するものでなかった(P=0.036)。病理学的パラメーターに関しては、SNORA23発現の強さは、血管浸潤(P=0.015)およびIPMN/MCN(P=0.021)と有意に関連した。逆に、リンパ管浸潤と境界的には関連したことを除いて、SNORA23発現のレベルと組織構造および神経または神経叢浸潤との間で相関はなかった(P=0.073)。
 図2bは、カプラン・メイヤー法に従って作成した、SNORA23高発現および低発現の各PDAC患者群について、無病生存率(DFS)および全生存率(OS)のそれぞれの生存曲線を示す。無病生存率(DFS)は、SNORA23高発現のPDAC患者において低発現の患者よりも有意に短かった(P=0.0218)(生存期間の中央値:8.2ケ月(高発現)に対し11.2ケ月(低発現);5年生存率:10.9%(高発現)に対し29.2%(低発現))。他方、全生存率(OS)は2群間に有意差はなかった(P=0.666;生存期間の中央値:19.1ケ月(高発現)に対し26.3ケ月(低発現);5年生存率:28.0%(高発現)に対し37.2%(低発現))。
 (実施例3:SNORA23アンチセンスオリゴヌクレオドの設計およびSNORA23ノックダウンによるRNA発現の検討)
 SNORA23サイレンシングのために、表1に示すようにアンチセンスオリゴヌクレオチド(ASO)の配列を設計した。SNORA23 ASO#1(配列番号5)および#2(配列番号6)は、AmNAを両末端領域に含むギャップマーオリゴヌクレオチド(3-8-3-1)である。コントロール(配列番号20)として、LNAを両末端領域に含むギャップマーオリゴヌクレオチド(3-8-3-1)を用いた。
Figure JPOXMLDOC01-appb-T000016
 SNORA23 ASO#1(配列番号5)およびASO#2(配列番号6)は、配列番号1に示されるSNORA23遺伝子の塩基配列の5’末端部位から19番目~33番目の領域および151番目~165番目の領域をそれぞれ標的とするように設計した。配列番号5および配列番号6の各塩基配列は5’から3’方向(5’→3’)で表したものであり、配列番号1中の各標的領域配列に対する逆相補配列である。コントロールASOの配列(配列番号20)は、哺乳類動物細胞のmRNAとの相同性がないホタルルシフェラーゼ遺伝子塩基配列に結合し、哺乳類動物細胞の遺伝子発現を変化させないように設計した。
 qRT-PCR解析により、SNORA23 ASO#1(配列番号5)およびSNORA23 ASO#2(配列番号6)に関して、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞の双方ともにこれらのいずれか一方を用いてトランスフェクトした場合のSNORA23 RNA発現を検証した。
 図3は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SNORA23 ASO#1(配列番号5)でのトランスフェクション(「SN-ASO#1」)、SNORA23 ASO#2(配列番号6)でのトランスフェクション(「SN-ASO#2」)、コントロールASO(配列番号20)でのトランスフェクション(「Ctrl」)のそれぞれを行った場合のqRT-PCR解析によるRNAの相対的発現量を示すグラフである。RNA発現量は、コントロールASOでのトランスフェクション(「Ctrl」)の発現量を1とした相対値で表した。
 SNORA23 ASO#1(配列番号5)およびSNORA23 ASO#2(配列番号6)の両方とも、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞におけるSNORA23 RNA発現の抑制を示した。
 (実施例4:PDACにおける浸潤性へのSNORA23の関与)
 Suit2およびMIA PaCa2につき、(a)それらのHLMC細胞(「HLMC」)とその親細胞(「WT」):(b)それらのHLMC細胞のSNORA23ASO(#1(配列番号5))でのトランスフェクション(「SN-KD」)(比較のためにコントロールASO(配列番号20)でトランスフェクション(「Ctrl」))後の細胞;ならびに(c)それらの親細胞のSNORA23 pDNAのトランスフェクション(「SN-OE」)(比較のためにモックpDNAトランスフェクション(「Mock」))後の細胞を、matrigel浸潤アッセイに供した。
 図4aは、Suit2およびMIA PaCa2について、HLMC細胞(「HLMC」)および親細胞(「WT」)のmatrigel浸潤アッセイの代表的な画像と、浸潤細胞数を示すグラフとを示す。スケールバー:100μm。画像では、Suit2およびMIA PaCa2ともに、「WT」よりも「HLMC」で、より多くの浸潤細胞が観察されたことが示される。
 浸潤細胞数は、Suit2-HLMCおよびMIA PaCa2-HLMCにおいてそれらの親細胞株と比較して有意に増大した(共にP<0.0001)。
 図4bは、SNORA23ASOでのトランスフェクション(「SN-KD」)およびコントロールASOでのトランスフェクション(「Ctrl」)のいずれかから48時間後のSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞のmatrigel浸潤アッセイの代表的な画像と、浸潤細胞数を示すグラフとを示す。スケールバー:100μm。画像では、Suit2-HLMCおよびMIA PaCa2-HLMCともに、「Ctrl」では多くの浸潤細胞が見られたのに対し、「SNORA23-KD」では減少した数の浸潤細胞が観察されたことが示される。
 Matrigelに浸潤した細胞の数は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞において、コントロールASOでのトランスフェクション(「Ctrl」)に比較して、SNORA23ASOでのトランスフェクションにより生じたSNORA23ノックダウン(「SN-KD」)によって有意に減少した(共にP=0.0002)。
 図4cは、SNORA23 pDNAのトランスフェクション(「SN-OE」)およびモックpDNAトランスフェクション(「Mock」)のいずれかから72時間後のSuit2細胞およびMIA PaCa2細胞のmatrigel浸潤アッセイの代表的な画像と、浸潤細胞数を示すグラフとを示す。スケールバー:100μm。画像では、Suit2およびMIA PaCa2ともに、「Mock」に比較して「SNORA23-OE」でより多くの数の浸潤細胞が観察されたことが示される。
 Matrigelに浸潤した細胞の数は、SNORA23を過剰発現するSuit2細胞およびMIA PaCa2細胞(「SN-OE」)において、モックpDNAトランスフェクトした細胞(「Mock」)と比較して有意に増加した(共にP<0.0001)。
 (実施例5:PDACにおける足場依存性生存へのSNORA23の関与)
 本実施例では、上記実施例4の(a)~(c)の各細胞を、足場依存性細胞増殖(CCK-8使用のアッセイ)および足場非依存性細胞増殖(軟寒天コロニー形成アッセイ)について評価した。
(a,b)Suit2およびMIA PaCa2につき、それらのHLMC細胞(「HLMC」)とその親細胞(「WT」)。
 図5aは、Suit2およびMIA PaCa2につき、それらのHLMC細胞(「HLMC」:四角)とその親細胞(「WT」:菱形)についての、足場依存性細胞増殖アッセイにおける細胞増殖の経時変化を示すグラフである。この結果、足場依存性増殖では、Suit2- HLMC細胞およびMIA PaCa2-HLMC細胞とそれらの親細胞との間で差はなかった。
 図5bは、Suit2およびMIA PaCa2につき、それらのHLMC細胞(「HLMC」)とその親細胞(「WT」)についての軟寒天コロニー形成アッセイの代表的な画像と、形成されたコロニー数を示すグラフとを示す。画像では、Suit2およびMIA PaCa2ともに、「HLMC」は「WT」に比較してより多くの数のコロニーを形成したことが示される。
 コロニーの数は、Suit2-HLMC細胞およびMIA Paca2-HLMC細胞において、それらの親細胞株よりも有意に増大した(P=0.0005(Suit2)、P=0.028(MIA Paca2))。
(c,d)Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞につき、SNORA23ASO(#1(配列番号5))でのトランスフェクション(「SN-KD」)およびコントロールASO(配列番号20)でのトランスフェクション(「Ctrl」)。
 図5cは、Suit2-HLMC細胞およびMIA PaCa2-HLMCにつき、それらのSNORA23ASOでのトランスフェクション(「SN-KD」:四角)とコントロールASOでのトランスフェクション(「Ctrl」:菱形)についての、足場依存性細胞増殖アッセイにおける細胞増殖の経時変化を示すグラフである。図5c中、**P<0.01,+P<0.001。
 足場依存性増殖は、SNORA23ノックダウンで処理したMIA PaCa2-HLMC細胞でコントロールと比較して有意に抑制されたが、Suit2-HLMC細胞では差は明確には見られなかった。
 図5dは、Suit2-HLMC細胞およびMIA PaCa2-HLMCにつき、それらのSNORA23ASOでのトランスフェクション(「SN-KD」)とコントロールASOでのトランスフェクション(「Ctrl」)についての、軟寒天コロニー形成アッセイの代表的な画像と、形成されたコロニー数を示すグラフとを示す。画像では、Suit2-HLMCおよびMIA PaCa2-HLMCともに、「SN-KD」において、「Ctrl」に比較して減少したコロニーを形成したことが示され、特にMIA PaCa2-HLMCは、「SN-KD」による顕著なコロニー数減少が観察された。
 コロニーの数は、SNORA23ノックダウンを行ったMIA PaCa2-HLMC細胞において、コントロールよりも有意に減少した(P=0.0017)。SNORA23ノックダウンを行ったSuit2-HLMC細胞でも有意差はないものの軽度の減少は見られた。
(e,f,g)Suit2細胞およびMIA PaCa2細胞につき、SNORA23 pDNAのトランスフェクション(「SN-OE」)およびモックpDNAトランスフェクション(「Ctrl」または「Mock」)。
 図5eは、Suit2細胞およびMIA PaCa2につき、それらのSNORA23 pDNAでのトランスフェクション(「SN-OE」:四角)とモックpDNAトランスフェクション(「Ctrl」:菱形)についての、足場依存性細胞増殖アッセイにおける細胞増殖の経時変化を示すグラフである。
 足場依存性増殖は、SNORA23 pDNAでトランスフェクトしたSuit2細胞およびMIA PaCa2細胞において、モックコントロールと比較して有意に抑制された。*P<0.01。
 図5fは、Suit2細胞およびMIA PaCa2につき、それらのSNORA23 pDNAでのトランスフェクション(「SN-OE」)とモックpDNAトランスフェクション(「Mock」)についての軟寒天コロニー形成アッセイの代表的な画像およびその拡大画像を示す。図5gは、Suit2細胞およびMIA PaCa2につき、それらのSNORA23 pDNAでのトランスフェクション(「SN-OE」)とモックpDNAトランスフェクション(「Mock」)についての全コロニーの数および大コロニー(1mmを超える直径を有する)の数を示すグラフを示す。
 画像では、Suit2およびMIA PaCa2ともに、「Mock」に比較して「SNORA23-OE」でより多くの数のコロニー形成が観察されたことが示される(図5f)。コロニー総数(全コロニーの数)は、SNORA23過剰発現(「SN-OE」)のSuit2細胞およびMIA PaCa2細胞でモックコントロールよりも有意に減少した(共にp<0.0001)。大コロニーの数は、SNORA23過剰発現(「SN-OE」)のSuit2細胞およびMIA PaCa2細胞で、モックコントロールよりも有意に増大した(共にp<0.0001)。
 (実施例6:Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞のスフェロイド形成に対するSNORA23ノックダウンの効果)
 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、(a)SNORA23 ASO#1(配列番号5)でのトランスフェクション(「SNORA-KD」)(比較のためにコントロールASO(配列番号20)でトランスフェクション(「Ctrl」))、および(b)ロイシンリッチ反復含有Gプロテイン結合レセプター5(LGR5)siRNA(サーモフィッシャー・サイエンティフィック、siRNA ID:s16275)でのトランスフェクション(「LGR5-KD」)(比較のためにコントロールsiRNA(サーモフィッシャー・サイエンティフィック、ネガティブコントロール#1)でのトランスフェクション(「Ctrl」))のそれぞれを行った場合の足場非依存性生存能を、スフェロイド形成アッセイによって調べた。LGR5はPDACのstemnessマーカーとして考えられており、比較のために本実施例で使用した。トランスフェクションに用いたASOおよびsiRNAは、最終濃度20nMであった。
 図6は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞につき、(a)SNORA23ASOでのトランスフェクション(SNORA-KD:四角)およびコントロールASOのトランスフェクション(Ctrl:菱形)ならびに(b)LGR5 siRNAでのトランスフェクション(LGR5-KD:四角)およびコントロールsiRNAでのトランスフェクション(Ctrl:菱形)についての、1日目(D1)~4日目(D4)におけるスフェロイド形成変動を示すグラフである。スフェロイド形成値は、1日目(D1)の量を1とした相対値で表した。図6中、*P<0.05,**P<0.01,***P<0.001。
 図6に示されるように、スフェロイド形成は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞において、SNORA23のノックダウンにより有意に抑制された。この抑制レベルは、LGR5ノックダウンによる抑制レベルより大きかった。
 (実施例7:SNORA23ターゲティングASO処理後の腫瘍組織におけるSNORA23発現の阻害)
 エクスビボにてSNORA23 ASO#1(配列番号5)を導入したMIA PaCa2-HLMC細胞を、ヌードマウスの側腹部に移植し、一週間後、移植後のマウスにSNORA23 ASO#1(配列番号5)またはコントロールASO(配列番号20)の溶液(10mg/kg BW)を2週間にわたり週に一度皮下注射した。マウスから腫瘍組織を切除して取り出し、種々の時点でのSNORA23発現についてqRT-PCR解析に供した。
 図7は、ASO移植前(「ASO(-)」)、ASOエクスビボ移植(「ASO(+)エクスビボ」)を行った1週目(「1週」)および2週目(「2週」)、ならびにさらに皮下注射(「エクスビボ+皮下注射」)を行ってから2週目(「2週」)および3週目(「3週」)の腫瘍組織におけるSNORA23 RNA発現量を示すグラフである。SNORA23 RNA発現量は、ASO移植前(ASO(-))を1とした相対的発現量で表した。図7中、*P<0.05(各々においてn=3)。
 図7に示されるように、ASOエクスビボ移植を行った1週目と、さらに皮下注射を行ってから2週目および3週目で、ASO移植前よりも腫瘍組織におけるSNORA23 RNA発現量が有意に減少した(P<0.05)。
 (実施例8:SNORA23ターゲティングASOによるマウスのPDACの播種および肝転移の抑制)
 Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SNORA23 ASO#1(配列番号5)またはコントロールASO(配列番号20)でトランスフェクトした細胞を脾臓の被膜下領域に移植したヌードマウスに、同じASOを追加して皮下投与した。このようなSNORA23 ASO#1をエクスビボ移植後に皮下投与したマウスを「SNORA23 ASO処理マウス」、コントロールASOをエクスビボ移植後に皮下投与したマウスを「コントロールマウス」ともいう。
(a)次いでイソフルラン麻酔下でD-ルシフェリンをマウスに皮下注射した後、IVIS Imaging Systemを用いてマウス全身の生物発光シグナル(ルシフェラーゼ活性)を測定した。
 図8aは、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞につき、SNORA23 ASO処理マウス(「SN-KD」:四角)と、コントロールマウス(「Ctrl」:菱形)とについての、IVIS画像化により測定したマウス全身のルシフェラーゼシグナル量の経日変化を示すグラフおよびシグナル分布を示す代表的な画像である。ルシフェラーゼシグナル量は、IVIS画像化の測定開始日を1とした場合の相対値にて表した。図8a中、*P<0.05。画像は、測定28日目のマウス全身のシグナル分布であり、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞につき、SNORA23 ASO処理マウス(「SN-KD」)が、コントロールマウス(「Ctrl」)よりもルシフェラーゼシグナルの活性が軽減されたことが示される。
 図8aに示されるように、IVIS画像化により評価された腫瘍体積増大(ルシフェラーゼ活性増加)は、SNORA23 ASO#1でのエクスビボのトランスフェクションで処理したSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞で、その後の3週間のSNORA23 ASO#1の毎週の皮下投与によって有意に抑制された(28日目にて、Suit2-HLMCに関して、26倍(SNORA23 ASO)対745倍(コントロールASO)、P=0.0186;MIA PaCa2-HLMCに関して、119倍(SNORA23 ASO)対895倍(コントロールASO)、P=0.024)。
(b)マウス全身の生物発光シグナル測定後、マウスを安楽死させて腫瘍組織試料を採取し、ヘマトキシリンおよびエオシン染色に供し、腫瘍浸潤の状態を調べた。
 図8bは、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞につき、SNORA23 ASO処理マウス(「SN-KD」)と、コントロールマウス(「Ctrl」)とからそれぞれ採取した腫瘍組織のマトキシリンおよびエオシン染色後の試料の位相差顕微鏡写真および拡大写真である。この位相差顕微鏡写真中のスケールバーは500μm(二重線)、拡大写真中のスケールバーは100μm(一重線)を表す。
 ヘマトキシリンおよびエオシン染色によって、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞ともにコントロールマウスでは脾臓の外側にかなり浸潤したのに対し、SNORA23 ASO処理したマウスでは腫瘍は脾臓内に被包されたことが観察された(図8b)。さらに、SNORA23 ASO処理マウスでは、いくらかの変性した癌細胞が観察された。
(c)安楽死させたマウスから膵臓および肝臓を摘出し、この膵臓および肝臓をIVIS Imaging Systemを用いたルシフェラーゼ活性測定に供し、腫瘍の浸潤および肝転移のレベルを定量した。
 図8cは、MIA PaCa2-HLMC細胞につき、SNORA23 ASO#1で処理したマウス(SN-KD)と、コントロールマウス(Ctrl)とから切除した肝臓および膵臓のIVIS画像化によるシグナル分布を示す代表的な画像および測定したルシフェラーゼシグナル量(フォトン/秒)を示すグラフである。画像では、SNORA23 ASO処理マウス(「SN-KD」)が、コントロールマウス(「Ctrl」)と比べて、隣接する膵臓および離れた肝臓におけるルシフェラーゼシグナルの活性の減少がみられたことが示される。
 図8cに示されるように、IVIS画像化によって、隣接する膵臓および離れた肝臓ともに、MIA PaCa2-HLMC腫瘍(ルシフェラーゼ活性)が、コントロールマウスと比較してSNORA23-ASO処理マウスで抑制されたことが示された(膵臓浸潤度:1.4±2.2×10フォトン/秒(SNORA23-ASO)対3.4±1.6×10フォトン/秒(コントロール),n=5,P=0.135;ならびに肝転移体積:1.4±2.6×10フォトン/秒(SNORA23-ASO)対1.3±1.0×10フォトン/秒(コントロール),n=5,P=0.037)。したがって、SNORA23-ASO処理により、MIA PaCa2-HLMC腫瘍の膵臓への播種および肝臓への転移が共に抑制されたことが分かった。
 (実施例9:SNORA23ノックダウンで処理したPDAC細胞における遺伝子およびタンパク質発現のプロファイリング)
 SNORA23の下流因子を同定するために、SNORA23ノックダウンを行った(SNORA23ASO(ASO#1:配列番号5)でトランスフェクション)または行っていない(コントロールASO(配列番号20)でトランスフェクション)、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、cDNAマイクロアレイ解析を行った。
 図9は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、それらのSNORA23ASOでのトランスフェクション(「SN-KD」)およびコントロールASOでのトランスフェクション(「Ctrl」)のそれぞれを行った場合のcDNAマイクロアレイ解析のヒートマップ(A)およびプロテオミクス解析のヒートマップ(B)を示す。
 SNORA23ノックダウンは15遺伝子(Suit2-HLMC細胞)および226遺伝子(MIA PaCa2-HLMC細胞)の発現をダウンレギュレートし、そして12遺伝子(Suit2-HLMC細胞)および87遺伝子(MIA PaCa2-HLMC細胞)の発現を2倍以上アップレギュレートした。cDNAマイクロアレイ解析のヒートマップにより、両細胞株において共通して12遺伝子(SNORA23、PRKDC、BUB1、PUPN12,GPR126、LGR5、WWC2、HS2ST1、ZCCHC11、PEAK1、IPO7、HMGCS2)がダウンレギュレートされ、6種の遺伝子(CDKN1A、LAMB3、LAMC2、FAM25C、AGO2、MYO1B)がアップレギュレートされたことが示された(図9のA)。プロテオミクス解析のヒートマップにより、両細胞株において共通して12種のタンパク質(ADIRF、SART1、CAPZB、CCAR1、HPCAL1、SMCHD1、MSH2、KHDRBS3、SYNE2、KRT1、MAP4、PHB2)がダウンレギュレートされ、10種のタンパク質(SQSTM1、RPF2、PCDH11X、NOMO1、GOT1、PITRM1、PSMC6、METAP2、MARS、GFPT1)がアップレギュレートされたことが示された(図9のB)
 遺伝子オントロジー解析では、AMP活性化タンパク質キナーゼ、細胞周期、EGF-EGFRおよびErbBのシグナル伝達経路がSNORA23ノックダウンにより影響を受けた。このことは、SNORA23と、PDACにおける生存、増殖および浸潤の細胞機能との間に相互作用があることを支持した。
 SNORA23の下流因子候補を選択するために、スクリーニング目的で通常用いられるスペクトルカウント法およびラベルフリー定量法を用いてプロテオミクスデータを解析した。
 図10は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞においてSNORA23ノックダウンによりアップレギュレートされたタンパク質数およびダウンレギュレートされたタンパク質数について、スペクトルカウント法およびラベルフリー定量法を用いて調べた結果を示す模式図である。
 図11は、ラベルフリー定量法を用いて分析したプロテオミクスデータに関して、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、それらのSNORA23ASOでのトランスフェクション(「SN-KD」)およびコントロールASOでのトランスフェクション(「Ctrl」)のそれぞれを行った場合のヒートマップを示す。
 スペクトルカウント法を用いたデータ解析によれば、SNORA23ノックダウンによってダウンレギュレートされたタンパク質12種およびアップレギュレートされたタンパク質10種が、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞株の両方で見出された(図10)。ラベルフリー定量法を用いたデータ解析によれば、両細胞株において、SNORA23ノックダウンによりダウンレギュレートされたタンパク質が6種(SYNE2、PRDX5、MARCSKL1、STAU1、DIS3、SGC)であり、アップレギュレートされたタンパク質が6種(GIT1、WDR43、LRRCC1、YKU80、PCDH11X、SFRS10)であった(図10および図11)。
 スペクトルカウント法およびラベルフリー定量法の両方とも、SNORA23の下流タンパク質候補として、SYNE2/nesprin-2(「SYNE2」)およびprotocadherin 11 X-linkedタンパク質(「PCDH11X」)を示す(図10)。
 (実施例10:SNORA23調節mRNAおよびタンパク質の検証)
 図9に列挙した遺伝子に関して、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞において、2つのSNORA23ASO(ASO#1:配列番号5およびASO#2:配列番号6)を用いて、qRT-PCRによりSNORA23ノックダウンによるmRNA発現の変化を調べた。これらの因子のうち、SYNE2、importin-7(IPO-7)、LGR5、およびサイクリン依存性キナーゼインヒビター1A(CDKN1A)(これらについてはqRT-PCRに下記のプライマー対を用いた)のmRNA発現について、両SNORA23 ASO(ASO#1および#2)のトランスフェクションにより検証した:
(SYNE2)
フォワード:
5’-TGGCACAGTTTCTGCAGTATTC-3’(配列番号21)
リバース:
5’-CCATAGCATCTTTCACCTTTCC-3’(配列番号22)
(IPO7 #1)
5’-CTGTCTGACACCAAGTATCTTGAAA-3’ (配列番号23)
5’-TTGCTGCATGACACTCTGC-3’ (配列番号24)
(IPO7 #2)
5’-GTGAACAGGGATGTACCTAATGAA-3’ (配列番号25)
5’-ATGTAAGGCCCACTTCTTGC-3’ (配列番号26)
(IPO7 #3)
5’-TTAGAGGTCATCATTCTGCAGTG-3’ (配列番号27)
5’-TCACTTGTCTTAACCTCTCTTGTCA-3’ (配列番号28)
(LGR5)
5’-ACCAGACTATGCCTTTGGAAAC-3’ (配列番号29)
5’-TTCCCAGGGAGTGGATTCTAT-3’ (配列番号30)
(CDKN1A)
5’-CCGAAGTCAGTTCCTTGTGG-3’ (配列番号31)
5’-CATGGGTTCTGACGGACAT-3’ (配列番号32)
 次に、Suit2-HLMC細胞、MIA PaCa2-HLMC細胞とそれらの親細胞との間のタンパク質発現レベルの差をウェスタンブロット解析により調べた。
 図12は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、それらの親細胞(WT)、SNORA23 ASO#1(配列番号5)でのトランスフェクション(「SNORA ASO」)、コントロールASOでのトランスフェクション(「Ctrl ASO」)および未処理の場合のそれぞれを行った場合のSYNE2のウェスタンブロット、ならびにタンパク質の相対的発現量を示すグラフである。図12中、**P<0.01(WTに対して:n=3);*P<0.05(コントロールASOに対して:n=4)。
 図13は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、それらの親細胞(WT)および未処理(HLMC)の場合、ならびにSNORA23 ASO#1(配列番号5)でのトランスフェクション(「SN-ASO#1」)、SNORA23 ASO#2(配列番号6)でのトランスフェクション(「SN-ASO#2」)、コントロールASOでのトランスフェクション(「Ctrl ASO」)および未処理の場合のそれぞれを行った場合のSYNE2のmRNA相対的発現量を示すグラフである。図13中、*P<0.05、**P<0.01(コントロールASOに対して:n=4)。
 SYNE2タンパク質の発現は、親細胞と比較してHLMC型細胞で2倍にて有意に増大したが(図12)、mRNA発現はタンパク質発現に応じて変化したわけではなかった(図13)。SNORA23ノックダウンによりSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞でSYNE2発現がそれぞれ50%および40%減少し(図12)、mRNA発現の抑制を伴った(図13)。
 他方、cDNAマイクロアレイによりスクリーニングした他の候補のLGR5、IPO-7およびCDKN1A、ならびにプロテオミクス解析により同定したPCDH11Xに関しては、HLMC型細胞と親細胞との間でタンパク質発現の差が検出されなかった。
 (実施例11:Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞の浸潤および足場非依存性増殖に対するSYNE2発現の効果)
(A)Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SYNE2 siRNA(サーモフィッシャー・サイエンティフィック、siRNA ID:s23328)でのトランスフェクション(「SYNE2-siRNA」)およびコントロールsiRNA(サーモフィッシャー・サイエンティフィック、ネガティブコントロール#1)でのトランスフェクション(「Ctrl」))のそれぞれを行った場合を、matrigel浸潤アッセイによって調べた。トランスフェクションに用いたsiRNAは、最終濃度20nMであった。
 図14Aは、SYNE2 siRNAでのトランスフェクション(「SYNE2-siRNA」)およびコントロールsiRNAでのトランスフェクション(「Ctrl」))のいずれかから48時間後のSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞のmatrigel浸潤アッセイの代表的な画像と、浸潤細胞数を示すグラフとを示す。画像では、Suit2-HLMCおよびMIA PaCa2-HLMCともに、「Ctrl-siRNA」では多くの浸潤細胞が見られたのに対し、「SYNE2-siRNA」では減少した数の浸潤細胞が観察されたことが示される。
 Matrigelに浸潤した細胞の数は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞において、コントロールsiRNAでのトランスフェクション(「Ctrl」)に比較して、SYNE2 siRNAでのトランスフェクション(「SYNE2-siRNA」)によって有意に減少した(図14A;共にP<0.01)。
(B)Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SNORA23 ASO(ASO#1:配列番号5)およびSYNE2 pDNAのトランスフェクション(「SNORA-ASO+SYNE2-pDNA」)、SNORA23 ASOおよびモックpDNAトランスフェクション(「SNORA-ASO+Mock」)、ならびにコントロールASO(配列番号20)およびモックpDNAトランスフェクション(「Ctrl-ASO+Mock」)のそれぞれを行った場合を、matrigel浸潤アッセイによって調べた。トランスフェクションに用いたASOおよびpDNAは、それぞれ最終濃度20nMであった。
 図14Bは、SNORA23 ASOおよびSYNE2 pDNAのトランスフェクション(「SNORA-ASO+SYNE2-pDNA」)、SNORA23 ASOおよびモックpDNAトランスフェクション(「SNORA-ASO+Mock」)、ならびにコントロールASOおよびモックpDNAトランスフェクション(「Ctrl-ASO+Mock」)のいずれかから48時間後のSuit2-HLMC細胞およびMIA PaCa2-HLMC細胞のmatrigel浸潤アッセイの代表的な画像と、浸潤細胞数を示すグラフとを示す。画像では、Suit2-HLMCおよびMIA PaCa2-HLMCともに、「Ctrl-ASO+Mock」では多くの浸潤細胞が見られるのに対し「SNORA-ASO+Mock」では減少しており、さらに、「SNORA-ASO+SYNE2 pDNA」では「SNORA-ASO+Mock」と比較して増加したことが示される。
 SYNE2 pDNAおよびSNORA23 ASOのトランスフェクションは、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞において、SNORA23 ASO単独と比較してそれぞれ3.5倍および7.1倍浸潤細胞数を増大した(P=0.0109およびP<0.0001)。SNORA23 ASOおよびSYNE2 pDNAのトランスフェクション(「SNORA-ASO+SYNE2-pDNA」)は、コントロールASOおよびモックpDNAプラスミドでのトランスフェクトコントロールに対しては、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞においてそれぞれ135.3%および18.8%であった(図14B)。
(C)Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SYNE2 siRNAでのトランスフェクション(「SYNE2-siRNA」)およびコントロールsiRNAでのトランスフェクション(「Ctrl」))のそれぞれを行った場合の足場非依存性細胞増殖能を、軟寒天コロニー形成アッセイにて評価した。トランスフェクションに用いたsiRNAは、最終濃度20nMであった。
 図14Cは、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SYNE2 siRNAでのトランスフェクション(「SYNE2-siRNA」)およびコントロールsiRNAでのトランスフェクション(「Ctrl」))のそれぞれを行った場合の軟寒天コロニー形成アッセイの代表的な画像と、形成されたコロニー数を示すグラフとを示す。画像では、Suit2-HLMCおよびMIA PaCa2-HLMCともに、「SYNE2-siRNA」は、「Ctrl-siRNA」で観察されたコロニーと比較して、減少した数のコロニーを形成したことが示される。
 Suit2-HLMC細胞およびMIA Paca2-HLMC細胞において、SYNE2 siRNAでのトランスフェクション(「SYNE2-siRNA」)が、コントロールの53.4%および2.6%に軟寒天増殖コロニー数を有意に抑制した(P=0.0164およびP<0.0001;図14C)。
(D)Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SYNE2 siRNAでのトランスフェクション(「SYNE2-KD」)およびコントロールsiRNAでのトランスフェクション(「Ctrl」))のそれぞれを行った場合の足場非依存性細胞増殖能を、スフェロイド形成アッセイにて評価した。トランスフェクションに用いたsiRNAは、最終濃度20nMであった。
 図14Dは、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SYNE2 siRNAでのトランスフェクション(SYNE2-KD;四角)およびコントロールsiRNAでのトランスフェクション(Ctrl:菱形)のそれぞれを行った場合についての、1日目(D1)~4日目(D4)におけるスフェロイド形成変動を示すグラフである。スフェロイド形成値は、1日目(D1)の量を1とした相対値で表した。図14D中、*P<0.05,**P<0.01,***P<0.001。
 スフェロイド形成は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞において、SYNE2 siRNA(SYNE2ノックダウン)によりコントロールの約14%および30%に減少した(共にP<0.001(4日目);図14D)
(E)Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SNORA23 ASO(ASO#1:配列番号5)およびSYNE2 pDNAのトランスフェクション(「SYNE-OE+SN-KD」)、SNORA23 ASOおよびモックpDNAトランスフェクション(「SN-KD」)、ならびにコントロールASO(配列番号20)およびモックpDNAトランスフェクション(「Ctrl」)のそれぞれを行った場合の足場非依存性細胞増殖能を、スフェロイド形成アッセイにて評価した。トランスフェクションに用いたASOおよびpDNAは、それぞれ最終濃度20nMであった。
 図14Eは、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞について、SNORA23 ASOおよびSYNE2 pDNAのトランスフェクション(「SYNE-OE+SN-KD」)、SNORA23 ASOおよびモックpDNAトランスフェクション(「SN-KD」)、ならびにコントロールASOおよびモックpDNAトランスフェクション(「Ctrl」)のそれぞれを行った場合についての、1日目(D1)~4日目(D4)におけるスフェロイド形成変動を示すグラフである。スフェロイド形成値は、1日目(D1)の量を1とした相対値で表した。図14E中、*P<0.05,**P<0.01,+<0.001。
 スフェロイド形成は、Suit2-HLMC細胞およびMIA PaCa2-HLMC細胞において、SYNE2発現プラスミドおよびSNORA23 ASOを共にトランスフェクトした場合(「SYNE-OE+SN-KD」)、SNORA23ノックダウン(「SN-KD」)による抑制をコントロール(「Ctrl」)のレベルに完全に回復した(図14E)。
 (実施例11:追加のSNORA23 ASOによるSNORA23ノックダウンの検証)
 SNORA23サイレンシングのために、下記の配列のアンチセンスオリゴヌクレオチドのSNORA23 ASO#3を設計した:
Figure JPOXMLDOC01-appb-C000017
 SNORA23 ASO#3(配列番号7)は、配列番号1に示されるSNORA23遺伝子の塩基配列の5’末端部位から153番目~167番目の領域を標的とするように設計した。配列番号7の塩基配列は5’から3’方向(5’→3’)で表したものであり、配列番号1中の各標的領域配列に対する逆相補配列である。コントロールとして、コントロールASO(配列番号20)でのトランスフェクションを用いた。
 qRT-PCR解析により、SNORA23 ASO#3(配列番号7)に関して、MIA PaCa2-HLMC細胞、Suit2-HLMC細胞、Hs766T細胞およびS2-013細胞(東北大学加齢医学研究所医用細胞資源センターより入手)の各細胞株にトランスフェクトした場合のSNORA23 RNA発現およびSYNE2 mRNA発現を検証した。
 図15は、MIA PaCa2-HLMC細胞、Suit2-HLMC細胞、Hs766T細胞およびS2-013細胞の各細胞株について、SNORA23 ASO#3でのトランスフェクション(「SN-ASO#3」)、コントロールASOでのトランスフェクション(「Ctrl」)のそれぞれを行った場合のSNORA23 RNA発現(A)およびSYNE2 mRNA発現(B)を示すグラフである。RNA発現量は、コントロールASOでのトランスフェクション(「Ctrl」)の発現量を1とした相対値で表した。図15中、*P<0.05。
 SNORA23 ASO#3でトランスフェクトした場合、いずれの細胞株でも、SNORA23 RNA発現およびSYNE2 mRNA発現ともに抑制が見られた。
 足場依存性細胞増殖アッセイおよびスフェロイド形成アッセイにて、SNORA23 ASO#3に関して、CAPAN-2細胞、Hs766T細胞およびS2-013細胞の各細胞株にトランスフェクトした場合の効果を検証した。
 図16は、CAPAN-2細胞、Hs766T細胞およびS2-013細胞の各細胞株につき、SNORA23 ASO#3のトランスフェクション(×:「SN-ASO#3」)、コントロールASOでのトランスフェクション(菱形:「Ctrl」)のそれぞれを行った場合の足場依存性細胞増殖アッセイにおける細胞増殖(A)およびスフェロイド形成(B)の経時変化を示すグラフである。図16中、*P<0.05,**P<0.01。
 SNORA23 ASO#3でトランスフェクトした場合、いずれの細胞株でも、コントロールに対して増殖の抑制およびスフェロイド形成の抑制が見られた。
 matrigel浸潤アッセイにて、SNORA23 ASO#3に関して、MIA PaCa2-HLMC細胞、Suit2-HLMC細胞、Hs766T細胞およびS2-013細胞の各細胞株にトランスフェクトした場合の効果を検証した。
 図17は、MIA PaCa2-HLMC細胞、Suit2-HLMC細胞、Hs766T細胞およびS2-013細胞の各細胞株において、SNORA23 ASO#3のトランスフェクション((A)「SNORA23 #153」または(B)「AN-ASO#3」)、コントロールASOでのトランスフェクション(「Ctrl」)のそれぞれを行った場合のトランスフェクションの48時間後(MIA PaCa2-HLMC細胞およびHs766T細胞)または72時間後(Suit2-HLMC細胞およびS2-013細胞)の細胞のmatrigel浸潤アッセイの代表的な画像(A)および浸潤細胞数(B)を示すグラフである。画像では、Hs766T細胞およびS2-013細胞は、「Ctrl」で多くの浸潤細胞が見られたのに対し、「SNORA23 #153」では浸潤細胞がほとんど観察されず、そしてMIA PaCa2-HLMC細胞およびSuit2-HLMC細胞は、「Ctrl」で多くの浸潤細胞が見られたが、「SNORA23 #153」では減少した数の浸潤細胞が観察されるのみであったことが示される。
 SNORA23 ASO#3でトランスフェクトした場合、どの細胞株でも、コントロールに対して増殖の抑制およびスフェロイド形成の抑制が見られた。膵癌細胞株であるHs766T細胞およびS2-013細胞では顕著に増殖およびスフェロイド形成の顕著な抑制が見られ、そして高転移性PDAC細胞であるMIA PaCa2-HLMC細胞およびSuit2-HLMC細胞でも有意な抑制効果が観察された。
 (実施例12:SNORA23 ASOによる血中SNORA23濃度の低下)
 Suit2-HLMC細胞またはMIA PaCa2-HLMC細胞をヌードマウスの脾臓の被膜下領域に移植し、その翌日に、SNORA23 ASO#1(配列番号5)またはコントロールASO(配列番号20)をマウスに10mg/kg体重にて皮下投与し、次いで、初回投与の1週間後、2週間後、3週間後、4週間後に、週に1回さらに皮下投与した(各回10mg/kg体重)。このようなSNORA23 ASO#1を皮下投与したマウスを「SNORA23 ASO皮下投与マウス」、コントロールASOを皮下投与したマウスを「コントロールマウス」ともいう。3回投与、4回投与または5回投与のマウスを最終投与から1週間後に屠殺し、よって、皮下投与を開始してから3週間後、4週間後または5週間後のマウスから、血液試料ならびに脾臓、膵臓および肝臓の腫瘍組織試料を採取した。採取した各試料から総RNAを、high pure RNA isolation kit(Roche Diagnostics GmbH)を用いて抽出した。
 SNORA23 ASO皮下投与マウスおよびコントロールマウスのそれぞれにつき、皮下投与を開始してから4週間後および5週間後における血液試料中のSNORA23およびCEAの発現レベル、ならびに皮下投与を開始してから3週間後、4週間後および5週間後における脾臓、膵臓、肝臓の腫瘍組織試料中のSNORA23、SYNE2およびCEAの発現レベルを、上述のプライマーセット(SNORA23につき、配列番号16および配列番号17;SYNE2につき、配列番号21および配列番号22;CEAにつき、配列番号18および配列番号19)を用いて、qRT-PCRにより測定した。
 図18は、上記qRT-PCR測定結果を示す。図中「Ctrl」は「コントロールマウス」であり、「SN KD」は「SNORA23 ASO皮下投与マウス」であり、「3w」、「4w」および「5w」はそれぞれ皮下投与を開始してから3週間後、4週間後および5週間後を表す。各結果毎に、左から順に3週間後、4週間後および5週間後の結果が示される(但し、血液試料中の結果については、左から順に4週間後および5週間後の結果が示される)。
 脾臓、膵臓および肝臓の腫瘍組織試料中のSNORA23、SYNE2およびCEAの発現レベルの結果より、コントロールマウスでは、初期に脾臓に存在していた原発性腫瘍が、膵臓および肝臓に転移していることが示された。これに対し、SNORA23 ASO皮下投与マウスでは、SNORA23、SYNE2およびCEAのいずれも、脾臓、膵臓および肝臓の腫瘍組織試料中の発現がコントロールマウスに比べて抑制された。SNORA23 ASO皮下投与マウスでは、SNORA23、SYNE2およびCEAのいずれも、肝臓での発現が見られず、転移が抑制されたことが示された。
 血液試料中(図中では「(血中)」)の発現レベルの結果から、SNORA23 RNAについては、コントロールマウスで4wよりも5wで上昇していたのに対し、CEA mRNAでは4wよりも5wで減少していた。いずれともSNORA23 ASO処理マウスでは、発現が見られなかった。
 さらに、SNORA23 ASO皮下投与マウスおよびコントロールマウスのそれぞれにつき、皮下投与を開始してから3週間後、4週間後および5週間後における脾臓および肝臓の腫瘍組織を目視検査した。この結果を図19に示す。図中「Ctrl」は「コントロールマウス」であり、「SN KD」は「SNORA23 ASO皮下投与マウス」であり、「3w」、「4w」および「5w」はそれぞれ3週間後、4週間後および5週間後を表す。図19においては、「Ctrl」では、脾臓および膵臓ともに、「3w」、「4w」および「5w」と順次に(すなわち経時的に)腫瘍組織が増大しているのに対し、「SN KD」では、このような腫瘍組織の増大が抑制されたことが示される。目視検査の結果からも、脾臓の原発性腫瘍の増大および肝臓への転移がコントロールマウスでは経時的に進行しているのに対し、SNORA23 ASO皮下投与マウスでは、このような腫瘍の増大および転移が見られなかった。
 以上のように、脾臓、膵臓および肝臓の腫瘍の進行がSNORA23 ASO皮下投与マウスで抑制された。さらに、コントロールマウスの血液試料中のSNORA23 RNA量が、このような腫瘍の進行と共に増大しており、このような腫瘍の増大および転移が見られなかったSNORA23 ASO皮下投与マウスでは、血液試料中のSNORA23 RNA量はほとんど見られなかった。よって、血液試料中のSNORA23 RNAは、腫瘍バイオマーカーとして用いられ得る。
 (実施例13:膵癌患者におけるSNORA23発現レベルと膵癌患者の予後との相関)
 PDAC罹患患者(n=133:IMPN/MCN関連癌を除く通常型膵癌)から外科的に切除した臨床検体(PDAC組織)中のSNORA23発現を、qRT-PCRによって評価した。
 PDAC患者を、qRT-PCR解析で決定した0.135のカットオフ値によって、SNORA23高発現(n=118)またはSNORA23低発現(n=15)のいずれかの群に振り分けた。
 図20は、カプラン・メイヤー法に従って作成した、SNORA23高発現および低発現の各PDAC患者群について、無病生存率(DFS)および全生存率(OS)のそれぞれの生存曲線を示す。無病生存率(DFS)は、SNORA23高発現のPDAC患者において低発現の患者よりも有意に短かった(P=0.037)。全生存率(OS)においても、SNORA23高発現のPDAC患者において低発現の患者よりも有意に短かった(P=0.038)。
 本発明は、癌浸潤または転移を阻害し得る核酸に基づく治療薬の開発に寄与し得る。さらに、本発明は、難治癌を含む種々の癌の治療または予防のための医薬品の製造に有用となる。

Claims (15)

  1.  SNORA23遺伝子発現抑制剤を含む、抗腫瘍剤。
  2.  前記SNORA23遺伝子発現抑制剤が、SNORA23遺伝子と結合し得、かつ該SNORA23遺伝子発現を抑制する活性を有する核酸分子を含む、請求項1に記載の抗腫瘍剤。
  3.  前記核酸分子が、配列番号1に示されるSNORA23遺伝子の塩基配列の一部である標的領域に相補的な配列でありかつ12~20塩基の長さであるオリゴヌクレオチド、またはその薬理学上許容される塩を含む、請求項2に記載の抗腫瘍剤。
  4.  前記オリゴヌクレオチドまたはその薬理学上許容される塩が、糖修飾部分を含む1個または2個以上のヌクレオチドを含む、請求項3に記載の抗腫瘍剤。
  5.  前記オリゴヌクレオチドまたはその薬理学上許容される塩が、
    以下の式(I)で表されるヌクレオシド構造:
    Figure JPOXMLDOC01-appb-C000001
    を少なくとも1つ含み、
     ここで、
     Baseは、α群から選択される任意の置換基を1以上有していてもよいプリン-9-イル基、またはα群から選択される任意の置換基を1以上有していてもよい2-オキソ-1,2-ジヒドロピリミジン-1-イル基を表し、ここで、該α群は、水酸基、核酸合成の保護基で保護された水酸基、炭素数1から6の直鎖アルキル基、炭素数1から6の直鎖アルコキシ基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、炭素数1から6の直鎖アルキルチオ基、アミノ基、炭素数1から6の直鎖アルキルアミノ基、核酸合成の保護基で保護されたアミノ基、およびハロゲン原子からなり、
     Aは、以下:
    Figure JPOXMLDOC01-appb-C000002
    で表される二価の基であり、
     Rは、水素原子、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール基、該α群から選択される任意の置換基を1以上有していてもよくそしてヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基、または核酸合成のアミノ基の保護基を表し;
     R13およびR14は、それぞれ独立して、水素原子;水酸基;分岐または環を形成していてもよい炭素数1から7のアルキル基;分岐または環を形成していてもよい炭素数1から7のアルコキシ基;アミノ基;および核酸合成の保護基で保護されたアミノ基;からなる群から選択される基であり;
     mは、0から2の整数であり;
     nは、0から1の整数であり;
     Xは、酸素原子、硫黄原子、またはアミノ基である、
    請求項3または4に記載の抗腫瘍剤。
  6.  前記式(I)で表されるヌクレオシド構造が、
    Figure JPOXMLDOC01-appb-C000003
    で表される構造である、請求項5に記載の抗腫瘍剤。
  7.  前記式(I)で表されるヌクレオシド構造が、前記式(I’)で表される構造であり、そして該式(I’)において、前記mが0であり、そして前記Rが、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基、またはベンジル基である、請求項6に記載の抗腫瘍剤。
  8.  前記オリゴヌクレオチドが、6~10塩基のギャップ領域、3~5塩基の5’ウイングおよび3~5塩基の3’ウイングからなるギャップマーであり、
     該ギャップ領域が、該5’ウイングと該3’ウイングの間に位置づけられ、そして
     該5’ウイングおよび該3’ウイングが、前記式(I)で表されるヌクレオシド構造を含む、
    請求項5から7のいずれかに記載の抗腫瘍剤。
  9.  前記SNORA23発現抑制剤がSYNE2遺伝子発現を抑制する、請求項1から8のいずれかに記載の抗腫瘍剤。
  10.  SYNE2発現抑制剤を含む、抗腫瘍剤。
  11.  前記SYNE2発現抑制剤が、SYNE2遺伝子と結合し得、かつ該SYNE2遺伝子発現を抑制する活性を有する核酸分子を含む、請求項10に記載の抗腫瘍剤。
  12.  浸潤性または転移能のある腫瘍に対して用いられる、請求項1から11のいずれかに記載の抗腫瘍剤。
  13.  膵癌、肝癌、肺癌、卵巣癌または胃癌の処置に用いられる、請求項1から11のいずれかに記載の抗腫瘍剤。
  14.  請求項1から13のいずれかに記載の抗腫瘍剤を含有する医薬組成物。
  15.  腫瘍の浸潤または転移を検出するため、血液試料中のSNORA23を測定することを特徴とする、SNORA23のバイオマーカーとしての使用。
PCT/JP2018/003055 2017-01-30 2018-01-30 癌浸潤または転移阻害核酸薬および癌バイオマーカー WO2018139679A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-014912 2017-01-30
JP2017014912A JP2020055750A (ja) 2017-01-30 2017-01-30 癌浸潤または転移阻害核酸薬

Publications (1)

Publication Number Publication Date
WO2018139679A1 true WO2018139679A1 (ja) 2018-08-02

Family

ID=62979623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003055 WO2018139679A1 (ja) 2017-01-30 2018-01-30 癌浸潤または転移阻害核酸薬および癌バイオマーカー

Country Status (2)

Country Link
JP (1) JP2020055750A (ja)
WO (1) WO2018139679A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181305A1 (ja) * 2018-03-22 2019-09-26 小胞体ストレス研究所株式会社 snoRNAの発現抑制剤を有効成分とするがん増殖抑制剤
CN111440870A (zh) * 2020-04-20 2020-07-24 广东省微生物研究所(广东省微生物分析检测中心) CircZCCHC11及其翻译的肽段在肿瘤生长和转移预测、预后评估和治疗中的应用
WO2021187540A1 (ja) * 2020-03-17 2021-09-23 大日本住友製薬株式会社 Scn1a遺伝子の発現及び/又は機能調節剤
WO2022181807A1 (ja) * 2021-02-25 2022-09-01 国立大学法人大阪大学 REST mRNA前駆体のプロセシングにおけるNエキソンのスキッピングを誘導するオリゴヌクレオチド

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052436A1 (ja) * 2009-10-29 2011-05-05 国立大学法人大阪大学 架橋型人工ヌクレオシドおよびヌクレオチド
US20160186270A1 (en) * 2013-08-02 2016-06-30 Université Catholique de Louvain Signature of cycling hypoxia and use thereof for the prognosis of cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052436A1 (ja) * 2009-10-29 2011-05-05 国立大学法人大阪大学 架橋型人工ヌクレオシドおよびヌクレオチド
US20160186270A1 (en) * 2013-08-02 2016-06-30 Université Catholique de Louvain Signature of cycling hypoxia and use thereof for the prognosis of cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CREA, F ET AL.: "Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression", MOL ONCOL, vol. 10, no. 5, 2016, pages 693 - 703, XP029537673 *
CUI, L ET AL.: "Small nucleolar noncoding RNA SNORA23, up-regulated in human pancreatic ductal adenocarcinoma, regulates expression of spectrin repeat-containing nuclear envelope 2 to promote growth and metastasis of xenograft tumors in mice", GASTROENTEROLOGY, vol. 153, no. 1, July 2017 (2017-07-01), pages 292 - 306, XP085091869 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181305A1 (ja) * 2018-03-22 2019-09-26 小胞体ストレス研究所株式会社 snoRNAの発現抑制剤を有効成分とするがん増殖抑制剤
WO2021187540A1 (ja) * 2020-03-17 2021-09-23 大日本住友製薬株式会社 Scn1a遺伝子の発現及び/又は機能調節剤
CN111440870A (zh) * 2020-04-20 2020-07-24 广东省微生物研究所(广东省微生物分析检测中心) CircZCCHC11及其翻译的肽段在肿瘤生长和转移预测、预后评估和治疗中的应用
CN111440870B (zh) * 2020-04-20 2023-01-24 广东省微生物研究所(广东省微生物分析检测中心) CircZCCHC11及其翻译的肽段在肿瘤生长和转移预测、预后评估和治疗中的应用
WO2022181807A1 (ja) * 2021-02-25 2022-09-01 国立大学法人大阪大学 REST mRNA前駆体のプロセシングにおけるNエキソンのスキッピングを誘導するオリゴヌクレオチド

Also Published As

Publication number Publication date
JP2020055750A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
WO2018139679A1 (ja) 癌浸潤または転移阻害核酸薬および癌バイオマーカー
US20200056177A1 (en) Long non-coding rna used for anticancer therapy
Fathi Dizaji Strategies to target long non-coding RNAs in cancer treatment: progress and challenges
Wang et al. Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma
CN109415732B (zh) 用于调节htra1表达的反义寡核苷酸
JP2018500027A (ja) リガンド修飾二本鎖核酸
KR20180098528A (ko) 유전자 발현의 조절 및 탈조절된 단백질 발현의 스크리닝
US11866705B2 (en) Small cell lung cancer therapeutic agent containing oligonucleotide
TW202039842A (zh) 治療黃斑退化之組合治療
US20160024597A1 (en) miRNAs AS THERAPEUTIC TARGETS IN CANCER
JP6569920B2 (ja) α−シヌクレイン発現抑制剤
JP6895175B2 (ja) エクソソーム分泌阻害剤
US20150152422A1 (en) Mirnas as therapeutic targets in cancer
CA2860676A1 (en) Organic compositions to treat beta-catenin-related diseases
TW201907008A (zh) 用於調節htra1表現之反義寡核苷酸
AU2011256098A1 (en) Method for reducing expression of downregulated in renal cell carcinoma in malignant gliomas
CN111512160B (zh) Htra1 rna拮抗剂的伴随诊断
US20220372475A1 (en) Inhibitors Of RNA Editing And Uses Thereof
CN106581676B (zh) 癌症标志物、治疗癌症的药物组分及用途
EP4299744A1 (en) Oligonucleotide for inducing n-exon skipping during rest mrna precursor processing
WO2024044770A1 (en) Oligonucleotides for the treatment of breast cancer
JP2022120380A (ja) miRNA133-b誘導体及びその利用
Miglietta Unusual nucleic acid structures in the RAS genes and design of anti-cancer strategies
TW202122095A (zh) Rna作用抑制劑及其利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP