WO2018139276A1 - トンネル磁気抵抗素子の製造方法 - Google Patents

トンネル磁気抵抗素子の製造方法 Download PDF

Info

Publication number
WO2018139276A1
WO2018139276A1 PCT/JP2018/001085 JP2018001085W WO2018139276A1 WO 2018139276 A1 WO2018139276 A1 WO 2018139276A1 JP 2018001085 W JP2018001085 W JP 2018001085W WO 2018139276 A1 WO2018139276 A1 WO 2018139276A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cofeb
magnetic field
magnetic
absorption
Prior art date
Application number
PCT/JP2018/001085
Other languages
English (en)
French (fr)
Inventor
康夫 安藤
幹彦 大兼
耕輔 藤原
孝二郎 関根
純一 城野
匡章 土田
Original Assignee
国立大学法人東北大学
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, コニカミノルタ株式会社 filed Critical 国立大学法人東北大学
Priority to CN201880007206.3A priority Critical patent/CN110178236B/zh
Priority to JP2018564496A priority patent/JP6969752B2/ja
Priority to US16/478,492 priority patent/US10727402B2/en
Publication of WO2018139276A1 publication Critical patent/WO2018139276A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/308Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices lift-off processes, e.g. ion milling, for trimming or patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt

Definitions

  • the present invention relates to a method for manufacturing a tunnel magnetoresistive element.
  • a tunnel magnetoresistive element (TMR (Tunnel Magneto Resistive) element) includes a pinned magnetic layer whose magnetization direction is fixed, a free magnetic layer whose magnetization direction changes under the influence of an external magnetic field, and a pinned magnetic layer And an insulating layer disposed between the magnetic layer and the free magnetic layer to form a magnetic tunnel junction (MTJ (Magnetic Tunnel Junction)).
  • MTJ Magnetic Tunnel Junction
  • the resistance of the insulating layer is changed by the tunnel effect according to the angular difference between the magnetization direction of the pinned magnetic layer and the magnetization direction of the free magnetic layer.
  • Examples of using the tunnel magnetoresistive element include a magnetic memory, a magnetic head, and a magnetic sensor.
  • a huge TMR ratio can be realized by magnetically annealing the stacked structure of the MTJ portion (CoFeB / MgO / CoFeB).
  • a B absorption layer Ti, MgO, etc.
  • the MgO layer is disposed outside the MTJ in the MRAM.
  • a Ti layer is disposed in contact with a CoFeB layer in a magnetic head or memory.
  • the conductive oxide is disposed on the side opposite to the tunnel barrier side of the recording layer and the fixed layer, but it is not a sensor but a memory, the fixed magnetic side, the free magnetic side. It is arranged on either side and is not removed, and a technique for accurately removing the B absorption layer is not configured.
  • a Ti layer having good B absorbability is adjacent to realize a huge TMR ratio of CoFeB / MgO / CoFeB, but it is not a sensor but a head or a memory, and is free. Since the CoFeB layer is used as it is as the magnetic layer, the sensitivity when the sensor is used as a sensor with a large anisotropic magnetic field is reduced, and a technique for accurately removing the B absorption layer is not configured.
  • the present invention has been made in view of the above-described problems in the prior art.
  • the desired TMR ratio is realized. It is an object to accurately remove the B absorption layer.
  • the invention according to claim 1 for solving the above-described problems is a pinned magnetic layer in which the magnetization direction is fixed, a free magnetic layer whose magnetization direction changes under the influence of an external magnetic field, and the pinned layer
  • a magnetic tunnel junction is formed by an insulating layer disposed between the magnetic layer and the free magnetic layer, and a tunnel effect is applied according to an angular difference between the magnetization direction of the pinned magnetic layer and the magnetization direction of the free magnetic layer.
  • a method of manufacturing a tunnel magnetoresistive element that changes the resistance of an insulating layer On the substrate, the pinned magnetic layer and the insulating layer are stacked in this order, and further, a CoFeB layer is stacked in contact with the upper surface of the insulating layer, and an upper layer B made of a material that absorbs B in contact with the upper surface of the CoFeB layer.
  • Laminating step of laminating an absorption layer, and laminating two or more layers by switching the material on the CoFeB layer including the B absorption layer directly above The laminated body that has undergone the laminating step is heat-treated while applying an external magnetic field in a predetermined direction, and the easy axis of magnetization of the CoFeB layer and the easy axis of magnetization of the pinned magnetic layer constituting the free magnetic layer are in the same direction.
  • a heat treatment process in a magnetic field formed in A dry etching step of removing from the laminate that has undergone the heat treatment step in the magnetic field to the B absorption layer directly above In the dry etching step, a dry etching apparatus and an analyzer for identifying the material of the surface to be etched are applied, and the end of the etching by the dry etching apparatus is determined to be a final layer before the immediately above B absorption layer is exposed.
  • the analyzer When the end point is detected by the analyzer when the B absorption layer has been reduced to a predetermined level or has increased to a predetermined level.
  • the overetching amount by the dry etching apparatus after the end point is detected by the analyzer is specified in advance, and in the stacking process, only the overetching amount from the predetermined level to the upper surface of the CoFeB layer is equivalent to the overetching amount.
  • the tunnel magnetoresistive element is manufactured by laminating the B absorption layer directly above with a layer thickness of 5 mm.
  • a B absorption layer made of a material that absorbs B, and a processing cap layer that covers the B absorption layer, in two or more stacked portions on the CoFeB layer in the stacking step.
  • the invention according to claim 3 is the method of manufacturing a tunnel magnetoresistive element according to claim 2, wherein the B absorption layer in the stacking step includes two or more layers by switching materials including the B absorption layer directly above. is there.
  • a desired TMR ratio is achieved through absorption of B from the CoFeB layer by the B absorption layer. It is.
  • the tunnel magnetoresistive element manufacturing method according to any one of the first to fourth aspects, wherein a soft magnetic layer is formed on the CoFeB layer exposed by the dry etching step. It is.
  • a B absorption layer having a sufficient thickness is adjacent to the upper CoFeB layer of the MTJ to achieve a desired TMR ratio, and then the B absorption layer can be accurately removed.
  • the exchange coupling between the CoFeB layer and the soft magnetic layer after the B absorption layer has been removed with high accuracy can be realized well, and a tunnel magnetoresistive element that can be used for a remarkably high sensitivity magnetic sensor can be realized.
  • Column 1 shows the laminated structure before the heat treatment in the magnetic field
  • Column 2 shows the laminated structure after the heat treatment in the magnetic field, the dry etching step, and the soft magnetic layer forming step
  • Column 3 shows the thickness of the layer on the MTJ in the column 1.
  • Column 4 shows the evaluation of the etching up to the upper CoFeB layer of the MTJ
  • Column 5 shows the evaluation of the TMR ratio
  • Column 6 shows the evaluation of the magnetic coupling between the upper CoFeB layer and the soft magnetic layer of the MTJ
  • Column 7 The time transition of the optical detection signal at the time of etching is shown.
  • a graph showing the ideal magnetoresistance characteristics to be realized by the present invention (column d), and a schematic diagram showing the direction of magnetization of the tunnel magnetoresistive element in each state on the graph (column a) (column b) (column IV) c).
  • It is sectional drawing which shows the laminated structure of the example of a conventional tunnel magnetoresistive element.
  • the horizontal axis represents the external magnetic field (H (Oe)), and the vertical axis represents the rate of change in resistance of the tunnel magnetoresistive element (TMR ratio (%)).
  • TMR ratio rate of change in resistance of the tunnel magnetoresistive element
  • the horizontal axis represents the external magnetic field (H (Oe)), and the vertical axis represents the rate of change in resistance of the tunnel magnetoresistive element (TMR ratio (%)).
  • H (Oe) the external magnetic field
  • TMR ratio (%) the rate of change in resistance of the tunnel magnetoresistive element
  • the horizontal axis represents the external magnetic field (H (Oe)), and the vertical axis represents the rate of change in resistance of the tunnel magnetoresistive element (TMR ratio (%)).
  • H (Oe) the external magnetic field
  • TMR ratio (%) the rate of change in resistance of the tunnel magnetoresistive element
  • an optical or mass spectrometric endpoint detection unit can be attached to a dry etching apparatus.
  • This end point detection unit is applied as an analyzer in the dry etching process of the present manufacturing method.
  • a predetermined level for example, 80
  • the end point detection is performed when the light emission signal is reduced to a predetermined level (for example, 80) when 100 is assumed. It is time. That is, the end point is detected when the final layer before the immediately upper B absorbing layer is exposed is reduced to a predetermined level.
  • the layer to be removed changes and a new layer is detected
  • the signal before entering the new layer is changed to 0, and the removal of the new layer is started.
  • the former is adopted in the following embodiments.
  • IrMn 11, ferromagnetic layer (CoFe) 12, magnetic coupling layer (Ru) 13, and ferromagnetic layer (CoFeB) 14 are stacked, and in contact with the upper surface of the ferromagnetic layer (CoFeB) 14, an insulating layer (MgO) 20 And a CoFeB layer 31 as a ferromagnetic layer constituting the free magnetic layer 30 in contact with the upper surface of the insulating layer (MgO) 20 (common to Comparative Examples 1 and 2 and Invention Example 1-3).
  • a Ta layer 51 is laminated as an immediately upper B absorbing layer made of a material that absorbs B in contact with the upper surface of the CoFeB layer 31 (common in Comparative Examples 1 and 2 and Invention Example 1-3).
  • Ta, Ni, Ti, MgO etc. are mentioned as a material of the B absorption layer which consists of material which absorbs B.
  • the Ta layer 51 was 5 nm, and in Inventive Example 1-3, the Ta layer 51 was 1 nm.
  • a Ru layer 61 of 3 nm was further laminated on the Ta layer 51 as a processing cap layer.
  • Example 2 of the present invention a 4 nm Ni layer 52 was stacked on the Ta layer 51, and a 3 nm Ru layer 61 was stacked as a processing cap layer on the Ni layer 52.
  • Example 3 of the present invention a 4 nm MgO layer 53 was stacked on the Ta layer 51, and a 3 nm Ru layer 61 was stacked on the MgO layer 53 as a processing cap layer.
  • the stacked body is heat-treated while applying an external magnetic field in a predetermined direction, so that the easy axis of the CoFeB layer 31 constituting the free magnetic layer and the easy axis of the pinned magnetic layer 10 are formed in the same direction.
  • a dry etching process is performed to remove from the laminated body that has undergone the heat treatment process in a magnetic field to the Ta layer 51 that is the B absorption layer directly above.
  • the dry etching process is performed by Ar ion milling.
  • Comparative Example 2 the etching was completed after a longer time than Comparative Example 1 with reference to the point in time when the detection signal of the Ru layer 61 decreased to a predetermined level (for example, 80). As a result, the CoFeB layer 31 was shaved.
  • the TMR ratio increased satisfactorily because there was a Ta layer 51 having a sufficient thickness in the heat treatment process in a magnetic field, but the TMR ratio could not be increased as a result because the CoFeB layer 31 was cut too much.
  • the CoFeB layer 31 and the soft magnetic layer 33 could be magnetically coupled by performing a subsequent soft magnetic layer forming step.
  • the amount of overetching by the dry etching apparatus after the end point is detected in advance is detected by the analyzer to be reduced to a predetermined level (for example, 80).
  • Ta was specified as 1 nm. This is a case where the etching is immediately terminated with the end point detection as a trigger.
  • the layer thickness sufficient to correspond to the amount of overetching from the time when the optical detection signal decreases to a predetermined level (for example, 80) to the upper surface of the CoFeB layer 31, that is, B absorption just above 1 nm.
  • a Ta layer 51 as a layer was laminated.
  • Example 1 of the present invention etching is performed at the time when it is detected that the detection signal of the Ru layer 61, which is the final layer before the immediately upper B absorption layer (Ta layer 51) is exposed, has decreased to a predetermined level (for example, 80). Although the process was completed, the Ta layer 51 was accurately removed by the amount of overetching. That is, the T layer 51a can be completely removed, and the CoFeB layer 31 is not shaved.
  • the TMR ratio can be increased to some extent because of the 1 nm Ta layer 51 in the heat treatment process in the magnetic field, and the CoFeB layer 31 and the soft magnetic layer are formed by performing a subsequent soft magnetic layer forming process. 33 could be magnetically coupled.
  • Example 2 of the present invention the etching is terminated when it is detected that the detection signal of the Ni layer 52, which is the final layer before the immediately upper B absorption layer (Ta layer 51) is exposed, has decreased to a predetermined level (for example, 80).
  • the Ta layer 51 can be accurately removed by the amount of overetching. That is, the T layer 51a can be completely removed, and the CoFeB layer 31 is not shaved.
  • the TMR ratio can be increased satisfactorily, and the formation of the soft magnetic layer in the subsequent process is achieved. After the film process, the CoFeB layer 31 and the soft magnetic layer 33 could be magnetically coupled.
  • Example 3 of the present invention the etching is terminated when it is detected that the detection signal of the MgO layer 53, which is the final layer before the immediately upper B absorption layer (Ta layer 51) is exposed, has decreased to a predetermined level (for example, 80).
  • the Ta layer 51 can be accurately removed by the amount of overetching. That is, the T layer 51a can be completely removed, and the CoFeB layer 31 is not shaved.
  • the TMR ratio can be increased satisfactorily, and the formation of the soft magnetic layer in the subsequent process is achieved. After the film process, the CoFeB layer 31 and the soft magnetic layer 33 could be magnetically coupled.
  • the B absorption layer includes the B absorption layer (Ta layer 51) directly above, and by switching the material to two or more layers, the detection signal immediately before the amount corresponding to the over-etching amount is obtained.
  • the B-absorbing layer having a sufficient thickness can be made adjacent to the CoFeB layer 31 in the magnetic field heat treatment step. Therefore, in the heat treatment step in a magnetic field, the desired TMR is obtained through absorption of B from the CoFeB layer by the two B absorption layers (Ta layer 51 + Ni layer 52 in Invention Example 2 and Ta layer 51 + MgO layer 53 in Invention Example 3).
  • the ratio can be achieved, and exchange coupling between the CoFeB layer and the soft magnetic layer can be realized well.
  • the tunnel magnetoresistive element 1 includes a pinned magnetic layer 10 whose magnetization direction is fixed, a free magnetic layer 30 whose magnetization direction changes under the influence of an external magnetic field, and a pinned magnetic layer.
  • a magnetic tunnel junction is formed by the insulating layer 20 disposed between the magnetic layer 10 and the free magnetic layer 30, and the tunnel effect is applied according to the angular difference between the magnetization direction of the pinned magnetic layer 10 and the magnetization direction of the free magnetic layer 30. The resistance of the insulating layer 20 is changed.
  • FIG. 3 (column a) (column b) (column c) shows the magnetization direction 10A of the pinned magnetic layer 10 and the magnetization direction 30A of the free magnetic layer 30 in each magnetic field state shown in FIG. 3 (column d).
  • FIG. 3 (column a) shows a state in which the detected magnetic field is zero (neutral position, position P0 on the graph of FIG. 3 (column d))
  • FIG. 3 (column b) shows a state in which a predetermined plus magnetic field is loaded ( FIG. 3 (column d) is at the position P1) on the graph
  • FIG. 3 (column d) is at the position P1 on the graph
  • FIG. 3 (column c) is at the state where a predetermined negative magnetic field is loaded (position P2 on the graph in FIG. 3 (column d)).
  • FIG. 3 (column a) shows that when the detection magnetic field is zero (neutral position P0), the magnetization direction 10A of the pinned magnetic layer 10 and the magnetization direction 30A of the free magnetic layer 30 are stable at a twist position of approximately 90 degrees. is doing. This is because each magnetized in the direction of the easy axis. That is, the tunnel magnetoresistive element 1 shown in FIG. 3 is formed at a position where the easy magnetization axis of the free magnetic layer 30 is twisted approximately 90 degrees with respect to the easy magnetization axis of the pinned magnetic layer 10.
  • the arrow 10A shown in the column a) indicates the direction of the easy axis of magnetization of the pinned magnetic layer 10
  • the arrow 30A indicates the direction of the easy axis of magnetization of the free magnetic layer 30.
  • FIG. 3 (column a) (column b) (column c)
  • the magnetization direction 10A of the pinned magnetic layer 10 is constant without being affected by the change of the external magnetic field
  • the magnetization direction 30A of the free magnetic layer 30 is constant. Changes under the influence of the external magnetic field (H1, H2).
  • H1, H2 Changes under the influence of the external magnetic field
  • a conventional tunnel magnetoresistive element 101 shown in FIG. 4 is the same as that described in Patent Documents 3-7, in which a pinned magnetic layer 10 is formed below an insulating layer 20 and a free magnetic layer 30 is formed on the top.
  • the layer 30 has a laminated structure in which a magnetic coupling layer (Ru) 32 is interposed between a ferromagnetic layer (CoFeB) 31 and a soft magnetic layer (NiFe or CoFeSiB) 33.
  • a base layer (Ta) 3 is formed on a substrate (Si, SiO 2 ) 2 and an antiferromagnetic layer (from the bottom) is formed as a pinned magnetic layer 10 thereon.
  • the magnetoresistive characteristics have a high hysteresis as shown in FIG. 5, and the above-described linearity cannot be realized.
  • the arrow A1 shown in FIG. 4 is the direction of the easy axis of magnetization of the magnetic layer.
  • the conventional tunnel magnetoresistive element 102 shown in FIG. 6 is of the kind described in Patent Document 8, and has a laminated structure in which the fixed magnetic layer 10 and the free magnetic layer 30 are turned upside down with respect to FIG. .
  • the direction of the easy magnetization axis (arrow A1) of the free magnetic layer 30 is formed in a direction different from the direction of the easy magnetization axis of the pinned magnetic layer 10 (arrow A2).
  • the shape of the free magnetic layer 30 can be increased (Hk is improved and noise is expected to be reduced), but the upper insulating layer 20 and the fixed magnetic layer 10 are adversely affected (because of deterioration of uniformity and crystallinity). It was difficult to improve the performance as a magnetic sensor.
  • the tunnel magnetoresistive element 1A is similar to the conventional tunnel magnetoresistive element 101 on the side close to the substrate 2 supporting the magnetic layers 10 and 30 and the insulating layer 20.
  • the pinned magnetic layer 10, the insulating layer 20, and the free magnetic layer 30 are stacked in this order, and the magnetic coupling layer (Ru) 32 is removed from the stacked structure of the conventional tunnel magnetoresistive element 101.
  • the laminated structure has a ferromagnetic layer 31 whose lower surface is bonded to the insulating layer 20 and a soft magnetic layer 33 laminated in contact with the upper surface of the ferromagnetic layer 31.
  • the easy magnetization axes of the ferromagnetic layer 31 and the soft magnetic layer 33 constituting the free magnetic layer 30 are in the same direction, and are different from the easy magnetization axis of the pinned magnetic layer 10 ( It can be formed to have a magnetization characteristic at a twisted position (for example, a direction twisted approximately 90 degrees), and the linearity described above can be realized.
  • a first heat treatment is performed while applying an external magnetic field in a predetermined direction (arrow A1) to form the easy axis of the ferromagnetic layer 31 constituting the free magnetic layer 30 and the easy axis of the pinned magnetic layer 10 in the same direction.
  • the heat treatment process in a magnetic field is performed.
  • the B absorption layer and the processing cap layer are accurately removed as described above, and the direction is twisted as in the first heat treatment in a magnetic field as shown in FIG. 8B.
  • the soft magnetic layer 33 constituting the free magnetic layer 30 while applying an external magnetic field (with the arrow A2 in the direction) as described above, the magnetization easy axis of the free magnetic layer 30 is set to the pinned magnetic layer 10.
  • 8C is performed in a magnetic field that is formed in a different direction (for example, a direction twisted by approximately 90 degrees) with respect to the easy axis of magnetization, thereby obtaining a stacked structure shown in FIG. 8C. As shown in FIG.
  • the easy magnetization axes of the ferromagnetic layer 31 and the soft magnetic layer 33 constituting the free magnetic layer 30 are the same through the first heat treatment process in the magnetic field and the film formation process in the magnetic field. It is possible to form magnetization characteristics that are in the direction and different from the easy magnetization axis of the pinned magnetic layer 10 (preferably in a direction twisted approximately 90 degrees). That is, the easy magnetization axis of the pinned magnetic layer 10 is formed in the magnetic field direction (arrow A1) applied during the first heat treatment process in the magnetic field, and the easy magnetization axis of the free magnetic layer 30 is formed in the film formation process in the magnetic field. It is formed in the magnetic field direction (arrow A2) applied at the time. At this point, linear magnetoresistive characteristics as shown in FIG. 9 are obtained.
  • a second heat treatment process in a magnetic field is performed in which heat treatment is performed while applying an external magnetic field in the same direction (arrow A2) as in the film formation process in a magnetic field.
  • a third heat treatment process in the magnetic field is performed in which the heat treatment is performed while applying the external magnetic field in the same direction as the first heat treatment process in the magnetic field (arrow A1).
  • a first magnetic field heat treatment step is performed on the ferromagnetic tunnel junction (MTJ) multilayer film (layers 10, 20, 31) formed on the substrate 2 (FIG. 11 (column a)).
  • the direction of the magnetic field to be applied is the direction of arrow A1, the strength of the magnetic field is 1T, and the heat treatment temperature is 375 ° C.
  • This heat treatment greatly improves the tunnel magnetoresistance (TMR) ratio, which is the rate of change in resistance.
  • a resist pattern is formed on the surface of the MTJ multilayer film subjected to the first heat treatment process in a magnetic field by photolithography or electron beam lithography (photolithography in this embodiment) (FIG. 11 (column b1) (column b2)).
  • the layer 41 is the above-described B absorption layer and processing cap layer (corresponding to 51-53 and 61 in FIG. 2) formed on the ferromagnetic layer 31, and is formed before the first heat treatment in a magnetic field. .
  • a resist pattern 42 is formed on the layer 41.
  • the MTJ multilayer film on which the resist pattern 42 is formed is subjected to Ar ion milling and etched to the MgO insulating layer 20 (FIG.
  • an interlayer insulating layer 43 is formed (FIG. 11 (column c1) ( Column c2)).
  • a material of the interlayer insulating layer 43 SiO 2 or Al—Ox can be used (in this embodiment, SiO 2 is used).
  • a lift-off method or a contact hole forming method can be used (in this embodiment, a lift-off method).
  • an insulating film such as SiO 2 is formed on the entire substrate while leaving the resist pattern 42 for MTJ pillar formation.
  • a sputtering method or low-temperature CVD can be used for forming the insulating film (low-temperature CVD is used in this embodiment).
  • the resist 42 is removed by ultrasonically cleaning the substrate with an organic solvent such as acetone or dimethylpyrrolidone. At this time, since the insulating film formed on the resist 42 is also removed, a structure in which the multilayer film is exposed only on the upper surface of the MTJ pillar can be manufactured.
  • the MTJ pillar forming resist pattern 42 is removed with an organic solvent or the like, and an insulating film is formed on the entire substrate. Thereafter, a resist pattern having openings where only electrical contacts on the MTJ pillar are required is formed, and reactive etching is performed using CHF3, CH4, or the like as a process gas, thereby forming openings in the insulating film.
  • a resist pattern for opening the contact with an organic solvent or the like, a structure in which the multilayer film is exposed only on the upper surface of the MTJ pillar can be manufactured.
  • a resist pattern 44 is formed on the substrate on which the interlayer insulating layer 43 is formed by photolithography using the soft magnetic layer 33 and a mask for forming the upper electrode (FIG. 11 (column d1) (column d2)). Pattern formation is performed using the region where the soft magnetic layer 33 and the upper electrode layer are formed as an opening.
  • the substrate on which the soft magnetic layer 33 and the upper electrode layer forming resist pattern 44 are formed is etched by Ar ion milling to accurately remove the layer 41 as described above, and the upper CoFeB strong in the MTJ multilayer film.
  • the magnetic layer 31 is exposed (FIG. 11 (column e1) (column e2)).
  • the soft magnetic layer 33 By forming the soft magnetic layer 33 on the exposed CoFeB layer 31, soft magnetic characteristics are exhibited in the magnetoresistance curve. In order to prevent the magnetic coupling between the CoFeB layer 31 and the soft magnetic layer 33 from being hindered by oxidation or the like on the surface of the CoFeB layer 31, the substrate is not exposed to the atmosphere during the Ar ion milling and the soft magnetic layer 33 deposition. It is desirable to continuously perform etching and film formation under vacuum.
  • the soft magnetic layer 33 can be made of an amorphous material such as CoFeSiB or a soft magnetic material such as a NiFe alloy (CoFeSiB is used in this embodiment).
  • the soft magnetic layer 33 By forming the soft magnetic layer 33 while applying a magnetic field in the hard magnetization axis direction (arrow A2 direction) of the MTJ multilayer film (FIG. 11 (column f1) (column f2)), the lower part of the MTJ
  • the easy magnetization axis of the magnetic multilayer film, the upper CoFeB layer 31 and the soft magnetic layer 33 can be twisted by 90 degrees, and thereby the resistance is linear with respect to the magnetic field component of the free magnetic layer 30 in the hard axis direction.
  • a linear magnetoresistance curve as shown in FIG. 9 is obtained.
  • the substrate 2 is made of Si, SiO 2 , Ta thereon is 5 nm, Ru is 10 nm, IrMn is 10 nm, CoFe is 2 nm, Ru is 0.85 nm, CoFeB is 3 nm, MgO is 2.7 nm, CoFeB 3 nm, the layer 41 was laminated as described above, and a first magnetic field heat treatment was performed at a magnetic field strength of 1 T and a temperature of 375 ° C. Then, after exposing the CoFeB layer 31, a soft magnetic layer (CoFeSiB) 33 was formed by sputtering in a magnetic field to a film thickness of 100 nm.
  • CoFeSiB soft magnetic layer
  • the upper electrode layer is formed (FIG. 11 (column g1) (column g2)).
  • As the upper electrode layer material Ta, Al, Cu, Au and the like and multilayer films thereof can be used (Ta / Al multilayer film in this embodiment).
  • the upper electrode layer prevents oxidation of the soft magnetic layer 33 and is responsible for electrical connection with a power supply circuit, an amplifier circuit, and the like during sensor operation.
  • the substrate on which the soft magnetic layer 33 and the upper electrode are formed is ultrasonically cleaned using an organic solvent or the like, and the resist 44 is removed, thereby removing the soft magnetic layer 33 and the upper electrode layer other than the resist opening (FIG. 11 (column g1) (column g2)).
  • the soft magnetic layer 33 and the upper electrode layer can be formed into arbitrary shapes by photolithography. Further, by performing photolithography a plurality of times, it is possible to produce elements having different shapes for the soft magnetic layer 33 and the upper electrode.
  • the tunnel magnetoresistive element is manufactured by the above microfabrication, the soft magnetic layer 33 is in an as-deposited state in which heat treatment is not performed after the element is manufactured. Therefore, it is possible to develop a magnetoresistive curve having softer magnetic characteristics by performing heat treatment in the magnetic field again on the manufactured element and manipulating the magnetic anisotropy of the soft magnetic layer 33.
  • the second magnetic field heat treatment step is performed with the magnetic field direction set to a direction of 90 degrees (arrow A2 direction) with respect to the direction during the first magnetic field heat treatment step (arrow A1 direction).
  • a third heat treatment process in a magnetic field was performed in the 0 degree direction (arrow A1 direction).
  • the heat treatment temperature was 200 ° C.
  • the heat treatment temperature was 200 ° C., and the magnetoresistance curve shown in FIG.
  • FIG. 10A shows a case where the heat treatment temperature in the second magnetic field heat treatment step is 200 ° C. and the heat treatment temperature in the third magnetic field heat treatment step is 180 ° C.
  • the tunnel magnetoresistive element manufacturing method of the present invention is different from the conventional element structure in that the soft magnetic layer is sputtered after the MTJ multilayer film is subjected to the first heat treatment process in the magnetic field. Therefore, the soft magnetic layer does not adversely affect the process of developing a high TMR ratio by heat treatment in a magnetic field. Therefore, a wide range of material choices for the soft magnetic layer can be provided, and the most suitable material for the application and ease of use, such as ferrimagnetic (eg, permalloy or amorphous), ferromagnetic (eg, ferrite), and microcrystalline alloys. Should be selected.
  • ferrimagnetic eg, permalloy or amorphous
  • ferromagnetic eg, ferrite
  • microcrystalline alloys e.g., ferrite
  • the free magnetic layer of the conventional tunneling magnetoresistive element has a limit of a film thickness of several nm to several hundred nm, but in the manufacturing method of the present invention, a soft magnetic layer of several ⁇ m may be bonded. It is possible and the volume of the soft magnetic layer can be made very large. Therefore, it can be expected to produce a magnetic sensor having a high SN ratio by greatly reducing white noise and 1 / f noise due to thermal fluctuation of the free magnetic layer. Furthermore, since the free magnetic layer is located on the outermost surface of the element, the shape can be freely provided. Therefore, it is expected to produce a tunnel magnetoresistive element with a built-in flux concentrator (FC) that concentrates the magnetic flux on the free magnetic layer.
  • FC built-in flux concentrator
  • the tunnel magnetoresistive element and the FC are manufactured with a physically separated structure.
  • the free magnetic layer and the FC are joined as a thin film or an integrated structure, so that the magnetic flux concentration effect is obtained. It is available to the maximum.
  • the upper B absorption layer is Ta, but the present invention is not limited to this, and can be arbitrarily selected from materials that absorb B, such as Ta, Ni, Ti, and MgO. Further, the two or more B absorption layers whose materials are switched in the above embodiments are merely examples, and two or more can be arbitrarily selected from materials that absorb B, such as Ta, Ni, Ti, and MgO.
  • the present invention can be used for manufacturing a tunnel magnetoresistive element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

MTJの上側CoFeB層に、十分な厚みのB吸収層を隣接させて磁化アニールし所望のTMR比を実現した後、当該B吸収層を精度よく除去する。積層工程及び磁場中熱処理工程後のMTJの上側CoFeB層31の上層(51-53,61)を除去するドライエッチング工程において、ドライエッチング装置及びこれによる被エッチング面の材料を識別する分析装置を適用し、エッチングの終了を同CoFeB層の直上B吸収層(51)が露出する前の最終層(61,52又は53)が所定のレベルまで減少した又は同直上B吸収層が所定のレベルまで増加したと分析装置により検出した終点検出時とする。予め、分析装置による終点検出時後のドライエッチング装置によるオーバーエッチング量を特定しておき、積層工程において同所定のレベルから同CoFeB層の上面までを当該オーバーエッチング量に相当させるだけの層厚で同直上B吸収層を積層する。

Description

トンネル磁気抵抗素子の製造方法
 本発明は、トンネル磁気抵抗素子の製造方法に関する。
 トンネル磁気抵抗素子(TMR(Tunnel Magneto Resistive)素子)は、磁化の向きが固定された固定磁性層、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層、及び、固定磁性層と自由磁性層との間に配置された絶縁層を有し、磁気トンネル接合(MTJ(Magnetic Tunnel Junction))を形成する。固定磁性層の磁化の向きと自由磁性層の磁化の向きとの角度差に従ってトンネル効果により絶縁層の抵抗を変化させる。このトンネル磁気抵抗素子を利用したものとして、磁気メモリ・磁気ヘッド・磁気センサーなどが挙げられる。
 TMRの原理を用いた磁気センサーにおいてMTJ部分(CoFeB/MgO/CoFeB)の積層構造を磁化アニールすることで巨大なTMR比を実現できる。その際、CoFeB層の拡散Bを吸収する材料からなるB吸収層(Ti,MgOなど)を十分な厚みで隣接させることが重要となる。
 特許文献1に記載の発明にあっては、MRAMにてMTJ外側にMgO層を配置する。
 特許文献2に記載の発明にあっては、磁気ヘッドまたはメモリにおいてCoFeB層に接してTi層を配置する。
特許第5816867号公報 特開2008-85208号公報 特開平9-25168号公報 特開2001-68759号公報 特開2004-128026号公報 特開2012-221549号公報 特開2013-48124号公報 特開2013-105825号公報
 上述したようにTMRの原理を用いた磁気センサーにおいてMTJ部分(CoFeB/MgO/CoFeB)の積層構造を磁化アニールすることで巨大なTMR比を実現する際に、CoFeB層にB吸収層(Ti,MgOなど)を十分な厚みで隣接させることが重要となる。
 さらに磁化アニール後、磁気センサーとして動作させる場合は固定磁性層としてのCoFeBとは逆側のCoFeB層に軟磁性材料と結合させ自由磁性層とする必要がある。
 ところが、Bの拡散を十分吸収する材料がCoFeB層と軟磁性層の間に入ったままだと巨大TMR比を実現できない。
 特許文献1に記載の発明にあっては、記録層、固定層のトンネルバリア側とは逆側に導電性酸化物を配置しているが、センサーではなくメモリであり、固定磁性側、自由磁性側どちらにも配置されていて除去されず、精度よくB吸収層を除去する技術が構成されていない。
 特許文献2に記載の発明にあっては、CoFeB/MgO/CoFeBの巨大TMR比を実現するためにB吸収性の良いTi層を隣接しているが、センサーではなくヘッドかメモリであり、自由磁性層としてCoFeB層をそのまま利用するので異方性磁界が大きくセンサとして使用した場合の感度が落ち、精度よくB吸収層を除去する技術が構成されていない。
 本発明は以上の従来技術における問題に鑑みてなされたものであって、MTJの上側CoFeB層に、十分な厚みのB吸収層を隣接させて磁化アニールし所望のTMR比を実現した後、当該B吸収層を精度よく除去することを課題とする。ひいては、B吸収層が精度よく除去された後のCoFeB層と軟磁性層との交換結合を良好に実現し、顕著に高感度な磁気センサーに利用できるトンネル磁気抵抗素子を実現することを課題とする。
 以上の課題を解決するための請求項1記載の発明は、磁化の向きが固定された固定磁性層、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層、及び、前記固定磁性層と前記自由磁性層との間に配置された絶縁層により、磁気トンネル接合を形成し、前記固定磁性層の磁化の向きと前記自由磁性層の磁化の向きとの角度差に従ってトンネル効果により絶縁層の抵抗を変化させるトンネル磁気抵抗素子の製造方法であって、
基板上に、前記固定磁性層、前記絶縁層の順で積層し、さらに当該絶縁層の上面に接してCoFeB層を積層し、当該CoFeB層の上面に接してBを吸収する材料からなる直上B吸収層を積層し、当該直上B吸収層を含めて前記CoFeB層の上に材料を切り換えて2層以上積層する積層工程と、
前記積層工程を経た積層体に対し、所定方向の外部磁場を印加しながら熱処理を行って、自由磁性層を構成する前記CoFeB層の磁化容易軸と前記固定磁性層の磁化容易軸とを同方向に形成する磁場中熱処理工程と、
前記磁場中熱処理工程を経た積層体から、前記直上B吸収層までを除去するドライエッチング工程とを備え、
前記ドライエッチング工程において、ドライエッチング装置及びこれによる被エッチング面の材料を識別する分析装置を適用し、前記ドライエッチング装置によるエッチングの終了を、前記直上B吸収層が露出する前の最終層が所定のレベルまで減少した又は前記直上B吸収層が所定のレベルまで増加したと前記分析装置により検出した終点検出時とし、
予め、前記分析装置による終点検出時後の前記ドライエッチング装置によるオーバーエッチング量を特定しておき、前記積層工程において、前記所定のレベルから前記CoFeB層の上面までを当該オーバーエッチング量に相当させるだけの層厚で前記直上B吸収層を積層するトンネル磁気抵抗素子の製造方法である。
 請求項2記載の発明は、前記積層工程における前記CoFeB層の上の2層以上の積層部分には、Bを吸収する材料からなるB吸収層と、当該B吸収層上を覆う加工用キャップ層とが含まれる請求項1に記載のトンネル磁気抵抗素子の製造方法である。
 請求項3記載の発明は、前記積層工程における前記B吸収層は、前記直上B吸収層を含めて、材料を切り換えて2層以上である請求項2に記載のトンネル磁気抵抗素子の製造方法である。
 請求項4記載の発明は、前記磁場中熱処理工程において、前記B吸収層による前記CoFeB層からのBの吸収を経て所望のTMR比を達成する請求項3に記載のトンネル磁気抵抗素子の製造方法である。
 請求項5記載の発明は、前記ドライエッチング工程により露出した前記CoFeB層の上に軟磁性層を成膜する請求項1から請求項4のうちいずれか一に記載のトンネル磁気抵抗素子の製造方法である。
 本発明によれば、MTJの上側CoFeB層に、十分な厚みのB吸収層を隣接させて磁化アニールし所望のTMR比を実現した後、当該B吸収層を精度よく除去することができる。ひいては、B吸収層が精度よく除去された後のCoFeB層と軟磁性層との交換結合を良好に実現し、顕著に高感度な磁気センサーに利用できるトンネル磁気抵抗素子を実現することができる。
エッチングの進行に伴う光学式の分析装置による発光信号の遷移グラフである。 本発明例と比較例の条件と結果を示す。欄1は磁場中熱処理前の積層構造を、欄2は磁場中熱処理工程、ドライエッチング工程、軟磁性層成膜工程を経た後の積層構造を、欄3は欄1におけるMTJ上の層の厚さを、欄4はMTJの上側CoFeB層までのエッチングの評価を、欄5はTMR比の評価を、欄6はMTJの上側CoFeB層と軟磁性層との磁気結合の評価を、欄7はエッチング時の光学検出信号の時間遷移を示す。 本発明が実現しようとする理想的な磁気抵抗特性を示すグラフ(欄d)と、グラフ上の各状態におけるトンネル磁気抵抗素子の磁化の向きを示す模式図(欄a)(欄b)( 欄c)である。 従来の一例のトンネル磁気抵抗素子の積層構造を示す断面図である。 図4の従来例で発現する磁気抵抗特性を示すグラフである。横軸は外部磁界(H(Oe))、縦軸はトンネル磁気抵抗素子の抵抗の変化率(TMR比(%))である。 従来の他の一例のトンネル磁気抵抗素子の積層構造を示す断面図である。 本発明の一実施形態に係るトンネル磁気抵抗素子の積層構造を示す断面図である。 本発明の一実施形態に係るトンネル磁気抵抗素子の製造プロセスを示す積層構造の断面図である。 図8Aに続く、本発明の一実施形態に係るトンネル磁気抵抗素子の製造プロセスを示す積層構造の断面図である。 図8Bに続く、本発明の一実施形態に係るトンネル磁気抵抗素子の製造プロセスを示す積層構造の断面図である。 本発明の一実施形態に係るトンネル磁気抵抗素子の磁気抵抗特性を示すグラフである。横軸は外部磁界(H(Oe))、縦軸はトンネル磁気抵抗素子の抵抗の変化率(TMR比(%))である。 本発明の一実施形態に係るトンネル磁気抵抗素子の磁気抵抗特性を示すグラフであり、第2、第3の磁場中熱処理工程を実施後のものを示す。第2の磁場中熱処理工程の熱処理温度を200℃、第3の磁場中熱処理工程の熱処理温度を180℃とした場合を示す。横軸は外部磁界(H(Oe))、縦軸はトンネル磁気抵抗素子の抵抗の変化率(TMR比(%))である。 本発明の一実施形態に係るトンネル磁気抵抗素子の磁気抵抗特性を示すグラフであり、第2、第3の磁場中熱処理工程を実施後のものを示す。第2の磁場中熱処理工程の熱処理温度を200℃、第3の磁場中熱処理工程の熱処理温度を200℃とした場合を示す。横軸は外部磁界(H(Oe))、縦軸はトンネル磁気抵抗素子の抵抗の変化率(TMR比(%))である。 本発明の一実施例に係るトンネル磁気抵抗素子の製造プロセスを示す積層構造の表面図及び断面図である。
 以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。
〔発明の概要〕
(終点検出)
 まず、図1を参照して、ドライエッチングの終点検出につき説明する。
 一般に、ドライエッチング装置には光学式や質量分析式のエンドポイント検出部を取り付けることができる。このエンドポイント検出部を、本製法のドライエッチング工程における分析装置として適用する。
 光学式の検出のアルゴリズムの例としては、図1に示すように、除去する層がなくなる場合は発光信号がある場合を100としたときの所定のレベル(たとえば80)に減少したことをもって終点検出時とする。すなわち、直上B吸収層が露出する前の最終層が所定レベルまで減少したことをもって終点検出時とする。
 また、除去する層が変わり、新しい層を検出する場合は、新しい層に入る前の信号を0、新しい層を除去開始し、除去途中の最大値を100と変換した場合、相対的に信号を所定レベル(たとえば10)まで増加した場合に停止する方法がある。したがって、終点検出時は、直上B吸収層の検出量が所定レベル(たとえば10)に増加した時に置き換えてもよい。
 以下の実施例では前者を採用する。
(本発明例と比較例)
 次に、図2を参照して本発明例と比較例を挙げながら説明する。
 図2の欄1に示すように積層工程において、基板(Si,SiO2)2上に、下地層(Ta)3を形成し、その上に固定磁性層10として、下から反強磁性層(IrMn)11、強磁性層(CoFe)12、磁気結合層(Ru)13、強磁性層(CoFeB)14を積層し、さらに強磁性層(CoFeB)14の上面に接して絶縁層(MgO)20を積層し、絶縁層(MgO)20の上面に接して自由磁性層30を構成する強磁性層としてCoFeB層31を積層する(比較例1,2及び本発明例1-3において共通)。
 さらにCoFeB層31の上面に接してBを吸収する材料からなる直上B吸収層としてTa層51を積層する(比較例1,2及び本発明例1-3において共通)。
 なお、Bを吸収する材料からなるB吸収層の材料としては、Ta,Ni,Ti,MgO等が挙げられる。
 比較例1,2においてはTa層51を5nmとし、本発明例1-3においてはTa層51を1nmとした。
 比較例1,2及び本発明例1においては、さらにTa層51上に加工用キャップ層としてRu層61を3nm積層した。
 本発明例2においては、Ta層51上にNi層52を4nm積層し、当該Ni層52上に加工用キャップ層としてRu層61を3nm積層した。
 本発明例3においては、Ta層51上にMgO層53を4nm積層し、当該MgO層53上に加工用キャップ層としてRu層61を3nm積層した。
 以上の積層体に対し、所定方向の外部磁場を印加しながら熱処理を行って、自由磁性層を構成するCoFeB層31の磁化容易軸と固定磁性層10の磁化容易軸とを同方向に形成する磁場中熱処理工程を実施する。
 次に、磁場中熱処理工程を経た積層体から、直上B吸収層であるTa層51までを除去するドライエッチング工程を実施する。ドライエッチング工程はArイオンミリングで行う。
 図2の欄7に、モニタリングした光学検出信号を示す。
 比較例1では、Ru層61の検出信号が所定のレベル(たとえば80)に減少したことの検出時点を基準としてエッチングを終了した。その結果、Ta層51を1nm程度除去したが、Ta層51が2nm程度残った。磁場中熱処理工程において十分な層厚のTa層51があるため、TMR比が良好に高まったが、後工程の軟磁性層の成膜工程を行っても、図2の欄2に示すようにCoFeB層31と軟磁性層33との間にTa層51が介在し、CoFeB層31と軟磁性層33との磁気結合が不十分となった。
 比較例2では、Ru層61の検出信号が所定のレベル(たとえば80)に減少したことの検出時点を基準として比較例1より長く時間をおいてエッチングを終了した。その結果、CoFeB層31を削った。磁場中熱処理工程において十分な層厚のTa層51があるためTMR比が良好に高まったが、CoFeB層31を削りすぎたため結果的にはTMR比を高くすることができなかった。後工程の軟磁性層の成膜工程を行って、CoFeB層31と軟磁性層33とは磁気結合できた。
 そこで、予め、分析装置により所定のレベル(たとえば80)に減少したと検出する終点検出時後のドライエッチング装置によるオーバーエッチング量を特定しておいた。Taで1nmと特定した。終点検出時をトリガーにエッチングを即終了する場合である。
 本発明例にあっては、光学検出信号が所定のレベル(たとえば80)に減少した時点からCoFeB層31の上面までを当該オーバーエッチング量に相当させるだけの層厚、すなわち、1nmで直上B吸収層であるTa層51を積層した。
 そのため、本発明例1では、直上B吸収層(Ta層51)が露出する前の最終層であるRu層61の検出信号が所定のレベル(たとえば80)に減少したことの検出時点でエッチングを終了したが、オーバーエッチング量によりTa層51を精度よく除去できた。すなわち、T層51aを完全に除去することができ、CoFeB層31を削ることもない。
 本発明例1では、磁場中熱処理工程において1nmのTa層51があるためTMR比をある程度高くすることはでき、後工程の軟磁性層の成膜工程を行って、CoFeB層31と軟磁性層33とは磁気結合できた。
 本発明例2でも、直上B吸収層(Ta層51)が露出する前の最終層であるNi層52の検出信号が所定のレベル(たとえば80)に減少したことの検出時点でエッチングを終了し、オーバーエッチング量によりTa層51を精度よく除去できた。すなわち、T層51aを完全に除去することができ、CoFeB層31を削ることもない。
 本発明例2では、磁場中熱処理工程において十分な層厚のB吸収層(Ta層51とNi層52)があるためTMR比を良好に高くすることができ、後工程の軟磁性層の成膜工程を行って、CoFeB層31と軟磁性層33とは磁気結合できた。
 本発明例3でも、直上B吸収層(Ta層51)が露出する前の最終層であるMgO層53の検出信号が所定のレベル(たとえば80)に減少したことの検出時点でエッチングを終了し、オーバーエッチング量によりTa層51を精度よく除去できた。すなわち、T層51aを完全に除去することができ、CoFeB層31を削ることもない。
 本発明例3では、磁場中熱処理工程において十分な層厚のB吸収層(Ta層51とMgO層53)があるためTMR比を良好に高くすることができ、後工程の軟磁性層の成膜工程を行って、CoFeB層31と軟磁性層33とは磁気結合できた。
 以上の本発明例2,3のようにB吸収層は、直上B吸収層(Ta層51)を含めて、材料を切り換えて2層以上とすることで、オーバーエッチング量相当だけ直前の検出信号を確実に得ながら、十分な層厚のB吸収層を磁場中熱処理工程においてCoFeB層31に隣接させておくことができる。したがって、磁場中熱処理工程において、2層のB吸収層(本発明例2でTa層51+Ni層52、本発明例3でTa層51+MgO層53)によるCoFeB層からのBの吸収を経て所望のTMR比を達成することができるとともに、CoFeB層と軟磁性層との交換結合を良好に実現することができる。
 以上のような本発明の製造方法によるトンネル磁気抵抗素子を磁気センサーに利用することで、顕著に高感度な磁気センサーを構成することが可能である。
〔関連事項、製造例〕
 以下に、本発明の関連事項と製造例につき説明する。
 まず、図3を参照してトンネル磁気抵抗素子の基本構造及び本発明が実現しようとする理想的な磁気抵抗特性につき説明する。
 図3に示すようにトンネル磁気抵抗素子1は、磁化の向きが固定された固定磁性層10、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層30、及び、固定磁性層10と自由磁性層30との間に配置された絶縁層20により、磁気トンネル接合を形成し、固定磁性層10の磁化の向きと自由磁性層30の磁化の向きとの角度差に従ってトンネル効果により絶縁層20の抵抗を変化させるものである。
 図3(欄a)(欄b)(欄c)は、図3(欄d)に示す各磁場状態における固定磁性層10の磁化の向き10Aと自由磁性層30の磁化の向き30Aを示す。
 図3(欄a)は検出磁場ゼロの状態(中立位置、図3(欄d)のグラフ上の位置P0)におけるものを、図3(欄b)は所定のプラス磁場が負荷された状態(図3(欄d)のグラフ上の位置P1)におけるものを、図3(欄c)は所定のマイナス磁場が負荷された状態(図3(欄d)のグラフ上の位置P2)におけるものを示す。
 図3(欄a)は検出磁場ゼロの状態(中立位置P0)においては、固定磁性層10の磁化の向き10Aと自由磁性層30の磁化の向き30Aとが略90度のねじれの位置で安定している。これは、それぞれ磁化容易軸の方向に磁化しているからである。すなわち、図3に示すトンネル磁気抵抗素子1は、自由磁性層30の磁化容易軸が固定磁性層10の磁化容易軸に対して略90度ねじれた位置に形成されたものであり、図3(欄a)に示す矢印10Aが固定磁性層10の磁化容易軸の方向を、矢印30Aが自由磁性層30磁化容易軸の方向を示している。
 図3(欄a)(欄b)(欄c)に示すように固定磁性層10の磁化の向き10Aは、外部磁場の変化に影響されず一定であり、自由磁性層30の磁化の向き30Aは、外部磁場(H1,H2)の影響を受けて変化する。
 図3(欄b)に示すように、固定磁性層10の磁化の向き10Aに対して反対方向の外部磁場H1がトンネル磁気抵抗素子1に印加されると、自由磁性層30の磁化の向き30Aが固定磁性層10の磁化の向き10Aの逆方向側へスピンし、トンネル効果により絶縁層20の抵抗が増大する(図3(欄d)で抵抗がR0からR1に増加)。抵抗の変化を図3(欄a)(欄b)(欄c)において電流I0、I1,I2の矢印の太さで模式的に示す。
 図3(欄c)に示すように、固定磁性層10の磁化の向き10Aに対して同方向の外部磁場H2がトンネル磁気抵抗素子1に印加されると、自由磁性層30の磁化の向き30Aが固定磁性層10の磁化の向き10Aと同方向側へスピンし、トンネル効果により絶縁層20の抵抗が減少する(図3(欄d)で抵抗がR0からR2に減少)。
 図3(欄d)に示すように抵抗(縦軸)を増大させる方向にも、減少させる方向にも、外部磁場の強さに対して比例的に(グラフが直線的に)抵抗変化を起こす性質(リニアリティ)を有するトンネル磁気抵抗素子1を実現したい。
 図4に示す従来例のトンネル磁気抵抗素子101は、特許文献3-7に記載の類のもので、絶縁層20の下部に固定磁性層10、上部に自由磁性層30が形成され、自由磁性層30は、強磁性層(CoFeB)31と軟磁性層(NiFe又はCoFeSiB)33との間に磁気結合層(Ru)32が介在する積層構造である。
 詳しくは、従来例のトンネル磁気抵抗素子101は、基板(Si,SiO2)2上に、下地層(Ta)3が形成され、その上に固定磁性層10として、下から反強磁性層(IrMn)11、強磁性層(CoFe)12、磁気結合層(Ru)13、強磁性層(CoFeB)14が積層され、絶縁層(MgO)20を介して、その上に、自由磁性層30として、下から強磁性層(CoFeB)31、磁気結合層(Ru)32、軟磁性層(NiFe又はCoFeSiB)33が積層された積層構造を有する。
 このような従来例のトンネル磁気抵抗素子101にあっては、都度向きを異ならせて外部磁場を印加しながら熱処理する磁場中熱処理を複数回行っても、すべての磁性層の磁化容易軸の方向が揃って磁気抵抗特性が図5に示すようなヒステリシスの高い形態となってしまい、上述したリニアリティを実現できない。図4に示す矢印A1が磁性層の磁化容易軸の方向である。
 一方、図6に示す従来例のトンネル磁気抵抗素子102は、特許文献8に記載の類のもので、図4に対し固定磁性層10と自由磁性層30とを上下逆にした積層構造を有する。
 このような従来例のトンネル磁気抵抗素子102にあっては、自由磁性層30の磁化容易軸の方向(矢印A1)を固定磁性層10の容易磁化軸の方向(矢印A2)と異なる方向に形成できるとともに、自由磁性層30の形状を大きく(Hkが改善、ノイズが低減すると期待)することができるが、上層の絶縁層20や固定磁性層10に悪影響(均一性や結晶性の悪化が原因と予想される)が生じ、磁気センサーとしての性能を高めることが困難になった。
 そこで、図7に示すように本発明の製造方法によるトンネル磁気抵抗素子1Aは、従来例のトンネル磁気抵抗素子101と同様に、磁性層10,30及び絶縁層20を支持する基板2に近い側から、固定磁性層10、絶縁層20、自由磁性層30の順で積層され、従来例のトンネル磁気抵抗素子101の積層構造に対し磁気結合層(Ru)32を排し、自由磁性層30は、下面を絶縁層20に接合する強磁性層31、及び当該強磁性層31の上面に接触して積層された軟磁性層33を有する積層構造とする。
 かかる積層構造によれば、自由磁性層30を構成する強磁性層31及び軟磁性層33の磁化容易軸は互いに同方向にあり、かつ、固定磁性層10の磁化容易軸に対して異なる方向(ねじれの位置、例えば略90度ねじれた方向)にある磁化特性に形成することができ、上述したリニアリティを実現できる。
(製造プロセス要点)
 そのための、製造方法の要点を説明する。
 まず、図8Aに示すように、基板2から少なくとも強磁性層31までの層を積層した後、さらに図示しないが上述したB吸収層、加工用キャップ層を積層した後、この積層体に対し、所定方向(矢印A1)の外部磁場を印加しながら熱処理を行い、自由磁性層30を構成する強磁性層31の磁化容易軸と固定磁性層10の磁化容易軸とを同方向に形成する第1の磁場中熱処理工程を実施する。
 かかる第1の磁場中熱処理工程の後、さらに上述のとおりB吸収層、加工用キャップ層を精度よく除去した後、図8Bに示すように第1の磁場中熱処理工程のときとは向きをねじるように異ならせて(矢印A2方向にした)外部磁場を印加しながら自由磁性層30を構成する軟磁性層33を成膜することで、自由磁性層30の磁化容易軸を、固定磁性層10の磁化容易軸に対して異なる方向(例えば略90度ねじれた方向)に形成する磁場中成膜工程を実施し、図8Cに示す積層構造を得る。
 図8Cに示すように、以上の第1の磁場中熱処理工程、磁場中成膜工程を経ることで、自由磁性層30を構成する強磁性層31及び軟磁性層33の磁化容易軸は互いに同方向にあり、かつ、固定磁性層10の磁化容易軸に対して異なる方向(好ましくは略90度ねじれた方向)にある磁化特性に形成することができる。すなわち、固定磁性層10の磁化容易軸は、第1の磁場中熱処理工程のときに印加された磁場方向(矢印A1)に形成され、自由磁性層30の磁化容易軸は、磁場中成膜工程のときに印加された磁場方向(矢印A2)に形成される。
 この時点で、図9に示すようなリニアリティのある磁気抵抗特性が得られる。
 さらに上記磁場中成膜工程の後、次の工程を実施することが好ましい。すなわち、磁場中成膜工程のときと同じ方向(矢印A2)に外部磁場を印加しながら熱処理を行う第2の磁場中熱処理工程を実施する。さらに、第2の磁場中熱処理工程の後、第1の磁場中熱処理工程のときと同じ方向(矢印A1)に外部磁場を印加しながら熱処理を行う第3の磁場中熱処理工程を実施する。これにより、図10A,図10Bに示すようにHk,Hcを小さくして高感度化を図ることができる。
(製造プロセスの実施例)
 ここで、上記製造プロセスの要点に従った製造プロセスの一実施例を、図11を参照しつつ説明する。図11において下地層3の図示を省略する。
 基板2上に成膜された強磁性トンネル接合(Magnetic Tunnel Junction : MTJ)多層膜(層10,20,31)に対して第1の磁場中熱処理工程を行う(図11(欄a))。印加する磁場方向を矢印A1方向とし、磁場の強さを1Tとし、熱処理温度を375℃とする。この熱処理によって抵抗変化率であるトンネル磁気抵抗(Tunnel Magneto-Resistance : TMR)比が大きく向上する。
 第1の磁場中熱処理工程を行ったMTJ多層膜表面にフォトリソグラフィもしくは電子線リソグラフィ(本実施例ではフォトリソグラフィ)によってレジストパターン形成を行う(図11(欄b1) (欄b2))。層41は強磁性層31上に形成された上述のB吸収層、加工用キャップ層(図2の51-53、61に相当)で、第1の磁場中熱処理工程前に形成したものである。層41上にレジストパターン42を形成する。
 レジストパターン42を形成したMTJ多層膜に対して、Arイオンミリングを行い、MgO絶縁層20までエッチングを行う(図11(欄b1) (欄b2))。レジストパターン42直下のMTJ多層膜はArイオンに晒されないため最上部層まで多層膜構造が残り、形成されたレジスト形状のMTJピラーが形成される(図11(欄b1) (欄b2))。
 MTJピラーと後のプロセスで成膜する軟磁性層33及び上部電極層を電気的に絶縁し、MTJピラー部分にのみ電流を流すため、層間絶縁層43の形成する(図11(欄c1)(欄c2))。層間絶縁層43の材料は、SiO2やAl-Oxを用いることができる(本実施例はSiO2を使用)。層間絶縁層43の形成プロセスとして、リフトオフ法やコンタクトホール形成法を用いることができる(本実施例ではリフトオフ法)。リフトオフ法では、MTJピラー形成用のレジストパターン42を残したまま、基板全体にSiO2等の絶縁膜を成膜する。絶縁膜の成膜にはスパッタリング法や低温CVDを用いることができる(本実施例では低温CVDを使用)。絶縁膜の成膜後、基板をアセトンやジメチルピロリドン等の有機溶媒で超音波洗浄することで、レジスト42を除去する。この際、レジスト42上に成膜された絶縁膜も除去されるため、MTJピラー上面のみ多層膜が露出した構造を作製することができる。コンタクトホール形成法では、MTJピラー形成用レジストパターン42を有機溶媒等で除去し、基板全体に絶縁膜を成膜する。その後、MTJピラー上の電気的コンタクトが必要な部分のみ開口されたレジストパターンを形成し、CHF3、CH4等をプロセスガスに用いて反応性エッチングを行うことで、絶縁膜に開口を形成する。コンタクト開口用のレジストパターンを有機溶媒等で除去することで、MTJピラー上面のみ多層膜が露出した構造を作製することができる。
 層間絶縁層43を形成した基板に対して、軟磁性層33及び上部電極形成用のマスクを用いてフォトリソグラフィによりレジストパターン44を形成する(図11(欄d1)( 欄d2))。軟磁性層33及び上部電極層が形成される領域を開口としてパターン形成を行う。
 軟磁性層33及び上部電極層形成用レジストパターン44が形成された基板に対して、Arイオンミリングによるエッチングを行って上述のように層41を精度よく除去し、MTJ多層膜中の上部CoFeB強磁性層31を露出させる(図11(欄e1)( 欄e2))。この露出したCoFeB層31の上に軟磁性層33を成膜することで、磁気抵抗曲線に軟磁気特性が発現する。CoFeB層31表面の酸化等によってCoFeB層31と軟磁性層33の磁気的結合が阻害されるのを防ぐため、Arイオンミリングと軟磁性層33の成膜の間に基板を大気に晒さず、連続的に真空下でエッチングと成膜を行うことが望ましい。軟磁性層33の材料にはCoFeSiB等のアモルファス材料やNiFe系合金等のソフト磁性材料を使用することができる(本実施例ではCoFeSiBを使用)。軟磁性層33の成膜の際にMTJ多層膜の磁化困難軸方向(矢印A2方向)に磁場を印加しながら成膜を行うことによって(図11(欄f1)( 欄f2))、MTJ下部の磁性多層膜と上部CoFeB層31及び軟磁性層33の磁化容易軸を90度にねじれた関係にすることができ、これによって自由磁性層30の困難軸方向の磁場成分に対して抵抗が線形に変化する図9に示すようなリニアリティのある磁気抵抗曲線が得られる。
 本実施例では、基板2をSi,SiO2とし、その上にTaを5nm、 Ruを10nm、IrMnを10nm、CoFeを2nm、Ruを0.85nm、 CoFeBを3nm、MgOを2.7nm、CoFeBを3nm、層41を上述のとおり積層し、磁場強度1T、温度は375℃で第1の磁場中熱処理を行なった。その後、CoFeB層31を露出させた後に軟磁性層(CoFeSiB)33を膜厚100nmまで磁場中スパッタで成膜した。
 軟磁性層33の成膜後、上部電極層の成膜を行う(図11(欄g1)( 欄g2))。上部電極層材料としてTa、Al、Cu、Au等及びそれらの多層膜を用いることができる(本実施例ではTa/Al多層膜)。上部電極層は軟磁性層33の酸化を防止し、センサ動作時の電源回路やアンプ回路等との電気的接続を担う。
 軟磁性層33及び上部電極を成膜した基板を有機溶媒等を用いて超音波洗浄し、レジスト44を除去することで、レジスト開口部以外の軟磁性層33及び上部電極層を除去する(図11(欄g1)(欄g2))。したがって、軟磁性層33及び上部電極層はフォトリソグラフィによって任意の形状に形成することができる。また、複数回のフォトリソグラフィを行うことで、軟磁性層33と上部電極とで異なった形状を持つ素子を作製することも可能である。
 以上の微細加工によってトンネル磁気抵抗素子は作製されるが、軟磁性層33は素子作製後、熱処理を行われていないas-depositedの状態である。したがって作製した素子に対して再び磁場中熱処理を行い、軟磁性層33の磁気異方性を操作することで、よりソフトな磁気特性を持った磁気抵抗曲線を発現することが可能である。回転磁場中熱処理や、磁場方向を軟磁性層33の困難軸から容易軸へと変化させた熱処理等を行うことで、軟磁性層33のHkが低下し、より高い磁場感度が得られる。
 本実施例では、磁場方向を第1の磁場中熱処理工程のときの方向(矢印A1方向)に対して90度の方向(矢印A2方向)にして第2の磁場中熱処理工程を実施し,さらに0度方向(矢印A1方向)にして第3の磁場中熱処理工程を行った。第2の磁場中熱処理工程は熱処理温度を200℃とし、第3の磁場中熱処理工程は熱処理温度を200℃として、図10Bに示す磁気抵抗曲線が得られた。図10Aは第2の磁場中熱処理工程の熱処理温度を200℃とし、第3の磁場中熱処理工程の熱処理温度を180℃とした場合である。このように第3の磁場中熱処理工程の熱処理温度を上げていくことによって、Hk,Hcとも小さくして高感度化できることが分かる。
 図7に示すように本発明のトンネル磁気抵抗素子の製造方法は、従来の素子構成と異なり、MTJ多層膜に対して第1の磁場中熱処理工程を行なった後に軟磁性層をスパッタする構成の為、磁場中熱処理で高いTMR比を発現させるプロセスに軟磁性層が悪影響を与えない。その為、軟磁性層に使用する材料の選択肢を広く設けることができ、フェリ磁性(例えばパーマロイやアモルファス)・フェロ磁性(例えばフェライト)・微結晶の合金等から用途や使い勝手に合わせて最適な材料を選択すれば良い。
 また、従来のトンネル磁気抵抗素子の自由磁性層は数 nm ~ 数百 nmの膜厚が限界であったが、本発明の製造方法における自由磁性層では数μmの軟磁性層を接合させることも可能であり、軟磁性層の体積を非常に大きく取ることができる。その為、自由磁性層の熱揺らぎに起因したホワイトノイズや1/fノイズを大きく低減させ、高いSN比を備えた磁気センサーの作製が期待できる。
 さらには、自由磁性層は素子の最表面に位置することから、形状を自由に設けられる。その為、自由磁性層に磁束を集中させるフラックスコンセントレータ(Flux Concentrator : FC)を内蔵したトンネル磁気抵抗素子の作製が期待できる。従来、トンネル磁気抵抗素子とFCとは物理的に分離した構造で作製されるが、本発明では自由磁性層とFCとは薄膜として接合した構造若しくは一体の構造となる為、磁束の集中効果を最大限に利用できる。
 以上の実施例においては、直上B吸収層をTaとしたが、本発明はこれに限らず、Ta,Ni,Ti,MgO等のBを吸収する材料から任意に選択することができる。
 また、以上の実施例における材料を切り換えた2層以上のB吸収層は例にすぎず、Ta,Ni,Ti,MgO等のBを吸収する材料から任意に2以上を選択することができる。
 本発明は、トンネル磁気抵抗素子の製造に利用することができる。
1 トンネル磁気抵抗素子
1A トンネル磁気抵抗素子
2 基板
3 下地層
10 固定磁性層
20 絶縁層
30 自由磁性層
31 強磁性層
33 軟磁性層
51 直上B吸収層
51-53 B吸収層
61 加工用キャップ層

Claims (5)

  1. 磁化の向きが固定された固定磁性層、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層、及び、前記固定磁性層と前記自由磁性層との間に配置された絶縁層により、磁気トンネル接合を形成し、前記固定磁性層の磁化の向きと前記自由磁性層の磁化の向きとの角度差に従ってトンネル効果により絶縁層の抵抗を変化させるトンネル磁気抵抗素子の製造方法であって、
    基板上に、前記固定磁性層、前記絶縁層の順で積層し、さらに当該絶縁層の上面に接してCoFeB層を積層し、当該CoFeB層の上面に接してBを吸収する材料からなる直上B吸収層を積層し、当該直上B吸収層を含めて前記CoFeB層の上に材料を切り換えて2層以上積層する積層工程と、
    前記積層工程を経た積層体に対し、所定方向の外部磁場を印加しながら熱処理を行って、自由磁性層を構成する前記CoFeB層の磁化容易軸と前記固定磁性層の磁化容易軸とを同方向に形成する磁場中熱処理工程と、
    前記磁場中熱処理工程を経た積層体から、前記直上B吸収層までを除去するドライエッチング工程とを備え、
    前記ドライエッチング工程において、ドライエッチング装置及びこれによる被エッチング面の材料を識別する分析装置を適用し、前記ドライエッチング装置によるエッチングの終了を、前記直上B吸収層が露出する前の最終層が所定のレベルまで減少した又は前記直上B吸収層が所定のレベルまで増加したと前記分析装置により検出した終点検出時とし、
    予め、前記分析装置による終点検出時後の前記ドライエッチング装置によるオーバーエッチング量を特定しておき、前記積層工程において、前記所定のレベルから前記CoFeB層の上面までを当該オーバーエッチング量に相当させるだけの層厚で前記直上B吸収層を積層するトンネル磁気抵抗素子の製造方法。
  2. 前記積層工程における前記CoFeB層の上の2層以上の積層部分には、Bを吸収する材料からなるB吸収層と、当該B吸収層上を覆う加工用キャップ層とが含まれる請求項1に記載のトンネル磁気抵抗素子の製造方法。
  3. 前記積層工程における前記B吸収層は、前記直上B吸収層を含めて、材料を切り換えて2層以上である請求項2に記載のトンネル磁気抵抗素子の製造方法。
  4. 前記磁場中熱処理工程において、前記B吸収層による前記CoFeB層からのBの吸収を経て所望のTMR比を達成する請求項3に記載のトンネル磁気抵抗素子の製造方法。
  5. 前記ドライエッチング工程により露出した前記CoFeB層の上に軟磁性層を成膜する請求項1から請求項4のうちいずれか一に記載のトンネル磁気抵抗素子の製造方法。
PCT/JP2018/001085 2017-01-24 2018-01-17 トンネル磁気抵抗素子の製造方法 WO2018139276A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880007206.3A CN110178236B (zh) 2017-01-24 2018-01-17 隧道磁阻元件的制造方法
JP2018564496A JP6969752B2 (ja) 2017-01-24 2018-01-17 トンネル磁気抵抗素子の製造方法
US16/478,492 US10727402B2 (en) 2017-01-24 2018-01-17 Method for producing tunnel magnetoresistive element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017010215 2017-01-24
JP2017-010215 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018139276A1 true WO2018139276A1 (ja) 2018-08-02

Family

ID=62978587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001085 WO2018139276A1 (ja) 2017-01-24 2018-01-17 トンネル磁気抵抗素子の製造方法

Country Status (4)

Country Link
US (1) US10727402B2 (ja)
JP (1) JP6969752B2 (ja)
CN (1) CN110178236B (ja)
WO (1) WO2018139276A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019004075A (ja) * 2017-06-16 2019-01-10 東京エレクトロン株式会社 磁気抵抗素子の製造方法
US11158786B2 (en) 2019-09-25 2021-10-26 International Business Machines Corporation MRAM device formation with controlled ion beam etch of MTJ
WO2024069733A1 (ja) * 2022-09-27 2024-04-04 Tdk株式会社 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916696B2 (en) * 2019-05-01 2021-02-09 Spin Memory, Inc. Method for manufacturing magnetic memory element with post pillar formation annealing
US11200934B2 (en) * 2020-04-20 2021-12-14 Western Digital Technologies, Inc. Tunneling metamagnetic resistance memory device and methods of operating the same
US11152048B1 (en) * 2020-04-20 2021-10-19 Western Digital Technologies, Inc. Tunneling metamagnetic resistance memory device and methods of operating the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129605A1 (ja) * 2007-03-30 2008-10-30 Canon Anelva Corporation 磁性素子の製造法
JP2011249590A (ja) * 2010-05-27 2011-12-08 Fujitsu Ltd 磁気トンネル接合素子を用いた磁気ランダムアクセスメモリおよびその製造方法
JP2015046529A (ja) * 2013-08-29 2015-03-12 株式会社アルバック 磁気抵抗素子の製造方法
JP2016171159A (ja) * 2015-03-12 2016-09-23 東京エレクトロン株式会社 磁性層をエッチングする方法
WO2017221896A1 (ja) * 2016-06-20 2017-12-28 国立大学法人東北大学 トンネル磁気抵抗素子及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925168A (ja) 1995-07-11 1997-01-28 Ngk Insulators Ltd 高強度窒化珪素焼結体
JP3680655B2 (ja) 1999-08-30 2005-08-10 ソニー株式会社 磁気抵抗効果素子及びその製造方法
JP2003124542A (ja) * 2001-10-11 2003-04-25 Canon Inc 積層膜加工方法、トンネル磁気抵抗効果素子の製造方法及びトンネル磁気抵抗効果素子
JP2004128026A (ja) 2002-09-30 2004-04-22 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子、磁気ヘッド、磁気記録装置
JP5066525B2 (ja) * 2006-08-30 2012-11-07 アルプス電気株式会社 磁気検出装置およびその製造方法
JP2008085208A (ja) 2006-09-28 2008-04-10 Fujitsu Ltd トンネル磁気抵抗素子、磁気ヘッドおよび磁気メモリ
CN100576452C (zh) * 2007-06-18 2009-12-30 中芯国际集成电路制造(上海)有限公司 栅极刻蚀方法、栅极刻蚀终点检测方法与系统
EP2419796B1 (en) * 2009-05-29 2016-09-07 Aspen Technology, Inc. Apparatus and method for model quality estimation and model adaptation in multivariable process control
JP2013048124A (ja) 2009-11-20 2013-03-07 Fuji Electric Co Ltd 強磁性トンネル接合素子
JP5177585B2 (ja) * 2010-09-17 2013-04-03 株式会社東芝 磁気抵抗効果素子及び磁気メモリ
US8570691B2 (en) 2011-04-07 2013-10-29 HGST Netherlands B.V. TMR sensor film using a tantalum insertion layer and systems thereof
JP5816867B2 (ja) 2011-11-08 2015-11-18 国立大学法人東北大学 トンネル磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
JP5805500B2 (ja) 2011-11-11 2015-11-04 コニカミノルタ株式会社 生体磁気センサーの製造方法
CN103594389B (zh) * 2012-08-13 2017-03-01 南亚科技股份有限公司 在基板中形成沟槽的方法
DE102015103968B4 (de) * 2014-03-18 2023-07-27 Samsung Electronics Co., Ltd. Verfahren zum Bereitstellen eines in magnetischen Spin-Transfer-Vorrichtungen verwendbaren magnetischen Übergangs mit senkrechter magnetischer Anisotropie unter Verwendung einer Einfügeopferschicht
KR101663958B1 (ko) * 2014-12-08 2016-10-12 삼성전자주식회사 자기 메모리 소자의 제조방법
SG11201601116UA (en) * 2015-02-02 2016-09-29 Canon Anelva Corp Method of manufacturing perpendicular mtj device
JP6470595B2 (ja) * 2015-03-09 2019-02-13 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
US9806252B2 (en) * 2015-04-20 2017-10-31 Lam Research Corporation Dry plasma etch method to pattern MRAM stack
US9362489B1 (en) * 2015-04-24 2016-06-07 Yimin Guo Method of making a magnetoresistive element
KR101800237B1 (ko) * 2015-05-22 2017-11-22 캐논 아네르바 가부시키가이샤 자기저항 효과 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129605A1 (ja) * 2007-03-30 2008-10-30 Canon Anelva Corporation 磁性素子の製造法
JP2011249590A (ja) * 2010-05-27 2011-12-08 Fujitsu Ltd 磁気トンネル接合素子を用いた磁気ランダムアクセスメモリおよびその製造方法
JP2015046529A (ja) * 2013-08-29 2015-03-12 株式会社アルバック 磁気抵抗素子の製造方法
JP2016171159A (ja) * 2015-03-12 2016-09-23 東京エレクトロン株式会社 磁性層をエッチングする方法
WO2017221896A1 (ja) * 2016-06-20 2017-12-28 国立大学法人東北大学 トンネル磁気抵抗素子及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019004075A (ja) * 2017-06-16 2019-01-10 東京エレクトロン株式会社 磁気抵抗素子の製造方法
US11158786B2 (en) 2019-09-25 2021-10-26 International Business Machines Corporation MRAM device formation with controlled ion beam etch of MTJ
WO2024069733A1 (ja) * 2022-09-27 2024-04-04 Tdk株式会社 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子

Also Published As

Publication number Publication date
JP6969752B2 (ja) 2021-11-24
US10727402B2 (en) 2020-07-28
CN110178236A (zh) 2019-08-27
CN110178236B (zh) 2023-09-26
US20190393411A1 (en) 2019-12-26
JPWO2018139276A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
US11925122B2 (en) Magnetoresistive structure having two dielectric layers, and method of manufacturing same
US10622554B2 (en) Magnetoresistive stack and method of fabricating same
US20210234092A1 (en) Reduction of Barrier Resistance X Area (RA) Product and Protection of Perpendicular Magnetic Anisotropy (PMA) for Magnetic Device Applications
WO2018139276A1 (ja) トンネル磁気抵抗素子の製造方法
EP2366199B1 (en) Magnetic memory cells with radial barrier
US9537087B2 (en) Magnetoresistance sensor with perpendicular anisotropy
KR20030014209A (ko) 절연 베일들을 갖는 자기 요소 및 그것의 제조 방법
KR20140111508A (ko) 자기저항 구조체, 이를 포함하는 자기 메모리 소자 및 자기저항 구조체의 제조 방법
JP2012533141A (ja) 複合磁気シールドを有する磁気センサ
US7998758B2 (en) Method of fabricating a magnetic stack design with decreased substrate stress
JP6923881B2 (ja) トンネル磁気抵抗素子及びその製造方法
CN110199352B (zh) 磁阻元件以及磁阻元件的制造方法
JP4572524B2 (ja) 磁気抵抗効果膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744248

Country of ref document: EP

Kind code of ref document: A1