WO2018135912A2 - 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 조성물 - Google Patents

커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 조성물 Download PDF

Info

Publication number
WO2018135912A2
WO2018135912A2 PCT/KR2018/000936 KR2018000936W WO2018135912A2 WO 2018135912 A2 WO2018135912 A2 WO 2018135912A2 KR 2018000936 W KR2018000936 W KR 2018000936W WO 2018135912 A2 WO2018135912 A2 WO 2018135912A2
Authority
WO
WIPO (PCT)
Prior art keywords
curcumin
helicobacter pylori
lipid nanoparticles
phospholipid
ginsenosides
Prior art date
Application number
PCT/KR2018/000936
Other languages
English (en)
French (fr)
Other versions
WO2018135912A3 (ko
Inventor
유봉규
아제이비자야쿠마르
정광원
정준원
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of WO2018135912A2 publication Critical patent/WO2018135912A2/ko
Publication of WO2018135912A3 publication Critical patent/WO2018135912A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles

Definitions

  • the present invention relates to a composition for preventing or treating Helicobacter pylori infection containing curcumin-collected ginsenosides and phospholipid-based lipid nanoparticles as an active ingredient.
  • Helicobacter pylori is a gram-negative curved rod of, observed in the gastric mucosa biopsy specimens of gastritis and peptic ulcer patients, may lead to gastritis, gastric ulcer, duodenal ulcer and gastric cancer.
  • Helicobacter pylori secretes urease, a urease, to hydrolyze urea in gastric juice to produce ammonia.
  • Ammonia increases the pH in gastric juice, damages the gastric mucus layer, and inhibits the oxygen consumption of gastric mucosa cells and ATP production in mitochondria.
  • monochloroamines are formed therefrom to generate reactive oxygen species, which not only causes chronic inflammation due to cell damage, but also causes DNA damage, thereby facilitating the cancer development process.
  • Treatment of Helicobacter pylori infection currently available internationally is based on tritherapy, bitherapy with bismuth, sequential therapy, co-therapy, combination therapy, remedies (levofloxacin tritherapy and rifabutin tritherapy), probiotic therapy, and antibiotic susceptibility testing.
  • Treatments and custom therapies based on pharmaceutical genomics.
  • Tritherapy is the method used as the primary standard therapy and consists of a proton pump inhibitor, amoxicillin and clarithromycin. However, as the resistance to antibiotics increases, the rate of eradication from tritherapy is decreasing.
  • quadruple therapy, sequential therapy, combination therapy, and remedies have low success rates due to the emergence of multi-drug antibiotic resistant bacteria.
  • probiotic therapy is a method of using the probiotics in addition to the existing standard bactericidal therapy, it is possible to improve the drug compliance because it prevents diarrhea caused by side effects during the conventional bactericidal therapy.
  • live bacteria do not play a direct role in the elimination of Helicobacter pylori, there is a limit to the treatment of Helicobacter pylori.
  • Republic of Korea Patent No. 10-1019733 discloses a composition for the treatment of gastrointestinal diseases containing gujeolcho extract or fractions having growth inhibitory activity of Helicobacter pylori
  • Republic of Korea Patent No. 10-1074348 Helicobacter containing green algae extract
  • Antimicrobial compositions for pylori are disclosed.
  • Curcumin is a natural pigment contained in curry and mustard, and has been used as a folk remedy for inflammation and skin diseases by exhibiting various physiological activities such as antioxidant activity, anti-inflammatory action and anticancer action. In addition, it lowers blood cholesterol levels by preventing cholesterol from being absorbed into the digestive tract, and has recently been used to prevent or treat diseases such as hyperlipidemia, type 2 diabetes, and dementia. However, despite excellent pharmacological activity, curcumin has a low solubility in water, which results in a slow dissolution rate in the digestive tract and a very low bioavailability.
  • curcumin into formulations such as pharmaceuticals, cosmetics and foods.
  • organic solvents or surfactants are used to improve the solubility of curcumin
  • curcumin passes through the intestinal cells and is metabolized by glucuronidation and sulphation reaction, which is a kind of inclusion reaction in the endoplasmic reticulum and hepatocytes. Curcumin-specific antioxidant activity is lost.
  • glucuronidation and sulphation reaction which is a kind of inclusion reaction in the endoplasmic reticulum and hepatocytes.
  • Curcumin-specific antioxidant activity is lost.
  • Korean Patent No. 10-1258537 discloses a method for preparing curcumin derivatives having improved water solubility and stability compared to curcumin.
  • the present inventors while developing a new method for treating infection by Helicobacter pylori, ginsenosides and phospholipid-based lipid nanoparticles, not only improve the solubility and stability of curcumin trapped therein, but also Helicobacter pylori By confirming the superior antibacterial activity, the present invention was completed.
  • An object of the present invention is to provide a pharmaceutical composition for the prevention or treatment of Helicobacter pylori infection containing lipid nanoparticles, including ginsenosides and phospholipids, curcumin collected.
  • Another object of the present invention to provide a health functional food for the improvement of Helicobacter pylori infection containing lipid nanoparticles, including ginsenosides and phospholipids, curcumin collected.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of Helicobacter pylori infection containing lipid nanoparticles, including ginsenosides and phospholipids, curcumin collected.
  • the present invention provides a health functional food for the improvement of Helicobacter pylori infection containing lipid nanoparticles, including ginsenosides and phospholipids, curcumin collected.
  • the present invention also provides a method for preventing or treating a Helicobacter pylori infection, comprising administering to a subject a pharmaceutically effective amount of lipid nanoparticles comprising curcumin, ginsenosides and phospholipids.
  • the present invention also provides a use of a pharmaceutical composition containing lipid nanoparticles, including ginsenosides and phospholipids, in which curcumin is collected, for use in the prevention or treatment of Helicobacter pylori infection.
  • the present invention provides a use for the improvement of Helicobacter pylori infection of a health functional food containing lipid nanoparticles, including ginsenosides and phospholipids, in which curcumin is collected.
  • Ginsenosides and phospholipid-based lipid nanoparticles of the curcumin collected by the present invention improve the solubility and stability of the collected curcumin, and excellent antibacterial activity against Helicobacter pylori, it can be usefully used to treat the infection of Helicobacter pylori.
  • FIG. 1 is a photograph of a curcumin-collected ginsenoside and phospholipid-based lipid nanoparticles dispersed in water with an optical microscope.
  • Figure 2 is a graph confirming the particle size distribution of curcumin collected ginsenosides and phospholipid-based lipid nanoparticles.
  • 3 is a graph showing the elution amount of curcumin over time in ginsenosides and phospholipid-based lipid nanoparticles collected curcumin.
  • Figure 4 is a graph showing the surface charge change of curcumin collected ginsenosides and phospholipid-based lipid nanoparticles over time.
  • Figure 5 is a graph showing the concentration of curcumin remaining without degradation in the ginsenosides and phospholipid-based lipid nanoparticles collected curcumin over time.
  • Figure 6 is a photograph confirming the antimicrobial activity of Helicobacter pylori (G88012 and 95-71) of ginsenosides and phospholipid-based lipid nanoparticles collected curcumin.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of Helicobacter pylori infection containing lipid nanoparticles, including ginsenosides and phospholipids, curcumin is collected as an active ingredient.
  • the present invention also provides a method for preventing or treating a Helicobacter pylori infection, comprising administering to a subject a pharmaceutically effective amount of lipid nanoparticles comprising curcumin, ginsenosides and phospholipids.
  • the present invention also provides a use of a pharmaceutical composition containing lipid nanoparticles, including ginsenosides and phospholipids, in which curcumin is collected, for use in the prevention or treatment of Helicobacter pylori infection.
  • the ginsenoside may be a low molecular weight ginsenoside.
  • the low molecular weight ginsenoside may have a molecular weight of 1,500 g / mole or less, specifically, 1,200 g / mole or less, and more specifically, 900 g / mole or less.
  • the ginsenoside is PPD (protopanaxadiol), PPT (protopanaxatriol), compound K (compound K), Rb1, Rb2, Rb3, Rc, Rd, Re, F1, F2, Rg1, Rg2, Rg3, Rh1, Rh2, It may be any one or more selected from the group consisting of Ra3, Rs1, Rs2, CO, CY, C-Mcl, C-Mc, gypenoside XVII, zipenoside LXXV and Rf.
  • the ginsenoside is PPD (protopanaxadiol), PPT (protopanaxatriol), compound K (compound K), Rb1, Rb2, Rb3, Rc, Rd, Re, F1, F2, Rg1, Rg2, Rg3, Rh1 and Rh2 It may be any one or more selected from the group consisting of.
  • the low molecular weight ginsenoside may be obtained by chemical synthesis through a known method, or may be obtained by fermentation, acid hydrolysis, alkali hydrolysis or enzymatic digestion of ginseng saponin.
  • Ginsenosides and phospholipids included in the lipid nanoparticles may be mixed in a weight ratio of 1: 0.05 to 50, specifically, 1: 0.05 to 30, more specifically, 1: 0.05 to 20.
  • the lipid nanoparticles may further include any one or more selected from the group consisting of enzymatically degraded phospholipids, glycerin fatty acid esters, saturated fatty acids and unsaturated fatty acids.
  • the enzyme phospholipid refers to a phospholipid in which one of two fatty acid chains included in the phospholipid is removed by treating a phospholipid with a fatty acid degrading enzyme.
  • the enzymatic phospholipid may be included in an amount of 0.1 to 0.9 parts by weight, specifically, 0.1 to 0.7 parts by weight, and more specifically 0.1 to 0.5 parts by weight based on the total weight of the phospholipids.
  • the glycerin fatty acid ester may be any one or more selected from the group consisting of tristearin, tripalmitin and trimyristin.
  • the glycerin fatty acid ester may be included in an amount of 0.1 to 0.9 parts by weight, specifically, 0.1 to 0.7 parts by weight, and more specifically 0.1 to 0.5 parts by weight based on the total weight of the phospholipid.
  • the saturated fatty acid may be C 6 to C 22 .
  • the saturated fatty acid may be at least one selected from the group consisting of capric acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid and behenic acid.
  • the saturated fatty acid may be included 0.1 to 0.9 parts by weight, specifically, 0.1 to 0.8 parts by weight, more specifically 0.1 to 0.6 parts by weight based on the total weight of the phospholipid.
  • the unsaturated fatty acid may be C 6 to C 22 .
  • the unsaturated fatty acid may be any one or more selected from the group consisting of omega-3 unsaturated fatty acid, omega-6 unsaturated fatty acid and omega-9 unsaturated fatty acid.
  • the unsaturated fatty acid may be included in an amount of 0.1 to 0.9 parts by weight, specifically, 0.1 to 0.8 parts by weight, and more specifically 0.1 to 0.6 parts by weight based on the total weight of the phospholipid.
  • the lipid nanoparticles are prepared by mixing ginsenosides and phospholipids and dissolving them in a solvent to prepare a solution; And it may be prepared by a method comprising the step of dispersing the solution.
  • the solvent may be water, lower alcohols of C1 to C4 or mixtures thereof.
  • the alcohol may be ethanol or methanol.
  • the method may further include the step of removing the solvent from the solution before dispersing the solution in the production method. When removing the solvent from the solution, it can be carried out using conventional methods used to remove the solvent. Specifically, reduced pressure concentration, freeze drying, spray drying or hot air drying may be used. In one embodiment of the present invention, reduced pressure concentration may be used to remove the solvent. If the solvent is not removed from the solution, it can be dispersed by adding water in the presence of the solvent.
  • the present inventors mix low-molecular weight ginsenosides, phospholipids, enzymatically degraded phospholipids, curcumin, glycerin fatty acid esters, saturated fatty acids or unsaturated fatty acids, and alcohols to collect curcumin-based ginsenosides and phospholipids.
  • the average particle size forms nanoparticles of about 300 nanometers (see FIGS. 1 and 2).
  • the lipid nanoparticles can be used as an intravenous injection.
  • the present inventors improve the solubility (see Table 2) and dissolution rate (see FIG. 3) of curcumin collected in the ginsenoside and phospholipid-based lipid nanoparticles collected therein, and stability (Table 3 and 4 and 5) and the antimicrobial activity against Helicobacter (see Tables 5 and 6) was also confirmed.
  • the lipid nanoparticles including ginsenosides and phospholipids, in which the curcumin is collected may be usefully used for the prevention or treatment of Helicobacter pylori infection.
  • the composition may include 10 to 95% by weight of the lipid nanoparticles according to the present invention as an active ingredient based on the total weight of the composition.
  • the composition of the present invention may further contain at least one active ingredient exhibiting the same or similar function in addition to the above-mentioned effective ingredient.
  • compositions of the present invention may also include carriers, diluents, excipients or combinations of two or more commonly used in biological agents.
  • Pharmaceutically acceptable carriers are not particularly limited so long as they are suitable for delivery of the composition in vivo, see, eg, Merck Index, 13th ed., Merck & Co. Inc.
  • the compound, saline solution, sterile water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol or one or more of these components may be mixed.
  • other conventional additives such as antioxidants, buffers, bacteriostatic agents, and the like may be added.
  • composition When formulating the composition, it is prepared using commonly used diluents or excipients, such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants.
  • diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants.
  • composition of the present invention may be formulated as an oral or parenteral preparation.
  • Solid form preparations for oral administration include tablets, pills, powders, granules, capsules, troches and the like, which solid form may comprise at least one excipient such as xylitol, starch, calcium carbonate, water It may be prepared by mixing cross, lactose, gelatin and the like.
  • lubricants such as magnesium styrate and talc may also be added.
  • liquid preparations include suspensions, solvents, emulsions, or syrups, which may include excipients such as chelating agents, wetting agents, sweetening agents, fragrances, and preservatives.
  • Formulations for parenteral administration may include injections such as sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, and the like.
  • injections such as sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, and the like.
  • non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
  • composition of the present invention may be administered orally or parenterally according to a desired method, and parenteral administration may be external or intraperitoneal injection, rectal injection, subcutaneous injection, intravenous injection, intramuscular injection or intrathoracic injection injection. Can be selected.
  • composition according to the invention is administered in a pharmaceutically effective amount. This may vary depending on the type of disease, the severity, the activity of the drug, the sensitivity to the drug, the time of administration, the route of administration and the rate of release, the duration of treatment, the drug being used simultaneously, and the like.
  • the composition of the present invention may be administered alone or in combination with other therapeutic agents. In combination administration, administration may be sequential or simultaneous.
  • the amount of the active ingredient included in the pharmaceutical composition according to the present invention may be 0.001 to 10,000 mg / kg, specifically 0.01 to 1,000 mg / kg.
  • the administration may be once a day or may be divided several times.
  • the present invention provides a dietary supplement for the improvement of Helicobacter pylori infection containing lipid nanoparticles, including ginsenosides and phospholipids, curcumin is collected as an active ingredient.
  • the present invention provides a use for the improvement of Helicobacter pylori infection of a health functional food containing lipid nanoparticles, including ginsenosides and phospholipids, in which curcumin is collected.
  • the lipid nanoparticles may have the characteristics as described above.
  • the ginsenoside may be a low molecular weight ginsenoside.
  • the low molecular weight ginsenoside may have a molecular weight of 1,500 g / mole or less, specifically, 1,200 g / mole or less, and more specifically 1,000 g / mole or less.
  • Ginsenosides and phospholipids included in the lipid nanoparticles may be mixed in a weight ratio of 1: 0.05 to 50, specifically, 1: 0.05 to 30, more specifically, 1: 0.05 to 20.
  • the lipid nanoparticles may further include any one or more selected from the group consisting of enzymatically degraded phospholipids, glycerin fatty acid esters, saturated fatty acids and unsaturated fatty acids.
  • the enzyme phospholipid refers to a phospholipid in which one of two fatty acid chains included in the phospholipid is removed by treating a phospholipid with a fatty acid degrading enzyme.
  • the enzymatic phospholipid may be included in an amount of 0.1 to 0.9 parts by weight, specifically, 0.1 to 0.7 parts by weight, and more specifically 0.1 to 0.5 parts by weight based on the total weight of the phospholipids.
  • the glycerin fatty acid ester may be any one or more selected from the group consisting of tristearin, tripalmitin and trimyristin.
  • the glycerin fatty acid ester may be included in an amount of 0.1 to 0.9 parts by weight, specifically, 0.1 to 0.7 parts by weight, and more specifically 0.1 to 0.5 parts by weight based on the total weight of the phospholipid.
  • the saturated fatty acid may be C 6 to C 22 .
  • the saturated fatty acid may be at least one selected from the group consisting of capric acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid and behenic acid.
  • the saturated fatty acid may be included 0.1 to 0.9 parts by weight, specifically, 0.1 to 0.8 parts by weight, more specifically 0.1 to 0.6 parts by weight based on the total weight of the phospholipid.
  • the unsaturated fatty acid may be C 6 to C 22 .
  • the unsaturated fatty acid may be any one or more selected from the group consisting of omega-3 unsaturated fatty acid, omega-6 unsaturated fatty acid and omega-9 unsaturated fatty acid.
  • the unsaturated fatty acid may be included in an amount of 0.1 to 0.9 parts by weight, specifically, 0.1 to 0.8 parts by weight, and more specifically 0.1 to 0.6 parts by weight based on the total weight of the phospholipid.
  • the present inventors mix low-molecular weight ginsenosides, phospholipids, enzymatically degraded phospholipids, curcumin, glycerin fatty acid esters, saturated fatty acids or unsaturated fatty acids, and alcohols to collect curcumin-based ginsenosides and phospholipids.
  • the average particle size forms nanoparticles of about 300 nanometers (see FIGS. 1 and 2).
  • the lipid nanoparticles can be used as an intravenous injection.
  • the present inventors improve the solubility (see Table 2) and dissolution rate (see FIG. 3) of curcumin collected in the ginsenoside and phospholipid-based lipid nanoparticles collected therein, and stability (Table 3 and 4 and 5) and the antimicrobial activity against Helicobacter (see Tables 5 and 6) was also confirmed.
  • the lipid nanoparticles including ginsenosides and phospholipids, in which the curcumin is collected may be usefully used for improving Helicobacter pylori infection.
  • Lipid nanoparticles of the present invention can be added to food as it is, or used with other food or food ingredients. At this time, the amount of the active ingredient added may be determined according to the purpose. In general, the content in the dietary supplement may be from 0.01 to 0.9 parts by weight of the total food weight.
  • the form and type of the health functional food is not particularly limited.
  • the health functional food to which the substance can be added may be tablets, capsules, powders, granules, liquids and pills.
  • the health functional food of the present invention may contain various flavors or natural carbohydrates and the like as additional ingredients, as in the general health functional food.
  • the above-mentioned natural carbohydrates are sugars such as monosaccharides such as glucose and fructose, malsaccharides such as maltose and sucrose, polysaccharides such as dextrin and cyclodextrin, xylitol, sorbitol and erythritol.
  • natural sweetening agents such as tautin and stevia extract, synthetic sweetening agents such as saccharin and aspartame, and the like can be used.
  • the health functional food of the present invention includes various nutrients, vitamins, electrolytes, flavors, coloring agents, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloid thickeners, chelating agents, pH adjusting agents, stabilizers, and preservatives. , Glycerin, alcohol, and the like. These components can be used independently or in combination.
  • Korean ginseng saponin extract powder (Duzon PHC, Geumsan) was added to 100 ml of purified water and dissolved, and then sterilized with high pressure steam at 125 ° C. for 15 minutes, and cooled to room temperature to obtain a sterilized solution.
  • Glucoamylase (Sumizyme, Japan) and Saccharomyces cerevisiae ( Saccharomyces) cerevisiae ) Yeast (Fermivin, Denmark) was added 0.1 g each, and fermented at 30 °C for 7 days to remove the sugar of ginseng saponin.
  • Sugar-free ginseng saponin did not dissolve well in water and settled at the bottom of the container.
  • the yield of this precipitate was 55.4%.
  • the precipitate was dissolved in methanol, and then filtered through a 0.45 ⁇ m syringe filter to perform HPLC.
  • the HPLC analysis column was XBridge C18 (4.6x150 mm, 5 ⁇ m) and the detector used an ultraviolet absorbance meter (203 nm). At this time, 20 ⁇ l was injected into the sample, and the flow rate was 1.0 ml / min.
  • concentration per hour was changed as shown in Table 1 below.
  • fermenting ginseng saponin extract powder Rg1, Rd, F2, protopanaxadiol (PPD), Rg3, compound K (compound K) and PPT (protopanaxatriol), which are not present in the powder or present in trace amounts, are present in the powder.
  • PPD protopanaxadiol
  • Rg3 compound K
  • PPT prototopanaxatriol
  • Ginsenoside and phospholipid-based lipid nanoparticles in which curcumin was collected were prepared in the following manner.
  • ginsenoside and phospholipid-based lipid nanoparticles curcumin trapped formed nanoparticles of homogeneous size when dispersed in water (Fig. 1).
  • the average particle size of the ginsenoside and phospholipid-based lipid nanoparticles curcumin collected is about 300 nanometers nanoparticles.
  • the dissolution rate of curcumin in the ginsenoside and phospholipid-based lipid nanoparticles prepared by curcumin collected in Example ⁇ 1-2> was analyzed by dialysis. As a control, pure curcumin was used in the same amount as curcumin used to prepare lipid nanoparticles.
  • ginsenoside and phospholipid-based lipid nanocapsule collected in the curcumin prepared in ⁇ Example 1> by an electrophoretic light scattering method using Zetasizer Nano S90 (Malvern Instruments, UK) at 25 °C The zeta potential of the particles was measured three times and the average value was analyzed.
  • the lipid nanoparticles were stored for one year in a refrigerator to confirm physical stability, and the surface charges were analyzed during the storage period.
  • the surface charge of the ginsenoside and phospholipid-based lipid nanoparticles collected curcumin had a particle surface charge of a relatively stable colloid (about 3 mV) (Table 3).
  • the lipid nanoparticles showed little change in surface charge for one year (FIG. 4).
  • the degree of degradation of ginsenoside and phospholipid-based lipid nanoparticles in which curcumin was collected was measured in the following manner. As a control, pure curcumin was used in the same amount as curcumin used to prepare lipid nanoparticles.
  • Ginsenoside and phospholipid-based lipid nanoparticle complexes curcumin-collected were prepared in the same manner as in ⁇ Example 1-2>, and methanol was dissolved in the lipid nanoparticle complex or curcumin.
  • the solution was dispersed in phosphate buffer (PBS) at pH 8.0 so that the concentration was 100 ng / ml, respectively, and the concentration of curcumin remaining undissolved by stirring with a magnetic stirrer at 37 ° C. was measured by HPLC. HPLC analysis was performed under the same conditions as in Example ⁇ 2-2>.
  • curcumin was decomposed about 30% or more in 1 hour after the start of dispersion and about 50% in 2 hours.
  • ginsenosides and phospholipid-based lipid nanoparticles in which curcumin was collected remained over 90% without degradation (FIG. 5).
  • the minimum growth stop concentration (MIC) of Helicobacter pylori of curcumin-collected ginsenosides and phospholipid-based lipid nanoparticles was measured by the following method according to agar medium dilution method.
  • Curcumin prepared by the same method as Example ⁇ 1-2>, except that curcumin solution was added to ⁇ m / ml of trimethoprim (# 1), and the ratio of ginsenoside and phospholipid was 1:20.
  • the ratio of the side to phospholipid is 1: 2) and 0.1 mM EDTA is added (# 4) or the curcumin prepared in Example ⁇ 1-2>
  • the medium was prepared in that the addition of EDTA and 1 mM of the dispersion of (# 5) collected ginsenosides and phospholipid lipid-based nanoparticle composite (2 ginsenosides and the first ratio of phospholipid). At this time.
  • the solutions and dispersions were added at concentrations of 2, 4, 8, 16, 32, 64 or 128 ⁇ g / ml to prepare media of 7 concentrations per solution and dispersion.
  • Each medium was inoculated with Helicobacter pylori of Table 4, which was obtained from Helicobacter Bank (http://knrrb.knrrc.or.kr), Gyeongsang National University College of Medicine, at a concentration of 100 CFU / ml, and was subjected to 37 ° C. temperature and aerobic activity.
  • the culture was carried out in an environment (5% O 2 , 10% CO 2 and 85% N 2 gas conditions).
  • the minimum concentration at which the Helicobacter pylori did not grow was set as the MIC value, and a solution was prepared by dissolving each material in sterile distilled water heated to 60 ° C., and dispersing it for 2 minutes at 24000 rpm using a homomixer to prepare a dispersion. .
  • Curcumin lysate (# 1) did not show antimicrobial activity up to the maximum concentration of 128 ⁇ g / ml used in the experiment, whereas curcumin-collected ginsenosides and phospholipid-based lipid nanoparticles According to the type of Helicobacter pylori showed antimicrobial activity at 8 to 16 ⁇ g / ml, the addition of the chelating agent was not affected by the antimicrobial activity (Table 5). The curcumin-collected ginsenosides and phospholipid nanoparticles were found to have excellent antimicrobial activity against Helicobacter.
  • the antibacterial activity of Ginsenoside and phospholipid based lipid nanoparticles in which curcumin was collected was measured by the following method using a liquid medium.
  • the Helicobacter pylori G88012 or 95-71 of Table 4 was 10 4 CFU / mL.
  • Inoculated at a concentration of 0, 16, or 32 ⁇ g / ml of curcumin lysate (# 1) prepared in Example ⁇ 4-1> or ginsenoside and phospholipid-based lipid nanoparticle complex lysate (reference) prepared in each test tube After addition in concentration, the cells were incubated at 37 ° C. temperature and in an aerobic environment (5% O 2 , 10% CO 2 and 85% N 2 gas conditions). After 10 days, cell precipitates of Helicobacter pylori that settled to the bottom of the test tube were visually observed.
  • the curcumin lysate (# 1) did not show antimicrobial activity up to the highest concentration used in the experiment, 32 ⁇ g / ml, whereas the curcumin-collected ginsenoside and phospholipid-based lipid nanoparticle complexes.
  • the lysate (reference) of showed antimicrobial activity in both wild type G88012 strain of Helicobacter pylori and 95-71 strains of clarithromycin and amoxicillin resistant strains at a concentration of 16 ⁇ g / ml (FIG. 6).
  • the curcumin-collected ginsenosides and phospholipid nanoparticles were found to have excellent antimicrobial activity against Helicobacter.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 조성물에 관한 것이다. 구체적으로, 본 발명의 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자는 포집된 커큐민의 용해도 및 안정성을 향상시키며, 헬리코박터 파이로리에 대한 항균력이 우수함으로써, 헬리코박터 파이로리의 감염을 치료하는데 유용하게 사용될 수 있다.

Description

커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 조성물
본 발명은 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 조성물에 관한 것이다.
헬리코박터 파이로리(Helicobacter pylori)는 그람음성의 만곡형 간균으로, 위염 및 위궤양 환자의 위점막 생검조직에서 관찰되며, 위염, 위궤양, 십이지장궤양 및 위암을 유발시킬 수 있다. 헬리코박터 파이로리는 요소 분해효소인 우레아제(urease)를 분비해 위액 내의 요소를 가수분해함으로써, 암모니아를 생성한다. 암모니아는 위액 내 pH를 증가시키고, 위 점액층을 손상시키며, 위 점액층 세포의 산소 소비와 미토콘드리아의 ATP 생성을 억제한다. 결과적으로, 이로부터 모노클로로아민을 형성하여 활성산소종을 생성하기 때문에 세포 손상에 따른 만성염증을 발생시킬 뿐만 아니라, 나아가 DNA 손상을 일으켜 암의 발생 과정을 촉진시킨다.
현재 국제적으로 통용되는 헬리코박터 파이로리 감염의 치료는 삼제요법, 비스무스 포함 4제요법, 순차요법, 동시요법, 혼합요법, 구제요법(레보플록사신 삼제요법 및 리파부틴 삼제요법), 생균제 요법, 항생제 감수성 검사에 근거한 치료법 및 약제 유전체학에 근거한 맞춤치료법 등이 있다. 삼제요법은 1차 표준요법으로 사용되고 있는 방법으로, 양성자 펌프 억제제, 아목시실린(amoxicillin) 및 클래리스로마이신(clarithromycin) 약제로 구성된 치료법이다. 그러나 항생제에 대한 내성률이 증가하면서 삼제요법에 의한 제균율이 점차 감소하고 있다. 이외에 4제요법, 순차요법, 혼합요법 및 구제요법도 다제 항생제 내성균의 출현으로 인해 치료의 성공률이 낮다. 한편, 생균제 요법은 기존의 표준적 제균요법에 보조적으로 생균제를 사용하는 방법으로, 기존의 제균요법 시 부작용으로 발생하는 설사를 예방하므로 약제복용순응도(drug compliance)를 향상시킬 수 있다. 그러나 생균은 헬리코박터 파이로리의 제균에는 직접적인 역할을 하지 못하므로, 헬리코박터 파이로리의 치료법으로는 한계가 있다. 따라서, 헬리코박터 파이로리의 감염을 치료하기 위한 새로운 치료방법이 필요하다.
이에, 다양한 천연물 소재를 이용하여 헬리코박터 파이로리를 억제할 수 있는 물질을 찾기 위한 연구가 활발히 진행되고 있다. 대한민국 등록특허 제10-1019733호는 헬리코박터 파이로리의 생육저해활성을 갖는 구절초 추출물 또는 분획물을 함유하는 위장관 질환의 치료용 조성물을 개시하고 있으며, 대한민국 등록특허 제10-1074348호는 녹조류 추출물을 함유하는 헬리코박터 파이로리에 대한 항균 조성물을 개시하고 있다.
한편, 커큐민(curcumin)은 카레 및 겨자 등에 포함된 천연색소로, 항산화작용, 항염증작용 및 항암작용 등 다양한 생리활성을 나타내어 염증 및 피부질환 등의 민간 치료제로 사용되어 왔다. 또한, 이는 콜레스테롤이 소화관으로 흡수되는 것을 막아 혈중 콜레스테롤 수치를 낮추며, 최근에는 고지혈증, 제2형 당뇨병, 치매 등의 질환을 예방하거나 치료하는데 사용되고 있다. 그러나 우수한 약리활성에도 불구하고, 커큐민은 물에 대한 용해도가 낮아 소화관에서의 용출속도도 늦고 생체이용률이 매우 낮다.
따라서, 커큐민을 의약품, 화장품 및 식품 등의 제제로 개발하는 것은 어렵다. 커큐민의 용해도를 개선시키기 위해 유기용제나 계면활성제를 사용하면, 커큐민이 장세포를 통과하면서 장세포의 소포체와 간세포에서 포합반응의 일종인 글루크론산화(glucuronidation) 및 황산화 반응에 의해 대사됨으로써, 커큐민 특유의 항산화 활성이 소실된다. 이와 같은 생리적 대사를 억제하기 위해 커큐민과 피페린을 함께 경구투여하는 방법이 있는데, 피페린은 다양한 포합반응을 모두 억제하는 부작용이 있다. 이와 관련하여, 대한민국 등록특허 제10-1258537호는 커큐민에 비하여 수용성 및 안정성이 향상된 커큐민 유도체의 제조방법을 개시하고 있다.
이에 본 발명자들은, 헬리코박터 파이로리에 의한 감염을 치료하기 위한 새로운 방법을 개발하던 중, 진세노사이드 및 인지질 기반 지질나노입자가, 내부에 포집된 커큐민의 용해도 및 안정성을 향상시킬 뿐만 아니라, 헬리코박터 파이로리에 대한 항균력도 우수함을 확인함으로써, 본 발명을 완성하였다.
본 발명의 목적은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 약학조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 개선용 건강기능식품을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 약학조성물을 제공한다.
또한, 본 발명은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 개선용 건강기능식품을 제공한다.
또한, 본 발명은 약학적으로 유효한 양의, 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 개체에 투여하는 단계를 포함하는, 헬리코박터 파이로리 감염의 예방 또는 치료방법을 제공한다.
또한, 본 발명은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 함유하는 약학적 조성물을 헬리코박터 파이로리 감염의 예방 또는 치료에 사용하기 위한 용도를 제공한다.
아울러, 본 발명은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 함유하는 건강기능식품을 헬리코박터 파이로리 감염의 개선에 사용하기 위한 용도를 제공한다.
본 발명의 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자는 포집된 커큐민의 용해도 및 안정성을 향상시키며, 헬리코박터 파이로리에 대한 항균력이 우수함으로써, 헬리코박터 파이로리의 감염을 치료하는데 유용하게 사용될 수 있다.
도 1은 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자가 물에 분산된 형태를 광학현미경으로 관찰한 사진이다.
도 2는 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 입자크기 분포를 확인한 그래프이다.
도 3은 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자에서 커큐민의 용출양을 시간에 따라 나타낸 그래프이다.
도 4는 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 표면전하 변화를 시간에 따라 나타낸 그래프이다.
도 5는 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자에서 분해되지 않고 남아있는 커큐민의 농도를 시간에 따라 나타낸 그래프이다.
도 6은 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 헬리코박터 파이로리(G88012 및 95-71)에 대한 항균력을 확인한 사진이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 약학조성물을 제공한다.
또한, 본 발명은 약학적으로 유효한 양의, 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 개체에 투여하는 단계를 포함하는, 헬리코박터 파이로리 감염의 예방 또는 치료방법을 제공한다.
또한, 본 발명은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 함유하는 약학적 조성물을 헬리코박터 파이로리 감염의 예방 또는 치료에 사용하기 위한 용도를 제공한다.
상기 진세노사이드는 저분자량 진세노사이드일 수 있다. 상기 저분자량 진세노사이드는 분자량이 1,500 g/mole 이하, 구체적으로는, 1,200 g/mole 이하, 더욱 구체적으로는, 900 g/mole 이하일 수 있다. 한편, 상기 진세노사이드는 PPD(protopanaxadiol), PPT(protopanaxatriol), 컴파운드 K(compound K), Rb1, Rb2, Rb3, Rc, Rd, Re, F1, F2, Rg1, Rg2, Rg3, Rh1, Rh2, Ra3, Rs1, Rs2, C-O, C-Y, C-Mcl, C-Mc, 지페노사이드 XVII(gypenoside XVII), 지페노사이드 LXXV 및 Rf로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다. 구체적으로, 상기 진세노사이드는 PPD(protopanaxadiol), PPT(protopanaxatriol), 컴파운드 K(compound K), Rb1, Rb2, Rb3, Rc, Rd, Re, F1, F2, Rg1, Rg2, Rg3, Rh1 및 Rh2로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다. 상기 저분자량 진세노사이드는 공지된 방법을 통해 화학적으로 합성하여 수득하거나, 인삼 사포닌을 발효, 산가수분해, 알칼리가수분해 또는 효소 분해한 다음 정제하여 수득할 수 있다.
상기 지질나노입자에 포함되는 진세노사이드 및 인지질은 1:0.05 내지 50, 구체적으로는, 1:0.05 내지 30, 더욱 구체적으로는, 1:0.05 내지 20의 중량비로 혼합될 수 있다.
상기 지질나노입자는 효소분해인지질, 글리세린지방산에스테르, 포화지방산 및 불포화지방산으로 구성된 군으로부터 선택되는 어느 하나 이상을 더 포함할 수 있다. 상기 효소분해인지질은 인지질에 지방산 분해효소를 처리하여, 인지질에 포함된 2개의 지방산 사슬 중에서 하나가 제거된 형태의 인지질을 의미한다. 상기 효소분해인지질은 인지질의 총 중량을 기준으로 0.1 내지 0.9 중량부, 구체적으로, 0.1 내지 0.7 중량부, 더욱 구체적으로, 0.1 내지 0.5 중량부로 포함될 수 있다.
상기 글리세린지방산에스테르는 트리스테아린, 트리팔미틴 및 트리미리스틴으로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다. 상기 글리세린지방산에스테르는 인지질의 총 중량을 기준으로 0.1 내지 0.9 중량부, 구체적으로, 0.1 내지 0.7 중량부, 더욱 구체적으로, 0.1 내지 0.5 중량부로 포함될 수 있다.
상기 포화지방산은 C6 내지 C22일 수 있다. 구체적으로, 상기 포화지방산은 카프릭산, 카프릴릭산, 라우르산, 미리스틱산, 팔미틱산, 스테아릭산, 아라키딕산 및 베헤닉산으로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다. 상기 포화지방산은 인지질의 총 중량을 기준으로 0.1 내지 0.9 중량부, 구체적으로, 0.1 내지 0.8 중량부, 더욱 구체적으로, 0.1 내지 0.6 중량부로 포함될 수 있다.
상기 불포화지방산은 C6 내지 C22일 수 있다. 구체적으로, 상기 불포화지방산은 오메가-3 불포화지방산, 오메가-6 불포화지방산 및 오메가-9 불포화지방산으로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다. 상기 불포화지방산은 인지질의 총 중량을 기준으로 0.1 내지 0.9 중량부, 구체적으로, 0.1 내지 0.8 중량부, 더욱 구체적으로, 0.1 내지 0.6 중량부로 포함될 수 있다.
상기 지질나노입자는 진세노사이드 및 인지질을 혼합하고 이를 용매에 용해시켜 용해액을 제조하는 단계; 및 상기 용해액을 분산시키는 단계를 포함하는 방법으로 제조될 수 있다. 상기 용매는 물, C1 내지 C4의 저급 알코올 또는 이들의 혼합물일 수 있다. 상기 알코올은 에탄올 또는 메탄올일 수 있다. 상기 제조방법에서 용해액을 분산시키기 전에 용해액으로부터 용매를 제거하는 단계를 추가로 더 포함할 수 있다. 용해액으로부터 용매를 제거할 경우, 용매를 제거하는데 사용되는 통상적인 방법을 이용하여 수행될 수 있다. 구체적으로는, 감압농축, 동결건조, 분무건조 또는 열풍건조가 이용될 수 있다. 본 발명의 일 실시예에서, 상기 용매의 제거를 위해 감압농축이 이용될 수 있다. 용해액으로부터 용매를 제거하지 않을 경우, 용매가 존재하는 상태에서 물을 첨가하여 분산시킬 수 있다.
본 발명의 구체적인 실시예에서, 본 발명자들은 저분자량 진세노사이드, 인지질, 효소분해인지질, 커큐민, 글리세린지방산에스테르, 포화지방산 또는 불포화지방산, 및 알코올을 혼합하여 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자를 제조한 후, 상기 지질나노입자를 물에서 분산시 평균 입자크기는 약 300 나노미터로 나노입자를 형성함을 확인하였다(도 1 및 도 2 참조). 따라서, 상기 지질나노입자는 정맥주사용 주사제로서 사용될 수 있다.
또한, 본 발명자들은 상기 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자가 내부에 포집된 커큐민의 용해도(표 2 참조) 및 용출속도(도 3 참조)를 향상시키며, 안정성(표 3 및 도 4 및 도 5 참조) 및 헬리코박터에 대한 항균력(표 5 및 도 6 참조)도 우수함을 확인하였다.
따라서, 상기 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자는 헬리코박터 파이로리 감염의 예방 또는 치료에 유용하게 사용될 수 있다.
상기 조성물은 조성물 전체 중량에 대하여 유효성분인 본 발명에 따른 지질나노입자를 10 내지 95 중량%로 포함할 수 있다. 또한, 본 발명의 조성물은 상기 유효성분 외에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 추가로 함유할 수 있다.
본 발명의 조성물은 또한 생물학적 제제에 통상적으로 사용되는 담체, 희석제, 부형제 또는 둘 이상의 이들의 조합을 포함할 수 있다. 약제학적으로 허용 가능한 담체는 조성물을 생체 내에 전달하는데 적합한 것이면 특별히 제한되지 않으며, 예로서, Merck Index, 13th ed., Merck & Co. Inc. 에 기재된 화합물, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 또는 이들 성분 중 1 성분 이상을 혼합한 것일 수 있다. 이때, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다.
상기 조성물을 제제화할 경우, 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 제조된다.
본 발명의 조성물은 경구제제 또는 비경구제제로 제형화 될 수 있다. 경구 투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제, 트로키제 등이 포함되며, 이러한 고형 제제는 하나 이상의 조성물에 적어도 하나 이상의 부형제, 예를 들면, 자일리톨, 전분, 탄산칼슘, 수크로스, 락토오스 및 젤라틴 등을 섞어 조제될 수 있다. 또한, 마그네슘 스티레이트, 탈크 같은 윤활제들도 첨가될 수 있다. 한편, 액상 제제로는 현탁제, 내용액제, 유제 또는 시럽제 등이 해당되는데, 여기에는 킬레이트화제, 습윤제, 감미제, 방향제, 보존제 등과 같은 부형제가 포함될 수 있다.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁용제, 유제 등의 주사제가 포함될 수 있다. 비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.
본 발명의 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여될수 있으며, 비경구 투여는 피부 외용 또는 복강내 주사, 직장내 주사, 피하주사, 정맥주사, 근육내 주사 또는 흉부내 주사 주입방식중 선택될 수 있다.
본 발명에 따른 조성물은 약제학적으로 유효한 양으로 투여된다. 이는 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물 등에 따라 달라질 수 있다. 본 발명의 조성물은 단독 또는 다른 치료제와 병용하여 투여될 수 있다. 병용 투여시, 투여는 순차적 또는 동시일 수 있다.
그러나, 바람직한 효과를 위해서, 본 발명에 따른 약학적 조성물에 포함되는 유효성분의 양은 0.001 ~ 10,000 mg/㎏, 구체적으로는 0.01 ~ 1,000 mg/kg일 수 있다. 상기 투여는 하루에 1회일 수 있고, 수회로 나뉠 수도 있다.
또한, 본 발명은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 유효성분으로 함유하는, 헬리코박터 파이로리 감염의 개선용 건강기능식품을 제공한다.
아울러, 본 발명은 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 함유하는 건강기능식품을 헬리코박터 파이로리 감염의 개선에 사용하기 위한 용도를 제공한다.
상기 지질나노입자는 상술한 바와 같은 특징을 가질 수 있다. 일례로, 상기 진세노사이드는 저분자량 진세노사이드일 수 있다. 상기 저분자량 진세노사이드는 분자량이 1,500 g/mole 이하, 구체적으로는, 1,200 g/mole 이하, 더욱 구체적으로는, 1,000 g/mole 이하일 수 있다. 상기 지질나노입자에 포함되는 진세노사이드 및 인지질은 1:0.05 내지 50, 구체적으로는, 1:0.05 내지 30, 더욱 구체적으로는, 1:0.05 내지 20의 중량비로 혼합될 수 있다.
상기 지질나노입자는 효소분해인지질, 글리세린지방산에스테르, 포화지방산 및 불포화지방산으로 구성된 군으로부터 선택되는 어느 하나 이상을 더 포함할 수 있다. 상기 효소분해인지질은 인지질에 지방산 분해효소를 처리하여, 인지질에 포함된 2개의 지방산 사슬 중에서 하나가 제거된 형태의 인지질을 의미한다. 상기 효소분해인지질은 인지질의 총 중량을 기준으로 0.1 내지 0.9 중량부, 구체적으로, 0.1 내지 0.7 중량부, 더욱 구체적으로, 0.1 내지 0.5 중량부로 포함될 수 있다.
상기 글리세린지방산에스테르는 트리스테아린, 트리팔미틴 및 트리미리스틴으로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다. 상기 글리세린지방산에스테르는 인지질의 총 중량을 기준으로 0.1 내지 0.9 중량부, 구체적으로, 0.1 내지 0.7 중량부, 더욱 구체적으로, 0.1 내지 0.5 중량부로 포함될 수 있다.
상기 포화지방산은 C6 내지 C22일 수 있다. 구체적으로, 상기 포화지방산은 카프릭산, 카프릴릭산, 라우르산, 미리스틱산, 팔미틱산, 스테아릭산, 아라키딕산 및 베헤닉산으로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다. 상기 포화지방산은 인지질의 총 중량을 기준으로 0.1 내지 0.9 중량부, 구체적으로, 0.1 내지 0.8 중량부, 더욱 구체적으로, 0.1 내지 0.6 중량부로 포함될 수 있다.
상기 불포화지방산은 C6 내지 C22일 수 있다. 구체적으로, 상기 불포화지방산은 오메가-3 불포화지방산, 오메가-6 불포화지방산 및 오메가-9 불포화지방산으로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다. 상기 불포화지방산은 인지질의 총 중량을 기준으로 0.1 내지 0.9 중량부, 구체적으로, 0.1 내지 0.8 중량부, 더욱 구체적으로, 0.1 내지 0.6 중량부로 포함될 수 있다.
본 발명의 구체적인 실시예에서, 본 발명자들은 저분자량 진세노사이드, 인지질, 효소분해인지질, 커큐민, 글리세린지방산에스테르, 포화지방산 또는 불포화지방산, 및 알코올을 혼합하여 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자를 제조한 후, 상기 지질나노입자를 물에서 분산시 평균 입자크기는 약 300 나노미터로 나노입자를 형성함을 확인하였다(도 1 및 도 2 참조). 따라서, 상기 지질나노입자는 정맥주사용 주사제로서 사용될 수 있다.
또한, 본 발명자들은 상기 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자가 내부에 포집된 커큐민의 용해도(표 2 참조) 및 용출속도(도 3 참조)를 향상시키며, 안정성(표 3 및 도 4 및 도 5 참조) 및 헬리코박터에 대한 항균력(표 5 및 도 6 참조)도 우수함을 확인하였다.
따라서, 상기 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자는 헬리코박터 파이로리 감염의 개선에 유용하게 사용될 수 있다.
본 발명의 지질나노입자는 식품에 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있다. 이때, 첨가되는 유효성분의 함량은 목적에 따라 결정될 수 있다. 일반적으로, 건강기능식품 중의 함량은 전체 식품 중량의 0.01 내지 0.9 중량부일 수 있다.
또한, 상기 건강기능식품의 형태 및 종류에는 특별한 제한은 없다. 상기 물질을 첨가할 수 있는 건강기능식품의 형태는 정제, 캅셀, 분말, 과립, 액상 및 환 등일 수 있다.
본 발명의 건강기능식품은 통상의 건강기능식품과 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물은 포도당, 과당과 같은 모노사카라이드, 말토스, 슈크로스와 같은 디사카라이드, 덱스트린, 사이클로덱스트린과 같은 폴리사카라이드, 자일리톨, 소르비톨, 에리트리톨 등의 당알코올이다. 감미제로서는 타우마틴, 스테비아 추출물과 같은 천연 감미제나, 사카린, 아스파르탐과 같은 합성 감미제 등을 사용할 수 있다.
상기 외에 본 발명의 건강기능식품은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, 킬레이트화제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올 등을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용될 수 있다.
이하, 본 발명을 하기 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이들에 의하여 한정되는 것은 아니다.
< 실시예 1> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 제조
<1-1> 인삼 사포닌 추출분말의 발효를 통한 저분자량 진세노사이드의 제조
국내산 인삼 사포닌 추출분말(더존 PHC, 금산) 10 g을 100 ㎖의 정제수에 가하여 녹인 후, 125℃에서 15분간 고압증기로 멸균하고, 이를 상온으로 냉각하여 멸균액을 수득하였다. 상기 멸균액에 글루코아밀라아제(Sumizyme, 일본) 및 사카로마이세스 세레비시에(Saccharomyces cerevisiae) 효모(Fermivin, 덴마크)를 각각 0.1 g 씩 가하고, 30℃에서 7일간 발효시켜 인삼 사포닌의 당을 제거하였다. 당이 제거된 인삼 사포닌(진세노사이드)은 물에 잘 녹지 않아 용기 바닥에 침전되는데 이 침전물의 수율은 55.4%이었다. 상기 침전물에 포함된 진세노사이드의 조성을 분석하기 위해 침전물을 메탄올에 녹인 후, 0.45 ㎛ 시린지 필터로 여과하여 HPLC를 수행하였다. HPLC 분석 컬럼은 XBridge C18(4.6x150 mm, 5 ㎛)을, 검출기는 자외선흡광도계(203 nm)를 사용하였다. 이때, 시료는 20 ㎕를 주입하였고, 유속은 1.0 ㎖/min으로 하였다. 또한, 이동상으로 증류수와 아세토니트릴을 사용하여, 하기 표 1과 같이 시간당 농도를 변화시켜 주었다.
HPLC 이동상의 농도 구배 조건
시간(분) 증류수(%) 아세토니트릴(%)
0 95 5
10 95 5
40 68 32
55 40 60
70 25 75
72 10 90
82 10 90
84 95 5
90 95 5
그 결과, 인삼 사포닌 추출분말을 발효시키면 상기 분말에는 존재하지 않거나 미량으로 존재하는 저분자량 진세노사이드인 Rg1, Rd, F2, PPD(protopanaxadiol), Rg3, 컴파운드 K(compound K) 및 PPT(protopanaxatriol)가 각각 39.99%, 14.05%, 13.79%, 11.55%, 7.95%, 5.75% 및 1.83%로 존재하는 것을 확인하였다.
<1-2> 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자 제조
커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자를 하기와 같은 방법으로 제조하였다.
구체적으로, 0.10 g의 커큐민, 0.5 g의 상기 실시예 <1-1>의 방법으로 제조한 저분자량 진세노사이드, 1.0 g의 인지질, 0.2 g의 효소분해 인지질, 0.2 g의 트리스테아린, 0.5 g의 카프릭산, 0.5 g의 스테아릭산 및 1.0 g의 에탄올을 플라스크에 넣고 혼합하였다. 상기 혼합물을 70℃ 수욕상에서 균질하게 용해시킨 후, 감압 농축하여 에탄올을 제거함으로써, 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자 복합체를 제조하였다. 상기 제조된 지질복합체에 온도가 60℃인 물을 첨가하고, 이를 호모믹서로 24,000 rpm에서 5분 동안 분산시켜 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자 복합체를 제조하고, 분산된 형태를 광학현미경으로 관찰하였다.
그 결과, 도 1에 나타낸 바와 같이, 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자는 물에서 분산 시 균질한 크기의 나노입자를 형성하였다(도 1).
< 실시예 2> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 물성 분석
<2-1> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 입자크기 분포 분석
동적광산란(dynamic light scattering) 방법으로 <실시예 1-2>에서 제조된 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 입자크기 분포를 측정하였다.
그 결과, 도 2에 나타낸 바와 같이, 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 평균 입자크기는 약 300 나노미터로 나노입자임을 확인하였다.
<2-2> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 용해도 분석
상기 <실시예 1-2>에서 제조된 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자에서 커큐민의 물에 대한 용해도를 하기와 같은 방법으로 측정하였다. 대조군으로 지질나노입자를 제조할 때 사용한 커큐민과 동일한 양의 순수한 커큐민을 사용하였다.
먼저, 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자 복합체에 증류수를 100 ㎖ 가하고, 이를 6시간 동안 자석교반기로 교반한 다음 0.2 ㎛ 시린지 필터로 여과한 여액 중 커큐민의 농도를 HPLC로 측정하였다. HPLC 분석 컬럼은 C18 Inertsil ODS(150 mm×4.6 mm, 5 ㎛)을, 검출기는 자외선흡광도계(400 nm)를 사용하였다. 이때, 시료는 20 ㎕를 주입하였고, 유속은 0.4 ㎖/min으로 하였다. 또한, 이동상으로 아세토니트릴 및 2% 초산 용액을 각각 70%(v/v) 및 30%(v/v)로 혼합하여 사용하였다.
커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 용해도(n=3)
용해도(㎍/㎖) 비고
커큐민 2.7±0.2 -
커큐민이 포집된 지질나노입자 12450.4±105.3 4611배 향상
그 결과, 표 2에 나타낸 바와 같이, 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자는 커큐민 자체에 비해 용해도가 약 4,600배 향상되었다(표 2).
<2-3> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 용출속도 분석
상기 실시예 <1-2>에서 제조된 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자에서 커큐민의 용출속도는 투석법으로 분석하였다. 대조군으로 지질나노입자를 제조할 때 사용한 커큐민과 동일한 양의 순수한 커큐민을 사용하였다.
구체적으로, 1 ㎖의 커큐민이 포집된 지질나노입자 또는 순수한 커큐민 분산액을 투석 자루(Spectra/Por®MWCO 12-14 kDa, USA)에 넣었다. 상기 투석 자루를 100 ㎖의 인공장액에 넣고, 37℃의 수조에서 50 strokes/min으로 완만하게 교반하였다. 시간별로 채취한 용출시료를 0.2 ㎛ 시린지 필터로 여과하여 1 ㎖씩 수득하고, 메탄올로 적절히 희석하여 여과한 여액 중 커큐민의 농도를 HPLC로 측정하였다. HPLC 분석 조건은 실시예 <2-2>와 동일하며, 실험은 3번씩 반복하여 그 평균값을 그래프로 나타내었다.
그 결과, 도 3에 나타낸 바와 같이, 순수한 커큐민은 인공장액에서 6시간 동안 15% 미만으로 용출되었으나, 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자는 인공장액에서 1시간 내에 커큐민이 거의 100% 용출되었다(도 3).
< 실시예 3> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 안정성 분석
<3-1> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 표면전하 분석
상기 <실시예 1-2>에서 제조된 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 표면전하는 제타 전위(zeta potential)를 측정하여 확인하였다.
구체적으로, 25℃에서 Zetasizer Nano S90(Malvern Instruments, UK)을 이용하여 전기영동 광산란법(electrophoretic light scattering method)으로 상기 <실시예 1>에서 제조된 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 제타 전위를 3회 측정하고, 그 평균값을 분석하였다. 또한, 물리적 안정성을 확인하기 위해 냉장고에서 1년 동안 상기 지질나노입자를 보관하고, 보관 기간 동안 표면전하를 분석하였다.
커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 표면전하(n=3)
표면전하(mV)
커큐민 전하 없음
커큐민이 포집된 지질나노입자 -30.60±0.82
그 결과, 표 3 및 도 4에 나타낸 바와 같이, 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 표면전하는 약 -30 mV로 비교적 안정한 콜로이드의 입자 표면전하를 가졌다(표 3). 또한, 상기 지질나노입자는 1년 동안 표면전하의 변화가 거의 없었다(도 4). 이를 통해, 커큐민이 포집된 진세노사이드 및 인지질 기반의 지질나노입자 분산액은 매우 안정함을 알 수 있었다.
<3-2> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 분해 정도 분석
커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 분해 정도를 하기와 같은 방법으로 측정하였다. 대조군으로 지질나노입자를 제조할 때 사용한 커큐민과 동일한 양의 순수한 커큐민을 사용하였다.
상기 <실시예 1-2>와 동일한 방법으로 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자 복합체를 제조하고, 상기 지질나노입자 복합체 또는 커큐민에 메탄올을 넣어 용해시켰다. 상기 용해액을 각각 농도가 100 ng/㎖가 되도록 pH 8.0인 인산완충액(PBS)에 분산시킨 후, 37℃에서 자석교반기로 교반하면서 분해되지 않고 남아있는 커큐민의 농도를 HPLC로 측정하였다. HPLC 분석은 실시예 <2-2>와 동일한 조건에서 수행하였다.
그 결과, 도 5에 나타낸 바와 같이, 커큐민은 분산 시작 1시간 만에 30% 이상이, 2시간이 지나면서 약 50% 정도 분해되었다. 반면, 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자는 6시간이 지나도 90% 이상이 분해되지 않고 잔존하였다(도 5). 이를 통해 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자 복합체가 분산될 때 코어/쉘(core/shell) 구조의 지질나노입자를 형성함으로써, 코어에 있는 커큐민 분자가 외부의 알칼리성 환경에 노출되지 않게 하는 효과를 나타내기 때문에 상기 지질나노입자 복합체가 안정함을 알 수 있었다.
< 실시예 4> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 항헬리코박터 효과 확인
<4-1> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 헬리코박터 파이로리에 대한 최소발육저지농도 측정
커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 헬리코박터 파이로리에 대한 최소발육정지농도(MIC)는 한천배지 희석법에 따라 하기와 같은 방법으로 측정하였다.
먼저, 10% 말 혈청(MBcell, 한국), 1.2% 한천(BD, USA), 브루셀라 브로스(brucella broth, MBcell, 한국), 6 ㎍/㎖의 반코마이신, 8 ㎍/㎖의 암포테리신 B 및 5 ㎍/㎖의 트리메토프림에 커큐민 용해액을 첨가한 것(#1), 진세노사이드와 인지질의 비율이 1:20인 것을 제외하고 실시예 <1-2>와 동일한 방법으로 제조된 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자 복합체의 용해액을 첨가한 것(#2), 실시예 <1-2>에서 제조된 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자 복합체(진세노사이드와 인지질의 비율이 1:2)의 용해액을 첨가한 것(#3), 실시예 <1-2>에서 제조된 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자 복합체(진세노사이드와 인지질의 비율이 1:2)의 분산액과 0.1 mM의 EDTA를 첨가한 것(#4) 또는 실시예 <1-2>에서 제조된 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자 복합체(진세노사이드와 인지질의 비율이 1:2)의 분산액과 1 mM의 EDTA를 첨가한 것(#5)의 배지를 제조하였다. 이때. 상기 용해액 및 분산액을 2, 4, 8, 16, 32, 64 또는 128 ㎍/㎖ 농도로 첨가하여 각각의 용해액 및 분산액 당 7가지 농도의 배지를 제조하였다. 각각의 배지에 경상대학교 의과대학 헬리코박터은행(http://knrrb.knrrc.or.kr)에서 분양받은 하기 표 4의 헬리코박터 파이로리를 100 CFU/㎖의 농도로 접종하고, 37℃ 온도 조건 및 미호기성 환경(5% O2, 10% CO2 및 85% N2 기체조건)에서 배양하였다. 헬리코박터 파이로리가 성장하지 않는 최소농도를 MIC 값으로 하였으며, 용해액은 각각의 물질을 60℃로 가온한 멸균증류수에 용해시켜 제조하였고, 이를 호모믹서로 24000 rpm에서 5분 동안 분산시켜 분산액을 제조하였다.
MIC를 측정하기 위해 사용한 헬리코박터 균주
헬리코박터은행 등록번호 일반명 특성
HPKTCC B0728 G88012 야생형
HPKTCC B0068 221 클래리스로마이신(clarithromycin) 내성
HPKTCC B0727 G88011 아목시실린(amoxicillin) 내성
HPKTCC B0343 95-71 클래리스로마이신 및 아목시실린 내성
커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 헬리코박터에 대한 최소발육저지농도
헬리코박터은행 등록번호 MIC(㎍/㎖)
#1 #2 #3 #4 #5
HPKTCC B0728 >128 16 8 8 8
HPKTCC B0068 >128 8 8 8 8
HPKTCC B0727 >128 16 8 8 8
HPKTCC B0343 >128 16 16 16 16
그 결과, 표 5에 나타낸 바와 같이, 커큐민 용해액(#1)은 실험에 사용된 최고 농도인 128 ㎍/㎖까지 항균력을 보이지 않은 반면, 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자는 헬리코박터 파이로리의 종류에 따라 8 내지 16 ㎍/㎖에서 항균력을 보였으며, 킬레이트화제를 첨가하여도 항균활성에 영향을 받지 않았다(표 5). 이를 통해 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자는 헬리코박터에 대한 항균력이 우수함을 알 수 있었다.
<4-2> 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 헬리코박터 파이로리에 대한 항균력 측정
커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자의 헬리코박터에 대한 항균력을 액체 배지를 사용하여 하기와 같은 방법으로 측정하였다.
구체적으로, 10% 말 혈청(MBcell, 한국)을 함유하는 1.0 ㎖의 브루셀라 브로스(brucella broth, MBcell, 한국) 배지가 들어 있는 시험관에 표 4의 헬리코박터 파이로리 G88012 또는 95-71을 104 CFU/㎖의 농도로 접종하였다. 각각의 시험관에 실시예 <4-1>에서 제조한 커큐민 용해액(#1) 또는 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자 복합체 용해액(기준)을 0, 16 또는 32 ㎍/㎖ 농도로 첨가한 후, 37℃ 온도 조건 및 미호기성 환경(5% O2, 10% CO2 및 85% N2 기체조건)에서 배양하였다. 10일 후, 시험관 바닥에 가라앉은 헬리코박터 파이로리의 세포 침전물을 육안으로 관찰하였다.
그 결과, 도 6에 나타낸 바와 같이, 커큐민 용해액(#1)은 실험에 사용된 최고 농도인 32 ㎍/㎖까지 항균력을 보이지 않은 반면, 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자 복합체의 용해액(기준)은 16 ㎍/㎖ 농도에서 헬리코박터 파이로리의 야생형인 G88012 균주 및 클래리스로마이신 및 아목시실린 내성균주인 95-71 균주 모두에서 항균력을 보였다(도 6). 이를 통해 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자는 헬리코박터에 대한 항균력이 우수함을 알 수 있었다.

Claims (10)

  1. 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 약학조성물.
  2. 제 1항에 있어서, 상기 진세노사이드가 PPD(protopanaxadiol), PPT(protopanaxatriol), 컴파운드 K(compound K), Rb1, Rb2, Rb3, Rc, Rd, Re, F1, F2, Rg1, Rg2, Rg3, Rh1, Rh2, Ra3, Rs1, Rs2, C-O, C-Y, C-Mcl, C-Mc, 지페노사이드 XVII(gypenoside XVII), 지페노사이드 LXXV 및 Rf로 구성된 군으로부터 선택되는 어느 하나 이상인, 헬리코박터 파이로리 감염의 예방 또는 치료용 약학조성물.
  3. 제 1항에 있어서, 상기 진세노사이드 및 인지질이 1:0.05 내지 50으로 혼합되는, 헬리코박터 파이로리 감염의 예방 또는 치료용 약학조성물.
  4. 제 1항에 있어서, 상기 지질나노입자가 효소분해인지질, 글리세린지방산에스테르, 포화지방산 및 불포화지방산으로 구성된 군으로부터 선택되는 어느 하나 이상을 더 포함하는, 헬리코박터 파이로리 감염의 예방 또는 치료용 약학조성물.
  5. 제 4항에 있어서, 상기 포화지방산이 C6 내지 C22로 구성된 군으로부터 선택되는 어느 하나 이상인, 헬리코박터 파이로리 감염의 예방 또는 치료용 약학조성물.
  6. 제 4항에 있어서, 상기 불포화지방산이 C6 내지 C22로 구성된 군으로부터 선택되는 어느 하나 이상인, 헬리코박터 파이로리 감염의 예방 또는 치료용 약학조성물.
  7. 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 개선용 건강기능식품.
  8. 약학적으로 유효한 양의, 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 개체에 투여하는 단계를 포함하는, 헬리코박터 파이로리 감염의 예방 또는 치료방법.
  9. 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 함유하는 약학적 조성물을 헬리코박터 파이로리 감염의 예방 또는 치료에 사용하기 위한 용도.
  10. 커큐민이 포집된, 진세노사이드 및 인지질을 포함하는 지질나노입자를 함유하는 건강기능식품을 헬리코박터 파이로리 감염의 개선에 사용하기 위한 용도.
PCT/KR2018/000936 2017-01-20 2018-01-22 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 조성물 WO2018135912A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170009678A KR101948407B1 (ko) 2017-01-20 2017-01-20 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 조성물
KR10-2017-0009678 2017-01-20

Publications (2)

Publication Number Publication Date
WO2018135912A2 true WO2018135912A2 (ko) 2018-07-26
WO2018135912A3 WO2018135912A3 (ko) 2019-01-24

Family

ID=62908532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000936 WO2018135912A2 (ko) 2017-01-20 2018-01-22 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 조성물

Country Status (2)

Country Link
KR (1) KR101948407B1 (ko)
WO (1) WO2018135912A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109045064A (zh) * 2018-08-02 2018-12-21 山东大学 一种岩藻多糖与姜黄素的固体分散体的制备方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166253B1 (ko) * 2018-10-22 2020-10-16 재단법인 지능형 바이오 시스템 설계 및 합성 연구단 지페노사이드 75(Gypenoside LXXV)를 유효성분으로 포함하는 상처 치유용 조성물
KR102169710B1 (ko) * 2020-01-08 2020-10-26 제주대학교 산학협력단 커큐민 나노스피어, 그 제조방법 및 이의 용도

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230721B1 (ko) * 1997-10-02 1999-11-15 이영무 장기 안정성이 우수한 인지질 나노캡슐의 제조방법
KR100835864B1 (ko) * 2002-05-27 2008-06-09 (주)아모레퍼시픽 인삼사포닌 대사 산물을 유효 성분으로 한 미세 유화 입자 및 그 제조방법, 이를 함유한 피부 노화방지용 화장료 조성물
EP1837030A1 (en) 2006-03-09 2007-09-26 INDENA S.p.A. Phospholipid complexes of curcumin having improved bioavailability
CN101530389B (zh) 2008-03-11 2012-02-15 沈阳市万嘉生物技术研究所 人参皂苷Rg3磷脂复合物及其制备方法
US20120058208A1 (en) * 2010-09-04 2012-03-08 Synthite Industries Ltd. Synergistic Composition for Enhancing Bioavailability of Curcumin
CN104997655A (zh) * 2015-08-17 2015-10-28 杭州华胄科技有限公司 含姜黄素的具有抗幽门螺杆菌功效的口腔护理产品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109045064A (zh) * 2018-08-02 2018-12-21 山东大学 一种岩藻多糖与姜黄素的固体分散体的制备方法及其应用
CN109045064B (zh) * 2018-08-02 2020-03-31 山东大学 一种岩藻多糖与姜黄素的固体分散体的制备方法及其应用

Also Published As

Publication number Publication date
WO2018135912A3 (ko) 2019-01-24
KR20180085947A (ko) 2018-07-30
KR101948407B1 (ko) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2018135912A2 (ko) 커큐민이 포집된 진세노사이드 및 인지질 기반 지질나노입자를 유효성분으로 함유하는 헬리코박터 파이로리 감염의 예방 또는 치료용 조성물
WO2014193014A1 (ko) 나노형 김치 유산균
WO2023177188A1 (ko) 당 확산 추출공법으로 추출한 생병풀 추출물을 포함하는 항염, 장벽 효능을 가지는 화장료 조성물 및 이의 용도
WO2021256793A1 (ko) 락토바실러스 속 세균 유래 소포를 포함하는 대사질환 또는 근육질환 예방 또는 치료용 조성물
WO2017082629A2 (ko) 점막염의 치료 방법
WO2018030732A1 (ko) 바실러스 속 세균 유래 나노소포 및 이의 용도
WO2016186349A2 (ko) 사군자 추출물을 함유하는 전립선 비대증 예방 또는 치료용 조성물
WO2018062752A1 (ko) 소장 상피세포에서의 카테킨 흡수 증진제
KR102344605B1 (ko) 용해도 및 항염증 효과가 향상된 매스틱 검이 포집된 지질나노입자를 유효성분으로 함유하는 잇몸 질환의 예방 또는 치료용 조성물
WO2021162145A1 (ko) 피부 상태 개선용 조성물
WO2013115456A1 (ko) 생강 초임계 추출물 및 발효 미나리 박 추출물을 함유하는 식품, 화장료 또는 약학 조성물
WO2020116862A1 (ko) 금은화 물 추출물을 포함하는 헬리코박터 파일로리 감염증 예방 또는 치료용 약학 조성물
WO2023042959A1 (ko) 복합 진세노사이드 조성물을 포함하는 항염증 조성물
WO2018008973A1 (ko) 연교 추출물을 유효성분으로 함유하는 말초신경병증 예방, 개선 또는 치료용 조성물
WO2020263010A1 (ko) 안토시아닌-음전하성 다당류 복합체를 유효성분으로 포함하는 위염 또는 소화성 궤양 예방, 개선 또는 치료용 조성물
WO2021010790A1 (ko) 단삼 생물전환 추출물 및 홍삼 생물전환 추출물을 포함하는 항암용 조성물
WO2020111540A1 (ko) 안토시아닌-폴리사카라이드 복합체를 유효성분으로 포함하는, 노화 또는 노화 관련 질환 예방 또는 치료용 약학적 조성물
WO2020159159A2 (ko) 리소좀 축적 질환의 예방 또는 치료를 위한 약학적 조성물
WO2014030913A1 (ko) 폴리(4-하이드록시부티레이트)-b-모노메톡시(폴리에틸렌글리콜) 공중합체 나노입자, 이의 제조방법 및 이를 유효성분으로 함유하는 뇌질환 치료용 약학적 조성물
WO2014133276A1 (ko) 북두근, 북두근 추출물, 북두근 오니 또는 북두근 맥아 효소액 추출물을 유효성분으로 함유하는 식욕부진 예방 또는 치료용 조성물
WO2019054641A2 (ko) 락토바실러스 플란타룸을 포함하는 위장관 질환의 예방 및 개선용 조성물
WO2021066431A1 (ko) 석류 유래 세포외 소포체 및 이의 용도
WO2019083328A9 (ko) 안토시아닌-후코이단 복합체를 유효성분으로 함유하는 면역증강제, 면역항암제 및 항암제 부작용 완화제
WO2018012901A1 (ko) 사이클로 히스티딘-프롤린을 유효성분으로 포함하는 세포 보호용 조성물
WO2017078353A1 (ko) 스티피탈리드를 유효성분으로 포함하는 조성물

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741898

Country of ref document: EP

Kind code of ref document: A2