WO2018133809A1 - 汽车及其主动悬置控制系统和汽车主动减震控制方法 - Google Patents
汽车及其主动悬置控制系统和汽车主动减震控制方法 Download PDFInfo
- Publication number
- WO2018133809A1 WO2018133809A1 PCT/CN2018/073161 CN2018073161W WO2018133809A1 WO 2018133809 A1 WO2018133809 A1 WO 2018133809A1 CN 2018073161 W CN2018073161 W CN 2018073161W WO 2018133809 A1 WO2018133809 A1 WO 2018133809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- vibration
- signal
- current value
- automobile
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K5/00—Arrangement or mounting of internal-combustion or jet-propulsion units
- B60K5/12—Arrangement of engine supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/105—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/107—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
- B60W2050/0014—Adaptive controllers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0638—Engine speed
- B60W2510/0652—Speed change rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/22—Suspension systems
- B60W2710/223—Stiffness
Definitions
- the present invention relates to the field of automotive technology, and in particular to an active suspension control system for a vehicle and a vehicle having the control system.
- the related art provides a control system that estimates the engine vibration state based on the output of the sensor that detects the engine rotation variation, and realizes the telescopic control of the transmission mechanism by the control unit, thereby suppressing the transmission of the vibration.
- the control unit calculates a target current value waveform for suppressing engine vibration transmission based on the output data of the sensor, and samples the target current value waveform with a constant sampling period, obtains a data set of the target current value, and is based on driving through the transmission mechanism.
- the predetermined period of time during which the engine speed is determined during the timing is estimated as the period length of the engine vibration, and then the data set of the acquired target current value is corrected based on the estimated period length of the engine vibration, and power is supplied to the transmission mechanism.
- control system is based only on the fuel vehicle, and estimates the vibration state and the target current value of the third cycle based on the vibration state of the first cycle of the engine vibration, the target current value, and the like, and thus does not have timeliness and cannot Real-time adjustment of vibration is achieved.
- an object of the present invention is to provide an active suspension control system for an automobile that not only realizes real-time adjustment of the active suspension, but also has high timeliness, and is applicable to both fuel vehicles and hybrid vehicles.
- Another object of the invention is to propose a car.
- an active suspension control system for an automobile includes: a detection module, wherein the detection module is configured to detect status information of a vehicle, wherein the status information of the automobile includes an engine. a crank angle angle; the vehicle working condition determining module, wherein the vehicle working condition determining module is configured to determine a current working condition of the automobile according to the state information of the automobile; a vibration period computing module, wherein the vibration period computing module is used according to the Calculating a rotational speed and a vibration period of the engine by a crank angle of the engine; a vibration state estimation module for estimating the engine according to a current operating condition of the automobile and a rotational speed and a vibration period of the engine a vibration state; a target current calculation module, configured to calculate a target current value according to a vibration state of the engine; and an actuator for adjusting an initiative of the vehicle according to the target current value
- the dynamic stiffness of the suspension system is used to control the vibration of the vehicle.
- the active suspension control system of the automobile determines the current operating condition of the automobile according to the state information of the automobile, and calculates the rotational speed and the vibration period of the engine according to the detected crank angle of the engine. Then, according to the current working condition of the automobile and the engine speed and vibration period, the vibration state of the engine is calculated, the target current value is calculated according to the vibration state of the engine, and the dynamic stiffness of the active suspension system of the vehicle is adjusted according to the target current value, Damping control of the car.
- the system not only enables real-time adjustment of the active suspension, but also has high timeliness and is suitable for both fuel and hybrid vehicles.
- the state information of the automobile further includes vibration information of the automobile, a vehicle speed of the automobile, a moving position of a piston in the engine, a temperature of the engine, and an ignition coil of the engine.
- a signal, wherein an ignition coil signal of the engine is transmitted by an electronic control unit of the engine.
- the detection module includes a sensor module, the sensor module includes: an acceleration sensor, the acceleration sensor is configured to detect an acceleration of the automobile to obtain vibration information of the automobile; and the vehicle speed sensor The vehicle speed sensor is configured to detect a vehicle speed of the automobile; a camshaft sensor for detecting a moving position of a piston in the engine; and a water temperature sensor for detecting a temperature of the engine a crankshaft sensor for detecting a crank angle of the engine.
- the above-described active suspension control system for a vehicle further includes: a communication module for establishing the vehicle operating condition determination module and the electronic control unit of the engine, the automobile Communication connection between the battery management units, so that the vehicle operating condition determination module is based on an operating state of the electronic control unit of the engine, an operating state of the battery management unit, and vibration information of the automobile, the automobile
- the vehicle speed, the position of the piston in the engine, the crank angle of the engine, the temperature of the engine, and the ignition coil signal of the engine determine the current operating conditions of the vehicle.
- the operating condition of the automobile includes one or more of an idle condition, a cold start condition, and an acceleration/deceleration condition.
- the operating condition of the automobile when the automobile is a hybrid vehicle, further includes one or more of a pure electric working condition, an idle charging condition, and a fast charging condition.
- the vibration state of the engine includes a vibration magnitude and a vibration frequency.
- the active suspension control system of the automobile further includes: an ignition coil signal state module, wherein the ignition coil signal state module is configured to output the ignition of the engine according to an ignition coil signal of the engine
- the coil state information is sent to the target current calculation module, so that the target current calculation module calculates the target current value according to the vibration state of the engine and the ignition coil state information of the engine.
- the active suspension control system of the automobile further includes: a drive control module, configured to output the information according to the target current value and the ignition coil state information of the engine a drive signal at a working time; a drive circuit for outputting an operating current with an active time to the actuator according to the drive signal, so that the actuator is operated according to the action time The current works.
- the active suspension control system of the automobile further includes: a current detecting module, wherein the current detecting module is configured to detect an output current of the driving circuit to obtain an operating temperature of the actuator a target current correction module for adjusting the target current value according to an operating temperature of the actuator.
- the active suspension control system of the automobile further includes: a vibration damping threshold determining module, wherein the vibration damping threshold determining module is configured to determine a current vibration of the automobile according to vibration information of the automobile Whether the value is greater than a preset vibration threshold, and outputting a target current correction signal to the target current correction module when the current vibration value of the automobile is greater than a preset vibration threshold, the target current correction module according to the target current correction signal pair The target current value is corrected such that the actuator adjusts the dynamic stiffness of the active suspension system of the vehicle based on the corrected target current value.
- a vibration damping threshold determining module is configured to determine a current vibration of the automobile according to vibration information of the automobile Whether the value is greater than a preset vibration threshold, and outputting a target current correction signal to the target current correction module when the current vibration value of the automobile is greater than a preset vibration threshold, the target current correction module according to the target current correction signal pair
- the target current value is corrected such that the actuator adjusts the dynamic stiffness of the active suspension system
- another embodiment of the present invention provides an automobile including the above-described active suspension control system for an automobile.
- the automobile of the embodiment of the present invention can realize real-time adjustment of the active suspension through the above-mentioned active suspension control system of the automobile, has high timeliness, and is applicable to both the fuel automobile and the hybrid vehicle.
- FIG. 1 is a block schematic diagram of an active suspension control system for a vehicle in accordance with an embodiment of the present invention
- FIG. 2 is a block schematic diagram of an active suspension control system for a vehicle in accordance with one embodiment of the present invention
- FIG. 3 is a block diagram showing an active suspension control system for a vehicle according to another embodiment of the present invention.
- FIG. 4 is a diagram showing a relationship between an ignition coil signal and a target current value of a four-cylinder engine according to an embodiment of the present invention
- FIG. 5 is a block schematic diagram of an active suspension control system for a vehicle according to still another embodiment of the present invention.
- FIG. 6 is a block schematic diagram of an active suspension control system for a vehicle according to still another embodiment of the present invention.
- FIG. 7 is a flowchart showing the operation of an active suspension control system for a vehicle according to an embodiment of the present invention.
- FIG. 8 is a flow chart of active vibration damping control of a fuel vehicle in an idle condition according to an embodiment of the present invention.
- FIG. 9 is a flow chart of active vibration damping control of a fuel vehicle in an idle condition according to another embodiment of the present invention.
- Figure 10 is a graph showing a relationship between a signal output from a camshaft sensor and a target current value, in accordance with one embodiment of the present invention.
- FIG. 11 is a flow chart of active vibration damping control of a fuel vehicle in a cold start condition according to an embodiment of the present invention
- FIG. 12 is a diagram showing relationship between an ignition coil signal, a temperature, a rotational speed, and a first corrected current value of a four-cylinder engine according to an embodiment of the present invention
- Figure 13 is a graph showing the relationship between the signal, temperature, and rotational speed of the camshaft sensor output and the first corrected current value, in accordance with one embodiment of the present invention
- FIG. 14 is a flow chart of active vibration damping control of a fuel vehicle in a cold start condition according to another embodiment of the present invention.
- 16 is a flow chart of active damping control corresponding to a second and above signal periods (n ⁇ 2) of a hybrid vehicle in an idle charging condition, in accordance with an embodiment of the present invention
- 17 is a diagram showing a PWM signal relationship between an ignition coil signal and a target current value of a four-cylinder engine according to an embodiment of the present invention
- 19 is a flow chart showing active damping control corresponding to a second and above signal periods (n ⁇ 2) when the hybrid vehicle is in an idle charging condition according to another embodiment of the present invention.
- 20 is a diagram showing a relationship between a signal output from a camshaft sensor and a PWM signal of a target current value, in accordance with one embodiment of the present invention
- 21 is a block schematic view of a car in accordance with an embodiment of the present invention.
- the active suspension control system of the automobile includes: a detection module 11, an automobile condition determination module 12, and a vibration period.
- the detection module 11 is configured to detect state information of the automobile, and the state information of the automobile includes a crank angle of the engine.
- the vehicle condition determination module 12 is configured to determine the current working condition of the vehicle based on the state information of the automobile.
- the vibration period calculation module 13 is for calculating the engine speed and the vibration period based on the crank angle of the engine.
- the vibration state estimation module 14 is configured to estimate the vibration state of the engine based on the current operating conditions of the automobile and the rotational speed and vibration period of the engine.
- the target current calculation module 15 is for calculating a target current value according to the vibration state of the engine.
- the actuator 16 is configured to adjust the dynamic stiffness of the active suspension system of the vehicle according to the target current value to perform vibration damping control on the automobile.
- the vibration state of the engine includes a vibration magnitude and a vibration frequency.
- the operating conditions of the vehicle may include one or more of an idle condition, a cold start condition, and an acceleration and deceleration condition.
- the working condition of the automobile may also include one or more of a pure electric working condition, an idle charging condition, and a fast charging condition.
- the state information of the automobile is detected by the detecting module 11 in real time, and may include the vehicle speed of the automobile, the acceleration and deceleration speed of the automobile, the crank angle of the engine, and the starting signal of the automobile.
- the vehicle condition determination module 12 determines the current working condition of the vehicle based on the state information of the automobile.
- the vibration period calculation module 13 calculates the engine speed and the vibration period based on the crank angle of the engine.
- the engine speed is equal to the number of revolutions of the crankshaft per minute, and the vibration period of the engine can be calculated according to the number of cylinders of the engine and the number of revolutions of the engine.
- the crankshaft is rotated twice in each working cycle of the engine, and in each working cycle, four cylinders are fired and exploded once in the order of 1342, that is, the engine will explode twice per revolution, that is, the engine. It vibrates twice per revolution. If the engine speed is 6000r/min, the engine's vibration period is 1/200s.
- the vibration state estimation module 14 estimates the vibration state of the engine by the sampling method or the like based on the current operating condition of the automobile, the engine speed and the vibration period, and the target current calculation module 15 further calculates the target current value by the sampling method or the like based on the vibration state. A, and output to the actuator 16. Specifically, it can be obtained by calculation in the prior art.
- the actuator 16 adjusts its own electromagnetic induction device according to the target current value A to realize the up and down movement of the mechanical structure, thereby changing the dynamic stiffness of the active suspension, thereby achieving the effect of vibration reduction and noise reduction.
- the active suspension system Since the system acquires and processes the current state information of the automobile to obtain a desired target current value, and adjusts the dynamic stiffness of the active suspension according to the target current value, the active suspension system is realized. Real-time adjustment, high timeliness, is conducive to adjusting the vibration state at all times to ensure the comfort of riding.
- the state information of the automobile further includes vibration information of the automobile, a vehicle speed of the automobile, a moving position of the piston in the engine, a temperature of the engine, and an ignition coil signal of the engine, wherein the ignition coil signal of the engine is controlled by the engine
- the electronic control unit 51 transmits an ignition coil signal that reflects the explosion timing of the engine cylinder.
- the detection module 11 includes a sensor module 110 .
- the sensor module 110 includes an acceleration sensor 111 , a vehicle speed sensor 112 , a camshaft sensor 113 , a water temperature sensor 114 , and a crank sensor 115 .
- the acceleration sensor 111 is used to detect the acceleration of the automobile to obtain the vibration information of the automobile
- the vehicle speed sensor 112 is used to detect the vehicle speed of the automobile
- the camshaft sensor 113 is used to detect the moving position of the piston in the engine
- the water temperature sensor 114 is used to detect the engine.
- Temperature; crankshaft sensor 115 is used to detect the crank angle of the engine.
- the above-mentioned active suspension control system of the automobile may further include: a communication module 17 for establishing the vehicle operating condition determination module 12 and the electronic control unit 51 of the engine, and the battery of the automobile.
- the communication connection between the management units 52 is such that the vehicle operating condition determination module 12 is based on the operating state of the electronic control unit 51 of the engine, the operating state of the battery management unit 52, and the vibration information of the automobile, the vehicle speed of the automobile, and the moving position of the piston in the engine.
- the crankshaft angle of the engine, the temperature of the engine, and the ignition coil signal of the engine determine the current operating conditions of the vehicle.
- the idle condition and acceleration and deceleration conditions of a car can be judged according to the speed of the car and the crank angle;
- the cold condition of the car also called the start condition of the cold car
- the pure electric working condition, the idle charging working condition and the fast charging working condition of the automobile can be judged according to the vehicle speed of the automobile, the crank angle and the working state of the battery management unit 52.
- the battery management unit 52 determines that the power battery is in a charging state
- how to judge here is not a limitation.
- the timing control module may be set in the active suspension control system, and the timing control module is mainly responsible for controlling the timing sampling of the detection module 11 and providing The time controlled module provides a time base.
- a corresponding storage module (such as RAM) can also be set to store the information sampled by the detection module 11 to facilitate the calling of the relevant module at any time.
- the above-described active suspension control system of the automobile may further include: an ignition coil signal state module 18 for igniting the ignition coil according to the engine.
- the signal outputs the ignition coil state information of the engine to the target current calculation module 15 so that the target current calculation module 15 calculates the target current value based on the vibration state of the engine and the ignition coil state information of the engine.
- the above-described active suspension control system of the automobile further includes: a drive control module 19 and a drive circuit 20, wherein the drive control module 19 is configured to use the target current value and the ignition coil state information of the engine.
- a drive signal with a working time is output; the drive circuit 20 is for outputting an operating current with an active time to the actuator 16 based on the drive signal, so that the actuator 16 operates according to the operating current with the active time.
- the ignition coil signal reflects the explosion timing of the cylinder in the engine, and the vibration of the engine is mainly generated by the combustion of the gas in the cylinder at the ignition timing to push the piston, so the ignition coil signal is used to control the output timing of the target current value A, and the vibration is suppressed. To be accurate and effective.
- the ignition coil signal state module 18 obtains the ignition coil signal of the engine from the storage module under the action of the timing control module, and determines whether the ignition coil is working at this time according to the ignition coil signal. If yes, the operation signal is sent to the target current calculation module 15, and after receiving the operation signal, the target current calculation module 15 transmits the target current value to the drive control module 19.
- the drive control module 19 outputs a drive signal and a time signal for starting the drive according to the operation signal and the target current value, and controls the switch tube in the drive circuit 20 to control the operating state of the actuator 16 through the drive circuit 20, thereby achieving active control. Adjustment of the dynamic stiffness of the suspension. If the ignition coil is not working, the standby state is entered, the timer in the timing control module is started, and when the timing time reaches the set time value, the target current value A is calculated based on the sampling information of the detection module 11.
- q1 is the ignition coil signal of cylinder No. 1
- q2 is the ignition coil signal of cylinder No. 3
- q3 is the ignition coil signal of cylinder No. 4
- q4 is the ignition coil signal of cylinder No. 2
- E is the waveform of the target current value.
- ⁇ is the phase delay of the target current value.
- the operating temperature of the actuator 16 is also monitored, and the target current value is based on the operating temperature. Make adjustments.
- the above-described active suspension control system of the automobile may further include: a current detecting module 21 and a target current correcting module 22.
- the current detecting module 21 is configured to detect an output current of the driving circuit 20 to obtain an operating temperature of the actuator 16; the target current correcting module 22 is configured to adjust a target current value according to an operating temperature of the actuator 16.
- the output current of the driving circuit 20 detected by the current detecting module 21 can be used to calculate the resistance value of the coil, and then according to the resistance value. Calculate the operating temperature of the actuator 16 at this time, and finally calculate the operating state of the actuator 16 based on the operating temperature, adjust the target current value according to the operating state, and actively suspend according to the adjusted target current value. Dynamic stiffness is adjusted. Therefore, before the current damping effect is generated, the target current value at each moment is adjusted by monitoring the operating temperature of the actuator 16, and the influence of the temperature on the actuator 16 is eliminated to achieve the vibration damping effect. The purpose of active adjustment is to have a better damping effect.
- the vibration damping effect After adjusting the dynamic stiffness of the active suspension, if the vibration damping effect is not monitored, it is impossible to judge whether the vibration damping is effective and what kind of vibration damping effect, and if the vibration damping effect can be monitored, and according to the current reduction The vibration effect adjusts the target current value of the next cycle, and the obtained target current value will be more reasonable, and the vibration damping effect will be better.
- the active suspension control system of the automobile may further include: a vibration damping threshold determining module 23, and the vibration damping threshold determining module 23 is configured to determine the automobile according to the vibration information of the automobile. Whether the current vibration value is greater than the preset vibration threshold, and outputting the target current correction signal to the target current correction module 22 when the current vibration value of the automobile is greater than the preset vibration threshold, and the target current correction module 22 performs the target current value according to the target current correction signal. Correction so that the actuator 16 adjusts the dynamic stiffness of the active suspension system of the vehicle based on the corrected target current value.
- the preset vibration threshold can be calibrated according to the actual situation.
- the damping threshold determination module 23 obtains the signal waveform of the acceleration sensor from the storage module under the action of the timing control module, and calculates the vibration value of the vehicle after the last vibration reduction according to the signal waveform, and then presets The vibration threshold is compared. If the vibration value is greater than the preset vibration threshold, the damping effect is not good. At this time, the target current correction signal is output according to the difference between the vibration value and the preset vibration threshold, and the target current correction module 22 corrects the signal according to the target current. The current value is corrected, and then the dynamic stiffness of the active suspension is adjusted according to the corrected target current value.
- the vibration damping effect is monitored by the acceleration sensor 111, and feedback is performed for the case where the vibration damping effect cannot be satisfied, so that the target current value is corrected to form a closed loop adjustment.
- the effectiveness of the damping effect when the current detecting module 21, the target current correcting module 22, and the damping threshold determining module 23 simultaneously act, that is, when the above two correction modes cooperate, the vibration damping effect of the automobile is more obvious, thereby greatly improving the comfort of the ride. .
- FIG. 7 is a flowchart showing the operation of an active suspension control system for an automobile according to an embodiment of the present invention. As shown in FIG. 7, the working process may include the following steps:
- S102 Determine the current working condition of the automobile according to the state information, and calculate the rotation speed and the vibration period of the engine according to the crank angle.
- S103 Calculate the vibration state of the automobile according to the current working condition of the automobile, the rotation speed of the engine, and the vibration period.
- step S106 it is determined whether the ignition coil signal is ON. If yes, go to step S108; if no, go to step S107.
- step S107 Determine whether the timing signal is ON. If yes, go back to step S101; if no, go back to step S106.
- the target current value is adjusted according to the operating current, and the actuator is controlled according to the adjusted target current value.
- step S112. Determine whether the vibration damping effect meets the condition according to the signal waveform of the acceleration sensor. If yes, the current damping is ended; if not, step S113 is performed.
- the existing signals of the automobile such as the crank sensor, the ignition coil signal and the vehicle speed sensor are used as the input signals of the vibration reduction control, and the signal acquisition is more convenient and effective.
- the effective timing of the vibration reduction and noise reduction control is directly obtained by using the ignition coil signal, so that the action time of the vibration reduction control is more accurate, and the vibration damping effect is more effective.
- the operating current of the driving circuit is taken as the input signal, the target current value is actively adjusted, and the signal of the acceleration sensor is used as a feedback signal, and the target current value is closed-loop adjusted, so that the signal processing is more strict and effective, so that the signal can be better
- the vibration and noise reduction control is realized to achieve the effects of attenuating vibration and reducing noise, and improving user comfort.
- the fuel vehicle is taken as an example for illustration.
- FIG. 8 is a flow diagram of active damping control for a fuel vehicle in an idle condition, in accordance with one embodiment of the present invention. As shown in FIG. 8, the active vibration damping control of the fuel vehicle may include the following steps:
- step S202 Determine whether the automobile is in an idle condition according to the speed of the automobile. If yes, go to step S203; if no, go back to step S201.
- the vibration state of the engine is obtained by the sampling method, and the current target current value is obtained by the sampling method according to the vibration state of the engine.
- step S206 Determine whether the ignition coil signal is ON, that is, determine whether the engine is in an ignition state. If yes, go to step S208; if no, go to step S207.
- step S207 Determine whether the timing signal is ON. If yes, go back to step S201; if no, return to step S206.
- the target current value is adjusted according to the operating current.
- step S213. Determine whether the vibration damping effect meets the condition according to the signal waveform of the acceleration sensor. If yes, the vibration reduction and noise reduction of the signal period is ended; if not, step S214 is performed.
- the signal existing in the vehicle such as the crank sensor, the ignition coil signal, and the vehicle speed sensor is used as the input signal of the vibration reduction control, and the signal acquisition is more convenient and effective.
- the effective timing of the vibration reduction and noise reduction control is directly obtained by using the ignition coil signal, so that the action time of the vibration reduction control is more accurate, and the vibration damping effect is more effective.
- the operating current of the driving circuit is taken as the input signal, the target current value is actively adjusted, and the signal of the acceleration sensor is used as a feedback signal, and the target current value is closed-loop adjusted, so that the signal processing is more strict and effective, so that the signal can be better
- the vibration and noise reduction control is realized to achieve the effects of attenuating vibration and reducing noise, and improving user comfort.
- the vibration state of the engine is obtained according to the rotational speed of the engine, and the delay time of the target current is directly determined according to the ignition coil signal, and in other embodiments of the present invention, according to the rotational speed of the engine and
- the movement position of the piston in the engine detected by the camshaft sensor derives the vibration state of the engine, and derives the engine cylinder explosion timing based on the signal waveform output from the camshaft sensor, and calculates the delay time of the target current value based on the explosion timing.
- FIG. 9 is a flow chart of active vibration damping control of a fuel vehicle in an idle condition according to another embodiment of the present invention.
- the active vibration damping control of the fuel vehicle may include the following steps:
- step S302 determining whether the car is in an idle condition according to the speed of the car. If yes, go to step S303; if no, go back to step S301.
- the vibration state of the engine is calculated based on the engine speed and the movement position of the engine piston, and the required target current value is calculated based on the vibration state of the engine.
- the cylinder explosion time is calculated based on the signal waveform of the camshaft sensor, and the cylinder explosion timing is preliminarily determined to estimate the delay time of the target current value.
- step S308. Determine whether the delay signal is OFF, that is, determine whether the delay time is over. If yes, go to step S309; if no, go back to step S308.
- step S314. Determine whether the vibration damping effect meets the condition according to the signal waveform of the acceleration sensor. If yes, the vibration reduction and noise reduction of the signal period is ended; if not, step S315 is performed.
- the target current value is corrected according to the vibration damping effect.
- Figure 10 is a graph showing the relationship between a signal output from a camshaft sensor and a target current value, in accordance with one embodiment of the present invention.
- q5 is the signal output by the camshaft sensor
- E is the waveform of the target current value
- ⁇ 1, ⁇ 2, ..., ⁇ 7 are the phase delays of the target current value.
- the target current value is output after the ⁇ i time after the cam sensor signal is obtained.
- the signal already existing in the automobile such as the crank sensor, the camshaft sensor, and the vehicle speed sensor is used as the input signal of the vibration damping control, and the signal acquisition is more convenient and effective.
- the effective moment of the vibration reduction and noise reduction control is determined in advance by using the camshaft sensor signal, so that the action time of the vibration damping control is more accurate, and the vibration damping effect is more effective.
- the operating current of the driving circuit is taken as the input signal, the target current value is actively adjusted, and the signal of the acceleration sensor is used as a feedback signal, and the target current value is closed-loop adjusted, so that the signal processing is more strict and effective, so that the signal can be better
- the vibration and noise reduction control is realized to achieve the effects of attenuating vibration and reducing noise, and improving user comfort.
- FIG. 11 is a flow chart of active vibration damping control of a fuel vehicle in a cold start condition, in accordance with one embodiment of the present invention. As shown in FIG. 11, the active vibration damping control of the fuel vehicle may include the following steps:
- step S402. Determine whether the automobile is in an activated state according to a start signal of the automobile. If yes, go to step S403; if no, go back to step S401.
- step S404 determining whether the car is in a cold start condition. If yes, go to step S405; if no, go back to step S401.
- the vibration state of the engine is obtained by the sampling method, and the current target current value A is obtained by the sampling method according to the vibration state of the engine.
- the target current value A is corrected based on the current temperature of the engine to obtain a first corrected current value A'.
- the temperature has a great influence on the engine.
- the target current value A is corrected according to the current temperature of the engine to obtain the first corrected current value A', so that the corrected target current value is more in line with the actual working condition. It is more conducive to vibration damping and noise reduction of active suspension.
- step S409 determining whether the ignition coil signal is ON, that is, determining whether the engine is in an ignition state. If yes, go to step S411; if no, go to step S410.
- step S410 Determine whether the timing signal is ON. If yes, go back to step S401; if no, go back to step S409.
- duty ratio control is performed on the driving circuit to obtain a first corrected current value A'.
- the first correction current value A' is input to the drive circuit.
- the first correction current value A' is adjusted according to the operating current of the driving circuit.
- step S415 Determine whether the vibration damping effect meets the condition according to the signal waveform of the acceleration sensor. If so, the vibration reduction and noise reduction of the signal period is ended; if not, step S416 is performed.
- the adjusted first corrected current value A' is corrected according to the vibration damping effect.
- Figure 12 is a graph showing the relationship between the ignition coil signal, temperature, and rotational speed of the four-cylinder engine and the first corrected current value, in accordance with one embodiment of the present invention.
- q1 is the ignition coil signal of cylinder No. 1
- q2 is the ignition coil signal of cylinder No. 4
- q3 is the ignition coil signal of cylinder No. 3
- q4 is the ignition coil signal of cylinder No. 2
- T is the temperature change waveform of the engine.
- R is a waveform of the rotational speed change of the engine
- E is a waveform of the first corrected current value
- ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 are phase delays of the first corrected current value.
- the target current value A is output, so that the effect of vibration reduction and noise reduction is more effective.
- the signal already existing in the automobile such as the crank sensor, the ignition coil signal, and the water temperature sensor is used as the input signal of the vibration damping control, and the signal acquisition is more convenient and effective.
- the effective timing of the vibration reduction and noise reduction control is directly obtained by using the ignition coil signal, so that the action time of the vibration reduction control is more accurate, and the vibration damping effect is more effective.
- the operating current of the driving circuit is used as an input signal, the first modified current value is actively adjusted, and the signal of the acceleration sensor is used as a feedback signal, and the first modified current value is closed-loop adjusted, so that the signal processing is more strict and effective, so It can better achieve vibration and noise reduction control, achieve the effect of attenuating vibration and reducing noise, and improve user comfort.
- FIG. 14 is a flow chart showing active damping control of a fuel vehicle in a cold start condition, in accordance with another embodiment of the present invention.
- the active vibration damping control of the fuel vehicle may include the following steps:
- S501 Acquire a start signal of the car.
- step S502 Determine whether the automobile is in an activated state according to a start signal of the automobile. If yes, go to step S503; if no, go back to step S501.
- step S504 determining whether the car is in a cold start condition. If yes, go to step S505; if no, go back to step S501.
- the vibration state of the engine is calculated based on the engine speed and the movement position of the engine piston, and the required target current value A is derived based on the vibration state of the engine.
- the target current value A is corrected according to the temperature of the engine to obtain a first corrected current value A'.
- the cylinder explosion timing is estimated based on the output signal of the camshaft sensor and the vehicle communication signal, and the cylinder explosion timing is determined in advance, and the delay time of the first correction current value A' is derived.
- step S511 Determine whether the delay signal is OFF, that is, determine whether the delay time is over. If yes, go to step S512; if no, go back to step S511.
- the first corrected current value A' is input to the drive circuit.
- the first correction current value A' is adjusted according to the operating current.
- step S517 Determine whether the vibration damping effect meets the condition according to the signal waveform of the acceleration sensor. If yes, the vibration and noise reduction of the signal period is ended; if not, step S518 is performed.
- Figure 13 is a graph showing the relationship between the signal, temperature, and rotational speed of the camshaft sensor output and the first corrected current value, in accordance with one embodiment of the present invention.
- q5 is the signal output by the camshaft sensor
- E is the waveform of the first corrected current value
- T is the temperature change waveform of the engine
- R is the rotational speed change waveform of the engine
- ⁇ 1, ⁇ 2, and ⁇ 3 are the phases of the first corrected current value. delay.
- the first correction current value is output, so that the effect of vibration reduction and noise reduction is more effective.
- the signal existing in the automobile such as the crank sensor, the camshaft sensor, and the water temperature sensor is used as an input signal of the vibration damping control, and the signal acquisition is more convenient and effective.
- the effective moment of the vibration reduction and noise reduction control is determined in advance by using the camshaft sensor signal, so that the action time of the vibration damping control is more accurate, and the vibration damping effect is more effective.
- the operating current of the driving circuit is taken as the input signal, the target current value is actively adjusted, and the signal of the acceleration sensor is used as a feedback signal, and the target current value is closed-loop adjusted, so that the signal processing is more strict and effective, so that the signal can be better
- the vibration and noise reduction control is realized to achieve the effects of attenuating vibration and reducing noise, and improving user comfort.
- a pre-processing can be set, and the pre-processing function is to calculate a target current value A in advance by using the time before the communication is completed. After the communication ends, if the current operating condition of the hybrid vehicle is confirmed to be an idle charging condition according to a signal sent by the vehicle controller, the target current value A can be directly utilized, thereby effectively reducing the calculation time after the communication ends.
- the pre-processing includes: determining whether the hybrid vehicle is in an idle condition according to the vehicle speed sensor signal and the crank sensor signal, and determining, according to the crank sensor signal, whether the engine speed is in a preset speed range corresponding to the charging condition If the hybrid vehicle is in an idle condition and the engine speed is in a preset speed range corresponding to the charging condition, it is determined that the hybrid vehicle is in an idle charging condition.
- the preset speed range may be calibrated according to actual conditions, for example, the preset speed range may be 900r/min-2000r/min.
- the vehicle speed sensor signal and the crank sensor signal are acquired and counted. It is judged whether the value of the acquired signal is within the range of the idle charging condition of the engine. If not, enter the processing of other operating conditions (such as acceleration, deceleration, etc.); if so, calculate the engine speed and vibration period based on the crankshaft sensor signal, wherein the engine speed is equal to the number of revolutions per minute of the crankshaft, the engine The vibration period can be calculated based on the number of cylinders of the engine and the number of revolutions of the engine.
- the crankshaft is rotated twice in each working cycle of the engine, and in each working cycle, four cylinders are fired and exploded once in the order of 1342, that is, the engine will explode twice per revolution, that is, the engine. It vibrates twice per revolution. If the engine speed is 6000r/min, the engine's vibration period is 1/200s. After calculating the engine speed and vibration period, the vibration state of the engine can be obtained by sampling method according to the engine speed, and then the required target current can be obtained by sampling or table lookup according to the vibration state of the engine. Value A.
- the active vibration damping control of the hybrid vehicle may include the following steps:
- step S601 communicating with the vehicle controller to determine whether the hybrid vehicle is in an idle charging condition. If yes, go to step S603; if no, go to the other working conditions identified.
- the target current value A can also be adjusted according to the charging power of the power battery to obtain the first corrected current value A′.
- the target current value is more in line with the actual working conditions, and is more conducive to vibration damping and noise reduction of the active suspension.
- step S605 determining whether the ignition coil signal is ON, that is, determining whether the engine is in an ignition state. If yes, go to step S607; if no, go to step S606.
- step S606. Determine whether the timing signal is ON. If yes, go back to step S601; if no, go back to step S605.
- the first corrected current value A' is input to the drive circuit.
- step S612. Determine whether the vibration damping effect meets the condition according to the signal waveform of the acceleration sensor. If yes, the vibration and noise reduction of the signal period is ended; if not, step S613 is performed.
- the adjusted first corrected current value A' is corrected according to the damping effect to obtain a second corrected current value A".
- n when n ⁇ 2, if the front and rear working conditions are not changed, the actuator is directly controlled by the target current value finally obtained in the previous signal period, thereby simplifying the calculation process and ensuring the calculation accuracy; If there is a change, the latest target current value calculated after the preprocessing is called, and the target current value is corrected according to the obtained charging power of the hybrid vehicle to obtain the latest first corrected current value, that is, the third correction. Current value.
- FIG. 16 is a flow chart of active damping control corresponding to the second and above signal periods (n ⁇ 2) when the hybrid vehicle is in an idle charging condition according to an embodiment of the present invention.
- the active vibration damping control of the hybrid vehicle may include the following steps:
- step S701 communicating with the vehicle controller to determine whether the hybrid vehicle is still in an idle charging condition. If yes, go to step S702; if no, go to the other working conditions identified.
- step S702 Determine whether the charging power changes. If yes, go to step S703; if no, go to step S705.
- step S707 determining whether the ignition coil signal is ON, that is, determining whether the engine is in an ignition state. If yes, go to step S709; if no, go to step S708.
- step S708 determining whether the timing signal is ON. If yes, go back to step S701; if no, go back to step S707.
- the third correction current value A1' or the second correction current value A" current value is adjusted according to the operating current.
- step S714 Determine whether the vibration damping effect meets the condition according to the signal waveform of the acceleration sensor. If yes, the vibration reduction and noise reduction of the signal period is ended; if not, step S715 is performed.
- FIG 17 is a diagram showing the relationship between the ignition coil signal of the four-cylinder engine and the PWM signal of the target current value, in accordance with one embodiment of the present invention.
- q1 is the ignition coil signal of cylinder No. 1
- q2 is the ignition coil signal of cylinder No. 3
- q3 is the ignition coil signal of cylinder No. 4
- q4 is the ignition coil signal of cylinder No. 2
- F is required to generate the target current value.
- the PWM signal, a, a1 are the initial phase difference before and after the correction
- b and b1 are the time lengths of the high-level signal before and after the correction, respectively
- c and c1 are the time lengths of one signal period before and after the correction, respectively. That is b/c, b1/c1.
- the signal existing in the automobile such as the crank sensor, the ignition coil signal, and the vehicle speed sensor is used as the input signal of the vibration damping control, and the signal acquisition is more convenient and effective.
- the effective timing of the vibration reduction and noise reduction control is directly obtained by using the ignition coil signal, so that the action time of the vibration reduction control is more accurate, and the vibration damping effect is more effective.
- the operating current of the driving circuit is taken as the input signal, the target current value is actively adjusted, and the signal of the acceleration sensor is used as a feedback signal, and the target current value is closed-loop adjusted, so that the signal processing is more strict and effective, so that the signal can be better
- the vibration and noise reduction control is realized to achieve the effects of attenuating vibration and reducing noise, and improving user comfort.
- the entire control makes full use of the communication time with the vehicle controller, which effectively reduces the calculation time after communication, and makes the control more rapid.
- the active vibration damping control of the hybrid vehicle may include the following steps:
- step S801 communicating with the vehicle controller to determine whether the hybrid vehicle is in an idle charging condition. If yes, go to step S803; if no, go to the other working conditions identified.
- step S805 determining whether the delay signal is OFF, that is, determining whether the delay time is over. If yes, go to step S806; if no, go back to step S805.
- the first corrected current value A' is input to the drive circuit.
- the first correction current value A' is adjusted according to the operating current.
- step S811 determining whether the vibration damping effect meets the condition according to the signal waveform of the acceleration sensor. If yes, the vibration reduction and noise reduction of the signal period is ended; if not, step S812 is performed.
- the adjusted A' is corrected according to the damping effect to obtain a second corrected current value A".
- FIG. 19 is a flowchart of active damping control corresponding to the second and above signal periods (n ⁇ 2) when the hybrid vehicle is in an idle charging condition according to another embodiment of the present invention.
- the active vibration damping control of the hybrid vehicle may include the following steps:
- step S901 communicating with the vehicle controller to determine whether the hybrid vehicle is still in an idle charging condition. If yes, go to step S902; if no, go to the other working conditions identified.
- step S902 determining whether the charging power has changed. If yes, go to step S903; if no, go to step S905.
- step S907 determining whether the delay signal is OFF, that is, determining whether the delay time is over. If yes, go back to step S908; if no, go back to step S907.
- the third correction current value A1' or the second correction current value A" is input to the drive circuit.
- S911 adjusts the third correction current value A1' or the second correction current value A" current value according to the operating current.
- step S913 determining whether the vibration damping effect meets the condition according to the signal waveform of the acceleration sensor. If yes, the vibration and noise reduction of the signal period is ended; if not, step S914 is performed.
- the adjusted current value is corrected according to the vibration damping effect.
- Figure 20 is a graph showing the relationship between the signal, temperature, and rotational speed of the camshaft sensor output and the target current value, in accordance with one embodiment of the present invention.
- q5 is the signal output by the camshaft sensor
- F is the PWM signal required to generate the target current value
- a and a1 are the initial phase difference before and after the correction, respectively
- b and b1 are the time lengths of the high-level signal before and after the correction.
- c, c1 are the length of time of one signal period before and after correction, wherein the duty ratio is b/c, b1/c1.
- the signal existing in the automobile such as the crank sensor, the camshaft sensor, and the vehicle speed sensor is used as the input signal of the vibration damping control, and the signal acquisition is more convenient and effective.
- the effective moment of the vibration reduction and noise reduction control is determined in advance by using the camshaft sensor signal, so that the action time of the vibration damping control is more accurate, and the vibration damping effect is more effective.
- the operating current of the driving circuit is taken as the input signal, the target current value is actively adjusted, and the signal of the acceleration sensor is used as a feedback signal, and the target current value is closed-loop adjusted, so that the signal processing is more strict and effective, so that the signal can be better
- the vibration and noise reduction control is realized to achieve the effects of attenuating vibration and reducing noise, and improving user comfort.
- the active suspension control system for an automobile can be applied not only to a conventional fuel vehicle but also to a hybrid new energy vehicle, and can attenuate vibration by controlling the active suspension.
- the function of reducing noise, thereby improving the ride comfort of the car, and having strong compatibility, can be conveniently applied.
- the automobile 1000 includes the above-described active suspension control system 100 for an automobile.
- the above-mentioned active suspension control system of the automobile can realize real-time adjustment of the active suspension, has high timeliness, and is applicable to both the fuel automobile and the hybrid vehicle.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
- the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two components or the interaction of two components, unless otherwise specified Limited.
- the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
- the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Vibration Prevention Devices (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
一种汽车及其主动悬置控制系统,所述控制系统包括:检测模块(11),用于检测汽车的状态信息,其中,汽车的状态信息包括发动机的曲轴角度;汽车工况判定模块(12),用于根据汽车的状态信息判定汽车的当前工况;振动周期运算模块(13),用于根据发动机的曲轴角度计算发动机的转速和振动周期;振动状态推测模块(14),用于根据汽车的当前工况及发动机的转速和振动周期推算发动机的振动状态;目标电流运算模块(15),用于根据发动机的振动状态计算目标电流值;作动器(16),用于根据目标电流值调节汽车的主动悬置系统的动刚度以对汽车进行减振控制。该控制系统不仅能够实现对主动悬置的实时调整,具有较高的时效性,而且对燃油汽车和混合动力汽车均适用。
Description
本申请要求于2017年01月20日提交中国专利局、申请号为201710042850.1、发明名称为“汽车及其的主动悬置控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及汽车技术领域,特别涉及一种汽车的主动悬置控制系统和一种具有该控制系统的汽车。
随着社会技术的进步,人们对舒适性的要求越来越高,而乘坐舒适性已经成为衡量汽车性能的一项重要指标。其中,影响乘坐舒适性的主要因素是汽车振动,而引起汽车振动的原因有很多,发动机振动作为主要原因之一值得引起重视。发动机振动主要由发动机汽缸内的燃烧与活塞的往复运动所致,该振动经发动机悬置系统传递到车架,进而传递到驾驶室内,影响乘坐的舒适性。
为了提高乘坐舒适性,需设计合理的悬置系统来达到衰减振动的目的。悬置系统的发展主要经历了橡胶悬置、液压悬置和主动悬置的过程,其中,橡胶悬置因自身材料影响,耐高低温性能较差且不耐油;液压悬置在高频下会出现动态液化现象;半主动悬置的动力学响应对结构参数敏感,需要严格的设计要求和制造工艺。因此,需要加大对主动悬置系统的研究。
发明内容
本申请是基于发明人对以下问题的认识和研究做出的:
相关技术中提供了一种控制系统,是基于检测发动机旋转变动的传感器的输出,推测发动机振动状态,实现控制单元对传动机构的伸缩控制,从而抑制振动的传递。其中,控制单元基于传感器的输出数据,计算抑制发动机振动传递的目标电流值波形,并以恒定的采样周期对该目标电流值波形采样,获得目标电流值的数据集合,并且基于通过传动机构的驱动定时中的发动机转速决定的规定时间,推测发动机振动的周期长度,然后根据推测出的发动机振动的周期长度,修正获取到的目标电流值的数据集合,并向传动机构进行供电。
发明人发现:上述控制系统仅针对燃油车,而且是根据发动机振动的第1周期的振动状态和目标电流值等来推算第3周期的振动状态和目标电流值等, 因而不具有时效性,不能实现对振动的实时调整。
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种汽车的主动悬置控制系统,不仅能够实现对主动悬置的实时调整,具有较高的时效性,而且对燃油汽车和混合动力汽车均适用。
本发明的另一个目的在于提出一种汽车。
为实现上述目的,本发明一方面实施例提出的一种汽车的主动悬置控制系统,包括:检测模块,所述检测模块用于检测汽车的状态信息,其中,所述汽车的状态信息包括发动机的曲轴角度;汽车工况判定模块,所述汽车工况判定模块用于根据所述汽车的状态信息判定所述汽车的当前工况;振动周期运算模块,所述振动周期运算模块用于根据所述发动机的曲轴角度计算所述发动机的转速和振动周期;振动状态推测模块,所述振动状态推测模块用于根据所述汽车的当前工况以及所述发动机的转速和振动周期推算所述发动机的振动状态;目标电流运算模块,所述目标电流运算模块用于根据所述发动机的振动状态计算目标电流值;作动器,所述作动器用于根据所述目标电流值调节所述汽车的主动悬置系统的动刚度以对所述汽车进行减振控制。
根据本发明实施例的汽车的主动悬置控制系统,通过检测汽车的状态信息,并根据汽车的状态信息判定汽车的当前工况,同时根据检测的发动机的曲轴角度计算发动机的转速和振动周期,然后,据汽车的当前工况以及发动机的转速和振动周期推算出发动机的振动状态,并根据发动机的振动状态计算目标电流值,以及根据目标电流值调节汽车的主动悬置系统的动刚度,以对汽车进行减振控制。该系统不仅能够实现对主动悬置的实时调整,具有较高的时效性,而且对燃油汽车和混合动力汽车均适用。
根据本发明的一个实施例,所述汽车的状态信息还包括所述汽车的振动信息、所述汽车的车速、所述发动机中活塞的运动位置、所述发动机的温度和所述发动机的点火线圈信号,其中,所述发动机的点火线圈信号由所述发动机的电子控制单元发送。
根据本发明的一个实施例,所述检测模块包括传感器模组,所述传感器模组包括:加速度传感器,所述加速度传感器用于检测所述汽车的加速度以获取所述汽车的振动信息;车速传感器,所述车速传感器用于检测所述汽车的车速; 凸轮轴传感器,所述凸轮轴传感器用于检测所述发动机中活塞的运动位置;水温传感器,所述水温传感器用于检测所述发动机的温度;曲轴传感器,所述曲轴传感器用于检测所述发动机的曲轴角度。
根据本发明的一个实施例,上述的汽车的主动悬置控制系统,还包括:通信模块,所述通信模块用于建立所述汽车工况判定模块与所述发动机的电子控制单元、所述汽车的电池管理单元之间的通信连接,以便所述汽车工况判定模块根据所述发动机的电子控制单元的工作状态、所述电池管理单元的工作状态以及所述汽车的振动信息、所述汽车的车速、所述发动机中活塞的运动位置、所述发动机的曲轴角度、所述发动机的温度和所述发动机的点火线圈信号判定所述汽车的当前工况。
根据本发明的一个实施例,所述汽车的工况包括怠速工况、冷车启动工况和加减速工况中的一种或多种。
根据本发明的一个实施例,当所述汽车为混合动力汽车时,所述汽车的工况还包括纯电动工况、怠速充电工况和快充工况中的一种或多种。
根据本发明的一个实施例,所述发动机的振动状态包括振动大小和振动频率。
根据本发明的一个实施例,上述的汽车的主动悬置控制系统,还包括:点火线圈信号状态模块,所述点火线圈信号状态模块用于根据所述发动机的点火线圈信号输出所述发动机的点火线圈状态信息至所述目标电流运算模块,以便所述目标电流运算模块根据所述发动机的振动状态和所述发动机的点火线圈状态信息计算所述目标电流值。
根据本发明的一个实施例,上述的汽车的主动悬置控制系统,还包括:驱动控制模块,所述驱动控制模块用于根据所述目标电流值和所述发动机的点火线圈状态信息输出带有工作时刻的驱动信号;驱动电路,所述驱动电路用于根据所述驱动信号向所述作动器输出带有作用时间的工作电流,以便所述作动器根据所述带有作用时间的工作电流进行工作。
根据本发明的一个实施例,上述的汽车的主动悬置控制系统,还包括:电流检测模块,所述电流检测模块用于检测所述驱动电路的输出电流以获取所述作动器的工作温度;目标电流修正模块,所述目标电流修正模块用于根据所述 作动器的工作温度对所述目标电流值进行调整。
根据本发明的一个实施例,上述的汽车的主动悬置控制系统,还包括:减振阈值判定模块,所述减振阈值判定模块用于根据所述汽车的振动信息判断所述汽车的当前振动值是否大于预设振动阈值,并在所述汽车的当前振动值大于预设振动阈值时输出目标电流修正信号至所述目标电流修正模块,所述目标电流修正模块根据所述目标电流修正信号对所述目标电流值进行修正,以便所述作动器根据修正后的目标电流值调节所述汽车的主动悬置系统的动刚度。
为实现上述目的,本发明另一方面实施例提出了一种汽车,其包括上述的汽车的主动悬置控制系统。
本发明实施例的汽车,通过上述的汽车的主动悬置控制系统,不仅能够实现对主动悬置的实时调整,具有较高的时效性,而且对燃油汽车和混合动力汽车均适用。
图1是根据本发明实施例的汽车的主动悬置控制系统的方框示意图;
图2是根据本发明一个实施例的汽车的主动悬置控制系统的方框示意图;
图3是根据本发明另一个实施例的汽车的主动悬置控制系统的方框示意图;
图4是根据本发明一个实施例的四缸发动机的点火线圈信号与目标电流值的关系图;
图5是根据本发明又一个实施例的汽车的主动悬置控制系统的方框示意图;
图6是根据本发明再一个实施例的汽车的主动悬置控制系统的方框示意图;
图7是根据本发明一个实施例的汽车的主动悬置控制系统的工作流程图;
图8是根据本发明一个实施例的燃油车处于怠速工况时主动减振控制的流程图;
图9是根据本发明另一个实施例的燃油车处于怠速工况时主动减振控制的流程图;
图10是根据本发明一个实施例的凸轮轴传感器输出的信号与目标电流值 的关系图;
图11是根据本发明一个实施例的燃油车处于冷车启动工况时主动减振控制的流程图;
图12是根据本发明一个实施例的四缸发动机的点火线圈信号、温度、转速与第一修正电流值的关系图;
图13是根据本发明一个实施例的凸轮轴传感器输出的信号、温度、转速与第一修正电流值的关系图;
图14是根据本发明另一个实施例的燃油车处于冷车启动工况时主动减振控制的流程图;
图15是根据本发明一个实施例的混合动力汽车处于怠速充电工况时第一个信号周期(n=1)对应的主动减振控制的流程图;
图16是根据本发明一个实施例的混合动力汽车处于怠速充电工况时第二及以上个信号周期(n≥2)对应的主动减振控制的流程图;
图17是根据本发明一个实施例的四缸发动机的点火线圈信号与目标电流值的PWM信号关系图;
图18是根据本发明另一个实施例的混合动力汽车处于怠速充电工况时第一个信号周期(n=1)对应的主动减振控制的流程图;
图19是根据本发明另一个实施例的混合动力汽车处于怠速充电工况时第二及以上个信号周期(n≥2)对应的主动减振控制的流程图;
图20是根据本发明一个实施例的凸轮轴传感器输出的信号与目标电流值的PWM信号关系图;
图21是根据本发明实施例的汽车的方框示意图。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的汽车的主动悬置控制系统和具有该控制系统的汽车。
图1是根据本发明实施例的汽车的主动悬置控制系统的方框示意图,如图1所示,该汽车的主动悬置控制系统包括:检测模块11、汽车工况判定模块12、振动周期运算模块13、振动状态推测模块14、目标电流运算模块15和作动器16。
其中,检测模块11用于检测汽车的状态信息,汽车的状态信息包括发动机的曲轴角度。汽车工况判定模块12用于根据汽车的状态信息判定汽车的当前工况。振动周期运算模块13用于根据发动机的曲轴角度计算发动机的转速和振动周期。振动状态推测模块14用于根据汽车的当前工况以及发动机的转速和振动周期推算发动机的振动状态。目标电流运算模块15用于根据发动机的振动状态计算目标电流值。作动器16用于根据目标电流值调节汽车的主动悬置系统的动刚度以对汽车进行减振控制。
根据本发明的一个实施例,发动机的振动状态包括振动大小和振动频率。
在本发明的实施例中,汽车的工况可包括怠速工况、冷车启动工况和加减速工况中的一种或多种。当汽车为混合动力汽车时,汽车的工况还可包括纯电动工况、怠速充电工况和快充工况中的一种或多种。
具体而言,对于含有发动机的汽车而言,包括燃油车和混合动力汽车,只要发动机处于运行状态都会产生较大的振动,例如,通过发动机控制汽车启动、加减速运行、怠速以及怠速充电等,都会产生较大的振动,而该振动对乘坐舒适性的影响很大。因此,在汽车运行的过程中,通过实时检测汽车的状态信息,并对检测的状态信息进行分析和处理,以输出目标电流值到作动器16,对作动器16的动刚度进行调节,从而实现减振降噪的作用。
具体地,在汽车上电后,通过检测模块11实时检测汽车的状态信息,可包括汽车的车速、汽车的加减速度、发动机的曲轴角度以及汽车的启动信号等。然后,汽车工况判定模块12根据汽车的状态信息判断汽车的当前工况。同时,振动周期运算模块13根据发动机的曲轴角度计算发动机的转速和振动周期。其中,发动机的转速等于每分钟曲轴转动的圈数,发动机的振动周期可根据发动机的汽缸数和发动机的转速计算获得。以四缸发动机为例,发动机的每个工作循环中曲轴转动两圈,并且每个工作循环中,四个汽缸按照1342的顺序点火爆炸各一次,即发动机每转会爆炸两次,也就是发动机每转会振动两次,如 果发动机的转速为6000r/min,那么发动机的振动周期为1/200s。
然后,振动状态推测模块14根据汽车的当前工况以及发动机的转速和振动周期利用采样法等推算出发动机的振动状态,目标电流运算模块15进而根据该振动状态利用采样法等计算出目标电流值A,并输出至作动器16。具体可以采用现有技术计算获得。作动器16根据目标电流值A调节自身的电磁感应装置,实现机械结构的上下运动,从而改变主动悬置的动刚度,进而达到减振降噪的效果。由于该系统是通过对当前汽车的状态信息进行获取并处理,以获得所需的目标电流值,并根据该目标电流值对主动悬置的动刚度进行调节,因而实现了对主动悬置系统的实时调整,时效性高,有利于时刻调整振动状态,保证乘坐的舒适性。
需要说明的是,汽车工况的判定方法有很多。
在本发明的一个实施例中,汽车的状态信息还包括汽车的振动信息、汽车的车速、发动机中活塞的运动位置、发动机的温度和发动机的点火线圈信号,其中,发动机的点火线圈信号由发动机的电子控制单元51发送,点火线圈信号反映发动机汽缸的爆炸时刻。
进一步地,如图2所示,检测模块11包括传感器模组110,传感器模组110包括:加速度传感器111、车速传感器112、凸轮轴传感器113、水温传感器114和曲轴传感器115。其中,加速度传感器111用于检测汽车的加速度以获取汽车的振动信息;车速传感器112用于检测汽车的车速;凸轮轴传感器113用于检测发动机中活塞的运动位置;水温传感器114用于检测发动机的温度;曲轴传感器115用于检测发动机的曲轴角度。
再进一步地,如图2所示,上述的汽车的主动悬置控制系统还可包括:通信模块17,通信模块17用于建立汽车工况判定模块12与发动机的电子控制单元51、汽车的电池管理单元52之间的通信连接,以便汽车工况判定模块12根据发动机的电子控制单元51的工作状态、电池管理单元52的工作状态以及汽车的振动信息、汽车的车速、发动机中活塞的运动位置、发动机的曲轴角度、发动机的温度和发动机的点火线圈信号判定汽车的当前工况。
例如,汽车的怠速工况和加减速工况可根据汽车的车速和曲轴角度判断;汽车的冷车工况(也称冷车启动工况)可根据汽车的车速、曲轴角度和发动机 的温度判断;汽车的纯电动工况、怠速充电工况和快充工况可根据汽车的车速、曲轴角度和电池管理单元52的工作状态判断。如,当根据汽车的车速和曲轴角度判断汽车处于怠速工况,并且根据电池管理单元52判断动力电池处于充电状态时,判断汽车处于怠速充电工况。具体如何判断这里不做限制。
另外,为了保证各个模块之间的有序执行,在本发明的实施例中,可以在主动悬置控制系统中设置定时控制模块,该定时控制模块主要负责控制检测模块11定时采样,并给需要时间控制的模块提供时间基准。同时,还可设置相应的存储模块(如RAM),以对检测模块11采样的信息进行存储,便于相关模块的随时调用。
进一步地,根据本发明的一个实施例,如图3所示,上述的汽车的主动悬置控制系统还可包括:点火线圈信号状态模块18,点火线圈信号状态模块18用于根据发动机的点火线圈信号输出发动机的点火线圈状态信息至目标电流运算模块15,以便目标电流运算模块15根据发动机的振动状态和发动机的点火线圈状态信息计算目标电流值。
再进一步地,如图3所示,上述的汽车的主动悬置控制系统还包括:驱动控制模块19和驱动电路20,其中,驱动控制模块19用于根据目标电流值和发动机的点火线圈状态信息输出带有工作时刻的驱动信号;驱动电路20用于根据驱动信号向作动器16输出带有作用时间的工作电流,以便作动器16根据带有作用时间的工作电流进行工作。
具体而言,点火线圈信号反映发动机中汽缸的爆炸时刻,并且发动机的振动主要产生于点火时刻汽缸内的气体燃烧推动活塞,所以采用点火线圈信号来控制目标电流值A的输出时刻,抑制振动更为准确和有效。
具体地,点火线圈信号状态模块18在定时控制模块的作用下,从存储模块中获取发动机的点火线圈信号,并根据该点火线圈信号判断此时点火线圈是否工作。如果是,则将工作信号发送给目标电流运算模块15,目标电流运算模块15在接收到工作信号后,将目标电流值传输至驱动控制模块19。驱动控制模块19根据工作信号和目标电流值输出驱动信号和开始驱动的时间信号,对驱动电路20中的开关管进行控制,以通过驱动电路20控制作动器16的工作状态,从而实现对主动悬置的动刚度的调整。如果点火线圈未工作,则进入 等待状态,定时控制模块中的计时器启动,当计时时间达到设定时间值时,重新开始根据检测模块11的采样信息计算目标电流值A。
图4是根据本发明一个实施例的四缸发动机的点火线圈信号与目标电流值的关系图。其中,q1为1号汽缸的点火线圈信号,q2为3号汽缸的点火线圈信号,q3为4号汽缸的点火线圈信号,q4为2号汽缸的点火线圈信号,E为目标电流值的波形,δ为目标电流值的相位延迟。从图4可以看出,在点火线圈点火后的δ时间后,输出目标电流值A。从而通过运用点火线圈信号直接获取减振降噪控制的有效时刻,使得减振控制的作用时间更加准确,对减振效果更有效。
在实际应用中,由于温度会对作动器16的减振效果产生影响,为了能够达到更好的减振效果,还对作动器16的工作温度进行监测,并根据工作温度对目标电流值进行调整。
根据本发明的一个实施例,如图5所示,上述的汽车的主动悬置控制系统还可包括:电流检测模块21和目标电流修正模块22。电流检测模块21用于检测驱动电路20的输出电流以获取作动器16的工作温度;目标电流修正模块22用于根据作动器16的工作温度对目标电流值进行调整。
具体而言,由于驱动电路20中线圈的电阻会随着温度的升高而增大,所以可以利用电流检测模块21检测的驱动电路20的输出电流来计算线圈的电阻值,然后根据该电阻值推算出此时作动器16的工作温度,最后根据工作温度推算出作动器16的工作状态,并根据工作状态对目标电流值进行调整,以及根据调整后的目标电流值对主动悬置的动刚度进行调整。从而在未产生本次减振效果之前,通过对作动器16工作温度的监测,对每个时刻的目标电流值的大小进行调整,消除温度对作动器16的影响,达到对减振效果进行主动调整的目的,使其具有更好的减振效果。
在对主动悬置的动刚度进行调整后,如果不对减振效果进行监控,则无法判断减振是否有效以及具有怎样的减振效果,而如果能够对减振效果进行监测,并根据当前的减振效果对下一周期的目标电流值进行调整,那么所获得的目标电流值会更加合理,减振效果会更好。
根据本发明的一个实施例,如图6所示,上述的汽车的主动悬置控制系统 还可包括:减振阈值判定模块23,减振阈值判定模块23用于根据汽车的振动信息判断汽车的当前振动值是否大于预设振动阈值,并在汽车的当前振动值大于预设振动阈值时输出目标电流修正信号至目标电流修正模块22,目标电流修正模块22根据目标电流修正信号对目标电流值进行修正,以便作动器16根据修正后的目标电流值调节汽车的主动悬置系统的动刚度。其中,预设振动阈值可根据实际情况进行标定。
具体地,减振阈值判定模块23在定时控制模块的作用下,从存储模块中获取加速度传感器的信号波形,并根据该信号波形推算出汽车经过上一次减振后的振动值,然后与预设振动阈值进行比较。如果振动值大于预设振动阈值,则说明减振效果不好,此时根据振动值与预设振动阈值之间的差值输出目标电流修正信号,目标电流修正模块22根据目标电流修正信号对目标电流值进行修正,然后根据修正后的目标电流值对主动悬置的动刚度进行调整。
也就是说,在将目标电流值输入驱动电路20之后,利用加速度传感器111对减振效果进行监测,对于不能满足减振效果的情况进行反馈,以对目标电流值进行修正,形成闭环调整,保证减振效果的有效性。并且,当电流检测模块21、目标电流修正模块22和减振阈值判定模块23同时作用时,即上述两种修正方式协同作用时,汽车减振效果更为明显,进而能够大大提高乘坐的舒适性。
为使本领域技术人员更清楚的了解本发明,图7是根据本发明一个实施例的汽车的主动悬置控制系统的工作流程图,如图7所示,其工作过程可包括以下步骤:
S101,获取汽车的状态信息并存储。
S102,根据状态信息判断汽车的当前工况,同时,根据曲轴角度计算发动机的转速和振动周期。
S103,根据汽车的当前工况、发动机的转速和振动周期推算出汽车的振动状态。
S104,根据振动状态计算目标电流值。
S105,获取点火线圈信号。
S106,判断点火线圈信号是否处于ON。如果是,执行步骤S108;如果否,执行步骤S107。
S107,判断定时信号是否处于ON。如果是,返回步骤S101;如果否,返回步骤S106。
S108,根据目标电流值生成驱动信号,并根据点火线圈信号确定开始驱动的时间。
S109,检测驱动电路的工作电流。
S110,根据工作电流对目标电流值进行调整,并根据调整后目标电流值对作动器控制。
S111,获取加速度传感器的信号波形。
S112,根据加速度传感器的信号波形判断减振效果是否符合条件。如果是,结束本次减振;如果否,执行步骤S113。
S113,根据减振效果对调整后的目标电流值进行修正。
根据本发明实施例的汽车的主动悬置控制系统,以曲轴传感器、点火线圈信号、车速传感器等汽车已经存在的信号作为减振控制的输入信号,信号采集更加便捷、有效。并且,运用点火线圈信号直接获取减振降噪控制的有效时刻,使得减振控制的作用时间更加准确,减振效果更有效。同时,将驱动电路的工作电流作为输入信号,对目标电流值进行主动调整,并将加速度传感器的信号作为反馈信号,对目标电流值进行闭环调整,使得信号处理更加严谨有效,因此可以更好地实现减振降噪控制,达到衰减振动和降低噪声的效果,提高用户的舒适度。
下面结合汽车的类型和具体工况来对本发明作进一步说明,首先以燃油车为例来举例说明。
图8是根据本发明一个实施例的燃油车处于怠速工况时主动减振控制的流程图。如图8所示,该燃油车的主动减振控制可包括以下步骤:
S201,获取汽车的车速。
S202,根据汽车的车速判断汽车是否处于怠速工况。如果是,执行步骤S203;如果否,返回步骤S201。
S203,根据发动机的曲轴角度计算发动机的转速和振动周期。
S204,根据发动机的转速,利用采样法获得此时发动机的振动状态,进而根据发动机的振动状态,利用采样法获得当前所需的目标电流值。
S205,获取点火线圈信号。
S206,判断点火线圈信号是否处于ON,即判断发动机是否处于点火状态。如果是,执行步骤S208;如果否,执行步骤S207。
S207,判断定时信号是否处于ON。如果是,返回步骤S201;如果否,返回步骤S206。
S208,对驱动电路进行占空比控制,从而得到所需的目标电流值。
S209,向驱动电路输入目标电流值。
S210,检测驱动电路的工作电流。
S211,根据工作电流对目标电流值进行调整。
S212,获取加速度传感器的信号波形。
S213,根据加速度传感器的信号波形判断减振效果是否符合条件。如果是,结束本信号周期的减振降噪;如果否,执行步骤S214。
S214,根据减振效果对调整后的目标电流值进行修正。
在该实施例中,以曲轴传感器、点火线圈信号、车速传感器等汽车已经存在的信号作为减振控制的输入信号,信号采集更加便捷、有效。并且,运用点火线圈信号直接获取减振降噪控制的有效时刻,使得减振控制的作用时间更加准确,减振效果更有效。同时,将驱动电路的工作电流作为输入信号,对目标电流值进行主动调整,并将加速度传感器的信号作为反馈信号,对目标电流值进行闭环调整,使得信号处理更加严谨有效,因此可以更好地实现减振降噪控制,达到衰减振动和降低噪声的效果,提高用户的舒适度。
需要说明的是,上述实施例是根据发动机的转速获得发动机的振动状态,并根据点火线圈信号直接确定目标电流的延时时间,而在本发明的其它实施例中,还可以根据发动机的转速和凸轮轴传感器检测的发动机中活塞的运动位置推算出发动机的振动状态,并根据凸轮轴传感器输出的信号波形推算出发动机汽缸爆炸时刻,以及根据爆炸时刻推算出目标电流值的延迟时间。
具体而言,图9是根据本发明另一个实施例的燃油车处于怠速工况时主动减振控制的流程图。如图9所示,该燃油车的主动减振控制可包括以下步骤:
S301,获取汽车的车速。
S302,根据汽车的车速判断汽车是否处于怠速工况。如果是,执行步骤 S303;如果否,返回步骤S301。
S303,根据发动机的曲轴角度计算发动机的转速和振动周期。
S304,获取凸轮轴传感器的信号波形。
S305,根据凸轮传感器的信号波形推算出发动机活塞的运动位置。
S306,根据发动机的转速和发动机活塞的运动位置推算出发动机的振动状态,进而根据发动机的振动状态推算出所需的目标电流值。
S307,根据凸轮轴传感器的信号波形推算出汽缸爆炸时刻,对汽缸爆炸时刻进行预先判断,以推算出目标电流值的延迟时间。
S308,判断延迟信号是否处于OFF,即判断延迟时间是否结束。如果是,执行步骤S309;如果否,返回步骤S308。
S309,对驱动电路进行占空比控制,从而得到所需的目标电流值。
S310,向驱动电路输入目标电流值。
S311,检测驱动电路的工作电流。
S312,根据工作电流对目标电流值进行调整。
S313,获取加速度传感器的信号波形。
S314,根据加速度传感器的信号波形判断减振效果是否符合条件。如果是,结束本信号周期的减振降噪;如果否,执行步骤S315。
S315,根据减振效果对目标电流值进行修正。
图10是根据本发明一个实施例的凸轮轴传感器输出的信号与目标电流值的关系图。其中,q5为凸轮轴传感器输出的信号,E为目标电流值的波形,δ1、δ2、…、δ7为目标电流值的相位延迟。从图10可以看出,是在获得凸轮传感器信号后的δ
i时间后,输出目标电流值。
在该实施例中,以曲轴传感器、凸轮轴传感器、车速传感器等汽车已经存在的信号作为减振控制的输入信号,信号采集更加便捷、有效。并且,运用凸轮轴传感器信号预先判断减振降噪控制的有效时刻,使得减振控制的作用时间更为准确,减振效果更加有效。同时,将驱动电路的工作电流作为输入信号,对目标电流值进行主动调整,并将加速度传感器的信号作为反馈信号,对目标电流值进行闭环调整,使得信号处理更加严谨有效,因此可以更好地实现减振降噪控制,达到衰减振动和降低噪声的效果,提高用户的舒适度。
图11是根据本发明一个实施例的燃油车处于冷车启动工况时主动减振控制的流程图。如图11所示,该燃油车的主动减振控制可包括以下步骤:
S401,获取汽车的启动信号。
S402,根据汽车的启动信号判断汽车是否处于启动状态。如果是,执行步骤S403;如果否,返回步骤S401。
S403,根据曲轴角度、汽车的车速和发动机的温度获得发动机的状态。
S404,判断汽车是否处于冷车启动工况。如果是,执行步骤S405;如果否,返回步骤S401。
S405,根据曲轴角度计算发动机的转速和振动周期。
S406,根据发动机的转速,利用采样法获得此时发动机的振动状态,进而根据发动机的振动状态,利用采样法获得当前所需的目标电流值A。
S407,根据发动机的当前温度对目标电流值A进行修正,获得第一修正电流值A’。
需要说明的是,发动机启动时,温度对发动机的影响比较大,例如,在冬季,当发动机的水温比较低时,发动机很难启动,而且启动时产生的振动和噪音相比较温度高时产生的振动和噪音更大,所以在汽车冷车启动时,还根据发动机的当前温度对目标电流值A进行修正,以获得第一修正电流值A’,这样修正后的目标电流值更加符合实际工况,更有利于主动悬置的减振降噪。
S408,获取点火线圈信号。
S409,判断点火线圈信号是否处于ON,即判断发动机是否处于点火状态。如果是,执行步骤S411;如果否,执行步骤S410。
S410,判断定时信号是否处于ON。如果是,返回步骤S401;如果否,返回步骤S409。
S411,对驱动电路进行占空比控制,从而得到第一修正电流值A’。
S412,向驱动电路输入第一修正电流值A’。
S413,根据驱动电路的工作电流对第一修正电流值A’进行调整。
S414,获取加速度传感器的信号波形。
S415,根据加速度传感器的信号波形判断减振效果是否符合条件。如果是,结束本信号周期的减振降噪;如果否,执行步骤S416。
S416,根据减振效果对调整后的第一修正电流值A’进行修正。
图12是根据本发明一个实施例的四缸发动机的点火线圈信号、温度、转速与第一修正电流值的关系图。其中,q1为1号汽缸的点火线圈信号,q2为4号汽缸的点火线圈信号,q3为3号汽缸的点火线圈信号,q4为2号汽缸的点火线圈信号,T为发动机的温度变化波形,R为发动机的转速变化波形,E为第一修正电流值的波形,δ1、δ2、δ3和δ4为第一修正电流值的相位延迟。从图12可以看出,是在点火线圈点火后的δ
i时间后,输出目标电流值A,从而使得减振降噪的效果更有效。
在该实施例中,以曲轴传感器、点火线圈信号、水温传感器等汽车已经存在的信号作为减振控制的输入信号,信号采集更加便捷、有效。并且,运用点火线圈信号直接获取减振降噪控制的有效时刻,使得减振控制的作用时间更加准确,减振效果更有效。同时,将驱动电路的工作电流作为输入信号,对第一修正电流值进行主动调整,并将加速度传感器的信号作为反馈信号,对第一修正电流值进行闭环调整,使得信号处理更加严谨有效,因此可以更好地实现减振降噪控制,达到衰减振动和降低噪声的效果,提高用户的舒适度。
图14是根据本发明另一个实施例的燃油车处于冷车启动工况时主动减振控制的流程图。如图14所示,该燃油车的主动减振控制可包括以下步骤:
S501,获取汽车的启动信号。
S502,根据汽车的启动信号判断汽车是否处于启动状态。如果是,执行步骤S503;如果否,返回步骤S501。
S503,根据曲轴角度、汽车的车速和发动机的温度获得发动机的状态。
S504,判断汽车是否处于冷车启动工况。如果是,执行步骤S505;如果否,返回步骤S501。
S505,根据曲轴角度推算发动机的转速和振动周期。
S506,获取凸轮轴传感器的信号波形。
S507,根据凸轮传感器的信号波形推算出发动机活塞的运动位置。
S508,根据发动机的转速和发动机活塞的运动位置推算出发动机的振动状态,进而根据发动机的振动状态推算出所需的目标电流值A。
S509,根据发动机的温度对目标电流值A进行修正,以获得第一修正电 流值A’。
S510,根据凸轮轴传感器的输出信号和整车通信信号推算出汽缸爆炸时刻,对汽缸爆炸时刻进行预先判断,推算出第一修正电流值A’的延迟时间。
S511,判断延迟信号是否处于OFF,即判断延迟时间是否结束。如果是,执行步骤S512;如果否,返回步骤S511。
S512,对驱动电路进行占空比控制,从而得到第一修正电流值A’。
S513,向驱动电路输入第一修正电流值A’。
S514,检测驱动电路的工作电流。
S515,根据工作电流对第一修正电流值A’进行调整。
S516,获取加速度传感器的信号波形。
S517,根据加速度传感器的信号波形判断减振效果是否符合条件。如果是,结束本信号周期的减振降噪;如果否,执行步骤S518。
S518,根据减振效果对调整后的第一修正电流值A’进行修正。
图13是根据本发明一个实施例的凸轮轴传感器输出的信号、温度、转速与第一修正电流值的关系图。其中,q5为凸轮轴传感器输出的信号,E为第一修正电流值的波形,T为发动机的温度变化波形,R为发动机的转速变化波形,δ1、δ2、δ3为第一修正电流值的相位延迟。从图13可以看出,在获得凸轮轴传感器信号后的δ
i时间后,输出第一修正电流值,从而使得减振降噪的效果更有效。
在该实施例中,以曲轴传感器、凸轮轴传感器、水温传感器等汽车已经存在的信号作为减振控制的输入信号,信号采集更加便捷、有效。并且,运用凸轮轴传感器信号预先判断减振降噪控制的有效时刻,使得减振控制的作用时间更为准确,减振效果更加有效。同时,将驱动电路的工作电流作为输入信号,对目标电流值进行主动调整,并将加速度传感器的信号作为反馈信号,对目标电流值进行闭环调整,使得信号处理更加严谨有效,因此可以更好地实现减振降噪控制,达到衰减振动和降低噪声的效果,提高用户的舒适度。
下面以混合动力汽车为例来举例说明。
首先,需要说明的是,在对混合动力汽车的当前工况进行判断时,有时会涉及到与整车控制器、电池管理单元52等模块进行通信,由于通信周期比发 动机的振动周期大很多倍,所以为了减少在通信完成后的计算时间,可以设置一个预处理,该预处理的作用就是利用通信完成前的时间,预先计算出一个目标电流值A。当通信结束后,如果根据整车控制器发送的信号确认混合动力汽车的当前工况为怠速充电工况,则可以直接利用该目标电流值A,从而有效减少通信结束后的计算时间。
根据本发明的一个实施例,预处理包括:根据车速传感器信号和曲轴传感器信号判断混合动力汽车是否处于怠速工况,并根据曲轴传感器信号判断发动机的转速是否处于充电工况对应的预设转速区间;如果混合动力汽车处于怠速工况且发动机的转速处于充电工况对应的预设转速区间,则判断混合动力汽车处于怠速充电工况。其中,预设转速区间可根据实际情况进行标定,例如预设转速区间可以为900r/min-2000r/min。
具体而言,当混合动力汽车启动时,获取车速传感器信号和曲轴传感器信号并计数。判断所获取的信号的数值是否在发动机的怠速充电工况范围内。如果不是,则进入其他工况(如加速、减速等)的处理;如果是,则根据曲轴传感器信号计算发动机的转速和振动周期,其中,发动机的转速等于每分钟曲轴转动的圈数,发动机的振动周期可根据发动机的汽缸数和发动机的转速计算获得。以四缸发动机为例,发动机的每个工作循环中曲轴转动两圈,并且每个工作循环中,四个汽缸按照1342的顺序点火爆炸各一次,即发动机每转会爆炸两次,也就是发动机每转会振动两次,如果发动机的转速为6000r/min,那么发动机的振动周期为1/200s。在计算出发动机的转速和振动周期后,可根据发动机的转速,利用采样法获得此时发动机的振动状态,进而根据发动机的振动状态,通过采样法或查表法等计算获得所需的目标电流值A。
另外,由于发动机振动变化很快,为了保证计算的快捷、准确,设定了对于其它工况切换至怠速充电工况后的信号周期n=1和n≥2。图15是根据本发明一个实施例的混合动力汽车处于怠速充电工况时第一个信号周期(n=1)对应的主动减振控制的流程图。如图15所示,该混合动力汽车的主动减振控制可包括以下步骤:
S601,与整车控制器进行通信,判断混合动力汽车是否处于怠速充电工况。如果是,执行步骤S603;如果否,进入所判别出来的其它工况。
S602,在与整车控制器进行通信的同时,进行预处理以获得目标电流值A。
S603,获取混合动力汽车的充电功率,根据充电功率对目标电流值A进行修正,以获得第一修正电流值A’。
需要说明的是,由于混合动力汽车的充电功率会对发动机的振动产生影响,所以还可根据动力电池的充电功率对目标电流值A进行调整,以获得第一修正电流值A’,这样修正后的目标电流值更加符合实际工况,更有利于主动悬置的减振降噪。
S604,获取点火线圈信号。
S605,判断点火线圈信号是否处于ON,即判断发动机是否处于点火状态。如果是,执行步骤S607;如果否,执行步骤S606。
S606,判断定时信号是否处于ON。如果是,返回步骤S601;如果否,返回步骤S605。
S607,对驱动电路进行占空比控制,从而得到第一修正电流值A’。
S608,向驱动电路输入第一修正电流值A’。
S609,检测驱动电路的工作电流。
S610,根据工作电流对第一修正电流值A’进行调整。
S611,获取加速度传感器的信号波形。
S612,根据加速度传感器的信号波形判断减振效果是否符合条件。如果是,结束本信号周期的减振降噪;如果否,执行步骤S613。
S613,根据减振效果对调整后的第一修正电流值A’进行修正,以获得第二修正电流值A”。
进一步地,当n≥2时,如果前后工况没有改变,则直接采用上一次信号周期最终获得的目标电流值对作动器进行控制,从而简化了运算的流程,保证了计算的准确;如果有变化,则调用预处理后所计算出的最新目标电流值,并根据获取到的混合动力汽车的充电功率对该目标电流值进行修正,以获得最新的第一修正电流值,即第三修正电流值。
具体地,图16是根据本发明一个实施例的混合动力汽车处于怠速充电工况时第二及以上个信号周期(n≥2)对应的主动减振控制的流程图。如图16所示,该混合动力汽车的主动减振控制可包括以下步骤:
S701,与整车控制器进行通信,判断混合动力汽车是否仍处于怠速充电工况。如果是,执行步骤S702;如果否,进入所判别出来的其它工况。
S702,判断充电功率是否有变化。如果是,执行步骤S703;如果否,执行步骤S705。
S703,获取最新的目标电流值A1。
S704,根据充电功率对最新的目标电流值A1进行修正,以获得第三电流修正值A1’。
S705,直接获取第二修正电流值A”。
S706,获取点火线圈信号。
S707,判断点火线圈信号是否处于ON,即判断发动机是否处于点火状态。如果是,执行步骤S709;如果否,执行步骤S708。
S708,判断定时信号是否处于ON。如果是,返回步骤S701;如果否,返回步骤S707。
S709,对驱动电路进行占空比控制,从而得到第三修正电流值A1’或者第二修正电流值A”。
S710,向驱动电路输入第三修正电流值A1’或者第二修正电流值A”。
S711,检测驱动电路的工作电流。
S712,根据工作电流对第三修正电流值A1’或者第二修正电流值A”电流值进行调整。
S713,获取加速度传感器的信号波形。
S714,根据加速度传感器的信号波形判断减振效果是否符合条件。如果是,结束本信号周期的减振降噪;如果否,执行步骤S715。
S715,根据减振效果对调整后的电流值进行修正。
图17是根据本发明一个实施例的四缸发动机的点火线圈信号与目标电流值的PWM信号关系图。其中,q1为1号汽缸的点火线圈信号,q2为3号汽缸的点火线圈信号,q3为4号汽缸的点火线圈信号,q4为2号汽缸的点火线圈信号,F为产生目标电流值所需的PWM信号,a、a1分别为修正前后的起始相位差,b、b1分别为修正前后高电平信号的时间长度,c、c1分别为修正前后一个信号周期的时间长度,其中占空比即为b/c、b1/c1。
在上述实施例中,以曲轴传感器、点火线圈信号、车速传感器等汽车已经存在的信号作为减振控制的输入信号,信号采集更加便捷、有效。并且,运用点火线圈信号直接获取减振降噪控制的有效时刻,使得减振控制的作用时间更加准确,减振效果更有效。同时,将驱动电路的工作电流作为输入信号,对目标电流值进行主动调整,并将加速度传感器的信号作为反馈信号,对目标电流值进行闭环调整,使得信号处理更加严谨有效,因此可以更好地实现减振降噪控制,达到衰减振动和降低噪声的效果,提高用户的舒适度。而且整个控制充分利用了与整车控制器的通信时间,有效减少了通信后的计算时间,使得控制更加快速。
图18是根据本发明另一个实施例的混合动力汽车处于怠速充电工况时第一个信号周期(n=1)对应的主动减振控制的流程图。如图18所示,该混合动力汽车的主动减振控制可包括以下步骤:
S801,与整车控制器进行通信,判断混合动力汽车是否处于怠速充电工况。如果是,执行步骤S803;如果否,进入所判别出来的其它工况。
S802,在与整车控制器进行通信的同时,进行预处理以获得目标电流值A。
S803,获取混合动力汽车的充电功率,根据充电功率对目标电流值A进行修正,以获得第一修正电流值A’。
S804,获取凸轮轴传感器的信号,推算发动机中活塞的运动位置,推算发动机的燃烧时刻,进而计算延时时间。
S805,判断延迟信号是否处于OFF,即判断延迟时间是否结束。如果是,执行步骤S806;如果否,返回步骤S805。
S806,对驱动电路进行占空比控制,从而得到第一修正电流值A’。
S807,向驱动电路输入第一修正电流值A’。
S808,检测驱动电路的工作电流。
S809,根据工作电流对第一修正电流值A’进行调整。
S810,获取加速度传感器的信号波形。
S811,根据加速度传感器的信号波形判断减振效果是否符合条件。如果是,结束本信号周期的减振降噪;如果否,执行步骤S812。
S812,根据减振效果对调整后的A’进行修正,以获得第二修正电流值A”。
进一步地,图19是根据本发明另一个实施例的混合动力汽车处于怠速充电工况时第二及以上个信号周期(n≥2)对应的主动减振控制的流程图。如图19所示,该混合动力汽车的主动减振控制可包括以下步骤:
S901,与整车控制器进行通信,判断混合动力汽车是否仍处于怠速充电工况。如果是,执行步骤S902;如果否,进入所判别出来的其它工况。
S902,判断充电功率是否有变化。如果是,执行步骤S903;如果否,执行步骤S905。
S903,获取最新的目标电流值A1。
S904,根据充电功率对最新的目标电流值A1进行修正,以获得第三电流修正值A1’。
S905,直接获取第二修正电流值A”。
S906,获取凸轮轴传感器的信号,推算发动机中活塞的运动位置,推算发动机的燃烧时刻,进而计算延时时间。
S907,判断延时信号是否处于OFF,即判断延时时间是否结束。如果是,返回步骤S908;如果否,返回步骤S907。
S908,对驱动电路进行占空比控制,从而得到第三修正电流值A1’或者第二修正电流值A”。
S909,向驱动电路输入第三修正电流值A1’或者第二修正电流值A”。
S910,检测驱动电路的工作电流。
S911,根据工作电流对第三修正电流值A1’或者第二修正电流值A”电流值进行调整。
S912,获取加速度传感器的信号波形。
S913,根据加速度传感器的信号波形判断减振效果是否符合条件。如果是,结束本信号周期的减振降噪;如果否,执行步骤S914。
S914,根据减振效果对调整后的电流值进行修正。
图20是根据本发明一个实施例的凸轮轴传感器输出的信号、温度、转速与目标电流值的关系图。其中,q5为凸轮轴传感器输出的信号,F为产生目标电流值所需的PWM信号,a、a1分别为修正前后的起始相位差,b、b1分别为修正前后高电平信号的时间长度,c、c1分别为修正前后一个信号周期的时 间长度,其中占空比即为b/c、b1/c1。
在上述实施例中,以曲轴传感器、凸轮轴传感器、车速传感器等汽车已经存在的信号作为减振控制的输入信号,信号采集更加便捷、有效。并且,运用凸轮轴传感器信号预先判断减振降噪控制的有效时刻,使得减振控制的作用时间更为准确,减振效果更加有效。同时,将驱动电路的工作电流作为输入信号,对目标电流值进行主动调整,并将加速度传感器的信号作为反馈信号,对目标电流值进行闭环调整,使得信号处理更加严谨有效,因此可以更好地实现减振降噪控制,达到衰减振动和降低噪声的效果,提高用户的舒适度。
综上所述,根据本发明实施例的汽车的主动悬置控制系统,不仅能够应用于传统燃油车,也能应用于混合动力新能源汽车,通过对主动悬置的控制,可以起到衰减振动、降低噪声的作用,进而提高汽车的乘坐舒适度,兼容性强,可以方便应用。
图21是根据本发明实施例的汽车的方框示意图。如图21所示,该汽车1000包括上述的汽车的主动悬置控制系统100。
根据本发明实施例的汽车,通过上述的汽车的主动悬置控制系统,不仅能够实现对主动悬置的实时调整,具有较高的时效性,而且对燃油汽车和混合动力汽车均适用。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接, 或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (17)
- 一种汽车的主动悬置控制系统,其特征在于,包括:检测模块,所述检测模块用于检测汽车的状态信息,其中,所述汽车的状态信息包括发动机的曲轴角度;汽车工况判定模块,所述汽车工况判定模块用于根据所述汽车的状态信息判定所述汽车的当前工况;振动周期运算模块,所述振动周期运算模块用于根据所述发动机的曲轴角度计算所述发动机的转速和振动周期;振动状态推测模块,所述振动状态推测模块用于根据所述汽车的当前工况以及所述发动机的转速和振动周期推算所述发动机的振动状态;目标电流运算模块,所述目标电流运算模块用于根据所述发动机的振动状态计算目标电流值;作动器,所述作动器用于根据所述目标电流值调节所述汽车的主动悬置系统的动刚度以对所述汽车进行减振控制。
- 如权利要求1所述的汽车的主动悬置控制系统,其特征在于,所述汽车的状态信息还包括所述汽车的振动信息、所述汽车的车速、所述发动机中活塞的运动位置、所述发动机的温度和所述发动机的点火线圈信号,其中,所述发动机的点火线圈信号由所述发动机的电子控制单元发送。
- 如权利要求2所述的汽车的主动悬置控制系统,其特征在于,所述检测模块包括传感器模组,所述传感器模组包括:加速度传感器,所述加速度传感器用于检测所述汽车的加速度以获取所述汽车的振动信息;车速传感器,所述车速传感器用于检测所述汽车的车速;凸轮轴传感器,所述凸轮轴传感器用于检测所述发动机中活塞的运动位置;水温传感器,所述水温传感器用于检测所述发动机的温度;曲轴传感器,所述曲轴传感器用于检测所述发动机的曲轴角度。
- 如权利要求2或3所述的汽车的主动悬置控制系统,其特征在于,还包括:通信模块,所述通信模块用于建立所述汽车工况判定模块与所述发动机的电子控制单元、所述汽车的电池管理单元之间的通信连接,以便所述汽车工况判定模块根据所述发动机的电子控制单元的工作状态、所述电池管理单元的工作状态以及所述汽车的振动信息、所述汽车的车速、所述发动机中活塞的运动位置、所述发动机的曲轴角度、所述发动机的温度和所述发动机的点火线圈信号判定所述汽车的当前工况。
- 如权利要求4所述的汽车的主动悬置控制系统,其特征在于,所述汽车的工况包括怠速工况、冷车启动工况和加减速工况中的一种或多种。
- 如权利要求5所述的汽车的主动悬置控制系统,其特征在于,当所述汽车为混合动力汽车时,所述汽车的工况还包括纯电动工况、怠速充电工况和快充工况中的一种或多种。
- 如权利要求1-6中任一项所述的汽车的主动悬置控制系统,其特征在于,所述发动机的振动状态包括振动大小和振动频率。
- 如权利要求2至7中任意一项所述的汽车的主动悬置控制系统,其特征在于,还包括:点火线圈信号状态模块,所述点火线圈信号状态模块用于根据所述发动机的点火线圈信号输出所述发动机的点火线圈状态信息至所述目标电流运算模块,以便所述目标电流运算模块根据所述发动机的振动状态和所述发动机的点火线圈状态信息计算所述目标电流值。
- 如权利要求1至8中任意一项所述的汽车的主动悬置控制系统,其特征在于,还包括:驱动控制模块,所述驱动控制模块用于根据所述目标电流值和所述发动机的点火线圈状态信息输出带有工作时刻的驱动信号;驱动电路,所述驱动电路用于根据所述驱动信号向所述作动器输出带有作用时间的工作电流,以便所述作动器根据所述带有作用时间的工作电流进行工作。
- 如权利要求1至9中任意一项所述的汽车的主动悬置控制系统,其特征在于,还包括:电流检测模块,所述电流检测模块用于检测所述驱动电路的输出电流以获 取所述作动器的工作温度;目标电流修正模块,所述目标电流修正模块用于根据所述作动器的工作温度对所述目标电流值进行调整。
- 如权利要求1至10中任意一项所述的汽车的主动悬置控制系统,其特征在于,还包括:减振阈值判定模块,所述减振阈值判定模块用于根据所述汽车的振动信息判断所述汽车的当前振动值是否大于预设振动阈值,并在所述汽车的当前振动值大于预设振动阈值时输出目标电流修正信号至所述目标电流修正模块,所述目标电流修正模块根据所述目标电流修正信号对所述目标电流值进行修正,以便所述作动器根据修正后的目标电流值调节所述汽车的主动悬置系统的动刚度。
- 一种汽车,其特征在于,包括如权利要求1-11中任一项所述的汽车的主动悬置控制系统。
- 一种汽车的主动减震控制方法,其特征在于,包括以下步骤:获取汽车的状态信息,根据所述状态信息判断汽车的当前工况,根据曲轴角度计算发动机的转速和振动周期;根据汽车的当前工况、发动机的转速和振动周期推算出汽车的振动状态;根据振动状态计算目标电流值;获取点火线圈信号,判断发动机是否处于点火状态;如果是,根据目标电流值生成驱动信号,并根据点火线圈信号确定开始驱动的时间;检测驱动电路的工作电流,根据工作电流对目标电流值进行调整,并根据调整后目标电流值对作动器控制;获取加速度传感器的信号,根据加速度传感器的信号判断减振效果是否符合条件;如果是,结束本次减振控制;如果否,根据减振效果对调整后的目标电流值进行修正。
- 一种汽车处于怠速工况时的主动减震控制方法,其特征在于,包括以下步骤:获取汽车的车速,根据汽车的车速判断汽车是否处于怠速工况;如果是,根据发动机的曲轴角度计算发动机的转速和振动周期;根据发动机的转速和振动周期,获得发动机的振动状态,进而根据发动机的振动状态,获得当前所需的目标电流值;获取点火线圈信号,判断发动机是否处于点火状态;如果是,对驱动电路进行占空比控制,从而得到所需的目标电流值;向驱动电路输入目标电流值;检测驱动电路的工作电流,根据工作电流对目标电流值进行调整;获取加速度传感器的信号,根据加速度传感器的信号判断减振效果是否符合条件;如果是,结束本信号周期的减振控制;如果否,根据减振效果对调整后的目标电流值进行修正。
- 一种汽车处于怠速工况时的主动减震控制方法,其特征在于,包括以下步骤:获取汽车的车速,根据汽车的车速判断汽车是否处于怠速工况;如果是,根据发动机的曲轴角度计算发动机的转速和振动周期;获取凸轮轴传感器的信号,根据凸轮传感器的信号计算发动机活塞的运动位置;根据发动机的转速和发动机活塞的运动位置推算出发动机的振动状态,进而根据发动机的振动状态推算出所需的目标电流值;根据凸轮轴传感器的信号推算出汽缸爆炸时刻,对汽缸爆炸时刻进行预先判断,以推算出目标电流值的延迟时间;判断延迟时间是否结束;如果是,对驱动电路进行占空比控制,从而得到所需的目标电流值;向驱动电路输入目标电流值;检测驱动电路的工作电流,根据工作电流对目标电流值进行调整;获取加速度传感器的信号,根据加速度传感器的信号判断减振效果是否符合条件;如果是,结束本信号周期的减振控制;如果否,根据减振效果对目标电流值进行修正。
- 一种汽车处于冷车启动工况时的主动减震控制方法,其特征在于,包括以下步骤:获取汽车的启动信号,根据汽车的启动信号判断汽车是否处于启动状态; 如果是,根据曲轴角度、汽车的车速和发动机的温度获得发动机的状态;判断汽车是否处于冷车启动工况;如果是,根据曲轴角度计算发动机的转速和振动周期;根据发动机的转速和振动周期,获得此时发动机的振动状态,进而根据发动机的振动状态,获得当前所需的目标电流值;根据发动机的当前温度对目标电流值进行修正,获得第一修正电流值;获取点火线圈信号;判断发动机是否处于点火状态;如果是,对驱动电路进行占空比控制,从而得到第一修正电流值;向驱动电路输入第一修正电流值;根据驱动电路的工作电流对第一修正电流值进行调整;获取加速度传感器的信号,根据加速度传感器的信号判断减振效果是否符合条件;如果是,结束本信号周期的减振控制;如果否,根据减振效果对调整后的第一修正电流值进行修正。
- 一种汽车处于冷车启动工况时的主动减震控制方法,其特征在于,包括以下步骤:获取汽车的启动信号;根据汽车的启动信号判断汽车是否处于启动状态;如果是,根据曲轴角度、汽车的车速和发动机的温度获得发动机的状态;判断汽车是否处于冷车启动工况;如果是,根据曲轴角度推算发动机的转速和振动周期;获取凸轮轴传感器的信号,根据凸轮传感器的信号推算出发动机活塞的运动位置;根据发动机的转速和发动机活塞的运动位置推算出发动机的振动状态,进而根据发动机的振动状态推算出所需的目标电流值;根据发动机的温度对目标电流值进行修正,以获得第一修正电流值;根据凸轮轴传感器的输出信号和整车通信信号推算出汽缸爆炸时刻,对汽缸爆炸时刻进行预先判断,推算出第一修正电流值的延迟时间;判断延迟时间是否结束;如果是,对驱动电路进行占空比控制,从而得到第一修正电流值;向驱动电路输入第一修正电流值;检测驱动电路的工作电流,根据工作电流对第一修正电流值进行调整;获取加速度传感器的信号,根据加速度传感器的信号判断减振效果是否符合条件;如果是,结束本信号周期的减振控制;如果否,根据减振效果对调整后的第一修正电流值进行修正。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710042850.1A CN108327506B (zh) | 2017-01-20 | 2017-01-20 | 汽车及其的主动悬置控制系统 |
CN201710042850.1 | 2017-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018133809A1 true WO2018133809A1 (zh) | 2018-07-26 |
Family
ID=62908540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/073161 WO2018133809A1 (zh) | 2017-01-20 | 2018-01-18 | 汽车及其主动悬置控制系统和汽车主动减震控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108327506B (zh) |
WO (1) | WO2018133809A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111483414B (zh) * | 2019-01-28 | 2022-06-14 | 比亚迪股份有限公司 | 悬置驱动电路的输入信号生成方法及其装置 |
CN109835160B (zh) * | 2019-04-01 | 2024-04-26 | 安徽华菱汽车有限公司 | 一种减振系统、车辆、减振方法 |
CN115509124B (zh) * | 2021-06-23 | 2024-08-13 | 中车株洲电力机车研究所有限公司 | 辨识建立发动机振动模型的方法及系统 |
CN113428129B (zh) * | 2021-08-09 | 2022-08-12 | 重庆金康赛力斯新能源汽车设计院有限公司 | 一种悬置刚度的调节方法和系统 |
CN117584723B (zh) * | 2024-01-18 | 2024-05-28 | 安徽大学 | 一种动力总成悬置系统的主动减振控制装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2242762A (en) * | 1990-01-18 | 1991-10-09 | Nissan Motor | Automotive power unit mounting with vibration damping |
GB2332034B (en) * | 1997-12-05 | 1999-10-20 | Tokai Rubber Ind Ltd | Active vibration damping system having controller for generating pulse signal for oscilliation of oscillating plate partially defining fluid chambers |
CN104999881A (zh) * | 2015-07-07 | 2015-10-28 | 湖南大学 | 一种双模式可切换的主动控制悬架 |
CN105465261A (zh) * | 2015-12-15 | 2016-04-06 | 西安科技大学 | 一种电磁馈能式车辆主动悬架作动器及其控制方法 |
US20160150313A1 (en) * | 2014-11-25 | 2016-05-26 | Bose Corporation | Actively Suspended Seat with Bass Loudspeakers |
CN105626768A (zh) * | 2016-03-30 | 2016-06-01 | 重庆长安汽车股份有限公司 | 一种混合模式半主动悬置及其控制系统 |
CN105717794A (zh) * | 2016-04-11 | 2016-06-29 | 同济大学 | 基于加速度信号反馈的主动悬置FxLMS自适应控制方法 |
CN105844049A (zh) * | 2016-04-11 | 2016-08-10 | 同济大学 | 主动悬置被动侧加速度主阶次振动信号实时提取方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4110048B2 (ja) * | 2003-06-10 | 2008-07-02 | 本田技研工業株式会社 | 能動型防振支持装置のアクチュエータ駆動制御装置 |
JP2006057752A (ja) * | 2004-08-20 | 2006-03-02 | Honda Motor Co Ltd | 能動型防振支持装置 |
JP2006057750A (ja) * | 2004-08-20 | 2006-03-02 | Honda Motor Co Ltd | アクチュエータの駆動制御装置 |
WO2011004792A1 (ja) * | 2009-07-08 | 2011-01-13 | 本田技研工業株式会社 | 能動型防振支持装置及びその防振制御方法 |
US8594911B2 (en) * | 2009-07-08 | 2013-11-26 | Honda Motor Co., Ltd. | Active anti-vibration supporting device and anti-vibration control method for same |
CN102392874A (zh) * | 2011-06-24 | 2012-03-28 | 三一重机有限公司 | 一种发动机可变阻尼的减振控制方法 |
JP2013061001A (ja) * | 2011-09-13 | 2013-04-04 | Tokai Rubber Ind Ltd | 能動型防振装置 |
CN106080579B (zh) * | 2016-06-17 | 2018-04-24 | 江苏大学 | 一种基于悬架振动能量回收的混合动力汽车整车控制方法 |
-
2017
- 2017-01-20 CN CN201710042850.1A patent/CN108327506B/zh active Active
-
2018
- 2018-01-18 WO PCT/CN2018/073161 patent/WO2018133809A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2242762A (en) * | 1990-01-18 | 1991-10-09 | Nissan Motor | Automotive power unit mounting with vibration damping |
GB2332034B (en) * | 1997-12-05 | 1999-10-20 | Tokai Rubber Ind Ltd | Active vibration damping system having controller for generating pulse signal for oscilliation of oscillating plate partially defining fluid chambers |
US20160150313A1 (en) * | 2014-11-25 | 2016-05-26 | Bose Corporation | Actively Suspended Seat with Bass Loudspeakers |
CN104999881A (zh) * | 2015-07-07 | 2015-10-28 | 湖南大学 | 一种双模式可切换的主动控制悬架 |
CN105465261A (zh) * | 2015-12-15 | 2016-04-06 | 西安科技大学 | 一种电磁馈能式车辆主动悬架作动器及其控制方法 |
CN105626768A (zh) * | 2016-03-30 | 2016-06-01 | 重庆长安汽车股份有限公司 | 一种混合模式半主动悬置及其控制系统 |
CN105717794A (zh) * | 2016-04-11 | 2016-06-29 | 同济大学 | 基于加速度信号反馈的主动悬置FxLMS自适应控制方法 |
CN105844049A (zh) * | 2016-04-11 | 2016-08-10 | 同济大学 | 主动悬置被动侧加速度主阶次振动信号实时提取方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108327506A (zh) | 2018-07-27 |
CN108327506B (zh) | 2019-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018133809A1 (zh) | 汽车及其主动悬置控制系统和汽车主动减震控制方法 | |
WO2018133807A1 (zh) | 混合动力汽车及其的主动减振控制方法和装置 | |
CN109591536B (zh) | 混合动力汽车及其的主动减振控制方法和装置 | |
EP3361074A1 (en) | Fuel injection control device | |
JP2007247476A (ja) | 内燃機関の制御装置 | |
WO2019062819A1 (zh) | 混合动力汽车及其的主动减振控制方法和装置 | |
WO2018133808A1 (zh) | 混合动力汽车及其的主动减振控制方法和装置 | |
JP2008215320A (ja) | トルク制御装置 | |
JP2018096255A (ja) | 内燃機関のノッキング検出装置 | |
CN108327663B (zh) | 汽车及其的主动减振控制方法和装置 | |
CN108327504B (zh) | 汽车及其的主动减振控制方法和装置 | |
JP2001263212A (ja) | 内燃機関の電子制御装置 | |
CN108327505B (zh) | 汽车及其的主动减振控制方法和装置 | |
CN108327664B (zh) | 汽车及其的主动减振控制方法和装置 | |
US6769401B2 (en) | Power output control system for internal combustion engine | |
CN110657193B (zh) | 汽车及其主动减振控制方法和装置 | |
JP2008070232A (ja) | 内燃機関の制御装置 | |
JP2008008155A (ja) | 内燃機関の空気量算出装置 | |
JP2014159766A (ja) | 移動体用制御システム | |
JP2007218132A (ja) | 内燃機関の制御装置 | |
JP5285501B2 (ja) | 内燃機関の制御装置 | |
JP2005163672A (ja) | 内燃機関のトルク制御装置 | |
JP2005344523A (ja) | 失火検出装置 | |
JP5543622B2 (ja) | 内燃機関の制御装置 | |
JP2007085238A (ja) | エンジン制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18742044 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18742044 Country of ref document: EP Kind code of ref document: A1 |