WO2018131373A1 - Copper alloy material for resistance material, production method therefor and resistor - Google Patents

Copper alloy material for resistance material, production method therefor and resistor Download PDF

Info

Publication number
WO2018131373A1
WO2018131373A1 PCT/JP2017/044779 JP2017044779W WO2018131373A1 WO 2018131373 A1 WO2018131373 A1 WO 2018131373A1 JP 2017044779 W JP2017044779 W JP 2017044779W WO 2018131373 A1 WO2018131373 A1 WO 2018131373A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
less
resistance
alloy material
Prior art date
Application number
PCT/JP2017/044779
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 檀上
俊太 秋谷
恵人 藤井
樋口 優
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62839441&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018131373(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201780082526.0A priority Critical patent/CN110168120A/en
Priority to KR1020197018158A priority patent/KR102463644B1/en
Priority to CN202210509500.2A priority patent/CN114959355A/en
Priority to JP2018524299A priority patent/JP6382478B1/en
Publication of WO2018131373A1 publication Critical patent/WO2018131373A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy material for a resistance material, a manufacturing method thereof, and a resistor.
  • the metal material of the resistor used for the resistor has a small resistance temperature coefficient (hereinafter sometimes referred to as “TCR”) so that the resistance of the resistor is stabilized even when the environmental temperature changes.
  • TCR resistance temperature coefficient
  • T in the formula is a test temperature (° C.)
  • T 0 is a reference temperature (° C.)
  • R is a resistance value ( ⁇ ) at the test temperature T
  • R 0 is a resistance value ( ⁇ ) at the test temperature T 0 . .
  • Cu—Mn—Ni alloys and Cu—Mn—Sn alloys have a very small TCR and are therefore widely used as metal materials constituting resistance materials (see, for example, Patent Document 1).
  • the resistance materials are also becoming smaller.
  • the dimensional accuracy when producing resistance materials by press forming metal materials has had a greater effect on the variation in resistance values of resistors, improving the press formability of resistance material metal materials. Is required.
  • the copper alloy material for a resistance material according to one embodiment of the present invention contains 10% by mass to 14% by mass of manganese, 1% by mass to 3% by mass of nickel, and the balance is made of copper and inevitable impurities.
  • the gist is that the diameter is 8 ⁇ m or more and 60 ⁇ m or less.
  • the copper alloy material for a resistance material according to another aspect of the present invention contains 6% by mass to 8% by mass of manganese, 2% by mass to 4% by mass of tin, and the balance is made of copper and inevitable impurities.
  • the gist is that the particle diameter is 8 ⁇ m or more and 60 ⁇ m or less.
  • a method for producing a copper alloy material for resistance material according to another aspect of the present invention is a method for producing a copper alloy material for resistance material according to the above aspect or another aspect, wherein A homogenization heat treatment process in which heat treatment is performed at a temperature of 950 ° C. to 950 ° C. for 10 minutes to 10 hours, a hot working process in which hot working is performed on the ingot homogenized in the homogenization heat treatment process, An intermediate cold working process in which a hot working is performed on the ingot that has a working rate of 50% or more, and an ingot that has been cold worked in the intermediate cold working process is 400 ° C. or higher and 700 ° C. or lower, 10 ° C.
  • Cold working is performed in the final cold working process and the final cold working process.
  • a gist of a resistor according to another aspect of the present invention is that at least a part of the resistor is made of the copper alloy material for a resistance material according to the one aspect or the other aspect.
  • the copper alloy material for resistance material of the present invention has both a low temperature coefficient of resistance and good press formability.
  • the method for producing a copper alloy material for resistance material according to the present invention can produce a copper alloy material for resistance material having both a small temperature coefficient of resistance and good press formability.
  • the resistor of the present invention has a stable resistance value and a small variation in resistance value even when the environmental temperature changes.
  • the copper alloy material for resistance material of 1st embodiment contains 10 mass% or more and 14 mass% or less of manganese (Mn), 1 mass% or more and 3 mass% or less of nickel (Ni), and the remainder is copper (Cu) and It consists of inevitable impurities and has a crystal grain size of 8 ⁇ m or more and 60 ⁇ m or less.
  • the copper alloy material for resistance material of the first embodiment may be referred to as “Cu—Mn—Ni alloy material”.
  • the copper alloy material for resistance material of the second embodiment contains 6 mass% or more and 8 mass% or less of manganese, 2 mass% or more and 4 mass% or less of tin (Sn), and the balance is made of copper and inevitable impurities,
  • the particle size is 8 ⁇ m or more and 60 ⁇ m or less.
  • the copper alloy material for resistance material of the second embodiment may be referred to as “Cu—Mn—Sn alloy material”.
  • the copper alloy material for resistance material according to the first and second embodiments has a small resistance temperature coefficient and good press formability because the crystal grain size is controlled to 8 ⁇ m or more and 60 ⁇ m or less. Therefore, the copper alloy material for resistance material of 1st and 2nd embodiment is suitable as a metal material which comprises the resistance material used for resistors, such as a shunt resistor, for example.
  • the resistance temperature coefficient of the copper alloy material for resistance material of the first and second embodiments is small, the resistance value is stable even if the environmental temperature changes.
  • the absolute value of the resistance temperature coefficient of the range of 20 to 50 degreeC may be 50 ppm / K or less.
  • the copper alloy material for resistance material of the first and second embodiments has good press formability, when the resistance material is manufactured by press-molding the copper alloy material, the resistance material is small. Also has excellent dimensional accuracy.
  • the press formability of the copper alloy material for resistance material of the first and second embodiments the shear ratio can be used as an index. For example, if the shear ratio measured in accordance with the copper and copper alloy sheet strip test method specified in the Japan Copper and Brass Association Technical Standard JCBA T310: 2002 is less than 85%, the press formability is better. Excellent dimensional accuracy in press molding.
  • the copper alloy material for resistance materials of 1st and 2nd embodiment is excellent not only in press moldability but the moldability in another processing method. Since the copper alloy material for resistance material of the first and second embodiments has the excellent characteristics as described above, at least a part of the copper alloy material for resistance material of the first or second embodiment is constituted. In addition, the resistance value of the resistor is stable even when the environmental temperature changes, and variation in the resistance value is small.
  • the copper alloy material for resistance materials of 1st embodiment contains 10 mass% or more and 14 mass% or less manganese, and 1 mass% or more and 3 mass% or less nickel, content of manganese is less than 10 mass% If it is, the TCR may increase, and the crystal grain size tends to increase during recrystallization annealing. On the other hand, if the manganese content is more than 14% by mass, the electrical resistivity may increase, and the crystal grain size tends to be small during recrystallization annealing. Furthermore, there exists a possibility that the corrosion resistance and manufacturability of the copper alloy material for resistance material may be lowered.
  • the nickel content is less than 1% by mass, the TCR may be increased, and the crystal grain size tends to increase during recrystallization annealing. Furthermore, the corrosion resistance of the copper alloy material for resistance material may be reduced. On the other hand, if the nickel content exceeds 3% by mass, the electrical resistivity may increase, and the crystal grain size tends to be small during recrystallization annealing. Furthermore, the manufacturability of the copper alloy material for resistance material may be reduced.
  • the copper alloy material for resistance materials of 2nd embodiment contains 6 mass% or more and 8 mass% or less manganese, and 2 mass% or more and 4 mass% or less tin, content of manganese is less than 6 mass% If it is, the TCR may increase, and the crystal grain size tends to increase during recrystallization annealing. On the other hand, if the manganese content is more than 8% by mass, the electrical resistivity may increase, and the crystal grain size tends to be small during recrystallization annealing.
  • the tin content is less than 2% by mass, TCR may increase and the crystal grain size tends to increase during recrystallization annealing. Furthermore, the corrosion resistance of the copper alloy material for resistance material may be reduced. On the other hand, if the tin content exceeds 4% by mass, the electrical resistivity may be increased, and the crystal grain size tends to be reduced during recrystallization annealing. Furthermore, the manufacturability of the copper alloy material for resistance material may be reduced.
  • the copper alloy material for resistance material of the first embodiment may further contain alloy components other than manganese and nickel.
  • the copper alloy material for resistance material of 2nd embodiment may further contain alloy components other than manganese and tin.
  • the alloy components that can be contained are 0.001 mass% or more and 0.5 mass% or less of iron (Fe), 0.001 mass% or more and 0.001 mass% or more of silicon (Si).
  • the heat resistance of the copper alloy material for resistance material is improved, and the growth of crystal grains is slowed during recrystallization annealing, so that the control of the crystal grain size becomes easier. If the content of these alloy components exceeds the upper limit of the above range, the effect of suppressing the growth of crystal grains may be too great. Moreover, there exists a possibility that an electrical resistivity may become high, and there exists a possibility that the manufacturability of the copper alloy material for resistance materials may fall.
  • the copper alloy material for a resistance material according to the first embodiment has a crystal grain size in the above-described range, and is not subjected to cold working after the final recrystallization annealing process described later, whereby the Vickers hardness is 90 HV or more and less than 150 HV. More preferably, it is 90 HV or more and 135 HV or less. If the Vickers hardness of the copper alloy material for resistance material of the first embodiment is less than 90 HV, the crystal grain size may be larger than the above range, and the press formability may be insufficient.
  • the copper alloy material for a resistance material of the second embodiment has a crystal grain size in the above-described range, and does not perform cold working after the final recrystallization annealing process described later, whereby the Vickers hardness is 80 HV or more and less than 120 HV. More preferably, it is 90 HV or more and 105 HV or less. If the Vickers hardness of the copper alloy material for resistance material of the second embodiment is less than 80 HV, the crystal grain size may be larger than the above range, and the press formability may be insufficient.
  • the copper alloy material for resistance material of 1st and 2nd embodiment can be manufactured by the same method. That is, a homogenization heat treatment process in which a copper alloy ingot is subjected to a heat treatment at 800 ° C. or more and 950 ° C.
  • a final cold working step in which cold working is performed at a working rate of 5% to 80%, and an ingot subjected to cold working in the final cold working step is 400 ° C to 700 ° C, 10 seconds to 10 hours
  • the copper alloy material for resistance material of the first and second embodiments having a crystal grain size of 8 ⁇ m or more and 60 ⁇ m or less can be manufactured.
  • the copper alloy material for resistance material of the first and second embodiments can be formed into a member having any shape, and can be formed into, for example, a wire, a bar, a plate, or the like.
  • plate material comprised with the copper alloy material for resistance materials of 1st and 2nd embodiment is demonstrated as an example.
  • the conditions for the heat treatment in the homogenization heat treatment step may be set as appropriate according to the alloy composition. As an example, a condition of 800 ° C. to 950 ° C. for 10 minutes to 10 hours can be given. If the heating temperature is too high or the heating time is too long, the workability of the copper alloy material for resistance material may be reduced. On the other hand, if the heating temperature is too low or the heating time is too short, homogenization of the alloy components may be insufficient.
  • the ingot homogenized by the homogenization heat treatment process is hot-worked to form the ingot into a member having a desired shape (hot-working process).
  • hot-working process For example, the ingot is hot-rolled to form a substantially plate-like plate. Since the ingot immediately after the homogenization heat treatment step is in a state of being heated to a high temperature, it is preferable to proceed to the hot working step as it is and perform hot working. When the hot working is finished, the plate is cooled to room temperature. Since the oxide film is formed on the surface of the plate-like material after the hot working process, the oxide film is removed (face cutting process).
  • the plate-like product from which the oxide film has been removed is subjected to cold working with a working rate of 50% or more (intermediate cold working step).
  • a working rate of 50% or more for example, the plate is cold-rolled to reduce the plate thickness.
  • the processing rate is 50% or more, the material structure obtained up to the hot working step can be sufficiently refined, so that the finally obtained crystal grain size does not become too large, and is appropriate. It tends to be large.
  • the plate-like material that has been subjected to cold working in the intermediate cold working step to reduce the plate thickness is heat-treated and subjected to recrystallization annealing (intermediate recrystallization annealing step).
  • the conditions for the heat treatment in the intermediate recrystallization annealing step may be set as appropriate according to the alloy composition and the like. As an example, the conditions may be 400 ° C. or more and 700 ° C. or less and 10 seconds or more and 10 hours or less. If the heating temperature is too high or the heating time is too long, the material structure obtained up to the hot working process cannot be sufficiently refined, and the crystal grain size finally obtained cannot be reduced. There is a fear.
  • the heating temperature is too low or the heating time is too short, a recrystallized structure may not be obtained, or the recrystallized structure may be too small and the finally obtained crystal grain size may be small.
  • a batch heat treatment in which the temperature is raised by placing the plate-like material in a furnace may be used, or a running heat treatment in which the plate-like material is continuously passed through the heated temperature may be used.
  • the plate-like material that has been subjected to recrystallization annealing in the intermediate recrystallization annealing process is subjected to cold working with a working rate of 5% or more and 80% or less (final cold working process).
  • the plate-like material is cold-rolled to further reduce the plate thickness to a desired thickness. If the processing rate exceeds 80%, the crystal grain size finally obtained may be small. On the other hand, if the processing rate is less than 5%, a recrystallized structure may not be obtained, or the crystal grain size finally obtained may increase.
  • the plate-like material that has been subjected to cold working in the final cold working step to further reduce the plate thickness is heat-treated and subjected to recrystallization annealing (final recrystallization annealing step).
  • the conditions for the heat treatment in the final recrystallization annealing process may be set as appropriate according to the alloy composition and the like, but as an example, conditions of 400 ° C. or more and 700 ° C. or less and 10 seconds or more and 10 hours or less can be mentioned. If the heating temperature is too high or the heating time is too long, the finally obtained crystal grain size may be increased.
  • the heating temperature is too low or the heating time is too short, a recrystallized structure may not be obtained, or the crystal grain size finally obtained may be small.
  • a batch heat treatment in which a plate-like material is put in a furnace and heated up may be used, or a running heat treatment in which the plate-like material is continuously passed through the heated furnace may be used.
  • a plate material made of the copper alloy material for resistance material of the first and second embodiments having a crystal grain size of 8 ⁇ m or more and 60 ⁇ m or less can be manufactured.
  • the crystal grain size can be 8 ⁇ m or more and 45 ⁇ m or less, or 8 ⁇ m or more and 25 ⁇ m or less, depending on the manufacturing method and conditions.
  • the material structure obtained up to the hot working process is sufficiently refined by the intermediate cold working process and the intermediate recrystallization annealing process, and the desired crystal is obtained by the final cold working process and the final recrystallization annealing process. Obtain the particle size.
  • the intermediate cold working step and the intermediate recrystallization annealing step may be performed once each, or may be repeated a plurality of times before the final cold working step.
  • treatments such as shape correction, oxide film removal, degreasing, and rust prevention may be performed between adjacent processes or after the final recrystallization annealing process.
  • the structure may become non-uniform if the processing is light processing, and a stable TCR may not be obtained. If the processing is strong processing, the hardness increases. Therefore, handling may be difficult. Therefore, it is preferable not to perform any processing after the final recrystallization annealing step.
  • this embodiment shows an example of this invention and this invention is not limited to this embodiment.
  • various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention.
  • An ingot having a predetermined alloy composition is manufactured by casting, heat treated under conditions of a heating temperature of 800 ° C. or more and 950 ° C. or less and a heating time of 10 minutes or more and 10 hours or less, and the alloy components are homogenized, followed by hot rolling. And then cooled with water.
  • the plate is cold rolled at a predetermined processing rate (intermediate cold working step) and further continued Then, it was heat-treated under predetermined conditions (heating temperature and heating time) and subjected to recrystallization annealing (intermediate recrystallization annealing step). Further, the plate-like material is cold-rolled at a predetermined processing rate (final cold-working step), followed by heat treatment under predetermined conditions (heating temperature and heating time) and recrystallization annealing (final recrystallization annealing) Step) to obtain a plate material having a thickness of 0.2 mm.
  • the alloy composition is as shown in Tables 1 to 4, but the balance other than the alloy components shown in Tables 1 to 4 is copper and inevitable impurities.
  • the conditions of the intermediate cold working step, the intermediate recrystallization annealing step, the final cold working step, and the final recrystallization annealing step are as shown in Tables 1 to 4.
  • Table 1 shows examples of Cu—Mn—Ni alloy materials with various alloy compositions
  • Table 2 shows examples of Cu—Mn—Sn alloy materials with various alloy compositions.
  • Table 3 is an example of a Cu—Mn—Ni alloy material in which the conditions of the four steps are variously changed.
  • Table 4 is an example of the Cu—Mn—Sn alloy material in which the conditions of the four steps are variously changed. It is an example.
  • the manufacturing conditions of Tables 1 and 2 are more preferable than the manufacturing conditions of Tables 3 and 4.
  • ⁇ About X-ray diffraction> The surface of the plate material was subjected to ⁇ -2 ⁇ method X-ray diffraction, and (111), (200), (220), (311), (222), (400), (331), (420) Peaks were detected and their volume ratio and half width were evaluated.
  • the type of incident X-ray is Cu-K ⁇ , the tube voltage is 40 kV, the tube current is 20 mA, and the sampling rate is 1 ° / min.
  • the press formability of the plate material was evaluated based on the shear ratio measured according to the shear test method for copper and copper alloy thin strips defined in Japan Copper and Brass Association Technical Standard JCBA T310: 2002. That is, a plate material is punched using a press machine, a square die, etc., a cross section (press fracture surface) perpendicular to the rolling direction of the plate material is exposed, and the cross section is observed using a scanning electron microscope to determine the shear ratio. Calculated. Regarding the conditions for punching the plate material, the clearance is 10 ⁇ m, the press speed is 200 mm / s, and the lubrication condition is no lubrication.
  • Vickers hardness was measured from the surface of the plate material in accordance with the method defined in JIS Z2244 (2009).
  • the load is 2.9 N and the indenter reduction time is 15 s.
  • the plate materials of Examples 1 to 36 have a small resistance temperature coefficient and good press formability because the crystal grain size is 8 ⁇ m or more and 60 ⁇ m or less.
  • Comparative Examples 1 to 8 are examples in which the alloy compositions are outside the preferred range of the present invention, but the plate materials of Comparative Examples 1 to 7 have alloy compositions that are outside the preferred range of the present invention. Therefore, the crystal grain size was less than 8 ⁇ m or more than 60 ⁇ m, and it was impossible to combine a small resistance temperature coefficient with good press formability.
  • the comparative example 1 and the comparative example 4 had low Mn content, even if the crystal grain size was in the prescribed range, a small resistance temperature coefficient could not be obtained.
  • Comparative Example 8 since the alloy composition was outside the preferred range of the present invention, cracking occurred in the plate-like material during hot rolling, and it was not possible to proceed to the subsequent steps to obtain a plate material.
  • Comparative Examples 9 to 44 are examples in which the production conditions are outside the preferred range of the present invention, but the plate materials of Comparative Examples 9 to 14, 17 to 23, 26 to 32, 35 to 41, and 44 are produced. Since the conditions were outside the preferred range of the present invention, the crystal grain size was less than 8 ⁇ m or more than 60 ⁇ m, and it was impossible to combine a small resistance temperature coefficient and good press formability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)

Abstract

Provided are: a copper alloy material for resistance material that has a small temperature coefficient of resistance as well as good press-moldability; and a production method therefor. One copper alloy material for resistance material contains 10 mass% to 14 mass% of manganese and 1 mass% to 3 mass% of nickel, the balance being copper and unavoidable impurities and the crystal grain diameter being 8 µm to 60 µm. Another copper alloy material for resistance material contains 6 mass% to 8 mass% of manganese and 2 mass% to 4 mass% of tin, the balance being copper and unavoidable impurities and the crystal grain diameter being 8 µm to 60 µm.

Description

抵抗材用銅合金材料及びその製造方法並びに抵抗器Copper alloy material for resistance material, manufacturing method thereof and resistor
 本発明は抵抗材用銅合金材料及びその製造方法並びに抵抗器に関する。 The present invention relates to a copper alloy material for a resistance material, a manufacturing method thereof, and a resistor.
 抵抗器に使用される抵抗材の金属材料には、環境温度が変化した際にも抵抗器の抵抗が安定するように、抵抗温度係数(以下「TCR」と記すこともある)が小さいことが要求される。抵抗温度係数とは、温度による抵抗値の変化の大きさを1℃当たりの百万分率で表したものであり、TCR(×10-6/K)=(R-R)/R×1/(T-T)×10という式で表される。ここで、式中のTは試験温度(℃)、Tは基準温度(℃)、Rは試験温度Tにおける抵抗値(Ω)、Rは試験温度Tにおける抵抗値(Ω)を示す。Cu-Mn-Ni合金やCu-Mn-Sn合金はTCRが非常に小さいため、抵抗材を構成する金属材料として広く使用されている(例えば特許文献1を参照)。
 近年の電気電子部品の小型高集積化に伴い、抵抗材も小型化が進んでいる。この小型化に伴い、金属材料をプレス成形して抵抗材を製造する際の寸法精度が抵抗器の抵抗値のばらつきに与える影響が大きくなっており、抵抗材の金属材料のプレス成形性の改善が求められている。
The metal material of the resistor used for the resistor has a small resistance temperature coefficient (hereinafter sometimes referred to as “TCR”) so that the resistance of the resistor is stabilized even when the environmental temperature changes. Required. The temperature coefficient of resistance is the magnitude of the change in resistance value due to temperature expressed in parts per million, TCR (× 10 −6 / K) = (R−R 0 ) / R 0 X1 / (T−T 0 ) × 10 6 Here, T in the formula is a test temperature (° C.), T 0 is a reference temperature (° C.), R is a resistance value (Ω) at the test temperature T, and R 0 is a resistance value (Ω) at the test temperature T 0 . . Cu—Mn—Ni alloys and Cu—Mn—Sn alloys have a very small TCR and are therefore widely used as metal materials constituting resistance materials (see, for example, Patent Document 1).
With the recent miniaturization and integration of electrical and electronic components, the resistance materials are also becoming smaller. Along with this miniaturization, the dimensional accuracy when producing resistance materials by press forming metal materials has had a greater effect on the variation in resistance values of resistors, improving the press formability of resistance material metal materials. Is required.
日本国特許公開公報 2016年第69724号Japanese Patent Publication No. 2016 69724
 本発明は、小さい抵抗温度係数と良好なプレス成形性とを兼ね備える抵抗材用銅合金材料及びその製造方法を提供することを課題とする。また、本発明は、環境温度が変化しても抵抗値が安定しており且つ抵抗値のばらつきが小さい抵抗器を提供することを併せて課題とする。 An object of the present invention is to provide a copper alloy material for a resistance material having both a small temperature coefficient of resistance and good press formability, and a method for producing the same. Another object of the present invention is to provide a resistor that has a stable resistance value and a small variation in resistance value even when the environmental temperature changes.
 本発明の一態様に係る抵抗材用銅合金材料は、マンガン10質量%以上14質量%以下、ニッケル1質量%以上3質量%以下、を含有し、残部が銅及び不可避不純物からなり、結晶粒径が8μm以上60μm以下であることを要旨とする。
 本発明の他の態様に係る抵抗材用銅合金材料は、マンガン6質量%以上8質量%以下、錫2質量%以上4質量%以下、を含有し、残部が銅及び不可避不純物からなり、結晶粒径が8μm以上60μm以下であることを要旨とする。
The copper alloy material for a resistance material according to one embodiment of the present invention contains 10% by mass to 14% by mass of manganese, 1% by mass to 3% by mass of nickel, and the balance is made of copper and inevitable impurities. The gist is that the diameter is 8 μm or more and 60 μm or less.
The copper alloy material for a resistance material according to another aspect of the present invention contains 6% by mass to 8% by mass of manganese, 2% by mass to 4% by mass of tin, and the balance is made of copper and inevitable impurities. The gist is that the particle diameter is 8 μm or more and 60 μm or less.
 本発明の他の態様に係る抵抗材用銅合金材料の製造方法は、上記一態様又は上記他の態様に係る抵抗材用銅合金材料を製造する方法であって、銅合金の鋳塊に800℃以上950℃以下、10分間以上10時間以下の熱処理を施す均質化熱処理工程と、均質化熱処理工程で均質化された鋳塊に熱間加工を施す熱間加工工程と、熱間加工工程で熱間加工を施した鋳塊に加工率50%以上の冷間加工を施す中間冷間加工工程と、中間冷間加工工程で冷間加工を施した鋳塊に400℃以上700℃以下、10秒間以上10時間以下の熱処理を施して再結晶焼鈍しを施す中間再結晶焼鈍し工程と、中間再結晶焼鈍し工程で再結晶焼鈍しを施した鋳塊に加工率5%以上80%以下の冷間加工を施す最終冷間加工工程と、最終冷間加工工程で冷間加工を施した鋳塊に400℃以上700℃以下、10秒間以上10時間以下の熱処理を施して再結晶焼鈍しを施す最終再結晶焼鈍し工程と、を備えることを要旨とする。
 本発明の他の態様に係る抵抗器は、上記一態様又は上記他の態様に係る抵抗材用銅合金材料で少なくとも一部分が構成されたことを要旨とする。
A method for producing a copper alloy material for resistance material according to another aspect of the present invention is a method for producing a copper alloy material for resistance material according to the above aspect or another aspect, wherein A homogenization heat treatment process in which heat treatment is performed at a temperature of 950 ° C. to 950 ° C. for 10 minutes to 10 hours, a hot working process in which hot working is performed on the ingot homogenized in the homogenization heat treatment process, An intermediate cold working process in which a hot working is performed on the ingot that has a working rate of 50% or more, and an ingot that has been cold worked in the intermediate cold working process is 400 ° C. or higher and 700 ° C. or lower, 10 ° C. An intermediate recrystallization annealing step in which recrystallization annealing is performed by performing a heat treatment for at least 10 seconds and not more than 10 hours, and an ingot subjected to recrystallization annealing in the intermediate recrystallization annealing step has a processing rate of 5% to 80%. Cold working is performed in the final cold working process and the final cold working process. Was 400 ° C. or higher 700 ° C. or less in the ingot, and summarized in that comprising a final recrystallization annealing step of recrystallization annealing performed by performing the following heat treatment above 10 seconds 10 hours, the.
A gist of a resistor according to another aspect of the present invention is that at least a part of the resistor is made of the copper alloy material for a resistance material according to the one aspect or the other aspect.
 本発明の抵抗材用銅合金材料は、小さい抵抗温度係数と良好なプレス成形性とを兼ね備える。
 本発明の抵抗材用銅合金材料の製造方法は、小さい抵抗温度係数と良好なプレス成形性とを兼ね備える抵抗材用銅合金材料を製造することができる。
 本発明の抵抗器は、環境温度が変化しても抵抗値が安定しており且つ抵抗値のばらつきが小さい。
The copper alloy material for resistance material of the present invention has both a low temperature coefficient of resistance and good press formability.
The method for producing a copper alloy material for resistance material according to the present invention can produce a copper alloy material for resistance material having both a small temperature coefficient of resistance and good press formability.
The resistor of the present invention has a stable resistance value and a small variation in resistance value even when the environmental temperature changes.
 本発明の一実施形態について、以下に詳細に説明する。
 第一実施形態の抵抗材用銅合金材料は、マンガン(Mn)10質量%以上14質量%以下、ニッケル(Ni)1質量%以上3質量%以下、を含有し、残部が銅(Cu)及び不可避不純物からなり、結晶粒径が8μm以上60μm以下である。なお、これ以降においては、第一実施形態の抵抗材用銅合金材料を「Cu-Mn-Ni合金材料」と記すこともある。
An embodiment of the present invention will be described in detail below.
The copper alloy material for resistance material of 1st embodiment contains 10 mass% or more and 14 mass% or less of manganese (Mn), 1 mass% or more and 3 mass% or less of nickel (Ni), and the remainder is copper (Cu) and It consists of inevitable impurities and has a crystal grain size of 8 μm or more and 60 μm or less. In the following, the copper alloy material for resistance material of the first embodiment may be referred to as “Cu—Mn—Ni alloy material”.
 第二実施形態の抵抗材用銅合金材料は、マンガン6質量%以上8質量%以下、錫(Sn)2質量%以上4質量%以下、を含有し、残部が銅及び不可避不純物からなり、結晶粒径が8μm以上60μm以下である。なお、これ以降においては、第二実施形態の抵抗材用銅合金材料を「Cu-Mn-Sn合金材料」と記すこともある。 The copper alloy material for resistance material of the second embodiment contains 6 mass% or more and 8 mass% or less of manganese, 2 mass% or more and 4 mass% or less of tin (Sn), and the balance is made of copper and inevitable impurities, The particle size is 8 μm or more and 60 μm or less. Hereinafter, the copper alloy material for resistance material of the second embodiment may be referred to as “Cu—Mn—Sn alloy material”.
 これら第一及び第二実施形態の抵抗材用銅合金材料は、結晶粒径が8μm以上60μm以下に制御されているため、小さい抵抗温度係数と良好なプレス成形性とを兼ね備える。よって、第一及び第二実施形態の抵抗材用銅合金材料は、例えば、シャント抵抗器等の抵抗器に使用される抵抗材を構成する金属材料として好適である。 The copper alloy material for resistance material according to the first and second embodiments has a small resistance temperature coefficient and good press formability because the crystal grain size is controlled to 8 μm or more and 60 μm or less. Therefore, the copper alloy material for resistance material of 1st and 2nd embodiment is suitable as a metal material which comprises the resistance material used for resistors, such as a shunt resistor, for example.
 第一及び第二実施形態の抵抗材用銅合金材料は、抵抗温度係数が小さいので、環境温度が変化しても抵抗値が安定している。第一及び第二実施形態の抵抗材用銅合金材料の抵抗温度係数については、20℃以上50℃以下の範囲の抵抗温度係数の絶対値が50ppm/K以下であってもよい。抵抗温度係数が上記範囲内であれば、環境温度が変化した際の抵抗値の安定性がより良好である。 Since the resistance temperature coefficient of the copper alloy material for resistance material of the first and second embodiments is small, the resistance value is stable even if the environmental temperature changes. About the resistance temperature coefficient of the copper alloy material for resistance materials of 1st and 2nd embodiment, the absolute value of the resistance temperature coefficient of the range of 20 to 50 degreeC may be 50 ppm / K or less. When the temperature coefficient of resistance is within the above range, the stability of the resistance value when the environmental temperature changes is better.
 また、第一及び第二実施形態の抵抗材用銅合金材料は、プレス成形性が良好であるので、銅合金材料をプレス成形して抵抗材を製造した際に、抵抗材が小型であっても寸法精度が優れている。第一及び第二実施形態の抵抗材用銅合金材料のプレス成形性については、せん断比を指標とすることができる。例えば、日本伸銅協会技術標準JCBA T310:2002に規定の銅及び銅合金薄板条のせん断試験方法に準拠して測定したせん断比が85%未満であれば、プレス成形性がより優れており、プレス成形における寸法精度がより優れている。 In addition, since the copper alloy material for resistance material of the first and second embodiments has good press formability, when the resistance material is manufactured by press-molding the copper alloy material, the resistance material is small. Also has excellent dimensional accuracy. Regarding the press formability of the copper alloy material for resistance material of the first and second embodiments, the shear ratio can be used as an index. For example, if the shear ratio measured in accordance with the copper and copper alloy sheet strip test method specified in the Japan Copper and Brass Association Technical Standard JCBA T310: 2002 is less than 85%, the press formability is better. Excellent dimensional accuracy in press molding.
 なお、第一及び第二実施形態の抵抗材用銅合金材料は、プレス成形性に限らず、他の加工法における成形性にも優れている。
 第一及び第二実施形態の抵抗材用銅合金材料は、以上のような優れた特性を有しているため、第一又は第二実施形態の抵抗材用銅合金材料で少なくとも一部分が構成された抵抗器は、環境温度が変化しても抵抗値が安定しており且つ抵抗値のばらつきが小さい。
In addition, the copper alloy material for resistance materials of 1st and 2nd embodiment is excellent not only in press moldability but the moldability in another processing method.
Since the copper alloy material for resistance material of the first and second embodiments has the excellent characteristics as described above, at least a part of the copper alloy material for resistance material of the first or second embodiment is constituted. In addition, the resistance value of the resistor is stable even when the environmental temperature changes, and variation in the resistance value is small.
 第一実施形態の抵抗材用銅合金材料は、10質量%以上14質量%以下のマンガンと、1質量%以上3質量%以下のニッケルとを含有するが、マンガンの含有量が10質量%未満であると、TCRが大きくなるおそれがあるとともに、再結晶焼鈍し時に結晶粒径が大きくなりやすくなる。一方、マンガンの含有量が14質量%超過であると、電気抵抗率が高くなるおそれがあるとともに、再結晶焼鈍し時に結晶粒径が小さくなりやすくなる。さらに、抵抗材用銅合金材料の耐食性と製造性が低下するおそれがある。 Although the copper alloy material for resistance materials of 1st embodiment contains 10 mass% or more and 14 mass% or less manganese, and 1 mass% or more and 3 mass% or less nickel, content of manganese is less than 10 mass% If it is, the TCR may increase, and the crystal grain size tends to increase during recrystallization annealing. On the other hand, if the manganese content is more than 14% by mass, the electrical resistivity may increase, and the crystal grain size tends to be small during recrystallization annealing. Furthermore, there exists a possibility that the corrosion resistance and manufacturability of the copper alloy material for resistance material may be lowered.
 また、ニッケルの含有量が1質量%未満であると、TCRが大きくなるおそれがあるとともに、再結晶焼鈍し時に結晶粒径が大きくなりやすくなる。さらに、抵抗材用銅合金材料の耐食性が低下するおそれがある。一方、ニッケルの含有量が3質量%超過であると、電気抵抗率が高くなるおそれがあるとともに、再結晶焼鈍し時に結晶粒径が小さくなりやすくなる。さらに、抵抗材用銅合金材料の製造性が低下するおそれがある。 If the nickel content is less than 1% by mass, the TCR may be increased, and the crystal grain size tends to increase during recrystallization annealing. Furthermore, the corrosion resistance of the copper alloy material for resistance material may be reduced. On the other hand, if the nickel content exceeds 3% by mass, the electrical resistivity may increase, and the crystal grain size tends to be small during recrystallization annealing. Furthermore, the manufacturability of the copper alloy material for resistance material may be reduced.
 第二実施形態の抵抗材用銅合金材料は、6質量%以上8質量%以下のマンガンと、2質量%以上4質量%以下の錫とを含有するが、マンガンの含有量が6質量%未満であると、TCRが大きくなるおそれがあるとともに、再結晶焼鈍し時に結晶粒径が大きくなりやすくなる。一方、マンガンの含有量が8質量%超過であると、電気抵抗率が高くなるおそれがあるとともに、再結晶焼鈍し時に結晶粒径が小さくなりやすくなる。 Although the copper alloy material for resistance materials of 2nd embodiment contains 6 mass% or more and 8 mass% or less manganese, and 2 mass% or more and 4 mass% or less tin, content of manganese is less than 6 mass% If it is, the TCR may increase, and the crystal grain size tends to increase during recrystallization annealing. On the other hand, if the manganese content is more than 8% by mass, the electrical resistivity may increase, and the crystal grain size tends to be small during recrystallization annealing.
 また、錫の含有量が2質量%未満であると、TCRが大きくなるおそれがあるとともに、再結晶焼鈍し時に結晶粒径が大きくなりやすくなる。さらに、抵抗材用銅合金材料の耐食性が低下するおそれがある。一方、錫の含有量が4質量%超過であると、電気抵抗率が高くなるおそれがあるとともに、再結晶焼鈍し時に結晶粒径が小さくなりやすくなる。さらに、抵抗材用銅合金材料の製造性が低下するおそれがある。 Further, if the tin content is less than 2% by mass, TCR may increase and the crystal grain size tends to increase during recrystallization annealing. Furthermore, the corrosion resistance of the copper alloy material for resistance material may be reduced. On the other hand, if the tin content exceeds 4% by mass, the electrical resistivity may be increased, and the crystal grain size tends to be reduced during recrystallization annealing. Furthermore, the manufacturability of the copper alloy material for resistance material may be reduced.
 第一実施形態の抵抗材用銅合金材料は、マンガン、ニッケル以外の合金成分をさらに含有してもよい。また、第二実施形態の抵抗材用銅合金材料は、マンガン、錫以外の合金成分をさらに含有してもよい。いずれの実施形態の抵抗材用銅合金材料においても、含有可能な合金成分は、鉄(Fe)0.001質量%以上0.5質量%以下、ケイ素(Si)0.001質量%以上0.1質量%以下、クロム(Cr)0.001質量%以上0.5質量%以下、ジルコニウム(Zr)0.001質量%以上0.2質量%以下、チタン(Ti)0.001質量%以上0.2質量%以下、銀(Ag)0.001質量%以上0.5質量%以下、マグネシウム(Mg)0.001質量%以上0.5質量%以下、コバルト(Co)0.001質量%以上0.1質量%以下、リン(P)0.001質量%以上0.1質量%以下、及び亜鉛(Zn)0.001質量%以上0.5質量%以下からなる群より選ばれる1種又は2種以上の元素である。 The copper alloy material for resistance material of the first embodiment may further contain alloy components other than manganese and nickel. Moreover, the copper alloy material for resistance material of 2nd embodiment may further contain alloy components other than manganese and tin. In any embodiment of the copper alloy material for resistance material, the alloy components that can be contained are 0.001 mass% or more and 0.5 mass% or less of iron (Fe), 0.001 mass% or more and 0.001 mass% or more of silicon (Si). 1% by mass or less, chromium (Cr) 0.001% by mass to 0.5% by mass, zirconium (Zr) 0.001% by mass to 0.2% by mass, titanium (Ti) 0.001% by mass to 0% 0.2 mass% or less, silver (Ag) 0.001 mass% to 0.5 mass%, magnesium (Mg) 0.001 mass% to 0.5 mass%, cobalt (Co) 0.001 mass% or more One or more selected from the group consisting of 0.1 mass% or less, phosphorus (P) 0.001 mass% or more and 0.1 mass% or less, and zinc (Zn) 0.001 mass% or more and 0.5 mass% or less Two or more elements.
 これらの合金成分を含有することにより、抵抗材用銅合金材料の耐熱性が向上するとともに、再結晶焼鈍し時に結晶粒の成長が遅くなるため、結晶粒径の制御がより容易となる。これらの合金成分の含有量が上記の範囲の上限値を超えると、結晶粒の成長を抑制する作用が大きくなりすぎるおそれがある。また、電気抵抗率が高くなるおそれがあるとともに、抵抗材用銅合金材料の製造性が低下するおそれがある。 By containing these alloy components, the heat resistance of the copper alloy material for resistance material is improved, and the growth of crystal grains is slowed during recrystallization annealing, so that the control of the crystal grain size becomes easier. If the content of these alloy components exceeds the upper limit of the above range, the effect of suppressing the growth of crystal grains may be too great. Moreover, there exists a possibility that an electrical resistivity may become high, and there exists a possibility that the manufacturability of the copper alloy material for resistance materials may fall.
 第一実施形態の抵抗材用銅合金材料は、結晶粒径を前述の範囲とし、後述する最終再結晶焼鈍し工程以降に冷間加工を行わないことにより、ビッカース硬さを90HV以上150HV未満とすることができ、90HV以上135HV以下にすることがより好ましい。第一実施形態の抵抗材用銅合金材料のビッカース硬さが90HV未満であると、結晶粒径が前述の範囲を外れて大きくなり、プレス成形性が不十分となる場合がある。一方、150HV以上であると、結晶粒径が前述の範囲を外れて小さいか、又は、最終再結晶焼鈍し工程以降に冷間加工が施されていることを意味し、小さい抵抗温度係数が得られない場合がある。 The copper alloy material for a resistance material according to the first embodiment has a crystal grain size in the above-described range, and is not subjected to cold working after the final recrystallization annealing process described later, whereby the Vickers hardness is 90 HV or more and less than 150 HV. More preferably, it is 90 HV or more and 135 HV or less. If the Vickers hardness of the copper alloy material for resistance material of the first embodiment is less than 90 HV, the crystal grain size may be larger than the above range, and the press formability may be insufficient. On the other hand, if it is 150 HV or more, it means that the crystal grain size is small outside the above range, or that cold working has been performed after the final recrystallization annealing step, and a small resistance temperature coefficient is obtained. It may not be possible.
 第二実施形態の抵抗材用銅合金材料は、結晶粒径を前述の範囲とし、後述する最終再結晶焼鈍し工程以降に冷間加工を行わないことにより、ビッカース硬さを80HV以上120HV未満とすることができ、90HV以上105HV以下にすることがより好ましい。第二実施形態の抵抗材用銅合金材料のビッカース硬さが80HV未満であると、結晶粒径が前述の範囲を外れて大きくなり、プレス成形性が不十分となる場合がある。一方、120HV以上であると、結晶粒径が前述の範囲を外れて小さいか、又は、最終再結晶焼鈍し工程以降に冷間加工が施されていることを意味し、小さい抵抗温度係数が得られない場合がある。 The copper alloy material for a resistance material of the second embodiment has a crystal grain size in the above-described range, and does not perform cold working after the final recrystallization annealing process described later, whereby the Vickers hardness is 80 HV or more and less than 120 HV. More preferably, it is 90 HV or more and 105 HV or less. If the Vickers hardness of the copper alloy material for resistance material of the second embodiment is less than 80 HV, the crystal grain size may be larger than the above range, and the press formability may be insufficient. On the other hand, if it is 120 HV or more, it means that the crystal grain size is small outside the above range, or that cold working has been performed after the final recrystallization annealing step, and a small resistance temperature coefficient is obtained. It may not be possible.
 次に、第一及び第二実施形態の抵抗材用銅合金材料の製造方法について説明する。第一及び第二実施形態の抵抗材用銅合金材料は、同様の方法により製造することができる。すなわち、銅合金の鋳塊に800℃以上950℃以下、10分間以上10時間以下の熱処理を施す均質化熱処理工程と、均質化熱処理工程で均質化された鋳塊に熱間加工を施す熱間加工工程と、熱間加工工程で熱間加工を施した鋳塊に加工率50%以上の冷間加工を施す中間冷間加工工程と、中間冷間加工工程で冷間加工を施した鋳塊に400℃以上700℃以下、10秒間以上10時間以下の熱処理を施して再結晶焼鈍しを施す中間再結晶焼鈍し工程と、中間再結晶焼鈍し工程で再結晶焼鈍しを施した鋳塊に加工率5%以上80%以下の冷間加工を施す最終冷間加工工程と、最終冷間加工工程で冷間加工を施した鋳塊に400℃以上700℃以下、10秒間以上10時間以下の熱処理を施して再結晶焼鈍しを施す最終再結晶焼鈍し工程と、を備える方法である。 Next, the manufacturing method of the copper alloy material for resistance material of 1st and 2nd embodiment is demonstrated. The copper alloy material for resistance material of 1st and 2nd embodiment can be manufactured by the same method. That is, a homogenization heat treatment process in which a copper alloy ingot is subjected to a heat treatment at 800 ° C. or more and 950 ° C. or less for 10 minutes or more and 10 hours or less, and a hot work in which hot working is performed on the ingot homogenized in the homogenization heat treatment process An ingot that has been cold worked in the intermediate cold working process, an intermediate cold working process in which cold working with a working rate of 50% or more is performed on the ingot that has been hot worked in the hot working process To an ingot subjected to recrystallization annealing in an intermediate recrystallization annealing step in which heat treatment is performed at 400 ° C. to 700 ° C. for 10 seconds to 10 hours to perform recrystallization annealing, and in the intermediate recrystallization annealing step. A final cold working step in which cold working is performed at a working rate of 5% to 80%, and an ingot subjected to cold working in the final cold working step is 400 ° C to 700 ° C, 10 seconds to 10 hours A final recrystallization annealing step in which heat treatment is performed and recrystallization annealing is performed; It is a method provided.
 このような製造方法によって、結晶粒径が8μm以上60μm以下である第一及び第二実施形態の抵抗材用銅合金材料を製造することができる。第一及び第二実施形態の抵抗材用銅合金材料は、どのような形状の部材に成形することも可能であり、例えば線材、棒材、板材等に成形することが可能である。以下に、一例として、第一及び第二実施形態の抵抗材用銅合金材料で構成された板材の製造方法を説明する。 By such a manufacturing method, the copper alloy material for resistance material of the first and second embodiments having a crystal grain size of 8 μm or more and 60 μm or less can be manufactured. The copper alloy material for resistance material of the first and second embodiments can be formed into a member having any shape, and can be formed into, for example, a wire, a bar, a plate, or the like. Below, the manufacturing method of the board | plate material comprised with the copper alloy material for resistance materials of 1st and 2nd embodiment is demonstrated as an example.
 まず、炉等を用いて原材料を溶解し鋳造して、上記の合金成分を有する鋳塊を得る(鋳造工程)。次に、鋳造工程で得られた鋳塊を熱処理して合金成分を均質化する(均質化熱処理工程)。均質化熱処理工程における熱処理の条件は、合金組成に応じて適宜設定すればよいが、一例としては、800℃以上950℃以下で10分間以上10時間以下という条件が挙げられる。加熱温度が高すぎたり加熱時間が長すぎたりすると、抵抗材用銅合金材料の加工性が低下するおそれがある。一方、加熱温度が低すぎたり加熱時間が短すぎたりすると、合金成分の均質化が不十分となるおそれがある。 First, raw materials are melted and cast using a furnace or the like to obtain an ingot having the above alloy components (casting process). Next, the ingot obtained in the casting process is heat treated to homogenize the alloy components (homogenized heat treatment process). The conditions for the heat treatment in the homogenization heat treatment step may be set as appropriate according to the alloy composition. As an example, a condition of 800 ° C. to 950 ° C. for 10 minutes to 10 hours can be given. If the heating temperature is too high or the heating time is too long, the workability of the copper alloy material for resistance material may be reduced. On the other hand, if the heating temperature is too low or the heating time is too short, homogenization of the alloy components may be insufficient.
 続いて、均質化熱処理工程により均質化された鋳塊に熱間加工を施し、鋳塊を所望の形状の部材に成形する(熱間加工工程)。例えば、鋳塊を熱間圧延して、略板状をなす板状物に成形する。均質化熱処理工程が終了した直後の鋳塊は高温に加熱された状態であるので、そのまま連続して熱間加工工程に移行し熱間加工を実施することが好ましい。熱間加工が終了したら、板状物を常温に冷却する。熱間加工工程後の板状物の表面には酸化皮膜が形成されているので、この酸化皮膜を除去する(面削工程)。 Subsequently, the ingot homogenized by the homogenization heat treatment process is hot-worked to form the ingot into a member having a desired shape (hot-working process). For example, the ingot is hot-rolled to form a substantially plate-like plate. Since the ingot immediately after the homogenization heat treatment step is in a state of being heated to a high temperature, it is preferable to proceed to the hot working step as it is and perform hot working. When the hot working is finished, the plate is cooled to room temperature. Since the oxide film is formed on the surface of the plate-like material after the hot working process, the oxide film is removed (face cutting process).
 次に、酸化皮膜を除去した板状物に加工率50%以上の冷間加工を施す(中間冷間加工工程)。例えば、板状物を冷間圧延して、板厚を薄化する。加工率が50%以上であれば、熱間加工工程までに得られた材料組織を十分に微細化することができるため、最終的に得られる結晶粒径が大きくなり過ぎることがなく、適切な大きさとなりやすい。 Next, the plate-like product from which the oxide film has been removed is subjected to cold working with a working rate of 50% or more (intermediate cold working step). For example, the plate is cold-rolled to reduce the plate thickness. If the processing rate is 50% or more, the material structure obtained up to the hot working step can be sufficiently refined, so that the finally obtained crystal grain size does not become too large, and is appropriate. It tends to be large.
 続いて、中間冷間加工工程で冷間加工を施して板厚を薄化した板状物を熱処理して、再結晶焼鈍しを施す(中間再結晶焼鈍し工程)。中間再結晶焼鈍し工程における熱処理の条件は、合金組成等に応じて適宜設定すればよいが、一例としては、400℃以上700℃以下で10秒間以上10時間以下という条件が挙げられる。加熱温度が高すぎたり加熱時間が長すぎたりすると、熱間加工工程までに得られた材料組織を十分に微細化することができず、最終的に得られる結晶粒径を小さくすることができないおそれがある。一方、加熱温度が低すぎたり加熱時間が短すぎたりすると、再結晶組織が得られなかったり、あるいは、再結晶組織が小さくなりすぎて最終的に得られる結晶粒径が小さくなるおそれがある。この熱処理には、板状物を炉内に入れて昇温するバッチ熱処理を用いてもよいし、昇温した炉内に板状物を連続的に通板する走間熱処理を用いてもよい。 Subsequently, the plate-like material that has been subjected to cold working in the intermediate cold working step to reduce the plate thickness is heat-treated and subjected to recrystallization annealing (intermediate recrystallization annealing step). The conditions for the heat treatment in the intermediate recrystallization annealing step may be set as appropriate according to the alloy composition and the like. As an example, the conditions may be 400 ° C. or more and 700 ° C. or less and 10 seconds or more and 10 hours or less. If the heating temperature is too high or the heating time is too long, the material structure obtained up to the hot working process cannot be sufficiently refined, and the crystal grain size finally obtained cannot be reduced. There is a fear. On the other hand, if the heating temperature is too low or the heating time is too short, a recrystallized structure may not be obtained, or the recrystallized structure may be too small and the finally obtained crystal grain size may be small. For this heat treatment, a batch heat treatment in which the temperature is raised by placing the plate-like material in a furnace may be used, or a running heat treatment in which the plate-like material is continuously passed through the heated temperature may be used. .
 次に、中間再結晶焼鈍し工程で再結晶焼鈍しを施した板状物に、加工率5%以上80%以下の冷間加工を施す(最終冷間加工工程)。例えば、板状物を冷間圧延して、板厚をさらに薄化し所望の厚さとする。加工率が80%超過であると、最終的に得られる結晶粒径が小さくなるおそれがある。一方、加工率が5%未満であると、再結晶組織が得られなかったり、あるいは、最終的に得られる結晶粒径が大きくなるおそれがある。 Next, the plate-like material that has been subjected to recrystallization annealing in the intermediate recrystallization annealing process is subjected to cold working with a working rate of 5% or more and 80% or less (final cold working process). For example, the plate-like material is cold-rolled to further reduce the plate thickness to a desired thickness. If the processing rate exceeds 80%, the crystal grain size finally obtained may be small. On the other hand, if the processing rate is less than 5%, a recrystallized structure may not be obtained, or the crystal grain size finally obtained may increase.
 続いて、最終冷間加工工程で冷間加工を施して板厚をさらに薄化した板状物を熱処理して、再結晶焼鈍しを施す(最終再結晶焼鈍し工程)。最終再結晶焼鈍し工程における熱処理の条件は、合金組成等に応じて適宜設定すればよいが、一例としては、400℃以上700℃以下で10秒間以上10時間以下という条件が挙げられる。加熱温度が高すぎたり加熱時間が長すぎたりすると、最終的に得られる結晶粒径が大きくなるおそれがある。一方、加熱温度が低すぎたり加熱時間が短すぎたりすると、再結晶組織が得られなかったり、あるいは、最終的に得られる結晶粒径が小さくなるおそれがある。この熱処理には、板状物を炉内に入れて昇温するバッチ熱処理を用いてもよいし、昇温した炉内に板状物を連続的に通板する走間熱処理を用いてもよい。 Subsequently, the plate-like material that has been subjected to cold working in the final cold working step to further reduce the plate thickness is heat-treated and subjected to recrystallization annealing (final recrystallization annealing step). The conditions for the heat treatment in the final recrystallization annealing process may be set as appropriate according to the alloy composition and the like, but as an example, conditions of 400 ° C. or more and 700 ° C. or less and 10 seconds or more and 10 hours or less can be mentioned. If the heating temperature is too high or the heating time is too long, the finally obtained crystal grain size may be increased. On the other hand, if the heating temperature is too low or the heating time is too short, a recrystallized structure may not be obtained, or the crystal grain size finally obtained may be small. For this heat treatment, a batch heat treatment in which a plate-like material is put in a furnace and heated up may be used, or a running heat treatment in which the plate-like material is continuously passed through the heated furnace may be used. .
 以上のような工程を備える製造方法によって、結晶粒径が8μm以上60μm以下である第一及び第二実施形態の抵抗材用銅合金材料で構成された板材を製造することができる。さらに、製造方法や条件によって、結晶粒径を8μm以上45μm以下とすることもできるし、8μm以上25μm以下とすることもできる。中間冷間加工工程と中間再結晶焼鈍し工程とによって、熱間加工工程までに得られた材料組織を十分に微細化し、最終冷間加工工程と最終再結晶焼鈍し工程とによって、所望の結晶粒径を得る。ただし、上記の中間冷間加工工程と中間再結晶焼鈍し工程とは、それぞれ1回ずつ行ってもよいし、最終冷間加工工程を行う前にそれぞれ複数回ずつ繰り返し行ってもよい。 By the manufacturing method including the steps as described above, a plate material made of the copper alloy material for resistance material of the first and second embodiments having a crystal grain size of 8 μm or more and 60 μm or less can be manufactured. Furthermore, the crystal grain size can be 8 μm or more and 45 μm or less, or 8 μm or more and 25 μm or less, depending on the manufacturing method and conditions. The material structure obtained up to the hot working process is sufficiently refined by the intermediate cold working process and the intermediate recrystallization annealing process, and the desired crystal is obtained by the final cold working process and the final recrystallization annealing process. Obtain the particle size. However, the intermediate cold working step and the intermediate recrystallization annealing step may be performed once each, or may be repeated a plurality of times before the final cold working step.
 また、隣接する工程と工程の間又は最終再結晶焼鈍し工程の後に、形状矯正、酸化膜除去、脱脂、防錆等の処理を実施してもよい。ただし、最終再結晶焼鈍し工程の後に何らかの加工を行うと、その加工が軽加工である場合は組織不均一となり安定したTCRが得られないおそれがあり、強加工である場合は硬さの増加によりハンドリングが困難となるおそれがある。よって、最終再結晶焼鈍し工程の後には、いかなる加工も行わないことが好ましい。 Further, treatments such as shape correction, oxide film removal, degreasing, and rust prevention may be performed between adjacent processes or after the final recrystallization annealing process. However, if any processing is performed after the final recrystallization annealing step, the structure may become non-uniform if the processing is light processing, and a stable TCR may not be obtained. If the processing is strong processing, the hardness increases. Therefore, handling may be difficult. Therefore, it is preferable not to perform any processing after the final recrystallization annealing step.
 なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。 In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. In addition, various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention.
 以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。所定の合金組成を有する鋳塊を鋳造により製造し、加熱温度800℃以上950℃以下、加熱時間10分間以上10時間以下という条件で熱処理して合金成分を均質化した後に、熱間圧延により板状に成形し水冷した。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. An ingot having a predetermined alloy composition is manufactured by casting, heat treated under conditions of a heating temperature of 800 ° C. or more and 950 ° C. or less and a heating time of 10 minutes or more and 10 hours or less, and the alloy components are homogenized, followed by hot rolling. And then cooled with water.
 次に、熱間圧延により得た板状物に面削を施して表面の酸化皮膜を除去した後に、所定の加工率で板状物を冷間圧延し(中間冷間加工工程)、さらに続けて、所定の条件(加熱温度及び加熱時間)で熱処理して再結晶焼鈍し(中間再結晶焼鈍し工程)を施した。さらに、所定の加工率で板状物を冷間圧延し(最終冷間加工工程)、さらに続けて、所定の条件(加熱温度及び加熱時間)で熱処理して再結晶焼鈍し(最終再結晶焼鈍し工程)を施して、厚さ0.2mmの板材を得た。 Next, after chamfering the plate obtained by hot rolling to remove the oxide film on the surface, the plate is cold rolled at a predetermined processing rate (intermediate cold working step) and further continued Then, it was heat-treated under predetermined conditions (heating temperature and heating time) and subjected to recrystallization annealing (intermediate recrystallization annealing step). Further, the plate-like material is cold-rolled at a predetermined processing rate (final cold-working step), followed by heat treatment under predetermined conditions (heating temperature and heating time) and recrystallization annealing (final recrystallization annealing) Step) to obtain a plate material having a thickness of 0.2 mm.
 合金組成は表1~4に示す通りであるが、表1~4に示す合金成分以外の残部は銅及び不可避不純物である。また、中間冷間加工工程、中間再結晶焼鈍し工程、最終冷間加工工程、及び最終再結晶焼鈍し工程の各条件は、表1~4に示す通りである。表1は、合金組成を種々変更したCu-Mn-Ni合金材料の例であり、表2は、合金組成を種々変更したCu-Mn-Sn合金材料の例である。また、表3は、上記4つの工程の条件を種々変更したCu-Mn-Ni合金材料の例であり、表4は、上記4つの工程の条件を種々変更したCu-Mn-Sn合金材料の例である。なお、表3、4の製造条件よりも表1、2の製造条件の方がより好ましい。 The alloy composition is as shown in Tables 1 to 4, but the balance other than the alloy components shown in Tables 1 to 4 is copper and inevitable impurities. The conditions of the intermediate cold working step, the intermediate recrystallization annealing step, the final cold working step, and the final recrystallization annealing step are as shown in Tables 1 to 4. Table 1 shows examples of Cu—Mn—Ni alloy materials with various alloy compositions, and Table 2 shows examples of Cu—Mn—Sn alloy materials with various alloy compositions. Table 3 is an example of a Cu—Mn—Ni alloy material in which the conditions of the four steps are variously changed. Table 4 is an example of the Cu—Mn—Sn alloy material in which the conditions of the four steps are variously changed. It is an example. In addition, the manufacturing conditions of Tables 1 and 2 are more preferable than the manufacturing conditions of Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~4に示す実施例1~36及び比較例1~36の板材について、各種評価を行った。以下にその内容と方法を説明する。また、評価結果を表5~8に示す。
<結晶粒径の測定について>
 JIS H0501(1986)に規定の伸銅品結晶粒度試験方法の切断法に準拠して、結晶粒径の測定を行った。すなわち、板材を圧延方向に沿って切断して断面を露出させ、その断面に湿式鏡面研磨を施した。そして、その研磨面をエッチングした後に、金属顕微鏡を用いて観察し、観察画像から結晶粒径を測定した。
Various evaluations were performed on the plate materials of Examples 1 to 36 and Comparative Examples 1 to 36 shown in Tables 1 to 4. The contents and method will be described below. The evaluation results are shown in Tables 5-8.
<Measurement of crystal grain size>
The crystal grain size was measured in accordance with the cutting method of the copper grain size test method specified in JIS H0501 (1986). That is, the plate material was cut along the rolling direction to expose the cross section, and wet specular polishing was performed on the cross section. And after etching the polishing surface, it observed using the metal microscope, and measured the crystal grain diameter from the observation image.
<X線回折について>
 板材の表面に対してθ-2θ法のX線回折を行って、(111)、(200)、(220)、(311)、(222)、(400)、(331)、(420)のピークを検出し、その体積比と半価幅を評価した。なお、入射X線の種類はCu-Kαであり、管球電圧は40kVであり、管球電流は20mAであり、サンプリング速度は1°/minである。
<About X-ray diffraction>
The surface of the plate material was subjected to θ-2θ method X-ray diffraction, and (111), (200), (220), (311), (222), (400), (331), (420) Peaks were detected and their volume ratio and half width were evaluated. The type of incident X-ray is Cu-Kα, the tube voltage is 40 kV, the tube current is 20 mA, and the sampling rate is 1 ° / min.
<抵抗温度係数の測定について>
 JIS C2526(1994)に規定の方法に準拠して、板材の20℃以上50℃以下の範囲の抵抗温度係数を測定した。20℃以上50℃以下の範囲の抵抗温度係数の絶対値が50ppm/K以下であった場合は合格とし、表5~8においては「○」印で示した。20℃以上50℃以下の範囲の抵抗温度係数の絶対値が50ppm/K超過であった場合は不合格とし、表5~8においては「×」印で示した。
<Measurement of resistance temperature coefficient>
In accordance with the method prescribed in JIS C2526 (1994), the resistance temperature coefficient of the plate material in the range of 20 ° C. or more and 50 ° C. or less was measured. When the absolute value of the resistance temperature coefficient in the range of 20 ° C. or more and 50 ° C. or less was 50 ppm / K or less, it was accepted, and in Tables 5 to 8, it was indicated by “◯”. When the absolute value of the resistance temperature coefficient in the range of 20 ° C. or more and 50 ° C. or less exceeded 50 ppm / K, it was rejected, and in Tables 5 to 8, it was indicated by “x”.
<プレス成形性の評価について>
 日本伸銅協会技術標準JCBA T310:2002に規定の銅及び銅合金薄板条のせん断試験方法に準拠して測定したせん断比によって、板材のプレス成形性を評価した。すなわち、プレス機、角型ダイス等を使用して板材を打ち抜き、板材の圧延方向に直交する断面(プレス破面)を露出させ、走査電子顕微鏡を用いて断面の観察を行って、せん断比を算出した。なお、板材の打ち抜きにおける条件については、クリアランスは10μmであり、プレス速度は200mm/sであり、潤滑条件は無潤滑である。
 せん断比が85%未満であった場合は、プレス成形性が優れていると評価し、表5~8においては「○」印で示した。せん断比が85%以上であった場合は、プレス成形性が不十分であると評価し、表5~8においては「×」印で示した。
<About evaluation of press formability>
The press formability of the plate material was evaluated based on the shear ratio measured according to the shear test method for copper and copper alloy thin strips defined in Japan Copper and Brass Association Technical Standard JCBA T310: 2002. That is, a plate material is punched using a press machine, a square die, etc., a cross section (press fracture surface) perpendicular to the rolling direction of the plate material is exposed, and the cross section is observed using a scanning electron microscope to determine the shear ratio. Calculated. Regarding the conditions for punching the plate material, the clearance is 10 μm, the press speed is 200 mm / s, and the lubrication condition is no lubrication.
When the shear ratio was less than 85%, it was evaluated that the press formability was excellent, and in Tables 5 to 8, it was indicated by “◯”. When the shear ratio was 85% or more, it was evaluated that the press formability was insufficient, and in Tables 5 to 8, it was indicated by “x”.
<ビッカース硬さの測定について>
 JIS Z2244(2009)に規定の方法に準拠して、板材の表面からビッカース硬さを測定した。なお、荷重は2.9Nであり、圧子の圧下時間は15sである。
<Measurement of Vickers hardness>
Vickers hardness was measured from the surface of the plate material in accordance with the method defined in JIS Z2244 (2009). The load is 2.9 N and the indenter reduction time is 15 s.
 表5~8に示す結果から分かるように、実施例1~36の板材は、結晶粒径が8μm以上60μm以下であるため、小さい抵抗温度係数と良好なプレス成形性とを兼ね備えている。
 これに対して、比較例1~8は、合金組成が本発明の好適な範囲を外れている例であるが、比較例1~7の板材は、合金組成が本発明の好適な範囲を外れているため結晶粒径が8μm未満又は60μm超過となり、小さい抵抗温度係数と良好なプレス成形性とを兼ね備えることができなかった。また、比較例1と比較例4は、Mnの含有量が低いため、結晶粒径が規定の範囲内であっても、小さい抵抗温度係数が得られなかった。
As can be seen from the results shown in Tables 5 to 8, the plate materials of Examples 1 to 36 have a small resistance temperature coefficient and good press formability because the crystal grain size is 8 μm or more and 60 μm or less.
In contrast, Comparative Examples 1 to 8 are examples in which the alloy compositions are outside the preferred range of the present invention, but the plate materials of Comparative Examples 1 to 7 have alloy compositions that are outside the preferred range of the present invention. Therefore, the crystal grain size was less than 8 μm or more than 60 μm, and it was impossible to combine a small resistance temperature coefficient with good press formability. Moreover, since the comparative example 1 and the comparative example 4 had low Mn content, even if the crystal grain size was in the prescribed range, a small resistance temperature coefficient could not be obtained.
 比較例8は、合金組成が本発明の好適な範囲を外れているため熱間圧延の際に板状物に割れが生じ、以降の工程に進んで板材を得ることができなかった。
 比較例9~44は、製造条件が本発明の好適な範囲を外れている例であるが、比較例9~14、17~23、26~32、35~41、及び44の板材は、製造条件が本発明の好適な範囲を外れているため結晶粒径が8μm未満又は60μm超過となり、小さい抵抗温度係数と良好なプレス成形性とを兼ね備えることができなかった。
 比較例15、16、24、25、33、34、42、43の板材は、製造条件が本発明の好適な範囲を外れているため、最終再結晶焼鈍し工程によって再結晶組織が得られず、小さい抵抗温度係数と良好なプレス成形性とを兼ね備えることができなかった。
In Comparative Example 8, since the alloy composition was outside the preferred range of the present invention, cracking occurred in the plate-like material during hot rolling, and it was not possible to proceed to the subsequent steps to obtain a plate material.
Comparative Examples 9 to 44 are examples in which the production conditions are outside the preferred range of the present invention, but the plate materials of Comparative Examples 9 to 14, 17 to 23, 26 to 32, 35 to 41, and 44 are produced. Since the conditions were outside the preferred range of the present invention, the crystal grain size was less than 8 μm or more than 60 μm, and it was impossible to combine a small resistance temperature coefficient and good press formability.
Since the plate conditions of Comparative Examples 15, 16, 24, 25, 33, 34, 42, and 43 are out of the preferred range of the present invention, the recrystallization structure cannot be obtained by the final recrystallization annealing process. It was impossible to combine a small resistance temperature coefficient and good press formability.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Claims (9)

  1.  マンガン10質量%以上14質量%以下、ニッケル1質量%以上3質量%以下、を含有し、残部が銅及び不可避不純物からなり、結晶粒径が8μm以上60μm以下である抵抗材用銅合金材料。 A copper alloy material for a resistance material containing 10% by mass to 14% by mass of manganese, 1% by mass to 3% by mass of nickel, the balance being made of copper and inevitable impurities, and a crystal grain size of 8 μm to 60 μm.
  2.  ビッカース硬さが90HV以上150HV未満である請求項1に記載の抵抗材用銅合金材料。 The copper alloy material for a resistance material according to claim 1, wherein the Vickers hardness is 90HV or more and less than 150HV.
  3.  マンガン6質量%以上8質量%以下、錫2質量%以上4質量%以下、を含有し、残部が銅及び不可避不純物からなり、結晶粒径が8μm以上60μm以下である抵抗材用銅合金材料。 A copper alloy material for a resistance material containing 6 mass% or more and 8 mass% or less of manganese, 2 mass% or more and 4 mass% or less of tin, the balance being made of copper and inevitable impurities, and a crystal grain size of 8 μm or more and 60 μm or less.
  4.  ビッカース硬さが80HV以上120HV未満である請求項3に記載の抵抗材用銅合金材料。 The copper alloy material for a resistance material according to claim 3, wherein the Vickers hardness is 80HV or more and less than 120HV.
  5.  鉄0.001質量%以上0.5質量%以下、ケイ素0.001質量%以上0.1質量%以下、クロム0.001質量%以上0.5質量%以下、ジルコニウム0.001質量%以上0.2質量%以下、チタン0.001質量%以上0.2質量%以下、銀0.001質量%以上0.5質量%以下、マグネシウム0.001質量%以上0.5質量%以下、コバルト0.001質量%以上0.1質量%以下、リン0.001質量%以上0.1質量%以下、及び亜鉛0.001質量%以上0.5質量%以下からなる群より選ばれる1種又は2種以上の元素をさらに含有する請求項1~4のいずれか一項に記載の抵抗材用銅合金材料。 Iron 0.001 mass% to 0.5 mass%, silicon 0.001 mass% to 0.1 mass%, chromium 0.001 mass% to 0.5 mass%, zirconium 0.001 mass% to 0 0.2 mass% or less, titanium 0.001 mass% to 0.2 mass%, silver 0.001 mass% to 0.5 mass%, magnesium 0.001 mass% to 0.5 mass%, cobalt 0 One or two selected from the group consisting of 0.001% by weight to 0.1% by weight, phosphorus 0.001% by weight to 0.1% by weight, and zinc 0.001% by weight to 0.5% by weight The copper alloy material for a resistance material according to any one of claims 1 to 4, further comprising at least one element.
  6.  20℃以上50℃以下の範囲の抵抗温度係数の絶対値が50ppm/K以下である請求項1~5のいずれか一項に記載の抵抗材用銅合金材料。 6. The copper alloy material for a resistance material according to claim 1, wherein an absolute value of a resistance temperature coefficient in a range of 20 ° C. or more and 50 ° C. or less is 50 ppm / K or less.
  7.  日本伸銅協会技術標準JCBA T310:2002に規定の銅及び銅合金薄板条のせん断試験方法に準拠して測定したせん断比が85%未満である請求項1~6のいずれか一項に記載の抵抗材用銅合金材料。 The shear ratio measured according to the shear test method for copper and copper alloy thin strips defined in Japan Copper and Brass Association Technical Standard JCBA T310: 2002 is less than 85%. Copper alloy material for resistance materials.
  8.  請求項1~7のいずれか一項に記載の抵抗材用銅合金材料を製造する方法であって、
     銅合金の鋳塊に800℃以上950℃以下、10分間以上10時間以下の熱処理を施す均質化熱処理工程と、
     前記均質化熱処理工程で均質化された鋳塊に熱間加工を施す熱間加工工程と、
     前記熱間加工工程で熱間加工を施した鋳塊に加工率50%以上の冷間加工を施す中間冷間加工工程と、
     前記中間冷間加工工程で冷間加工を施した鋳塊に400℃以上700℃以下、10秒間以上10時間以下の熱処理を施して再結晶焼鈍しを施す中間再結晶焼鈍し工程と、
     前記中間再結晶焼鈍し工程で再結晶焼鈍しを施した鋳塊に加工率5%以上80%以下の冷間加工を施す最終冷間加工工程と、
     前記最終冷間加工工程で冷間加工を施した鋳塊に400℃以上700℃以下、10秒間以上10時間以下の熱処理を施して再結晶焼鈍しを施す最終再結晶焼鈍し工程と、
    を備える抵抗材用銅合金材料の製造方法。
    A method for producing a copper alloy material for a resistance material according to any one of claims 1 to 7,
    A homogenization heat treatment step of subjecting the copper alloy ingot to a heat treatment of 800 ° C. or more and 950 ° C. or less, 10 minutes or more and 10 hours or less;
    A hot working step of hot working the ingot homogenized in the homogenizing heat treatment step;
    An intermediate cold working step of performing cold working with a working rate of 50% or more on the ingot subjected to hot working in the hot working step;
    An intermediate recrystallization annealing step in which the ingot subjected to the cold working in the intermediate cold working step is subjected to a heat treatment of 400 ° C. to 700 ° C. for 10 seconds to 10 hours to perform recrystallization annealing;
    A final cold working step of subjecting the ingot subjected to recrystallization annealing in the intermediate recrystallization annealing step to cold working at a working rate of 5% to 80%;
    A final recrystallization annealing step in which the ingot subjected to the cold working in the final cold working step is subjected to a heat treatment of 400 ° C. or higher and 700 ° C. or lower for 10 seconds or longer and 10 hours or shorter to perform recrystallization annealing;
    The manufacturing method of the copper alloy material for resistance materials provided with.
  9.  請求項1~7のいずれか一項に記載の抵抗材用銅合金材料で少なくとも一部分が構成された抵抗器。 A resistor comprising at least a part of the copper alloy material for a resistance material according to any one of claims 1 to 7.
PCT/JP2017/044779 2017-01-10 2017-12-13 Copper alloy material for resistance material, production method therefor and resistor WO2018131373A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780082526.0A CN110168120A (en) 2017-01-10 2017-12-13 Resistance material Cu alloy material and its manufacturing method and resistor
KR1020197018158A KR102463644B1 (en) 2017-01-10 2017-12-13 Copper alloy material for resistance material, manufacturing method thereof, and resistor
CN202210509500.2A CN114959355A (en) 2017-01-10 2017-12-13 Copper alloy material for resistor material, method for producing same, and resistor
JP2018524299A JP6382478B1 (en) 2017-01-10 2017-12-13 Copper alloy material for resistance material, manufacturing method thereof and resistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-001708 2017-01-10
JP2017001708 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018131373A1 true WO2018131373A1 (en) 2018-07-19

Family

ID=62839441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044779 WO2018131373A1 (en) 2017-01-10 2017-12-13 Copper alloy material for resistance material, production method therefor and resistor

Country Status (5)

Country Link
JP (1) JP6382478B1 (en)
KR (1) KR102463644B1 (en)
CN (2) CN114959355A (en)
TW (1) TWI704240B (en)
WO (1) WO2018131373A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244842A1 (en) * 2018-06-20 2019-12-26 古河電気工業株式会社 Resistance material for resistors and method for producing same, and resistor
WO2020196792A1 (en) * 2019-03-28 2020-10-01 古河電気工業株式会社 Copper alloy strip and method for manufacturing same, resistor resistance material using same, and resistor
TWI739362B (en) * 2019-03-28 2021-09-11 日商古河電氣工業股份有限公司 Copper alloy strip and its manufacturing method, resistance material for resistor using the copper alloy strip and resistor
CN113687142A (en) * 2021-08-26 2021-11-23 国网江西省电力有限公司供电服务管理中心 Direct current electric energy metering module based on shunt
CN115537597A (en) * 2022-09-20 2022-12-30 重庆川仪自动化股份有限公司 Manganese-copper alloy with negative temperature coefficient of resistance, preparation method and application
WO2024014429A1 (en) * 2022-07-11 2024-01-18 古河電気工業株式会社 Copper alloy material for heat-radiating components, and heat-radiating component
WO2024135787A1 (en) * 2022-12-23 2024-06-27 古河電気工業株式会社 Copper alloy material, resistive material including same for resistor, and resistor
WO2024135786A1 (en) * 2022-12-23 2024-06-27 古河電気工業株式会社 Copper alloy material, resistive material for resistor, and resistor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304490B (en) * 2020-03-23 2021-03-12 西安斯瑞先进铜合金科技有限公司 Preparation method and application of CuMn7Sn3 alloy
CN115516122B (en) * 2020-05-29 2023-12-19 古河电气工业株式会社 Copper alloy strip, method for producing same, resistor material for resistor using copper alloy strip, and resistor
CN112376004A (en) * 2020-11-03 2021-02-19 深圳市业展电子有限公司 Treatment process for improving load stability of manganese-copper alloy material
CN113215438A (en) * 2021-04-25 2021-08-06 江苏青益金属科技股份有限公司 Micro-alloyed copper-based wire for electric heating of floor and preparation method thereof
CN113308621B (en) * 2021-05-26 2022-04-15 江西理工大学 Copper-based resistance material and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069724A (en) * 2014-09-29 2016-05-09 日立金属株式会社 Cu ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974544B2 (en) * 2005-02-25 2012-07-11 コーア株式会社 Alloy material for resistance, resistor and method for manufacturing resistor
JP2009242814A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Copper alloy material and producing method thereof
JP5556577B2 (en) 2010-10-20 2014-07-23 日立金属株式会社 Copper bonding wire
CN102212714B (en) * 2011-05-11 2012-11-28 上海振嘉合金材料厂 High-precision manganese copper resistance alloy narrow flat belt and manufacturing method thereof
CN102242292B (en) * 2011-08-16 2012-07-25 中南大学 Highly color change resistant, environment-friendly and easily cut white copper alloy and preparation method thereof
CN103060605B (en) * 2013-01-16 2015-06-03 苏州金仓合金新材料有限公司 Novel lead-free environmentally-friendly high-strength wearable copper-based alloy rod and preparation method thereof
DE102013010301A1 (en) * 2013-06-19 2014-12-24 Isabellenhütte Heusler Gmbh & Co. Kg Resistance alloy, component manufactured therefrom and manufacturing method therefor
JP6581755B2 (en) * 2013-08-09 2019-09-25 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP6270417B2 (en) 2013-11-01 2018-01-31 Jx金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
CN104711455B (en) * 2013-12-16 2017-08-01 深南电路有限公司 Film resistor material, film resistor and preparation method thereof
JP2017002407A (en) 2016-08-23 2017-01-05 Jx金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation characteristic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069724A (en) * 2014-09-29 2016-05-09 日立金属株式会社 Cu ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244842A1 (en) * 2018-06-20 2019-12-26 古河電気工業株式会社 Resistance material for resistors and method for producing same, and resistor
JPWO2019244842A1 (en) * 2018-06-20 2020-06-25 古河電気工業株式会社 Resistor material for resistor, manufacturing method thereof, and resistor
WO2020196792A1 (en) * 2019-03-28 2020-10-01 古河電気工業株式会社 Copper alloy strip and method for manufacturing same, resistor resistance material using same, and resistor
TWI739362B (en) * 2019-03-28 2021-09-11 日商古河電氣工業股份有限公司 Copper alloy strip and its manufacturing method, resistance material for resistor using the copper alloy strip and resistor
CN113687142A (en) * 2021-08-26 2021-11-23 国网江西省电力有限公司供电服务管理中心 Direct current electric energy metering module based on shunt
CN113687142B (en) * 2021-08-26 2023-06-23 国网江西省电力有限公司供电服务管理中心 DC electric energy metering module based on current divider
WO2024014429A1 (en) * 2022-07-11 2024-01-18 古河電気工業株式会社 Copper alloy material for heat-radiating components, and heat-radiating component
CN115537597A (en) * 2022-09-20 2022-12-30 重庆川仪自动化股份有限公司 Manganese-copper alloy with negative temperature coefficient of resistance, preparation method and application
CN115537597B (en) * 2022-09-20 2023-07-28 重庆川仪自动化股份有限公司 Manganese-copper alloy with negative resistance temperature coefficient, preparation method and application
WO2024135787A1 (en) * 2022-12-23 2024-06-27 古河電気工業株式会社 Copper alloy material, resistive material including same for resistor, and resistor
WO2024135786A1 (en) * 2022-12-23 2024-06-27 古河電気工業株式会社 Copper alloy material, resistive material for resistor, and resistor

Also Published As

Publication number Publication date
KR102463644B1 (en) 2022-11-07
JP6382478B1 (en) 2018-08-29
TW201835344A (en) 2018-10-01
CN114959355A (en) 2022-08-30
TWI704240B (en) 2020-09-11
CN110168120A (en) 2019-08-23
KR20190105574A (en) 2019-09-17
JPWO2018131373A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6382478B1 (en) Copper alloy material for resistance material, manufacturing method thereof and resistor
JP4189687B2 (en) Magnesium alloy material
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP4117327B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
JP6696769B2 (en) Copper alloy plate and connector
JP6382479B1 (en) Copper alloy material for resistance material, manufacturing method thereof and resistor
JP6852228B2 (en) Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors
JP5871443B1 (en) Copper alloy sheet and manufacturing method thereof
JP2002339028A (en) Copper alloy for electric or electronic part, and electric or electronic part using the same
JP5610789B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP2016211053A (en) Copper alloy excellent in heat resistance
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JP7552104B2 (en) Resistor and its manufacturing method
JP2018204115A (en) Copper alloy having excellent heat resistance
KR20230028822A (en) Low-resistance copper alloy materials and manufacturing methods
JP6879971B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP7524526B2 (en) Fe-Ni alloy thin plate
JP6816056B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP5782555B1 (en) Manufacturing method of copper plate for press working
JP2024151271A (en) Resistor and its manufacturing method
CN118186257A (en) Aluminum alloy, aluminum alloy product for PCB drilling and method for manufacturing aluminum alloy
JP2017145504A (en) Aluminum alloy sheet and manufacturing method therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524299

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197018158

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891530

Country of ref document: EP

Kind code of ref document: A1