WO2024135787A1 - Copper alloy material, resistive material including same for resistor, and resistor - Google Patents

Copper alloy material, resistive material including same for resistor, and resistor Download PDF

Info

Publication number
WO2024135787A1
WO2024135787A1 PCT/JP2023/045992 JP2023045992W WO2024135787A1 WO 2024135787 A1 WO2024135787 A1 WO 2024135787A1 JP 2023045992 W JP2023045992 W JP 2023045992W WO 2024135787 A1 WO2024135787 A1 WO 2024135787A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
less
alloy material
copper
Prior art date
Application number
PCT/JP2023/045992
Other languages
French (fr)
Japanese (ja)
Inventor
紳悟 川田
俊太 秋谷
司 高澤
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2024135787A1 publication Critical patent/WO2024135787A1/en

Links

Images

Definitions

  • the present invention relates to a copper alloy material and a resistor material and resistor using the same.
  • the metallic material of the resistive material used in a resistor has a stable resistance even when the environmental temperature changes.
  • the resistive material is required to have a small absolute value of the temperature coefficient of resistance (TCR), which is an index showing the characteristic of a stable resistance value against temperature changes.
  • TCR temperature coefficient of resistance
  • T is the test temperature (° C.)
  • T 0 is the reference temperature (° C.)
  • R is the resistance value ( ⁇ ) at the test temperature T
  • R 0 is the resistance value ( ⁇ ) at the reference temperature T 0.
  • Cu-Mn-Ni alloys and Cu-Mn-Sn alloys have a very small TCR and are therefore widely used as alloy materials constituting resistive materials.
  • the volume resistivity is small, less than 50 ⁇ 10 -8 ( ⁇ m), so it is necessary to reduce the cross-sectional area of the resistive material to increase the resistance value of the resistor.
  • Joule heat generated in the resistive material with a small cross-sectional area becomes high and heat is generated, resulting in the resistive material being easily broken (melted) by the heat.
  • Patent Document 1 describes a copper alloy containing Mn in the range of 23 mass % to 28 mass % and Ni in the range of 9 mass % to 13 mass %, and by configuring the mass fractions of Mn and Ni so that the thermoelectromotive force against copper is less than ⁇ 1 ⁇ V/°C at 20°C, it is possible to obtain a copper alloy having a high electrical resistance (volume resistivity ⁇ ) of 50 ⁇ 10-8 [ ⁇ m] or more, a small thermoelectromotive force against copper (copper thermoelectromotive force, EMF), a low temperature coefficient of electrical resistance, and high stability over time of the intrinsic electrical resistance (time invariance).
  • EMF copper thermoelectromotive force
  • Patent Document 2 also claims that by including 33% to 38% by mass of Mn and 8% to 15% by mass of Ni in an alloy for resistors containing copper, manganese, and nickel, it is possible to obtain a copper-manganese-nickel alloy that has properties (particularly resistivity) similar to those of nickel-chromium alloys and has superior workability compared to nickel-chromium alloys.
  • resistors and the resistive materials used in them have also become smaller.
  • the resistive materials used in resistors are generally formed by cutting processes such as press punching, so in order to reduce the variation in resistance value, the copper alloy material must have excellent press punching workability.
  • press punching is performed on copper alloy material, it is required that the cut surface, which is the punching surface, is formed in a fixed position in order to reduce the variation in resistance value.
  • copper alloys that contain high concentrations of Mn and Ni to increase the volume resistivity have high mechanical strength due to solid solution strengthening, and are characterized by strong bonding forces between the atoms that make up the copper alloy.
  • such copper alloys have the characteristic that when a plate is produced and then punched using a press, the strong bonding forces between the atoms make it easy for the cut surfaces, especially the fractured surfaces, to be gouged out. When the fractured surfaces are gouged out, the cross-sectional area of the resistance material obtained by press punching is partially reduced in the vicinity of the cut surfaces, which could impair the accuracy of the electrical resistance of the resistance material.
  • resistors such as shunt resistors and chip resistors in the electrical systems of electric vehicles are required to have a high volume resistivity ⁇ as well as high precision that can withstand higher temperature environments, and the copper alloys used in such resistors are also required to have high precision that can withstand higher temperature environments.
  • copper alloy materials that have a high volume resistivity ⁇ , and when considering the wide temperature range of use from room temperature to high temperatures, have a negative temperature coefficient of resistance (TCR) with a small absolute value, and a small absolute value of thermal electromotive force (EMF) against copper.
  • TCR negative temperature coefficient of resistance
  • EMF thermal electromotive force
  • the object of the present invention is therefore to provide a copper alloy material that has small gouges on the punched surface during press punching, has a sufficiently high volume resistivity, has a negative temperature coefficient of resistance (TCR) with a small absolute value, and has a small absolute value of thermal electromotive force (EMF) against copper, as well as a resistor material and a resistor using the same.
  • TCR negative temperature coefficient of resistance
  • EMF thermal electromotive force
  • the gist of the present invention is as follows.
  • ODF crystal orientation distribution function
  • an average crystal grain size of crystal grains obtained from crystal orientation analysis data by a SEM-EBSD method is 20 ⁇ m or less, and a standard deviation of the average crystal grain size is 10 ⁇ m or less.
  • a resistive material for a resistor comprising the copper alloy material according to any one of (1) to (4) above.
  • a resistor which is a shunt resistor or a chip resistor, comprising the resistive material for resistors according to (5) above.
  • the present invention provides a copper alloy material that has small gouges on the punched surface during press punching, has a sufficiently high volume resistivity, has a negative temperature coefficient of resistance (TCR) with a small absolute value, and has a small absolute value of thermal electromotive force (EMF) against copper, as well as a resistor material and resistors using the same.
  • TCR negative temperature coefficient of resistance
  • EMF thermal electromotive force
  • FIG. 1 is a schematic diagram of the punched copper alloy material of the present invention when viewed from a direction parallel to the cut surface in order to understand the contour shape (right edge portion) of the cut surface when the punched copper alloy material is subjected to press punching.
  • FIG. 2 is a schematic diagram for explaining a method for determining the thermoelectromotive force (EMF) against copper for each of the test materials of the invention examples and the comparative examples.
  • EMF thermoelectromotive force
  • ODF crystal orientation distribution function
  • FIG. 4 shows scanning electron microscope (SEM) photographs of the punched copper alloy materials observed from a direction parallel to the cut surface in order to understand the contour shape (right edge portion) of the cut surface of the punched copper alloy materials of the present invention and comparative examples, in which FIG. 4( a) shows the copper alloy material of Present Invention Example 5 and FIG. 4( b) shows the copper alloy material of Comparative Example 1.
  • SEM scanning electron microscope
  • ODF crystal orientation distribution function
  • the crystal orientation distribution function ODF
  • the copper alloy material according to the present invention contains Mn in the range of 20.0 mass% to 35.0 mass% and Ni in the range of 5.0 mass% to 17.0 mass%, which increases the volume resistivity ⁇ , reduces the absolute value of the temperature coefficient of resistance (TCR) (hereinafter sometimes simply referred to as "temperature coefficient of resistance”) in the temperature range of 20°C to 150°C, and reduces the absolute value of the thermoelectromotive force against copper.
  • TCR temperature coefficient of resistance
  • thermoelectromotive force against copper (hereinafter sometimes simply referred to as "thermoelectromotive force against copper") generated between temperature environments of 20°C and 80°C is reduced, so that resistors can be manufactured with high precision even in high-temperature environments.
  • the temperature coefficient of resistance (TCR) becomes a large negative number in the temperature range from 20°C to 150°C, including the higher temperature range, as shown in, for example, FIG. 3 of Patent Document 1, with respect to the temperature dependence of the electrical resistance, so that the resistance value tends to be prone to errors in the high temperature range.
  • the copper alloy material according to the present invention it is possible to suppress the absolute value of the temperature coefficient of resistance (TCR) from increasing in the temperature range from 20°C to 150°C, so that it has a sufficiently high volume resistivity as a resistance material, and is also excellent in that it has a small absolute value of the temperature coefficient of resistance and a small absolute value of the thermoelectromotive force against copper, taking into account the use environment in a wide temperature range from room temperature (e.g., 20°C) to high temperature (e.g., 150°C).
  • room temperature e.g. 20°C
  • 150°C high temperature
  • the copper alloy material according to the present invention it is possible to provide a copper alloy material that has small gouges on the punched surface during press punching, has a sufficiently high volume resistivity ⁇ , has a negative temperature coefficient of resistance (TCR) with a small absolute value, and has a small absolute value of thermal electromotive force (EMF) against copper, as well as a resistor material for resistors and resistors using the same.
  • TCR negative temperature coefficient of resistance
  • EMF thermal electromotive force
  • the alloy composition of the copper alloy material of the present invention contains, as essential additive components, Mn: 20.0 mass % or more and 35.0 mass % or less, and Ni: 6.5 mass % or more and 17.0 mass % or less.
  • Mn (manganese) is an element that increases the volume resistivity ⁇ .
  • the Mn content is preferably 20.0 mass% or more, and 22.0 mass% or more. It is more preferable that the Mn content is 22.0 mass% or more, and further preferably 24.0 mass% or more.
  • Mn content exceeds 35.0 mass%, the melting point of the copper alloy material is lowered, which may cause problems in the production and In particular, it becomes difficult to control hot working, and therefore it becomes difficult to obtain uniform properties.
  • the Mn content exceeds 35.0 mass %, the absolute value of the thermoelectromotive force (EMF) against copper becomes For this reason, the Mn content is set to the range of 20.0 mass % or more and 35.0 mass % or less.
  • Ni (Ni: 6.5% by mass or more and 17.0% by mass or less)
  • Ni (nickel) is an element that adjusts the thermal electromotive force (EMF) relative to copper in a positive direction. To exert this effect, it is preferable that Ni is contained in an amount of 6.5 mass % or more. If the Ni content exceeds 17.0 mass %, it becomes difficult to obtain a uniform structure, and there is a risk that the volume resistivity ⁇ and the thermoelectromotive force (EMF) against copper may change. If the Ni content exceeds 17.0 mass %, the thermal electromotive force (EMF) against copper tends to be a large positive number, and the absolute value of the temperature coefficient of resistance (TCR) tends to be large.
  • the range of 6.5 mass % or more and 17.0 mass % or less is set to 6.5 mass % or more and 12.0 mass % or less. % or less, and more preferably in the range of 6.5 mass % or more and 9.0 mass % or less.
  • the alloy composition of the copper alloy material of the present invention may further contain, as optional additive components, one or both of Fe: 0.01 mass% or more and 0.50 mass% or less and Co: 0.01 mass% or more and 2.00 mass% or less.
  • one or both of Fe and Co the absolute value of the temperature coefficient of resistance (TCR) can be made smaller.
  • Fe is an element that adjusts the thermoelectromotive force (EMF) with respect to copper in a positive direction.
  • EMF thermoelectromotive force
  • the Fe content is more preferably 0.20 mass % or less.
  • the Fe content is more preferably 0.20 mass % or less.
  • the content of the Cr-based alloy is preferably in the range of 0.01% by mass or more and 0.50% by mass or less, and more preferably in the range of 0.01% by mass or more and 0.20% by mass or less.
  • Co is an element that adjusts the thermoelectromotive force (EMF) with respect to copper in a positive direction.
  • EMF thermoelectromotive force
  • the alloy composition of the copper alloy material of the present invention may further contain, as an optional additive component, at least one selected from the group consisting of Sn: 0.01% by mass or more and 5.00% by mass or less, Zn: 0.01% by mass or more and 5.00% by mass or less, Cr: 0.01% by mass or more and 0.50% by mass or less, Ag: 0.01% by mass or more and 0.50% by mass or less, Al: 0.01% by mass or more and 1.00% by mass or less, Mg: 0.01% by mass or more and 0.50% by mass or less, Si: 0.01% by mass or more and 0.50% by mass or less, and P: 0.01% by mass or more and 0.50% by mass or less.
  • Sn (tin) is a component that can be used to adjust the volume resistivity ⁇ . To achieve this effect, it is preferable to contain 0.01 mass % or more of Sn. On the other hand, the Sn content is By making the content of C 5.00 mass % or less, it is possible to make it difficult for the copper alloy material to become brittle, which can lead to a decrease in manufacturability.
  • Zn 0.01% by mass or more and 5.00% by mass or less
  • Zn (zinc) is a component that can be used to adjust the volume resistivity ⁇ . To achieve this effect, it is preferable to contain Zn in an amount of 0.01 mass % or more. On the other hand, the Zn content is However, since there is a risk of adversely affecting the stability of the electrical performance of the resistor, such as the volume resistivity ⁇ and the thermal electromotive force (EMF) against copper, it is preferable to keep the content at 5.00 mass % or less.
  • EMF thermal electromotive force
  • Cr 0.01% by mass or more and 0.50% by mass or less
  • Cr chromium
  • the Cr content is 0.50 mass % or less.
  • Silver (Ag) is a component that can be used to adjust the volume resistivity ⁇ . To achieve this effect, it is preferable to contain 0.01 mass % or more of Ag. On the other hand, the Ag content is However, since there is a risk of adversely affecting the stability of the electrical performance of the resistor, such as the volume resistivity ⁇ and the thermal electromotive force (EMF) against copper, it is preferable to keep the content at 0.50 mass % or less.
  • Al 0.01% by mass or more and 1.00% by mass or less
  • Al (aluminum) is a component that can be used to adjust the volume resistivity ⁇ . To achieve this effect, it is preferable to contain 0.01 mass % or more of Al. On the other hand, the Al content is However, since there is a risk of embrittlement of the copper alloy material, it is preferable to set the content to 1.00 mass % or less.
  • Mg 0.01% by mass or more and 0.50% by mass or less
  • Mg manganesium
  • Mg is a component that can be used to adjust the volume resistivity ⁇ . To achieve this effect, it is preferable to contain 0.01 mass % or more of Mg.
  • the Mg content is However, since there is a risk of embrittlement of the copper alloy material, the content is preferably 0.50 mass % or less.
  • Si 0.01% by mass or more and 0.50% by mass or less
  • Si silicon
  • Si is a component that can be used to adjust the volume resistivity ⁇ . To achieve this effect, it is preferable to contain 0.01 mass % or more of Si.
  • the Si content is However, since there is a risk of embrittlement of the copper alloy material, the content is preferably 0.50 mass % or less.
  • P 0.01% by mass or more and 0.50% by mass or less
  • P (phosphorus) is a component that can be used to adjust the volume resistivity ⁇ . To achieve this effect, it is preferable to contain P in an amount of 0.01 mass % or more.
  • the P content is However, since there is a risk of embrittlement of the copper alloy material, the content is preferably 0.50 mass % or less.
  • the second optional additive components composed of at least one component selected from the group consisting of Sn, Zn, Cr, Ag, Al, Mg, Si, and P are preferably contained in a total amount of 0.01 mass% or more.
  • the electrical characteristics become unstable and it becomes difficult to manufacture the copper alloy material, so that the total amount of these second optional additive components is preferably 5.00 mass% or less.
  • the remainder is composed of Cu (copper) and inevitable impurities.
  • the "unavoidable impurities" referred to here are generally those present in raw materials in copper-based products or those inevitably mixed in during the manufacturing process, and are essentially unnecessary impurities that are allowed because they are in small amounts and do not affect the properties of copper-based products.
  • components that can be cited as inevitable impurities include nonmetallic elements such as sulfur (S) and metallic elements such as antimony (Sb).
  • S sulfur
  • SB antimony
  • the upper limit of the content of these components can be 0.05 mass% for each of the above components, and 0.10 mass% for the total amount of the above components.
  • crystal grains tend to be easily oriented in a specific orientation such as S orientation or Copper orientation.
  • a specific orientation such as S orientation or Copper orientation.
  • crystal grains having similar mechanical characteristics are densely packed, and in such a case, when press punching is performed, the gouging of the fracture surface at the fracture surface is likely to become large.
  • the crystal orientation distribution function ODF
  • the gouging of the fracture surface that occurs when press punching is performed can be suppressed, and a flatter cut surface can be obtained.
  • the cross-sectional area of the resistive material obtained by the press punching process is less likely to be damaged by gouging of the fracture surface, even in the vicinity of the cut surface, so that a copper alloy material suitable for producing a resistor with higher precision can be obtained.
  • the crystal orientation distribution function ODF
  • the crystal orientation analysis data of the SEM-EBSD method can be obtained by preparing a cross-sectional sample by mirror-polishing a cross-section parallel to the elongation direction of the copper alloy material, observing the cross-sectional sample using a field emission scanning electron microscope (FE-SEM), and performing EBSD measurement (measurement by electron backscatter diffraction method).
  • the area to be measured in the EBSD measurement can be 0.02 mm2 or more, and the measurement step can be 0.5 ⁇ m.
  • the average grain size of the crystal grains is in the range of 20 ⁇ m or less and the standard deviation of the average grain size is 10 ⁇ m or less. This makes it possible to reduce the gouging of the fracture surface, which is the punched surface, when the copper alloy material is subjected to press punching.
  • the average grain size and its standard deviation of the crystal grains of the copper alloy material can be obtained from the crystal orientation analysis data of the SEM-EBSD method described above for a longitudinal section including the elongation direction and thickness direction of the copper alloy material, and more specifically, can be determined from a Grain Size (diameter) graph obtained using the data analysis software "OIM ANALYSIS.”
  • the average diameter and standard deviation determined from the Area Fraction can be regarded as the average grain size and its standard deviation of the crystal grains.
  • the shape of the copper alloy material of the present invention is not particularly limited, but is preferably a plate material from the viewpoint of facilitating the hot or cold processing step described below and cutting processing such as press punching.
  • the rolling direction can be the stretching direction.
  • the copper alloy material of the present invention may be a wire material, a rectangular wire material, a ribbon material, a strip material, or a bar material, and by forming these shapes with the copper alloy material of the present invention, it is possible to facilitate cutting processing of the terminal.
  • any of the wire drawing direction, drawing direction, and extrusion direction can be the stretching direction.
  • An example of a manufacturing method for a copper alloy material The above-mentioned copper alloy material can be realized by controlling a combination of an alloy composition and a manufacturing process, and the manufacturing process is not particularly limited. Among them, the following method can be cited as an example of a manufacturing process that can obtain the above-mentioned copper alloy material.
  • a copper alloy material having substantially the same alloy composition as the copper alloy material described above is subjected to at least a casting step [step 1], a homogenization heat treatment step [step 2], a hot working step [step 3], and a first heat treatment step [step 4] in sequence, and then a cold working step and a heat treatment step are repeated two or more times, more preferably four or more times.
  • the heating temperature is in the range of 750°C or more and 900°C or less
  • the temperature holding time at the heating temperature is in the range of 10 minutes or more and 10 hours or less.
  • the cold working steps repeated after the first heat treatment step [step 4] each have a total working rate in the range of 40% or more and 65% or less.
  • the heat treatment steps repeated after the first heat treatment step [step 4] are performed at a heating temperature in the range of 650°C to 850°C, with heating from room temperature to the heating temperature within 15 seconds, and the temperature holding time at the heating temperature is in the range of 1 second to 40 seconds.
  • step 1 a copper alloy material having the above-mentioned alloy composition is melted in an inert gas atmosphere or in vacuum using a high-frequency melting furnace, and the melt is cast into a desired shape (for example, a thick Ingots with dimensions of 30-300 mm in length, 500 mm in width, and 3000 mm in length are produced.
  • a desired shape for example, a thick Ingots with dimensions of 30-300 mm in length, 500 mm in width, and 3000 mm in length are produced.
  • the alloy composition of the copper alloy material varies depending on the additives, as they may adhere to the melting furnace or volatilize during each manufacturing process.
  • the alloy composition of the copper alloy material produced by the above-mentioned method may not be completely identical to that of the copper alloy material produced by the above-mentioned method, the alloy composition of the copper alloy material produced by the above-mentioned method is substantially the same as that of the copper alloy material.
  • the homogenization heat treatment step [step 2] is a step of performing a homogenizing heat treatment on the ingot after the casting step [step 1].
  • the conditions of the heat treatment in the homogenization heat treatment step [step 2] are preferably a heating temperature in the range of 750°C to 900°C and a holding time in the range of 10 minutes to 10 hours from the viewpoint of suppressing the coarsening of crystal grains.
  • Hot working step [Step 3] is a step in which the ingot that has been subjected to the homogenization heat treatment is subjected to hot rolling or drawing such as wire drawing until it has a predetermined thickness, thereby producing a hot-rolled material.
  • the conditions of the hot working step [step 3] are that the working temperature is preferably in the range of 700°C to 850°C, and may be the same as the heating temperature in the homogenization heat treatment step [step 2].
  • the working rate in the hot working step [step 3] is preferably 50% or more.
  • the "processing rate” is a value obtained by subtracting the cross-sectional area after processing from the cross-sectional area before elongation processing such as rolling or wire drawing, dividing the result by the cross-sectional area before processing, and multiplying the result by 100, and expressed as a percentage, and is expressed by the following formula.
  • [Processing rate] ⁇ ([Cross-sectional area before processing] - [Cross-sectional area after processing]) / [Cross-sectional area before processing] ⁇ x 100 (%)
  • the hot-rolled material is preferably cooled after the hot working step [Step 3].
  • water cooling as a means for cooling the hot-rolled material, from the viewpoint of obtaining a fine and uniform crystal structure with an average crystal grain size of 50 ⁇ m or less.
  • Step 4 First heat treatment step
  • the water-cooled hot-rolled material is subjected to a first heat treatment step [step 4] to adjust the average grain size.
  • the step of adjusting the average grain size to more than 100 ⁇ m is performed by performing heat treatment at a temperature of 650° C. to 850° C. for 2 hours to 5 hours.
  • a heat treatment furnace By using a heat treatment furnace to obtain a uniform structure with an average grain size of more than 100 ⁇ m, the development of the texture formed by subsequent processing is inhibited, and the maximum value of the orientation density can be reduced.
  • facing may be performed on the hot-rolled material after the first heat treatment step [step 4] to remove the surface.
  • the conditions for facing can be any conditions that are normally used, and are not particularly limited.
  • the amount of material removed from the surface of the hot-rolled material by facing can be appropriately adjusted based on the conditions of the hot working step [step 3], and can be, for example, about 0.5 mm to 4 mm from the surface of the hot-rolled material.
  • the hot-rolled material after the first heat treatment step [step 4] is subjected to a cold working step of performing elongation such as cold rolling and wire drawing until the thickness and size of the product is reached, and a heat treatment step of performing heat treatment is repeated two or more times. More specifically, the hot-rolled material after the first heat treatment step [step 4] after hot working is subjected to at least a first cold working step, a first heat treatment step, a second cold working step, and a second heat treatment step, and the cold working steps and heat treatment steps at this time can be the first cold working step [step 5], the second heat treatment step [step 6], the second cold working step [step 7], and the third heat treatment step [step 8], in that order.
  • the cold-rolled material after the third heat treatment step [step 8] can be subjected to a third cold working step and a heat treatment step, and the cold working step and the heat treatment step at this time can be respectively designated as the third cold working step [step 9] and the fourth heat treatment step [step 10].
  • the cold-rolled material after the fourth heat treatment step [step 10] can be subjected to a fourth cold working step and a heat treatment step, and the cold working step and the heat treatment step at this time can be respectively designated as the fourth cold working step [step 11] and the fifth heat treatment step [step 12].
  • ODF crystal orientation distribution function
  • the total working ratios in the first cold working step [step 5], the second cold working step [step 7], the third cold working step [step 9] and the fourth cold working step [step 11] are each in the range of 40% to 65%. If the cold working steps after the second cold working step [step 7] are not performed, or if the total working ratio in at least any of the first cold working step [step 5], the second cold working step [step 7], the third cold working step [step 9] and the fourth cold working step [step 11] is less than 40%, recrystallization is unlikely to occur, making it difficult to obtain a uniform structure.
  • ODF crystal orientation distribution function
  • the heat treatment conditions in the second heat treatment step [step 6], the third heat treatment step [step 8], the fourth heat treatment step [step 10] and the fifth heat treatment step [step 12] are preferably such that the heating temperature is in the range of 650°C or more and 850°C or less, heating is performed so as to reach the heating temperature within 15 seconds from room temperature, and the temperature holding time at the heating temperature is in the range of 1 second or more and 40 seconds or less.
  • the heat treatment time exceeds 1 minute, there is a risk that the standard deviation of the crystal grain size will become large. Therefore, from the viewpoint of adjusting the crystal grain size to an appropriate range and obtaining a uniform crystal structure, it is preferable to shorten the time to reach the heating temperature and also to shorten the temperature holding time at the heating temperature.
  • the copper alloy material of the present invention is extremely useful as a resistor material for resistors, for example, shunt resistors or chip resistors. That is, the resistor material is preferably made of the above-mentioned copper alloy material. Moreover, resistors such as shunt resistors or chip resistors preferably have the resistor material made of the above-mentioned copper alloy material.
  • the ingot was subjected to a homogenization heat treatment process [Step 2] in which it was heated to 800°C and held for 5 hours, and then to a hot processing process [Step 3] in which it was rolled in the longitudinal direction at a processing temperature of 800°C so that the total processing rate was 67% (thickness before processing: 30 mm, thickness after processing: 10 mm), and then cooled to room temperature by water cooling to obtain a hot-rolled material.
  • the hot-rolled material after water cooling was subjected to a first heat treatment step [step 4] at a heating temperature of 800°C and a holding time of 4 hours to grow crystal grains.
  • the first heat treatment step [step 4] was not performed on the hot-rolled material after water cooling.
  • the hot-rolled material after the hot working process [step 3] was subjected to a first cold working process [step 5] in which it was rolled along the longitudinal direction so that the total working ratio was 62.5% (thickness before working: 8 mm, thickness after working: 3 mm).
  • a second heat treatment process [step 6] in which it was heat-treated under specified heat treatment conditions.
  • the cold-rolled material after the second heat treatment step [step 6] was subjected to a second cold working step [step 7] in which it was rolled in the longitudinal direction at the total working ratio shown in Table 2.
  • the cold-rolled material after the second cold working step [step 7] was subjected to a third heat treatment step [step 8] in which it was heat-treated under the heat treatment conditions shown in Table 2.
  • the cold-rolled material after the third heat treatment step [step 8] was subjected to a third cold working step [step 9] in which it was rolled in the longitudinal direction at the total working ratio shown in Table 2.
  • the cold-rolled material after the third cold working step [step 9] was subjected to a fourth heat treatment step [step 10] in which heat treatment was performed under the heat treatment conditions shown in Table 2.
  • the cold-rolled material after the fourth heat treatment step [step 10] was subjected to a fourth cold working step [step 11], in which the cold-rolled material was rolled in the longitudinal direction at the total working ratio shown in Table 2.
  • the cold-rolled material after the fourth cold working step [step 11] was subjected to a fifth heat treatment step [step 12], in which heat treatment was performed under the heat treatment conditions shown in Table 2.
  • the cold-rolled material after the fourth heat treatment step [step 10] was subjected to a fifth heat treatment step [step 12] without performing the fourth cold working step [step 11].
  • the time until the heating temperature was reached in the fifth heat treatment step [step 12] was set to 600 seconds. In this manner, the copper alloy materials (copper alloy sheet materials) of present invention examples 1 to 17 and comparative examples 1 to 6 were produced.
  • the copper alloy materials (copper alloy sheet materials) according to the above-mentioned examples of the present invention and comparative examples were used to carry out the following characteristic evaluations.
  • the evaluation conditions for each characteristic were as follows.
  • the data analysis software "OIM ANALYSIS” was used to perform intensity calculations using the harmonic series expansion, with the series rank set to 16 and the Gaussian half-width set to 5° when fitting to a Gaussian distribution. Symmetry was selected to perform texture analysis, and an ODF map showing the intensity distribution of the crystal orientation when expressed in Euler angles ( ⁇ 1, ⁇ , ⁇ 2) was plotted.
  • the mold was adjusted so that the clearance between the upper mold (punch) and the lower mold (die) was in the range of 20 ⁇ m to 30 ⁇ m, and the ratio of the fracture surface to the cut surface was adjusted to be in the range of 30% to 50%, and the copper alloy material was punched into a square shape having a size of 10 mm along the stretching direction and a size of 10 mm along the plate width direction perpendicular to the stretching direction, to prepare a copper alloy material specimen having a cut surface on the outer periphery.
  • FIG. 1 is a schematic diagram of the punched copper alloy material of the present invention when viewed from a direction parallel to the cut surface in order to understand the outline shape (right edge portion) of the cut surface at that time when the copper alloy material is subjected to press punching processing.
  • FIG. 1 shows a schematic outline shape of the cut surface 2 that appears on a plane including a direction X perpendicular to the cut surface 2 and a thickness direction Y.
  • the copper alloy material 1 shown in FIG. 1 shows the cut surface 2 after press punching processing, which is performed by lowering an upper die (punch) while the copper alloy material 1 is fixed on a lower die (die) not shown.
  • the cut surface 2 is formed with a sag 3, a shear surface 4, and a fracture surface 5 in this order from the upper surface 1a side of the press-punched copper alloy material 1.
  • the fracture surface 5 is hollowed out relative to the shear surface 4, and a hollow 6 is often formed on the cut surface 2, which is the punched surface.
  • a burr 7 is often formed on the lower edge of the cut surface 2 so as to extend outward from the fracture surface 5.
  • the punched copper alloy material 1 was observed at a magnification of 300 times from a direction parallel to the cut surface 2 using an optical microscope (Olympus Corporation, model number: GX71) for the test material made of the punched copper alloy material 1. Then, in this scanning electron microscope (SEM) photograph, as shown in FIG. 1, an imaginary line drawn parallel to the plate surface of the copper alloy material (along the direction X in FIG.
  • the volume resistivity ⁇ was measured by measuring the voltage at a room temperature of 20°C using the four-terminal method in accordance with the method specified in JIS C2525, with the distance between the voltage terminals set at 200 mm and the measurement current at 100 mA, and the volume resistivity ⁇ [ ⁇ cm] was calculated from the obtained value.
  • the volume resistivity ⁇ When the measured volume resistivity ⁇ was 80 ⁇ cm or more, the volume resistivity ⁇ was evaluated as being sufficiently large and excellent as a resistive material, with a rating of " ⁇ ". When the volume resistivity ⁇ was 70 ⁇ cm or more but less than 80 ⁇ cm, the volume resistivity ⁇ was evaluated as being large and good as a resistive material, with a rating of " ⁇ ". On the other hand, when the volume resistivity ⁇ was less than 70 ⁇ cm, the volume resistivity ⁇ was evaluated as being small and poor as a resistive material, with a rating of " ⁇ ". In this example, the evaluations were made with " ⁇ " and " ⁇ " as pass levels. The results are shown in Table 3.
  • the copper thermoelectromotive force (EMF) of the test material was measured according to JIS C2527. More specifically, as shown in FIG. 2, the copper thermoelectromotive force (EMF) of the test material 11 was measured by using a fully annealed pure copper wire with a diameter of 1 mm as a standard copper wire 21, immersing a temperature measuring junction P1 , to which one end of the test material 11 and the standard copper wire 21 were connected, in hot water kept warm in a thermostatic bath 41 at 80° C., and measuring the electromotive force when the reference junctions P21 and P22 , to which the other ends of the test material 11 and the standard copper wire 21 were connected to copper wires 31 and 32, respectively, were immersed in ice water at 0° C. kept cold in a freezing point device 42, using a voltage measuring device 43. The obtained electromotive force was divided by the temperature difference of 80° C. to obtain the copper thermoelectromotive force EMF ( ⁇ V/° C.).
  • the absolute value of the measured copper thermoelectromotive force (EMF) was 0.5 ⁇ V/°C or less, the absolute value of the copper thermoelectromotive force (EMF) was evaluated as " ⁇ ", since the absolute value was sufficiently small and the material was deemed to be good as a resistive material.
  • the absolute value of the copper thermoelectromotive force (EMF) was greater than 0.5 ⁇ V/°C and less than 1.0 ⁇ V/°C, the absolute value of the copper thermoelectromotive force (EMF) was small and the material was deemed to be good as a resistive material, since the absolute value was evaluated as " ⁇ ".
  • TCR temperature coefficient of resistance
  • the temperature coefficient of resistance (TCR) was measured by a four-terminal method according to the method specified in JIS C2525 and JIS C2526, with a voltage terminal distance of 200 mm and a measurement current of 100 mA, and the voltage was measured when the temperature of the test material was heated to 150 ° C., and the resistance value R 150 ° C. [ ⁇ ] at 150 ° C. was obtained from the obtained value. Next, the voltage was measured when the temperature of the test material was cooled to 20 ° C., and the resistance value R 20 ° C. [ ⁇ ] at 20 ° C. was obtained from the obtained value. Then, from the obtained resistance values R 150 ° C. and R 20 ° C.
  • the absolute value of the temperature coefficient of resistance (TCR) was evaluated as " ⁇ " since the absolute value of the temperature coefficient of resistance (TCR) was sufficiently small and the material was excellent as a resistive material.
  • the absolute value of the temperature coefficient of resistance (TCR) was between 50 ppm/°C and 60 ppm/°C, the absolute value of the temperature coefficient of resistance (TCR) was evaluated as " ⁇ ", since the absolute value of the temperature coefficient of resistance (TCR) was small and the material was good as a resistive material.
  • the copper alloy materials of Examples 1 to 17 of the present invention have alloy composition and maximum orientation density values within the appropriate ranges of the present invention, and the ratio of the area of the overlapping portion 9 of the copper alloy material 1 and the rectangle R to the area of the rectangle R is all evaluated as " ⁇ " or " ⁇ ", so that the gouge formed on the punched surface is evaluated as small.
  • the copper alloy materials of Examples 1 to 17 of the present invention were also evaluated as " ⁇ " or " ⁇ ” for the volume resistivity ⁇ , thermoelectromotive force to copper (EMF), and temperature coefficient of resistance (TCR).
  • the copper alloy material of Comparative Example 3 had a low Ni content and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 3 was rated as "X" in terms of thermal electromotive force (EMF) against copper.
  • EMF thermal electromotive force
  • the copper alloy material of Comparative Example 4 had low contents of both Mn and Ni, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 4 was evaluated as "x" for volume resistivity ⁇ . In particular, the copper alloy material of Comparative Example 4 had a low Mn content, and therefore the evaluation result of volume resistivity ⁇ was "x".
  • the copper alloy material of Comparative Example 5 had a high Mn content and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 5 was rated as "X" in terms of copper thermoelectromotive force (EMF).
  • the copper alloy material of Comparative Example 6 had a high Ni content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 6 was rated as "X" in terms of copper thermoelectromotive force (EMF) and temperature coefficient of resistance (TCR).
  • EMF copper thermoelectromotive force
  • TCR temperature coefficient of resistance
  • the copper alloy material of the present invention has small gouges during press punching when the maximum orientation density of the alloy composition and the crystal orientation distribution function (ODF) expressed as Euler angles ( ⁇ 1, ⁇ , ⁇ 2) is within the appropriate range of the present invention.
  • ODF crystal orientation distribution function
  • the volume resistivity ⁇ , thermoelectromotive force (EMF) to copper, and temperature coefficient of resistance (TCR) of the copper alloy material of the present invention are at least good.
  • ODF crystal orientation distribution function
  • FIG. 4 shows scanning electron microscope (SEM) photographs of the punched copper alloy materials of the present invention and comparative examples, observed in a direction parallel to the cut surface as in FIG. 1, after press punching to show the outline shape of the cut surface (right edge portion) of the punched copper alloy materials.
  • FIG. 4(a) is an SEM photograph of the outline shape of the cut surface of the copper alloy material of present invention example 5
  • FIG. 4(b) is an SEM photograph of the outline shape of the cut surface of the copper alloy material of comparative example 1. From these SEM photographs, it was confirmed that the copper alloy material of the present invention has smaller gouges on the fracture surface that occur during press punching compared to the copper alloy material of the comparative example.
  • the Fe content was set to 0.20 mass% or less, which improved the stability of the electrical characteristics against heat, etc., and resulted in a reliability evaluation result of " ⁇ " compared to invention examples 5, 8, and 12, which had an Fe content of 0.30 mass% or more and were evaluated as " ⁇ " in the reliability evaluation result.

Landscapes

  • Conductive Materials (AREA)

Abstract

Provided are: a copper alloy material which chips little when punched with a press and which has a sufficiently high volume resistivity, a temperature coefficient of resistance (TCR) that is negative and is small in absolute value, and a small absolute value of copper electromotive force (EMF); a resistive material including the copper alloy material, for a resistor; and the resistor. The copper alloy material has an alloy composition containing 20.0-35.0 mass% Mn and 6.5-17.0 mass% Ni, with the remainder comprising Cu and unavoidable impurities. The copper alloy material, when a longitudinal section thereof including a drawing direction and a thickness direction is analyzed for crystallographic orientation by the SEM-EBSD method, gives a crystallographic-orientation distribution function (ODF) which, when expressed by Euler angles (φ1, Φ, φ2), has a maximum orientation density of 6.0 or less in an area where φ1 is 0-90°, φ is 0-90°, and φ2 is 15°, 20°, and 25°.

Description

銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器Copper alloy material, and resistor material and resistor using the same
 本発明は、銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器に関する。 The present invention relates to a copper alloy material and a resistor material and resistor using the same.
 抵抗器に使用される抵抗材の金属材料は、環境温度が変化しても抵抗器の抵抗が安定していることが望ましい。このため、抵抗材料には、温度変化に対して抵抗値が安定した特性を表す指標である抵抗温度係数(TCR)の絶対値が小さいことが要求される。抵抗温度係数とは、温度による抵抗値の変化の大きさを1℃当たりの百万分率(ppm)で表したものであり、TCR(×10-6/℃)={(R-R)/R}×{1/(T-T)}×10という式で表される。ここで、式中のTは試験温度(℃)、Tは基準温度(℃)、Rは試験温度Tにおける抵抗値(Ω)、Rは基準温度Tにおける抵抗値(Ω)を示す。特に、Cu-Mn-Ni合金やCu-Mn-Sn合金は、TCRが非常に小さいため、抵抗材を構成する合金材料として広く用いられている。 It is desirable that the metallic material of the resistive material used in a resistor has a stable resistance even when the environmental temperature changes. For this reason, the resistive material is required to have a small absolute value of the temperature coefficient of resistance (TCR), which is an index showing the characteristic of a stable resistance value against temperature changes. The temperature coefficient of resistance is expressed in parts per million (ppm) per degree Celsius, and is expressed by the formula TCR (×10 −6 /° C.) = {(R-R 0 )/R 0 }×{1/(T-T 0 )}×10 6. Here, in the formula, T is the test temperature (° C.), T 0 is the reference temperature (° C.), R is the resistance value (Ω) at the test temperature T, and R 0 is the resistance value (Ω) at the reference temperature T 0. In particular, Cu-Mn-Ni alloys and Cu-Mn-Sn alloys have a very small TCR and are therefore widely used as alloy materials constituting resistive materials.
 しかしながら、たとえば抵抗材料を用いて回路(パターン)を形成することによって所定の抵抗値になるように設計される抵抗器に、これらのCu-Mn-Ni合金やCu-Mn-Sn合金を抵抗材料として用いた場合には、体積抵抗率が50×10-8(Ω・m)未満と小さいことで、抵抗材料の断面積を小さくして抵抗器の抵抗値を大きくする必要がある。このような抵抗器では、回路に一時的に大電流が流された場合や、常にある程度大きな電流が流され続けるような場合に、断面積の小さな抵抗材料に生じるジュール熱が高くなって発熱し、その結果、抵抗材料が熱により破断(溶断)しやすくなってしまうという不都合があった。 However, when these Cu-Mn-Ni alloys or Cu-Mn-Sn alloys are used as resistive materials in resistors designed to have a predetermined resistance value by forming a circuit (pattern) using the resistive material, the volume resistivity is small, less than 50×10 -8 (Ω·m), so it is necessary to reduce the cross-sectional area of the resistive material to increase the resistance value of the resistor. In such resistors, when a large current flows temporarily in the circuit or when a relatively large current continues to flow all the time, Joule heat generated in the resistive material with a small cross-sectional area becomes high and heat is generated, resulting in the resistive material being easily broken (melted) by the heat.
 このため、抵抗材料の断面積が小さくなるのを抑制するために、体積抵抗率のより大きな抵抗材料が求められている。 For this reason, there is a demand for resistive materials with a higher volume resistivity to prevent the cross-sectional area of the resistive material from becoming smaller.
 例えば、特許文献1には、Mnを23質量%以上28質量%以下の範囲で含有し、かつNiを9質量%以上13質量%以下の範囲で含有する銅合金において、Mnの質量分率とNiの質量分率を、銅に対する熱起電力が20℃で±1μV/℃より小さくなるように構成することで、50×10-8[Ω・m]以上の高い電気抵抗(体積抵抗率ρ)を得ることができるとともに、銅に対する熱起電力(対銅熱起電力、EMF)が小さく、電気抵抗の温度係数が低く、かつ、固有の電気抵抗の時間に対する高い安定性(時間不変性)を有する銅合金を得ることができるとしている。 For example, Patent Document 1 describes a copper alloy containing Mn in the range of 23 mass % to 28 mass % and Ni in the range of 9 mass % to 13 mass %, and by configuring the mass fractions of Mn and Ni so that the thermoelectromotive force against copper is less than ±1 μV/°C at 20°C, it is possible to obtain a copper alloy having a high electrical resistance (volume resistivity ρ) of 50× 10-8 [Ω·m] or more, a small thermoelectromotive force against copper (copper thermoelectromotive force, EMF), a low temperature coefficient of electrical resistance, and high stability over time of the intrinsic electrical resistance (time invariance).
 また、特許文献2には、銅とマンガンとニッケルを含む抵抗体用の合金において、Mnを33質量%以上38質量%以下の範囲で含有し、かつNiを8質量%以上15質量%以下の範囲で含有することで、ニッケル-クロム系の合金に近い特性(特に比抵抗)を有するとともに、ニッケル-クロム系の合金に比べて加工性に優れた、銅-マンガン-ニッケル系の合金を得ることができるとしている。 Patent Document 2 also claims that by including 33% to 38% by mass of Mn and 8% to 15% by mass of Ni in an alloy for resistors containing copper, manganese, and nickel, it is possible to obtain a copper-manganese-nickel alloy that has properties (particularly resistivity) similar to those of nickel-chromium alloys and has superior workability compared to nickel-chromium alloys.
特表2016-528376号公報Special table 2016-528376 publication 特開2021-161512号公報JP 2021-161512 A
 近年の電気電子部品の小型高集積化に伴い、抵抗器やそれに用いられる抵抗材料も小型化が進んでいる。抵抗器に用いられる抵抗材料は、一般に、プレス打ち抜き加工などの切断加工を施すことにより形成されるため、抵抗値のばらつきを小さくするには、銅合金材が優れたプレス打ち抜き加工性を有することが求められる。特に、銅合金材にプレス打ち抜き加工を行なった際に、打ち抜き加工面である切断面を一定の位置に形成されるようにして、抵抗値のばらつきを小さくすることが求められる。  In recent years, as electrical and electronic components have become smaller and more highly integrated, resistors and the resistive materials used in them have also become smaller. The resistive materials used in resistors are generally formed by cutting processes such as press punching, so in order to reduce the variation in resistance value, the copper alloy material must have excellent press punching workability. In particular, when press punching is performed on copper alloy material, it is required that the cut surface, which is the punching surface, is formed in a fixed position in order to reduce the variation in resistance value.
 しかし、体積抵抗率を高めるためにMnやNiを高濃度で含有している銅合金では、固溶強化が進んでいるために、機械的強度が高く、銅合金を構成している原子間の結合力が強い特徴がある。他方で、このような銅合金では、板材を作製した後にプレスによって打ち抜き加工を施したときに、原子間の結合力が強いために、切断面のうち特に破断面がえぐれ易い特徴があった。破断面がえぐれることで、プレス打ち抜き加工によって得られる抵抗材料の断面積が、切断面近傍において部分的に減少するため、抵抗材料における電気抵抗の精度を損ねる恐れがあった。 However, copper alloys that contain high concentrations of Mn and Ni to increase the volume resistivity have high mechanical strength due to solid solution strengthening, and are characterized by strong bonding forces between the atoms that make up the copper alloy. On the other hand, such copper alloys have the characteristic that when a plate is produced and then punched using a press, the strong bonding forces between the atoms make it easy for the cut surfaces, especially the fractured surfaces, to be gouged out. When the fractured surfaces are gouged out, the cross-sectional area of the resistance material obtained by press punching is partially reduced in the vicinity of the cut surfaces, which could impair the accuracy of the electrical resistance of the resistance material.
 さらに、近年、電気自動車の電装系などにおいて、シャント抵抗器やチップ抵抗器などの抵抗器として、体積抵抗率ρが大きいもののほか、より高温の使用環境に耐える高精度なものが求められており、このような抵抗器に用いられる銅合金としても、より高温の使用環境に耐える高精度なものが求められている。より具体的には、体積抵抗率ρが大きく、かつ、常温から高温までの広い温度範囲での使用環境も考慮したときに、抵抗温度係数(TCR)が負であって絶対値が小さく、かつ対銅熱起電力(EMF)の絶対値が小さい銅合金材が求められている。 Furthermore, in recent years, resistors such as shunt resistors and chip resistors in the electrical systems of electric vehicles are required to have a high volume resistivity ρ as well as high precision that can withstand higher temperature environments, and the copper alloys used in such resistors are also required to have high precision that can withstand higher temperature environments. More specifically, there is a demand for copper alloy materials that have a high volume resistivity ρ, and when considering the wide temperature range of use from room temperature to high temperatures, have a negative temperature coefficient of resistance (TCR) with a small absolute value, and a small absolute value of thermal electromotive force (EMF) against copper.
 したがって、本発明の目的は、プレス打ち抜き加工時に生じる打ち抜き加工面のえぐれが小さく、十分に高い体積抵抗率を有し、抵抗温度係数(TCR)が負であって絶対値が小さく、かつ対銅熱起電力(EMF)の絶対値が小さい銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器を提供することにある。 The object of the present invention is therefore to provide a copper alloy material that has small gouges on the punched surface during press punching, has a sufficiently high volume resistivity, has a negative temperature coefficient of resistance (TCR) with a small absolute value, and has a small absolute value of thermal electromotive force (EMF) against copper, as well as a resistor material and a resistor using the same.
 本発明者らは、Mn:20.0質量%以上35.0質量%以下、およびNi:6.5質量%以上17.0質量%以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有するとともに、結晶方位分布関数(ODF)をオイラー角(φ1、Φ、φ2)で表したときに、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値が6.0以下である銅合金材によることで、プレス打ち抜き加工時に生じるえぐれが小さくなるとともに、例えば抵抗材料として十分に高い体積抵抗率ρを有し、常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での使用環境も考慮した、抵抗温度係数(TCR)が負でありかつ絶対値が小さく、かつ対銅熱起電力(EMF)の絶対値も小さい銅合金材が得られることを見出し、本発明を完成させるに至った。 The inventors have discovered that by using a copper alloy material having an alloy composition containing 20.0% by mass or more and 35.0% by mass or less of Mn, and 6.5% by mass or more and 17.0% by mass or less of Ni, with the remainder being Cu and unavoidable impurities, and in which the maximum value of the orientation density at φ1=0-90°, Φ=0-90°, and φ2=15°, 20°, and 25° is 6.0 or less when the crystal orientation distribution function (ODF) is expressed as Euler angles (φ1, Φ, φ2), it is possible to obtain a copper alloy material that reduces gouges that occur during press punching, has a sufficiently high volume resistivity ρ as a resistance material, and takes into account the use environment in a wide temperature range from room temperature (e.g., 20°C) to high temperature (e.g., 150°C), has a negative temperature coefficient of resistance (TCR) with a small absolute value, and also has a small absolute value of thermal electromotive force (EMF) against copper, thereby completing the present invention.
 上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(1)Mn:20.0質量%以上35.0質量%以下、およびNi:6.5質量%以上17.0質量%以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金材であって、前記銅合金材の延伸方向と厚さ方向を含む縦断面にて、SEM-EBSD法による結晶方位解析から得られる結晶方位分布関数(ODF)を、オイラー角(φ1、Φ、φ2)で表したとき、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値が、6.0以下である、銅合金材。
(2)前記縦断面にて、SEM-EBSD法による結晶方位解析データから得られる結晶粒の平均結晶粒径が、20μm以下であり、かつ、前記平均結晶粒径の標準偏差が10μm以下である、上記(1)に記載の銅合金材。
(3)前記合金組成は、Fe:0.01質量%以上0.50質量%以下、およびCo:0.01質量%以上2.00質量%以下のうち、一方または両方をさらに含有する、上記(1)または(2)に記載の銅合金材。
(4)前記合金組成は、Sn:0.01質量%以上5.00質量%以下、Zn:0.01質量%以上5.00質量%以下、Cr:0.01質量%以上0.50質量%以下、Ag:0.01質量%以上0.50質量%以下、Al:0.01質量%以上1.00質量%以下、Mg:0.01質量%以上0.50質量%以下、Si:0.01質量%以上0.50質量%以下およびP:0.01質量%以上0.50質量%以下からなる群から選択される少なくとも1種をさらに含有する、上記(1)から(3)のいずれか1項に記載の銅合金材。
(5) 上記(1)から(4)のいずれか1項に記載の銅合金材からなる、抵抗器用抵抗材料。
(6) 上記(5)に記載の抵抗器用抵抗材料を有する、シャント抵抗器またはチップ抵抗器である抵抗器。
In order to achieve the above object, the gist of the present invention is as follows.
(1) A copper alloy material having an alloy composition containing 20.0 mass% or more and 35.0 mass% or less of Mn, and 6.5 mass% or more and 17.0 mass% or less of Ni, with the balance being Cu and unavoidable impurities, wherein, in a longitudinal section including an elongation direction and a thickness direction of the copper alloy material, a crystal orientation distribution function (ODF) obtained by a crystal orientation analysis by a SEM-EBSD method is expressed as Euler angles (φ1, Φ, φ2), the maximum value of the orientation density at φ1=0 to 90°, Φ=0 to 90°, and φ2 of 15°, 20°, and 25° is 6.0 or less.
(2) In the longitudinal section, an average crystal grain size of crystal grains obtained from crystal orientation analysis data by a SEM-EBSD method is 20 μm or less, and a standard deviation of the average crystal grain size is 10 μm or less. The copper alloy material according to (1) above.
(3) The copper alloy material according to (1) or (2) above, wherein the alloy composition further contains one or both of Fe: 0.01 mass% or more and 0.50 mass% or less and Co: 0.01 mass% or more and 2.00 mass% or less.
(4) The copper alloy material according to any one of (1) to (3), further comprising at least one selected from the group consisting of Sn: 0.01% by mass or more and 5.00% by mass or less, Zn: 0.01% by mass or more and 5.00% by mass or less, Cr: 0.01% by mass or more and 0.50% by mass or less, Ag: 0.01% by mass or more and 0.50% by mass or less, Al: 0.01% by mass or more and 1.00% by mass or less, Mg: 0.01% by mass or more and 0.50% by mass or less, Si: 0.01% by mass or more and 0.50% by mass or less, and P: 0.01% by mass or more and 0.50% by mass or less.
(5) A resistive material for a resistor, comprising the copper alloy material according to any one of (1) to (4) above.
(6) A resistor, which is a shunt resistor or a chip resistor, comprising the resistive material for resistors according to (5) above.
 本発明によれば、プレス打ち抜き加工時に生じる打ち抜き加工面のえぐれが小さく、十分に高い体積抵抗率を有し、抵抗温度係数(TCR)が負であって絶対値が小さく、かつ対銅熱起電力(EMF)の絶対値が小さい銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器を提供することができる。 The present invention provides a copper alloy material that has small gouges on the punched surface during press punching, has a sufficiently high volume resistivity, has a negative temperature coefficient of resistance (TCR) with a small absolute value, and has a small absolute value of thermal electromotive force (EMF) against copper, as well as a resistor material and resistors using the same.
図1は、本発明の銅合金材にプレス打ち抜き加工を施し、そのときの切断面の輪郭形状(右側縁部分)がわかるようにするため、打ち抜かれた銅合金材を、切断面に対して平行な方向から眺めたときの模式図である。FIG. 1 is a schematic diagram of the punched copper alloy material of the present invention when viewed from a direction parallel to the cut surface in order to understand the contour shape (right edge portion) of the cut surface when the punched copper alloy material is subjected to press punching. 図2は、本発明例および比較例の各供試材について、対銅熱起電力(EMF)を求める方法を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a method for determining the thermoelectromotive force (EMF) against copper for each of the test materials of the invention examples and the comparative examples. 図3は、本発明例14の銅合金材について、結晶方位分布関数(ODF)をオイラー角(φ1、Φ、φ2)で表し、φ1を横軸に、Φを縦軸にしたときの、φ1=0~90°およびΦ=0~90°の範囲における方位密度を示すグラフであり、図3(a)は、φ2=15°であるときのグラフであり、図3(b)は、φ2=20°であるときのグラフであり、図3(c)は、φ2=25°であるときのグラフである。FIG. 3 is a graph showing the crystal orientation distribution function (ODF) of the copper alloy material of Example 14 of the present invention, expressed as Euler angles (φ1, Φ, φ2), with φ1 on the horizontal axis and Φ on the vertical axis, showing the orientation density in the ranges of φ1=0 to 90° and Φ=0 to 90°, where FIG. 3(a) is a graph when φ2=15°, FIG. 3(b) is a graph when φ2=20°, and FIG. 3(c) is a graph when φ2=25°. 図4は、本発明例および比較例の銅合金材にプレス打ち抜き加工を施し、そのときの切断面の輪郭形状(右側縁部分)がわかるようにするため、打ち抜かれた銅合金材を、切断面に対して平行な方向から観察したときの走査型電子顕微鏡(SEM)写真であり、図4(a)は本発明例5の銅合金材、図4(b)は比較例1の銅合金材である。FIG. 4 shows scanning electron microscope (SEM) photographs of the punched copper alloy materials observed from a direction parallel to the cut surface in order to understand the contour shape (right edge portion) of the cut surface of the punched copper alloy materials of the present invention and comparative examples, in which FIG. 4( a) shows the copper alloy material of Present Invention Example 5 and FIG. 4( b) shows the copper alloy material of Comparative Example 1.
 以下、本発明の銅合金材の好ましい実施形態について、詳細に説明する。なお、本発明の合金の成分組成において、「質量%」を単に「%」と示すこともある。 Below, a preferred embodiment of the copper alloy material of the present invention will be described in detail. Note that in the component composition of the alloy of the present invention, "mass %" may be simply indicated as "%."
 本発明に従う銅合金材は、Mn:20.0質量%以上35.0質量%以下、およびNi:6.5質量%以上17.0質量%以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金材であって、前記銅合金材の延伸方向と厚さ方向を含む縦断面にて、SEM-EBSD法による結晶方位解析から得られる結晶方位分布関数(ODF)を、オイラー角(φ1、Φ、φ2)で表したとき、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値が、6.0以下である。 The copper alloy material according to the present invention has an alloy composition containing Mn: 20.0% by mass to 35.0% by mass, Ni: 6.5% by mass to 17.0% by mass, with the remainder being Cu and unavoidable impurities, and when the crystal orientation distribution function (ODF) obtained from crystal orientation analysis by SEM-EBSD method in a longitudinal section including the elongation direction and thickness direction of the copper alloy material is expressed in terms of Euler angles (φ1, Φ, φ2), the maximum orientation density at φ1 = 0 to 90°, Φ = 0 to 90°, and φ2 of 15°, 20°, and 25° is 6.0 or less.
 このように、本発明に従う銅合金材では、Mn:20.0質量%以上35.0質量%以下、およびNi:6.5質量%以上17.0質量%以下を含有する銅合金材について、結晶方位分布関数(ODF)をオイラー角(φ1、Φ、φ2)で表したときの、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値を6.0以下にすることで、機械的特性の近似した結晶方位を有する粒が必要以上に密集しなくなるため、プレス打ち抜き加工を行なった際に生じる破断面のえぐれを抑えることができる。 In this way, in the copper alloy material according to the present invention, for a copper alloy material containing 20.0% by mass or more and 35.0% by mass or less of Mn and 6.5% by mass or more and 17.0% by mass or less of Ni, when the crystal orientation distribution function (ODF) is expressed as Euler angles (φ1, Φ, φ2), the maximum value of the orientation density at φ1 = 0 to 90°, Φ = 0 to 90°, and φ2 = 15°, 20°, and 25° is set to 6.0 or less, so that grains having crystal orientations with similar mechanical properties are not unnecessarily densely packed, and gouging of the fracture surface that occurs during press punching can be suppressed.
 加えて、本発明に従う銅合金材では、Mnを20.0質量%以上35.0質量%以下の範囲で含有し、かつNiを5.0質量%以上17.0質量%以下の範囲で含有することで、体積抵抗率ρを高めるとともに、20℃以上150℃以下の温度範囲における抵抗温度係数(TCR)(以下、単に「抵抗温度係数」という場合がある)の絶対値を小さくし、かつ対銅熱起電力の絶対値を小さくすることができる。また、本発明に従う銅合金材では、20℃と80℃の温度環境の間で発生する対銅熱起電力(EMF)(以下、単に「対銅熱起電力」という場合がある)の絶対値が小さくなるため、高温環境下においても、抵抗器の高精度化を進めることができる。 In addition, the copper alloy material according to the present invention contains Mn in the range of 20.0 mass% to 35.0 mass% and Ni in the range of 5.0 mass% to 17.0 mass%, which increases the volume resistivity ρ, reduces the absolute value of the temperature coefficient of resistance (TCR) (hereinafter sometimes simply referred to as "temperature coefficient of resistance") in the temperature range of 20°C to 150°C, and reduces the absolute value of the thermoelectromotive force against copper. Also, in the copper alloy material according to the present invention, the absolute value of the thermoelectromotive force against copper (EMF) (hereinafter sometimes simply referred to as "thermoelectromotive force against copper") generated between temperature environments of 20°C and 80°C is reduced, so that resistors can be manufactured with high precision even in high-temperature environments.
 これに関し、上述の特許文献1に記載の銅合金では、対銅熱起電力(EMF)の絶対値を小さくするためには、Niの含有量を増加させる必要があり、その場合、抵抗温度係数(TCR)の絶対値が大きくなる傾向があった。また、上述の特許文献1記載の銅合金は、電気抵抗の温度依存性について、例えば特許文献1の図3に記載されるように、より高温域を含む20℃から150℃までの温度範囲において、抵抗温度係数(TCR)が大きな負の数になるため、高温域において抵抗値に誤差を生じやすい傾向があった。しかしながら、本発明に従う銅合金材では、20℃から150℃までの温度範囲における抵抗温度係数(TCR)の絶対値が大きくなることを抑制することができるため、抵抗材料として十分に高い体積抵抗率を有するとともに、常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での使用環境も考慮した、抵抗温度係数の絶対値が小さく、かつ対銅熱起電力の絶対値が小さい点においても優れている。 In this regard, in the copper alloy described in the above-mentioned Patent Document 1, in order to reduce the absolute value of the copper thermoelectromotive force (EMF), it is necessary to increase the Ni content, and in that case, the absolute value of the temperature coefficient of resistance (TCR) tends to increase. In addition, in the copper alloy described in the above-mentioned Patent Document 1, the temperature coefficient of resistance (TCR) becomes a large negative number in the temperature range from 20°C to 150°C, including the higher temperature range, as shown in, for example, FIG. 3 of Patent Document 1, with respect to the temperature dependence of the electrical resistance, so that the resistance value tends to be prone to errors in the high temperature range. However, in the copper alloy material according to the present invention, it is possible to suppress the absolute value of the temperature coefficient of resistance (TCR) from increasing in the temperature range from 20°C to 150°C, so that it has a sufficiently high volume resistivity as a resistance material, and is also excellent in that it has a small absolute value of the temperature coefficient of resistance and a small absolute value of the thermoelectromotive force against copper, taking into account the use environment in a wide temperature range from room temperature (e.g., 20°C) to high temperature (e.g., 150°C).
 その結果、本発明に従う銅合金材によることで、プレス打ち抜き加工時に生じる打ち抜き加工面のえぐれが小さく、十分に高い体積抵抗率ρを有し、抵抗温度係数(TCR)が負であって絶対値が小さく、かつ対銅熱起電力(EMF)の絶対値が小さい銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器を提供することができる。 As a result, by using the copper alloy material according to the present invention, it is possible to provide a copper alloy material that has small gouges on the punched surface during press punching, has a sufficiently high volume resistivity ρ, has a negative temperature coefficient of resistance (TCR) with a small absolute value, and has a small absolute value of thermal electromotive force (EMF) against copper, as well as a resistor material for resistors and resistors using the same.
[1]銅合金材の組成
<必須の添加成分>
 本発明の銅合金材の合金組成は、必須の添加成分として、Mn:20.0質量%以上35.0質量%以下、およびNi:6.5質量%以上17.0質量%以下を含有するものである。
[1] Composition of copper alloy material <Essential additive components>
The alloy composition of the copper alloy material of the present invention contains, as essential additive components, Mn: 20.0 mass % or more and 35.0 mass % or less, and Ni: 6.5 mass % or more and 17.0 mass % or less.
(Mn:20.0質量%以上35.0質量%以下)
 Mn(マンガン)は、体積抵抗率ρを高める元素である。この作用を発揮するとともに、均質な銅合金材を得るためには、Mnは、20.0質量%以上含有することが好ましく、22.0質量%以上含有することがより好ましく、24.0質量%以上含有することがさらに好ましい。ここで、Mn含有量を22.0質量%以上または24.0質量%以上に増加させることで、銅合金材の体積抵抗率ρをより一層高めることができる。他方で、Mn含有量が35.0質量%を超えると、銅合金材の融点が低下することで、銅合金材の製造、特に熱間加工の制御が困難になるため、均一な特性を得ることが困難になる。また、Mn含有量が35.0質量%を超えると、対銅熱起電力(EMF)の絶対値が大きくなりやすい。このため、Mn含有量は、20.0質量%以上35.0質量%以下の範囲にする。
(Mn: 20.0 mass% or more and 35.0 mass% or less)
Mn (manganese) is an element that increases the volume resistivity ρ. In order to exert this effect and obtain a homogeneous copper alloy material, the Mn content is preferably 20.0 mass% or more, and 22.0 mass% or more. It is more preferable that the Mn content is 22.0 mass% or more, and further preferably 24.0 mass% or more. Here, by increasing the Mn content to 22.0 mass% or more or 24.0 mass% or more, On the other hand, when the Mn content exceeds 35.0 mass%, the melting point of the copper alloy material is lowered, which may cause problems in the production and In particular, it becomes difficult to control hot working, and therefore it becomes difficult to obtain uniform properties. Also, when the Mn content exceeds 35.0 mass %, the absolute value of the thermoelectromotive force (EMF) against copper becomes For this reason, the Mn content is set to the range of 20.0 mass % or more and 35.0 mass % or less.
(Ni:6.5質量%以上17.0質量%以下)
 Ni(ニッケル)は、対銅熱起電力(EMF)の正の方向に調整する元素である。この作用を発揮するには、Niは、6.5質量%以上含有することが好ましい。他方で、Ni含有量が17.0質量%を超えると、均一な組織が得られ難くなり、体積抵抗率ρや対銅熱起電力(EMF)などが変化する恐れがある。また、Ni含有量が17.0質量%を超えると、対銅熱起電力(EMF)が大きい正の数になり易く、また、抵抗温度係数(TCR)の絶対値が大きくなり易い。このため、Ni含有量は、所望の特性を有する銅合金材を得る観点や、製造しやすい銅合金材を得る観点から、6.5質量%以上17.0質量%以下の範囲にし、6.5質量%以上12.0質量%以下の範囲にすることが好ましく、6.5質量%以上9.0質量%以下の範囲にすることがより好ましい。
(Ni: 6.5% by mass or more and 17.0% by mass or less)
Ni (nickel) is an element that adjusts the thermal electromotive force (EMF) relative to copper in a positive direction. To exert this effect, it is preferable that Ni is contained in an amount of 6.5 mass % or more. If the Ni content exceeds 17.0 mass %, it becomes difficult to obtain a uniform structure, and there is a risk that the volume resistivity ρ and the thermoelectromotive force (EMF) against copper may change. If the Ni content exceeds 17.0 mass %, the thermal electromotive force (EMF) against copper tends to be a large positive number, and the absolute value of the temperature coefficient of resistance (TCR) tends to be large. From the viewpoint of obtaining a copper alloy material having desired characteristics and from the viewpoint of obtaining a copper alloy material that is easy to manufacture, the range of 6.5 mass % or more and 17.0 mass % or less is set to 6.5 mass % or more and 12.0 mass % or less. % or less, and more preferably in the range of 6.5 mass % or more and 9.0 mass % or less.
<第1の任意の添加成分>
 本発明の銅合金材の合金組成は、任意の添加成分として、Fe:0.01質量%以上0.50質量%以下、およびCo:0.01質量%以上2.00質量%以下のうち、一方または両方をさらに含有することができる。特に、FeおよびCoのうち一方または両方を含有することで、抵抗温度係数(TCR)の絶対値を、より小さくすることができる。
<First optional added component>
The alloy composition of the copper alloy material of the present invention may further contain, as optional additive components, one or both of Fe: 0.01 mass% or more and 0.50 mass% or less and Co: 0.01 mass% or more and 2.00 mass% or less. In particular, by containing one or both of Fe and Co, the absolute value of the temperature coefficient of resistance (TCR) can be made smaller.
(Fe:0.01質量%以上0.50質量%以下)
 Fe(鉄)は、対銅熱起電力(EMF)を正の方向に調整する元素である。この作用を発揮するには、Feは、0.01質量%以上含有することが好ましい。他方で、Feの含有量が0.50質量%を超えると、均一な組織が得られ難くなることによって、電気的な性能にばらつきが生じ易くなる。特に、熱などに対する電気特性の安定性をより高め、それにより抵抗材料などとして長期間用いたときの信頼性をより高める観点では、Fe含有量は、0.20質量%以下とすることがより好ましい。特に、長期間にわたって使用したときの信頼性をより一層高める観点では、FeよりもCoを含有することが好ましい。すなわち、Feは含有せずに、必要であれば後述するCoを含有することが好ましい。したがって、Fe含有量は、0.01質量%以上0.50質量%以下の範囲にすることが好ましく、0.01質量%以上0.20質量%以下の範囲にすることがより好ましい。
(Fe: 0.01% by mass or more and 0.50% by mass or less)
Fe (iron) is an element that adjusts the thermoelectromotive force (EMF) with respect to copper in a positive direction. To exert this effect, it is preferable that Fe is contained in an amount of 0.01 mass % or more. However, when the Fe content exceeds 0.50 mass %, it becomes difficult to obtain a uniform structure, and the electrical performance is likely to vary. In particular, it is necessary to further improve the stability of the electrical properties against heat, etc. From the viewpoint of improving the reliability when used for a long period of time as a resistance material, the Fe content is more preferably 0.20 mass % or less. From the viewpoint of further increasing the content of Co, it is preferable to contain Co rather than Fe. In other words, it is preferable not to contain Fe, and to contain Co, which will be described later, if necessary. Therefore, the Fe content is 0. The content of the Cr-based alloy is preferably in the range of 0.01% by mass or more and 0.50% by mass or less, and more preferably in the range of 0.01% by mass or more and 0.20% by mass or less.
(Co:0.01質量%以上2.00質量%以下)
 Co(コバルト)は、対銅熱起電力(EMF)を正の方向に調整する元素である。この作用を発揮するには、Coは、0.01質量%以上含有することが好ましい。他方で、Coの含有量が2.00質量%を超えると、均一な組織が得られ難くなることによって、電気的な性能にばらつきが生じ易くなる。したがって、Coの含有量は、0.01質量%以上2.00質量%以下の範囲にすることが好ましい。
(Co: 0.01% by mass or more and 2.00% by mass or less)
Co (cobalt) is an element that adjusts the thermoelectromotive force (EMF) with respect to copper in a positive direction. To exert this effect, it is preferable that Co is contained in an amount of 0.01 mass % or more. If the Co content exceeds 2.00 mass%, it becomes difficult to obtain a uniform structure, and the electrical performance tends to vary. Therefore, the Co content is set to 0.01 mass% or less. It is preferable to set the content in the range of 1.00 mass % or more and 2.00 mass % or less.
<第2の任意の添加成分>
 本発明の銅合金材の合金組成は、任意の添加成分として、Sn:0.01質量%以上5.00質量%以下、Zn:0.01質量%以上5.00質量%以下、Cr:0.01質量%以上0.50質量%以下、Ag:0.01質量%以上0.50質量%以下、Al:0.01質量%以上1.00質量%以下、Mg:0.01質量%以上0.50質量%以下、Si:0.01質量%以上0.50質量%以下およびP:0.01質量%以上0.50質量%以下からなる群から選択される少なくとも1種をさらに含有することができる。
<Second Optional Added Component>
The alloy composition of the copper alloy material of the present invention may further contain, as an optional additive component, at least one selected from the group consisting of Sn: 0.01% by mass or more and 5.00% by mass or less, Zn: 0.01% by mass or more and 5.00% by mass or less, Cr: 0.01% by mass or more and 0.50% by mass or less, Ag: 0.01% by mass or more and 0.50% by mass or less, Al: 0.01% by mass or more and 1.00% by mass or less, Mg: 0.01% by mass or more and 0.50% by mass or less, Si: 0.01% by mass or more and 0.50% by mass or less, and P: 0.01% by mass or more and 0.50% by mass or less.
(Sn:0.01質量%以上5.00質量%以下)
 Sn(錫)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Snを0.01質量%以上含有することが好ましい。他方で、Sn含有量は、5.00質量%以下にすることで、銅合金材が脆化することによる製造性の低下を起こり難くすることができる。
(Sn: 0.01% by mass or more and 5.00% by mass or less)
Sn (tin) is a component that can be used to adjust the volume resistivity ρ. To achieve this effect, it is preferable to contain 0.01 mass % or more of Sn. On the other hand, the Sn content is By making the content of C 5.00 mass % or less, it is possible to make it difficult for the copper alloy material to become brittle, which can lead to a decrease in manufacturability.
(Zn:0.01質量%以上5.00質量%以下)
 Zn(亜鉛)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Znを0.01質量%以上含有することが好ましい。他方で、Zn含有量は、体積抵抗率ρや対銅熱起電力(EMF)などの、抵抗器の電気的な性能の安定性に悪影響を及ぼす恐れがあるため、5.00質量%以下にすることが好ましい。
(Zn: 0.01% by mass or more and 5.00% by mass or less)
Zn (zinc) is a component that can be used to adjust the volume resistivity ρ. To achieve this effect, it is preferable to contain Zn in an amount of 0.01 mass % or more. On the other hand, the Zn content is However, since there is a risk of adversely affecting the stability of the electrical performance of the resistor, such as the volume resistivity ρ and the thermal electromotive force (EMF) against copper, it is preferable to keep the content at 5.00 mass % or less.
(Cr:0.01質量%以上0.50質量%以下)
 Cr(クロム)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Crを0.01質量%以上含有することが好ましい。他方で、Cr含有量は、体積抵抗率ρや対銅熱起電力(EMF)などの、抵抗器の電気的な性能の安定性に悪影響を及ぼす恐れがあるため、0.50質量%以下にすることが好ましい。
(Cr: 0.01% by mass or more and 0.50% by mass or less)
Cr (chromium) is a component that can be used to adjust the volume resistivity ρ. To achieve this effect, it is preferable to contain 0.01 mass % or more of Cr. On the other hand, the Cr content is However, since there is a risk of adversely affecting the stability of the electrical performance of the resistor, such as the volume resistivity ρ and the thermal electromotive force (EMF) against copper, it is preferable to keep the content at 0.50 mass % or less.
(Ag:0.01質量%以上0.50質量%以下)
 銀(Ag)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Agを0.01質量%以上含有することが好ましい。他方で、Ag含有量は、体積抵抗率ρや対銅熱起電力(EMF)などの、抵抗器の電気的な性能の安定性に悪影響を及ぼす恐れがあるため、0.50質量%以下にすることが好ましい。
(Ag: 0.01% by mass or more and 0.50% by mass or less)
Silver (Ag) is a component that can be used to adjust the volume resistivity ρ. To achieve this effect, it is preferable to contain 0.01 mass % or more of Ag. On the other hand, the Ag content is However, since there is a risk of adversely affecting the stability of the electrical performance of the resistor, such as the volume resistivity ρ and the thermal electromotive force (EMF) against copper, it is preferable to keep the content at 0.50 mass % or less.
(Al:0.01質量%以上1.00質量%以下)
 Al(アルミニウム)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Alを0.01質量%以上含有することが好ましい。他方で、Al含有量は、銅合金材を脆化させる恐れがあるため、1.00質量%以下にすることが好ましい。
(Al: 0.01% by mass or more and 1.00% by mass or less)
Al (aluminum) is a component that can be used to adjust the volume resistivity ρ. To achieve this effect, it is preferable to contain 0.01 mass % or more of Al. On the other hand, the Al content is However, since there is a risk of embrittlement of the copper alloy material, it is preferable to set the content to 1.00 mass % or less.
(Mg:0.01質量%以上0.50質量%以下)
 Mg(マグネシウム)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Mgを0.01質量%以上含有することが好ましい。他方で、Mg含有量は、銅合金材を脆化させる恐れがあるため、0.50質量%以下にすることが好ましい。
(Mg: 0.01% by mass or more and 0.50% by mass or less)
Mg (magnesium) is a component that can be used to adjust the volume resistivity ρ. To achieve this effect, it is preferable to contain 0.01 mass % or more of Mg. On the other hand, the Mg content is However, since there is a risk of embrittlement of the copper alloy material, the content is preferably 0.50 mass % or less.
(Si:0.01質量%以上0.50質量%以下)
 Si(ケイ素)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Siを0.01質量%以上含有することが好ましい。他方で、Si含有量は、銅合金材を脆化させる恐れがあるため、0.50質量%以下にすることが好ましい。
(Si: 0.01% by mass or more and 0.50% by mass or less)
Si (silicon) is a component that can be used to adjust the volume resistivity ρ. To achieve this effect, it is preferable to contain 0.01 mass % or more of Si. On the other hand, the Si content is However, since there is a risk of embrittlement of the copper alloy material, the content is preferably 0.50 mass % or less.
(P:0.01質量%以上0.50質量%以下)
 P(リン)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Pを0.01質量%以上含有することが好ましい。他方で、P含有量は、銅合金材を脆化させる恐れがあるため、0.50質量%以下にすることが好ましい。
(P: 0.01% by mass or more and 0.50% by mass or less)
P (phosphorus) is a component that can be used to adjust the volume resistivity ρ. To achieve this effect, it is preferable to contain P in an amount of 0.01 mass % or more. On the other hand, the P content is However, since there is a risk of embrittlement of the copper alloy material, the content is preferably 0.50 mass % or less.
(第2の任意添加成分の合計量:0.01質量%以上5.00質量%以下)
 Sn、Zn、Cr、Ag、Al、Mg、SiおよびPからなる群から選択される少なくとも1種の成分によって構成される第2の任意の添加成分は、これら第2の任意の添加成分による効果を得るため、合計で0.01質量%以上含有することが好ましい。他方で、これら第2の任意の添加成分は、多量に含むと電気的特性が不安定になり、また、銅合金材の製造が困難になるため、合計で5.00質量%以下にすることが好ましい。
(Total amount of second optional added components: 0.01% by mass or more and 5.00% by mass or less)
In order to obtain the effects of the second optional additive components, the second optional additive components composed of at least one component selected from the group consisting of Sn, Zn, Cr, Ag, Al, Mg, Si, and P are preferably contained in a total amount of 0.01 mass% or more. On the other hand, if these second optional additive components are contained in a large amount, the electrical characteristics become unstable and it becomes difficult to manufacture the copper alloy material, so that the total amount of these second optional additive components is preferably 5.00 mass% or less.
<残部:Cuおよび不可避不純物>
 上述した必須となる含有成分および任意の添加成分以外は、残部がCu(銅)および不可避不純物からなる。なお、ここでいう「不可避不純物」とは、おおむね銅系製品において、原料中に存在するものや、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、銅系製品の特性に影響を及ぼさないため許容されている不純物である。不可避不純物として挙げられる成分としては、例えば、硫黄(S)などの非金属元素や、アンチモン(Sb)などの金属元素が挙げられる。なお、これらの成分含有量の上限は、上記成分ごとに0.05質量%、上記成分の総量で0.10質量%とすることができる。
<Balance: Cu and inevitable impurities>
Other than the above-mentioned essential components and optional additive components, the remainder is composed of Cu (copper) and inevitable impurities. The "unavoidable impurities" referred to here are generally those present in raw materials in copper-based products or those inevitably mixed in during the manufacturing process, and are essentially unnecessary impurities that are allowed because they are in small amounts and do not affect the properties of copper-based products. Examples of components that can be cited as inevitable impurities include nonmetallic elements such as sulfur (S) and metallic elements such as antimony (Sb). The upper limit of the content of these components can be 0.05 mass% for each of the above components, and 0.10 mass% for the total amount of the above components.
[2]結晶方位分布関数(ODF)をオイラー角で表したときの、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値
 本発明の銅合金材は、銅合金材の延伸方向と厚さ方向を含む縦断面にて、SEM-EBSD法による結晶方位解析から得られる結晶方位分布関数(ODF)を、オイラー角(φ1、Φ、φ2)で表したとき、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値が、6.0以下である。本発明のようにMnやNiを多く含有する銅合金材では、結晶粒がS方位やCopper方位などの特定の方位に配向し易い傾向にある。ここで、特定の方位での配向が優勢になると、近似した機械的特徴を有する結晶粒が密集することとなり、そうした場合に、プレス打ち抜き加工を行なった際に、破面における破断面のえぐれが大きくなりやすい。そこで、プレス打ち抜き加工を行なった際の破断面のえぐれを抑えるために、結晶粒が特定の方位に配向することを抑制する必要があり、そのために、結晶方位分布関数(ODF)をオイラー角(φ1、Φ、φ2)で表したときの、φ1=0~90°、Φ=0~90°、φ2=15、20、25°における方位密度の最大値を、それぞれ6.0以下とする。この範囲における方位密度の最大値を6.0以下にすることで、S方位やCopper方位などの特定の方位に配向した結晶粒が必要以上に集積しなくなるため、機械的特性の近似した結晶方位を有する粒が密集しなくなる。そのため、プレス打ち抜き加工を行なった際に生じる破断面のえぐれを抑えて、より平坦な切断面を得ることができる。その結果、プレス打ち抜き加工によって得られる抵抗材料の断面積が、切断面の近傍においても、破断面のえぐれによって損なわれ難くなるため、より高精度な抵抗器を得るのに好適な銅合金材を得ることができる。
[2] Maximum orientation density at φ1=0-90°, Φ=0-90°, and φ2=15°, 20°, and 25° when the crystal orientation distribution function (ODF) is expressed as Euler angles In the copper alloy material of the present invention, when the crystal orientation distribution function (ODF) obtained by crystal orientation analysis by SEM-EBSD method is expressed as Euler angles (φ1, Φ, φ2) in a longitudinal section including the extension direction and thickness direction of the copper alloy material, the maximum value of the orientation density at φ1=0-90°, Φ=0-90°, and φ2=15°, 20°, and 25° is 6.0 or less. In a copper alloy material containing a large amount of Mn and Ni as in the present invention, crystal grains tend to be easily oriented in a specific orientation such as S orientation or Copper orientation. Here, when the orientation in a specific direction becomes dominant, crystal grains having similar mechanical characteristics are densely packed, and in such a case, when press punching is performed, the gouging of the fracture surface at the fracture surface is likely to become large. Therefore, in order to suppress the gouging of the fracture surface when press punching is performed, it is necessary to suppress the orientation of the crystal grains in a specific direction, and for this purpose, when the crystal orientation distribution function (ODF) is expressed by Euler angles (φ1, Φ, φ2), the maximum values of the orientation density at φ1 = 0 to 90 °, Φ = 0 to 90 °, and φ2 = 15, 20, and 25 ° are set to 6.0 or less, respectively. By setting the maximum value of the orientation density in this range to 6.0 or less, crystal grains oriented in a specific direction such as S orientation or Copper orientation will not accumulate more than necessary, so that grains having crystal orientations with similar mechanical properties will not be densely packed. Therefore, the gouging of the fracture surface that occurs when press punching is performed can be suppressed, and a flatter cut surface can be obtained. As a result, the cross-sectional area of the resistive material obtained by the press punching process is less likely to be damaged by gouging of the fracture surface, even in the vicinity of the cut surface, so that a copper alloy material suitable for producing a resistor with higher precision can be obtained.
 したがって、プレス打ち抜き加工を行なった際に生じる破断面のえぐれを抑えて、より高精度な抵抗器を得るのに好適な銅合金材を得る観点では、結晶方位分布関数(ODF)をオイラー角(φ1、Φ、φ2)で表したときの、φ1=0~90°、Φ=0~90°、φ2=15、20、25°における方位密度(配向)の最大値は、6.0以下であり、5.7以下が好ましい。 Therefore, from the viewpoint of obtaining a copper alloy material suitable for obtaining resistors with higher precision by suppressing the gouging of the fracture surface that occurs during press punching, when the crystal orientation distribution function (ODF) is expressed as Euler angles (φ1, Φ, φ2), the maximum orientation density (orientation) at φ1 = 0 to 90°, Φ = 0 to 90°, and φ2 = 15, 20, and 25° is 6.0 or less, and preferably 5.7 or less.
 結晶方位分布関数(ODF)をオイラー角(φ1、Φ、φ2)で表したときの、φ1=0~90°、Φ=0~90°、φ2=15、20、25°における方位密度の最大値は、SEM-EBSD法の結晶方位解析データから得られる値である。 When the crystal orientation distribution function (ODF) is expressed in terms of Euler angles (φ1, Φ, φ2), the maximum orientation density at φ1 = 0 to 90°, Φ = 0 to 90°, and φ2 = 15, 20, and 25° is the value obtained from the crystal orientation analysis data using the SEM-EBSD method.
 ここで、SEM-EBSD法の結晶方位解析データは、銅合金材の延伸方向に平行な断面を鏡面研磨して断面試料を作製した後、電界放射型走査型電子顕微鏡(FE-SEM)を用いて観察し、EBSD測定(電子線後方散乱回折法による測定)を行うことで、得ることができる。EBSD測定において測定対象となる面積は、0.02mm以上とすることができ、測定時のステップは、0.5μmとすることができる。 Here, the crystal orientation analysis data of the SEM-EBSD method can be obtained by preparing a cross-sectional sample by mirror-polishing a cross-section parallel to the elongation direction of the copper alloy material, observing the cross-sectional sample using a field emission scanning electron microscope (FE-SEM), and performing EBSD measurement (measurement by electron backscatter diffraction method). The area to be measured in the EBSD measurement can be 0.02 mm2 or more, and the measurement step can be 0.5 μm.
 このEBSDによる測定結果から、データ解析ソフトである「OIM ANALYSIS」を用いて得られるODFマップを用いて、方位密度の最大値を求めることができる。より具体的には、調和関数(Harmonic Series Expansion)を用いて、展開次数(Series Rank)を16とし、ガウス分布に当てはめるときの半値幅(Gaussian Half-Width)を5゜として強度計算を行ない、得られた計算結果について、Enforce Orthotropic Sample Symmetryを選択して集合組織解析を行ない、オイラー角(φ1、Φ、φ2)で表したときの結晶方位の強度分布が示されたODFマップを作図し、それを用いて、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値を求めることができる。 From the EBSD measurement results, the maximum orientation density can be obtained using an ODF map obtained using the data analysis software "OIM ANALYSIS". More specifically, the strength is calculated using the harmonic series expansion, with the series rank set to 16 and the Gaussian half-width set to 5° when fitting to a Gaussian distribution, and texture analysis is performed on the calculation results obtained by selecting Enforce Orthotropic Sample Symmetry to create an ODF map showing the intensity distribution of the crystal orientation when expressed in Euler angles (φ1, Φ, φ2). Using this, the maximum orientation density can be obtained for φ1 = 0-90°, Φ = 0-90°, and φ2 = 15°, 20°, and 25°.
 なお、結晶方位分布関数(ODF)をオイラー角(φ1、Φ、φ2)で表したときの、φ1=0~90°、Φ=0~90°、φ2=15、20、25°における方位密度の最大値は、結晶粒が完全にランダムに配向しているときの、該当するオイラー角(φ1、Φ、φ2)に配向している結晶粒の密度を1としたときの相対値で表わされる。 When the crystal orientation distribution function (ODF) is expressed in terms of Euler angles (φ1, Φ, φ2), the maximum orientation density at φ1 = 0-90°, Φ = 0-90°, and φ2 = 15, 20, and 25° is expressed as a relative value when the density of crystal grains oriented at the corresponding Euler angles (φ1, Φ, φ2) when the crystal grains are completely randomly oriented is set to 1.
[3]銅合金材の結晶粒の平均結晶粒径およびその標準偏差
 本発明の銅合金材は、結晶粒の平均結晶粒径が20μm以下の範囲であり、かつ、平均結晶粒径の標準偏差が10μm以下であることが好ましい。これにより、銅合金材に対してプレス打ち抜き加工を行なったときに、打ち抜き加工面である破断面のえぐれを、より小さくすることができる。
[3] Average grain size and standard deviation of crystal grains of copper alloy material In the copper alloy material of the present invention, it is preferable that the average grain size of the crystal grains is in the range of 20 μm or less and the standard deviation of the average grain size is 10 μm or less. This makes it possible to reduce the gouging of the fracture surface, which is the punched surface, when the copper alloy material is subjected to press punching.
 ここで、銅合金材の結晶粒の平均結晶粒径およびその標準偏差は、銅合金材の延伸方向と厚さ方向を含む縦断面についての、上述のSEM-EBSD法の結晶方位解析データから得ることができ、より具体的には、データ解析ソフトである「OIM ANALYSIS」を用いて得られる、Grain Size(diameter)のグラフから求めることができる。このとき、Area Fractionから求められる平均直径と標準偏差を、結晶粒の平均結晶粒径およびその標準偏差とすることができる。 The average grain size and its standard deviation of the crystal grains of the copper alloy material can be obtained from the crystal orientation analysis data of the SEM-EBSD method described above for a longitudinal section including the elongation direction and thickness direction of the copper alloy material, and more specifically, can be determined from a Grain Size (diameter) graph obtained using the data analysis software "OIM ANALYSIS." In this case, the average diameter and standard deviation determined from the Area Fraction can be regarded as the average grain size and its standard deviation of the crystal grains.
[4]銅合金材の形状
 本発明の銅合金材の形状は、特に限定されるものではないが、後述する熱間または冷間での加工工程や、プレス打ち抜き加工などの切断加工を行ないやすくする観点では、板材であることが好ましい。ここで、板材のように、圧延によって形成される銅合金材では、圧延方向を延伸方向とすることができる。他方で、本発明の銅合金材は、線材、平角線材、リボン材、条材または棒材などであってもよく、本発明の銅合金材でこれらの形状を形成することで、端末についての切断加工を行ない易くすることができる。ここで、伸線や引抜、押出によって形成されるこれらの形状の銅合金材では、伸線方向、引抜方向および押出方向のいずれかを延伸方向とすることができる。
[4] Shape of copper alloy material The shape of the copper alloy material of the present invention is not particularly limited, but is preferably a plate material from the viewpoint of facilitating the hot or cold processing step described below and cutting processing such as press punching. Here, in the copper alloy material formed by rolling, such as a plate material, the rolling direction can be the stretching direction. On the other hand, the copper alloy material of the present invention may be a wire material, a rectangular wire material, a ribbon material, a strip material, or a bar material, and by forming these shapes with the copper alloy material of the present invention, it is possible to facilitate cutting processing of the terminal. Here, in the copper alloy material of these shapes formed by wire drawing, drawing, or extrusion, any of the wire drawing direction, drawing direction, and extrusion direction can be the stretching direction.
[5]銅合金材の製造方法の一例
 上述した銅合金材は、合金組成や製造プロセスを組み合わせて制御することによって実現することができ、その製造プロセスは特に限定されない。その中でも、上述した銅合金材を得ることが可能な、製造プロセスの一例として、以下の方法を挙げることができる。
[5] An example of a manufacturing method for a copper alloy material The above-mentioned copper alloy material can be realized by controlling a combination of an alloy composition and a manufacturing process, and the manufacturing process is not particularly limited. Among them, the following method can be cited as an example of a manufacturing process that can obtain the above-mentioned copper alloy material.
 本発明の銅合金材の製造方法の一例として、上述した銅合金材の合金組成と実質的に同じ合金組成を有する銅合金素材に、少なくとも、鋳造工程[工程1]、均質化熱処理工程[工程2]、熱間加工工程[工程3]、第1熱処理工程[工程4]を順次行なった後で、冷間加工工程および熱処理工程を2回以上、より好ましくは4回以上繰り返して行なうものである。このうち、均質化熱処理工程[工程2]では、加熱温度を750℃以上900℃以下の範囲とし、加熱温度での温度保持時間を10分間以上10時間以下の範囲とする。また、第1熱処理工程[工程4]を行なった後で繰り返し行なう冷間加工工程は、それぞれ総加工率を40%以上65%以下の範囲とする。また、第1熱処理工程[工程4]を行なった後で繰り返し行なう熱処理工程は、それぞれ加熱温度を650℃以上850℃以下の範囲として、室温から15秒以内に加熱温度に到達するように加熱し、かつ加熱温度での温度保持時間を1秒以上40秒以下の範囲とする。 As an example of a method for producing the copper alloy material of the present invention, a copper alloy material having substantially the same alloy composition as the copper alloy material described above is subjected to at least a casting step [step 1], a homogenization heat treatment step [step 2], a hot working step [step 3], and a first heat treatment step [step 4] in sequence, and then a cold working step and a heat treatment step are repeated two or more times, more preferably four or more times. Of these, in the homogenization heat treatment step [step 2], the heating temperature is in the range of 750°C or more and 900°C or less, and the temperature holding time at the heating temperature is in the range of 10 minutes or more and 10 hours or less. In addition, the cold working steps repeated after the first heat treatment step [step 4] each have a total working rate in the range of 40% or more and 65% or less. In addition, the heat treatment steps repeated after the first heat treatment step [step 4] are performed at a heating temperature in the range of 650°C to 850°C, with heating from room temperature to the heating temperature within 15 seconds, and the temperature holding time at the heating temperature is in the range of 1 second to 40 seconds.
(i)鋳造工程[工程1]
 鋳造工程[工程1]は、高周波溶解炉を用いて、不活性ガス雰囲気中もしくは真空中で、上述の合金組成を有する銅合金素材を溶融させ、これを鋳造することによって、所定形状(例えば厚さ30mm~300mm、幅500mm、長さ3000mm)の鋳塊(インゴット)を作製する。なお、銅合金素材の合金組成は、製造の各工程において、添加成分によっては溶解炉に付着したり揮発したりして製造される銅合金材の合金組成とは必ずしも完全には一致しない場合があるが、銅合金材の合金組成と実質的に同じ合金組成を有している。
(i) Casting process [Process 1]
In the casting step [step 1], a copper alloy material having the above-mentioned alloy composition is melted in an inert gas atmosphere or in vacuum using a high-frequency melting furnace, and the melt is cast into a desired shape (for example, a thick Ingots with dimensions of 30-300 mm in length, 500 mm in width, and 3000 mm in length are produced. Note that the alloy composition of the copper alloy material varies depending on the additives, as they may adhere to the melting furnace or volatilize during each manufacturing process. Although the alloy composition of the copper alloy material produced by the above-mentioned method may not be completely identical to that of the copper alloy material produced by the above-mentioned method, the alloy composition of the copper alloy material produced by the above-mentioned method is substantially the same as that of the copper alloy material.
(ii)均質化熱処理工程[工程2]
 均質化熱処理工程[工程2]は、鋳造工程[工程1]を行なった後の鋳塊に対して、均質化のための熱処理を行なう工程である。ここで、均質化熱処理工程[工程2]における熱処理の条件は、結晶粒の粗大化を抑制する観点から、加熱温度を750℃以上900℃以下の範囲にし、かつ保持時間を10分間以上10時間以下の範囲にすることが好ましい。
(ii) Homogenization heat treatment step [Step 2]
The homogenization heat treatment step [step 2] is a step of performing a homogenizing heat treatment on the ingot after the casting step [step 1]. Here, the conditions of the heat treatment in the homogenization heat treatment step [step 2] are preferably a heating temperature in the range of 750°C to 900°C and a holding time in the range of 10 minutes to 10 hours from the viewpoint of suppressing the coarsening of crystal grains.
(iii)熱間加工工程[工程3]
 熱間加工工程[工程3]は、均質化熱処理を行なった鋳塊に対して、所定の厚さになるまで、熱間で圧延や伸線などの延伸加工を施して、熱延材を作製する工程である。熱間加工工程[工程3]の条件は、加工温度は700℃以上850℃以下の範囲であることが好ましく、均質化熱処理工程[工程2]における加熱温度と同じであってもよい。また、熱間加工工程[工程3]における加工率は、50%以上であることが好ましい。
(iii) Hot working step [Step 3]
The hot working step [step 3] is a step in which the ingot that has been subjected to the homogenization heat treatment is subjected to hot rolling or drawing such as wire drawing until it has a predetermined thickness, thereby producing a hot-rolled material. The conditions of the hot working step [step 3] are that the working temperature is preferably in the range of 700°C to 850°C, and may be the same as the heating temperature in the homogenization heat treatment step [step 2]. In addition, the working rate in the hot working step [step 3] is preferably 50% or more.
 ここで、「加工率」は、圧延や伸線などの延伸加工を施す前の断面積から、加工後の断面積を引いた値を、加工前の断面積で除して100を乗じ、パーセントで表した値であり、下記式で表される。
 [加工率]={([加工前の断面積]-[加工後の断面積])/[加工前の断面積]}×100(%)
Here, the "processing rate" is a value obtained by subtracting the cross-sectional area after processing from the cross-sectional area before elongation processing such as rolling or wire drawing, dividing the result by the cross-sectional area before processing, and multiplying the result by 100, and expressed as a percentage, and is expressed by the following formula.
[Processing rate] = {([Cross-sectional area before processing] - [Cross-sectional area after processing]) / [Cross-sectional area before processing]} x 100 (%)
 熱間加工工程[工程3]後の熱延材は、冷却することが好ましい。ここで、熱延材に対する冷却の手段としては、結晶粒の平均結晶粒径が50μm以下である微細かつ均一な結晶組織を得る観点から、水冷の手段を用いることが好ましい。他方で、熱間加工工程後の冷却速度を緩やかにすることで結晶粒成長を起こさせることもできるが、熱延材全体の温度を均一に保つことが難しく、その結果、均一な組織を得難いため、適切でない。 The hot-rolled material is preferably cooled after the hot working step [Step 3]. Here, it is preferable to use water cooling as a means for cooling the hot-rolled material, from the viewpoint of obtaining a fine and uniform crystal structure with an average crystal grain size of 50 μm or less. On the other hand, it is possible to cause grain growth by slowing down the cooling rate after the hot working step, but this is not appropriate because it is difficult to maintain a uniform temperature throughout the hot-rolled material, and as a result, it is difficult to obtain a uniform structure.
(iv)第1熱処理工程[工程4]
 次いで、水冷後の熱延材に第1熱処理工程[工程4]を施すことで、平均結晶粒径の調整を行う。ここでは650℃以上850℃以下の温度にて、2時間以上5時間以下の熱処理を施すことで平均結晶粒径を100μm超に調整する工程をとる。熱処理炉を用いて、平均結晶粒径が100μm超となる均一な組織とすることで、後の加工によって形成される集合組織の発達が阻害されるため、方位密度の最大値を小さくすることができる。
(iv) First heat treatment step [Step 4]
Next, the water-cooled hot-rolled material is subjected to a first heat treatment step [step 4] to adjust the average grain size. Here, the step of adjusting the average grain size to more than 100 μm is performed by performing heat treatment at a temperature of 650° C. to 850° C. for 2 hours to 5 hours. By using a heat treatment furnace to obtain a uniform structure with an average grain size of more than 100 μm, the development of the texture formed by subsequent processing is inhibited, and the maximum value of the orientation density can be reduced.
 ここで、第1熱処理工程[工程4]を行なった後の熱延材に対して、表面を削り取る面削を行なってもよい。面削を行なうことで、熱間加工工程[工程3]で生じた表面の酸化膜や欠陥を除去することができる。面削の条件は、通常行なわれている条件であればよく、特に限定されない。面削により熱延材の表面から削り取る量は、熱間加工工程[工程3]の条件に基づいて適宜調整することができ、例えば熱延材の表面から0.5mm~4mm程度とすることができる。 Here, facing may be performed on the hot-rolled material after the first heat treatment step [step 4] to remove the surface. By performing facing, it is possible to remove the oxide film and defects on the surface that occurred in the hot working step [step 3]. The conditions for facing can be any conditions that are normally used, and are not particularly limited. The amount of material removed from the surface of the hot-rolled material by facing can be appropriately adjusted based on the conditions of the hot working step [step 3], and can be, for example, about 0.5 mm to 4 mm from the surface of the hot-rolled material.
(v)繰り返し行なう冷間加工工程および熱処理工程
 第1熱処理工程[工程4]を行なった後の熱延材に対して、製品の厚さや大きさになるまで、冷間で圧延や伸線などの延伸加工を行なう冷間加工工程と、熱処理を施す熱処理工程とを、2回以上繰り返して行なう。より具体的に、熱間加工後に第1熱処理工程[工程4]を行なった後の熱延材に対して、少なくとも、1回目の冷間加工工程、1回目の熱処理工程、2回目の冷間加工工程および2回目の熱処理工程を行ない、このときの冷間加工工程および熱処理工程を、順に、第1冷間加工工程[工程5]、第2熱処理工程[工程6]、第2冷間加工工程[工程7]および第3熱処理工程[工程8]とすることができる。さらに、第3熱処理工程[工程8]を行なった後の冷延材に対して、3回目の冷間加工工程および熱処理工程を行なうことができ、このときの冷間加工工程および熱処理工程を、それぞれ第3冷間加工工程[工程9]および第4熱処理工程[工程10]とすることができる。さらに、第4熱処理工程[工程10]を行なった後の冷延材に対して、4回目の冷間加工工程および熱処理工程を行なうことができ、このときの冷間加工工程および熱処理工程を、それぞれ第4冷間加工工程[工程11]および第5熱処理工程[工程12]とすることができる。このように、第1熱処理工程[工程4]を行なった後の熱延材に対して、冷間加工工程および熱処理工程を2回以上繰り返して行なうことで、結晶方位分布関数(ODF)をオイラー角で表したときの、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値が小さくなるため、プレス打ち抜き加工時に生じる打ち抜き加工面のえぐれを小さくすることができる。
(v) Repeated cold working and heat treatment steps The hot-rolled material after the first heat treatment step [step 4] is subjected to a cold working step of performing elongation such as cold rolling and wire drawing until the thickness and size of the product is reached, and a heat treatment step of performing heat treatment is repeated two or more times. More specifically, the hot-rolled material after the first heat treatment step [step 4] after hot working is subjected to at least a first cold working step, a first heat treatment step, a second cold working step, and a second heat treatment step, and the cold working steps and heat treatment steps at this time can be the first cold working step [step 5], the second heat treatment step [step 6], the second cold working step [step 7], and the third heat treatment step [step 8], in that order. Furthermore, the cold-rolled material after the third heat treatment step [step 8] can be subjected to a third cold working step and a heat treatment step, and the cold working step and the heat treatment step at this time can be respectively designated as the third cold working step [step 9] and the fourth heat treatment step [step 10]. Furthermore, the cold-rolled material after the fourth heat treatment step [step 10] can be subjected to a fourth cold working step and a heat treatment step, and the cold working step and the heat treatment step at this time can be respectively designated as the fourth cold working step [step 11] and the fifth heat treatment step [step 12]. In this way, by repeating the cold working step and the heat treatment step two or more times on the hot-rolled material after the first heat treatment step [step 4], the maximum value of the orientation density when the crystal orientation distribution function (ODF) is expressed as Euler angles and at φ1 = 0 to 90°, Φ = 0 to 90°, and φ2 is 15°, 20°, and 25° becomes small, so that the gouges on the punched surface that occur during press punching can be reduced.
 このとき、第1冷間加工工程[工程5]、第2冷間加工工程[工程7]、第3冷間加工工程[工程9]および第4冷間加工工程[工程11]における総加工率は、それぞれ40%以上65%以下の範囲とする。ここで、第2冷間加工工程[工程7]以降の冷間加工工程を行なわなかった場合や、第1冷間加工工程[工程5]、第2冷間加工工程[工程7]、第3冷間加工工程[工程9]および第4冷間加工工程[工程11]のうち少なくともいずれかの総加工率が40%未満であった場合は、再結晶が起こり難くなるため、均一な組織を得ることが困難になる。また、第1冷間加工工程[工程5]、第2冷間加工工程[工程7]、第3冷間加工工程[工程9]および第4冷間加工工程[工程11]のうち少なくともいずれかの総加工率が65%を超えると、結晶方位分布関数(ODF)をオイラー角で表したときの、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値が、必要以上に大きくなる。特に、第1冷間加工工程[工程5]、第2冷間加工工程[工程7]、第3冷間加工工程[工程9]および第4冷間加工工程[工程11]における総加工率は、それぞれ60%以下であることが好ましい。 In this case, the total working ratios in the first cold working step [step 5], the second cold working step [step 7], the third cold working step [step 9] and the fourth cold working step [step 11] are each in the range of 40% to 65%. If the cold working steps after the second cold working step [step 7] are not performed, or if the total working ratio in at least any of the first cold working step [step 5], the second cold working step [step 7], the third cold working step [step 9] and the fourth cold working step [step 11] is less than 40%, recrystallization is unlikely to occur, making it difficult to obtain a uniform structure. In addition, if the total working ratio of at least one of the first cold working step [step 5], the second cold working step [step 7], the third cold working step [step 9], and the fourth cold working step [step 11] exceeds 65%, the maximum values of the orientation density at φ1 = 0 to 90°, Φ = 0 to 90°, and φ2 = 15°, 20°, and 25° when the crystal orientation distribution function (ODF) is expressed as Euler angles become larger than necessary. In particular, it is preferable that the total working ratio in each of the first cold working step [step 5], the second cold working step [step 7], the third cold working step [step 9], and the fourth cold working step [step 11] is 60% or less.
 また、第2熱処理工程[工程6]、第3熱処理工程[工程8]、第4熱処理工程[工程10]および第5熱処理工程[工程12]における熱処理条件は、それぞれ、加熱温度を650℃以上850℃以下の範囲として、室温から15秒以内に加熱温度に到達するように加熱し、かつ加熱温度での温度保持時間を1秒以上40秒以下の範囲とすることが好ましい。ここで、熱処理を行なう時間が1分を超えると、結晶粒径の標準偏差が大きくなる恐れがあるため、結晶粒径を適切な範囲に調整し、かつ均一な結晶組織を得る観点では、加熱温度に到達するまでの時間を短くするとともに、加熱温度での温度保持時間も短くすることが好ましい。 The heat treatment conditions in the second heat treatment step [step 6], the third heat treatment step [step 8], the fourth heat treatment step [step 10] and the fifth heat treatment step [step 12] are preferably such that the heating temperature is in the range of 650°C or more and 850°C or less, heating is performed so as to reach the heating temperature within 15 seconds from room temperature, and the temperature holding time at the heating temperature is in the range of 1 second or more and 40 seconds or less. Here, if the heat treatment time exceeds 1 minute, there is a risk that the standard deviation of the crystal grain size will become large. Therefore, from the viewpoint of adjusting the crystal grain size to an appropriate range and obtaining a uniform crystal structure, it is preferable to shorten the time to reach the heating temperature and also to shorten the temperature holding time at the heating temperature.
[6]銅合金材の用途
 本発明の銅合金材は、抵抗器、例えばシャント抵抗器またはチップ抵抗器に用いられる抵抗器用抵抗材料として極めて有用である。すなわち、抵抗器用抵抗材料は、上述の銅合金材からなることが好ましい。また、シャント抵抗器またはチップ抵抗器などの抵抗器は、上述の銅合金材からなる抵抗器用抵抗材料を有することが好ましい。
[6] Uses of copper alloy material The copper alloy material of the present invention is extremely useful as a resistor material for resistors, for example, shunt resistors or chip resistors. That is, the resistor material is preferably made of the above-mentioned copper alloy material. Moreover, resistors such as shunt resistors or chip resistors preferably have the resistor material made of the above-mentioned copper alloy material.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 The above describes an embodiment of the present invention, but the present invention is not limited to the above embodiment, and includes all aspects included in the concept of the present invention and the scope of the claims, and can be modified in various ways within the scope of the present invention.
 次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, to further clarify the effects of the present invention, examples of the present invention and comparative examples will be described, but the present invention is not limited to these examples.
 (本発明例1~17および比較例1~6)
 表1に示す合金組成を有する銅合金素材を溶解し、これを溶湯から冷却して鋳造する鋳造工程[工程1]を行なって厚さ30mmの鋳塊を得た。ここで、比較例1の合金組成は、上述の特許文献1と、上述の特許文献2の実施例2に記載される銅合金と同じ合金組成を有するものである。
(Inventive Examples 1 to 17 and Comparative Examples 1 to 6)
A copper alloy material having the alloy composition shown in Table 1 was melted, and the molten copper alloy material was cooled and cast in a casting step [Step 1] to obtain an ingot having a thickness of 30 mm. Here, the alloy composition of Comparative Example 1 has the same alloy composition as the copper alloy described in the above-mentioned Patent Document 1 and Example 2 of the above-mentioned Patent Document 2.
 この鋳塊に対して、800℃の加熱温度および5時間の保持時間で熱処理を行なう均質化熱処理工程[工程2]を行ない、次いで、800℃の加工温度で、総加工率が67%(加工前の厚みが30mm、加工後の厚みが10mm)となるように、長手方向に沿って圧延する熱間加工工程[工程3]を行なった後、水冷により室温まで冷却して熱延材を得た。 The ingot was subjected to a homogenization heat treatment process [Step 2] in which it was heated to 800°C and held for 5 hours, and then to a hot processing process [Step 3] in which it was rolled in the longitudinal direction at a processing temperature of 800°C so that the total processing rate was 67% (thickness before processing: 30 mm, thickness after processing: 10 mm), and then cooled to room temperature by water cooling to obtain a hot-rolled material.
 水冷後の熱延材に対して、本発明例1~17および比較例1、3~6については、800℃の加熱温度および4時間の保持時間で熱処理を行なう第1熱処理工程[工程4]を施すことで、結晶粒を成長させた。他方で、比較例2については、水冷後の熱延材に対して、第1熱処理工程[工程4]を行なわなかった。 For invention examples 1 to 17 and comparative examples 1 and 3 to 6, the hot-rolled material after water cooling was subjected to a first heat treatment step [step 4] at a heating temperature of 800°C and a holding time of 4 hours to grow crystal grains. On the other hand, for comparative example 2, the first heat treatment step [step 4] was not performed on the hot-rolled material after water cooling.
 次いで、表面に形成された酸化被膜を除去するため、両面から1mmずつ削り取る面削を行なった。面削後の熱延材の厚みは8mmであった。 Next, to remove the oxide film that had formed on the surface, 1 mm was removed from both sides. The thickness of the hot-rolled material after facing was 8 mm.
 熱間加工工程[工程3]後の熱延材に対して、総加工率が62.5%(加工前の厚みが8mm、加工後の厚みが3mm)となるように、長手方向に沿って圧延する、第1冷間加工工程[工程5]を行なった。次いで、第1冷間加工工程[工程5]を行なった後の冷延材に対して、所定の熱処理条件で熱処理を行なう、第2熱処理工程[工程6]を行なった。 The hot-rolled material after the hot working process [step 3] was subjected to a first cold working process [step 5] in which it was rolled along the longitudinal direction so that the total working ratio was 62.5% (thickness before working: 8 mm, thickness after working: 3 mm). Next, the cold-rolled material after the first cold working process [step 5] was subjected to a second heat treatment process [step 6] in which it was heat-treated under specified heat treatment conditions.
 さらに、第2熱処理工程[工程6]を行なった後の冷延材に対して、表2に記載の総加工率で長手方向に沿って圧延する、第2冷間加工工程[工程7]を行なった。次いで、第2冷間加工工程[工程7]を行なった後の冷延材に対して、表2に記載の熱処理条件で熱処理を行なう、第3熱処理工程[工程8]を行なった。 Furthermore, the cold-rolled material after the second heat treatment step [step 6] was subjected to a second cold working step [step 7] in which it was rolled in the longitudinal direction at the total working ratio shown in Table 2. Next, the cold-rolled material after the second cold working step [step 7] was subjected to a third heat treatment step [step 8] in which it was heat-treated under the heat treatment conditions shown in Table 2.
 また、第3熱処理工程[工程8]を行なった後の冷延材に対して、表2に記載の総加工率で長手方向に沿って圧延する、第3冷間加工工程[工程9]を行なった。次いで、第3冷間加工工程[工程9]を行なった後の冷延材に対して、表2に記載の熱処理条件で熱処理を行なう、第4熱処理工程[工程10]を行なった。 Furthermore, the cold-rolled material after the third heat treatment step [step 8] was subjected to a third cold working step [step 9] in which it was rolled in the longitudinal direction at the total working ratio shown in Table 2. Next, the cold-rolled material after the third cold working step [step 9] was subjected to a fourth heat treatment step [step 10] in which heat treatment was performed under the heat treatment conditions shown in Table 2.
 また、本発明例1~17および比較例2~6については、第4熱処理工程[工程10]を行なった後の冷延材に対して、表2に記載の総加工率で長手方向に沿って圧延する、第4冷間加工工程[工程11]を行なった。次いで、第4冷間加工工程[工程11]を行なった後の冷延材に対して、表2に記載の熱処理条件で熱処理を行なう、第5熱処理工程[工程12]を行なった。他方で、比較例1については、第4熱処理工程[工程10]を行なった後の冷延材に対して、第4冷間加工工程[工程11]を行なわずに第5熱処理工程[工程12]を行なった。また、比較例6については、第5熱処理工程[工程12]において、加熱温度に達するまでの時間を600秒に設定した。このようにして、本発明例1~17および比較例1~6の銅合金材(銅合金板材)を作製した。 Furthermore, for present invention examples 1 to 17 and comparative examples 2 to 6, the cold-rolled material after the fourth heat treatment step [step 10] was subjected to a fourth cold working step [step 11], in which the cold-rolled material was rolled in the longitudinal direction at the total working ratio shown in Table 2. Next, the cold-rolled material after the fourth cold working step [step 11] was subjected to a fifth heat treatment step [step 12], in which heat treatment was performed under the heat treatment conditions shown in Table 2. On the other hand, for comparative example 1, the cold-rolled material after the fourth heat treatment step [step 10] was subjected to a fifth heat treatment step [step 12] without performing the fourth cold working step [step 11]. For comparative example 6, the time until the heating temperature was reached in the fifth heat treatment step [step 12] was set to 600 seconds. In this manner, the copper alloy materials (copper alloy sheet materials) of present invention examples 1 to 17 and comparative examples 1 to 6 were produced.
 なお、表1では、銅合金素材の合金組成に含まれない成分の欄には横線「-」を記載し、該当する成分を含まない、または含有していたとしても検出限界値未満であることを明らかにした。 In addition, in Table 1, the columns for components that are not included in the alloy composition of the copper alloy material are marked with a horizontal line "-" to indicate that the corresponding component is not contained, or if it is contained, it is below the detection limit.
[各種測定および評価方法]
 上記本発明例および比較例に係る銅合金材(銅合金板材)を用いて、下記に示す特性評価を行なった。各特性の評価条件は下記のとおりである。
[Various measurement and evaluation methods]
The copper alloy materials (copper alloy sheet materials) according to the above-mentioned examples of the present invention and comparative examples were used to carry out the following characteristic evaluations. The evaluation conditions for each characteristic were as follows.
[1]結晶方位分布関数(ODF)をオイラー角で表したときの、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値の測定
 本発明例および比較例で得られた銅合金板材に対して、圧延方向(延伸方向)に平行な断面を鏡面研磨して断面試料を作製した後、電界放射型走査型電子顕微鏡(FE-SEM)を用いて観察し、EBSD測定(電子線後方散乱回折法による測定)を行なうことで、SEM-EBSD法の結晶方位解析データを得た。ここで、EBSD測定において測定対象となる面積は0.02mmとし、測定時のステップは0.5μmとした。このEBSDによる測定結果から、データ解析ソフトである「OIM ANALYSIS」を用いて、調和関数(Harmonic Series Expansion)を用いて、展開次数(Series Rank)を16とし、ガウス分布に当てはめるときの半値幅(Gaussian Half-Width)を5゜として強度計算を行ない、得られた計算結果について、Enforce Orthotropic Sample Symmetryを選択して集合組織解析を行ない、オイラー角(φ1、Φ、φ2)で表したときの結晶方位の強度分布が示されたODFマップを作図し、φ2を15°、20°および25°としたときのそれぞれについて、φ1を横軸に、Φを縦軸にしたときの、φ1=0~90°およびΦ=0~90°の範囲における方位密度を示すグラフに、結晶方位の強度分布を表示することで、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値を求めた。
[1] Measurement of maximum orientation density when crystal orientation distribution function (ODF) is expressed in Euler angles at φ1=0-90°, Φ=0-90°, and φ2=15°, 20°, and 25°. For the copper alloy sheets obtained in the present invention and comparative examples, a cross section parallel to the rolling direction (stretching direction) was mirror-polished to prepare a cross-sectional sample, which was then observed using a field emission scanning electron microscope (FE-SEM) and subjected to EBSD measurement (measurement by electron backscatter diffraction method) to obtain crystal orientation analysis data by the SEM-EBSD method. Here, the area to be measured in the EBSD measurement was 0.02 mm2 , and the step during measurement was 0.5 μm. From the EBSD measurement results, the data analysis software "OIM ANALYSIS" was used to perform intensity calculations using the harmonic series expansion, with the series rank set to 16 and the Gaussian half-width set to 5° when fitting to a Gaussian distribution. Symmetry was selected to perform texture analysis, and an ODF map showing the intensity distribution of the crystal orientation when expressed in Euler angles (φ1, Φ, φ2) was plotted. For each of φ2 being 15°, 20°, and 25°, the intensity distribution of the crystal orientation was displayed on a graph showing the orientation density in the ranges of φ1=0 to 90° and Φ=0 to 90°, with φ1 on the horizontal axis and Φ on the vertical axis, thereby determining the maximum values of the orientation density when φ1=0 to 90°, Φ=0 to 90°, and when φ2 was 15°, 20°, and 25°.
[2]銅合金材の結晶粒の平均結晶粒径およびその標準偏差
 銅合金材の結晶粒の平均結晶粒径とその標準偏差は、上述のSEM-EBSD法の結晶方位解析データから、データ解析ソフトである「OIM ANALYSIS」を用いて得られる、Grain Size(diameter)のグラフから求めた。このとき、Area Fractionから求められる平均直径と標準偏差を、結晶粒の平均結晶粒径およびその標準偏差とした。結果を表1に示す。
[2] Average grain size and standard deviation of copper alloy material The average grain size and standard deviation of copper alloy material were obtained from the graph of grain size (diameter) obtained from the crystal orientation analysis data of the SEM-EBSD method described above using the data analysis software "OIM ANALYSIS". At this time, the average diameter and standard deviation obtained from the area fraction were taken as the average grain size and standard deviation of the grains. The results are shown in Table 1.
[3]プレス打ち抜き加工時に銅合金材に生じるえぐれの大きさの評価方法
 作製した銅合金材にプレス打ち抜き加工を行なった際に生じるえぐれの大きさを評価するため、日本伸銅協会技術標準JCBA T310:2019に規定される、銅及び銅合金薄板条の剪断試験方法に記載の剪断試験を行なった。すなわち、金型を、上型(パンチ)と下型(ダイ)のクリアランスが20μm以上30μm以下の範囲となるように調整するとともに、切断面に対する破断面の比率が30%以上50%以下の範囲になるように調整し、銅合金材に対して、延伸方向に沿った大きさが10mm、延伸方向に対して直角に交わる板幅方向に沿った大きさが10mmの正方形の形状に打ち抜き加工を施し、外周に切断面を有する銅合金材の供試材を作製した。
[3] Method for evaluating the size of gouges generated in copper alloy material during press punching In order to evaluate the size of gouges generated when the prepared copper alloy material is subjected to press punching, a shear test was performed according to the shear test method for copper and copper alloy thin plate strips specified in the Japan Copper and Brass Association Technical Standard JCBA T310:2019. That is, the mold was adjusted so that the clearance between the upper mold (punch) and the lower mold (die) was in the range of 20 μm to 30 μm, and the ratio of the fracture surface to the cut surface was adjusted to be in the range of 30% to 50%, and the copper alloy material was punched into a square shape having a size of 10 mm along the stretching direction and a size of 10 mm along the plate width direction perpendicular to the stretching direction, to prepare a copper alloy material specimen having a cut surface on the outer periphery.
 図1は、本発明の銅合金材にプレス打ち抜き加工を施し、そのときの切断面の輪郭形状(右側縁部分)がわかるようにするため、打ち抜かれた銅合金材を、切断面と平行な方向から眺めたときの模式図である。図1では、切断面2に対して垂直な方向Xと厚さ方向Yを含む平面に表れる切断面2の輪郭形状を、模式的に示している。図1に示す銅合金材1は、図示しない下型(ダイ)上に固定された状態で上型(パンチ)を下降させて行なう、プレス打ち抜き加工を施した後の切断面2を示すものである。ここで、切断面2は、プレス打ち抜き加工された銅合金材1の上面1a側から順に、ダレ3、剪断面4および破断面5が形成される。ここで、破断面5が、剪断面4に対してえぐれた形状になることで、打ち抜き加工面である切断面2には、えぐれ6が形成されることが多い。また、切断面2の下端縁には、破断面5から外側に延出するように、バリ7が形成されることが多い。 1 is a schematic diagram of the punched copper alloy material of the present invention when viewed from a direction parallel to the cut surface in order to understand the outline shape (right edge portion) of the cut surface at that time when the copper alloy material is subjected to press punching processing. FIG. 1 shows a schematic outline shape of the cut surface 2 that appears on a plane including a direction X perpendicular to the cut surface 2 and a thickness direction Y. The copper alloy material 1 shown in FIG. 1 shows the cut surface 2 after press punching processing, which is performed by lowering an upper die (punch) while the copper alloy material 1 is fixed on a lower die (die) not shown. Here, the cut surface 2 is formed with a sag 3, a shear surface 4, and a fracture surface 5 in this order from the upper surface 1a side of the press-punched copper alloy material 1. Here, the fracture surface 5 is hollowed out relative to the shear surface 4, and a hollow 6 is often formed on the cut surface 2, which is the punched surface. In addition, a burr 7 is often formed on the lower edge of the cut surface 2 so as to extend outward from the fracture surface 5.
 本実施例では、本発明例および比較例の銅合金材1にプレス打ち抜き加工を施したときの切断面2の輪郭形状(右側縁部分)がわかるようにするため、打ち抜かれた銅合金材1からなる供試材について、光学顕微鏡(オリンパス株式会社製、型番:GX71)を用いて、300倍の倍率で、切断面2と平行な方向から観察を行なった。そして、この走査型電子顕微鏡(SEM)写真に、図1に示すように、バリ7の先端から銅合金材の板面と平行に(図1の方向Xに沿って)引いた仮想線と、剪断面4および破断面5との境界と考えられる位置に引いた境界線8とを対辺とし、これらの対辺の頂点同士を、厚さ方向Yに引いた1対の対辺で結ぶことにより、四辺を有する仮想の長方形Rを形成するとき、この長方形Rで区画される面積に占める、銅合金材1の面積の割合を、百分率(%)で算出した。 In this embodiment, in order to understand the contour shape (right edge portion) of the cut surface 2 when the copper alloy material 1 of the present invention and the comparative example was subjected to press punching, the punched copper alloy material 1 was observed at a magnification of 300 times from a direction parallel to the cut surface 2 using an optical microscope (Olympus Corporation, model number: GX71) for the test material made of the punched copper alloy material 1. Then, in this scanning electron microscope (SEM) photograph, as shown in FIG. 1, an imaginary line drawn parallel to the plate surface of the copper alloy material (along the direction X in FIG. 1) from the tip of the burr 7 and a boundary line 8 drawn at a position considered to be the boundary between the shear surface 4 and the fracture surface 5 are taken as opposite sides, and the vertices of these opposite sides are connected by a pair of opposite sides drawn in the thickness direction Y to form an imaginary rectangle R having four sides. The proportion of the area of the copper alloy material 1 to the area partitioned by this rectangle R was calculated as a percentage (%).
 算出された長方形Rの面積に対する、銅合金材1と長方形Rが重なる部分9の面積の割合について、42%以上であった場合を、打ち抜き加工面である切断面2に形成されるえぐれ6が十分に小さい点で優れているとして「◎」と評価した。また、長方形Rの面積に対する、銅合金材1と長方形Rが重なる部分9の面積の割合が30%以上42%未満にあった場合を、打ち抜き加工面のえぐれ6が小さい点で良好であるとして「○」と評価した。他方で、長方形Rの面積に対する、銅合金材1と長方形Rが重なる部分9の面積の割合が30%未満であった場合を、打ち抜き加工面のえぐれ6の大きさが適正範囲にない点で不良であるとして「×」と評価した。結果を表3に示す。 When the ratio of the area of the overlapping portion 9 of the copper alloy material 1 and the rectangle R to the calculated area of the rectangle R was 42% or more, it was evaluated as excellent in that the gouge 6 formed on the cut surface 2, which is the punched surface, was sufficiently small, and was evaluated as "◎". When the ratio of the area of the overlapping portion 9 of the copper alloy material 1 and the rectangle R to the area of the rectangle R was 30% or more and less than 42%, it was evaluated as good in that the gouge 6 on the punched surface was small, and was evaluated as "○". On the other hand, when the ratio of the area of the overlapping portion 9 of the copper alloy material 1 and the rectangle R to the area of the rectangle R was less than 30%, it was evaluated as poor in that the size of the gouge 6 on the punched surface was not within the appropriate range, and was evaluated as "×". The results are shown in Table 3.
[4]体積抵抗率の測定
 作製した銅合金材について、得られた厚さ0.3mmの板材を幅10mm、長さ300mmに切断し、供試材を作製した。
[4] Measurement of Volume Resistivity The prepared copper alloy material was cut into a plate having a thickness of 0.3 mm into a width of 10 mm and a length of 300 mm to prepare a test material.
 体積抵抗率ρの測定は、電圧端子間距離を200mm、測定電流を100mAとして、室温20℃で、JIS C2525に規定された方法に準じた四端子法によって電圧を測定し、得られた値から体積抵抗率ρ[μΩ・cm]を求めた。 The volume resistivity ρ was measured by measuring the voltage at a room temperature of 20°C using the four-terminal method in accordance with the method specified in JIS C2525, with the distance between the voltage terminals set at 200 mm and the measurement current at 100 mA, and the volume resistivity ρ [μΩ cm] was calculated from the obtained value.
 測定された体積抵抗率ρについて、80μΩ・cm以上であった場合を体積抵抗率ρが十分に大きく、抵抗材料として優れているとして「◎」と評価した。また、体積抵抗率ρが70μΩ・cm以上80μΩ・cm未満であった場合を、体積抵抗率ρが大きく、抵抗材料として良好であるとして「○」と評価した。他方で、体積抵抗率ρが70μΩ・cm未満であった場合を、体積抵抗率ρが小さく抵抗材料としては不良であるとして「×」と評価した。本実施例では、「◎」と「○」を合格レベルとして評価した。結果を表3に示す。 When the measured volume resistivity ρ was 80 μΩ·cm or more, the volume resistivity ρ was evaluated as being sufficiently large and excellent as a resistive material, with a rating of "◎". When the volume resistivity ρ was 70 μΩ·cm or more but less than 80 μΩ·cm, the volume resistivity ρ was evaluated as being large and good as a resistive material, with a rating of "○". On the other hand, when the volume resistivity ρ was less than 70 μΩ·cm, the volume resistivity ρ was evaluated as being small and poor as a resistive material, with a rating of "×". In this example, the evaluations were made with "◎" and "○" as pass levels. The results are shown in Table 3.
[5]対銅熱起電力(EMF)の測定方法
 作製した銅合金材について、得られた厚さ0.3mmの板材を幅10mm、長さ1000mmに切断し、供試材を作製した。
[5] Method for measuring thermoelectromotive force (EMF) against copper For the prepared copper alloy material, the obtained plate material having a thickness of 0.3 mm was cut into a width of 10 mm and a length of 1000 mm to prepare a test material.
 供試材の対銅熱起電力(EMF)の測定は、JIS C2527に沿って行なった。より具体的には、図2に示すように、供試材11の対銅熱起電力(EMF)の測定は、十分に焼鈍された直径1mmの純銅線を標準銅線21として用い、供試材11および標準銅線21の一方の端部を接続させた測温接点Pを、80℃の恒温槽41で保温している温水に浸漬させるとともに、供試材11および標準銅線21の他方の端部をそれぞれ銅線31、32に接続させた基準接点P21、P22を、氷点装置42で保冷している0℃の氷水に浸漬させたときの起電力を、電圧測定器43で測定した。得られた起電力について、温度差である80[℃]で割ることで、対銅熱起電力EMF(μV/℃)を求めた。 The copper thermoelectromotive force (EMF) of the test material was measured according to JIS C2527. More specifically, as shown in FIG. 2, the copper thermoelectromotive force (EMF) of the test material 11 was measured by using a fully annealed pure copper wire with a diameter of 1 mm as a standard copper wire 21, immersing a temperature measuring junction P1 , to which one end of the test material 11 and the standard copper wire 21 were connected, in hot water kept warm in a thermostatic bath 41 at 80° C., and measuring the electromotive force when the reference junctions P21 and P22 , to which the other ends of the test material 11 and the standard copper wire 21 were connected to copper wires 31 and 32, respectively, were immersed in ice water at 0° C. kept cold in a freezing point device 42, using a voltage measuring device 43. The obtained electromotive force was divided by the temperature difference of 80° C. to obtain the copper thermoelectromotive force EMF (μV/° C.).
 測定された対銅熱起電力(EMF)について、絶対値が0.5μV/℃以下であった場合を、対銅熱起電力(EMF)の絶対値が十分に小さく、抵抗材料として良好であるとして「◎」と評価した。また、対銅熱起電力(EMF)の絶対値が0.5μV/℃より大きく1.0μV/℃以下であった場合を、対銅熱起電力(EMF)の絶対値が小さく、抵抗材料として良好であるとして「○」と評価した。他方で、対銅熱起電力(EMF)の絶対値が1.0μV/℃より大きい場合を、対銅熱起電力(EMF)の絶対値が大きく、抵抗材料として不良であるとして「×」と評価した。結果を表3に示す。 When the absolute value of the measured copper thermoelectromotive force (EMF) was 0.5 μV/℃ or less, the absolute value of the copper thermoelectromotive force (EMF) was evaluated as "◎", since the absolute value was sufficiently small and the material was deemed to be good as a resistive material. When the absolute value of the copper thermoelectromotive force (EMF) was greater than 0.5 μV/℃ and less than 1.0 μV/℃, the absolute value of the copper thermoelectromotive force (EMF) was small and the material was deemed to be good as a resistive material, since the absolute value was evaluated as "○". On the other hand, when the absolute value of the copper thermoelectromotive force (EMF) was greater than 1.0 μV/℃, the absolute value of the copper thermoelectromotive force (EMF) was large and the material was deemed to be poor as a resistive material, since the absolute value was evaluated as "×". The results are shown in Table 3.
[6]抵抗温度係数(TCR)の測定方法
 作製した銅合金材について、得られた厚さ0.3mmの板材を幅10mm、長さ300mmに切断し、供試材を作製した。
[6] Method for measuring temperature coefficient of resistance (TCR) The prepared copper alloy material was cut into a plate having a thickness of 0.3 mm into a width of 10 mm and a length of 300 mm to prepare a test material.
 抵抗温度係数(TCR)の測定は、電圧端子間距離を200mm、測定電流を100mAとして、JIS C2525およびJIS C2526に規定された方法に準じた四端子法によって、供試材の温度を150℃に加熱したときの電圧を測定し、得られた値から150℃での抵抗値R150℃[μΩ]を求めた。次いで、供試材の温度を20℃に冷却したときの電圧を測定し、得られた値から20℃での抵抗値R20℃[μΩ]を求めた。そして、得られる抵抗値であるR150℃およびR20℃の値から、TCR={(R150℃[μΩ]-R20℃[μΩ])/R20℃[μΩ]}×{1/(150[℃]-20[℃])}×10の式から、抵抗温度係数(ppm/℃)を算出した。 The temperature coefficient of resistance (TCR) was measured by a four-terminal method according to the method specified in JIS C2525 and JIS C2526, with a voltage terminal distance of 200 mm and a measurement current of 100 mA, and the voltage was measured when the temperature of the test material was heated to 150 ° C., and the resistance value R 150 ° C. [μΩ] at 150 ° C. was obtained from the obtained value. Next, the voltage was measured when the temperature of the test material was cooled to 20 ° C., and the resistance value R 20 ° C. [μΩ] at 20 ° C. was obtained from the obtained value. Then, from the obtained resistance values R 150 ° C. and R 20 ° C. , the temperature coefficient of resistance (ppm / ° C.) was calculated from the formula TCR = {(R 150 ° C. [μΩ] - R 20 ° C. [μΩ]) / R 20 ° C. [μΩ]} × {1 / (150 [° C.] - 20 [° C.])} × 10 6 .
 測定された抵抗温度係数(TCR)について、絶対値が50ppm/℃未満であった場合を、抵抗温度係数(TCR)の絶対値が十分に小さく、抵抗材料として優れているとして「◎」と評価した。また、抵抗温度係数(TCR)の絶対値が50ppm/℃以上60ppm/℃以下であった場合を、抵抗温度係数(TCR)の絶対値が小さく、抵抗材料として良好であるとして「〇」と評価した。他方で、抵抗温度係数(TCR)の絶対値が60ppm/℃より大きい場合を、抵抗温度係数(TCR)の絶対値が大きく抵抗材料としては不良であるとして「×」と評価した。結果を表3に示す。 When the absolute value of the measured temperature coefficient of resistance (TCR) was less than 50 ppm/℃, the absolute value of the temperature coefficient of resistance (TCR) was evaluated as "◎", since the absolute value of the temperature coefficient of resistance (TCR) was sufficiently small and the material was excellent as a resistive material. When the absolute value of the temperature coefficient of resistance (TCR) was between 50 ppm/℃ and 60 ppm/℃, the absolute value of the temperature coefficient of resistance (TCR) was evaluated as "◯", since the absolute value of the temperature coefficient of resistance (TCR) was small and the material was good as a resistive material. On the other hand, when the absolute value of the temperature coefficient of resistance (TCR) was greater than 60 ppm/℃, the absolute value of the temperature coefficient of resistance (TCR) was evaluated as "×", since the absolute value of the temperature coefficient of resistance (TCR) was too large and the material was poor as a resistive material. The results are shown in Table 3.
[7]信頼性についての評価
 さらに、本発明例1~17および比較例1~6について、銅合金材を抵抗材料などとして長期間用いたときの信頼性、特に熱などに対する電気的特性の安定性について検討するため、上述の[4]体積抵抗率の測定において体積抵抗率を測定した後の供試材について、400℃で2時間にわたり加熱することで、熱に対する電気的特性の安定性について加速試験を行なった。加熱による加速試験の後、上述の[4]体積抵抗率の測定と同じ方法で、供試材の体積抵抗率を測定し、加熱前の体積抵抗率から加熱後の体積抵抗率を引いた体積抵抗率の差をそれぞれ求めた。ここで、加熱前の体積抵抗率から加熱後の体積抵抗率を引いた体積抵抗率の差が1.0μΩ・cm以下であった場合を、加熱による体積抵抗率の低下が小さく、信頼性に優れているとして「◎」と評価した。また、加熱前の体積抵抗率から加熱後の体積抵抗率を引いた体積抵抗率の差が1.0μΩ・cm超であった場合を、加熱による体積抵抗率の低下が大きく、信頼性の観点では相対的に良好でないとして「○」と評価した。結果を表3に示す。
[7] Evaluation of reliability Furthermore, for the present invention examples 1 to 17 and the comparative examples 1 to 6, in order to examine the reliability when the copper alloy material is used as a resistance material for a long period of time, particularly the stability of electrical properties against heat, an accelerated test was performed on the test material after the volume resistivity was measured in the above-mentioned [4] Measurement of volume resistivity, by heating at 400 ° C for 2 hours. After the accelerated test by heating, the volume resistivity of the test material was measured in the same manner as in the above-mentioned [4] Measurement of volume resistivity, and the difference in volume resistivity obtained by subtracting the volume resistivity after heating from the volume resistivity before heating was obtained. Here, when the difference in volume resistivity obtained by subtracting the volume resistivity after heating from the volume resistivity before heating was 1.0 μΩ cm or less, the decrease in volume resistivity due to heating was small and the reliability was evaluated as "◎". Furthermore, when the difference in volume resistivity obtained by subtracting the volume resistivity after heating from the volume resistivity before heating exceeded 1.0 μΩ cm, the drop in volume resistivity due to heating was large, and the reliability was evaluated as relatively poor, and the evaluation was given as “○”. The results are shown in Table 3.
[8]総合評価
 これらの評価結果のうち、プレス打ち抜き加工時に銅合金材に生じるえぐれの大きさ、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)の評価結果について、4つとも「◎」と評価した場合を、プレス打ち抜き加工時に銅合金材に生じるえぐれの大きさ、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)の4つの特性が優れているとして「◎」と評価した。また、これらの4つの評価結果のうち、少なくともいずれかで「○」と評価し、残りを「◎」と評価した場合を、これらの4つの特性が少なくとも良好であるとして「○」と評価した。他方で、プレス打ち抜き加工性、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)のうち少なくともいずれかで評価結果が「×」になった場合を、これらの4つの特性のうち少なくともいずれかが不合格であるとして「×」と評価した。結果を表3に示す。
[8] Overall Evaluation Among these evaluation results, the size of the gouge generated in the copper alloy material during press punching, the volume resistivity ρ, the thermoelectromotive force against copper (EMF) and the temperature coefficient of resistance (TCR) were all evaluated as "◎", and the four characteristics of the size of the gouge generated in the copper alloy material during press punching, the volume resistivity ρ, the thermoelectromotive force against copper (EMF) and the temperature coefficient of resistance (TCR) were evaluated as "◎". In addition, when at least one of these four evaluation results was evaluated as "○" and the remaining was evaluated as "◎", these four characteristics were at least good and evaluated as "○". On the other hand, when the evaluation result of at least one of the press punching workability, the volume resistivity ρ, the thermoelectromotive force against copper (EMF) and the temperature coefficient of resistance (TCR) was "×", at least one of these four characteristics was evaluated as "×" as failing. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3の結果から、本発明例1~17の銅合金材は、合金組成および方位密度の最大値が本発明の適正範囲内であるとともに、長方形Rの面積に対する、銅合金材1と長方形Rが重なる部分9の面積の割合が、いずれも「◎」または「○」と評価されているため、打ち抜き加工面に形成されるえぐれが小さいと評価されるものであった。また、本発明例1~17の銅合金材は、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)についても、いずれも「◎」または「〇」と評価されるものであった。 From the results in Tables 1 to 3, the copper alloy materials of Examples 1 to 17 of the present invention have alloy composition and maximum orientation density values within the appropriate ranges of the present invention, and the ratio of the area of the overlapping portion 9 of the copper alloy material 1 and the rectangle R to the area of the rectangle R is all evaluated as "◎" or "◯", so that the gouge formed on the punched surface is evaluated as small. In addition, the copper alloy materials of Examples 1 to 17 of the present invention were also evaluated as "◎" or "◯" for the volume resistivity ρ, thermoelectromotive force to copper (EMF), and temperature coefficient of resistance (TCR).
 他方で、比較例1、2の銅合金材は、結晶方位分布関数(ODF)をオイラー角で表したときの、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値が大きく、本発明の適正範囲外であった。そのため、比較例1、2の銅合金材は、プレス打ち抜き加工時に銅合金材に生じるえぐれの大きさについて「×」と評価されていた。 On the other hand, the copper alloy materials of Comparative Examples 1 and 2 had large maximum orientation densities at φ1 = 0-90°, Φ = 0-90°, and φ2 = 15°, 20°, and 25° when the crystal orientation distribution function (ODF) was expressed as Euler angles, which were outside the appropriate range of the present invention. Therefore, the copper alloy materials of Comparative Examples 1 and 2 were evaluated as "X" for the size of the gouge that occurred in the copper alloy material during press punching.
 また、比較例3の銅合金材は、Niの含有量が少なく、合金組成が本発明の適正範囲外であった。そのため、比較例3の銅合金材は、対銅熱起電力(EMF)において「×」と評価されていた。 In addition, the copper alloy material of Comparative Example 3 had a low Ni content and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 3 was rated as "X" in terms of thermal electromotive force (EMF) against copper.
 また、比較例4の銅合金材は、MnおよびNiの含有量がいずれも少なく、合金組成が本発明の適正範囲外であった。そのため、比較例4の銅合金材は、体積抵抗率ρにおいて「×」と評価されていた。特に、比較例4の銅合金材は、Mnの含有量が少ないことで、体積抵抗率ρの評価結果が「×」となった。 In addition, the copper alloy material of Comparative Example 4 had low contents of both Mn and Ni, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 4 was evaluated as "x" for volume resistivity ρ. In particular, the copper alloy material of Comparative Example 4 had a low Mn content, and therefore the evaluation result of volume resistivity ρ was "x".
 また、比較例5の銅合金材は、Mnの含有量が多く、合金組成が本発明の適正範囲外であった。そのため、比較例5の銅合金材は、対銅熱起電力(EMF)において「×」と評価されていた。 In addition, the copper alloy material of Comparative Example 5 had a high Mn content and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 5 was rated as "X" in terms of copper thermoelectromotive force (EMF).
 また、比較例6の銅合金材は、Niの含有量が多く、合金組成が本発明の適正範囲外であった。そのため、比較例6の銅合金材は、対銅熱起電力(EMF)および抵抗温度係数(TCR)において「×」と評価されていた。 In addition, the copper alloy material of Comparative Example 6 had a high Ni content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 6 was rated as "X" in terms of copper thermoelectromotive force (EMF) and temperature coefficient of resistance (TCR).
 この結果から、本発明例の銅合金材は、合金組成および結晶方位分布関数(ODF)をオイラー角(φ1、Φ、φ2)で表したときの方位密度の最大値が本発明の適正範囲内であるときに、プレス打ち抜き加工時に生じる銅合金材のえぐれが小さいことが確認された。それとともに、本発明例の銅合金材は、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)も、少なくとも良好であることが確認された。 From these results, it was confirmed that the copper alloy material of the present invention has small gouges during press punching when the maximum orientation density of the alloy composition and the crystal orientation distribution function (ODF) expressed as Euler angles (φ1, Φ, φ2) is within the appropriate range of the present invention. At the same time, it was confirmed that the volume resistivity ρ, thermoelectromotive force (EMF) to copper, and temperature coefficient of resistance (TCR) of the copper alloy material of the present invention are at least good.
 また、図3に、本発明例14の銅合金材について、結晶方位分布関数(ODF)をオイラー角(φ1、Φ、φ2)で表し、φ1を横軸に、Φを縦軸にしたときの、φ1=0~90°およびΦ=0~90°の範囲における方位密度を示すグラフであり、図3(a)は、φ2=15°であるときのグラフであり、図3(b)は、φ2=20°であるときのグラフであり、図3(c)は、φ2=25°であるときのグラフを示す。このグラフから、本発明例14の銅合金材は、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値が3.1であることがわかる(小数第2位を四捨五入したものを、方位密度の最大値の測定値とした)。 FIG. 3 shows a graph of the crystal orientation distribution function (ODF) of the copper alloy material of Example 14 of the present invention, expressed as Euler angles (φ1, Φ, φ2), with φ1 on the horizontal axis and Φ on the vertical axis, showing the orientation density in the ranges of φ1=0-90° and Φ=0-90°, where FIG. 3(a) shows the graph when φ2=15°, FIG. 3(b) shows the graph when φ2=20°, and FIG. 3(c) shows the graph when φ2=25°. From this graph, it can be seen that the maximum orientation density of the copper alloy material of Example 14 of the present invention is 3.1 when φ1=0-90°, Φ=0-90°, and φ2 is 15°, 20°, and 25° (the measured value of the maximum orientation density was rounded off to one decimal place).
 また、図4に、本発明例および比較例の銅合金材にプレス打ち抜き加工を施し、そのときの切断面の輪郭形状(右側縁部分)がわかるようにするため、打ち抜かれた銅合金材を、図1と同様に切断面と平行な方向から観察したときの、走査型電子顕微鏡(SEM)写真を示す。ここで、図4(a)は、本発明例5の銅合金材の切断面の輪郭形状についてのSEM写真であり、図4(b)は、比較例1の銅合金材の切断面の輪郭形状についてのSEM写真である。これらのSEM写真から、本発明例の銅合金材は、比較例の銅合金材と比べて、プレス打ち抜き加工時に生じる、破断面のえぐれが小さいことが確認された。 FIG. 4 shows scanning electron microscope (SEM) photographs of the punched copper alloy materials of the present invention and comparative examples, observed in a direction parallel to the cut surface as in FIG. 1, after press punching to show the outline shape of the cut surface (right edge portion) of the punched copper alloy materials. Here, FIG. 4(a) is an SEM photograph of the outline shape of the cut surface of the copper alloy material of present invention example 5, and FIG. 4(b) is an SEM photograph of the outline shape of the cut surface of the copper alloy material of comparative example 1. From these SEM photographs, it was confirmed that the copper alloy material of the present invention has smaller gouges on the fracture surface that occur during press punching compared to the copper alloy material of the comparative example.
 さらに、本発明例1~4、6、7、9~11、13~17では、Feの含有量を0.20質量%以下にすることで、Feの含有量が0.30質量%以上であり信頼性の評価結果が「〇」と評価された本発明例5、8、12と比べて、熱などに対する電気的特性の安定性が高められていたため、信頼性の評価結果において「◎」と評価されていることが分かった。 Furthermore, in invention examples 1 to 4, 6, 7, 9 to 11, and 13 to 17, the Fe content was set to 0.20 mass% or less, which improved the stability of the electrical characteristics against heat, etc., and resulted in a reliability evaluation result of "◎" compared to invention examples 5, 8, and 12, which had an Fe content of 0.30 mass% or more and were evaluated as "◯" in the reliability evaluation result.
 また、本発明例4~17では、FeおよびCoのうち一方または両方を含有することで、抵抗温度係数(TCR)の評価結果が「〇」と評価された本発明例1~3と比べて、抵抗温度係数(TCR)の絶対値が小さくなっていたため、抵抗温度係数(TCR)の評価結果において「◎」と評価されていることが分かった。 In addition, in invention examples 4 to 17, the absolute value of the temperature coefficient of resistance (TCR) was smaller due to the inclusion of one or both of Fe and Co, compared to invention examples 1 to 3, which were evaluated as "good" for the temperature coefficient of resistance (TCR), and therefore the temperature coefficient of resistance (TCR) was evaluated as "◎".
 1  銅合金材
 1a  銅合金材の上面
 1b  銅合金材の下面
 2  切断面
 3  ダレ
 4  剪断面
 5  破断面
 6  打ち抜き加工面のえぐれ
 7  バリ
 8  境界線
 9  銅合金材と長方形が重なる部分
 11  供試材
 21  標準銅線
 31、32  銅線
 41  恒温槽
 42  氷点装置
 43  電圧測定器
 P  測温接点
 P21、P22  基準接点
 X  切断面に対して垂直な方向
 Y  厚さ方向
REFERENCE SIGNS LIST 1 Copper alloy material 1a Upper surface of copper alloy material 1b Lower surface of copper alloy material 2 Cut surface 3 Sagging 4 Shear surface 5 Fracture surface 6 Gouge on punched surface 7 Burr 8 Boundary 9 Overlapping portion of copper alloy material and rectangle 11 Test material 21 Standard copper wire 31, 32 Copper wire 41 Thermostatic chamber 42 Freezing point device 43 Voltage measuring instrument P1 Temperature measuring junction P21 , P22 Reference junction X Direction perpendicular to cut surface Y Thickness direction

Claims (6)

  1.  Mn:20.0質量%以上35.0質量%以下、および
     Ni:6.5質量%以上17.0質量%以下
    を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金材であって、
     前記銅合金材の延伸方向と厚さ方向を含む縦断面にて、SEM-EBSD法による結晶方位解析から得られる結晶方位分布関数(ODF)を、オイラー角(φ1、Φ、φ2)で表したとき、φ1=0~90°、Φ=0~90°ならびにφ2が15°、20°および25°における方位密度の最大値が、6.0以下である、銅合金材。
    A copper alloy material having an alloy composition containing Mn: 20.0 mass% or more and 35.0 mass% or less, and Ni: 6.5 mass% or more and 17.0 mass% or less, with the balance being Cu and unavoidable impurities,
    The copper alloy material has a maximum orientation density of 6.0 or less when a crystal orientation distribution function (ODF) obtained by crystal orientation analysis by a SEM-EBSD method is expressed in terms of Euler angles (φ1, Φ, φ2) in a longitudinal section including the stretching direction and thickness direction of the copper alloy material, and the maximum value of the orientation density is 6.0 or less when φ1=0 to 90°, Φ=0 to 90°, and φ2 is 15°, 20°, and 25°.
  2.  前記縦断面にて、SEM-EBSD法による結晶方位解析データから得られる結晶粒の平均結晶粒径が、20μm以下であり、かつ、前記平均結晶粒径の標準偏差が10μm以下である、請求項1に記載の銅合金材。 The copper alloy material according to claim 1, wherein the average grain size of the grains in the longitudinal section obtained from crystal orientation analysis data by the SEM-EBSD method is 20 μm or less, and the standard deviation of the average grain size is 10 μm or less.
  3.  前記合金組成は、
     Fe:0.01質量%以上0.50質量%以下、および
     Co:0.01質量%以上2.00質量%以下のうち、一方または両方をさらに含有する、請求項1に記載の銅合金材。
    The alloy composition is
    The copper alloy material according to claim 1, further containing one or both of Fe: 0.01 mass% or more and 0.50 mass% or less, and Co: 0.01 mass% or more and 2.00 mass% or less.
  4.  前記合金組成は、
     Sn:0.01質量%以上5.00質量%以下、
     Zn:0.01質量%以上5.00質量%以下、
     Cr:0.01質量%以上0.50質量%以下、
     Ag:0.01質量%以上0.50質量%以下、
     Al:0.01質量%以上1.00質量%以下、
     Mg:0.01質量%以上0.50質量%以下、
     Si:0.01質量%以上0.50質量%以下および
     P:0.01質量%以上0.50質量%以下からなる群から選択される少なくとも1種をさらに含有する、請求項1に記載の銅合金材。
    The alloy composition is
    Sn: 0.01% by mass or more and 5.00% by mass or less,
    Zn: 0.01% by mass or more and 5.00% by mass or less,
    Cr: 0.01% by mass or more and 0.50% by mass or less,
    Ag: 0.01% by mass or more and 0.50% by mass or less,
    Al: 0.01% by mass or more and 1.00% by mass or less,
    Mg: 0.01% by mass or more and 0.50% by mass or less,
    The copper alloy material according to claim 1, further comprising at least one selected from the group consisting of Si: 0.01 mass% or more and 0.50 mass% or less, and P: 0.01 mass% or more and 0.50 mass% or less.
  5.  請求項1から4のいずれか1項に記載の銅合金材からなる、抵抗器用抵抗材料。 A resistor material for resistors, comprising the copper alloy material according to any one of claims 1 to 4.
  6.  請求項5に記載の抵抗器用抵抗材料を有する、シャント抵抗器またはチップ抵抗器である抵抗器。 A resistor that is a shunt resistor or a chip resistor, comprising the resistor material according to claim 5.
PCT/JP2023/045992 2022-12-23 2023-12-21 Copper alloy material, resistive material including same for resistor, and resistor WO2024135787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-206860 2022-12-23
JP2022206860 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024135787A1 true WO2024135787A1 (en) 2024-06-27

Family

ID=91588821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/045992 WO2024135787A1 (en) 2022-12-23 2023-12-21 Copper alloy material, resistive material including same for resistor, and resistor

Country Status (1)

Country Link
WO (1) WO2024135787A1 (en)

Similar Documents

Publication Publication Date Title
JP7380550B2 (en) pure copper plate
TWI731343B (en) Resistive material for resistor, manufacturing method thereof, and resistor
JP4566020B2 (en) Copper alloy sheet for electrical and electronic parts with low anisotropy
JP4440313B2 (en) Cu-Ni-Si-Co-Cr alloy for electronic materials
JP2002038228A (en) Copper alloy material for electronic and electric device parts
JP2009242926A (en) Copper-nickel-silicon based alloy for electronic material
EP2143810A1 (en) Copper alloy for electrical/electronic device and method for producing the same
JPWO2009104615A1 (en) Copper alloy material
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP4620173B1 (en) Cu-Co-Si alloy material
CN107614714A (en) Electronic electric equipment copper alloy, electronic electric equipment copper alloy plastic working material, electronic electric equipment component, terminal and busbar
JP7214931B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
JP4708497B1 (en) Cu-Co-Si alloy plate and method for producing the same
JP7214930B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
WO2024135787A1 (en) Copper alloy material, resistive material including same for resistor, and resistor
JP7342923B2 (en) Slit copper materials, parts for electronic and electrical equipment, bus bars, heat dissipation boards
JP2011021225A (en) Copper alloy material for terminal/connector and method for producing the same
WO2024135786A1 (en) Copper alloy material, resistive material for resistor, and resistor
JP7354481B1 (en) Copper alloy materials, resistor materials and resistors using copper alloy materials
JP7167385B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
TWI828212B (en) Copper alloy materials and resistance materials for resistors using the copper alloy materials and resistors
JP2024090765A (en) Copper alloy material, and resistor material and resistor using the same
JP2011017073A (en) Copper alloy material