WO2020196792A1 - Copper alloy strip and method for manufacturing same, resistor resistance material using same, and resistor - Google Patents
Copper alloy strip and method for manufacturing same, resistor resistance material using same, and resistor Download PDFInfo
- Publication number
- WO2020196792A1 WO2020196792A1 PCT/JP2020/013833 JP2020013833W WO2020196792A1 WO 2020196792 A1 WO2020196792 A1 WO 2020196792A1 JP 2020013833 W JP2020013833 W JP 2020013833W WO 2020196792 A1 WO2020196792 A1 WO 2020196792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- copper alloy
- alloy strip
- kam
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/05—Alloys based on copper with manganese as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C3/00—Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
Definitions
- the present invention relates to a copper alloy strip and a method for manufacturing the same, a resistor material for a resistor using the copper alloy strip, and a resistor.
- a copper alloy strip suitable for producing a chip by pressing is particularly preferred.
- the present invention relates to a copper alloy strip having little variation in the resistance value of the chip.
- the metal material of the resistor used for the resistor is required to have a small temperature coefficient of resistance (TCR), which is an index thereof, so that the resistance of the resistor is stable even if the ambient temperature changes.
- TCR temperature coefficient of resistance
- the temperature coefficient of resistance represents the magnitude of the change in resistance value with temperature as a fraction (ppm) per 1 ° C.
- TCR ( ⁇ 10-6 / K) ⁇ (RR 0). ) / that R 0 ⁇ ⁇ ⁇ 1 / ( T-T 0) ⁇ ⁇ 10 6 is represented by the formula.
- T in the equation indicates the test temperature (° C.)
- T 0 indicates the reference temperature (° C.)
- R indicates the resistance value ( ⁇ ) at the test temperature T
- R 0 indicates the resistance value ( ⁇ ) at the reference temperature T 0 . .. Since Cu-Mn-Ni alloys and Cu-Mn-Sn alloys have a very small TCR, they are widely used as alloy materials constituting resistance materials.
- Patent Document 1 after rolling a copper alloy material at a high pressure reduction rate, residual strain can be removed by heating in a non-oxidizing atmosphere with hydrogen gas, and as a result, the temperature coefficient of resistance is lowered. It is disclosed that it can be done. However, even in the alloy material produced in this way, the strain still remains non-uniformly, and the resistance value may vary.
- the present invention has been made in view of the above circumstances, and is a copper alloy strip suitable for producing chips by press working, and copper with little variation in resistance value generated between products and lots. It is an object of the present invention to provide a method for producing an alloy strip and a copper alloy strip thereof.
- the copper alloy strip contains 3% by mass or more and 20% by mass or less of manganese, and the balance is a copper alloy strip having an alloy composition consisting of copper and unavoidable impurities. Therefore, when the average value of KAM measured by the backscattered electron diffraction method is 1 ° or more and less than 5 °, the product or a chip manufactured by pressing such a copper alloy strip is used. There is little variation in the resistance value that occurs between lots, and such a copper alloy strip is a copper alloy material that has substantially the same alloy composition as the alloy composition of the copper alloy strip, and has a high temperature of 800 ° C. or higher and 950 ° C. or lower.
- One set process or more when the two heat treatment steps are one set process, the second cold rolling process in which cold processing is performed at a low processing rate of 5% or more and less than 50%, and the temperature rise rate of 200 ° C./min or more. It was found that it can be produced by a production method including a third heat treatment step of cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or more after reaching 200 ° C. or more and less than 400 ° C. and holding for 10 to 55 seconds.
- the present invention has been completed based on the findings.
- the gist structure of the present invention is as follows. (1) A copper alloy strip containing 3% by mass or more and 20% by mass or less of manganese and having an alloy composition in which the balance is copper and unavoidable impurities, and the average value of KAM measured by the backscattered electron diffraction method. A copper alloy strip, characterized in that the temperature is 1 ° or more and less than 5 °. (2) The ratio of the area where the KAM value is 1 ° or more and less than 4 ° to the entire area where KAM is measured by the backscattered electron diffraction method is 50% or more. The copper alloy strip described in 1).
- the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured by the backscattered electron diffraction method is 3% or more and 25% or less.
- the alloy composition is 0.01% by mass or more and 5% by mass or less of nickel, 0.01% by mass or more and 5% by mass or less of tin, 0.01% by mass or more and 5% by mass or less of zinc, 0.01.
- the copper alloy strip according to any one of (1) to (4) above, which comprises the above.
- One set step or more when the second heat treatment step of heating in a medium temperature range is one set step, a second cold working step of performing cold working at a low working rate of 5% or more and less than 50%, and 200 ° C./ It is characterized by including a third heat treatment step of reaching 200 ° C. or higher and lower than 400 ° C. at a heating rate of min or more, holding for 10 to 55 seconds, and then cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or higher.
- a method for manufacturing copper alloy strips (7) A resistor material for a resistor using the copper alloy strip according to any one of (1) to (5) above. (8) A resistor having the resistance material according to (7) above.
- a copper alloy strip suitable for producing chips by press working and a copper alloy strip having a small variation in resistance value between products and lots, and a copper alloy strip thereof.
- a method of manufacturing can be provided.
- the copper alloy strip according to the present invention is a copper alloy strip containing 3% by mass or more and 20% by mass or less of manganese and having an alloy composition in which the balance is copper and unavoidable impurities, and is measured by the backscattered electron diffraction method.
- the average value of KAM produced is 1 ° or more and less than 5 °.
- the copper alloy strip of the present invention contains 3% by mass or more and 20% by mass or less of manganese.
- Manganese (Mn) is an essential component in the present invention. When the manganese content is in such a range, the temperature coefficient of resistance of the copper alloy material can be lowered. On the other hand, if the manganese content is less than 3% by mass, the effect of reducing the temperature coefficient of resistance cannot be sufficiently obtained. Further, when the manganese content is more than 20% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. From the viewpoint of the temperature coefficient of resistance, the manganese content is preferably 5% by mass or more.
- ⁇ Arbitrary component of copper alloy strip > Further, in the alloy strip material of the present invention, as optional additive components, nickel of 0.01% by mass or more and 5% by mass or less, tin of 0.01% by mass or more and 5% by mass or less, 0.01% by mass or more and 5% by mass.
- Nickel 0.01% by mass or more and 5% by mass or less
- the content of nickel (Ni) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less. If the nickel content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the nickel content exceeds 5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the nickel content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the content of tin (Sn) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less. If the tin content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the tin content exceeds 5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the tin content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the content of iron (Fe) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less. If the iron content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the iron content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the iron content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the content of zinc (Zn) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less. If the zinc content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the zinc content is more than 5% by mass, the resistance value may vary due to the dezincification phenomenon.
- the zinc content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the content of silicon (Si) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less. If the silicon content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the silicon content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the silicon content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the content of chromium (Cr) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the chromium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the chromium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the chromium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- zirconium 0.01% by mass or more and 0.5% by mass or less
- the content of zirconium (Zr) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the zirconium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the zirconium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the zirconium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- titanium 0.01% by mass or more and 0.5% by mass or less
- the content of titanium (Ti) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the titanium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the titanium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the titanium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the content of silver (Ag) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the silver content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the silver content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the silver content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the content of magnesium (Mg) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the magnesium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the magnesium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the magnesium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the content of cobalt (Co) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the cobalt content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the cobalt content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the cobalt content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the content of phosphorus (P) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less with respect to 100% by mass of the copper alloy strip. If the phosphorus content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the phosphorus content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range.
- the phosphorus content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
- the balance consists of Cu (copper) and unavoidable impurities.
- the "unavoidable impurities” referred to here are generally those that are present in the raw materials of copper-based products and those that are unavoidably mixed in the manufacturing process, which are originally unnecessary, but are in trace amounts. It is an acceptable impurity because it does not affect the characteristics of copper-based products.
- Examples of the components listed as unavoidable impurities include non-metal elements such as sulfur (S) and oxygen (O) and metal elements such as aluminum (Al) and antimony (Sb).
- the upper limit of the content of these components may be 0.05% by mass for each of the above components and 0.20% by mass for the total amount of the above components.
- the alloy strip of the present invention is characterized in that the average value of KAM measured by the backscattered electron diffraction method (EBSD method) is 1 ° or more and less than 5 °.
- EBSD method backscattered electron diffraction method
- the copper alloy strip has a very slight strain, and the strain generated by the press working is suppressed (offset) by this strain. It is possible to suppress variations in resistance values between products and lots.
- the average value of KAM is less than 1 °, the copper alloy strip has little strain (after recrystallization), and strain is introduced by press working to introduce strain between products and lots. The resistance value varies. Further, when the average value of KAM is 5 ° or more, the resistance value fluctuates due to the influence of heat generated at the time of use or mounting, for example, and the resistance value may fluctuate between products and lots.
- the ratio of the area where the KAM value is 1 ° or more and less than 4 ° to the entire area where KAM is measured by the backscattered electron diffraction method is preferably 50% or more.
- the area where the KAM value is 1 ° or more and less than 4 ° occupies a small proportion it means that there are many less than 1 °, or there are many 4 ° or more, but if there are many less than 1 °, the distortion is There are many small states, and when there are many 4 ° or more, there are many high distortion regions, for example, it is easily affected by heat during mounting, the resistance value is greatly affected by slight temperature fluctuations and time minors, and variations are large. Become.
- the ratio of the area where the KAM value is 1 ° or more and less than 4 ° is preferably 50% or more, and more preferably 50% or more and less than 70%.
- the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured by the backscattered electron diffraction method is preferably 3% or more and 25% or less.
- the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the total area where KAM is measured is 3% or more and 25% or less, which means that there is a region with poor ductility. Since this is the starting point of fracture during pressing, press working can be performed without increasing the amount of strain in the alloy, improving dimensional accuracy and more effectively suppressing variations in resistance values between products and lots. Can be done.
- the proportion of the area where the KAM value is 6 ° or more and less than 15 ° is more preferably 5% or more and 25% or less.
- KAM is measured by the backscattered electron diffraction method using JSM-7001FA manufactured by JEOL Ltd.
- the cross section of the copper alloy strip parallel to the rolling direction is mirror-finished by resin filling, electrolytic polishing, etc., and used as a measurement sample.
- the surface of the sample can be mirror-finished by immersing the copper alloy strip in a phosphoric acid solution and energizing for 60 seconds for electrolytic polishing.
- a visual field region of 100 ⁇ m ⁇ 100 ⁇ m at the center of the plate thickness is targeted for measurement, and measurement is performed with a step size of 0.05 ⁇ m.
- the average value of KAM is calculated for all points using the measured values of the first adjacent to each other with the crystal orientation difference of 15 ° or more as the boundary. Further, in the visual field region, the range of 0 ° or more and less than 15 ° is divided into 15 and the area ratio for each 1 ° is obtained, so that the area measured by KAM is 1 ° or more with respect to the entire measured area. The ratio of the area less than 4 ° and the ratio of the area of 6 ° or more and less than 15 ° are calculated. Such measurement was performed at 5 arbitrary points, and the average value was calculated.
- the Vickers hardness of the alloy strip of the present invention is not particularly limited, but is preferably 150 or more and 200 or less, and more preferably 150 or more and 190 or less. When the Vickers hardness is within such a range, strain due to press working can be suppressed, and changes in characteristics such as resistance value due to heat can be suppressed.
- the Vickers hardness is measured from the surface of the copper alloy material in accordance with the method specified in JIS Z2244 (2009).
- the load (test force) at this time is 2.9 N, and the indenter reduction time is 15 s.
- the copper alloy strip of the present invention is extremely useful as a resistance material for resistors such as shunt resistors and chip resistors.
- This manufacturing method includes a first heat treatment step of heating a copper alloy material having substantially the same alloy composition as the alloy composition of the copper alloy strip in a high temperature range of 800 ° C. or higher and 950 ° C. or lower, a hot working step, and 50.
- One set process or more when the first cold processing process of performing cold processing at a high processing rate of% or more and the second heat treatment process of heating in a medium temperature range of 400 ° C. or more and 700 ° C. or less are set as one set process.
- the second cold rolling process in which cold working is performed at a low processing rate of 5% or more and less than 50%, and holding for 10 to 55 seconds after reaching 200 ° C or more and less than 400 ° C at a heating rate of 200 ° C / min or more. After that, it is characterized by including a third heat treatment step of cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or more.
- a third heat treatment step of cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or more.
- the copper alloy material has substantially the same alloy composition as the alloy composition of the copper alloy strip.
- the copper alloy material include ingots produced by casting, but are not particularly limited.
- the alloy composition of the copper alloy material is set to be "substantially the same” as the alloy composition of the copper alloy strip in the copper alloy material in each process from the copper alloy material to the production of the copper alloy strip.
- the first heat treatment step is a step of heating the copper alloy material in a high temperature range of 800 ° C. or higher and 950 ° C. or lower.
- the heating temperature in the first heat treatment step is set to a high temperature range of 800 ° C. or higher and 950 ° C. or lower, solidification segregation, crystallizations and precipitates generated during casting can be eliminated and the material can be made uniform.
- the heating time in the first heat treatment step is not particularly limited, but is preferably 10 minutes or more and 10 hours or less.
- the hot working step is a step of machining (for example, rolling) to a desired plate thickness at a temperature of, for example, about 800 ° C. to 950 ° C.
- the hot working is not particularly limited to either rolling or extrusion.
- the first cold working step is a step of performing cold working at a high working rate of 50% or more.
- cold working is appropriately performed according to a conventional method.
- the second heat treatment step is a step of heating in a medium temperature range of 400 ° C. or higher and 700 ° C. or lower.
- the heating temperature in the second heat treatment step is set to a medium temperature range of 400 ° C. or higher and 700 ° C. or lower.
- recrystallization can be obtained to obtain a uniform structure from which strain has been removed.
- heat treatment is appropriately performed according to a conventional method.
- the heating time in the second heat treatment is not particularly limited, but is preferably 10 seconds or more and 10 hours or less.
- the above-mentioned first cold working step and second heat treatment step may be performed only by one set step or may be repeated by two or more set steps when these two steps are regarded as one set step.
- the second cold rolling step is a step of performing cold working at a low working rate of 5% or more and less than 50%.
- the processing rate in the second cold rolling step is 50% or more, even if heating is applied in the third heat treatment step in the subsequent stage, the strain generated here is maintained as non-uniform and press molding is performed. It is possible to suppress variations in resistance values between products manufactured in the above-mentioned products and lots. Further, by setting it to 20% or more and less than 50%, the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured can be set to an appropriate range.
- ⁇ Third heat treatment process> In the third heat treatment step, after reaching 200 ° C. or higher and lower than 400 ° C. at a heating rate of 200 ° C./min or more, holding for 10 to 55 seconds, and then cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or higher. 3 This is a step of heating in the heat treatment step.
- the distortion in the crystal is suppressed and adjusted without recrystallization of the crystal grains, and the average value of KAM measured by the backscattered electron diffraction method is 1 ° or more. It will be less than 5 °.
- the temperature to 250 ° C.
- the ratio occupied by the area whose value is 1 ° or more and less than 4 ° can be set as an appropriate range.
- the above method for producing a copper alloy strip may be provided with a process other than the above-mentioned process.
- a surface milling process for removing a thick oxide film formed after a hot working process by mechanical polishing a degreasing process for removing rolling oil, and a polishing process for mechanically or chemically removing a thin oxide film generated by heat treatment.
- a first cold working step with a high working rate of 90% or more and a second heat treatment step of heating in a medium temperature range of 400 ° C. or higher and 700 ° C. or lower were performed.
- the first cold working step and the second heat treatment step were performed once (one set) in Examples 1 to 5, 7, 8, 10 to 15 of the present invention and Comparative Examples 1 to 5, respectively. Further, in Examples 6 and 9 of the present invention, the processing rate and the heating conditions were changed between the first set and the second set, and the treatment was performed twice (2 sets) each.
- composition of copper alloy strip The chemical composition of the copper alloy strip was measured by ICP analysis and is shown in Table 1 below.
- the range of 0 ° or more and less than 15 ° is divided into 15 (0 ° or more and less than 1 °, 1 ° or more and less than 2 °, 2 ° or more and less than 3 °, ... 14 ° or more and less than 15 °).
- the area ratio for each 1 ° the ratio of the area having KAM of 1 ° or more and less than 4 ° and the area having KAM of 6 ° or more and less than 15 ° occupy in the 100 ⁇ m ⁇ 100 ⁇ m field of view as the measurement target.
- the ratio was calculated. Such measurement was performed at 5 arbitrary points, and the average value was calculated.
- a chip with a plate thickness of 0.2 mm, a width of 2 mm, and a length of 60 mm is formed by a press, and after heat treatment at 260 ° C. for 30 minutes in an argon gas atmosphere, assuming the influence of heat during mounting, the distance between the voltage terminals is set to 30 mm.
- the variation in resistance value is "A" for the test material (copper alloy strip) whose value obtained by the formula (standard deviation / average value x 100) is 0.50% or less, and more than 0.50% 0.55.
- test material of% or less was evaluated as “B”, the test material of more than 0.55% and 0.60% or less was evaluated as “C”, and the test material of more than 0.60% was evaluated as “D”. If the value obtained by the formula (standard deviation / average value ⁇ 100) is 0.60% or less (that is, A to C evaluation), the variation in resistance value is evaluated as a passing level.
- the copper alloy strips of Examples 1 to 15 of the present invention have a composition containing manganese of 3% by mass or more and 20% by mass or less, and the average of KAM measured by the backscattered electron diffraction method. Since the value was 1 ° or more and less than 5 °, which was within the appropriate range of the present invention, it was found that there was little variation in the resistance value even after heat treatment at 260 ° C. for 30 minutes after press molding.
- the test material (copper alloy strip) of Comparative Example 1 has a composition containing 12% by mass of manganese, but the average value of KAM measured by the backscattered electron diffraction method is 0. Since it was 5.5 °, which was smaller than the appropriate range of the present invention, it was found that the resistance value varied widely after heat treatment at 260 ° C. for 30 minutes after press molding.
- test material (copper alloy strip) of Comparative Example 2 has a composition containing 12% by mass of manganese, but the average value of KAM measured by the backscattered electron diffraction method is 12.1. Since ° is larger than the appropriate range of the present invention, it was found that the resistance value varies widely after heat treatment at 260 ° C. for 30 minutes after press molding.
- test material (copper alloy strip) of Comparative Example 3 has a composition containing 7% by mass of manganese, but by heating at 700 ° C. as the third heat treatment, a backscattered electron diffraction method was performed. It was found that the average value of KAM measured by the above was 0.6 °, which was smaller than the appropriate range of the present invention, and the resistance value varied widely after heat treatment at 260 ° C. for 30 minutes after press molding. It was.
- the test material (copper alloy strip) of Comparative Example 4 has a composition containing 10% by mass of manganese, but the average value of KAM measured by the backscattered electron diffraction method is 13.8 °. Since it is larger than the appropriate range of the present invention, it was found that the resistance value varies widely after heat treatment at 260 ° C. for 30 minutes after press molding.
- the test material (copper alloy strip) of Comparative Example 5 has a composition containing 5% by mass of manganese, but the average value of KAM measured by the backscattered electron diffraction method is 0.9 °. Since it is larger than the appropriate range of the present invention, it was found that the resistance value varies widely after heat treatment at 260 ° C. for 30 minutes after press molding.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
A copper alloy strip according to the present invention has an alloy composition containing 3-20 mass% of manganese with the remainder comprising copper and inevitable impurities, wherein the average value of KAM is at least 1° and less than 5° as measured by an electron backscatter diffraction method. The copper alloy strip is suitable for manufacturing chips, etc. by press processing, and has a small variation in resistance values between products or lots.
Description
本発明は、銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器に関し、特に、プレス加工を施してチップを製造するのに適した銅合金条材であって、製造されるチップの抵抗値のばらつきが少ない銅合金条材に関する。
The present invention relates to a copper alloy strip and a method for manufacturing the same, a resistor material for a resistor using the copper alloy strip, and a resistor. In particular, a copper alloy strip suitable for producing a chip by pressing. The present invention relates to a copper alloy strip having little variation in the resistance value of the chip.
抵抗器に使用される抵抗材の金属材料には、環境温度が変化しても抵抗器の抵抗が安定するように、その指標である抵抗温度係数(TCR)が小さいことが要求される。抵抗温度係数とは、温度による抵抗値の変化の大きさを1℃当たりの百万分率(ppm)で表したものであり、TCR(×10-6/K)={(R-R0)/R0}×{1/(T-T0)}×106という式で表される。ここで、式中のTは試験温度(℃)、T0は基準温度(℃)、Rは試験温度Tにおける抵抗値(Ω)、R0は基準温度T0における抵抗値(Ω)を示す。Cu-Mn-Ni合金やCu-Mn-Sn合金はTCRが非常に小さいため、抵抗材を構成する合金材料として広く使用されている。
The metal material of the resistor used for the resistor is required to have a small temperature coefficient of resistance (TCR), which is an index thereof, so that the resistance of the resistor is stable even if the ambient temperature changes. The temperature coefficient of resistance represents the magnitude of the change in resistance value with temperature as a fraction (ppm) per 1 ° C., and TCR (× 10-6 / K) = {(RR 0). ) / that R 0} × {1 / ( T-T 0)} × 10 6 is represented by the formula. Here, T in the equation indicates the test temperature (° C.), T 0 indicates the reference temperature (° C.), R indicates the resistance value (Ω) at the test temperature T, and R 0 indicates the resistance value (Ω) at the reference temperature T 0 . .. Since Cu-Mn-Ni alloys and Cu-Mn-Sn alloys have a very small TCR, they are widely used as alloy materials constituting resistance materials.
ところで、このような合金材料をプレス成形して製造される抵抗材においては、プレス成形時に当該合金材料中に歪みが導入され、抵抗値にばらつきが生じ、安定的に抵抗材を生産できないことがある。
By the way, in a resistance material produced by press-molding such an alloy material, strain is introduced into the alloy material during press molding, and the resistance value varies, so that the resistance material cannot be stably produced. is there.
特許文献1においては、銅合金素材に対し高圧下率で圧延処理を施した後、水素ガスによる非酸化性雰囲気で加熱することにより、残留歪を除去でき、その結果として抵抗温度係数を低下させることができることが開示されている。しかしながら、このようにして製造される合金材料であっても、なお歪みが不均一に残留しており、抵抗値にばらつきが生じ得るものであった。
In Patent Document 1, after rolling a copper alloy material at a high pressure reduction rate, residual strain can be removed by heating in a non-oxidizing atmosphere with hydrogen gas, and as a result, the temperature coefficient of resistance is lowered. It is disclosed that it can be done. However, even in the alloy material produced in this way, the strain still remains non-uniformly, and the resistance value may vary.
本発明は、以上の実情に鑑みてなされたものであり、プレス加工を施してチップを製造するのに適した銅合金条材であって、製品やロット間に生じる抵抗値のばらつきが少ない銅合金条材およびその銅合金条材を製造する方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a copper alloy strip suitable for producing chips by press working, and copper with little variation in resistance value generated between products and lots. It is an object of the present invention to provide a method for producing an alloy strip and a copper alloy strip thereof.
本発明者らは、鋭意検討を重ねた結果、銅合金条材が、3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる合金組成を有する銅合金条材であって、後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満であることによって、そのような銅合金条材に、プレス加工を施して製造されるチップにおいて、製品やロット間に生じる抵抗値のばらつきが少ないこと、およびそのような銅合金条材は、前記銅合金条材の合金組成と実質同じ合金組成を有する銅合金素材に、800℃以上950℃以下の高温域で加熱する第1熱処理工程と、熱間加工工程と、50%以上の高加工率で冷間加工を施す第1冷間加工工程、および400℃以上700℃以下の中温域で加熱する第2熱処理工程を1セット工程とするときの1セット工程以上と、5%以上50%未満の低加工率で冷間加工を施す第2冷間圧延工程と、200℃/min以上の昇温速度で200℃以上400℃未満に到達した後、10~55秒保持後、100℃/min以上の冷却速度で50℃未満まで冷却する第3熱処理工程とを含む製造方法により製造できることを見出し、かかる知見に基づき本発明を完成するに至った。
As a result of diligent studies, the present inventors have found that the copper alloy strip contains 3% by mass or more and 20% by mass or less of manganese, and the balance is a copper alloy strip having an alloy composition consisting of copper and unavoidable impurities. Therefore, when the average value of KAM measured by the backscattered electron diffraction method is 1 ° or more and less than 5 °, the product or a chip manufactured by pressing such a copper alloy strip is used. There is little variation in the resistance value that occurs between lots, and such a copper alloy strip is a copper alloy material that has substantially the same alloy composition as the alloy composition of the copper alloy strip, and has a high temperature of 800 ° C. or higher and 950 ° C. or lower. A first heat treatment step of heating in a region, a hot working step, a first cold working step of performing cold working at a high working rate of 50% or more, and a first heating in a medium temperature range of 400 ° C. or higher and 700 ° C. or lower. One set process or more when the two heat treatment steps are one set process, the second cold rolling process in which cold processing is performed at a low processing rate of 5% or more and less than 50%, and the temperature rise rate of 200 ° C./min or more. It was found that it can be produced by a production method including a third heat treatment step of cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or more after reaching 200 ° C. or more and less than 400 ° C. and holding for 10 to 55 seconds. The present invention has been completed based on the findings.
すなわち、本発明の要旨構成は以下のとおりである。
(1)3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる合金組成を有する銅合金条材であって、後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満であることを特徴とする、銅合金条材。
(2)後方散乱電子回折法によりKAMを測定した面積全体に対して、KAMの値が1°以上4°未満である面積が占める割合は、50%以上であることを特徴とする、上記(1)に記載の銅合金条材。
(3)後方散乱電子回折法によりKAMを測定した面積全体に対して、KAMの値が6°以上15°未満である面積が占める割合は、3%以上25%以下であることを特徴とする、上記(1)または(2)に記載の銅合金条材。
(4)ビッカース硬さが150以上200以下であることを特徴とする、上記(1)~(3)のいずれかに記載の銅合金条材。
(5)前記合金組成は、0.01質量%以上5質量%以下のニッケル、0.01質量%以上5質量%以下の錫、0.01質量%以上5質量%以下の亜鉛、0.01質量%以上0.5質量%以下の鉄、0.01質量%以上0.5質量%以下のケイ素、0.01質量%以上0.5質量%以下のクロム、0.01質量%以上0.5質量%以下のジルコニウム、0.01質量%以上0.5質量%以下のチタン、0.01質量%以上0.5質量%以下の銀、0.01質量%以上0.5質量%以下のマグネシウム、0.01質量%以上0.5質量%以下のコバルト、および、0.01質量%以上0.5質量%以下のリンからなる群より選択される1種以上の元素をさらに含有することを特徴とする、上記(1)~(4)のいずれかに記載の銅合金条材。
(6)上記(1)~(5)のいずれかに記載の銅合金条材の製造方法であって、前記銅合金条材の合金組成と実質同じ合金組成を有する銅合金素材に、800℃以上950℃以下の高温域で加熱する第1熱処理工程と、熱間加工工程と、50%以上の高加工率で冷間加工を施す第1冷間加工工程、および400℃以上700℃以下の中温域で加熱する第2熱処理工程を1セット工程とするときの1セット工程以上と、5%以上50%未満の低加工率で冷間加工を施す第2冷間加工工程と、200℃/min以上の昇温速度で200℃以上400℃未満に到達した後、10~55秒保持後、100℃/min以上の冷却速度で50℃未満まで冷却する第3熱処理工程とを含むことを特徴とする、銅合金条材の製造方法。
(7)上記(1)~(5)のいずれかに記載の銅合金条材を用いた抵抗器用抵抗材料。
(8)上記(7)に記載の抵抗材料を有する抵抗器。 That is, the gist structure of the present invention is as follows.
(1) A copper alloy strip containing 3% by mass or more and 20% by mass or less of manganese and having an alloy composition in which the balance is copper and unavoidable impurities, and the average value of KAM measured by the backscattered electron diffraction method. A copper alloy strip, characterized in that the temperature is 1 ° or more and less than 5 °.
(2) The ratio of the area where the KAM value is 1 ° or more and less than 4 ° to the entire area where KAM is measured by the backscattered electron diffraction method is 50% or more. The copper alloy strip described in 1).
(3) The ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured by the backscattered electron diffraction method is 3% or more and 25% or less. , The copper alloy strip according to (1) or (2) above.
(4) The copper alloy strip according to any one of (1) to (3) above, wherein the Vickers hardness is 150 or more and 200 or less.
(5) The alloy composition is 0.01% by mass or more and 5% by mass or less of nickel, 0.01% by mass or more and 5% by mass or less of tin, 0.01% by mass or more and 5% by mass or less of zinc, 0.01. Iron of mass% or more and 0.5 mass% or less, silicon of 0.01 mass% or more and 0.5 mass% or less, chromium of 0.01 mass% or more and 0.5 mass% or less, 0.01 mass% or more and 0. 5% by mass or less of zirconium, 0.01% by mass or more and 0.5% by mass or less of titanium, 0.01% by mass or more and 0.5% by mass or less of silver, 0.01% by mass or more and 0.5% by mass or less Further containing one or more elements selected from the group consisting of magnesium, 0.01% by mass or more and 0.5% by mass or less of cobalt, and 0.01% by mass or more and 0.5% by mass or less of phosphorus. The copper alloy strip according to any one of (1) to (4) above, which comprises the above.
(6) The method for producing a copper alloy strip according to any one of (1) to (5) above, wherein a copper alloy material having substantially the same alloy composition as the alloy composition of the copper alloy strip is used at 800 ° C. The first heat treatment step of heating in a high temperature range of 950 ° C. or lower, the hot working step, the first cold working step of performing cold working at a high working rate of 50% or more, and 400 ° C. or higher and 700 ° C. or lower. One set step or more when the second heat treatment step of heating in a medium temperature range is one set step, a second cold working step of performing cold working at a low working rate of 5% or more and less than 50%, and 200 ° C./ It is characterized by including a third heat treatment step of reaching 200 ° C. or higher and lower than 400 ° C. at a heating rate of min or more, holding for 10 to 55 seconds, and then cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or higher. A method for manufacturing copper alloy strips.
(7) A resistor material for a resistor using the copper alloy strip according to any one of (1) to (5) above.
(8) A resistor having the resistance material according to (7) above.
(1)3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる合金組成を有する銅合金条材であって、後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満であることを特徴とする、銅合金条材。
(2)後方散乱電子回折法によりKAMを測定した面積全体に対して、KAMの値が1°以上4°未満である面積が占める割合は、50%以上であることを特徴とする、上記(1)に記載の銅合金条材。
(3)後方散乱電子回折法によりKAMを測定した面積全体に対して、KAMの値が6°以上15°未満である面積が占める割合は、3%以上25%以下であることを特徴とする、上記(1)または(2)に記載の銅合金条材。
(4)ビッカース硬さが150以上200以下であることを特徴とする、上記(1)~(3)のいずれかに記載の銅合金条材。
(5)前記合金組成は、0.01質量%以上5質量%以下のニッケル、0.01質量%以上5質量%以下の錫、0.01質量%以上5質量%以下の亜鉛、0.01質量%以上0.5質量%以下の鉄、0.01質量%以上0.5質量%以下のケイ素、0.01質量%以上0.5質量%以下のクロム、0.01質量%以上0.5質量%以下のジルコニウム、0.01質量%以上0.5質量%以下のチタン、0.01質量%以上0.5質量%以下の銀、0.01質量%以上0.5質量%以下のマグネシウム、0.01質量%以上0.5質量%以下のコバルト、および、0.01質量%以上0.5質量%以下のリンからなる群より選択される1種以上の元素をさらに含有することを特徴とする、上記(1)~(4)のいずれかに記載の銅合金条材。
(6)上記(1)~(5)のいずれかに記載の銅合金条材の製造方法であって、前記銅合金条材の合金組成と実質同じ合金組成を有する銅合金素材に、800℃以上950℃以下の高温域で加熱する第1熱処理工程と、熱間加工工程と、50%以上の高加工率で冷間加工を施す第1冷間加工工程、および400℃以上700℃以下の中温域で加熱する第2熱処理工程を1セット工程とするときの1セット工程以上と、5%以上50%未満の低加工率で冷間加工を施す第2冷間加工工程と、200℃/min以上の昇温速度で200℃以上400℃未満に到達した後、10~55秒保持後、100℃/min以上の冷却速度で50℃未満まで冷却する第3熱処理工程とを含むことを特徴とする、銅合金条材の製造方法。
(7)上記(1)~(5)のいずれかに記載の銅合金条材を用いた抵抗器用抵抗材料。
(8)上記(7)に記載の抵抗材料を有する抵抗器。 That is, the gist structure of the present invention is as follows.
(1) A copper alloy strip containing 3% by mass or more and 20% by mass or less of manganese and having an alloy composition in which the balance is copper and unavoidable impurities, and the average value of KAM measured by the backscattered electron diffraction method. A copper alloy strip, characterized in that the temperature is 1 ° or more and less than 5 °.
(2) The ratio of the area where the KAM value is 1 ° or more and less than 4 ° to the entire area where KAM is measured by the backscattered electron diffraction method is 50% or more. The copper alloy strip described in 1).
(3) The ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured by the backscattered electron diffraction method is 3% or more and 25% or less. , The copper alloy strip according to (1) or (2) above.
(4) The copper alloy strip according to any one of (1) to (3) above, wherein the Vickers hardness is 150 or more and 200 or less.
(5) The alloy composition is 0.01% by mass or more and 5% by mass or less of nickel, 0.01% by mass or more and 5% by mass or less of tin, 0.01% by mass or more and 5% by mass or less of zinc, 0.01. Iron of mass% or more and 0.5 mass% or less, silicon of 0.01 mass% or more and 0.5 mass% or less, chromium of 0.01 mass% or more and 0.5 mass% or less, 0.01 mass% or more and 0. 5% by mass or less of zirconium, 0.01% by mass or more and 0.5% by mass or less of titanium, 0.01% by mass or more and 0.5% by mass or less of silver, 0.01% by mass or more and 0.5% by mass or less Further containing one or more elements selected from the group consisting of magnesium, 0.01% by mass or more and 0.5% by mass or less of cobalt, and 0.01% by mass or more and 0.5% by mass or less of phosphorus. The copper alloy strip according to any one of (1) to (4) above, which comprises the above.
(6) The method for producing a copper alloy strip according to any one of (1) to (5) above, wherein a copper alloy material having substantially the same alloy composition as the alloy composition of the copper alloy strip is used at 800 ° C. The first heat treatment step of heating in a high temperature range of 950 ° C. or lower, the hot working step, the first cold working step of performing cold working at a high working rate of 50% or more, and 400 ° C. or higher and 700 ° C. or lower. One set step or more when the second heat treatment step of heating in a medium temperature range is one set step, a second cold working step of performing cold working at a low working rate of 5% or more and less than 50%, and 200 ° C./ It is characterized by including a third heat treatment step of reaching 200 ° C. or higher and lower than 400 ° C. at a heating rate of min or more, holding for 10 to 55 seconds, and then cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or higher. A method for manufacturing copper alloy strips.
(7) A resistor material for a resistor using the copper alloy strip according to any one of (1) to (5) above.
(8) A resistor having the resistance material according to (7) above.
本発明によれば、プレス加工を施してチップを製造するのに適した銅合金条材であって、製品やロット間に生じる抵抗値のばらつきが少ない銅合金条材およびその銅合金条材を製造する方法を提供することができる。
According to the present invention, a copper alloy strip suitable for producing chips by press working, and a copper alloy strip having a small variation in resistance value between products and lots, and a copper alloy strip thereof. A method of manufacturing can be provided.
(1)銅合金条材
以下、本発明の銅合金条材の好ましい実施形態について、詳細に説明する。本発明に従う銅合金条材は、3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる合金組成を有する銅合金条材であって、後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満であることを特徴とするものである。 (1) Copper Alloy Strips Hereinafter, preferred embodiments of the copper alloy strips of the present invention will be described in detail. The copper alloy strip according to the present invention is a copper alloy strip containing 3% by mass or more and 20% by mass or less of manganese and having an alloy composition in which the balance is copper and unavoidable impurities, and is measured by the backscattered electron diffraction method. The average value of KAM produced is 1 ° or more and less than 5 °.
以下、本発明の銅合金条材の好ましい実施形態について、詳細に説明する。本発明に従う銅合金条材は、3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる合金組成を有する銅合金条材であって、後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満であることを特徴とするものである。 (1) Copper Alloy Strips Hereinafter, preferred embodiments of the copper alloy strips of the present invention will be described in detail. The copper alloy strip according to the present invention is a copper alloy strip containing 3% by mass or more and 20% by mass or less of manganese and having an alloy composition in which the balance is copper and unavoidable impurities, and is measured by the backscattered electron diffraction method. The average value of KAM produced is 1 ° or more and less than 5 °.
このような銅合金条材においては、Mnを3質量%以上含有していることにより、当該銅合金条材内に適切な歪みを生じさせ、適切なKAMの値が得られる。一方で、銅合金条材において、後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満であることにより、当該銅合金条材がごく僅かな歪みを有するものとなり、この歪みによりプレス加工で生じる歪みを抑制(相殺)し、製品やロット間の抵抗値のばらつきを抑制することができる。
In such a copper alloy strip, when Mn is contained in an amount of 3% by mass or more, an appropriate strain is generated in the copper alloy strip, and an appropriate KAM value can be obtained. On the other hand, in the copper alloy strip, when the average value of KAM measured by the backscattered electron diffraction method is 1 ° or more and less than 5 °, the copper alloy strip has a very slight strain. It is possible to suppress (cancel) the strain generated by press working due to the strain, and suppress the variation in the resistance value between products and lots.
<銅合金条材の組成>
〔マンガン:3質量%以上20質量%以下〕
本発明の銅合金条材は、3質量%以上20質量%以下のマンガンを含有するものである。マンガン(Mn)は、本発明では必須の含有成分である。マンガン含有量がこのような範囲にあることにより、当該銅合金材料の抵抗温度係数を低下させることができる。これに対し、マンガンの含有量が3質量%未満であると、抵抗温度係数を小さくする効果が十分に得られない。また、マンガンの含有量が20質量%より多い場合、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。抵抗温度係数の観点から、マンガン含有量は、5質量%以上であることが好ましい。 <Composition of copper alloy strip>
[Manganese: 3% by mass or more and 20% by mass or less]
The copper alloy strip of the present invention contains 3% by mass or more and 20% by mass or less of manganese. Manganese (Mn) is an essential component in the present invention. When the manganese content is in such a range, the temperature coefficient of resistance of the copper alloy material can be lowered. On the other hand, if the manganese content is less than 3% by mass, the effect of reducing the temperature coefficient of resistance cannot be sufficiently obtained. Further, when the manganese content is more than 20% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. From the viewpoint of the temperature coefficient of resistance, the manganese content is preferably 5% by mass or more.
〔マンガン:3質量%以上20質量%以下〕
本発明の銅合金条材は、3質量%以上20質量%以下のマンガンを含有するものである。マンガン(Mn)は、本発明では必須の含有成分である。マンガン含有量がこのような範囲にあることにより、当該銅合金材料の抵抗温度係数を低下させることができる。これに対し、マンガンの含有量が3質量%未満であると、抵抗温度係数を小さくする効果が十分に得られない。また、マンガンの含有量が20質量%より多い場合、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。抵抗温度係数の観点から、マンガン含有量は、5質量%以上であることが好ましい。 <Composition of copper alloy strip>
[Manganese: 3% by mass or more and 20% by mass or less]
The copper alloy strip of the present invention contains 3% by mass or more and 20% by mass or less of manganese. Manganese (Mn) is an essential component in the present invention. When the manganese content is in such a range, the temperature coefficient of resistance of the copper alloy material can be lowered. On the other hand, if the manganese content is less than 3% by mass, the effect of reducing the temperature coefficient of resistance cannot be sufficiently obtained. Further, when the manganese content is more than 20% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. From the viewpoint of the temperature coefficient of resistance, the manganese content is preferably 5% by mass or more.
<銅合金条材の任意成分>
また、本発明の合金条材は、任意添加成分として、0.01質量%以上5質量%以下のニッケル、0.01質量%以上5質量%以下の錫、0.01質量%以上5質量%以下の亜鉛、0.01質量%以上0.5質量%以下の鉄、0.01質量%以上0.5質量%以下のケイ素、0.01質量%以上0.5質量%以下のクロム、0.01質量%以上0.5質量%以下のジルコニウム、0.01質量%以上0.5質量%以下のチタン、0.01質量%以上0.5質量%以下の銀、0.01質量%以上0.5質量%以下のマグネシウム、0.01質量%以上0.5質量%以下のコバルト、および、0.01質量%以上0.5質量%以下のリンからなる群より選択される1種以上の元素をさらに含有することができる。これらの元素は、いずれも抵抗温度係数の改善、体積抵抗率の調整等を目的として添加するものであるが、それぞれの所定の範囲を超えて添加すると、使用温度が400℃未満であっても、抵抗値等の特性が変動したり、原料コストの増加等が生じたりするおそれがある。以下、各金属元素についてそれぞれ説明する。 <Arbitrary component of copper alloy strip>
Further, in the alloy strip material of the present invention, as optional additive components, nickel of 0.01% by mass or more and 5% by mass or less, tin of 0.01% by mass or more and 5% by mass or less, 0.01% by mass or more and 5% by mass. The following zinc, 0.01% by mass or more and 0.5% by mass or less of iron, 0.01% by mass or more and 0.5% by mass or less of silicon, 0.01% by mass or more and 0.5% by mass or less of chromium, 0 0.01 mass% or more and 0.5 mass% or less zirconium, 0.01 mass% or more and 0.5 mass% or less titanium, 0.01 mass% or more and 0.5 mass% or less silver, 0.01 mass% or more One or more selected from the group consisting of magnesium of 0.5% by mass or less, cobalt of 0.01% by mass or more and 0.5% by mass or less, and phosphorus of 0.01% by mass or more and 0.5% by mass or less. Elements can be further contained. All of these elements are added for the purpose of improving the temperature coefficient of resistance, adjusting the volume resistivity, etc. However, if they are added beyond their respective predetermined ranges, even if the operating temperature is less than 400 ° C. , Characteristics such as resistance value may fluctuate, and raw material cost may increase. Hereinafter, each metal element will be described.
また、本発明の合金条材は、任意添加成分として、0.01質量%以上5質量%以下のニッケル、0.01質量%以上5質量%以下の錫、0.01質量%以上5質量%以下の亜鉛、0.01質量%以上0.5質量%以下の鉄、0.01質量%以上0.5質量%以下のケイ素、0.01質量%以上0.5質量%以下のクロム、0.01質量%以上0.5質量%以下のジルコニウム、0.01質量%以上0.5質量%以下のチタン、0.01質量%以上0.5質量%以下の銀、0.01質量%以上0.5質量%以下のマグネシウム、0.01質量%以上0.5質量%以下のコバルト、および、0.01質量%以上0.5質量%以下のリンからなる群より選択される1種以上の元素をさらに含有することができる。これらの元素は、いずれも抵抗温度係数の改善、体積抵抗率の調整等を目的として添加するものであるが、それぞれの所定の範囲を超えて添加すると、使用温度が400℃未満であっても、抵抗値等の特性が変動したり、原料コストの増加等が生じたりするおそれがある。以下、各金属元素についてそれぞれ説明する。 <Arbitrary component of copper alloy strip>
Further, in the alloy strip material of the present invention, as optional additive components, nickel of 0.01% by mass or more and 5% by mass or less, tin of 0.01% by mass or more and 5% by mass or less, 0.01% by mass or more and 5% by mass. The following zinc, 0.01% by mass or more and 0.5% by mass or less of iron, 0.01% by mass or more and 0.5% by mass or less of silicon, 0.01% by mass or more and 0.5% by mass or less of chromium, 0 0.01 mass% or more and 0.5 mass% or less zirconium, 0.01 mass% or more and 0.5 mass% or less titanium, 0.01 mass% or more and 0.5 mass% or less silver, 0.01 mass% or more One or more selected from the group consisting of magnesium of 0.5% by mass or less, cobalt of 0.01% by mass or more and 0.5% by mass or less, and phosphorus of 0.01% by mass or more and 0.5% by mass or less. Elements can be further contained. All of these elements are added for the purpose of improving the temperature coefficient of resistance, adjusting the volume resistivity, etc. However, if they are added beyond their respective predetermined ranges, even if the operating temperature is less than 400 ° C. , Characteristics such as resistance value may fluctuate, and raw material cost may increase. Hereinafter, each metal element will be described.
〔ニッケル:0.01質量%以上5質量%以下〕
ニッケル(Ni)の含有量は、特に限定されないが、0.01質量%以上5質量%以下であることが好ましい。ニッケルの含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、ニッケルの含有量が5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、ニッケルの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Nickel: 0.01% by mass or more and 5% by mass or less]
The content of nickel (Ni) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less. If the nickel content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the nickel content exceeds 5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The nickel content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
ニッケル(Ni)の含有量は、特に限定されないが、0.01質量%以上5質量%以下であることが好ましい。ニッケルの含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、ニッケルの含有量が5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、ニッケルの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Nickel: 0.01% by mass or more and 5% by mass or less]
The content of nickel (Ni) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less. If the nickel content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the nickel content exceeds 5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The nickel content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔錫:0.01質量%以上5質量%以下〕
錫(Sn)の含有量は、特に限定されないが、0.01質量%以上5質量%以下であることが好ましい。錫の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、錫の含有量が5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、錫の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Tin: 0.01% by mass or more and 5% by mass or less]
The content of tin (Sn) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less. If the tin content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the tin content exceeds 5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The tin content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
錫(Sn)の含有量は、特に限定されないが、0.01質量%以上5質量%以下であることが好ましい。錫の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、錫の含有量が5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、錫の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Tin: 0.01% by mass or more and 5% by mass or less]
The content of tin (Sn) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less. If the tin content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the tin content exceeds 5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The tin content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔鉄:0.01質量%以上0.5質量%以下〕
鉄(Fe)の含有量は、特に限定されないが、0.01質量%以上0.5質量%以下であることが好ましい。鉄の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、鉄の含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、鉄の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Iron: 0.01% by mass or more and 0.5% by mass or less]
The content of iron (Fe) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less. If the iron content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the iron content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The iron content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
鉄(Fe)の含有量は、特に限定されないが、0.01質量%以上0.5質量%以下であることが好ましい。鉄の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、鉄の含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、鉄の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Iron: 0.01% by mass or more and 0.5% by mass or less]
The content of iron (Fe) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less. If the iron content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the iron content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The iron content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔亜鉛:0.01質量%以上5質量%以下〕
亜鉛(Zn)の含有量は、特に限定されないが、0.01質量%以上5質量%以下であることが好ましい。亜鉛の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、亜鉛の含有量が5質量%超であると、脱亜鉛現象に起因する抵抗値のばらつきが生じるおそれがある。なお、亜鉛の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Zinc: 0.01% by mass or more and 5% by mass or less]
The content of zinc (Zn) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less. If the zinc content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the zinc content is more than 5% by mass, the resistance value may vary due to the dezincification phenomenon. The zinc content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
亜鉛(Zn)の含有量は、特に限定されないが、0.01質量%以上5質量%以下であることが好ましい。亜鉛の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、亜鉛の含有量が5質量%超であると、脱亜鉛現象に起因する抵抗値のばらつきが生じるおそれがある。なお、亜鉛の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Zinc: 0.01% by mass or more and 5% by mass or less]
The content of zinc (Zn) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less. If the zinc content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the zinc content is more than 5% by mass, the resistance value may vary due to the dezincification phenomenon. The zinc content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔ケイ素:0.01質量%以上0.5質量%以下〕
ケイ素(Si)の含有量は、特に限定されないが、0.01質量%以上0.5質量%以下であることが好ましい。ケイ素の含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、ケイ素の含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、ケイ素の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Silicon: 0.01% by mass or more and 0.5% by mass or less]
The content of silicon (Si) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less. If the silicon content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the silicon content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The silicon content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
ケイ素(Si)の含有量は、特に限定されないが、0.01質量%以上0.5質量%以下であることが好ましい。ケイ素の含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、ケイ素の含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、ケイ素の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Silicon: 0.01% by mass or more and 0.5% by mass or less]
The content of silicon (Si) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less. If the silicon content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the silicon content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The silicon content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔クロム:0.01質量%以上0.5質量%以下〕
クロム(Cr)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。クロムの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、クロムの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、クロムの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Chromium: 0.01% by mass or more and 0.5% by mass or less]
The content of chromium (Cr) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the chromium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the chromium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The chromium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
クロム(Cr)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。クロムの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、クロムの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、クロムの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Chromium: 0.01% by mass or more and 0.5% by mass or less]
The content of chromium (Cr) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the chromium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the chromium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The chromium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔ジルコニウム:0.01質量%以上0.5質量%以下〕
ジルコニウム(Zr)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。ジルコニウムの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、ジルコニウムの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、ジルコニウムの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Zirconium: 0.01% by mass or more and 0.5% by mass or less]
The content of zirconium (Zr) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the zirconium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the zirconium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The zirconium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
ジルコニウム(Zr)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。ジルコニウムの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、ジルコニウムの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、ジルコニウムの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Zirconium: 0.01% by mass or more and 0.5% by mass or less]
The content of zirconium (Zr) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the zirconium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the zirconium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The zirconium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔チタン:0.01質量%以上0.5質量%以下〕
チタン(Ti)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。チタンの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、チタンの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、チタンの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Titanium: 0.01% by mass or more and 0.5% by mass or less]
The content of titanium (Ti) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the titanium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the titanium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The titanium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
チタン(Ti)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。チタンの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、チタンの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、チタンの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Titanium: 0.01% by mass or more and 0.5% by mass or less]
The content of titanium (Ti) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the titanium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the titanium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The titanium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔銀:0.01質量%以上0.5質量%以下〕
銀(Ag)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。銀の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、銀の含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、銀の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Silver: 0.01% by mass or more and 0.5% by mass or less]
The content of silver (Ag) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the silver content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the silver content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The silver content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
銀(Ag)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。銀の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、銀の含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、銀の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Silver: 0.01% by mass or more and 0.5% by mass or less]
The content of silver (Ag) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the silver content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the silver content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The silver content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔マグネシウム:0.01質量%以上0.5質量%以下〕
マグネシウム(Mg)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。マグネシウムの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、マグネシウムの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、マグネシウムの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Magnesium: 0.01% by mass or more and 0.5% by mass or less]
The content of magnesium (Mg) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the magnesium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the magnesium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The magnesium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
マグネシウム(Mg)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。マグネシウムの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、マグネシウムの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、マグネシウムの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Magnesium: 0.01% by mass or more and 0.5% by mass or less]
The content of magnesium (Mg) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the magnesium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the magnesium content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The magnesium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔コバルト:0.01質量%以上0.5質量%以下〕
コバルト(Co)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。コバルトの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、コバルトの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、コバルトの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Cobalt: 0.01% by mass or more and 0.5% by mass or less]
The content of cobalt (Co) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the cobalt content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the cobalt content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The cobalt content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
コバルト(Co)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。コバルトの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、コバルトの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、コバルトの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Cobalt: 0.01% by mass or more and 0.5% by mass or less]
The content of cobalt (Co) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the cobalt content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the cobalt content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The cobalt content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔リン:0.01質量%以上0.5質量%以下〕
リン(P)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上5質量%以下であることが好ましい。リンの含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、リンの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、リンの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Phosphorus: 0.01% by mass or more and 0.5% by mass or less]
The content of phosphorus (P) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less with respect to 100% by mass of the copper alloy strip. If the phosphorus content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the phosphorus content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The phosphorus content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
リン(P)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上5質量%以下であることが好ましい。リンの含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、リンの含有量が0.5質量%超であると、加工時の歪み量が増し、低温域で熱処理する際に適切な歪み分布を得ることが難しくなる。なお、リンの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。 [Phosphorus: 0.01% by mass or more and 0.5% by mass or less]
The content of phosphorus (P) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less with respect to 100% by mass of the copper alloy strip. If the phosphorus content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the phosphorus content exceeds 0.5% by mass, the amount of strain during processing increases, and it becomes difficult to obtain an appropriate strain distribution during heat treatment in a low temperature range. The phosphorus content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
〔残部:銅および不可避不純物〕
上述した必須含有成分および任意添加成分以外は、残部がCu(銅)および不可避不純物からなる。なお、ここでいう「不可避不純物」とは、おおむね銅系製品において、原料中に存在するものや、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、銅系製品の特性に影響を及ぼさないため許容されている不純物である。不可避不純物として挙げられる成分としては、例えば、硫黄(S)、酸素(O)等の非金属元素やアルミニウム(Al)やアンチモン(Sb)等の金属元素が挙げられる。なお、これらの成分含有量の上限は、上記成分毎に0.05質量%、上記成分の総量で0.20質量%とすればよい。 [Remaining: Copper and unavoidable impurities]
Except for the above-mentioned essential components and optional additives, the balance consists of Cu (copper) and unavoidable impurities. The "unavoidable impurities" referred to here are generally those that are present in the raw materials of copper-based products and those that are unavoidably mixed in the manufacturing process, which are originally unnecessary, but are in trace amounts. It is an acceptable impurity because it does not affect the characteristics of copper-based products. Examples of the components listed as unavoidable impurities include non-metal elements such as sulfur (S) and oxygen (O) and metal elements such as aluminum (Al) and antimony (Sb). The upper limit of the content of these components may be 0.05% by mass for each of the above components and 0.20% by mass for the total amount of the above components.
上述した必須含有成分および任意添加成分以外は、残部がCu(銅)および不可避不純物からなる。なお、ここでいう「不可避不純物」とは、おおむね銅系製品において、原料中に存在するものや、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、銅系製品の特性に影響を及ぼさないため許容されている不純物である。不可避不純物として挙げられる成分としては、例えば、硫黄(S)、酸素(O)等の非金属元素やアルミニウム(Al)やアンチモン(Sb)等の金属元素が挙げられる。なお、これらの成分含有量の上限は、上記成分毎に0.05質量%、上記成分の総量で0.20質量%とすればよい。 [Remaining: Copper and unavoidable impurities]
Except for the above-mentioned essential components and optional additives, the balance consists of Cu (copper) and unavoidable impurities. The "unavoidable impurities" referred to here are generally those that are present in the raw materials of copper-based products and those that are unavoidably mixed in the manufacturing process, which are originally unnecessary, but are in trace amounts. It is an acceptable impurity because it does not affect the characteristics of copper-based products. Examples of the components listed as unavoidable impurities include non-metal elements such as sulfur (S) and oxygen (O) and metal elements such as aluminum (Al) and antimony (Sb). The upper limit of the content of these components may be 0.05% by mass for each of the above components and 0.20% by mass for the total amount of the above components.
<銅合金条材の結晶構造>
本発明の合金条材は、後方散乱電子回折法(EBSD法)により測定されるKAMの平均値が1°以上5°未満であることを特徴とするものである。 <Crystal structure of copper alloy strip>
The alloy strip of the present invention is characterized in that the average value of KAM measured by the backscattered electron diffraction method (EBSD method) is 1 ° or more and less than 5 °.
本発明の合金条材は、後方散乱電子回折法(EBSD法)により測定されるKAMの平均値が1°以上5°未満であることを特徴とするものである。 <Crystal structure of copper alloy strip>
The alloy strip of the present invention is characterized in that the average value of KAM measured by the backscattered electron diffraction method (EBSD method) is 1 ° or more and less than 5 °.
上述したとおり、KAMの平均値が1°以上5°未満であることにより、該銅合金条材がごく僅かな歪みを有するものとなり、この歪みによりプレス加工で生じる歪みを抑制(相殺)し、製品やロット間の抵抗値のばらつきを抑制することができる。一方で、KAMの平均値が1°未満であると、当該銅合金条材には歪みが少ない状態(再結晶後の状態)であり、プレス加工により歪みが導入されることにより商品やロット間に抵抗値のばらつきが生じる。また、KAMの平均値が5°以上であると、例えば使用時や実装時等に生じる熱の影響によって抵抗値が変動し、また、製品やロット間の抵抗値のばらつきが生じるおそれもある。
As described above, when the average value of KAM is 1 ° or more and less than 5 °, the copper alloy strip has a very slight strain, and the strain generated by the press working is suppressed (offset) by this strain. It is possible to suppress variations in resistance values between products and lots. On the other hand, if the average value of KAM is less than 1 °, the copper alloy strip has little strain (after recrystallization), and strain is introduced by press working to introduce strain between products and lots. The resistance value varies. Further, when the average value of KAM is 5 ° or more, the resistance value fluctuates due to the influence of heat generated at the time of use or mounting, for example, and the resistance value may fluctuate between products and lots.
後方散乱電子回折法によりKAMを測定した面積全体に対して、KAMの値が1°以上4°未満である面積が占める割合は、50%以上であることが好ましい。KAMを測定した面積全体に対して、KAMの値が1°以上4°未満である面積が占める割合を50%以上とすることにより、製品やロット間の抵抗値のばらつきをより有効に抑制することができる。KAMの値が1°以上4°未満である面積が占める割合が少ない場合、1°未満が多いこと、あるいは、4°以上が多いことを意味するが、1°未満が多い場合は、歪みが少ない状態が多く、4°以上が多い場合では高歪み域が多く、例えば、実装時の熱影響を受けやすくなり、多少の温度のぶれ、時間の短調に抵抗値が大きく左右され、ばらつきが大きく成る。KAMの値が1°以上4°未満である面積が占める割合は50%以上が好ましく、さらに50%以上70%未満がより好ましい。
The ratio of the area where the KAM value is 1 ° or more and less than 4 ° to the entire area where KAM is measured by the backscattered electron diffraction method is preferably 50% or more. By setting the ratio of the area where the KAM value is 1 ° or more and less than 4 ° to 50% or more of the total area where KAM is measured, the variation in resistance value between products and lots can be suppressed more effectively. be able to. If the area where the KAM value is 1 ° or more and less than 4 ° occupies a small proportion, it means that there are many less than 1 °, or there are many 4 ° or more, but if there are many less than 1 °, the distortion is There are many small states, and when there are many 4 ° or more, there are many high distortion regions, for example, it is easily affected by heat during mounting, the resistance value is greatly affected by slight temperature fluctuations and time minors, and variations are large. Become. The ratio of the area where the KAM value is 1 ° or more and less than 4 ° is preferably 50% or more, and more preferably 50% or more and less than 70%.
また、後方散乱電子回折法によりKAMを測定した面積全体に対して、KAMの値が6°以上15°未満である面積が占める割合は、3%以上25%以下であることが好ましい。KAMを測定した面積全体に対して、KAMの値が6°以上15°未満である面積が占める割合が3%以上25%以下であるということは、延性が乏しい領域が存在することを意味し、そこがプレス時に破断の起点となることで、合金中に歪み量が増えることなくプレス加工ができ、寸法精度の向上、及び、製品やロット間の抵抗値のばらつきをより有効に抑制することができる。さらにKAMの値が6°以上15°未満である面積が占める割合は、5%以上25%以下であることがより好ましい。
Further, the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured by the backscattered electron diffraction method is preferably 3% or more and 25% or less. The ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the total area where KAM is measured is 3% or more and 25% or less, which means that there is a region with poor ductility. Since this is the starting point of fracture during pressing, press working can be performed without increasing the amount of strain in the alloy, improving dimensional accuracy and more effectively suppressing variations in resistance values between products and lots. Can be done. Further, the proportion of the area where the KAM value is 6 ° or more and less than 15 ° is more preferably 5% or more and 25% or less.
なお、KAMは、日本電子株式会社製、JSM-7001FAを用いて後方散乱電子回折法により測定する。銅合金条材を、圧延方向に平行な断面を、樹脂埋め、電解研磨等によって鏡面仕上げし、測定試料とする。なお、例えば、銅合金条材をりん酸溶液に浸漬し、60秒間通電して電解研磨を行うことにより、試料表面を鏡面仕上げすることができる。その断面試料のうち、板厚中央部の100μm×100μmの視野領域を測定対象とし、ステップサイズ0.05μmにて測定を行う。TSL社製の解析ソフトOIM Analysisを用いて、すべての点を対象に、結晶方位差が15°以上の場合を境界とした第一隣接の測定値を用いてKAMの平均値を算出する。なお、また、当該視野領域において、0°以上15°未満の範囲を15分割し、1°ごとの面積率を求めることで、この面積を測定したKAMを測定した面積全体に対し、1°以上4°未満である面積が占める割合及び6°以上15°未満である面積が占める割合を求める。このような測定を任意の箇所5箇所で行い、その平均値を算出した。
KAM is measured by the backscattered electron diffraction method using JSM-7001FA manufactured by JEOL Ltd. The cross section of the copper alloy strip parallel to the rolling direction is mirror-finished by resin filling, electrolytic polishing, etc., and used as a measurement sample. For example, the surface of the sample can be mirror-finished by immersing the copper alloy strip in a phosphoric acid solution and energizing for 60 seconds for electrolytic polishing. Among the cross-sectional samples, a visual field region of 100 μm × 100 μm at the center of the plate thickness is targeted for measurement, and measurement is performed with a step size of 0.05 μm. Using the analysis software OIM Analysis manufactured by TSL, the average value of KAM is calculated for all points using the measured values of the first adjacent to each other with the crystal orientation difference of 15 ° or more as the boundary. Further, in the visual field region, the range of 0 ° or more and less than 15 ° is divided into 15 and the area ratio for each 1 ° is obtained, so that the area measured by KAM is 1 ° or more with respect to the entire measured area. The ratio of the area less than 4 ° and the ratio of the area of 6 ° or more and less than 15 ° are calculated. Such measurement was performed at 5 arbitrary points, and the average value was calculated.
KAM is measured by the backscattered electron diffraction method using JSM-7001FA manufactured by JEOL Ltd. The cross section of the copper alloy strip parallel to the rolling direction is mirror-finished by resin filling, electrolytic polishing, etc., and used as a measurement sample. For example, the surface of the sample can be mirror-finished by immersing the copper alloy strip in a phosphoric acid solution and energizing for 60 seconds for electrolytic polishing. Among the cross-sectional samples, a visual field region of 100 μm × 100 μm at the center of the plate thickness is targeted for measurement, and measurement is performed with a step size of 0.05 μm. Using the analysis software OIM Analysis manufactured by TSL, the average value of KAM is calculated for all points using the measured values of the first adjacent to each other with the crystal orientation difference of 15 ° or more as the boundary. Further, in the visual field region, the range of 0 ° or more and less than 15 ° is divided into 15 and the area ratio for each 1 ° is obtained, so that the area measured by KAM is 1 ° or more with respect to the entire measured area. The ratio of the area less than 4 ° and the ratio of the area of 6 ° or more and less than 15 ° are calculated. Such measurement was performed at 5 arbitrary points, and the average value was calculated.
<銅合金条材の物性>
本発明の合金条材のビッカース硬さは、特に限定されないが、150以上200以下であることが好ましく、150以上190以下であることがより好ましい。ビッカース硬さがこのような範囲内では、特にプレス加工による歪みを抑制し、また、熱による抵抗値等の特性の変化を抑制することができる。 <Physical properties of copper alloy strips>
The Vickers hardness of the alloy strip of the present invention is not particularly limited, but is preferably 150 or more and 200 or less, and more preferably 150 or more and 190 or less. When the Vickers hardness is within such a range, strain due to press working can be suppressed, and changes in characteristics such as resistance value due to heat can be suppressed.
本発明の合金条材のビッカース硬さは、特に限定されないが、150以上200以下であることが好ましく、150以上190以下であることがより好ましい。ビッカース硬さがこのような範囲内では、特にプレス加工による歪みを抑制し、また、熱による抵抗値等の特性の変化を抑制することができる。 <Physical properties of copper alloy strips>
The Vickers hardness of the alloy strip of the present invention is not particularly limited, but is preferably 150 or more and 200 or less, and more preferably 150 or more and 190 or less. When the Vickers hardness is within such a range, strain due to press working can be suppressed, and changes in characteristics such as resistance value due to heat can be suppressed.
なお、ビッカース硬さは、JIS Z2244(2009)に規定の方法に準拠して、銅合金材料の表面からビッカース硬さを測定する。このときの荷重(試験力)は2.9Nであり、圧子の圧下時間は15sである。
The Vickers hardness is measured from the surface of the copper alloy material in accordance with the method specified in JIS Z2244 (2009). The load (test force) at this time is 2.9 N, and the indenter reduction time is 15 s.
本発明の銅合金条材は、抵抗器、例えばシャント抵抗器やチップ抵抗器用の抵抗材料として極めて有用である。
The copper alloy strip of the present invention is extremely useful as a resistance material for resistors such as shunt resistors and chip resistors.
(2)銅合金条材の製造方法
以上のような本発明の一実施形態による銅合金条材の製造方法を詳しく説明する。この製造方法は、前記銅合金条材の合金組成と実質同じ合金組成を有する銅合金素材に、800℃以上950℃以下の高温域で加熱する第1熱処理工程と、熱間加工工程と、50%以上の高加工率で冷間加工を施す第1冷間加工工程、および400℃以上700℃以下の中温域で加熱する第2熱処理工程を1セット工程とするときの1セット工程以上と、5%以上50%未満の低加工率で冷間加工を施す第2冷間圧延工程と、200℃/min以上の昇温速度で200℃以上400℃未満に到達した後、10~55秒保持後、100℃/min以上の冷却速度で50℃未満まで冷却する第3熱処理工程とを含むことを特徴としている。以下、各工程について説明する。 (2) Method for producing copper alloy strips The method for producing copper alloy strips according to the above embodiment of the present invention will be described in detail. This manufacturing method includes a first heat treatment step of heating a copper alloy material having substantially the same alloy composition as the alloy composition of the copper alloy strip in a high temperature range of 800 ° C. or higher and 950 ° C. or lower, a hot working step, and 50. One set process or more when the first cold processing process of performing cold processing at a high processing rate of% or more and the second heat treatment process of heating in a medium temperature range of 400 ° C. or more and 700 ° C. or less are set as one set process. The second cold rolling process in which cold working is performed at a low processing rate of 5% or more and less than 50%, and holding for 10 to 55 seconds after reaching 200 ° C or more and less than 400 ° C at a heating rate of 200 ° C / min or more. After that, it is characterized by including a third heat treatment step of cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or more. Hereinafter, each step will be described.
以上のような本発明の一実施形態による銅合金条材の製造方法を詳しく説明する。この製造方法は、前記銅合金条材の合金組成と実質同じ合金組成を有する銅合金素材に、800℃以上950℃以下の高温域で加熱する第1熱処理工程と、熱間加工工程と、50%以上の高加工率で冷間加工を施す第1冷間加工工程、および400℃以上700℃以下の中温域で加熱する第2熱処理工程を1セット工程とするときの1セット工程以上と、5%以上50%未満の低加工率で冷間加工を施す第2冷間圧延工程と、200℃/min以上の昇温速度で200℃以上400℃未満に到達した後、10~55秒保持後、100℃/min以上の冷却速度で50℃未満まで冷却する第3熱処理工程とを含むことを特徴としている。以下、各工程について説明する。 (2) Method for producing copper alloy strips The method for producing copper alloy strips according to the above embodiment of the present invention will be described in detail. This manufacturing method includes a first heat treatment step of heating a copper alloy material having substantially the same alloy composition as the alloy composition of the copper alloy strip in a high temperature range of 800 ° C. or higher and 950 ° C. or lower, a hot working step, and 50. One set process or more when the first cold processing process of performing cold processing at a high processing rate of% or more and the second heat treatment process of heating in a medium temperature range of 400 ° C. or more and 700 ° C. or less are set as one set process. The second cold rolling process in which cold working is performed at a low processing rate of 5% or more and less than 50%, and holding for 10 to 55 seconds after reaching 200 ° C or more and less than 400 ° C at a heating rate of 200 ° C / min or more. After that, it is characterized by including a third heat treatment step of cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or more. Hereinafter, each step will be described.
<銅合金素材の作製工程>
銅合金素材は、前記銅合金条材の合金組成と実質同じ合金組成を有している。銅合金素材としては、例えば鋳造によって製造された鋳塊(インゴット)などが挙げられるが、特に限定はしない。ここで、銅合金素材の合金組成を、銅合金条材の合金組成と「実質同じ」としたのは、銅合金素材から銅合金条材を製造するまでの各工程において、銅合金素材中に、揮発(気化)しやすい成分等を含有する場合には、気化(蒸発)により消失することも想定されることから、そのような場合を含めるためである。 <Copper alloy material manufacturing process>
The copper alloy material has substantially the same alloy composition as the alloy composition of the copper alloy strip. Examples of the copper alloy material include ingots produced by casting, but are not particularly limited. Here, the alloy composition of the copper alloy material is set to be "substantially the same" as the alloy composition of the copper alloy strip in the copper alloy material in each process from the copper alloy material to the production of the copper alloy strip. , When a component or the like that easily volatilizes (vaporizes) is contained, it is assumed that it disappears due to vaporization (evaporation), and such a case is included.
銅合金素材は、前記銅合金条材の合金組成と実質同じ合金組成を有している。銅合金素材としては、例えば鋳造によって製造された鋳塊(インゴット)などが挙げられるが、特に限定はしない。ここで、銅合金素材の合金組成を、銅合金条材の合金組成と「実質同じ」としたのは、銅合金素材から銅合金条材を製造するまでの各工程において、銅合金素材中に、揮発(気化)しやすい成分等を含有する場合には、気化(蒸発)により消失することも想定されることから、そのような場合を含めるためである。 <Copper alloy material manufacturing process>
The copper alloy material has substantially the same alloy composition as the alloy composition of the copper alloy strip. Examples of the copper alloy material include ingots produced by casting, but are not particularly limited. Here, the alloy composition of the copper alloy material is set to be "substantially the same" as the alloy composition of the copper alloy strip in the copper alloy material in each process from the copper alloy material to the production of the copper alloy strip. , When a component or the like that easily volatilizes (vaporizes) is contained, it is assumed that it disappears due to vaporization (evaporation), and such a case is included.
<第1熱処理工程>
第1熱処理工程は、銅合金素材に、800℃以上950℃以下の高温域で加熱する工程である。第1熱処理工程での加熱温度を800℃以上950℃以下の高温域にすることで、鋳造時に生じた凝固偏析や、晶出物、析出物を消失させ素材を均一化することができる。 <First heat treatment process>
The first heat treatment step is a step of heating the copper alloy material in a high temperature range of 800 ° C. or higher and 950 ° C. or lower. By setting the heating temperature in the first heat treatment step to a high temperature range of 800 ° C. or higher and 950 ° C. or lower, solidification segregation, crystallizations and precipitates generated during casting can be eliminated and the material can be made uniform.
第1熱処理工程は、銅合金素材に、800℃以上950℃以下の高温域で加熱する工程である。第1熱処理工程での加熱温度を800℃以上950℃以下の高温域にすることで、鋳造時に生じた凝固偏析や、晶出物、析出物を消失させ素材を均一化することができる。 <First heat treatment process>
The first heat treatment step is a step of heating the copper alloy material in a high temperature range of 800 ° C. or higher and 950 ° C. or lower. By setting the heating temperature in the first heat treatment step to a high temperature range of 800 ° C. or higher and 950 ° C. or lower, solidification segregation, crystallizations and precipitates generated during casting can be eliminated and the material can be made uniform.
第1熱処理工程における加熱時間としては、特に限定されないが、10分間以上10時間以下であることが好ましい。
The heating time in the first heat treatment step is not particularly limited, but is preferably 10 minutes or more and 10 hours or less.
<熱間加工工程>
熱間加工工程は、例えば800℃~950℃程度の温度で、所望の板厚になるように加工(例えば圧延)する工程である。熱間加工については、圧延加工、もしくは押出加工のどちらでも特に制限はない。 <Hot working process>
The hot working step is a step of machining (for example, rolling) to a desired plate thickness at a temperature of, for example, about 800 ° C. to 950 ° C. The hot working is not particularly limited to either rolling or extrusion.
熱間加工工程は、例えば800℃~950℃程度の温度で、所望の板厚になるように加工(例えば圧延)する工程である。熱間加工については、圧延加工、もしくは押出加工のどちらでも特に制限はない。 <Hot working process>
The hot working step is a step of machining (for example, rolling) to a desired plate thickness at a temperature of, for example, about 800 ° C. to 950 ° C. The hot working is not particularly limited to either rolling or extrusion.
<第1冷間加工工程>
第1冷間加工工程は、50%以上の高加工率で冷間加工を施す工程である。第1冷間加工工程では、常法にしたがい、適宜冷間加工を施す。第1冷間加工工程における加工率を、50%以上の高加工率とすることで、再結晶の駆動力となる歪み量を確保でき、次工程での再結晶を容易にさせることができる。 <First cold working process>
The first cold working step is a step of performing cold working at a high working rate of 50% or more. In the first cold working step, cold working is appropriately performed according to a conventional method. By setting the processing rate in the first cold processing step to a high processing rate of 50% or more, the amount of strain that is the driving force for recrystallization can be secured, and recrystallization in the next step can be facilitated.
第1冷間加工工程は、50%以上の高加工率で冷間加工を施す工程である。第1冷間加工工程では、常法にしたがい、適宜冷間加工を施す。第1冷間加工工程における加工率を、50%以上の高加工率とすることで、再結晶の駆動力となる歪み量を確保でき、次工程での再結晶を容易にさせることができる。 <First cold working process>
The first cold working step is a step of performing cold working at a high working rate of 50% or more. In the first cold working step, cold working is appropriately performed according to a conventional method. By setting the processing rate in the first cold processing step to a high processing rate of 50% or more, the amount of strain that is the driving force for recrystallization can be secured, and recrystallization in the next step can be facilitated.
<第2熱処理工程>
第2熱処理工程は、400℃以上700℃以下の中温域で加熱を施す工程である。第2熱処理工程での加熱温度を400℃以上700℃以下の中温域にすることで、再結晶させ、歪みが除去された均一な組織を得ることができる。第2熱処理工程では、常法にしたがい、適宜熱処理を施す。 <Second heat treatment process>
The second heat treatment step is a step of heating in a medium temperature range of 400 ° C. or higher and 700 ° C. or lower. By setting the heating temperature in the second heat treatment step to a medium temperature range of 400 ° C. or higher and 700 ° C. or lower, recrystallization can be obtained to obtain a uniform structure from which strain has been removed. In the second heat treatment step, heat treatment is appropriately performed according to a conventional method.
第2熱処理工程は、400℃以上700℃以下の中温域で加熱を施す工程である。第2熱処理工程での加熱温度を400℃以上700℃以下の中温域にすることで、再結晶させ、歪みが除去された均一な組織を得ることができる。第2熱処理工程では、常法にしたがい、適宜熱処理を施す。 <Second heat treatment process>
The second heat treatment step is a step of heating in a medium temperature range of 400 ° C. or higher and 700 ° C. or lower. By setting the heating temperature in the second heat treatment step to a medium temperature range of 400 ° C. or higher and 700 ° C. or lower, recrystallization can be obtained to obtain a uniform structure from which strain has been removed. In the second heat treatment step, heat treatment is appropriately performed according to a conventional method.
第2熱処理における加熱時間としては、特に限定されないが、10秒以上10時間以下とすることが好ましい。
The heating time in the second heat treatment is not particularly limited, but is preferably 10 seconds or more and 10 hours or less.
なお、上記の第1冷間加工工程及び第2熱処理工程は、これら2つの工程を1セットの工程とするとき、1セット工程のみを行ってよく、又は2セット工程以上繰り返し行ってもよい。
The above-mentioned first cold working step and second heat treatment step may be performed only by one set step or may be repeated by two or more set steps when these two steps are regarded as one set step.
<第2冷間圧延工程>
第2冷間圧延工程は、5%以上50%未満の低加工率で冷間加工を施す工程である。このようにして低加工率で冷間加工を施すことにより、合金材料中の歪みの不均一さを抑制して圧延することができる。一方で、第2冷間圧延工程における加工率が50%以上であると、後段の第3熱処理工程で加熱を施しても、ここで生じた歪みが不均一なまま維持して、プレス成形して製造される製品やロット間での抵抗値のばらつきを抑制することができる。さらには20%以上50%未満とすることで、KAMを測定した面積全体に対して、KAMの値が6°以上15°未満である面積が占める割合を適正な範囲とすることができる。 <Second cold rolling process>
The second cold rolling step is a step of performing cold working at a low working rate of 5% or more and less than 50%. By performing cold working at a low working rate in this way, it is possible to suppress the non-uniformity of strain in the alloy material and roll. On the other hand, if the processing rate in the second cold rolling step is 50% or more, even if heating is applied in the third heat treatment step in the subsequent stage, the strain generated here is maintained as non-uniform and press molding is performed. It is possible to suppress variations in resistance values between products manufactured in the above-mentioned products and lots. Further, by setting it to 20% or more and less than 50%, the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured can be set to an appropriate range.
第2冷間圧延工程は、5%以上50%未満の低加工率で冷間加工を施す工程である。このようにして低加工率で冷間加工を施すことにより、合金材料中の歪みの不均一さを抑制して圧延することができる。一方で、第2冷間圧延工程における加工率が50%以上であると、後段の第3熱処理工程で加熱を施しても、ここで生じた歪みが不均一なまま維持して、プレス成形して製造される製品やロット間での抵抗値のばらつきを抑制することができる。さらには20%以上50%未満とすることで、KAMを測定した面積全体に対して、KAMの値が6°以上15°未満である面積が占める割合を適正な範囲とすることができる。 <Second cold rolling process>
The second cold rolling step is a step of performing cold working at a low working rate of 5% or more and less than 50%. By performing cold working at a low working rate in this way, it is possible to suppress the non-uniformity of strain in the alloy material and roll. On the other hand, if the processing rate in the second cold rolling step is 50% or more, even if heating is applied in the third heat treatment step in the subsequent stage, the strain generated here is maintained as non-uniform and press molding is performed. It is possible to suppress variations in resistance values between products manufactured in the above-mentioned products and lots. Further, by setting it to 20% or more and less than 50%, the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured can be set to an appropriate range.
<第3熱処理工程>
第3熱処理工程は、200℃/min以上の昇温速度で200℃以上400℃未満に到達した後、10~55秒保持後、100℃/min以上の冷却速度で50℃未満まで冷却する第3熱処理工程で加熱を施す工程である。このようにして低温域で加熱を施すことにより、結晶粒が再結晶することなく、結晶内の歪みが抑制されて調整され、後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満となる。さらには250℃以上とすることで、KAMを測定した面積全体に対して、KAMの値が6°以上15°未満である面積が占める割合および、KAMを測定した面積全体に対して、KAMの値が1°以上4°未満である面積が占める割合を適正な範囲とすることができる。 <Third heat treatment process>
In the third heat treatment step, after reaching 200 ° C. or higher and lower than 400 ° C. at a heating rate of 200 ° C./min or more, holding for 10 to 55 seconds, and then cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or higher. 3 This is a step of heating in the heat treatment step. By heating in the low temperature range in this way, the distortion in the crystal is suppressed and adjusted without recrystallization of the crystal grains, and the average value of KAM measured by the backscattered electron diffraction method is 1 ° or more. It will be less than 5 °. Furthermore, by setting the temperature to 250 ° C. or higher, the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured, and the area where KAM is measured, the KAM The ratio occupied by the area whose value is 1 ° or more and less than 4 ° can be set as an appropriate range.
第3熱処理工程は、200℃/min以上の昇温速度で200℃以上400℃未満に到達した後、10~55秒保持後、100℃/min以上の冷却速度で50℃未満まで冷却する第3熱処理工程で加熱を施す工程である。このようにして低温域で加熱を施すことにより、結晶粒が再結晶することなく、結晶内の歪みが抑制されて調整され、後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満となる。さらには250℃以上とすることで、KAMを測定した面積全体に対して、KAMの値が6°以上15°未満である面積が占める割合および、KAMを測定した面積全体に対して、KAMの値が1°以上4°未満である面積が占める割合を適正な範囲とすることができる。 <Third heat treatment process>
In the third heat treatment step, after reaching 200 ° C. or higher and lower than 400 ° C. at a heating rate of 200 ° C./min or more, holding for 10 to 55 seconds, and then cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or higher. 3 This is a step of heating in the heat treatment step. By heating in the low temperature range in this way, the distortion in the crystal is suppressed and adjusted without recrystallization of the crystal grains, and the average value of KAM measured by the backscattered electron diffraction method is 1 ° or more. It will be less than 5 °. Furthermore, by setting the temperature to 250 ° C. or higher, the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured, and the area where KAM is measured, the KAM The ratio occupied by the area whose value is 1 ° or more and less than 4 ° can be set as an appropriate range.
なお、以上の銅合金条材の製造方法は、上述した工程以外の他の工程を設けてもよい。例えば、熱間加工工程の後に形成された厚い酸化被膜を機械研磨によって除去する面削工程や、圧延油を取り除く脱脂工程、熱処理によって生じた薄い酸化被膜を機械的または化学的に除去する研磨工程、変色を防止するために行う防錆工程などが挙げられる。
The above method for producing a copper alloy strip may be provided with a process other than the above-mentioned process. For example, a surface milling process for removing a thick oxide film formed after a hot working process by mechanical polishing, a degreasing process for removing rolling oil, and a polishing process for mechanically or chemically removing a thin oxide film generated by heat treatment. , Anti-rust process to prevent discoloration, etc.
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, but includes all aspects included in the concept of the present invention and the scope of claims, and varies within the scope of the present invention. Can be modified to.
次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれらの実施例に限定されるものではない。
Next, in order to further clarify the effect of the present invention, examples of the present invention and comparative examples will be described, but the present invention is not limited to these examples.
(発明例1~15、比較例1~5)
表1の「合金組成」欄に記載した合金組成を有する鋳塊(10kg)を鋳造により製造した。この鋳塊に対し、加熱温度800℃以上950℃以下、加熱時間10分以上10時間以下の条件で第1熱処理工程を行い、合金成分を均質化した後に、加工率70%超とする熱間加工工程により板状(サイズ:長さ500mm、幅100mm、厚さ10mm)に成形し水冷し、板状物を得た。 (Invention Examples 1 to 15, Comparative Examples 1 to 5)
An ingot (10 kg) having the alloy composition described in the “Alloy composition” column of Table 1 was produced by casting. The ingot is subjected to the first heat treatment step under the conditions of a heating temperature of 800 ° C. or higher and 950 ° C. or lower and a heating time of 10 minutes or longer and 10 hours or lower, and after homogenizing the alloy components, the hot working rate is increased to 70% or more. It was formed into a plate shape (size: length 500 mm, width 100 mm, thickness 10 mm) by a processing step and cooled with water to obtain a plate shape.
表1の「合金組成」欄に記載した合金組成を有する鋳塊(10kg)を鋳造により製造した。この鋳塊に対し、加熱温度800℃以上950℃以下、加熱時間10分以上10時間以下の条件で第1熱処理工程を行い、合金成分を均質化した後に、加工率70%超とする熱間加工工程により板状(サイズ:長さ500mm、幅100mm、厚さ10mm)に成形し水冷し、板状物を得た。 (Invention Examples 1 to 15, Comparative Examples 1 to 5)
An ingot (10 kg) having the alloy composition described in the “Alloy composition” column of Table 1 was produced by casting. The ingot is subjected to the first heat treatment step under the conditions of a heating temperature of 800 ° C. or higher and 950 ° C. or lower and a heating time of 10 minutes or longer and 10 hours or lower, and after homogenizing the alloy components, the hot working rate is increased to 70% or more. It was formed into a plate shape (size: length 500 mm, width 100 mm, thickness 10 mm) by a processing step and cooled with water to obtain a plate shape.
次いで、90%以上の高加工率での第1冷間加工工程、および400℃以上700℃以下の中温域で加熱する第2熱処理工程を行った。なお、第1冷間加工工程および第2熱処理工程は、本発明例1~5、7、8、10~15および比較例1~5では、それぞれ1回ずつ(1セット)行った。また、本発明例6および9では、1セット目と2セット目とで加工率および加熱条件を変更し、それぞれ2回ずつ(2セット)処理を行った。
Next, a first cold working step with a high working rate of 90% or more and a second heat treatment step of heating in a medium temperature range of 400 ° C. or higher and 700 ° C. or lower were performed. The first cold working step and the second heat treatment step were performed once (one set) in Examples 1 to 5, 7, 8, 10 to 15 of the present invention and Comparative Examples 1 to 5, respectively. Further, in Examples 6 and 9 of the present invention, the processing rate and the heating conditions were changed between the first set and the second set, and the treatment was performed twice (2 sets) each.
その後、5%以上50%未満の低加工率での第2冷間加工工程、および200℃/min以上の昇温速度で200℃以上400℃未満に到達した後、10~55秒保持後、100℃/min以上の冷却速度で50℃未満まで冷却する第3熱処理工程を行った。なお、比較例1については、第2冷間加工工程および第3熱処理工程を行わず、また、比較例4については、第3熱処理工程を行わなかったため、表1では、行わなかった工程の欄に「-」と表記した。
Then, after the second cold working step at a low processing rate of 5% or more and less than 50%, and after reaching 200 ° C. or more and less than 400 ° C. at a heating rate of 200 ° C./min or more, holding for 10 to 55 seconds, A third heat treatment step of cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or more was performed. In addition, in Comparative Example 1, the second cold working step and the third heat treatment step were not performed, and in Comparative Example 4, the third heat treatment step was not performed. Therefore, in Table 1, the column of the steps not performed is performed. Was written as "-".
[銅合金条材の組成]
銅合金条材の化学組成は、ICP分析により測定し、下記表1に示した。 [Composition of copper alloy strip]
The chemical composition of the copper alloy strip was measured by ICP analysis and is shown in Table 1 below.
銅合金条材の化学組成は、ICP分析により測定し、下記表1に示した。 [Composition of copper alloy strip]
The chemical composition of the copper alloy strip was measured by ICP analysis and is shown in Table 1 below.
[後方散乱電子回折]
KAMは、日本電子株式会社製、JSM-7001FAを用いて後方散乱電子回折法により測定した。銅合金条材を、圧延方向に平行な断面を、樹脂埋め、電解研磨等によって鏡面仕上げし、測定試料とした。その断面試料のうち、板厚中央部の100μm×100μmの視野領域を測定対象とし、ステップサイズ0.05μmにて測定を行った。TSL社製の解析ソフトOIM Analysisを用いて、結晶方位差が15°以上を境界として、KAMの平均値を算出した。また、当該視野において、0°以上15°未満の範囲を15分割(0°以上1°未満、1°以上2°未満、2°以上3°未満、・・・14°以上15°未満)し、1°ごとの面積率を求めることで、測定対象とした100μm×100μm視野における、1°以上4°未満のKAMを有する面積が占める割合及び6°以上15°未満のKAMを有する面積が占める割合を求めた。このような測定を任意の箇所5箇所で行い、その平均値を算出した。 [Backscattered electron diffraction]
KAM was measured by the backscattered electron diffraction method using JSM-7001FA manufactured by JEOL Ltd. The cross section of the copper alloy strip parallel to the rolling direction was mirror-finished by resin filling, electrolytic polishing, etc., and used as a measurement sample. Among the cross-sectional samples, a visual field region of 100 μm × 100 μm at the center of the plate thickness was set as the measurement target, and the measurement was performed with a step size of 0.05 μm. Using the analysis software OIM Analysis manufactured by TSL, the average value of KAM was calculated with the crystal orientation difference of 15 ° or more as the boundary. In addition, in the field of view, the range of 0 ° or more and less than 15 ° is divided into 15 (0 ° or more and less than 1 °, 1 ° or more and less than 2 °, 2 ° or more and less than 3 °, ... 14 ° or more and less than 15 °). By obtaining the area ratio for each 1 °, the ratio of the area having KAM of 1 ° or more and less than 4 ° and the area having KAM of 6 ° or more and less than 15 ° occupy in the 100 μm × 100 μm field of view as the measurement target. The ratio was calculated. Such measurement was performed at 5 arbitrary points, and the average value was calculated.
KAMは、日本電子株式会社製、JSM-7001FAを用いて後方散乱電子回折法により測定した。銅合金条材を、圧延方向に平行な断面を、樹脂埋め、電解研磨等によって鏡面仕上げし、測定試料とした。その断面試料のうち、板厚中央部の100μm×100μmの視野領域を測定対象とし、ステップサイズ0.05μmにて測定を行った。TSL社製の解析ソフトOIM Analysisを用いて、結晶方位差が15°以上を境界として、KAMの平均値を算出した。また、当該視野において、0°以上15°未満の範囲を15分割(0°以上1°未満、1°以上2°未満、2°以上3°未満、・・・14°以上15°未満)し、1°ごとの面積率を求めることで、測定対象とした100μm×100μm視野における、1°以上4°未満のKAMを有する面積が占める割合及び6°以上15°未満のKAMを有する面積が占める割合を求めた。このような測定を任意の箇所5箇所で行い、その平均値を算出した。 [Backscattered electron diffraction]
KAM was measured by the backscattered electron diffraction method using JSM-7001FA manufactured by JEOL Ltd. The cross section of the copper alloy strip parallel to the rolling direction was mirror-finished by resin filling, electrolytic polishing, etc., and used as a measurement sample. Among the cross-sectional samples, a visual field region of 100 μm × 100 μm at the center of the plate thickness was set as the measurement target, and the measurement was performed with a step size of 0.05 μm. Using the analysis software OIM Analysis manufactured by TSL, the average value of KAM was calculated with the crystal orientation difference of 15 ° or more as the boundary. In addition, in the field of view, the range of 0 ° or more and less than 15 ° is divided into 15 (0 ° or more and less than 1 °, 1 ° or more and less than 2 °, 2 ° or more and less than 3 °, ... 14 ° or more and less than 15 °). By obtaining the area ratio for each 1 °, the ratio of the area having KAM of 1 ° or more and less than 4 ° and the area having KAM of 6 ° or more and less than 15 ° occupy in the 100 μm × 100 μm field of view as the measurement target. The ratio was calculated. Such measurement was performed at 5 arbitrary points, and the average value was calculated.
[ビッカース硬さ]
ビッカース硬さは、JIS Z2244(2009)に規定の方法に準拠して、銅合金材料の表面からビッカース硬さを測定した。このときの荷重(試験力)は2.9Nであり、圧子の圧下時間は15sである。 [Vickers hardness]
The Vickers hardness was measured from the surface of the copper alloy material in accordance with the method specified in JIS Z2244 (2009). The load (test force) at this time is 2.9 N, and the indenter reduction time is 15 s.
ビッカース硬さは、JIS Z2244(2009)に規定の方法に準拠して、銅合金材料の表面からビッカース硬さを測定した。このときの荷重(試験力)は2.9Nであり、圧子の圧下時間は15sである。 [Vickers hardness]
The Vickers hardness was measured from the surface of the copper alloy material in accordance with the method specified in JIS Z2244 (2009). The load (test force) at this time is 2.9 N, and the indenter reduction time is 15 s.
[抵抗値のばらつき]
板厚0.2mm、幅2mm、長さ60mmのチップをプレスによって成形し、実装時の熱の影響を想定し、アルゴンガス雰囲気で260℃、30分熱処理した後、電圧端子間距離を30mmとした四端子法により抵抗値を測定した。測定はn=500で行い、その結果より標準偏差と平均値を求めた。抵抗値のばらつきは、(標準偏差/平均値×100)の式で求められる値が0.50%以下の供試材(銅合金条材)を「A」、0.50%超0.55%以下の供試材を「B」、0.55%超0.60%以下の供試材を「C」、0.60%超の供試材を「D」として評価した。なお、(標準偏差/平均値×100)の式で求められる値が0.60%以下(すなわち、A~C評価)であれば、抵抗値のばらつきは、合格レベルであると評価した。 [Variation of resistance value]
A chip with a plate thickness of 0.2 mm, a width of 2 mm, and a length of 60 mm is formed by a press, and after heat treatment at 260 ° C. for 30 minutes in an argon gas atmosphere, assuming the influence of heat during mounting, the distance between the voltage terminals is set to 30 mm. The resistance value was measured by the four-terminal method. The measurement was performed at n = 500, and the standard deviation and the average value were obtained from the results. The variation in resistance value is "A" for the test material (copper alloy strip) whose value obtained by the formula (standard deviation / average value x 100) is 0.50% or less, and more than 0.50% 0.55. The test material of% or less was evaluated as “B”, the test material of more than 0.55% and 0.60% or less was evaluated as “C”, and the test material of more than 0.60% was evaluated as “D”. If the value obtained by the formula (standard deviation / average value × 100) is 0.60% or less (that is, A to C evaluation), the variation in resistance value is evaluated as a passing level.
板厚0.2mm、幅2mm、長さ60mmのチップをプレスによって成形し、実装時の熱の影響を想定し、アルゴンガス雰囲気で260℃、30分熱処理した後、電圧端子間距離を30mmとした四端子法により抵抗値を測定した。測定はn=500で行い、その結果より標準偏差と平均値を求めた。抵抗値のばらつきは、(標準偏差/平均値×100)の式で求められる値が0.50%以下の供試材(銅合金条材)を「A」、0.50%超0.55%以下の供試材を「B」、0.55%超0.60%以下の供試材を「C」、0.60%超の供試材を「D」として評価した。なお、(標準偏差/平均値×100)の式で求められる値が0.60%以下(すなわち、A~C評価)であれば、抵抗値のばらつきは、合格レベルであると評価した。 [Variation of resistance value]
A chip with a plate thickness of 0.2 mm, a width of 2 mm, and a length of 60 mm is formed by a press, and after heat treatment at 260 ° C. for 30 minutes in an argon gas atmosphere, assuming the influence of heat during mounting, the distance between the voltage terminals is set to 30 mm. The resistance value was measured by the four-terminal method. The measurement was performed at n = 500, and the standard deviation and the average value were obtained from the results. The variation in resistance value is "A" for the test material (copper alloy strip) whose value obtained by the formula (standard deviation / average value x 100) is 0.50% or less, and more than 0.50% 0.55. The test material of% or less was evaluated as “B”, the test material of more than 0.55% and 0.60% or less was evaluated as “C”, and the test material of more than 0.60% was evaluated as “D”. If the value obtained by the formula (standard deviation / average value × 100) is 0.60% or less (that is, A to C evaluation), the variation in resistance value is evaluated as a passing level.
表1から分かるように、本発明例1~15の銅合金条材は、3質量%以上20質量%以下のマンガンを含有する組成を有し、後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満と本発明の適正範囲内であるため、プレス成形してから260℃、30分間の熱処理を行った後も、抵抗値のばらつきが少ないことが分かった。
As can be seen from Table 1, the copper alloy strips of Examples 1 to 15 of the present invention have a composition containing manganese of 3% by mass or more and 20% by mass or less, and the average of KAM measured by the backscattered electron diffraction method. Since the value was 1 ° or more and less than 5 °, which was within the appropriate range of the present invention, it was found that there was little variation in the resistance value even after heat treatment at 260 ° C. for 30 minutes after press molding.
これに対し、比較例1の供試材(銅合金条材)は、12質量%のマンガンを含有する組成を有しているが、後方散乱電子回折法により測定されるKAMの平均値が0.5°と本発明の適正範囲よりも小さいため、プレス成形してから260℃、30分間の熱処理を行った後の抵抗値のばらつきが大きいことが分かった。
On the other hand, the test material (copper alloy strip) of Comparative Example 1 has a composition containing 12% by mass of manganese, but the average value of KAM measured by the backscattered electron diffraction method is 0. Since it was 5.5 °, which was smaller than the appropriate range of the present invention, it was found that the resistance value varied widely after heat treatment at 260 ° C. for 30 minutes after press molding.
また、比較例2の供試材(銅合金条材)は、12質量%のマンガンを含有する組成を有しているが、後方散乱電子回折法により測定されるKAMの平均値が12.1°と本発明の適正範囲よりも大きいため、プレス成形してから260℃、30分間の熱処理を行った後の抵抗値のばらつきが大きいことが分かった。
Further, the test material (copper alloy strip) of Comparative Example 2 has a composition containing 12% by mass of manganese, but the average value of KAM measured by the backscattered electron diffraction method is 12.1. Since ° is larger than the appropriate range of the present invention, it was found that the resistance value varies widely after heat treatment at 260 ° C. for 30 minutes after press molding.
また、比較例3の供試材(銅合金条材)は、7質量%のマンガンを含有する組成を有しているが、第3熱処理として700℃で加熱したことにより、後方散乱電子回折法により測定されるKAMの平均値が0.6°と本発明の適正範囲よりも小さくなり、プレス成形してから260℃、30分間の熱処理を行った後の抵抗値のばらつきが大きいことが分かった。
Further, the test material (copper alloy strip) of Comparative Example 3 has a composition containing 7% by mass of manganese, but by heating at 700 ° C. as the third heat treatment, a backscattered electron diffraction method was performed. It was found that the average value of KAM measured by the above was 0.6 °, which was smaller than the appropriate range of the present invention, and the resistance value varied widely after heat treatment at 260 ° C. for 30 minutes after press molding. It was.
比較例4の供試材(銅合金条材)は、10質量%のマンガンを含有する組成を有しているが、後方散乱電子回折法により測定されるKAMの平均値が13.8°と本発明の適正範囲よりも大きいため、プレス成形してから260℃、30分間の熱処理を行った後の抵抗値のばらつきが大きいことが分かった。
The test material (copper alloy strip) of Comparative Example 4 has a composition containing 10% by mass of manganese, but the average value of KAM measured by the backscattered electron diffraction method is 13.8 °. Since it is larger than the appropriate range of the present invention, it was found that the resistance value varies widely after heat treatment at 260 ° C. for 30 minutes after press molding.
比較例5の供試材(銅合金条材)は、5質量%のマンガンを含有する組成を有しているが、後方散乱電子回折法により測定されるKAMの平均値が0.9°と本発明の適正範囲よりも大きいため、プレス成形してから260℃、30分間の熱処理を行った後の抵抗値のばらつきが大きいことが分かった。
The test material (copper alloy strip) of Comparative Example 5 has a composition containing 5% by mass of manganese, but the average value of KAM measured by the backscattered electron diffraction method is 0.9 °. Since it is larger than the appropriate range of the present invention, it was found that the resistance value varies widely after heat treatment at 260 ° C. for 30 minutes after press molding.
The test material (copper alloy strip) of Comparative Example 5 has a composition containing 5% by mass of manganese, but the average value of KAM measured by the backscattered electron diffraction method is 0.9 °. Since it is larger than the appropriate range of the present invention, it was found that the resistance value varies widely after heat treatment at 260 ° C. for 30 minutes after press molding.
Claims (8)
- 3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる合金組成を有する銅合金条材であって、
後方散乱電子回折法により測定されるKAMの平均値が1°以上5°未満であることを特徴とする、銅合金条材。 A copper alloy strip containing 3% by mass or more and 20% by mass or less of manganese and having an alloy composition in which the balance is copper and unavoidable impurities.
A copper alloy strip having an average value of KAM measured by a backscattered electron diffraction method of 1 ° or more and less than 5 °. - 後方散乱電子回折法によりKAMを測定した面積全体に対して、KAMの値が1°以上4°未満である面積が占める割合は、50%以上であることを特徴とする、請求項1に記載の銅合金条材。 The first aspect of claim 1, wherein the ratio of the area where the KAM value is 1 ° or more and less than 4 ° to the entire area where KAM is measured by the backscattered electron diffraction method is 50% or more. Copper alloy strip material.
- 後方散乱電子回折法によりKAMを測定した面積全体に対して、KAMの値が6°以上15°未満である面積が占める割合は、3%以上25%以下であることを特徴とする、請求項1または2に記載の銅合金条材。 The claim is characterized in that the ratio of the area where the KAM value is 6 ° or more and less than 15 ° to the entire area where KAM is measured by the backscattered electron diffraction method is 3% or more and 25% or less. The copper alloy strip according to 1 or 2.
- ビッカース硬さが150以上200以下であることを特徴とする、請求項1~3のいずれか1項に記載の銅合金条材。 The copper alloy strip according to any one of claims 1 to 3, characterized in that the Vickers hardness is 150 or more and 200 or less.
- 前記合金組成は、
0.01質量%以上5質量%以下のニッケル、
0.01質量%以上5質量%以下の錫、
0.01質量%以上5質量%以下の亜鉛、
0.01質量%以上0.5質量%以下の鉄、
0.01質量%以上0.5質量%以下のケイ素、
0.01質量%以上0.5質量%以下のクロム、
0.01質量%以上0.5質量%以下のジルコニウム、
0.01質量%以上0.5質量%以下のチタン、
0.01質量%以上0.5質量%以下の銀、
0.01質量%以上0.5質量%以下のマグネシウム、
0.01質量%以上0.5質量%以下のコバルト、および、
0.01質量%以上0.5質量%以下のリンからなる群より選択される1種以上の元素をさらに含有することを特徴とする、請求項1~4のいずれか1項に記載の銅合金条材。 The alloy composition is
Nickel of 0.01% by mass or more and 5% by mass or less,
Tin of 0.01% by mass or more and 5% by mass or less,
Zinc of 0.01% by mass or more and 5% by mass or less,
Iron of 0.01% by mass or more and 0.5% by mass or less,
Silicon of 0.01% by mass or more and 0.5% by mass or less,
Chromium of 0.01% by mass or more and 0.5% by mass or less,
Zirconium of 0.01% by mass or more and 0.5% by mass or less,
Titanium of 0.01% by mass or more and 0.5% by mass or less,
0.01% by mass or more and 0.5% by mass or less of silver,
Magnesium of 0.01% by mass or more and 0.5% by mass or less,
Cobalt of 0.01% by mass or more and 0.5% by mass or less, and
The copper according to any one of claims 1 to 4, further containing one or more elements selected from the group consisting of 0.01% by mass or more and 0.5% by mass or less of phosphorus. Alloy strip. - 請求項1~5のいずれか1項に記載の銅合金条材の製造方法であって、
前記銅合金条材の合金組成と実質同じ合金組成を有する銅合金素材に、800℃以上950℃以下の高温域で加熱する第1熱処理工程と、
熱間加工工程と、
50%以上の高加工率で冷間加工を施す第1冷間加工工程、および400℃以上700℃以下の中温域で加熱する第2熱処理工程を1セット工程とするときの1セット工程以上と、
5%以上50%未満の低加工率で冷間加工を施す第2冷間加工工程と、
200℃/min以上の昇温速度で200℃以上400℃未満に到達した後、10~55秒保持後、100℃/min以上の冷却速度で50℃未満まで冷却する第3熱処理工程とを含むことを特徴とする、銅合金条材の製造方法。 The method for producing a copper alloy strip according to any one of claims 1 to 5.
A first heat treatment step of heating a copper alloy material having substantially the same alloy composition as the alloy composition of the copper alloy strip material in a high temperature range of 800 ° C. or higher and 950 ° C. or lower.
Hot working process and
One set process or more when the first cold processing process of performing cold processing at a high processing rate of 50% or more and the second heat treatment process of heating in a medium temperature range of 400 ° C. or more and 700 ° C. or less are set as one set process. ,
The second cold working process, in which cold working is performed at a low working rate of 5% or more and less than 50%,
It includes a third heat treatment step of reaching 200 ° C. or higher and lower than 400 ° C. at a heating rate of 200 ° C./min or higher, holding for 10 to 55 seconds, and then cooling to less than 50 ° C. at a cooling rate of 100 ° C./min or higher. A method for manufacturing a copper alloy strip, which is characterized in that. - 請求項1~5のいずれか1項に記載の銅合金条材を用いた抵抗器用抵抗材料。 A resistor material for a resistor using the copper alloy strip according to any one of claims 1 to 5.
- 請求項7に記載の抵抗材料を有する抵抗器。 A resistor having the resistance material according to claim 7.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217028881A KR20210144681A (en) | 2019-03-28 | 2020-03-26 | Copper alloy material and manufacturing method thereof, resistance material for resistor using same, and resistor |
CN202080015486.XA CN113454253B (en) | 2019-03-28 | 2020-03-26 | Copper alloy strip, method for producing same, resistance material for resistor using same, and resistor |
JP2020542676A JP6852228B2 (en) | 2019-03-28 | 2020-03-26 | Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019064310 | 2019-03-28 | ||
JP2019-064310 | 2019-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020196792A1 true WO2020196792A1 (en) | 2020-10-01 |
Family
ID=72611512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/013833 WO2020196792A1 (en) | 2019-03-28 | 2020-03-26 | Copper alloy strip and method for manufacturing same, resistor resistance material using same, and resistor |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6852228B2 (en) |
KR (1) | KR20210144681A (en) |
CN (1) | CN113454253B (en) |
TW (1) | TWI742587B (en) |
WO (1) | WO2020196792A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6961861B1 (en) * | 2020-05-29 | 2021-11-05 | 古河電気工業株式会社 | Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors |
WO2021241502A1 (en) * | 2020-05-29 | 2021-12-02 | 古河電気工業株式会社 | Copper alloy bar material, method for producing same, resistive material for resistors using same, and resistor |
US20230082145A1 (en) * | 2021-08-25 | 2023-03-16 | Solar Applied Materials Technology Corp. | Copper-based alloy sputtering target and method for making the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023276906A1 (en) * | 2021-06-28 | 2023-01-05 | 古河電気工業株式会社 | Copper alloy material, resistive material for resistor using same, and resistor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016069724A (en) * | 2014-09-29 | 2016-05-09 | 日立金属株式会社 | Cu ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR |
JP2017179553A (en) * | 2016-03-31 | 2017-10-05 | Dowaメタルテック株式会社 | Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD |
US20180130578A1 (en) * | 2016-11-04 | 2018-05-10 | Samsung Electro-Mechanics Co., Ltd. | Chip resistor |
WO2018131373A1 (en) * | 2017-01-10 | 2018-07-19 | 古河電気工業株式会社 | Copper alloy material for resistance material, production method therefor and resistor |
WO2018150705A1 (en) * | 2017-02-17 | 2018-08-23 | 古河電気工業株式会社 | Copper alloy material for resistance member, manufacturing method therefor, and resistor |
WO2019244842A1 (en) * | 2018-06-20 | 2019-12-26 | 古河電気工業株式会社 | Resistance material for resistors and method for producing same, and resistor |
WO2020004034A1 (en) * | 2018-06-28 | 2020-01-02 | 古河電気工業株式会社 | Copper alloy sheet, copper alloy sheet manufacturing method, and connector using copper alloy sheet |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5587593B2 (en) * | 2009-11-10 | 2014-09-10 | Dowaメタルテック株式会社 | Method for producing copper alloy |
US9845521B2 (en) * | 2010-12-13 | 2017-12-19 | Kobe Steel, Ltd. | Copper alloy |
KR20140025607A (en) * | 2011-08-04 | 2014-03-04 | 가부시키가이샤 고베 세이코쇼 | Copper alloy |
RU2678555C2 (en) * | 2013-04-23 | 2019-01-29 | Мэтерион Корпорейшн | Copper-nickel-tin alloy with high viscosity |
JP6080823B2 (en) * | 2014-09-19 | 2017-02-15 | Jx金属株式会社 | Titanium copper for electronic parts |
KR20180021392A (en) * | 2015-07-17 | 2018-03-02 | 허니웰 인터내셔널 인코포레이티드 | Heat treatment methods for the manufacture of metals and metal alloys |
-
2020
- 2020-03-26 CN CN202080015486.XA patent/CN113454253B/en active Active
- 2020-03-26 WO PCT/JP2020/013833 patent/WO2020196792A1/en active Application Filing
- 2020-03-26 JP JP2020542676A patent/JP6852228B2/en active Active
- 2020-03-26 KR KR1020217028881A patent/KR20210144681A/en active Search and Examination
- 2020-03-27 TW TW109110554A patent/TWI742587B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016069724A (en) * | 2014-09-29 | 2016-05-09 | 日立金属株式会社 | Cu ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR |
JP2017179553A (en) * | 2016-03-31 | 2017-10-05 | Dowaメタルテック株式会社 | Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD |
US20180130578A1 (en) * | 2016-11-04 | 2018-05-10 | Samsung Electro-Mechanics Co., Ltd. | Chip resistor |
WO2018131373A1 (en) * | 2017-01-10 | 2018-07-19 | 古河電気工業株式会社 | Copper alloy material for resistance material, production method therefor and resistor |
WO2018150705A1 (en) * | 2017-02-17 | 2018-08-23 | 古河電気工業株式会社 | Copper alloy material for resistance member, manufacturing method therefor, and resistor |
WO2019244842A1 (en) * | 2018-06-20 | 2019-12-26 | 古河電気工業株式会社 | Resistance material for resistors and method for producing same, and resistor |
WO2020004034A1 (en) * | 2018-06-28 | 2020-01-02 | 古河電気工業株式会社 | Copper alloy sheet, copper alloy sheet manufacturing method, and connector using copper alloy sheet |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6961861B1 (en) * | 2020-05-29 | 2021-11-05 | 古河電気工業株式会社 | Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors |
WO2021241502A1 (en) * | 2020-05-29 | 2021-12-02 | 古河電気工業株式会社 | Copper alloy bar material, method for producing same, resistive material for resistors using same, and resistor |
US20230082145A1 (en) * | 2021-08-25 | 2023-03-16 | Solar Applied Materials Technology Corp. | Copper-based alloy sputtering target and method for making the same |
Also Published As
Publication number | Publication date |
---|---|
TWI742587B (en) | 2021-10-11 |
CN113454253B (en) | 2022-09-06 |
TW202043492A (en) | 2020-12-01 |
CN113454253A (en) | 2021-09-28 |
KR20210144681A (en) | 2021-11-30 |
JPWO2020196792A1 (en) | 2021-04-30 |
JP6852228B2 (en) | 2021-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6852228B2 (en) | Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors | |
JP6382478B1 (en) | Copper alloy material for resistance material, manufacturing method thereof and resistor | |
KR101211984B1 (en) | Cu-ni-si-based alloy for electronic material | |
JP6961861B1 (en) | Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors | |
KR101297485B1 (en) | Cu-ni-si-co-cr alloy for electronic material | |
CN113454252B (en) | Copper alloy strip, method for producing same, resistance material for resistor using same, and resistor | |
WO2010126046A1 (en) | Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY | |
JP6696769B2 (en) | Copper alloy plate and connector | |
KR20240026278A (en) | Copper alloy materials, resistance materials and resistors for resistors using the same | |
CN111212923B (en) | Casting die material and copper alloy material | |
JP5610789B2 (en) | Copper alloy sheet and method for producing copper alloy sheet | |
WO2017043558A1 (en) | Copper alloy for electronic/electrical device, component for electronic/electrical device, terminal, and bus bar | |
WO2021241502A1 (en) | Copper alloy bar material, method for producing same, resistive material for resistors using same, and resistor | |
CN116635549A (en) | Aluminum alloy and aluminum alloy casting material | |
JP7307297B1 (en) | Copper alloy sheet material and manufacturing method thereof | |
JP6792476B2 (en) | Aluminum alloy plate and its manufacturing method | |
KR20080086000A (en) | Copper-nickel-silicon based copper alloy for electronic material | |
KR20230028822A (en) | Low-resistance copper alloy materials and manufacturing methods | |
WO2023157614A1 (en) | Copper alloy sheet material and method for manufacturing same | |
JP2024090766A (en) | Copper alloy material, resistive material for resistor and resistor | |
CN117795109A (en) | Ultra-high strength copper-titanium alloy with improved formability in solution annealed tempering | |
JPS63286543A (en) | Copper alloy for spring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020542676 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20778594 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20778594 Country of ref document: EP Kind code of ref document: A1 |