WO2019244842A1 - Resistance material for resistors and method for producing same, and resistor - Google Patents

Resistance material for resistors and method for producing same, and resistor Download PDF

Info

Publication number
WO2019244842A1
WO2019244842A1 PCT/JP2019/023923 JP2019023923W WO2019244842A1 WO 2019244842 A1 WO2019244842 A1 WO 2019244842A1 JP 2019023923 W JP2019023923 W JP 2019023923W WO 2019244842 A1 WO2019244842 A1 WO 2019244842A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
alloy sheet
rolling
copper alloy
sheet material
Prior art date
Application number
PCT/JP2019/023923
Other languages
French (fr)
Japanese (ja)
Inventor
紳悟 川田
岳己 磯松
樋口 優
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020207030754A priority Critical patent/KR20210020869A/en
Priority to JP2019553999A priority patent/JP6762438B2/en
Priority to CN201980025519.6A priority patent/CN111971405B/en
Publication of WO2019244842A1 publication Critical patent/WO2019244842A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06526Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy sheet, a method for producing the same, and a resistor material for a resistor.
  • the metal material of the resistor used in the resistor must have a small temperature coefficient of resistance (hereinafter sometimes referred to as “TCR”) so that the resistance of the resistor is stable even when the environmental temperature changes.
  • TCR temperature coefficient of resistance
  • T represents a test temperature (° C.)
  • T 0 represents a reference temperature (° C.)
  • R represents a resistance value ( ⁇ ) at the test temperature T
  • R 0 represents a resistance value ( ⁇ ) at the test temperature T 0 .
  • Cu—Mn—Ni alloys and Cu—Mn—Sn alloys have a very small TCR, and are therefore widely used as metal materials constituting resistance materials (for example, see Patent Document 1).
  • the object of the present invention is to provide a copper alloy sheet material having both a low temperature coefficient of resistance and good press formability, a method for producing the same, and a resistor material for a resistor.
  • the object of the present invention has been achieved by the following. 1) 5.0 to 20.0% by mass of Mn, 0 to 5.0% by mass of Ni, 0 to 5.0% by mass of Sn, and 0.1 to 10.0% by mass of Ni and Sn in total A copper alloy sheet material containing, the balance being Cu and unavoidable impurities, wherein a difference between elongation in a rolling parallel direction and elongation in a rolling width direction and a rolling vertical direction perpendicular to the rolling parallel direction is 10% or less.
  • a copper alloy sheet material having both a small temperature coefficient of resistance and press formability having a good fracture surface, a method for manufacturing the same, and a resistor material for a resistor.
  • Mn is 5.0 to 20.0% by mass
  • Ni is 0 to 5.0% by mass
  • Sn is 0 to 5.0% by mass
  • Ni and Sn are 0.1 to 10.0% in total.
  • Mass% the balance being Cu and unavoidable impurities, and a copper alloy sheet material having a difference of 10% or less in elongation in a rolling parallel direction and a rolling vertical direction in a sheet width direction and perpendicular to the rolling parallel direction
  • Mn is 5.0 to 20.0% by mass
  • Ni is 0 to 5.0% by mass
  • Sn is 0 to 5.0% by mass
  • Ni and Sn are contained in a total of 0.1 to 10.0% by mass.
  • the copper alloy sheet of the present invention contains Mn at 5.0 to 20.0% by mass from the viewpoint of the effect of the interaction between the Kondo effect and lattice vibration in order to reduce the temperature coefficient of resistance. Further, when the Ni content is 0 to 5.0% by mass, the Sn content is 0 to 5.0% by mass, and the total content of Ni and Sn is 0.1 to 10.0% by mass, the temperature coefficient of resistance is more effectively improved. Can be controlled.
  • Mn is 5.5 to 19.0% by mass
  • Ni and Sn in total are 0.01 to 5.0% by mass, more preferably 6.0 to 18.0% by mass of Mn, and Ni and Sn are The total is 1.0 to 5.0% by mass.
  • Other copper alloys contain specific unavoidable impurities.
  • the copper alloy sheet of the present invention contains 0.01 to 0.5% by mass of Fe, 0.01 to 0.5% by mass of Si, and 0.01 to 0.5% by mass in total of Fe and Si. Is preferred. By including Fe and Si, the tensile strength can be improved, but since excessive addition increases the resistance, the content is preferably 0.01 to 0.5% by mass.
  • % by mass may be simply referred to as “%”.
  • the elemental component in which the lower limit of the content range is described as “0%” in the component composition of the alloy means that it is a component arbitrarily added to the copper alloy sheet as needed, and the elemental component is In the case of “0%”, it means that the element component is not contained in the copper alloy sheet material or has a content less than the detection limit value. Note that “to” includes the numerical ranges at both ends.
  • the unavoidable impurities in the present invention mean trace elements that are unintentionally mixed in from the raw material or the furnace wall of the casting furnace during melting and casting.
  • the total amount of unavoidable impurities is generally at most 50 ppm by mass, typically at most 30 ppm by mass, more typically at most 10 ppm by mass.
  • the copper alloy sheet material of the present invention improves the fracture surface shape at the time of pressing by reducing the anisotropy of elongation in the rolling parallel direction (hereinafter, also referred to as RD direction) and the vertical direction of rolling (hereinafter, also referred to as TD direction). And a difference in elongation between the RD direction and the TD direction is 10% or less.
  • the difference in elongation refers to the absolute value of the difference in elongation between the RD direction and the TD direction.
  • the difference between the elongation in the RD direction and the elongation in the TD direction is 10% or less, the difference in the amount of deformation up to the fracture in the rolling parallel direction and the rolling vertical direction during the shearing of the press punching process before being incorporated into the resistor. Since the anisotropy can be reduced, the sag ratio of the press fracture surface can be reduced. It is more preferably at most 8%, further preferably at most 5%.
  • the tensile strength is 400 MPa or more and the elongation is 20% or more in both the RD direction and the TD direction.
  • the tensile strength is preferably from 410 MPa to 800 MPa, more preferably from 420 MPa to 750 MPa.
  • the elongation is preferably at least 22% and less than 50%, more preferably at least 25% and less than 50%.
  • the resistivity is required to detect a voltage drop in an electronic circuit to be connected, and is preferably 25 to 70 ⁇ cm.
  • ⁇ -fiber uses an OIM 5.0 (trade name) manufactured by TSL Solutions Co., Ltd. as a measuring device of the EBSD method, and uses the data of the measuring device as an OIM@Analysis7.31 (EBSD data analysis software) attached to the device. ).
  • ⁇ -fiber By controlling ⁇ -fiber within the above range, the deformation resistance value when plastically deforming the copper alloy sheet material changes, and compared to a state without ⁇ -fiber control, the fracture in the rolling parallel direction and the vertical direction Can be reduced, and as a result, press punching can be performed with less stress, and sag in the fracture surface shape can be reduced.
  • ⁇ -fiber can be controlled by the following manufacturing method.
  • the method for producing a copper alloy sheet according to the present invention includes: Casting [Step 1], A homogenizing heat treatment [step 2] for holding at less than 900 ° C for 10 minutes to 10 hours Hot rolling [step 3], Facing [Step 4], Cold rolling 1 [step 5], Trimming [Step 6], Annealing 1 [Step 7], Surface polishing [Step 8], Cold rolling 2 [step 9], Heating 2 at a temperature rising rate of 10 ° C./min or more, holding at 400 to 850 ° C. for 1 second to 5 hours, and then cooling to room temperature at a cooling rate of 20 ° C./min or more [Step 10]; Straightening [Step 11], And each step of annealing 3 [step 12] in this order.
  • each process itself is a known process or a combination of improved processes.
  • the homogenization heat treatment process in process 2 and the annealing and cooling in process 10 are important processes for controlling the ⁇ -fiber of the present invention. is there.
  • the crystal grains are suppressed from being coarsened by maintaining the temperature at less than 900 ° C. for 10 minutes to 10 hours, thereby facilitating formation of a texture later.
  • heat treatment is performed at 900 ° C. or higher, it is difficult to obtain an intended ⁇ fiber.
  • is obtained by heating at a heating rate of 10 ° C./min or more, holding at 400 to 850 ° C. for 1 second to 5 hours, and then cooling to a normal temperature at a cooling rate of 20 ° C./min or more. Controls the azimuth integration of the fiber. In particular, when the rate of temperature rise is slow, and when the holding time is out of the above range, a predetermined orientation density cannot be obtained, and anisotropy of elongation and anisotropy of sag occur.
  • treatments such as shape correction, oxide film removal, degreasing, and rust prevention may be performed between adjacent steps or after the final recrystallization annealing step.
  • the copper alloy sheet of the present invention is extremely useful as a resistor, for example, a resistance material for a shunt resistor.
  • the present embodiment is an example of the present invention, and the present invention is not limited to the present embodiment.
  • various changes or improvements can be added to the present embodiment, and embodiments to which such changes or improvements are added can be included in the present invention.
  • Example 1 An ingot having a predetermined alloy composition (% by mass) shown in Table 1 is produced by casting [Step 1], and a homogenizing heat treatment by holding at less than 900 ° C. for 10 minutes to 10 hours before hot rolling [Step 2].
  • Hot rolling for rolling at a total processing rate of 50% or more in order to break the cast structure and obtain a uniform structure, and to remove surface oxide on both surfaces by 0.5 mm or more in order to remove oxide scales [ Step 4], cold rolling 1 for rolling at a total processing rate of 60% or more to obtain a target shape [Step 5], removing both ends of the sheet material with a dimension of less than 5% of the entire width to adjust the shape of the material edge Trimming [Step 6], annealing 1 to hold the material at 300 to 600 ° C.
  • Step 7 For 10 seconds to 1 hour to remove distortion [Step 7], surface polishing to remove an oxide film on the material surface [Step 8], To obtain the target shape and for work hardening Cold rolling 2 [Step 9] for rolling at a total processing rate of 10 to 80%, heating at a heating rate of 10 ° C./min or more to release strain and obtain Tau-fiber, at 400 to 850 ° C.
  • Step 10 straightening by applying a stress of 100 MPa or more in the parallel direction of rolling to correct the warpage and bending of the sheet material
  • Step 11 In order to remove residual stress of the material, annealing 3 [Step 12] of performing a heat treatment at a holding temperature of 200 to 500 ° C. for 5 seconds to 1 hour is performed in this order, and a 0.2 mm thick plate material Got.
  • the alloy composition is as shown in Table 1, but the balance other than the alloy components shown in Table 1 is copper and unavoidable impurities. Further, the conditions of Step 2 and Step 10 are as shown in Table 2. The following evaluation was performed about the sample obtained in this way. The measurement was performed on samples manufactured from five places at intervals of 1 m in the rolling direction on the manufactured sample, and the average value was obtained. The results are shown in Table 3. In addition, unless otherwise indicated, it performed at 23 degreeC and 50% RH atmosphere.
  • the measurement was performed by the EBSD method under the conditions of a measurement area of 64 ⁇ 104 ⁇ m 2 (800 ⁇ m ⁇ 800 ⁇ m) and a scan step of 0.1 ⁇ m. The scan step was performed in 0.1 ⁇ m steps to measure fine crystal grains.
  • ODF Orientation Determination Function
  • ⁇ OIM 5.0 (trade name) manufactured by TSL Solutions Co., Ltd. was used as a measuring device of the EBSD method.
  • the plate material was cut out to a size of 30 ⁇ 30 mm, polished to ⁇ of the plate thickness by mechanical polishing, and then subjected to distortion removal and mirror finish by electrolytic polishing.
  • the plate surface of the plate material is mirror-polished, and the plate material before and after the mirror surface polishing is subjected to a method (four-terminal method) in accordance with JIS C2525 and JIS C2526 (four-terminal method) to have a temperature coefficient of resistance in the range of 20 ° C. to 50 ° C. TCR) was measured.
  • the shape of the sheet material after press punching is determined by the ratio of the sag measured in accordance with the shear test method for copper and copper alloy thin strip specified in the Japan Copper and Brass Association Technical Standard JCBA T310: 2002. evaluated.
  • the plate was punched out using a press, a square die or the like, a cross section orthogonal to the rolling direction of the plate (press fracture surface) was exposed, and the cross section was observed using a scanning electron microscope.
  • the conditions for punching the plate material were previously tested, and as favorable conditions, the clearance was 10 ⁇ m, the pressing speed was 200 mm / s, and the lubrication condition was no lubrication.
  • reference numeral 1 denotes sag during punching
  • 2 denotes a shear surface
  • 3 denotes a fracture surface
  • the copper alloy sheet material manufactured by the process of the present invention has good press-formability while having a small temperature coefficient of resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)

Abstract

The purpose of the present invention is to provide: a copper alloy sheet material having both of a small resistance temperature coefficient and good press-moldability; a method for producing the copper alloy sheet material; and a resistor material for resistors. The purpose of the present invention can be achieved by a copper alloy sheet material which contains 5.0 to 20.0% by mass of Mn, 0 to 5.0% by mass of Ni and 0 to 5.0% by mass of Sn, wherein Ni and Sn are contained in the total amount of 0.1 to 10.0% by mass, the remainder is made up by Cu and unavoidable impurities, and the difference between the elongation in a direction parallel with the rolling direction and the elongation in a direction vertical to the rolling direction, which is a sheet width direction and is vertical to the direction parallel with the rolling direction, is 10% or less.

Description

抵抗器用抵抗材料およびその製造方法並びに抵抗器Resistor material for resistor, method of manufacturing the same, and resistor
 本発明は銅合金板材およびその製造方法並びに抵抗器用抵抗材料に関する。 The present invention relates to a copper alloy sheet, a method for producing the same, and a resistor material for a resistor.
 抵抗器に使用される抵抗材の金属材料には、環境温度が変化した際にも抵抗器の抵抗が安定するように、抵抗温度係数(以下「TCR」と記すこともある)が小さいことが要求される。抵抗温度係数とは、温度による抵抗値の変化の大きさを1℃当たりの百万分率で表したものであり、TCR(×10-6/K)=(R-R)/R×1/(T-T)×10という式で表される。 The metal material of the resistor used in the resistor must have a small temperature coefficient of resistance (hereinafter sometimes referred to as “TCR”) so that the resistance of the resistor is stable even when the environmental temperature changes. Required. The temperature coefficient of resistance represents the magnitude of the change in resistance value due to temperature in parts per million per degree Celsius, and is expressed by TCR (× 10 −6 / K) = (R−R 0 ) / R 0 It is represented by the formula of × 1 / (T−T 0 ) × 10 6 .
 ここで、式中のTは試験温度(℃)、Tは基準温度(℃)、Rは試験温度Tにおける抵抗値(Ω)、Rは試験温度Tにおける抵抗値(Ω)を示す。Cu-Mn-Ni合金やCu-Mn-Sn合金はTCRが非常に小さいため、抵抗材を構成する金属材料として広く使用されている(例えば特許文献1を参照)。 Here, T represents a test temperature (° C.), T 0 represents a reference temperature (° C.), R represents a resistance value (Ω) at the test temperature T, and R 0 represents a resistance value (Ω) at the test temperature T 0 . . Cu—Mn—Ni alloys and Cu—Mn—Sn alloys have a very small TCR, and are therefore widely used as metal materials constituting resistance materials (for example, see Patent Document 1).
特開2016-69724号公報JP 2016-69724 A
 近年の電気電子部品の小型高集積化に伴い、抵抗材も小型化が進んでいる。この小型化に伴い、金属材料をプレス成形して抵抗材を製造する際の断面形状が抵抗器の抵抗値のばらつきに与える影響が大きくなっており、プレス打ち抜き加工時に発生する、抵抗材のダレ、バリ、エグレが軽減した破面形状を有する抵抗材の金属材料のプレス成形性の改善が求められている。 (4) With the recent trend toward smaller and more integrated electrical and electronic components, resistance materials have also been reduced in size. Along with this miniaturization, the cross-sectional shape of a resistor material manufactured by press forming a metal material has a greater effect on the variation in the resistance value of the resistor. It is required to improve the press formability of a metal material of a resistance material having a fractured surface shape with reduced burrs and agglomerations.
 本発明は、小さい抵抗温度係数と良好なプレス成形性とを兼ね備える銅合金板材およびその製造方法並びに抵抗器用抵抗材料を提供することを目的とする。 The object of the present invention is to provide a copper alloy sheet material having both a low temperature coefficient of resistance and good press formability, a method for producing the same, and a resistor material for a resistor.
 本発明の目的は、以下によって達成された。
1) Mnを5.0~20.0質量%、Niを0~5.0質量%、Snを0~5.0質量%かつ、NiとSnを合計で0.1~10.0質量%含有し、残部がCuおよび不可避的不純物からなり、圧延平行方向と、板幅方向であって圧延平行方向に垂直な圧延垂直方向の伸びの差が10%以下である、銅合金板材。
2) Mnを5.0~20.0質量%、Niを0~5.0質量%、Snを0~5.0質量%かつ、NiとSnを合計で0.1~10.0質量%含有し、残部がCuおよび不可避的不純物からなり、EBSD測定結果より得られたτ-fiberのΦ=20~35°の方位密度が4以上、Φ=40~80°の方位密度が4未満である銅合金板材。
3) Feを0.01~0.5質量%、Siを0.01~0.5質量%かつFeとSiを合計で0.01~0.5質量%を含有する、前記1または2に記載の銅合金板材。
4) 前記圧延平行方向、圧延垂直方向のいずれも、引張強度が400MPa以上、伸びが20%以上であり、体積抵抗率が20~70μΩcmである、前記1~3いずれか1に記載の銅合金板材。
5) 前記1)~4)のいずれか1に記載の銅合金板材の製造方法であって、鋳造[工程1]、900℃未満で保持する均質化熱処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延1[工程5]、トリミング[工程6]、焼鈍1[工程7]、表面研磨[工程8]、冷間圧延2[工程9]、10℃/min以上の昇温速度で加熱し、400~850℃で1秒~5時間保持後、20℃/min以上の冷却速度で常温まで冷却する焼鈍2[工程10]、整直[工程11]、および焼鈍3[工程12]の各工程をこの順に有する、銅合金板材の製造方法。
6) 前記1)~5)のいずれか1に記載の銅合金板材を用いた抵抗器用抵抗材料。
The object of the present invention has been achieved by the following.
1) 5.0 to 20.0% by mass of Mn, 0 to 5.0% by mass of Ni, 0 to 5.0% by mass of Sn, and 0.1 to 10.0% by mass of Ni and Sn in total A copper alloy sheet material containing, the balance being Cu and unavoidable impurities, wherein a difference between elongation in a rolling parallel direction and elongation in a rolling width direction and a rolling vertical direction perpendicular to the rolling parallel direction is 10% or less.
2) 5.0 to 20.0% by mass of Mn, 0 to 5.0% by mass of Ni, 0 to 5.0% by mass of Sn, and 0.1 to 10.0% by mass of Ni and Sn in total The balance is composed of Cu and inevitable impurities, and the τ-fiber obtained from the EBSD measurement results has an azimuth density of Φ = 20 to 35 ° of 4 or more and an azimuth density of Φ = 40 to 80 ° of less than 4 A copper alloy sheet material.
3) The method as described in 1 or 2 above, which contains 0.01 to 0.5% by mass of Fe, 0.01 to 0.5% by mass of Si, and 0.01 to 0.5% by mass in total of Fe and Si. The described copper alloy sheet.
4) The copper alloy according to any one of the above items 1 to 3, which has a tensile strength of 400 MPa or more, an elongation of 20% or more, and a volume resistivity of 20 to 70 μΩcm in both the rolling parallel direction and the rolling vertical direction. Board material.
5) The method for producing a copper alloy sheet according to any one of the above 1) to 4), wherein the casting [Step 1], the homogenizing heat treatment at a temperature of less than 900 ° C. [Step 2], and the hot rolling [Step 1]. 3], face milling [step 4], cold rolling 1 [step 5], trimming [step 6], annealing 1 [step 7], surface polishing [step 8], cold rolling 2 [step 9], 10 ° C Heating at a heating rate of not less than / min, holding at 400 to 850 ° C for 1 second to 5 hours, and then cooling to normal temperature at a cooling rate of not less than 20 ° C / min 2 [Step 10], Straightening [Step 11] And a step of annealing 3 [Step 12] in this order, the method for producing a copper alloy sheet material.
6) A resistor material using the copper alloy sheet according to any one of 1) to 5).
 本発明によれば、小さい抵抗温度係数と良好な破面形状を有するプレス成形性とを兼ね備える銅合金板材およびその製造方法並びに抵抗器用抵抗材料を提供することができる。 According to the present invention, it is possible to provide a copper alloy sheet material having both a small temperature coefficient of resistance and press formability having a good fracture surface, a method for manufacturing the same, and a resistor material for a resistor.
良好なダレの概念図である。It is a conceptual diagram of a good dripping. 不良なダレの概念図である。It is a conceptual diagram of a bad dripping.
 以下、本発明を詳細に説明する。
<銅合金板材>
 本発明は、Mnを5.0~20.0質量%、Niを0~5.0質量%、Snを0~5.0質量%かつ、NiとSnを合計で0.1~10.0質量%含有し、残部がCuおよび不可避的不純物からなり、圧延平行方向と、板幅方向であって圧延平行方向に垂直な圧延垂直方向の伸びの差が10%以下である銅合金板材、またはMnを5.0~20.0質量%、Niを0~5.0質量%、Snを0~5.0質量%かつ、NiとSnを合計で0.1~10.0質量%含有し、残部がCuおよび不可避的不純物からなり、EBSD測定結果より得られたτ-fiberのΦ=20~35°の方位密度が4以上、Φ=40~80°の方位密度が4未満である銅合金板材、であることを特徴とする。
Hereinafter, the present invention will be described in detail.
<Copper alloy sheet>
In the present invention, Mn is 5.0 to 20.0% by mass, Ni is 0 to 5.0% by mass, Sn is 0 to 5.0% by mass, and Ni and Sn are 0.1 to 10.0% in total. Mass%, the balance being Cu and unavoidable impurities, and a copper alloy sheet material having a difference of 10% or less in elongation in a rolling parallel direction and a rolling vertical direction in a sheet width direction and perpendicular to the rolling parallel direction, or Mn is 5.0 to 20.0% by mass, Ni is 0 to 5.0% by mass, Sn is 0 to 5.0% by mass, and Ni and Sn are contained in a total of 0.1 to 10.0% by mass. The balance of which consists of Cu and unavoidable impurities, and whose azimuthal density of τ-fiber obtained by EBSD measurement is 4 or more in Φ = 20 to 35 ° and less than 4 in Φ = 40 to 80 °. Alloy sheet material.
 ≪成分組成≫
 本発明の銅合金板材は、抵抗温度係数を小さくするため、近藤効果と格子振動の相互作用の効果の観点からMnを5.0~20.0質量%で含有する。また、Niを0~5.0質量%、Snを0~5.0質量%かつ、NiとSnを合計で0.1~10.0質量%とすることで、より効果的に抵抗温度係数を制御することが出来る。
≪Ingredient composition≫
The copper alloy sheet of the present invention contains Mn at 5.0 to 20.0% by mass from the viewpoint of the effect of the interaction between the Kondo effect and lattice vibration in order to reduce the temperature coefficient of resistance. Further, when the Ni content is 0 to 5.0% by mass, the Sn content is 0 to 5.0% by mass, and the total content of Ni and Sn is 0.1 to 10.0% by mass, the temperature coefficient of resistance is more effectively improved. Can be controlled.
 好ましくは、Mnを5.5~19.0質量%、NiとSnを合計で0.01~5.0質量%、より好ましくはMnを6.0~18.0質量%、NiとSnを合計で1.0~5.0質量%である。その他銅合金であることから、特有の不可避不純物が含まれる。 Preferably, Mn is 5.5 to 19.0% by mass, Ni and Sn in total are 0.01 to 5.0% by mass, more preferably 6.0 to 18.0% by mass of Mn, and Ni and Sn are The total is 1.0 to 5.0% by mass. Other copper alloys contain specific unavoidable impurities.
 ≪任意添加成分≫
 本発明の銅合金板材には、Feを0.01~0.5質量%、Siを0.01~0.5質量%かつFeとSi合計で0.01~0.5質量%含有させることが好ましい。FeおよびSiを含有させることにより、引張強度を向上させることができるが過剰な添加は抵抗を上昇させるため、好ましくは0.01~0.5質量%である。
≪Optional ingredients≫
The copper alloy sheet of the present invention contains 0.01 to 0.5% by mass of Fe, 0.01 to 0.5% by mass of Si, and 0.01 to 0.5% by mass in total of Fe and Si. Is preferred. By including Fe and Si, the tensile strength can be improved, but since excessive addition increases the resistance, the content is preferably 0.01 to 0.5% by mass.
 なお本発明の合金の成分組成においては、「質量%」を単に「%」と示すこともある。合金の成分組成のうち含有範囲の下限値が「0%」と記載されている元素成分は、適宜必要に応じて任意に銅合金板材に添加される成分であることを意味し、元素成分が「0%」の場合、その元素成分は銅合金板材に含まれないか、または検出限界値未満の含有量であることを意味する。なお「~」は両端の数値範囲を含むものである。 In the composition of the alloy of the present invention, “% by mass” may be simply referred to as “%”. The elemental component in which the lower limit of the content range is described as “0%” in the component composition of the alloy means that it is a component arbitrarily added to the copper alloy sheet as needed, and the elemental component is In the case of “0%”, it means that the element component is not contained in the copper alloy sheet material or has a content less than the detection limit value. Note that “to” includes the numerical ranges at both ends.
 本発明における不可避的不純物とは、溶解鋳造時に原料や鋳造炉の炉壁等から意図せず混入する微量元素を意味する。不可避的不純物の総量は一般的には50質量ppm以下であり、典型的には30質量ppm以下であり、より典型的には10質量ppm以下である。 不可 The unavoidable impurities in the present invention mean trace elements that are unintentionally mixed in from the raw material or the furnace wall of the casting furnace during melting and casting. The total amount of unavoidable impurities is generally at most 50 ppm by mass, typically at most 30 ppm by mass, more typically at most 10 ppm by mass.
 ≪伸びの差≫
 本発明の銅合金板材は、圧延平行方向(以下、RD方向ともいう)と圧延垂直方向(以下TD方向ともいう)の伸びの異方性を小さくすることにより、プレス時の破面形状を改善したものであり、RD方向とTD方向との伸びの差が10%以下であることを特徴とする。ここで伸びの差とは、RD方向とTD方向との伸びの差の絶対値をいう。
≫Elongation difference≫
The copper alloy sheet material of the present invention improves the fracture surface shape at the time of pressing by reducing the anisotropy of elongation in the rolling parallel direction (hereinafter, also referred to as RD direction) and the vertical direction of rolling (hereinafter, also referred to as TD direction). And a difference in elongation between the RD direction and the TD direction is 10% or less. Here, the difference in elongation refers to the absolute value of the difference in elongation between the RD direction and the TD direction.
 RD方向およびTD方向の伸びの差を10%以下とすることで、抵抗器への組み込み前のプレス打ち抜き加工のせん断加工時に、破断するまでの変形量の、圧延平行方向、圧延垂直方向の異方性を小さくすることができることから、プレス破面のダレ比率を小さくすることができる。より好ましくは8%以下、さらに好ましくは5%以下である。 By setting the difference between the elongation in the RD direction and the elongation in the TD direction to 10% or less, the difference in the amount of deformation up to the fracture in the rolling parallel direction and the rolling vertical direction during the shearing of the press punching process before being incorporated into the resistor. Since the anisotropy can be reduced, the sag ratio of the press fracture surface can be reduced. It is more preferably at most 8%, further preferably at most 5%.
 ≪引張強度、および伸び≫
 本発明の銅合金板材において抵抗器として組み込む際の変形、ミクロなクラックを抑制するために、RD方向およびTD方向のいずれも引張強度が400MPa以上、伸びが20%以上である。
≪Tensile strength and elongation≫
In the copper alloy sheet of the present invention, in order to suppress deformation and micro cracks when incorporated as a resistor, the tensile strength is 400 MPa or more and the elongation is 20% or more in both the RD direction and the TD direction.
 RD方向およびTD方向のいずれも、引張強度は、好ましくは410MPa以上800MPa以下、さらに好ましくは420MPa以上750MPa以下である。伸びは、好ましくは22%以上50%未満、より好ましくは25%以上50%未満である。伸びを50%未満とすることで、プレス打ち抜き加工時に破断に至るまでの伸びを小さくでき、圧延平行方向と圧延垂直方向のいずれもプレス打ち抜き加工時のダレを小さく制御できる。 引 張 In both the RD direction and the TD direction, the tensile strength is preferably from 410 MPa to 800 MPa, more preferably from 420 MPa to 750 MPa. The elongation is preferably at least 22% and less than 50%, more preferably at least 25% and less than 50%. By setting the elongation to less than 50%, the elongation up to breakage during press punching can be reduced, and sag during press punching in both the parallel rolling direction and the vertical rolling direction can be controlled to be small.
 ≪体積抵抗率≫
 本発明の銅合金板材を抵抗器として使用する際に、接続される電子回路内の電圧降下を検出するために必要な抵抗率であり、25~70μΩcmが好ましい。
≪Volume resistivity≫
When the copper alloy sheet of the present invention is used as a resistor, the resistivity is required to detect a voltage drop in an electronic circuit to be connected, and is preferably 25 to 70 μΩcm.
 ≪τ-fiber(タウ-ファイバー)≫
 本発明の銅合金板材のRD方向とTD方向の伸びの差が10%以下であるために、本発明では、EBSD測定によるτ-fiber(φ1=90°、φ2=45°、Φ=0~90°)のΦ=20~35°の方位密度が4以上、Φ=40~80°の方位密度が4未満であるように制御することを特徴とする。
≪τ-fiber (tau-fiber) ≫
Since the difference between the elongation in the RD direction and the elongation in the TD direction of the copper alloy sheet of the present invention is 10% or less, in the present invention, τ-fiber (φ1 = 90 °, φ2 = 45 °, φ = 0 to (90 °) is controlled so that the azimuth density of Φ = 20 to 35 ° is 4 or more and the azimuth density of Φ = 40 to 80 ° is less than 4.
 ここで、τファイバーとは、{0 0 1}<―1 ―1 0>(φ1=90°、φ2=45°、Φ=0°)から{1 1 0}<0 0 1>(φ1=90°、φ2=45°、Φ=90°)にかけ回転する方位の総称であり、Φ=20~35°の方位密度が4以上となることは{4 4 11}<11 11 -8>集合組織の発達、Φ=40~80°が4以上となることは、圧延集合組織である{1 1 0}<0 0 1>の残存を意味する。つまり、前者の方位密度を増加させ、かつ、後者の方位の低下を両立によってだれ面の改善がされる。 Here, the τ fiber is defined as {0 0 1} <− 1 -1 0> (φ1 = 90 °, φ2 = 45 °, Φ = 0 °) from {1 1 0} <0 0 1> (φ1 = 90 °, φ2 = 45 °, Φ = 90 °) is a general term for the azimuth that rotates when the azimuth density of Φ = 20 to 35 ° is 4 or more. The {4 4 11} <11 11 -8> set The development of the structure, that Φ = 40 to 80 ° being 4 or more, means that the rolled texture {1 1 0} <0 0 1> remains. That is, the former is increased in azimuth density and the latter is reduced in azimuth to improve the drooping surface.
 なお、τ―faiberは、EBSD法の測定装置として(株)TSLソリューションズ社製OIM5.0(商品名)を使用し、その測定装置のデータを装置に付属のOIM Analysis7.31(EBSDデータ解析ソフトウェア)を使用して算出したものである。 Note that τ-fiber uses an OIM 5.0 (trade name) manufactured by TSL Solutions Co., Ltd. as a measuring device of the EBSD method, and uses the data of the measuring device as an OIM@Analysis7.31 (EBSD data analysis software) attached to the device. ).
 τ-fiberを上記の範囲に制御することにより、銅合金板材を塑性変形させる際の変形抵抗値が変化し、τ-fiber制御を行わない状態に比べて、圧延平行方向と垂直方向の、破断に至るまでの伸びが小さくさせることができ、その結果少ない応力でプレス打ち抜き加工が可能となり、破面形状におけるダレを小さくすることができる。
 τ―faiberは、下記の製造方法によって制御することができる。
By controlling τ-fiber within the above range, the deformation resistance value when plastically deforming the copper alloy sheet material changes, and compared to a state without τ-fiber control, the fracture in the rolling parallel direction and the vertical direction Can be reduced, and as a result, press punching can be performed with less stress, and sag in the fracture surface shape can be reduced.
τ-fiber can be controlled by the following manufacturing method.
<銅合金板材の製造方法>
 本発明の銅合金板材の製造方法は、
鋳造[工程1]、
900℃未満で10分~10時間保持する均質化熱処理[工程2]、
熱間圧延[工程3]、
面削[工程4]、
冷間圧延1[工程5]、
トリミング[工程6]、
焼鈍1[工程7]、
表面研磨[工程8]、
冷間圧延2[工程9]、
10℃/min以上の昇温速度で加熱し、400~850℃で1秒~5時間保持後、20℃/min以上の冷却速度で常温まで冷却する焼鈍2[工程10]、
整直[工程11]、
および焼鈍3[工程12]の各工程をこの順に有する、ことを特徴とする。
<Production method of copper alloy sheet>
The method for producing a copper alloy sheet according to the present invention includes:
Casting [Step 1],
A homogenizing heat treatment [step 2] for holding at less than 900 ° C for 10 minutes to 10 hours
Hot rolling [step 3],
Facing [Step 4],
Cold rolling 1 [step 5],
Trimming [Step 6],
Annealing 1 [Step 7],
Surface polishing [Step 8],
Cold rolling 2 [step 9],
Heating 2 at a temperature rising rate of 10 ° C./min or more, holding at 400 to 850 ° C. for 1 second to 5 hours, and then cooling to room temperature at a cooling rate of 20 ° C./min or more [Step 10];
Straightening [Step 11],
And each step of annealing 3 [step 12] in this order.
 各工程自体は、公知の工程またはそれを改善した工程の組み合わせであるが、特に工程2の均質化熱処理工程、工程10の焼鈍および冷却が本発明のτ-fiberを制御するための重要工程である。 Each process itself is a known process or a combination of improved processes. In particular, the homogenization heat treatment process in process 2 and the annealing and cooling in process 10 are important processes for controlling the τ-fiber of the present invention. is there.
 均質化熱処理[工程2]では、900℃未満で10分~10時間保持することで、結晶粒の粗大化を抑制し、後の集合組織形成を容易にさせる。900℃以上で熱処理した場合は、意図したτファイバーを得ることが困難である。 (4) In the homogenization heat treatment [Step 2], the crystal grains are suppressed from being coarsened by maintaining the temperature at less than 900 ° C. for 10 minutes to 10 hours, thereby facilitating formation of a texture later. When heat treatment is performed at 900 ° C. or higher, it is difficult to obtain an intended τ fiber.
 焼鈍2[工程10]では、10℃/min以上の昇温速度で加熱し、400~850℃で1秒~5時間保持後、20℃/min以上の冷却速度で常温まで冷却することでτファイバーの方位集積度を制御する。特に、昇温速度が遅い場合、保持時間が上記範囲外となった場合は、所定の方位密度が得られず、伸びの異方性やダレの異方性が生じる。 In the annealing 2 [step 10], τ is obtained by heating at a heating rate of 10 ° C./min or more, holding at 400 to 850 ° C. for 1 second to 5 hours, and then cooling to a normal temperature at a cooling rate of 20 ° C./min or more. Controls the azimuth integration of the fiber. In particular, when the rate of temperature rise is slow, and when the holding time is out of the above range, a predetermined orientation density cannot be obtained, and anisotropy of elongation and anisotropy of sag occur.
 本発明においては、隣接する工程と工程の間又は最終再結晶焼鈍し工程の後に、形状矯正、酸化膜除去、脱脂、防錆等の処理を実施してもよい。本発明の銅合金板材は、抵抗器、例えばシャント抵抗器用抵抗材料として極めて有用である。 In the present invention, treatments such as shape correction, oxide film removal, degreasing, and rust prevention may be performed between adjacent steps or after the final recrystallization annealing step. The copper alloy sheet of the present invention is extremely useful as a resistor, for example, a resistance material for a shunt resistor.
 なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。 The present embodiment is an example of the present invention, and the present invention is not limited to the present embodiment. In addition, various changes or improvements can be added to the present embodiment, and embodiments to which such changes or improvements are added can be included in the present invention.
(実施例1)
 以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
 表1記載の所定の合金組成(質量%)を有する鋳塊を鋳造により製造し[工程1]、熱間圧延前の900℃未満での10分~10時間保持による均質化熱処理[工程2]、鋳造組織の破壊および均一な組織を得るために合計加工率50%以上で圧延する熱間圧延[工程3]、酸化スケールを除去するために両面の表層をそれぞれ0.5mm以上削る面削[工程4]、目標形状を得るために合計加工率60%以上で圧延する冷間圧延1[工程5]、材料端部の形状を整えるために板材の両端を全幅の5%未満の寸法で除去するトリミング[工程6]、材料のひずみを除去するために300~600℃で10秒~1時間保持する焼鈍1[工程7]、材料表面の酸化膜除去のための表面研磨[工程8]、目標形状を得るため、また加工硬化のために合計加工率10~80%で圧延する冷間圧延2[工程9]、ひずみの開放およびTau-fiberを得るために10℃/min以上の昇温速度で加熱し、400~850℃で1秒~5時間保持し、20℃/min以上の冷却速度で室温まで冷却する焼鈍2[工程10]、板材の反り、曲がりを矯正するために、圧延平行方向に100MPa以上の応力を加える整直[工程11]、材料の残留応力を除去するために、保持温度200~500℃で5秒~1時間の熱処理を行う焼鈍3[工程12]をこの順で施して、厚さ0.2mmの板材を得た。
(Example 1)
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
An ingot having a predetermined alloy composition (% by mass) shown in Table 1 is produced by casting [Step 1], and a homogenizing heat treatment by holding at less than 900 ° C. for 10 minutes to 10 hours before hot rolling [Step 2]. Hot rolling (step 3) for rolling at a total processing rate of 50% or more in order to break the cast structure and obtain a uniform structure, and to remove surface oxide on both surfaces by 0.5 mm or more in order to remove oxide scales [ Step 4], cold rolling 1 for rolling at a total processing rate of 60% or more to obtain a target shape [Step 5], removing both ends of the sheet material with a dimension of less than 5% of the entire width to adjust the shape of the material edge Trimming [Step 6], annealing 1 to hold the material at 300 to 600 ° C. for 10 seconds to 1 hour to remove distortion [Step 7], surface polishing to remove an oxide film on the material surface [Step 8], To obtain the target shape and for work hardening Cold rolling 2 [Step 9] for rolling at a total processing rate of 10 to 80%, heating at a heating rate of 10 ° C./min or more to release strain and obtain Tau-fiber, at 400 to 850 ° C. for 1 second Holding for 5 hours and cooling to room temperature at a cooling rate of 20 ° C./min or more [Step 10], straightening by applying a stress of 100 MPa or more in the parallel direction of rolling to correct the warpage and bending of the sheet material [ Step 11] In order to remove residual stress of the material, annealing 3 [Step 12] of performing a heat treatment at a holding temperature of 200 to 500 ° C. for 5 seconds to 1 hour is performed in this order, and a 0.2 mm thick plate material Got.
 合金組成は表1に示す通りであるが、表1に示す合金成分以外の残部は銅及び不可避不純物である。また、工程2、工程10の各条件は、表2に示す通りである。このようにして得た試料について、下記の評価を行った。測定は、製造された試料に圧延方向に1m間隔で5箇所からサンプリングした試料で行い、その平均値とした。結果は表3に示す。なお、特に記載の無い限り、23℃50%RHの雰囲気下で行った。 The alloy composition is as shown in Table 1, but the balance other than the alloy components shown in Table 1 is copper and unavoidable impurities. Further, the conditions of Step 2 and Step 10 are as shown in Table 2. The following evaluation was performed about the sample obtained in this way. The measurement was performed on samples manufactured from five places at intervals of 1 m in the rolling direction on the manufactured sample, and the average value was obtained. The results are shown in Table 3. In addition, unless otherwise indicated, it performed at 23 degreeC and 50% RH atmosphere.
(EBSD測定による結晶方位の測定及び解析)
 EBSD法により、測定面積64×104μm2(800μm×800μm)、スキャンステップは0.1μmの条件で測定を行った。スキャンステップは微細な結晶粒を測定するため、0.1μmステップで行った。解析では、64×104μm2のEBSD測定結果から、解析にて方分布関数ODF(Orientation Determination Function)を確認した。電子線は、電界放出電子銃を発生源とした。なお、測定時のプローブ系は、0.015μmである。
(Measurement and analysis of crystal orientation by EBSD measurement)
The measurement was performed by the EBSD method under the conditions of a measurement area of 64 × 104 μm 2 (800 μm × 800 μm) and a scan step of 0.1 μm. The scan step was performed in 0.1 μm steps to measure fine crystal grains. In the analysis, a square distribution function ODF (Orientation Determination Function) was confirmed from the EBSD measurement result of 64 × 104 μm 2. The electron beam was generated from a field emission electron gun. The probe system at the time of measurement is 0.015 μm.
 EBSD法の測定装置には、(株)TSLソリューションズ製 OIM5.0(商品名)を用いた。板材は、30×30mmサイズに切り出し、機械研磨にて板厚の1/2まで研磨後、電解研磨にて歪み除去および鏡面仕上げを行った。 測定 OIM 5.0 (trade name) manufactured by TSL Solutions Co., Ltd. was used as a measuring device of the EBSD method. The plate material was cut out to a size of 30 × 30 mm, polished to 板 of the plate thickness by mechanical polishing, and then subjected to distortion removal and mirror finish by electrolytic polishing.
(抵抗温度係数および体積抵抗率の測定)
 板材の板面に鏡面研磨を施し、鏡面研磨前後の板材それぞれについて、JIS C2525およびJIS C2526に規定された方法に準じる方法(四端子法)により、20℃~50℃の範囲の抵抗温度係数(TCR)を測定した。
(Measurement of temperature coefficient of resistance and volume resistivity)
The plate surface of the plate material is mirror-polished, and the plate material before and after the mirror surface polishing is subjected to a method (four-terminal method) in accordance with JIS C2525 and JIS C2526 (four-terminal method) to have a temperature coefficient of resistance in the range of 20 ° C. to 50 ° C. TCR) was measured.
 20℃~50℃の抵抗温度係数TCRの絶対値が50ppm/K以下であって、かつ20℃における体積抵抗率ρが20~70μΩcmを合格レベルで○とし、これを外れる場合は×とした。板材の板厚はマイクロメータで測定した。 を When the absolute value of the temperature coefficient of resistance TCR at 20 ° C. to 50 ° C. was 50 ppm / K or less, and the volume resistivity ρ at 20 ° C. was 20 to 70 μΩcm, the acceptable level was evaluated as ○. The thickness of the plate was measured with a micrometer.
(プレス打ち抜き加工後の断面形状)
 板材のプレス打ち抜き加工後の形状は、日本伸銅協会技術標準JCBA T310:2002に規定の銅及び銅合金薄板条のせん断試験方法に準拠して測定したダレの比率によって、板材のプレス成形性を評価した。
(Cross section after press punching)
The shape of the sheet material after press punching is determined by the ratio of the sag measured in accordance with the shear test method for copper and copper alloy thin strip specified in the Japan Copper and Brass Association Technical Standard JCBA T310: 2002. evaluated.
 すなわち、プレス機、角型ダイス等を使用して板材を打ち抜き、板材の圧延方向に直交する断面(プレス破面)を露出させ、走査電子顕微鏡を用いて断面の観察を行った。なお、板材の打ち抜きにおける条件については予め試行し良好な条件として、クリアランスは10μm、プレス速度は200mm/s、潤滑条件は無潤滑とした。 That is, the plate was punched out using a press, a square die or the like, a cross section orthogonal to the rolling direction of the plate (press fracture surface) was exposed, and the cross section was observed using a scanning electron microscope. The conditions for punching the plate material were previously tested, and as favorable conditions, the clearance was 10 μm, the pressing speed was 200 mm / s, and the lubrication condition was no lubrication.
 図1において、1が打ち抜き加工時のダレ、2がせん断面、3が破断面である。ここで、1の板厚方向のダレ寸法が、板厚全体の20%未満であると、ダレが小さく寸法が設計通り得られているものと判断した。 に お い て In FIG. 1, reference numeral 1 denotes sag during punching, 2 denotes a shear surface, and 3 denotes a fracture surface. Here, when the sagging dimension in the thickness direction of 1 was less than 20% of the entire board thickness, it was determined that the sagging was small and the dimensions were obtained as designed.
(引張強度、伸び)
 板材の圧延方向と平行な方向(RD方向)に所定の試験片の寸法で切り出した各試料材(n=3)について、JIS Z 2241:2011に準じた引張試験を行なうことにより得られたデータから算出した。算出した引張強度と伸びの平均値を示す。なお、本実施例では400MPa以上を合格レベルとした。
(Tensile strength, elongation)
Data obtained by performing a tensile test according to JIS Z 2241: 2011 for each sample material (n = 3) cut out in a direction (RD direction) parallel to the rolling direction of the plate material with a predetermined test piece size. Calculated from The average values of the calculated tensile strength and elongation are shown. In this example, a level of 400 MPa or more was regarded as a pass level.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記で明らかなように、本発明の工程によって製造された銅合金板材は、小さい抵抗温
度係数を有しながら、良好なプレス成形性も有している。
As is clear from the above, the copper alloy sheet material manufactured by the process of the present invention has good press-formability while having a small temperature coefficient of resistance.
 1 ダレ
 2 せん断面
 3 破断面
 4 バリ
1 sagging 2 shear surface 3 fracture surface 4 burr

Claims (6)

  1.  Mnを5.0~20.0質量%、Niを0~5.0質量%、Snを0~5.0質量%かつ、NiとSnを合計で0.1~10.0質量%含有し、残部がCuおよび不可避的不純物からなり、圧延平行方向と、板幅方向であって圧延平行方向に垂直な圧延垂直方向の伸びの差が10%以下である、銅合金板材。 Mn is 5.0 to 20.0% by mass, Ni is 0 to 5.0% by mass, Sn is 0 to 5.0% by mass, and Ni and Sn are contained in a total of 0.1 to 10.0% by mass. A copper alloy sheet material having a balance of Cu and unavoidable impurities, wherein a difference between elongation in a direction parallel to the rolling direction and elongation in a rolling direction perpendicular to the direction parallel to the rolling direction is 10% or less.
  2.  Mnを5.0~20.0質量%、Niを0~5.0質量%、Snを0~5.0質量%かつ、NiとSnを合計で0.1~10.0質量%含有し、残部がCuおよび不可避的不純物からなり、EBSD測定結果より得られたτ-fiberのΦ=20~35°の方位密度が4以上、Φ=40~80°の方位密度が4未満である銅合金板材。 Mn is 5.0 to 20.0% by mass, Ni is 0 to 5.0% by mass, Sn is 0 to 5.0% by mass, and Ni and Sn are contained in a total of 0.1 to 10.0% by mass. The balance of which consists of Cu and unavoidable impurities, and whose azimuthal density of τ-fiber obtained by EBSD measurement is 4 or more in Φ = 20 to 35 ° and less than 4 in Φ = 40 to 80 °. Alloy sheet material.
  3.  Feを0.01~0.5質量%、Siを0.01~0.5質量%かつFeとSiを合計で0.01~0.5質量%を含有する、請求項1または2に記載の銅合金板材。 3. The method according to claim 1, which comprises 0.01 to 0.5% by mass of Fe, 0.01 to 0.5% by mass of Si, and 0.01 to 0.5% by mass in total of Fe and Si. Copper alloy sheet material.
  4.  前記圧延平行方向、圧延垂直方向のいずれも、引張強度が400MPa以上、伸びが20%以上であり、体積抵抗率が20~70μΩcmである、請求項1~3のいずれか1項に記載の銅合金板材。 The copper according to any one of claims 1 to 3, wherein in both the rolling parallel direction and the rolling vertical direction, the tensile strength is 400 MPa or more, the elongation is 20% or more, and the volume resistivity is 20 to 70 µΩcm. Alloy sheet material.
  5.  請求項1~4のいずれか1項に記載の銅合金板材の製造方法であって、鋳造[工程1]、900℃未満で保持する均質化熱処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延1[工程5]、トリミング[工程6]、焼鈍1[工程7]、表面研磨[工程8]、冷間圧延2[工程9]、10℃/min以上の昇温速度で加熱し、400~850℃で1秒~5時間保持後、20℃/min以上の冷却速度で常温まで冷却する焼鈍2[工程10]、整直[工程11]、および焼鈍3[工程12]の各工程をこの順に有する、銅合金板材の製造方法。 The method for producing a copper alloy sheet according to any one of claims 1 to 4, wherein casting [step 1], homogenizing heat treatment at a temperature lower than 900 ° C [step 2], and hot rolling [step 3]. , Face milling [step 4], cold rolling 1 [step 5], trimming [step 6], annealing 1 [step 7], surface polishing [step 8], cold rolling 2 [step 9], 10 ° C / min. After heating at the above temperature raising rate, holding at 400 to 850 ° C. for 1 second to 5 hours, and then cooling to room temperature at a cooling rate of 20 ° C./min or more, annealing 2 [Step 10], straightening [Step 11], and A method for producing a copper alloy sheet material, comprising the steps of annealing 3 [step 12] in this order.
  6.  請求項1~5のいずれか1項に記載の銅合金板材を用いた抵抗器用抵抗材料。 [4] A resistor material for a resistor, comprising the copper alloy sheet according to any one of [1] to [5].
PCT/JP2019/023923 2018-06-20 2019-06-17 Resistance material for resistors and method for producing same, and resistor WO2019244842A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207030754A KR20210020869A (en) 2018-06-20 2019-06-17 Resistor material for resistor, manufacturing method thereof, and resistor
JP2019553999A JP6762438B2 (en) 2018-06-20 2019-06-17 Resistor materials for resistors, their manufacturing methods, and resistors
CN201980025519.6A CN111971405B (en) 2018-06-20 2019-06-17 Resistor material for resistor, method for producing same, and resistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-117206 2018-06-20
JP2018117206 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019244842A1 true WO2019244842A1 (en) 2019-12-26

Family

ID=68983750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023923 WO2019244842A1 (en) 2018-06-20 2019-06-17 Resistance material for resistors and method for producing same, and resistor

Country Status (5)

Country Link
JP (1) JP6762438B2 (en)
KR (1) KR20210020869A (en)
CN (1) CN111971405B (en)
TW (1) TWI731343B (en)
WO (1) WO2019244842A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196792A1 (en) * 2019-03-28 2020-10-01 古河電気工業株式会社 Copper alloy strip and method for manufacturing same, resistor resistance material using same, and resistor
WO2020196791A1 (en) * 2019-03-28 2020-10-01 古河電気工業株式会社 Copper alloy bar, production method for copper alloy bar, resistor resistive material using copper alloy bar, and resistor
JP6961861B1 (en) * 2020-05-29 2021-11-05 古河電気工業株式会社 Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors
WO2021241502A1 (en) * 2020-05-29 2021-12-02 古河電気工業株式会社 Copper alloy bar material, method for producing same, resistive material for resistors using same, and resistor
WO2022044611A1 (en) * 2020-08-31 2022-03-03 Koa株式会社 Resistance alloy used in shunt resistor, use of resistance alloy for shunt resistor, and shunt resistor using resistance alloy
CN115537597A (en) * 2022-09-20 2022-12-30 重庆川仪自动化股份有限公司 Manganese-copper alloy with negative temperature coefficient of resistance, preparation method and application

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442020B1 (en) * 2017-10-12 2018-12-19 福田金属箔粉工業株式会社 Hard rolled copper foil and method for producing the hard rolled copper foil
CN112376004A (en) * 2020-11-03 2021-02-19 深圳市业展电子有限公司 Treatment process for improving load stability of manganese-copper alloy material
CN114959356B (en) * 2022-06-23 2023-08-22 有研金属复材(忻州)有限公司 Copper-based precise resistance alloy with high resistivity and low temperature drift and preparation method thereof
CN117327942B (en) * 2023-11-29 2024-02-27 中铝科学技术研究院有限公司 Copper alloy material, method for preparing the same, and heating film comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069724A (en) * 2014-09-29 2016-05-09 日立金属株式会社 Cu ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR
WO2018131373A1 (en) * 2017-01-10 2018-07-19 古河電気工業株式会社 Copper alloy material for resistance material, production method therefor and resistor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4214304A1 (en) * 1992-04-30 1993-11-04 Deutsche Nickel Ag NICKEL-FREE COLOR METAL ALLOY AND ITS USE
CN100584975C (en) * 2006-11-23 2010-01-27 北京有色金属研究总院 Copper-base alloy and preparation method thereof
JP5961335B2 (en) * 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
KR101189478B1 (en) * 2010-04-28 2012-10-15 주식회사 케이에이치바텍 Tin bearing copper alloys for die-casting
JP5539055B2 (en) * 2010-06-18 2014-07-02 株式会社Shカッパープロダクツ Copper alloy material for electric / electronic parts and method for producing the same
JP6205105B2 (en) * 2011-04-18 2017-09-27 Jx金属株式会社 Cu-Ni-Si based alloy for electronic material, Cu-Co-Si based alloy and method for producing the same
CN103866158A (en) * 2012-12-12 2014-06-18 江苏华东炉业有限公司 High temperature resistant Mn-Cu alloy
CN106460099B (en) * 2014-05-30 2020-03-17 古河电气工业株式会社 Copper alloy sheet material, connector made of copper alloy sheet material, and method for manufacturing copper alloy sheet material
JP6081513B2 (en) * 2015-03-30 2017-02-15 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
CN107208191B (en) * 2015-04-24 2020-03-13 古河电气工业株式会社 Copper alloy material and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069724A (en) * 2014-09-29 2016-05-09 日立金属株式会社 Cu ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR
WO2018131373A1 (en) * 2017-01-10 2018-07-19 古河電気工業株式会社 Copper alloy material for resistance material, production method therefor and resistor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAYGAN ET AL.: "Effect of rolling and annealing processes on the hardness and electrical conductivity values of Cu-13. 5%Mn-4%Ni alloy", JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, vol. 211, 12 June 2011 (2011-06-12), pages 1810 - 1816, XP028252859, DOI: 10.1016/j.jmatprotec.2011.06.002 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196792A1 (en) * 2019-03-28 2020-10-01 古河電気工業株式会社 Copper alloy strip and method for manufacturing same, resistor resistance material using same, and resistor
WO2020196791A1 (en) * 2019-03-28 2020-10-01 古河電気工業株式会社 Copper alloy bar, production method for copper alloy bar, resistor resistive material using copper alloy bar, and resistor
JP6800387B1 (en) * 2019-03-28 2020-12-16 古河電気工業株式会社 Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors
JP6852228B2 (en) * 2019-03-28 2021-03-31 古河電気工業株式会社 Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors
JPWO2020196792A1 (en) * 2019-03-28 2021-04-30 古河電気工業株式会社 Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors
JP6961861B1 (en) * 2020-05-29 2021-11-05 古河電気工業株式会社 Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors
WO2021241502A1 (en) * 2020-05-29 2021-12-02 古河電気工業株式会社 Copper alloy bar material, method for producing same, resistive material for resistors using same, and resistor
WO2022044611A1 (en) * 2020-08-31 2022-03-03 Koa株式会社 Resistance alloy used in shunt resistor, use of resistance alloy for shunt resistor, and shunt resistor using resistance alloy
CN115989331A (en) * 2020-08-31 2023-04-18 Koa株式会社 Resistance alloy for shunt resistor, application of resistance alloy to shunt resistor, and shunt resistor using resistance alloy
CN115537597A (en) * 2022-09-20 2022-12-30 重庆川仪自动化股份有限公司 Manganese-copper alloy with negative temperature coefficient of resistance, preparation method and application

Also Published As

Publication number Publication date
CN111971405A (en) 2020-11-20
JP6762438B2 (en) 2020-09-30
TW202000938A (en) 2020-01-01
JPWO2019244842A1 (en) 2020-06-25
KR20210020869A (en) 2021-02-24
TWI731343B (en) 2021-06-21
CN111971405B (en) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2019244842A1 (en) Resistance material for resistors and method for producing same, and resistor
JP5158911B2 (en) Copper alloy sheet and manufacturing method thereof
JP4157898B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
JP5170916B2 (en) Copper alloy sheet and manufacturing method thereof
JP6696769B2 (en) Copper alloy plate and connector
KR102059917B1 (en) Copper alloy material and method for producing same
JP6162910B2 (en) Copper alloy sheet and manufacturing method thereof
WO2011068124A1 (en) Copper alloy sheet
JP6162908B2 (en) Copper alloy sheet and manufacturing method thereof
JP2019178398A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
JP3717321B2 (en) Copper alloy for semiconductor lead frames
WO2015099098A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
KR102349545B1 (en) Copper alloy wire rod and manufacturing method thereof
JP7042979B2 (en) Copper alloy plate material and its manufacturing method
JP2009299083A (en) Resistance alloy
WO2013058083A1 (en) Corson alloy and method for producing same
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
KR102499442B1 (en) Copper alloy sheet and its manufacturing method
JP7167385B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
JP7354481B1 (en) Copper alloy materials, resistor materials and resistors using copper alloy materials
JP7445096B1 (en) Copper alloy plate materials and drawn parts
JP6762453B1 (en) Copper alloy plate material and its manufacturing method
JP2019178394A (en) Copper alloy material, electronic component, electronic device, and manufacturing method of copper alloy material
JP2015224356A (en) Copper alloy metal plate and production method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019553999

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823072

Country of ref document: EP

Kind code of ref document: A1