JPWO2019244842A1 - Resistor material for resistor, manufacturing method thereof, and resistor - Google Patents
Resistor material for resistor, manufacturing method thereof, and resistor Download PDFInfo
- Publication number
- JPWO2019244842A1 JPWO2019244842A1 JP2019553999A JP2019553999A JPWO2019244842A1 JP WO2019244842 A1 JPWO2019244842 A1 JP WO2019244842A1 JP 2019553999 A JP2019553999 A JP 2019553999A JP 2019553999 A JP2019553999 A JP 2019553999A JP WO2019244842 A1 JPWO2019244842 A1 JP WO2019244842A1
- Authority
- JP
- Japan
- Prior art keywords
- mass
- rolling
- copper alloy
- elongation
- plate material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 32
- 238000005096 rolling process Methods 0.000 claims abstract description 28
- 229910052718 tin Inorganic materials 0.000 claims abstract description 12
- 239000010949 copper Substances 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims description 15
- 239000000835 fiber Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 10
- 238000005097 cold rolling Methods 0.000 claims description 8
- 238000005266 casting Methods 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 claims description 5
- 238000005498 polishing Methods 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000000265 homogenisation Methods 0.000 claims description 4
- 230000000630 rising effect Effects 0.000 claims description 4
- 238000009966 trimming Methods 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 claims 1
- 238000004080 punching Methods 0.000 description 8
- 238000007665 sagging Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000007769 metal material Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910018651 Mn—Ni Inorganic materials 0.000 description 1
- 229910018645 Mn—Sn Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000005528 kondo effect Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007660 shear property test Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/05—Alloys based on copper with manganese as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/065—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
- H01C17/06506—Precursor compositions therefor, e.g. pastes, inks, glass frits
- H01C17/06513—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
- H01C17/06526—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Conductive Materials (AREA)
Abstract
本発明は、小さい抵抗温度係数と良好なプレス成形性とを兼ね備える銅合金板材およびその製造方法並びに抵抗器用抵抗材料を提供することを目的とする。本発明の目的は、Mnを5.0〜20.0質量%、Niを0〜5.0質量%、Snを0〜5.0質量%かつ、NiとSnを合計で0.1〜10.0質量%含有し、残部がCuおよび不可避的不純物からなり、圧延平行方向と、板幅方向であって圧延平行方向に垂直な圧延垂直方向の伸びの差が10%以下である銅合金板材によって達成された。An object of the present invention is to provide a copper alloy sheet having both a small temperature coefficient of resistance and good press formability, a method for producing the same, and a resistance material for resistors. The object of the present invention is 5.0 to 20.0% by mass of Mn, 0 to 5.0% by mass of Ni, 0 to 5.0% by mass of Sn, and 0.1 to 10% of Ni and Sn in total. 0.0% by mass, the balance being Cu and unavoidable impurities, and the difference in elongation between the rolling parallel direction and the rolling width direction, which is perpendicular to the rolling direction, being 10% or less. Achieved by
Description
本発明は銅合金板材およびその製造方法並びに抵抗器用抵抗材料に関する。 The present invention relates to a copper alloy sheet material, a method for manufacturing the same, and a resistor material for resistors.
抵抗器に使用される抵抗材の金属材料には、環境温度が変化した際にも抵抗器の抵抗が安定するように、抵抗温度係数(以下「TCR」と記すこともある)が小さいことが要求される。抵抗温度係数とは、温度による抵抗値の変化の大きさを1℃当たりの百万分率で表したものであり、TCR(×10−6/K)=(R−R0)/R0×1/(T−T0)×106という式で表される。The metal material of the resistance material used for the resistor may have a small temperature coefficient of resistance (hereinafter also referred to as “TCR”) so that the resistance of the resistor is stable even when the environmental temperature changes. Required. The temperature coefficient of resistance is the magnitude of change in resistance value with temperature expressed in parts per million per degree Celsius, and TCR(×10 −6 /K)=(R−R 0 )/R 0 It is represented by the formula: ×1/(T−T 0 )×10 6 .
ここで、式中のTは試験温度(℃)、T0は基準温度(℃)、Rは試験温度Tにおける抵抗値(Ω)、R0は試験温度T0における抵抗値(Ω)を示す。Cu−Mn−Ni合金やCu−Mn−Sn合金はTCRが非常に小さいため、抵抗材を構成する金属材料として広く使用されている(例えば特許文献1を参照)。Here, T in the equation represents the test temperature (° C.), T 0 represents the reference temperature (° C.), R represents the resistance value (Ω) at the test temperature T, and R 0 represents the resistance value (Ω) at the test temperature T 0 . .. Since the Cu-Mn-Ni alloy and the Cu-Mn-Sn alloy have a very small TCR, they are widely used as a metal material that constitutes a resistance material (for example, see Patent Document 1).
近年の電気電子部品の小型高集積化に伴い、抵抗材も小型化が進んでいる。この小型化に伴い、金属材料をプレス成形して抵抗材を製造する際の断面形状が抵抗器の抵抗値のばらつきに与える影響が大きくなっており、プレス打ち抜き加工時に発生する、抵抗材のダレ、バリ、エグレが軽減した破面形状を有する抵抗材の金属材料のプレス成形性の改善が求められている。 With the recent trend toward miniaturization and high integration of electric and electronic parts, miniaturization of resistance materials is also progressing. Along with this miniaturization, the cross-sectional shape when a metal material is press-molded to produce a resistance material has a great influence on the variation in the resistance value of the resistor. It is required to improve the press formability of the metal material of the resistance material having the fracture surface shape with reduced burr and egre.
本発明は、小さい抵抗温度係数と良好なプレス成形性とを兼ね備える銅合金板材およびその製造方法並びに抵抗器用抵抗材料を提供することを目的とする。 An object of the present invention is to provide a copper alloy sheet having both a small temperature coefficient of resistance and good press formability, a method for producing the same, and a resistance material for resistors.
本発明の目的は、以下によって達成された。
1) Mnを5.0〜20.0質量%、Niを0〜5.0質量%、Snを0〜5.0質量%かつ、NiとSnを合計で0.1〜10.0質量%含有し、残部がCuおよび不可避的不純物からなり、圧延平行方向と、板幅方向であって圧延平行方向に垂直な圧延垂直方向の伸びの差が10%以下である、銅合金板材。
2) Mnを5.0〜20.0質量%、Niを0〜5.0質量%、Snを0〜5.0質量%かつ、NiとSnを合計で0.1〜10.0質量%含有し、残部がCuおよび不可避的不純物からなり、EBSD測定結果より得られたτ-fiberのΦ=20〜35°の方位密度が4以上、Φ=40〜80°の方位密度が4未満である銅合金板材。
3) Feを0.01〜0.5質量%、Siを0.01〜0.5質量%かつFeとSiを合計で0.01〜0.5質量%を含有する、前記1または2に記載の銅合金板材。
4) 前記圧延平行方向、圧延垂直方向のいずれも、引張強度が400MPa以上、伸びが20%以上であり、体積抵抗率が20〜70μΩcmである、前記1〜3いずれか1に記載の銅合金板材。
5) 前記1)〜4)のいずれか1に記載の銅合金板材の製造方法であって、鋳造[工程1]、900℃未満で保持する均質化熱処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延1[工程5]、トリミング[工程6]、焼鈍1[工程7]、表面研磨[工程8]、冷間圧延2[工程9]、10℃/min以上の昇温速度で加熱し、400〜850℃で1秒〜5時間保持後、20℃/min以上の冷却速度で常温まで冷却する焼鈍2[工程10]、整直[工程11]、および焼鈍3[工程12]の各工程をこの順に有する、銅合金板材の製造方法。
6) 前記1)〜5)のいずれか1に記載の銅合金板材を用いた抵抗器用抵抗材料。The object of the present invention has been achieved by the following.
1) 5.0 to 20.0 mass% of Mn, 0 to 5.0 mass% of Ni, 0 to 5.0 mass% of Sn, and 0.1 to 10.0 mass% of Ni and Sn in total. A copper alloy sheet material containing, the balance being Cu and unavoidable impurities, and having a difference in elongation between the rolling parallel direction and the rolling vertical direction perpendicular to the rolling parallel direction, which is the sheet width direction, being 10% or less.
2) 5.0 to 20.0 mass% of Mn, 0 to 5.0 mass% of Ni, 0 to 5.0 mass% of Sn, and 0.1 to 10.0 mass% of Ni and Sn in total. Containing the balance of Cu and inevitable impurities, the azimuth density of Φ=20 to 35° of τ-fiber obtained from the EBSD measurement result is 4 or more, and the azimuth density of Φ=40 to 80° is less than 4. A copper alloy plate material.
3) In the above 1 or 2, containing 0.01 to 0.5 mass% of Fe, 0.01 to 0.5 mass% of Si, and 0.01 to 0.5 mass% of Fe and Si in total. The described copper alloy sheet material.
4) The copper alloy according to any one of 1 to 3, which has a tensile strength of 400 MPa or more, an elongation of 20% or more, and a volume resistivity of 20 to 70 μΩcm in both the rolling parallel direction and the rolling vertical direction. Plate material.
5) The method for producing a copper alloy sheet according to any one of 1) to 4) above, which comprises casting [step 1], homogenizing heat treatment for holding at less than 900°C [step 2], and hot rolling [step]. 3], chamfering [step 4], cold rolling 1 [step 5], trimming [step 6], annealing 1 [step 7], surface polishing [step 8], cold rolling 2 [step 9], 10°C Annealing 2 [step 10], straightening [step 11]: heating at 400/850° C. or more and holding at 400 to 850° C. for 1 second to 5 hours, and then cooling to normal temperature at a cooling rate of 20° C./min or more. And a method of manufacturing a copper alloy sheet having the respective steps of annealing 3 [step 12] in this order.
6) A resistor material for a resistor, which uses the copper alloy sheet according to any one of 1) to 5) above.
本発明によれば、小さい抵抗温度係数と良好な破面形状を有するプレス成形性とを兼ね備える銅合金板材およびその製造方法並びに抵抗器用抵抗材料を提供することができる。 According to the present invention, it is possible to provide a copper alloy sheet having both a small temperature coefficient of resistance and press formability having a good fracture surface shape, a method for producing the same, and a resistor material for resistors.
以下、本発明を詳細に説明する。
<銅合金板材>
本発明は、Mnを5.0〜20.0質量%、Niを0〜5.0質量%、Snを0〜5.0質量%かつ、NiとSnを合計で0.1〜10.0質量%含有し、残部がCuおよび不可避的不純物からなり、圧延平行方向と、板幅方向であって圧延平行方向に垂直な圧延垂直方向の伸びの差が10%以下である銅合金板材、またはMnを5.0〜20.0質量%、Niを0〜5.0質量%、Snを0〜5.0質量%かつ、NiとSnを合計で0.1〜10.0質量%含有し、残部がCuおよび不可避的不純物からなり、EBSD測定結果より得られたτ-fiberのΦ=20〜35°の方位密度が4以上、Φ=40〜80°の方位密度が4未満である銅合金板材、であることを特徴とする。Hereinafter, the present invention will be described in detail.
<Copper alloy plate material>
In the present invention, Mn is 5.0 to 20.0 mass%, Ni is 0 to 5.0 mass%, Sn is 0 to 5.0 mass%, and Ni and Sn are 0.1 to 10.0 in total. A copper alloy sheet material containing 10% by mass or less, the balance of which is Cu and unavoidable impurities, and the difference in elongation between the rolling parallel direction and the rolling width direction, which is perpendicular to the rolling parallel direction, is 10% or less. 5.0 to 20.0 mass% of Mn, 0 to 5.0 mass% of Ni, 0 to 5.0 mass% of Sn, and 0.1 to 10.0 mass% of Ni and Sn in total. , The balance is Cu and unavoidable impurities, and the azimuth density of Φ=20 to 35° of τ-fiber obtained from the EBSD measurement result is 4 or more, and the azimuth density of Φ=40 to 80° is less than 4 It is an alloy plate material.
≪成分組成≫
本発明の銅合金板材は、抵抗温度係数を小さくするため、近藤効果と格子振動の相互作用の効果の観点からMnを5.0〜20.0質量%で含有する。また、Niを0〜5.0質量%、Snを0〜5.0質量%かつ、NiとSnを合計で0.1〜10.0質量%とすることで、より効果的に抵抗温度係数を制御することが出来る。<<Ingredient composition>>
In order to reduce the temperature coefficient of resistance, the copper alloy sheet of the present invention contains Mn in an amount of 5.0 to 20.0 mass% from the viewpoint of the effect of the interaction between the Kondo effect and lattice vibration. Further, by setting Ni to 0 to 5.0 mass%, Sn to 0 to 5.0 mass%, and Ni and Sn to a total of 0.1 to 10.0 mass%, the temperature coefficient of resistance can be more effective. Can be controlled.
好ましくは、Mnを5.5〜19.0質量%、NiとSnを合計で0.01〜5.0質量%、より好ましくはMnを6.0〜18.0質量%、NiとSnを合計で1.0〜5.0質量%である。その他銅合金であることから、特有の不可避不純物が含まれる。 Preferably, Mn is 5.5 to 19.0 mass %, Ni and Sn are 0.01 to 5.0 mass %, more preferably Mn is 6.0 to 18.0 mass %, and Ni and Sn are It is 1.0 to 5.0 mass% in total. Since it is another copper alloy, it contains specific unavoidable impurities.
≪任意添加成分≫
本発明の銅合金板材には、Feを0.01〜0.5質量%、Siを0.01〜0.5質量%かつFeとSi合計で0.01〜0.5質量%含有させることが好ましい。FeおよびSiを含有させることにより、引張強度を向上させることができるが過剰な添加は抵抗を上昇させるため、好ましくは0.01〜0.5質量%である。≪Optional additive ingredients≫
The copper alloy sheet of the present invention contains 0.01 to 0.5 mass% of Fe, 0.01 to 0.5 mass% of Si, and 0.01 to 0.5 mass% of Fe and Si in total. Is preferred. By containing Fe and Si, the tensile strength can be improved, but excessive addition raises the resistance, so the content is preferably 0.01 to 0.5 mass %.
なお本発明の合金の成分組成においては、「質量%」を単に「%」と示すこともある。合金の成分組成のうち含有範囲の下限値が「0%」と記載されている元素成分は、適宜必要に応じて任意に銅合金板材に添加される成分であることを意味し、元素成分が「0%」の場合、その元素成分は銅合金板材に含まれないか、または検出限界値未満の含有量であることを意味する。なお「〜」は両端の数値範囲を含むものである。 In the composition of the alloy of the present invention, "mass%" may be simply referred to as "%". Among the component compositions of the alloy, the elemental component whose lower limit of the content range is described as "0%" means that it is a component that is arbitrarily added to the copper alloy sheet material as needed, and the elemental component is In the case of “0%”, it means that the elemental component is not contained in the copper alloy plate material or is less than the detection limit value. In addition, "-" includes the numerical range of both ends.
本発明における不可避的不純物とは、溶解鋳造時に原料や鋳造炉の炉壁等から意図せず混入する微量元素を意味する。不可避的不純物の総量は一般的には50質量ppm以下であり、典型的には30質量ppm以下であり、より典型的には10質量ppm以下である。 The unavoidable impurities in the present invention mean trace elements that are unintentionally mixed in from the raw material or the furnace wall of the casting furnace during melting and casting. The total amount of unavoidable impurities is generally 50 mass ppm or less, typically 30 mass ppm or less, and more typically 10 mass ppm or less.
≪伸びの差≫
本発明の銅合金板材は、圧延平行方向(以下、RD方向ともいう)と圧延垂直方向(以下TD方向ともいう)の伸びの異方性を小さくすることにより、プレス時の破面形状を改善したものであり、RD方向とTD方向との伸びの差が10%以下であることを特徴とする。ここで伸びの差とは、RD方向とTD方向との伸びの差の絶対値をいう。<<Difference in growth>>
INDUSTRIAL APPLICABILITY The copper alloy sheet material of the present invention improves the fracture surface shape during pressing by reducing the anisotropy of elongation in the rolling parallel direction (hereinafter also referred to as RD direction) and the rolling vertical direction (hereinafter also referred to as TD direction). The difference in elongation between the RD direction and the TD direction is 10% or less. Here, the difference in elongation refers to the absolute value of the difference in elongation between the RD direction and the TD direction.
RD方向およびTD方向の伸びの差を10%以下とすることで、抵抗器への組み込み前のプレス打ち抜き加工のせん断加工時に、破断するまでの変形量の、圧延平行方向、圧延垂直方向の異方性を小さくすることができることから、プレス破面のダレ比率を小さくすることができる。より好ましくは8%以下、さらに好ましくは5%以下である。 By setting the difference between the elongations in the RD direction and the TD direction to 10% or less, during the shearing process of the press punching process before assembling into the resistor, the deformation amount until the fracture is different between the rolling parallel direction and the rolling vertical direction. Since the directionality can be reduced, the sagging ratio of the fracture surface of the press can be reduced. It is more preferably 8% or less, still more preferably 5% or less.
≪引張強度、および伸び≫
本発明の銅合金板材において抵抗器として組み込む際の変形、ミクロなクラックを抑制するために、RD方向およびTD方向のいずれも引張強度が400MPa以上、伸びが20%以上である。≪Tensile strength and elongation≫
In the copper alloy sheet material of the present invention, the tensile strength is 400 MPa or more and the elongation is 20% or more in both the RD direction and the TD direction in order to suppress deformation and microcracks when incorporated as a resistor.
RD方向およびTD方向のいずれも、引張強度は、好ましくは410MPa以上800MPa以下、さらに好ましくは420MPa以上750MPa以下である。伸びは、好ましくは22%以上50%未満、より好ましくは25%以上50%未満である。伸びを50%未満とすることで、プレス打ち抜き加工時に破断に至るまでの伸びを小さくでき、圧延平行方向と圧延垂直方向のいずれもプレス打ち抜き加工時のダレを小さく制御できる。 The tensile strength in both the RD direction and the TD direction is preferably 410 MPa or more and 800 MPa or less, more preferably 420 MPa or more and 750 MPa or less. The elongation is preferably 22% or more and less than 50%, more preferably 25% or more and less than 50%. When the elongation is less than 50%, the elongation up to fracture during press punching can be reduced, and the sag during press punching can be controlled to be small in both the parallel rolling direction and the vertical rolling direction.
≪体積抵抗率≫
本発明の銅合金板材を抵抗器として使用する際に、接続される電子回路内の電圧降下を検出するために必要な抵抗率であり、25〜70μΩcmが好ましい。≪Volume resistivity≫
When the copper alloy sheet material of the present invention is used as a resistor, it is the resistivity required to detect the voltage drop in the connected electronic circuit, and is preferably 25 to 70 μΩcm.
≪τ−fiber(タウ−ファイバー)≫
本発明の銅合金板材のRD方向とTD方向の伸びの差が10%以下であるために、本発明では、EBSD測定によるτ−fiber(φ1=90°、φ2=45°、Φ=0〜90°)のΦ=20〜35°の方位密度が4以上、Φ=40〜80°の方位密度が4未満であるように制御することを特徴とする。≪τ-fiber (tau-fiber)≫
Since the difference in elongation between the RD direction and the TD direction of the copper alloy sheet of the present invention is 10% or less, in the present invention, τ-fiber (φ1=90°, φ2=45°, Φ=0 to 0 by EBSD measurement 90°) is controlled such that the azimuth density of Φ=20 to 35° is 4 or more and the azimuth density of Φ=40 to 80° is less than 4.
ここで、τファイバーとは、{0 0 1}<―1 ―1 0>(φ1=90°、φ2=45°、Φ=0°)から{1 1 0}<0 0 1>(φ1=90°、φ2=45°、Φ=90°)にかけ回転する方位の総称であり、Φ=20〜35°の方位密度が4以上となることは{4 4 11}<11 11 −8>集合組織の発達、Φ=40〜80°が4以上となることは、圧延集合組織である{1 1 0}<0 0 1>の残存を意味する。つまり、前者の方位密度を増加させ、かつ、後者の方位の低下を両立によってだれ面の改善がされる。 Here, the τ fiber means {0 0 1}<-1 -1 0> (φ1=90°, φ2=45°, Φ=0°) to {1 1 0}<0 0 1>(φ1= 90°, φ2=45°, Φ=90°) is a general term for azimuths that rotate, and the azimuth density of Φ=20 to 35° is 4 or more is {4 4 11}<11 11 -8> set. The development of the structure, that Φ=40 to 80° is 4 or more means that the rolling texture {1 1 0}<0 0 1> remains. That is, the sag plane is improved by increasing the former azimuth density and simultaneously reducing the latter azimuth.
なお、τ―faiberは、EBSD法の測定装置として(株)TSLソリューションズ社製OIM5.0(商品名)を使用し、その測定装置のデータを装置に付属のOIM Analysis7.31(EBSDデータ解析ソフトウェア)を使用して算出したものである。 In addition, τ-fiber uses OIM5.0 (trade name) manufactured by TSL Solutions Co., Ltd. as a measuring device for the EBSD method, and the data of the measuring device is used as OIM Analysis7.31 (EBSD data analysis software) attached to the device. ) Is used for calculation.
τ−fiberを上記の範囲に制御することにより、銅合金板材を塑性変形させる際の変形抵抗値が変化し、τ−fiber制御を行わない状態に比べて、圧延平行方向と垂直方向の、破断に至るまでの伸びが小さくさせることができ、その結果少ない応力でプレス打ち抜き加工が可能となり、破面形状におけるダレを小さくすることができる。
τ―faiberは、下記の製造方法によって制御することができる。By controlling τ-fiber within the above range, the deformation resistance value when plastically deforming a copper alloy sheet changes, and as compared with the case where τ-fiber control is not performed, the fracture in the rolling parallel direction and the vertical direction It is possible to reduce the elongation up to, and as a result, press punching can be performed with less stress, and the sagging in the fracture surface shape can be reduced.
τ-faiber can be controlled by the following manufacturing method.
<銅合金板材の製造方法>
本発明の銅合金板材の製造方法は、
鋳造[工程1]、
900℃未満で10分〜10時間保持する均質化熱処理[工程2]、
熱間圧延[工程3]、
面削[工程4]、
冷間圧延1[工程5]、
トリミング[工程6]、
焼鈍1[工程7]、
表面研磨[工程8]、
冷間圧延2[工程9]、
10℃/min以上の昇温速度で加熱し、400〜850℃で1秒〜5時間保持後、20℃/min以上の冷却速度で常温まで冷却する焼鈍2[工程10]、
整直[工程11]、
および焼鈍3[工程12]の各工程をこの順に有する、ことを特徴とする。<Method of manufacturing copper alloy sheet>
The manufacturing method of the copper alloy plate material of the present invention,
Casting [Step 1],
Homogenization heat treatment of holding at less than 900° C. for 10 minutes to 10 hours [step 2],
Hot rolling [step 3],
Chamfering [Process 4],
Cold rolling 1 [step 5],
Trimming [step 6],
Annealing 1 [Step 7],
Surface polishing [Step 8],
Cold rolling 2 [step 9],
Annealing 2 [step 10] of heating at a temperature rising rate of 10°C/min or more, holding at 400 to 850°C for 1 second to 5 hours, and then cooling to room temperature at a cooling rate of 20°C/min or more,
Straightening [process 11],
And annealing 3 [step 12] in this order.
各工程自体は、公知の工程またはそれを改善した工程の組み合わせであるが、特に工程2の均質化熱処理工程、工程10の焼鈍および冷却が本発明のτ−fiberを制御するための重要工程である。 Each step itself is a known step or a combination of improved steps thereof. Particularly, the homogenization heat treatment step of step 2, the annealing and cooling of step 10 are important steps for controlling τ-fiber of the present invention. is there.
均質化熱処理[工程2]では、900℃未満で10分〜10時間保持することで、結晶粒の粗大化を抑制し、後の集合組織形成を容易にさせる。900℃以上で熱処理した場合は、意図したτファイバーを得ることが困難である。 In the homogenization heat treatment [step 2], the grain size is suppressed from being coarsened by holding the temperature below 900° C. for 10 minutes to 10 hours, and the subsequent texture formation is facilitated. When heat-treated at 900° C. or higher, it is difficult to obtain the intended τ fiber.
焼鈍2[工程10]では、10℃/min以上の昇温速度で加熱し、400〜850℃で1秒〜5時間保持後、20℃/min以上の冷却速度で常温まで冷却することでτファイバーの方位集積度を制御する。特に、昇温速度が遅い場合、保持時間が上記範囲外となった場合は、所定の方位密度が得られず、伸びの異方性やダレの異方性が生じる。 In the annealing 2 [step 10], by heating at a temperature rising rate of 10° C./min or more, holding at 400 to 850° C. for 1 second to 5 hours, and then cooling to room temperature at a cooling rate of 20° C./min or more, τ Controls the orientation integration of the fiber. In particular, when the temperature rising rate is slow and the holding time is out of the above range, a predetermined orientation density cannot be obtained, and elongation anisotropy and sag anisotropy occur.
本発明においては、隣接する工程と工程の間又は最終再結晶焼鈍し工程の後に、形状矯正、酸化膜除去、脱脂、防錆等の処理を実施してもよい。本発明の銅合金板材は、抵抗器、例えばシャント抵抗器用抵抗材料として極めて有用である。 In the present invention, treatments such as shape correction, oxide film removal, degreasing, and rust prevention may be performed between adjacent steps or after the final recrystallization annealing step. INDUSTRIAL APPLICABILITY The copper alloy sheet material of the present invention is extremely useful as a resistance material for resistors, for example, shunt resistors.
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。 The present embodiment shows an example of the present invention, and the present invention is not limited to this embodiment. In addition, various changes or improvements can be added to the present embodiment, and a mode in which such changes or improvements are added can be included in the present invention.
(実施例1)
以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
表1記載の所定の合金組成(質量%)を有する鋳塊を鋳造により製造し[工程1]、熱間圧延前の900℃未満での10分〜10時間保持による均質化熱処理[工程2]、鋳造組織の破壊および均一な組織を得るために合計加工率50%以上で圧延する熱間圧延[工程3]、酸化スケールを除去するために両面の表層をそれぞれ0.5mm以上削る面削[工程4]、目標形状を得るために合計加工率60%以上で圧延する冷間圧延1[工程5]、材料端部の形状を整えるために板材の両端を全幅の5%未満の寸法で除去するトリミング[工程6]、材料のひずみを除去するために300〜600℃で10秒〜1時間保持する焼鈍1[工程7]、材料表面の酸化膜除去のための表面研磨[工程8]、目標形状を得るため、また加工硬化のために合計加工率10〜80%で圧延する冷間圧延2[工程9]、ひずみの開放およびTau−fiberを得るために10℃/min以上の昇温速度で加熱し、400〜850℃で1秒〜5時間保持し、20℃/min以上の冷却速度で室温まで冷却する焼鈍2[工程10]、板材の反り、曲がりを矯正するために、圧延平行方向に100MPa以上の応力を加える整直[工程11]、材料の残留応力を除去するために、保持温度200〜500℃で5秒〜1時間の熱処理を行う焼鈍3[工程12]をこの順で施して、厚さ0.2mmの板材を得た。(Example 1)
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
A ingot having a predetermined alloy composition (mass%) shown in Table 1 is produced by casting [step 1], and homogenized heat treatment by holding for 10 minutes to 10 hours at less than 900° C. before hot rolling [step 2]. Hot-rolling with a total working rate of 50% or more in order to break the cast structure and obtain a uniform structure [Step 3], and chamfering by cutting the surface layers on both sides by 0.5 mm or more to remove oxide scale. [Step 4], cold rolling 1 for rolling at a total working rate of 60% or more to obtain a target shape [Step 5], and removing both ends of the plate material with a dimension of less than 5% of the total width to adjust the shape of the material end. Trimming [step 6], annealing 1 for removing strain of the material at 300 to 600° C. for 10 seconds to 1 hour 1 [step 7], surface polishing for removing an oxide film on the material surface [step 8], Cold rolling 2 to obtain a target shape and for work hardening at a total working rate of 10 to 80% [Step 9], release of strain and temperature rise of 10°C/min or more to obtain Tau-fiber Annealing 2 [step 10], which is heating at a speed, holding at 400 to 850° C. for 1 second to 5 hours, and cooling to room temperature at a cooling rate of 20° C./min or more, rolling to correct warpage and bending of plate material, Alignment in which a stress of 100 MPa or more is applied in the parallel direction [Step 11], and annealing 3 [Step 12] in which heat treatment is performed at a holding temperature of 200 to 500° C. for 5 seconds to 1 hour to remove residual stress of the material is performed. The steps were performed in order to obtain a plate material having a thickness of 0.2 mm.
合金組成は表1に示す通りであるが、表1に示す合金成分以外の残部は銅及び不可避不純物である。また、工程2、工程10の各条件は、表2に示す通りである。このようにして得た試料について、下記の評価を行った。測定は、製造された試料に圧延方向に1m間隔で5箇所からサンプリングした試料で行い、その平均値とした。結果は表3に示す。なお、特に記載の無い限り、23℃50%RHの雰囲気下で行った。 The alloy composition is as shown in Table 1, but the balance other than the alloy components shown in Table 1 is copper and inevitable impurities. Further, the respective conditions of step 2 and step 10 are as shown in Table 2. The samples thus obtained were evaluated as follows. The measurement was performed on the manufactured sample, which was sampled from 5 points at 1 m intervals in the rolling direction, and the average value thereof was used. The results are shown in Table 3. Unless otherwise specified, the test was performed in an atmosphere of 23° C. and 50% RH.
(EBSD測定による結晶方位の測定及び解析)
EBSD法により、測定面積64×104μm2(800μm×800μm)、スキャンステップは0.1μmの条件で測定を行った。スキャンステップは微細な結晶粒を測定するため、0.1μmステップで行った。解析では、64×104μm2のEBSD測定結果から、解析にて方分布関数ODF(Orientation Determination Function)を確認した。電子線は、電界放出電子銃を発生源とした。なお、測定時のプローブ系は、0.015μmである。(Measurement and analysis of crystal orientation by EBSD measurement)
According to the EBSD method, the measurement area was 64×104 μm 2 (800 μm×800 μm) and the scan step was 0.1 μm. The scan step was performed in 0.1 μm steps in order to measure fine crystal grains. In the analysis, the direction distribution function ODF (Orientation Determination Function) was confirmed by the analysis from the EBSD measurement result of 64×104 μm 2. The electron beam was generated by a field emission electron gun. The probe system at the time of measurement is 0.015 μm.
EBSD法の測定装置には、(株)TSLソリューションズ製 OIM5.0(商品名)を用いた。板材は、30×30mmサイズに切り出し、機械研磨にて板厚の1/2まで研磨後、電解研磨にて歪み除去および鏡面仕上げを行った。 As the measuring device for the EBSD method, OIM5.0 (trade name) manufactured by TSL Solutions Co., Ltd. was used. The plate material was cut into a size of 30×30 mm, mechanically polished to 1/2 the plate thickness, and then electrolytically polished to remove distortion and mirror-finish.
(抵抗温度係数および体積抵抗率の測定)
板材の板面に鏡面研磨を施し、鏡面研磨前後の板材それぞれについて、JIS C2525およびJIS C2526に規定された方法に準じる方法(四端子法)により、20℃〜50℃の範囲の抵抗温度係数(TCR)を測定した。(Measurement of temperature coefficient of resistance and volume resistivity)
The plate surface of the plate material is mirror-polished, and each of the plate material before and after mirror-polishing is subjected to a method (four-terminal method) according to the method specified in JIS C2525 and JIS C2526, and the temperature coefficient of resistance in the range of 20°C to 50°C ( TCR) was measured.
20℃〜50℃の抵抗温度係数TCRの絶対値が50ppm/K以下であって、かつ20℃における体積抵抗率ρが20〜70μΩcmを合格レベルで○とし、これを外れる場合は×とした。板材の板厚はマイクロメータで測定した。 When the absolute value of the temperature coefficient of resistance TCR at 20° C. to 50° C. was 50 ppm/K or less and the volume resistivity ρ at 20° C. was 20 to 70 μΩcm, the pass level was ◯, and when it was out of this range, it was x. The plate thickness of the plate material was measured with a micrometer.
(プレス打ち抜き加工後の断面形状)
板材のプレス打ち抜き加工後の形状は、日本伸銅協会技術標準JCBA T310:2002に規定の銅及び銅合金薄板条のせん断試験方法に準拠して測定したダレの比率によって、板材のプレス成形性を評価した。(Cross-sectional shape after press punching)
The shape of the plate material after press punching is determined by the ratio of the sag measured according to the shear test method for copper and copper alloy thin strips specified in the Japan Copper and Brass Association technical standard JCBA T310:2002 to determine the press formability of the plate material. evaluated.
すなわち、プレス機、角型ダイス等を使用して板材を打ち抜き、板材の圧延方向に直交する断面(プレス破面)を露出させ、走査電子顕微鏡を用いて断面の観察を行った。なお、板材の打ち抜きにおける条件については予め試行し良好な条件として、クリアランスは10μm、プレス速度は200mm/s、潤滑条件は無潤滑とした。 That is, the plate material was punched out using a pressing machine, a square die or the like to expose the cross section (press fracture surface) orthogonal to the rolling direction of the plate material, and the cross section was observed using a scanning electron microscope. The conditions for punching the plate material were preliminarily tried and good conditions were set: a clearance of 10 μm, a pressing speed of 200 mm/s, and a lubricating condition of no lubrication.
図1において、1が打ち抜き加工時のダレ、2がせん断面、3が破断面である。ここで、1の板厚方向のダレ寸法が、板厚全体の20%未満であると、ダレが小さく寸法が設計通り得られているものと判断した。 In FIG. 1, 1 is sagging during punching, 2 is a shear surface, and 3 is a fracture surface. Here, when the sagging dimension in the sheet thickness direction of 1 is less than 20% of the entire sheet thickness, it was determined that the sagging was small and the dimension was obtained as designed.
(引張強度、伸び)
板材の圧延方向と平行な方向(RD方向)に所定の試験片の寸法で切り出した各試料材(n=3)について、JIS Z 2241:2011に準じた引張試験を行なうことにより得られたデータから算出した。算出した引張強度と伸びの平均値を示す。なお、本実施例では400MPa以上を合格レベルとした。(Tensile strength, elongation)
Data obtained by performing a tensile test according to JIS Z 2241:2011 on each sample material (n=3) cut out in a direction parallel to the rolling direction of the plate material (RD direction) with a predetermined test piece size. Calculated from The average values of the calculated tensile strength and elongation are shown. In this example, 400 MPa or higher was set as the pass level.
上記で明らかなように、本発明の工程によって製造された銅合金板材は、小さい抵抗温
度係数を有しながら、良好なプレス成形性も有している。As is clear from the above, the copper alloy sheet produced by the process of the present invention has a small temperature coefficient of resistance and also has good press formability.
1 ダレ
2 せん断面
3 破断面
4 バリ1 Sagging 2 Shear surface 3 Fracture surface 4 Burr
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018117206 | 2018-06-20 | ||
JP2018117206 | 2018-06-20 | ||
PCT/JP2019/023923 WO2019244842A1 (en) | 2018-06-20 | 2019-06-17 | Resistance material for resistors and method for producing same, and resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019244842A1 true JPWO2019244842A1 (en) | 2020-06-25 |
JP6762438B2 JP6762438B2 (en) | 2020-09-30 |
Family
ID=68983750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019553999A Active JP6762438B2 (en) | 2018-06-20 | 2019-06-17 | Resistor materials for resistors, their manufacturing methods, and resistors |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6762438B2 (en) |
KR (1) | KR102702060B1 (en) |
CN (1) | CN111971405B (en) |
TW (1) | TWI731343B (en) |
WO (1) | WO2019244842A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6442020B1 (en) * | 2017-10-12 | 2018-12-19 | 福田金属箔粉工業株式会社 | Hard rolled copper foil and method for producing the hard rolled copper foil |
JP6852228B2 (en) * | 2019-03-28 | 2021-03-31 | 古河電気工業株式会社 | Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors |
KR20210144680A (en) * | 2019-03-28 | 2021-11-30 | 후루카와 덴키 고교 가부시키가이샤 | Copper alloy material and manufacturing method thereof, resistance material for resistor using same, and resistor |
CN115516122B (en) * | 2020-05-29 | 2023-12-19 | 古河电气工业株式会社 | Copper alloy strip, method for producing same, resistor material for resistor using copper alloy strip, and resistor |
WO2021241502A1 (en) * | 2020-05-29 | 2021-12-02 | 古河電気工業株式会社 | Copper alloy bar material, method for producing same, resistive material for resistors using same, and resistor |
JP7158053B2 (en) * | 2020-08-31 | 2022-10-21 | Koa株式会社 | Resistance alloys used in shunt resistors, use of resistance alloys in shunt resistors, and shunt resistors using resistance alloys |
CN112376004A (en) * | 2020-11-03 | 2021-02-19 | 深圳市业展电子有限公司 | Treatment process for improving load stability of manganese-copper alloy material |
CN114959356B (en) * | 2022-06-23 | 2023-08-22 | 有研金属复材(忻州)有限公司 | Copper-based precise resistance alloy with high resistivity and low temperature drift and preparation method thereof |
CN115537597B (en) * | 2022-09-20 | 2023-07-28 | 重庆川仪自动化股份有限公司 | Manganese-copper alloy with negative resistance temperature coefficient, preparation method and application |
FR3147294A1 (en) * | 2023-03-29 | 2024-10-04 | Lebronze Alloys | Precision resistive alloy based on copper, manganese, nickel and tin |
CN117327942B (en) * | 2023-11-29 | 2024-02-27 | 中铝科学技术研究院有限公司 | Copper alloy material, method for preparing the same, and heating film comprising the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016069724A (en) * | 2014-09-29 | 2016-05-09 | 日立金属株式会社 | Cu ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR |
WO2018131373A1 (en) * | 2017-01-10 | 2018-07-19 | 古河電気工業株式会社 | Copper alloy material for resistance material, production method therefor and resistor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4214304A1 (en) * | 1992-04-30 | 1993-11-04 | Deutsche Nickel Ag | NICKEL-FREE COLOR METAL ALLOY AND ITS USE |
CN100584975C (en) * | 2006-11-23 | 2010-01-27 | 北京有色金属研究总院 | Copper-base alloy and preparation method thereof |
JP5961335B2 (en) * | 2010-04-05 | 2016-08-02 | Dowaメタルテック株式会社 | Copper alloy sheet and electrical / electronic components |
KR101189478B1 (en) * | 2010-04-28 | 2012-10-15 | 주식회사 케이에이치바텍 | Tin bearing copper alloys for die-casting |
JP5539055B2 (en) * | 2010-06-18 | 2014-07-02 | 株式会社Shカッパープロダクツ | Copper alloy material for electric / electronic parts and method for producing the same |
JP6205105B2 (en) * | 2011-04-18 | 2017-09-27 | Jx金属株式会社 | Cu-Ni-Si based alloy for electronic material, Cu-Co-Si based alloy and method for producing the same |
CN103866158A (en) * | 2012-12-12 | 2014-06-18 | 江苏华东炉业有限公司 | High temperature resistant Mn-Cu alloy |
JP6296728B2 (en) * | 2013-09-03 | 2018-03-20 | Jx金属株式会社 | Copper alloy sheet with excellent conductivity and bending deflection coefficient |
KR101935987B1 (en) * | 2014-05-30 | 2019-01-07 | 후루카와 덴키 고교 가부시키가이샤 | Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet |
JP6081513B2 (en) * | 2015-03-30 | 2017-02-15 | 株式会社神戸製鋼所 | Copper alloy plate for heat dissipation parts |
WO2016171055A1 (en) * | 2015-04-24 | 2016-10-27 | 古河電気工業株式会社 | Copper alloy material and method for producing same |
-
2019
- 2019-06-17 JP JP2019553999A patent/JP6762438B2/en active Active
- 2019-06-17 WO PCT/JP2019/023923 patent/WO2019244842A1/en active Application Filing
- 2019-06-17 CN CN201980025519.6A patent/CN111971405B/en active Active
- 2019-06-17 KR KR1020207030754A patent/KR102702060B1/en active IP Right Grant
- 2019-06-19 TW TW108121266A patent/TWI731343B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016069724A (en) * | 2014-09-29 | 2016-05-09 | 日立金属株式会社 | Cu ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR |
WO2018131373A1 (en) * | 2017-01-10 | 2018-07-19 | 古河電気工業株式会社 | Copper alloy material for resistance material, production method therefor and resistor |
Non-Patent Citations (1)
Title |
---|
RAYGAN ET AL.: "Effect of rolling and annealing processes on the hardness and electrical conductivity values of Cu-1", JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, vol. 211, JPN6019035485, 12 June 2011 (2011-06-12), pages 1810 - 1816, XP028252859, ISSN: 0004168066, DOI: 10.1016/j.jmatprotec.2011.06.002 * |
Also Published As
Publication number | Publication date |
---|---|
CN111971405B (en) | 2021-11-12 |
WO2019244842A1 (en) | 2019-12-26 |
KR102702060B1 (en) | 2024-09-02 |
TWI731343B (en) | 2021-06-21 |
TW202000938A (en) | 2020-01-01 |
KR20210020869A (en) | 2021-02-24 |
JP6762438B2 (en) | 2020-09-30 |
CN111971405A (en) | 2020-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6762438B2 (en) | Resistor materials for resistors, their manufacturing methods, and resistors | |
JP4157898B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent press punchability | |
KR101628583B1 (en) | Cu-ni-si alloy and method for manufacturing same | |
JP6696769B2 (en) | Copper alloy plate and connector | |
JP6680041B2 (en) | Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars | |
KR102059917B1 (en) | Copper alloy material and method for producing same | |
KR101573163B1 (en) | Cu-Zn-Sn-Ni-P-BASED ALLOY | |
WO2011068124A1 (en) | Copper alloy sheet | |
JPWO2012026611A1 (en) | Copper alloy sheet and manufacturing method thereof | |
JP5834528B2 (en) | Copper alloy for electrical and electronic equipment | |
JP2006219733A (en) | Copper alloy sheet for electric-electronic component having reduced anisotropy | |
KR101917416B1 (en) | Copper-cobalt-silicon alloy for electrode material | |
JP2019178398A (en) | Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar | |
KR20160029033A (en) | Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal | |
JP3717321B2 (en) | Copper alloy for semiconductor lead frames | |
JP7167385B1 (en) | Copper alloy material, resistance material for resistor using the same, and resistor | |
JP2018016823A (en) | Copper alloy plate material for heat dissipation member, and method for producing the same | |
JPWO2016171054A1 (en) | Copper alloy sheet and manufacturing method thereof | |
JP5317048B2 (en) | Resistance alloy manufacturing method | |
KR20190095251A (en) | Copper alloy rods and its manufacturing method | |
KR20140114059A (en) | Copper alloy | |
KR20180045805A (en) | Copper alloy | |
WO2023276906A1 (en) | Copper alloy material, resistive material for resistor using same, and resistor | |
JP6762453B1 (en) | Copper alloy plate material and its manufacturing method | |
WO2024135786A1 (en) | Copper alloy material, resistive material for resistor, and resistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190930 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190930 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20191024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200818 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200908 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6762438 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |