JPWO2016171054A1 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JPWO2016171054A1
JPWO2016171054A1 JP2016567434A JP2016567434A JPWO2016171054A1 JP WO2016171054 A1 JPWO2016171054 A1 JP WO2016171054A1 JP 2016567434 A JP2016567434 A JP 2016567434A JP 2016567434 A JP2016567434 A JP 2016567434A JP WO2016171054 A1 JPWO2016171054 A1 JP WO2016171054A1
Authority
JP
Japan
Prior art keywords
mass
copper alloy
fiber
rolling
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016567434A
Other languages
Japanese (ja)
Other versions
JP6162908B2 (en
Inventor
岳己 磯松
岳己 磯松
恵人 藤井
恵人 藤井
樋口 優
優 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2016171054A1 publication Critical patent/JPWO2016171054A1/en
Application granted granted Critical
Publication of JP6162908B2 publication Critical patent/JP6162908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本発明は、板材から所定形状のサンプル(例えば端子材料)を採取する方向に依らず、ばね特性等の要求特性を安定して得ることができる銅合金板材等を提供する。本発明の銅合金板材は、Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%含有し、残部がCuおよび不可避不純物である合金組成からなり、圧延集合組織を有し、この圧延集合組織は、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0〜25.0の範囲内、β−fiber(φ2=45°〜90°)の方位密度が、3.0〜30.0の範囲内を満たすことを特徴とする。The present invention provides a copper alloy sheet or the like that can stably obtain required characteristics such as spring characteristics regardless of the direction in which a sample (for example, a terminal material) having a predetermined shape is collected from the sheet. The copper alloy sheet of the present invention contains Sn, 0.8-3.0 mass%, Ni, 0.1-1.0 mass%, and P, 0.002-0.15 mass%, and the balance is Cu and inevitable impurities, and the rolling texture This rolling texture has an orientation density of α-fiber (φ1 = 0 ° to 45 °) obtained from the texture analysis by EBSD within the range of 3.0 to 25.0, and β-fiber (φ2 = The orientation density of 45 ° to 90 °) satisfies the range of 3.0 to 30.0.

Description

本発明は、銅合金板材およびその製造方法に関し、特に、電気・電子機器用部品や自動車用部品、例えば、コネクタ、リードフレーム、放熱部材、リレー、スイッチ、ソケットなどの部品に使用するのに適した銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy sheet and a method for producing the same, and particularly suitable for use in parts for electrical and electronic equipment and automobile parts such as connectors, lead frames, heat dissipation members, relays, switches, sockets, and the like. The present invention relates to a copper alloy sheet and a manufacturing method thereof.

電気・電子機器用部品や自動車用部品、例えば、コネクタ、リードフレーム、放熱部材、リレー、スイッチ、ソケットなどの部品に使用される銅合金板材に要求される特性としては、耐力(降伏応力)、引張強度、ヤング率(縦弾性係数)、曲げ加工性、耐疲労特性、耐応力緩和特性、導電率などが挙げられる。近年、電子機器用部品や自動車用部品は、小型化、軽量化、高密度実装化や、使用環境の高温化などに伴って、上記したような要求特性を向上させる必要性が高まっており、それらの中でも、特にヤング率をより一層高めた板材を開発することが求められている。   Properties required for copper alloy sheets used in parts for electrical and electronic equipment and automotive parts, such as connectors, lead frames, heat dissipation members, relays, switches, sockets, etc. include proof stress (yield stress), Examples include tensile strength, Young's modulus (longitudinal elastic modulus), bending workability, fatigue resistance, stress relaxation resistance, and conductivity. In recent years, electronic device parts and automobile parts have become increasingly necessary to improve the required characteristics as described above, along with downsizing, weight reduction, high-density mounting, and higher usage environment temperatures. Among these, it is required to develop a plate material with a higher Young's modulus.

例えば、電子機器用コネクタの構成部品(例えば端子)に使用される銅合金板材は、板材の薄肉化や幅狭化によって、軽量化や材料の使用量低減が検討されている。このとき、端子の板バネ部の接圧を確保するために、端子の変位量を大きく取ろうとすると、部品の小型化との両立ができない。そこで、少ない変位量で大きな応力を得るためには、ヤング率の高い材料が必要になる。   For example, a copper alloy plate material used for a component (for example, a terminal) of a connector for an electronic device has been studied to reduce the weight and reduce the amount of material used by reducing the thickness and width of the plate material. At this time, in order to secure the contact pressure of the leaf spring portion of the terminal, if it is attempted to increase the displacement of the terminal, it is impossible to achieve both reduction in size of the component. Therefore, in order to obtain a large stress with a small amount of displacement, a material having a high Young's modulus is required.

また、電子機器のバッテリー部分や、自動車用の大電流コネクタなどでは、導通部の断面積を大きくとる必要があるため、通常は0.5mm以上の板厚を有する厚肉材が用いられる。しかしながら、厚肉材は、成形加工を施して所定形状に曲げ変形させたとしても、その後にスプリングバックが発生しやすく、設計通りの形状が得られないという問題がある。そこで、曲げ変形させた後のスプリングバック量を低減するために、ヤング率の高い材料を用いることが好ましいとされる。特に、板材から、コネクタを構成する端子(コンタクト)を、打ち抜き加工等によって採取する方向は、通常は圧延方向に対して90°の板幅方向TDであるが、複雑な変形(曲げ加工)が加わるコネクタだと、90°以外の方向(例えば0°の方向)にコンタクトを採取せざるをえない場合がある。このため、採取された端子には、圧延方向に対して90°の方向だけではなく、90°以外の方向にも応力が付与され、曲げ変形が加わることが想定されることから、採取された端子のヤング率は、圧延時の圧延方向に対して0°および90°のいずれの方向とも高く、かつ、それらのヤング率の差(ヤング率の異方性)が小さいことが好ましい。複雑な曲げ加工とは、一つのコネクタに0°、90°の複数の曲げ加工が入り、またそのいずれもバネをとる設計である。また、曲げ加工部は180°のU字加工や、板厚を薄く加工した成形も入り、材料への高い負荷がかかる設計もある。これらを含めて、複雑な曲げ加工と示している。   In addition, in a battery portion of an electronic device, a high-current connector for an automobile, and the like, a thick material having a plate thickness of 0.5 mm or more is usually used because it is necessary to increase a cross-sectional area of a conduction portion. However, even if the thick material is subjected to a forming process and bent into a predetermined shape, there is a problem that spring back is likely to occur thereafter, and the shape as designed cannot be obtained. Therefore, in order to reduce the amount of springback after bending deformation, it is preferable to use a material having a high Young's modulus. In particular, the direction in which the terminals (contacts) constituting the connector are collected from the plate material by punching or the like is usually the plate width direction TD of 90 ° with respect to the rolling direction, but complicated deformation (bending) is caused. In the case of a connector to be added, there are cases in which contacts must be collected in directions other than 90 ° (for example, in the direction of 0 °). For this reason, the collected terminals were not only in the direction of 90 ° with respect to the rolling direction but also stressed in directions other than 90 °, and it was assumed that bending deformation was applied. It is preferable that the Young's modulus of the terminal is high in both directions of 0 ° and 90 ° with respect to the rolling direction at the time of rolling, and that the difference in Young's modulus (anisotropy of Young's modulus) is small. A complicated bending process is a design in which a plurality of bending processes of 0 ° and 90 ° are included in one connector, and all of them are spring-loaded. In addition, the bent portion includes a 180 ° U-shaped process and molding with a thin plate thickness, and there is a design that places a high load on the material. Including these, it is shown as a complicated bending process.

さらに、大電流コネクタ(電子機器用途などのコネクタの電流値は、おおむね1A以上、EV、HEVの場合は10A以上)では、大電流が流れることにより発生するジュール熱によって、材料自体が高温に発熱して応力緩和が生じ、これに伴って、端子に『へたり』(ばね特性の劣化)が生じやすくなるなどの問題がある。端子は、この使用中の『へたり』によって、接圧が、初期の接圧を維持できなくなって低下する傾向があることから、コネクタの端子等の部品に使用される銅合金板材としては、耐応力緩和特性に優れることも求められる。   Furthermore, in the case of a large current connector (the current value of a connector for electronic devices or the like is approximately 1 A or more in the case of EV or HEV), the material itself heats up to a high temperature due to Joule heat generated when a large current flows. As a result, stress relaxation occurs, and accompanying this, there is a problem that “sagging” (deterioration of spring characteristics) tends to occur in the terminal. Since the contact pressure tends to decrease due to this “sag” during use, the initial contact pressure cannot be maintained, so as a copper alloy plate material used for parts such as connector terminals, It is also required to have excellent stress relaxation resistance.

従来、電子機器用部品の材料としては、鉄系材の他、黄銅などの銅合金材が広く用いられている。銅合金材は、SnやZn等の固溶成分の添加による固溶強化と、圧延や線引きなどの冷間加工による加工硬化の組み合わせによって強度を向上させる方法を用いるのが一般的である。しかしながら、この方法だけで強化した銅合金材は、一般に導電率が低く、電気・電子機器用部品や自動車用部品の電気導体(例えば端子)としての使用には適さない。   Conventionally, copper alloy materials such as brass have been widely used as materials for electronic device parts in addition to iron-based materials. For copper alloy materials, it is common to use a method of improving strength by a combination of solid solution strengthening by adding a solid solution component such as Sn or Zn and work hardening by cold working such as rolling or wire drawing. However, a copper alloy material strengthened only by this method generally has a low electrical conductivity, and is not suitable for use as an electrical conductor (for example, a terminal) of parts for electric / electronic devices and parts for automobiles.

電気・電子機器用部品や自動車用部品に用いられる銅合金板材のヤング率を高めた公知技術として、本出願人は、例えば特許文献1において、圧延板の幅方向TDに向く原子面の集積に関し、(111)面の法線と板幅方向TDのなす角の角度が20°以内である原子面を有する領域の面積率を50%超えとすることで、圧延板の幅方向TDのヤング率を高め、優れた耐応力緩和特性を有する銅合金板材を提案した。   As a known technique for increasing the Young's modulus of a copper alloy sheet material used for parts for electrical and electronic equipment and automobile parts, the present applicant relates to the integration of atomic planes in the width direction TD of the rolled sheet in Patent Document 1, for example. The area ratio of the region having an atomic plane whose angle between the normal of the (111) plane and the sheet width direction TD is within 20 ° exceeds 50%, whereby the Young's modulus in the width direction TD of the rolled sheet A copper alloy sheet with excellent stress relaxation properties was proposed.

特開2012−180593号公報JP 2012-180593 A

特許文献1は、板幅方向TDに(111)面を向けた結晶粒の面積率が50%超えとすることで、板幅方向TDのヤング率を制御した技術であるが、圧延方向と平行な方向RDのヤング率についての制御を行なうことは考慮しなかったため、板材から、コネクタを構成する端子(コンタクト)を採取する方向が90°以外の方向である場合には、十分なばね特性が得られないことがあった。   Patent Document 1 is a technique in which the Young's modulus in the plate width direction TD is controlled by setting the area ratio of crystal grains with the (111) plane facing the plate width direction TD to exceed 50%, but is parallel to the rolling direction. Since the control of the Young's modulus in a specific direction RD was not considered, when the direction in which the terminals (contacts) constituting the connector are sampled from the plate material is a direction other than 90 °, sufficient spring characteristics are obtained. Sometimes it was not possible.

そこで、本発明の目的は、板材の圧延面内にある2軸直交方向(すなわち圧延方向と平行な方向RDと、板幅方向TD)の結晶配向を制御し、RDとTDのヤング率の双方を、ともに異方性を極力小さくしつつ高めることによって、板材から所定形状のサンプル(例えば端子材料)を採取する方向に依らず、ばね特性等の要求特性を安定して得ることができる銅合金板材、およびその製造方法を提供することにある。   Therefore, an object of the present invention is to control the crystal orientation in the biaxial orthogonal direction (that is, the direction RD parallel to the rolling direction and the plate width direction TD) in the rolling surface of the plate material, and to achieve both the RD and TD Young's modulus. By increasing both while reducing the anisotropy as much as possible, the copper alloy can stably obtain the required characteristics such as spring characteristics regardless of the direction in which a sample of a predetermined shape (for example, a terminal material) is taken from the plate material. It is in providing a board | plate material and its manufacturing method.

本発明者らは、電気・電子機器用部品や自動車用部品に適した銅合金について研究を行い、Sn−Ni−P系の銅合金板材において、圧延集合組織にて、α−fiberとβ−fiberの方位密度を適正に制御することで、RDとTDのヤング率の双方とも、従来の合金板材に比べて、差を極力小さくしつつ、高いレベルにまで高めることができることを見出した。これにより、コネクタ、リードフレームの材料として使用するため、板材から材料を採取する方向に依らず、所定のバネ特性を安定して得ることができる。また、上記のような圧延集合組織を実現するための製造方法も見出した。そして、これらの知見に基づき鋭意検討の結果、本発明を成すに至った。   The present inventors have studied copper alloys suitable for parts for electric and electronic devices and automobile parts. In a Sn—Ni—P-based copper alloy sheet, α-fiber and β- It has been found that by properly controlling the fiber orientation density, both the RD and TD Young's moduli can be increased to a high level while minimizing the difference as compared with the conventional alloy sheet. Thereby, since it uses as a material of a connector and a lead frame, a predetermined | prescribed spring characteristic can be stably acquired irrespective of the direction which extract | collects material from a board | plate material. Moreover, the manufacturing method for implement | achieving the above rolling texture was also discovered. As a result of intensive studies based on these findings, the present invention has been achieved.

すなわち、本発明の要旨構成は、以下のとおりである。
(1)Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、圧延集合組織を有する電気電子機器用銅合金板材であって、前記圧延集合組織は、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0以上25.0以下の範囲内、β−fiber(φ2=45°〜90°)の方位密度が、3.0以上30.0以下の範囲内を満たすことを特徴とする銅合金板材。
That is, the gist configuration of the present invention is as follows.
(1) It has an alloy composition containing 0.8 to 3.0 mass% of Sn, 0.1 to 1.0 mass% of Ni and 0.002 to 0.15 mass% of P, with the balance being Cu and inevitable impurities. A copper alloy sheet for electrical and electronic equipment having a rolling texture, wherein the rolling texture is an orientation density of α-fiber (φ 1 = 0 ° to 45 °) obtained from a texture analysis by EBSD. However, the orientation density of β-fiber (φ 2 = 45 ° to 90 °) is within the range of 3.0 to 30.0, within the range of 3.0 to 25.0. Copper alloy sheet.

(2)Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%を含有し、さらにZnを0.1〜0.3mass%、Feを0.005〜0.2mass%およびPbを0.05〜0.1mass%含有し、かつZn、FeおよびPbを合計で0.01〜0.50mass%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、圧延集合組織を有する電気電子機器用銅合金板材であって、前記圧延集合組織は、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0以上25.0以下の範囲内、β−fiber(φ2=45°〜90°)の方位密度が、3.0以上30.0以下の範囲内を満たすことを特徴とする銅合金板材。(2) 0.8 to 3.0 mass% of Sn, 0.1 to 1.0 mass% of Ni and 0.002 to 0.15 mass% of P, and further 0.1 to 0.3 mass% of Zn , Fe is contained in an amount of 0.005 to 0.2 mass% and Pb is contained in an amount of 0.05 to 0.1 mass%, and Zn, Fe and Pb are contained in a total amount of 0.01 to 0.50 mass%, and the balance is Cu and inevitable. A copper alloy sheet for electrical and electronic equipment having an alloy composition composed of impurities and having a rolling texture, wherein the rolling texture is α-fiber (φ 1 = 0 °) obtained from a texture analysis by EBSD. Azimuth density in the range of 3.0 to 25.0 and β-fiber (φ 2 = 45 ° to 90 °) in the range of 3.0 to 30.0. A copper alloy sheet characterized by satisfying

(3)圧延時における、圧延方向と平行な方向をRD、板幅方向をTDとし、前記RDのヤング率をERD、前記TDのヤング率をETDとするとき、前記ERDおよび前記ETDがいずれも120GPa以上であり、かつ前記ERDの前記ETDに対する比(ERD/ETD)が0.85以上であることを特徴とする、上記(1)または(2)に記載の銅合金板材。(3) When rolling, the direction parallel to the rolling direction is RD, the sheet width direction is TD, the Young's modulus of the RD is E RD , and the Young's modulus of the TD is E TD , the E RD and the E TD is at any 120GPa or more and wherein the ratio of the E TD of the E RD (E RD / E TD ) is 0.85 or more, according to the above (1) or (2) Copper alloy sheet.

(4)上記(1)、(2)または(3)に記載の電気電子機器用銅合金板材の製造方法であって、前記合金組成を有する銅合金を鋳造して得られた被圧延材に対して均質化熱処理を行う均質化熱処理工程と、該均質化熱処理工程後に、前記被圧延材に対して熱間圧延を行う熱間圧延工程と、該熱間圧延工程後に冷却を行う冷却工程と、該冷却工程後に、前記被圧延材の両面の面削を行う面削工程と、該面削工程後に、合計加工率が80%以上の冷間圧延を行う第1冷間圧延工程と、該第1冷間圧延工程後に、昇温速度が10.0〜60.0℃/分、到達温度が200〜400℃、保持時間が1〜12時間、冷却速度が1.0〜10.0℃/分の条件で熱処理を施す第1焼鈍工程と、該第1焼鈍工程後に、到達温度が800℃以下でかつ第1焼鈍工程よりも高い温度条件で更なる熱処理を施す第2焼鈍工程と、該第2焼鈍工程後に、更なる冷間圧延を行う第2冷間圧延工程と、該第2冷間圧延工程後に、最終熱処理を施す調質焼鈍工程とを含むことを特徴とする銅合金板材の製造方法。 (4) A method for producing a copper alloy sheet for electrical and electronic equipment according to (1), (2) or (3) above, wherein a rolled material obtained by casting a copper alloy having the alloy composition is used. A homogenization heat treatment step for performing a homogenization heat treatment, a hot rolling step for performing hot rolling on the material to be rolled after the homogenization heat treatment step, and a cooling step for cooling after the hot rolling step. A chamfering process for chamfering both surfaces of the material to be rolled after the cooling process, a first cold rolling process for performing cold rolling with a total processing rate of 80% or more after the chamfering process, After the first cold rolling step, the heating rate is 10.0 to 60.0 ° C./min, the ultimate temperature is 200 to 400 ° C., the holding time is 1 to 12 hours, and the cooling rate is 1.0 to 10.0 ° C. 1st annealing process which heat-processes on the conditions of / min, and after this 1st annealing process, ultimate temperature is 800 degrees C or less and 1st annealing A second annealing step in which further heat treatment is performed under a temperature condition higher than the step, a second cold rolling step in which further cold rolling is performed after the second annealing step, and a final step after the second cold rolling step. A method for producing a copper alloy sheet comprising a temper annealing step for performing a heat treatment.

本発明によれば、Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、圧延集合組織を有する電気電子機器用銅合金板材であって、前記圧延集合組織は、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0以上25.0以下の範囲内、β−fiber(φ2=45°〜90°)の方位密度が、3.0以上30.0以下の範囲内であることによって、板材から所定形状のサンプル(例えば端子材料)を採取する方向に依らず、ばね特性等の要求特性を安定して得ることができる銅合金板材を提供することが可能になった。特に、この銅合金板材は、電気・電子機器用部品や自動車用部品、例えば、コネクタ、リードフレーム、放熱部材、リレー、スイッチ、ソケットなどの部品に使用するのに適している。また、本発明に従う銅合金板材の製造方法によれば、上記銅合金板材を好適に製造することができる。According to the present invention, an alloy containing 0.8 to 3.0 mass% of Sn, 0.1 to 1.0 mass% of Ni and 0.002 to 0.15 mass% of P, with the balance being Cu and inevitable impurities. A copper alloy sheet for electrical and electronic equipment having a composition and a rolled texture, wherein the rolled texture is obtained from a texture analysis by EBSD, α-fiber (φ 1 = 0 ° to 45 °) Is in the range of 3.0 to 25.0, and the orientation density of β-fiber (φ 2 = 45 ° to 90 °) is in the range of 3.0 to 30.0. It has become possible to provide a copper alloy sheet that can stably obtain required characteristics such as spring characteristics regardless of the direction in which a sample (eg, terminal material) having a predetermined shape is collected from the sheet. In particular, this copper alloy sheet is suitable for use in parts for electrical and electronic equipment and automobile parts, such as connectors, lead frames, heat radiating members, relays, switches, sockets and the like. Moreover, according to the manufacturing method of the copper alloy sheet according to the present invention, the copper alloy sheet can be preferably manufactured.

図1は、EBSDにより測定し、ODF(方位分布関数)解析から得られた、銅合金板材の代表的な結晶方位分布図であって、圧延面内の2軸直交方向である、圧延方向と平行な方向RDおよび板幅方向TDと、圧延面の法線方向NDの3方向のオイラー角で示し、すなわち、RD軸の方位回転をΦ、ND軸の方位回転をΦ、TD軸の方位回転をΦとして示す。FIG. 1 is a typical crystal orientation distribution diagram of a copper alloy sheet measured by EBSD and obtained from an ODF (orientation distribution function) analysis, which is a biaxial orthogonal direction in a rolling plane, The Euler angles in the three directions of the parallel direction RD and the sheet width direction TD and the normal direction ND of the rolled surface are shown, that is, the RD axis orientation rotation is Φ, the ND axis orientation rotation is Φ 1 , and the TD axis orientation shows the rotating [Phi 2. 図2は、純銅型β−fiberの圧延集合組織の結晶方位分布図であって、ODFのTD軸の方位回転Φを5°間隔で分割して示した図である。FIG. 2 is a crystal orientation distribution diagram of a rolled texture of a pure copper type β-fiber, and is a diagram showing the azimuth rotation Φ 2 of the TD axis of the ODF divided at 5 ° intervals. 図3は、合金型α−fiberの圧延集合組織の結晶方位分布図であって、ODFのTD軸の方位回転Φを5°間隔で分割して示した図である。FIG. 3 is a crystal orientation distribution diagram of the rolling texture of the alloy type α-fiber, and shows the ODF TD axis orientation rotation Φ 2 divided at intervals of 5 °. 図4は、本発明に従う銅合金板材(実施例1)の圧延集合組織のODF解析によって得られた、α−fiberにおける、Φと方位密度との関係を示す図である。FIG. 4 is a diagram showing the relationship between Φ 1 and orientation density in α-fiber obtained by ODF analysis of the rolling texture of the copper alloy sheet material (Example 1) according to the present invention. 図5は、本発明に従う銅合金板材(実施例1)の圧延集合組織のODF解析によって得られた、β−fiberにおける、Φと方位密度との関係を示す図である。FIG. 5 is a diagram showing the relationship between Φ 2 and orientation density in β-fiber obtained by ODF analysis of the rolling texture of the copper alloy sheet material (Example 1) according to the present invention.

以下、本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。
本発明に従う銅合金板材は、Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、圧延集合組織を有する電気電子機器用銅合金板材であって、前記圧延集合組織は、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0以上25.0以下、β−fiber(φ2=45°〜90°)の方位密度が、3.0以上30.0以下を満たすことを特徴とする。
Hereinafter, preferred embodiments of the copper alloy sheet of the present invention will be described in detail.
The copper alloy sheet material according to the present invention contains Sn of 0.8 to 3.0 mass%, Ni of 0.1 to 1.0 mass% and P of 0.002 to 0.15 mass%, with the balance being Cu and inevitable impurities. A copper alloy sheet for electrical and electronic equipment having a rolled texture, wherein the rolled texture is α-fiber (φ 1 = 0 ° to 45-45) obtained from a texture analysis by EBSD. ) Is 3.0 to 25.0 and β-fiber (φ 2 = 45 ° to 90 °) has an azimuth density of 3.0 to 30.0.

ここで、「銅合金材料」とは、(加工前であって所定の合金組成を有する)銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。その中で、板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含む意味である。本発明において、板材の厚さは、特に限定されるものではないが、好ましくは0.05〜1.0mm、さらに好ましくは0.1〜0.8mmである。なお、本発明の銅合金板材は、その特性を圧延板の所定の方向における原子面の集積率で規定するものであるが、これは銅合金板材としてそのような特性を有しておれば良いのであって、銅合金板材の形状は板材や条材に限定されるものではない。本発明では、管材も板材として解釈して取り扱うことができるものとする。   Here, “copper alloy material” means a copper alloy material (before processing and having a predetermined alloy composition) processed into a predetermined shape (for example, plate, strip, foil, bar, wire, etc.) Means. Among them, the plate material refers to a material having a specific thickness and being stable in shape and having a spread in the surface direction, and in a broad sense, includes a strip material. In the present invention, the thickness of the plate material is not particularly limited, but is preferably 0.05 to 1.0 mm, and more preferably 0.1 to 0.8 mm. In addition, although the copper alloy plate material of this invention prescribes | regulates the characteristic with the integration rate of the atomic surface in the predetermined direction of a rolled sheet, this should just have such a characteristic as a copper alloy plate material. Therefore, the shape of the copper alloy sheet is not limited to a sheet or strip. In the present invention, the pipe material can also be interpreted and handled as a plate material.

[成分組成]
本発明の銅合金板材の成分組成とその作用について示す。
(必須添加元素)
本発明の銅合金板材は、Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%含有している。Sn、NiおよびPの含有量を上記の範囲内とすることにより、NiとPの化合物を析出させて、銅合金板材の強度と耐応力緩和特性を向上させることができる。また、Sn、NiおよびPの母相への固溶と析出の状態により、集合組織が変化し、上記の範囲とすることで、α−fiberとβ−fiberが混合した集合組織が得られ、高いヤング率が得られる。また、Snとともに、NiおよびPを含有させることにより、耐応力緩和特性の向上について、相乗効果を奏することができる。Snを0.8〜3.0mass%、Niを0.1〜1.0mass%、Pを0.002〜0.15mass%、好ましくは、Snを0.85〜2.7mass%、Niを0.15〜0.95mass%、Pを0.03〜0.09mass%含有する。これらの元素のうち、少なくとも1成分の含有量が上記範囲よりも多すぎると、導電率を低下させ、また、少なすぎると上記の効果が十分に得られないからである。
[Ingredient composition]
It shows about a component composition and its effect | action of the copper alloy board | plate material of this invention.
(Essential additive element)
The copper alloy sheet of the present invention contains Sn in a range of 0.8 to 3.0 mass%, Ni in a range of 0.1 to 1.0 mass%, and P in a range of 0.002 to 0.15 mass%. By setting the contents of Sn, Ni, and P within the above ranges, Ni and P compounds can be precipitated to improve the strength and stress relaxation resistance of the copper alloy sheet. Further, the texture changes depending on the solid solution and precipitation state of Sn, Ni and P in the matrix, and by setting the above range, a texture in which α-fiber and β-fiber are mixed is obtained. High Young's modulus can be obtained. Moreover, a synergistic effect can be show | played about the improvement of a stress relaxation characteristic by containing Ni and P with Sn. Sn is 0.8 to 3.0 mass%, Ni is 0.1 to 1.0 mass%, P is 0.002 to 0.15 mass%, preferably, Sn is 0.85 to 2.7 mass% and Ni is 0. .15 to 0.95 mass%, P is contained in 0.03 to 0.09 mass%. This is because, when the content of at least one component among these elements is too much than the above range, the electrical conductivity is lowered, and when the content is too small, the above effects cannot be obtained sufficiently.

(任意添加元素)
本発明の銅合金板材は、上記Sn、NiおよびPの必須の添加成分に加えて、さらに、任意添加元素として、さらにZnを0.1〜0.3mass%、Feを0.005〜0.2mass%およびPbを0.05〜0.1mass%含有させることができる。
(Optional addition element)
In addition to the essential additive components of Sn, Ni, and P, the copper alloy sheet material of the present invention further includes, as optional additive elements, 0.1 to 0.3 mass% of Zn and 0.005 to 0.005 Fe. 2 mass% and 0.05 to 0.1 mass% of Pb can be contained.

(0.1〜0.3mass%Zn)
Znは、耐応力緩和特性を向上させるとともに半田の脆化を著しく改善する作用を有する元素である。しかしながら、Zn含有量が0.1mass%未満だと、かかる作用を十分に発揮することができず、また、0.3mass%超えだと、導電率が悪化する 問題が生じるおそれがある。このため、Zn含有量は、0.1〜0.3mass%とすることが好ましい。
(0.1 to 0.3 mass% Zn)
Zn is an element that has the effect of improving the stress relaxation resistance and remarkably improving the brittleness of the solder. However, when the Zn content is less than 0.1 mass%, such an effect cannot be exhibited sufficiently, and when it exceeds 0.3 mass%, there is a possibility that the conductivity deteriorates. For this reason, it is preferable that Zn content shall be 0.1-0.3 mass%.

(0.005〜0.2mass%Fe)
Feは、化合物や単体で微細に析出し、析出硬化に寄与する。また、化合物として50〜500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にする。このため、Fe含有量は、0.005〜0.2mass%とすることが好ましい。Feの含有量が0.005mass%未満だと、上記の効果が得られず、0.2mass%超えだと、母相に固溶し、導電率を悪化させる。
(0.005-0.2 mass% Fe)
Fe precipitates finely as a compound or as a simple substance, and contributes to precipitation hardening. Moreover, it precipitates with the magnitude | size of 50-500 nm as a compound, and there exists an effect which makes a crystal grain size fine by suppressing grain growth, and makes bending workability favorable. For this reason, it is preferable that Fe content shall be 0.005-0.2 mass%. If the Fe content is less than 0.005 mass%, the above effect cannot be obtained. If the Fe content is more than 0.2 mass%, it dissolves in the matrix and deteriorates the conductivity.

(0.05〜0.1mass%Pb)
Pbは、単体で母相中に分散することで、プレス加工、切削加工時の切削性を向上させる。これは、単体のPbが母相よりも硬さが低いために、切削加工が容易になる。このため、Pb含有量は、0.05〜0.1mass%とすることが好ましい。Pbの含有量が0.05mass%未満だと、上記の効果が得られず、0.1mass%超えだと、母相に固溶し、導電率を悪化させる。
(0.05 to 0.1 mass% Pb)
Pb alone disperses in the parent phase, thereby improving the machinability during press working and cutting. This is because the single Pb is lower in hardness than the parent phase, so that the cutting process is easy. For this reason, it is preferable that Pb content shall be 0.05-0.1 mass%. If the Pb content is less than 0.05 mass%, the above effect cannot be obtained. If the Pb content is more than 0.1 mass%, it dissolves in the matrix and deteriorates the conductivity.

(Zn、FeおよびPbを、合計で0.01〜0.50mass%含有すること)
Zn、FeおよびPbを、合計で0.01〜0.50mass%含有することが好ましい。これらの任意添加成分の含有量を合計で上記範囲とすることにより、導電率を低下させることなく、上記効果を十分に発揮することができる。なお、Zn、FeおよびPbの合計含有量は、より好ましくは0.05〜0.30mass%である。
(Zn, Fe and Pb are contained in a total of 0.01 to 0.50 mass%)
It is preferable to contain 0.01 to 0.50 mass% of Zn, Fe and Pb in total. By making content of these arbitrary addition components into the said range in total, the said effect can fully be exhibited, without reducing electroconductivity. The total content of Zn, Fe and Pb is more preferably 0.05 to 0.30 mass%.

[圧延集合組織]
本発明の銅合金板材は、圧延集合組織を有し、この圧延集合組織は、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0以上25.0以下の範囲内、β−fiber(φ2=45°〜90°)の方位密度が、3.0以上30.0以下の範囲内である。なお、ここでいう「方位密度」とは、結晶粒方位分布関数(ODF:crystal orientation distribution function)とも表され、ランダムな結晶方位分布の状態を1とし、それに対して何倍の集積となっているかを示すものであり、集合組織の結晶方位の存在比率および分散状態を定量的に解析する際に用いる。方位密度は、EBSDおよびX線回折測定結果より、(100),(110),(112)正極点図等3種類以上の正極点図測定データを基にして、級数展開法による結晶方位分布解析法により算出される。
[Rolling texture]
The copper alloy sheet material of the present invention has a rolled texture, and this rolled texture has an orientation density of α-fiber (φ 1 = 0 ° to 45 °) obtained by texture analysis by EBSD of 3 The orientation density of β-fiber (φ 2 = 45 ° to 90 °) is in the range of 3.0 to 30.0 in the range of 0.0 to 25.0. The “orientation density” here is also expressed as a crystal orientation distribution function (ODF), where the random crystal orientation distribution is set to 1, and the number of times of accumulation is greater than that. It is used to quantitatively analyze the abundance ratio of the crystal orientation of the texture and the dispersion state. The orientation density is based on the EBSD and X-ray diffraction measurement results, and the crystal orientation distribution analysis by the series expansion method is based on three or more kinds of positive point map measurement data such as (100), (110), (112) positive point map. Calculated by the method.

本発明者らは、銅合金板材のRDおよびTDの双方のヤング率を高めるために、圧延集合組織との関係について鋭意検討した。その結果、合金組成を上記範囲に限定した上で、α−fiber(φ1=0°〜45°の範囲)の方位密度と、β−fiber(φ2=45°〜90°の範囲)の方位密度とを、それぞれ適正範囲に制御することで、RDとTDの双方のヤング率が高まることを見出した。すなわち、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0以上25.0以下の範囲内、β−fiber(φ2=45°〜90°)の方位密度が、3.0以上30.0以下の範囲内であるとき、RDとTDの双方のヤング率が、ともに高められるとともに、それらのヤング率の差(異方性)も小さくなるため、本発明では、α−fiber(φ1=0°〜45°)の方位密度とβ−fiber(φ2=45°〜90°)の方位密度を、それぞれ上記範囲に限定した。In order to increase the Young's modulus of both RD and TD of the copper alloy sheet material, the present inventors have intensively studied the relationship with the rolling texture. As a result, after limiting the alloy composition to the above range, the orientation density of α-fiber (φ 1 = 0 ° to 45 ° range) and β-fiber (φ 2 = 45 ° to 90 ° range) It has been found that the Young's modulus of both RD and TD is increased by controlling the orientation density within an appropriate range. That is, the orientation density of α-fiber (φ 1 = 0 ° to 45 °) obtained from the texture analysis by EBSD is in the range of 3.0 to 25.0, and β-fiber (φ 2 = 45 When the azimuth density of (° to 90 °) is in the range of 3.0 or more and 30.0 or less, the Young's modulus of both RD and TD is increased, and the difference between the Young's moduli (anisotropy) ) Also decreases, and in the present invention, the orientation density of α-fiber (φ 1 = 0 ° to 45 °) and the orientation density of β-fiber (φ 2 = 45 ° to 90 °) are limited to the above ranges, respectively. did.

図1は、EBSDにより測定し、ODF(方位分布関数)解析から得られた、銅合金板材の代表的な結晶方位分布図であって、圧延面内の2軸直交方向である、圧延方向と平行な方向RDおよび板幅方向TDと、圧延面の法線方向NDの3方向のオイラー角で示し、すなわち、RD軸の方位回転をΦ、ND軸の方位回転をΦ、TD軸の方位回転をΦとして示す。ここで、α−fiberはφ1 =0°〜45°の範囲に集積し、β−fiberはφ2 の45°〜90°の範囲に集積している。図2と図3は、ODFのTD軸の方位回転Φを5°間隔で分割した図で、図2は純銅型β−fiber、図3は合金型α−fiberの圧延集合組織を示している。FIG. 1 is a typical crystal orientation distribution diagram of a copper alloy sheet measured by EBSD and obtained from an ODF (orientation distribution function) analysis, which is a biaxial orthogonal direction in a rolling plane, The Euler angles in the three directions of the parallel direction RD and the sheet width direction TD and the normal direction ND of the rolled surface are shown, that is, the RD axis orientation rotation is Φ, the ND axis orientation rotation is Φ 1 , and the TD axis orientation shows the rotating [Phi 2. Here, α-fiber is accumulated in a range of φ 1 = 0 ° to 45 °, and β-fiber is accumulated in a range of 45 ° to 90 ° of φ 2 . 2 and 3 are diagrams in which the azimuth rotation Φ 2 of the TD axis of the ODF is divided at intervals of 5 °, FIG. 2 shows a rolled texture of a pure copper type β-fiber, and FIG. 3 shows an alloy type α-fiber. Yes.

[EBSD法]
本発明における上記圧延集合組織の解析にはEBSD法を用いた。EBSD法とは、Electron BackScatter Diffractionの略で、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。本発明におけるEBSD測定では、結晶粒を200個以上含む、800μm×1600μmの試料面積に対し、0.1μmステップでスキャンし、測定した。前記測定面積およびスキャンステップは、試料の結晶粒の大きさに応じて決定すればよい。測定後の結晶粒の解析には、TSL社製の解析ソフトOIM Analysis(商品名)を用いた。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、試料表面から板厚tの1/8倍〜1/2倍の位置付近とすることが好ましい。
[EBSD method]
The EBSD method was used for the analysis of the rolling texture in the present invention. The EBSD method is an abbreviation for Electron BackScatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). In the EBSD measurement in the present invention, a sample area of 800 μm × 1600 μm containing 200 or more crystal grains was scanned and measured in 0.1 μm steps. The measurement area and the scanning step may be determined according to the size of crystal grains of the sample. Analysis software OIM Analysis (trade name) manufactured by TSL was used for analysis of crystal grains after measurement. Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nm at which the electron beam penetrates the sample. Further, the measurement location in the plate thickness direction is preferably near the position 1/8 to 1/2 times the plate thickness t from the sample surface.

本明細書における結晶方位の表示方法は、Z軸に垂直な(圧延面(XY面)に平行な)結晶面の指数(h k l)と、X軸に垂直な(YZ面に平行な)結晶方向の指数[u v w]とを用いて、(h k l)[u v w]の形で表す。また、(1 3 2)[6 −4 3]や(2 3 1)[3 −4 6]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリー(総称)を表すカッコ記号を使用し、{h k l}<u v w>と表す。代表的な結晶方位として、Brass方位{011}<211>、S方位{123}<634>、Copper方位{112}<111>、Goss方位{110}<001>、RDW方位{012}<100>、BR方位{236}<385>などが挙げられる。ここで、α−fiberはφ1=0°〜45°の範囲であり、Goss方位〜Brass方位、β−fiberはφ2=45°〜90°の範囲であり、Brass方位〜S方位〜Copper方位でそれぞれ連続的に変化するファイバー集合組織として存在している。α−fiberは、合金型の集合組織、β−fiberは、純銅型の集合組織であり、これら2種類の集合組織群は、通常単独で発達するが、本発明の銅合金板材の合金成分は、純銅型と合金型の混合組織であり、これは、添加元素であるSnおよびNiを規定の範囲内で制御することで得られる組織である。α−fiberとβ−fiberがともに規定の範囲内で存在することによって、RDとTDのヤング率が高く、さらにRDとTDのヤング率の差(異方性)が小さくなる。In this specification, the crystal orientation display method includes a crystal plane index (h k l) perpendicular to the Z axis (parallel to the rolling plane (XY plane)) and a vertical axis (parallel to the YZ plane) to the X axis. Using the index [u v w] of the crystal direction, it is expressed in the form of (h k l) [u v w]. In addition, as for (1 3 2) [6 −4 3] and (2 3 1) [3 −4 6], the equivalent orientation under the symmetry of the copper alloy cubic crystal is the family ( A parenthesis representing the generic name is used, and {h k l} <u v w> is used. Typical crystal orientations include Brass orientation {011} <211>, S orientation {123} <634>, Copper orientation {112} <111>, Goss orientation {110} <001>, RDW orientation {012} <100. >, BR orientation {236} <385> and the like. Here, α-fiber is in the range of φ 1 = 0 ° to 45 °, Goss orientation to Brass orientation, β-fiber is in the range of φ 2 = 45 ° to 90 °, and Brass orientation to S orientation to Copper. It exists as a fiber texture that continuously changes in orientation. α-fiber is an alloy-type texture, β-fiber is a pure copper-type texture, and these two types of texture groups usually develop independently, but the alloy component of the copper alloy sheet material of the present invention is This is a mixed structure of pure copper type and alloy type, which is a structure obtained by controlling the additive elements Sn and Ni within a specified range. When both α-fiber and β-fiber are within the specified range, the Young's modulus of RD and TD is high, and the difference (anisotropy) between the RD and TD's Young's modulus is reduced.

[RDおよびTDのヤング率]
本発明の銅合金板材は、圧延時における、圧延方向と平行な方向をRD、板幅方向をTDとし、前記RDのヤング率をERD、前記TDのヤング率をETDとするとき、前記ERDおよび前記ETDがいずれも120GPa以上であり、かつ前記ERDの前記ETDに対する比(ERD/ETD)が0.85以上であることが好ましい。RDのヤング率ERDおよびTDのヤング率ETDが少なくとも1方が120GPa未満であるか、あるいは、前記ERDの前記ETDに対する比ERD/ETDが0.85未満であると、銅合金板材から所定形状のサンプル(例えば端子材料)を採取する方向によっては、ばね特性等の要求特性を満足することができなくなるおそれがあるからである。
[Young's modulus of RD and TD]
When the copper alloy sheet of the present invention is rolled, the direction parallel to the rolling direction is RD, the sheet width direction is TD, the Young's modulus of RD is E RD , and the Young's modulus of TD is E TD , E RD and the E TD is at any 120GPa or more and the ratio of the E TD of the E RD (E RD / E TD ) it is preferably 0.85 or more. Or Young's modulus E RD and TD Young's modulus E TD of the RD is at least 1-way is less than 120 GPa, or when the ratio E RD / E TD for the E TD of the E RD is less than 0.85, copper This is because, depending on the direction in which a sample (for example, a terminal material) having a predetermined shape is taken from the alloy plate, required characteristics such as spring characteristics may not be satisfied.

[本発明の銅合金板材の製造方法]
次に、本発明の銅合金板材の製造方法の一例を以下で説明する。
本発明の銅合金板材の製造方法は、銅合金素材を溶解し、鋳造(工程1)して得た鋳塊に対して、保持温度800℃以上、保持時間1分から10時間の均質化熱処理(工程2)を行い、その後、合計加工率50%以上、圧延温度500℃以上にて圧延回数2回以上の熱間圧延(工程3)を行った後、水冷による急冷(工程4)を行う。この後、表面の酸化膜の除去のため、圧延材の表裏の両面をそれぞれ0.6mm以上の面削(工程5)を行う。その後、合計加工率80%以上となるよう第1冷間圧延(工程6)を行った後、昇温速度10.0〜60.0℃/分、到達温度200〜400℃、保持時間1時間〜12時間、冷却速度1.0〜10.0℃/分にて第1焼鈍(工程7)を行い、その後、到達温度が800℃以下でかつ第1焼鈍工程よりも高い温度条件、すなわち、到達温度400〜800℃、保持時間1秒〜10分にて第2焼鈍(工程8)を行う。次に、圧延加工率20%以上、圧延回数2回以上で第2冷間圧延(工程9)を行った後、到達温度350〜600℃、保持時間1秒〜2時間にて調質焼鈍(工程10)を行う。このようにして、本発明の銅合金板材を作製する。
[Method for producing copper alloy sheet of the present invention]
Next, an example of the method for producing a copper alloy sheet according to the present invention will be described below.
In the method for producing a copper alloy sheet according to the present invention, a homogenized heat treatment (at a holding temperature of 800 ° C. or higher and a holding time of 1 minute to 10 hours) is performed on an ingot obtained by melting and casting a copper alloy material (step 1). Step 2) is performed, and then hot rolling (Step 3) is performed with the total processing rate of 50% or more and a rolling temperature of 500 ° C. or more and the number of rolling is twice or more, followed by water cooling (Step 4). Thereafter, in order to remove the oxide film on the surface, both the front and back surfaces of the rolled material are each subjected to chamfering of 0.6 mm or more (step 5). Then, after performing 1st cold rolling (process 6) so that it may become 80% or more of a total processing rate, temperature rising rate 10.0-60.0 degree-C / min, ultimate temperature 200-400 degreeC, holding time 1 hour The first annealing (step 7) is performed at a cooling rate of 1.0 to 10.0 ° C./min for ˜12 hours, and then the temperature condition is 800 ° C. or lower and higher than the first annealing step, ie, The second annealing (step 8) is performed at an ultimate temperature of 400 to 800 ° C. and a holding time of 1 second to 10 minutes. Next, after performing the second cold rolling (step 9) at a rolling processing rate of 20% or more and the number of rolling times of 2 or more, temper annealing at an ultimate temperature of 350 to 600 ° C. and a holding time of 1 second to 2 hours ( Step 10) is performed. In this way, the copper alloy sheet material of the present invention is produced.

銅合金素材は、Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%を含有し、さらに必要に応じてZnを0.1〜0.3mass%、Feを0.005〜0.2mass%およびPbを0.05〜0.1mass%含有し、かつZn、FeおよびPbを合計で0.01〜0.50mass%含有し、残部がCuおよび不可避不純物からなる合金組成を有するものである。   The copper alloy material contains 0.8 to 3.0 mass% of Sn, 0.1 to 1.0 mass% of Ni, and 0.002 to 0.15 mass% of P. 1 to 0.3 mass%, Fe 0.005 to 0.2 mass% and Pb 0.05 to 0.1 mass%, and Zn, Fe and Pb in total 0.01 to 0.50 mass% The balance has an alloy composition composed of Cu and inevitable impurities.

ここでいう「圧延加工率」とは、圧延前の断面積から圧延後の断面積を引いた値を圧延前の断面積で除して100を乗じ、パーセントで表した値である。すなわち、下記式で表される。
[圧延加工率]={([圧延前の断面積]−[圧延後の断面積])/[圧延前の断面積]}×100(%)
The “rolling ratio” here is a value expressed as a percentage by dividing the value obtained by subtracting the cross-sectional area after rolling from the cross-sectional area before rolling by the cross-sectional area before rolling and multiplying by 100. That is, it is represented by the following formula.
[Rolling ratio] = {([Cross sectional area before rolling] − [Cross sectional area after rolling]) / [Cross sectional area before rolling]} × 100 (%)

本発明では、上記製造方法の中で、特に第1冷間圧延工程(工程6)と、第1焼鈍工程(工程7)とを制御することが重要である。すなわち、第1冷間圧延(工程6)は、本発明の組織を得るために、合計加工率が80%以上となるように圧延することが必要である。また、圧延集合組織を十分に発達させ、α−fiberとβ−fiberの方位密度を適正範囲内に制御するため、第1焼鈍工程(工程7)は、昇温速度が10.0〜60.0℃/分、到達温度が200〜400℃、保持時間が1〜12時間、冷却速度が1.0〜10.0℃/分の条件で熱処理を施すことが必要である。ここで、第1冷間圧延1(工程6)の合計加工率が80%未満と低すぎると、第1焼鈍工程(工程7)での集合組織制御にて方位がランダム化し、α−fiberとβ−fiberの方位密度が規定の範囲を下回る傾向がある。また、第1冷間圧延工程(工程6)の合計加工率が80%以上であったとしても、第1焼鈍工程(工程7)の、昇温速度、到達温度、保持時間および冷却速度の少なくとも1つが適正範囲外である場合も同様に、集合組織制御にて方位がランダム化し、α−fiberとβ−fiberの方位密度が規定の範囲を下回る傾向がある。よって、本発明では、第1冷間圧延工程(工程6)と第1焼鈍工程(工程7)の条件を適正に調整して製造することで、目標とする組織および特性が得られる。   In the present invention, it is particularly important to control the first cold rolling step (step 6) and the first annealing step (step 7) in the above manufacturing method. That is, the first cold rolling (step 6) needs to be rolled so that the total processing rate is 80% or more in order to obtain the structure of the present invention. Further, in order to sufficiently develop the rolling texture and control the orientation density of α-fiber and β-fiber within an appropriate range, the first annealing step (step 7) has a temperature increase rate of 10.0 to 60. It is necessary to perform heat treatment under the conditions of 0 ° C./min, ultimate temperature of 200 to 400 ° C., holding time of 1 to 12 hours, and cooling rate of 1.0 to 10.0 ° C./min. Here, when the total processing rate of the first cold rolling 1 (step 6) is too low as less than 80%, the orientation is randomized by texture control in the first annealing step (step 7), and α-fiber and There is a tendency that the orientation density of β-fiber is below the specified range. Moreover, even if the total processing rate of the first cold rolling step (step 6) is 80% or more, at least the heating rate, the reached temperature, the holding time, and the cooling rate of the first annealing step (step 7). Similarly, when one is outside the proper range, the orientation is randomized by texture control, and the orientation density of α-fiber and β-fiber tends to fall below the specified range. Therefore, in this invention, the target structure | tissue and characteristic are obtained by adjusting and manufacturing the conditions of a 1st cold rolling process (process 6) and a 1st annealing process (process 7) appropriately.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1〜8および比較例1〜7)
本発明の実施例1〜8および比較例1〜7は、表1に示す組成となるように、それぞれSn、NiおよびP、ならびに必要に応じて添加する任意添加成分を含有し、残部がCuと不可避不純物からなる銅合金素材を高周波溶解炉により溶解し、これを鋳造(工程1)して鋳塊を得た。鋳塊に対して、保持温度800℃以上、保持時間1分から10時間の均質化熱処理(工程2)を行い、その後、合計加工率50%以上、圧延温度500℃以上にて圧延回数2回以上の熱間圧延(工程3)を行った後、水冷による急冷(工程4)を行う。この後、表面の酸化膜の除去のため、圧延材の表裏の両面をそれぞれ0.6mm以上の面削(工程5)を行う。その後、表1に示す合計加工率にて第1冷間圧延(工程6)を行った後、表1に示す熱処理条件にて第1焼鈍(工程7)を行い、その後、到達温度400〜800℃、保持時間1秒〜10分にて第2焼鈍(工程8)を行う。次に、圧延加工率20%以上、圧延回数2回以上で第2冷間圧延(工程9)を行った後、到達温度350〜600℃、保持時間1秒〜2時間にて調質焼鈍[工程10]を行う。このようにして、本発明の銅合金板材を作製した。各実施例、比較例での製造条件と得られた供試材の特性を表2に示す。
(Examples 1-8 and Comparative Examples 1-7)
Examples 1 to 8 and Comparative Examples 1 to 7 of the present invention contain Sn, Ni, and P, and optional addition components that are added as necessary, so that the compositions shown in Table 1 are obtained, with the balance being Cu. A copper alloy material composed of unavoidable impurities was melted in a high-frequency melting furnace and cast (step 1) to obtain an ingot. The ingot is subjected to a homogenization heat treatment (step 2) with a holding temperature of 800 ° C. or more and a holding time of 1 minute to 10 hours, and then the number of rolling is over 2 times at a total processing rate of 50% or more and a rolling temperature of 500 ° C. or more. After performing the hot rolling (step 3), quenching by water cooling (step 4) is performed. Thereafter, in order to remove the oxide film on the surface, both the front and back surfaces of the rolled material are each subjected to chamfering of 0.6 mm or more (step 5). Then, after performing 1st cold rolling (process 6) with the total processing rate shown in Table 1, the 1st annealing (process 7) is performed on the heat processing conditions shown in Table 1, and the ultimate temperature 400-800 after that. The second annealing (step 8) is performed at a temperature of 1 ° C. for 10 seconds. Next, after performing the second cold rolling (step 9) at a rolling rate of 20% or more and a rolling number of times of 2 or more, temper annealing at an ultimate temperature of 350 to 600 ° C. and a holding time of 1 second to 2 hours [ Step 10] is performed. Thus, the copper alloy sheet material of the present invention was produced. Table 2 shows the production conditions in each Example and Comparative Example and the characteristics of the obtained specimens.

これらの供試材について下記の特性調査を行った。   The following characteristics were investigated for these test materials.

[EBSD測定によるα−fiberおよびβ−fiberの方位密度]
α−fiberおよびβ−fiberの方位密度は、EBSD法により、測定面積が128×10μm(800μm×1600μm)、スキャンステップが0.1μmの条件で測定を行った。スキャンステップは微細な結晶粒を測定するため、0.1μmステップで行った。解析では、128×10μmのEBSD測定結果から、解析にてODF(方位分布関数)およびα−fiber、β−fiberを確認した。電子線は走査電子顕微鏡のWフィラメントからの熱電子を発生源とし、測定時のプローブ径は、約0.015μmである。また、EBSD法の測定装置には、(株)TSLソリューションズ製 OIM5.0(商品名)を用いた。なお、測定箇所は、板材の平面部を機械研磨、電解研磨にて処理した領域で行った。さらに、測定箇所は、板材の板厚方向に沿って5箇所以上とし、その平均の方位密度を算出した。
[Azimuth density of α-fiber and β-fiber by EBSD measurement]
The orientation density of α-fiber and β-fiber was measured by the EBSD method under the conditions of a measurement area of 128 × 10 4 μm 2 (800 μm × 1600 μm) and a scan step of 0.1 μm. The scan step was performed in 0.1 μm steps to measure fine crystal grains. In the analysis, ODF (azimuth distribution function), α-fiber, and β-fiber were confirmed from the EBSD measurement result of 128 × 10 4 μm 2 in the analysis. The electron beam uses thermoelectrons from a W filament of a scanning electron microscope as a generation source, and the probe diameter at the time of measurement is about 0.015 μm. Moreover, OIM5.0 (trade name) manufactured by TSL Solutions Co., Ltd. was used as a measuring device for the EBSD method. In addition, the measurement location was performed in the area | region which processed the plane part of the board | plate material by mechanical polishing and electrolytic polishing. Furthermore, the measurement location was made into five or more places along the plate | board thickness direction of a board | plate material, and the average orientation density was computed.

[ヤング率の測定]
試験片は、各供試材から、圧延方向と平行な方向RDと、板幅方向TD(圧延方向RDに対して直交する方向)に、それぞれ、幅20mm、長さ200mmの短冊状試験片を採取し、試験片の長さ方向に引張試験機により応力を付与し、歪と応力の比例定数を算出した。降伏するときの歪量の80%の歪量を最大変位量とし、その変位量までを10分割した変位を与え、その10点での測定値から歪と応力の比例定数をヤング率として求めた。
[Measurement of Young's modulus]
The test pieces are strip-shaped test pieces each having a width of 20 mm and a length of 200 mm in each of the test materials in a direction RD parallel to the rolling direction and a plate width direction TD (direction orthogonal to the rolling direction RD). The sample was collected, stress was applied in the length direction of the test piece with a tensile tester, and a proportional constant between strain and stress was calculated. The strain amount of 80% of the strain amount when yielding was set as the maximum displacement amount, the displacement up to the displacement amount was given by 10 divisions, and the proportional constant of strain and stress was obtained as Young's modulus from the measured values at the 10 points. .

[導電率(EC)]
各供試材の導電率は、20℃(±0.5℃)に保たれた恒温槽中で四端子法により計測した比抵抗の数値から算出した。なお、端子間距離は100mmとした。板材の導電率が25%IACS以上である場合を良好、25%IACS未満の場合を不良と判断する。
[Conductivity (EC)]
The electrical conductivity of each test material was calculated from the numerical value of the specific resistance measured by the four-terminal method in a thermostat kept at 20 ° C. (± 0.5 ° C.). In addition, the distance between terminals was 100 mm. A case where the electrical conductivity of the plate material is 25% IACS or higher is judged as good, and a case where it is lower than 25% IACS is judged as bad.

表2に示す結果から、実施例1〜8はいずれも、合金組成、α−fiber(φ1=0°〜45°)およびβ−fiber(φ2=45°〜90°)の方位密度のすべてが本発明の範囲内であるため、RDのヤング率ERDが125〜151GPa、TDのヤング率ETDが129〜158GPaといずれも120GPa以上と高く、しかも、ERD/ETD比が、0.85〜0.99と0.85以上であり、ヤング率ERD、TDの異方性が小さかった。一方、比較例1〜7はいずれも、合金組成、α−fiber(φ1=0°〜45°)およびβ−fiber(φ2=45°〜90°)の方位密度の数値範囲の下限値および上限値の少なくとも1方が本発明の適正範囲外であり、特に、比較例1、2、5および7はいずれも、RDのヤング率ERDが120GPaよりも小さく、また、比較例3〜6はいずれも、ERD/ETD比が0.85よりも小さかった。From the results shown in Table 2, each of Examples 1 to 8 has an alloy composition, α-fiber (φ 1 = 0 ° to 45 °) and β-fiber (φ 2 = 45 ° to 90 °) orientation density. Since all are within the scope of the present invention, the Young's modulus E RD of RD is 125 to 151 GPa, the Young's modulus E TD of TD is 129 to 158 GPa, which is as high as 120 GPa or more, and the E RD / E TD ratio is It was 0.85-0.99 and 0.85 or more, and the anisotropy of Young's modulus E RD and E TD was small. On the other hand, in Comparative Examples 1 to 7, the lower limit values of the numerical ranges of the alloy composition, the α-fiber (φ 1 = 0 ° to 45 °) and the β-fiber (φ 2 = 45 ° to 90 °) orientation density And at least one of the upper limit values is outside the proper range of the present invention. In particular, in each of Comparative Examples 1, 2, 5, and 7, the Young's modulus E RD of RD is smaller than 120 GPa. In all cases, the E RD / E TD ratio was smaller than 0.85.

また、図4は、実施例1と比較例1に関し、α−fiberにおける、Φ(0〜50°)に対する方位密度の変化を示した図、図5は、実施例1と比較例1に関し、β−fiberにおける、Φ(45〜90°)に対する方位密度の変化を示した図である。これらの図から、実施例1は、α−fiber(φ1=0°〜45°)およびβ−fiber(φ2=45°〜90°)の方位密度が、いずれも本発明の範囲内にあるのに対し、比較例1では、α−fiber(φ1=0°〜45°)およびβ−fiber(φ2=45°〜90°)の方位密度の数値範囲が、いずれも本発明の範囲外であるのがわかる。FIG. 4 is a diagram showing a change in orientation density with respect to Φ 1 (0 to 50 °) in α-fiber with respect to Example 1 and Comparative Example 1. FIG. 5 is related to Example 1 and Comparative Example 1. It is the figure which showed the change of the orientation density with respect to (PHI) 2 (45-90 degrees) in (beta) -fiber. From these figures, in Example 1, the orientation density of α-fiber (φ 1 = 0 ° to 45 °) and β-fiber (φ 2 = 45 ° to 90 °) are both within the scope of the present invention. On the other hand, in Comparative Example 1, the numerical ranges of the orientation density of α-fiber (φ 1 = 0 ° to 45 °) and β-fiber (φ 2 = 45 ° to 90 °) are both in the present invention. You can see that it is out of range.

本発明によれば、板材から所定形状のサンプル(例えば端子材料)を採取する方向に依らず、ばね特性等の要求特性を安定して得ることができる銅合金板材を提供することが可能になった。特に、この銅合金板材は、電気・電子機器用部品や自動車用部品、例えば、コネクタ、リードフレーム、放熱部材、リレー、スイッチ、ソケットなどの部品に適用される。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the copper alloy board | plate material which can obtain stably required characteristics, such as a spring characteristic, irrespective of the direction which extract | collects the sample (for example, terminal material) of a predetermined shape from a board | plate material. It was. In particular, this copper alloy sheet material is applied to parts for electric / electronic devices and automobile parts, such as connectors, lead frames, heat dissipation members, relays, switches, sockets and the like.

(2)Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%を含有し、さらにZnを0.1〜0.3mass%、Feを0.005〜0.2mass%およびPbを0.01〜0.1mass%含有し、かつZn、FeおよびPbを合計で0.01〜0.50mass%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、圧延集合組織を有する電気電子機器用銅合金板材であって、前記圧延集合組織は、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0以上25.0以下の範囲内、β−fiber(φ2=45°〜90°)の方位密度が、3.0以上30.0以下の範囲内を満たすことを特徴とする銅合金板材。 (2) 0.8 to 3.0 mass% of Sn, 0.1 to 1.0 mass% of Ni and 0.002 to 0.15 mass% of P, and further 0.1 to 0.3 mass% of Zn , Fe is contained in an amount of 0.005 to 0.2 mass% and Pb is contained in an amount of 0.01 to 0.1 mass%, and Zn, Fe and Pb are contained in a total of 0.01 to 0.50 mass%, and the balance is Cu and inevitable. A copper alloy sheet for electrical and electronic equipment having an alloy composition composed of impurities and having a rolling texture, wherein the rolling texture is α-fiber (φ 1 = 0 °) obtained from a texture analysis by EBSD. Azimuth density in the range of 3.0 to 25.0 and β-fiber (φ 2 = 45 ° to 90 °) in the range of 3.0 to 30.0. A copper alloy sheet characterized by satisfying

Claims (4)

Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、圧延集合組織を有する電気電子機器用銅合金板材であって、
前記圧延集合組織は、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0以上25.0以下の範囲内、β−fiber(φ2=45°〜90°)の方位密度が、3.0以上30.0以下の範囲内を満たすことを特徴とする銅合金板材。
It has an alloy composition containing 0.8 to 3.0 mass% Sn, 0.1 to 1.0 mass% Ni and 0.002 to 0.15 mass% P, and the balance of Cu and inevitable impurities. A copper alloy sheet for electrical and electronic equipment having a texture,
In the rolled texture, the orientation density of α-fiber (φ 1 = 0 ° to 45 °) obtained from the texture analysis by EBSD is in the range of 3.0 or more and 25.0 or less, and β-fiber ( A copper alloy sheet characterized by having an orientation density of φ 2 = 45 ° to 90 °) satisfying a range of 3.0 to 30.0.
Snを0.8〜3.0mass%、Niを0.1〜1.0mass%およびPを0.002〜0.15mass%を含有し、さらにZnを0.1〜0.3mass%、Feを0.005〜0.2mass%およびPbを0.05〜0.1mass%含有し、かつZn、FeおよびPbを合計で0.01〜0.50mass%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、圧延集合組織を有する電気電子機器用銅合金板材であって、
前記圧延集合組織は、EBSDによる集合組織解析から得られた、α−fiber(φ1=0°〜45°)の方位密度が、3.0以上25.0以下の範囲内、β−fiber(φ2=45°〜90°)の方位密度が、3.0以上30.0以下の範囲内を満たすことを特徴とする銅合金板材。
It contains 0.8 to 3.0 mass% of Sn, 0.1 to 1.0 mass% of Ni, and 0.002 to 0.15 mass% of P, and further contains 0.1 to 0.3 mass% of Zn and Fe. 0.005 to 0.2 mass% and 0.05 to 0.1 mass% of Pb, and 0.01 to 0.50 mass% of Zn, Fe, and Pb in total, with the balance being Cu and inevitable impurities A copper alloy sheet for electrical and electronic equipment having an alloy composition and having a rolling texture,
In the rolled texture, the orientation density of α-fiber (φ 1 = 0 ° to 45 °) obtained from the texture analysis by EBSD is in the range of 3.0 or more and 25.0 or less, and β-fiber ( A copper alloy sheet characterized by having an orientation density of φ 2 = 45 ° to 90 °) satisfying a range of 3.0 to 30.0.
圧延時における、圧延方向と平行な方向をRD、板幅方向をTDとし、前記RDのヤング率をERD、前記TDのヤング率をETDとするとき、
前記ERDおよび前記ETDがいずれも120GPa以上であり、かつ前記ERDの前記ETDに対する比(ERD/ETD)が0.85以上であることを特徴とする、請求項1または2に記載の銅合金板材。
When rolling, the direction parallel to the rolling direction is RD, the sheet width direction is TD, the Young's modulus of the RD is E RD , and the Young's modulus of the TD is E TD ,
Wherein said E RD and the E TD is not less both 120GPa or more and the ratio of the E TD of the E RD (E RD / E TD ) is 0.85 or more, according to claim 1 or 2 The copper alloy sheet material described in 1.
請求項1、2または3に記載の電気電子機器用銅合金板材の製造方法であって、
前記合金組成を有する銅合金を鋳造して得られた被圧延材に対して均質化熱処理を行う均質化熱処理工程と、
該均質化熱処理工程後に、前記被圧延材に対して熱間圧延を行う熱間圧延工程と、
該熱間圧延工程後に冷却を行う冷却工程と、
該冷却工程後に、前記被圧延材の両面の面削を行う面削工程と、
該面削工程後に、合計加工率が80%以上の冷間圧延を行う第1冷間圧延工程と、
該第1冷間圧延工程後に、昇温速度が10.0〜60.0℃/分、到達温度が200〜400℃、保持時間が1〜12時間、冷却速度が1.0〜10.0℃/分の条件で熱処理を施す第1焼鈍工程と、
該第1焼鈍工程後に、到達温度が800℃以下でかつ第1焼鈍工程よりも高い温度条件で更なる熱処理を施す第2焼鈍工程と、
該第2焼鈍工程後に、更なる冷間圧延を行う第2冷間圧延工程と、
該第2冷間圧延工程後に、最終熱処理を施す調質焼鈍工程と
を含むことを特徴とする銅合金板材の製造方法。
A method for producing a copper alloy sheet for electrical and electronic equipment according to claim 1, 2 or 3,
A homogenization heat treatment step of performing a homogenization heat treatment on the material to be rolled obtained by casting the copper alloy having the alloy composition;
After the homogenization heat treatment step, a hot rolling step of performing hot rolling on the material to be rolled,
A cooling step for cooling after the hot rolling step;
After the cooling step, a chamfering step for chamfering both surfaces of the material to be rolled,
A first cold rolling step of performing cold rolling with a total processing rate of 80% or more after the chamfering step;
After the first cold rolling step, the temperature rising rate is 10.0 to 60.0 ° C / min, the ultimate temperature is 200 to 400 ° C, the holding time is 1 to 12 hours, and the cooling rate is 1.0 to 10.0. A first annealing step in which heat treatment is performed under the conditions of ° C / min;
A second annealing step in which after the first annealing step, the final temperature is 800 ° C. or lower and a further heat treatment is performed under a temperature condition higher than the first annealing step;
A second cold rolling step for performing further cold rolling after the second annealing step;
A method for producing a copper alloy sheet material comprising a temper annealing step of performing a final heat treatment after the second cold rolling step.
JP2016567434A 2015-04-24 2016-04-13 Copper alloy sheet and manufacturing method thereof Active JP6162908B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015089868 2015-04-24
JP2015089868 2015-04-24
PCT/JP2016/061907 WO2016171054A1 (en) 2015-04-24 2016-04-13 Copper alloy sheet material, and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2016171054A1 true JPWO2016171054A1 (en) 2017-05-18
JP6162908B2 JP6162908B2 (en) 2017-07-12

Family

ID=57143900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016567434A Active JP6162908B2 (en) 2015-04-24 2016-04-13 Copper alloy sheet and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP6162908B2 (en)
KR (1) KR102065998B1 (en)
CN (1) CN107406913B (en)
TW (1) TWI698537B (en)
WO (1) WO2016171054A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168119B (en) * 2017-02-17 2022-10-04 古河电气工业株式会社 Copper alloy material for resistance material, method for producing same, and resistor
KR102326618B1 (en) * 2017-03-31 2021-11-16 후루카와 덴키 고교 가부시키가이샤 Copper plate material for insulating substrate with copper plate and manufacturing method thereof
JP7145847B2 (en) * 2017-04-26 2022-10-03 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
KR20200104858A (en) * 2018-01-10 2020-09-04 후루카와 덴키 고교 가부시키가이샤 Insulated wire
KR102363597B1 (en) * 2018-03-13 2022-02-15 후루카와 덴키 고교 가부시키가이샤 Copper alloy plate and its manufacturing method, heat dissipation parts and shield case for electric and electronic devices
CN110042274A (en) * 2019-05-05 2019-07-23 陶大海 A kind of high elastic modulus, copper alloy of stress relaxation-resistant and preparation method thereof
CN110306077B (en) * 2019-07-24 2021-12-03 宁波兴业盛泰集团有限公司 Corrosion-resistant copper alloy for electric connector and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283060A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Copper alloy material and its manufacturing method
WO2009019990A1 (en) * 2007-08-07 2009-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
JP2010242177A (en) * 2009-04-07 2010-10-28 Hitachi Cable Ltd Copper alloy material for electrical and electronic part
WO2012026611A1 (en) * 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744810B2 (en) * 2001-03-30 2006-02-15 株式会社神戸製鋼所 Copper alloy for terminal / connector and manufacturing method thereof
TW200702458A (en) * 2005-03-28 2007-01-16 Sumitomo Metal Ind Copper alloy and process for producing the same
WO2012026610A1 (en) 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and manufacturing method for same
JP6140032B2 (en) * 2013-08-30 2017-05-31 Dowaメタルテック株式会社 Copper alloy sheet, method for producing the same, and current-carrying component
JP6104200B2 (en) 2014-03-13 2017-03-29 Jx金属株式会社 Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283060A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Copper alloy material and its manufacturing method
WO2009019990A1 (en) * 2007-08-07 2009-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
JP2010242177A (en) * 2009-04-07 2010-10-28 Hitachi Cable Ltd Copper alloy material for electrical and electronic part
WO2012026611A1 (en) * 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same

Also Published As

Publication number Publication date
WO2016171054A1 (en) 2016-10-27
KR102065998B1 (en) 2020-01-14
TWI698537B (en) 2020-07-11
CN107406913B (en) 2019-05-17
CN107406913A (en) 2017-11-28
KR20170138391A (en) 2017-12-15
TW201704489A (en) 2017-02-01
JP6162908B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6162908B2 (en) Copper alloy sheet and manufacturing method thereof
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
JP5448763B2 (en) Copper alloy material
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
JP5690979B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
CN102105610A (en) Copper alloy sheet material and manufacturing method thereof
JPWO2012026611A1 (en) Copper alloy sheet and manufacturing method thereof
JP5916418B2 (en) Copper alloy sheet and manufacturing method thereof
TW201348467A (en) Cu-Zn-Sn-Ni-P-based alloy
WO2019176838A1 (en) Copper alloy sheet, method for manufacturing same, electrical/electronic device heat radiation component, and sealed case
JP3717321B2 (en) Copper alloy for semiconductor lead frames
KR20150103049A (en) Copper alloy for electronic or electrical device, copper alloy thin sheet for electronic or electrical device, process for manufacturing copper alloy for electronic or electrical device, conductive component for electronic or electrical device, and terminal
JP2014173167A (en) Cu-Ni-Si BASED COPPER ALLOY
WO2014147862A1 (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
JP5604549B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
KR102499442B1 (en) Copper alloy sheet and its manufacturing method
JP6712880B2 (en) Copper alloy sheet and method for producing the same
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
CN112823215A (en) Copper-nickel-silicon alloy with high strength and high electrical conductivity
JP6097575B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
WO2020152967A1 (en) Copper alloy plate material and method for manufacturing same
JP6097576B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP2016125094A (en) Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, and terminal

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R151 Written notification of patent or utility model registration

Ref document number: 6162908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350