JPS63286543A - Copper alloy for spring - Google Patents

Copper alloy for spring

Info

Publication number
JPS63286543A
JPS63286543A JP12166387A JP12166387A JPS63286543A JP S63286543 A JPS63286543 A JP S63286543A JP 12166387 A JP12166387 A JP 12166387A JP 12166387 A JP12166387 A JP 12166387A JP S63286543 A JPS63286543 A JP S63286543A
Authority
JP
Japan
Prior art keywords
phosphor bronze
grain size
spring
crystal grain
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12166387A
Other languages
Japanese (ja)
Other versions
JPH0788547B2 (en
Inventor
Toshiyuki Osako
敏行 大迫
Keizo Kazama
風間 敬三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12166387A priority Critical patent/JPH0788547B2/en
Publication of JPS63286543A publication Critical patent/JPS63286543A/en
Publication of JPH0788547B2 publication Critical patent/JPH0788547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce phosphor bronze having high spring critical value by applying an ingot thereof a specific heat treatment and fining the crystal grain size, thereby reducing the addition ratio of expensive Sn to the titled alloy at the time of producing the alloy for a spring made of phosphor bronze. CONSTITUTION:In the production of the phosphor bronze for a spring, the ingot of the phosphor bronze contg., by weight, 1-9% Sn and 0.03-0.35% P is heated for 3hr at the temp. of 800 deg.C in an ammonia decomposition gas atm. and is applied to a homonizing treatment. The ingot is then cooled gradually to a room temp., is applied to cutting and chamfering into a plate material having 10mm thickness and is thereafter cold rolled into a thin plate material having 0.5mm thickness. The material is furthermore subjected to intermediate annealing at 400-600 deg.C regulate the crystal grain size, is cold rolled to 0.3mm thickness and is thereafter applied to low temp. annealing at 200 deg.C. The crystal grain size of the material is turned to <=5mum fine grain size, by which the phosphor bronze material for a spring having high spring critical value even if the material contains less expensive Sn can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電気、電子部品用ばね材料として用いる燐青
銅に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to phosphor bronze used as a spring material for electrical and electronic parts.

〔従来の技術〕[Conventional technology]

電気、電子部品用はね材料として、従来よりはね限界値
(以下Kl)値)が高く、加工性に優れた燐青銅が多く
用いられている。該燐青銅において錫はKb値を上昇せ
しめる為の添加元素として極めて有用な元素であるが、
高価であること、又導電性の低下が大きいことから、近
年燐青銅の錫の含有量の低減が求められている。錫を低
減させる目的で、ニッケルなどの元素を添加し結晶粒を
微細化して、錫量の低減を図った燐青銅が登場してきて
いるが、添加元素量が少ないものは結晶粒を微細化して
もKb値の上昇が充分でなく、一方添加元素量を多くし
たものは高いKb値を示すが、添加元素によるコスト上
昇が大きくなり、且つ導電性の低下が大きくなって錫量
減少の利点が相殺されるという問題があった。
Phosphor bronze, which has a higher splash limit value (hereinafter referred to as Kl value) and excellent workability, is often used as a splash material for electrical and electronic parts. In the phosphor bronze, tin is an extremely useful element as an additive element to increase the Kb value.
In recent years, there has been a demand for a reduction in the tin content of phosphor bronze because of its high cost and large decrease in conductivity. In order to reduce the amount of tin, phosphor bronzes with a reduced amount of tin have been introduced by adding elements such as nickel to make the crystal grains finer. However, the increase in the Kb value is not sufficient, and on the other hand, the increase in the amount of added elements shows a high Kb value, but the cost increase due to the added elements becomes large, and the decrease in conductivity becomes large, so that the advantage of reducing the amount of tin is lost. There was a problem of being canceled out.

又、これらの合金を工業上利用する際には、上記のよう
にニッケル等の添加元素を含有している為スクラップの
回収が困難になるという問題があった。
Furthermore, when these alloys are used industrially, there is a problem in that, as mentioned above, they contain additional elements such as nickel, making it difficult to collect scraps.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は上記の問題点を解消し、ニッケルを添加
することなしに錫量を低減しても充分に高いKb値を有
する燐青銅を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a phosphor bronze having a sufficiently high Kb value even when the amount of tin is reduced without adding nickel.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成Tるために、0u−3n−Pの組成から
なる燐青銅の結晶粒径を5μm以下に微細化することに
より、Kb値が少量のニッケルを含む同一結晶粒径で同
程度の錫を含む燐青銅や、同程度の錫を含有する従来の
燐青銅以上の高い値を示Tことを見出し本発明に到達し
たものである。
In order to achieve this objective, by refining the crystal grain size of phosphor bronze with a composition of 0u-3n-P to 5 μm or less, the Kb value is similar to that of the same grain size containing a small amount of nickel. The present invention was achieved by discovering that this material exhibits a higher value of T than phosphor bronze containing tin or conventional phosphor bronze containing the same amount of tin.

即ち、1〜9重量%の錫、0.03〜0.35重量%の
燐を含み、残部が銅及び不可避不純物からなる燐青銅で
、結晶粒径が5μm以下であることを特徴とするばね用
銅合金を発明とするものである。
That is, a spring characterized in that it is phosphor bronze containing 1 to 9% by weight of tin, 0.03 to 0.35% by weight of phosphorus, the balance being copper and unavoidable impurities, and having a crystal grain size of 5 μm or less. The invention is a copper alloy for use in copper alloys.

〔作用〕[Effect]

本発明において、各添加元素の成分範囲を上記のように
限定したのは次の理由による。
In the present invention, the component range of each additive element is limited as described above for the following reason.

錫及び燐は通常の燐青銅を構成する元素であり1このう
ち錫はKb値の上昇に極めて効果のある元素であるが、
その量が1重量%未満では加工硬化の程度が小さく、ば
ね材として満足なKb値が得られないからで、逆に錫量
が9重量%を超えると導電率の低下が著しく、且つ価格
が高くなることによる。又、燐は溶湯の強力な脱酸剤で
あり、ばね性の向上、機械的強度及び耐摩耗性の改善に
効果があるが、その添加量が0.03重量%未満では溶
湯の脱酸が充分でなく、ばね性、機械的強度、耐摩耗性
に対する効果が薄くなるためであり、逆に燐添加量が0
.35重量%を超えると加工性を阻害することと導電率
の低下が著しくなる為である。
Tin and phosphorus are the elements that make up ordinary phosphor bronze. Among these, tin is an element that is extremely effective in increasing the Kb value.
If the amount of tin is less than 1% by weight, the degree of work hardening will be small and a satisfactory Kb value for a spring material cannot be obtained.On the other hand, if the amount of tin exceeds 9% by weight, the electrical conductivity will drop significantly and the price will decrease. Due to being expensive. In addition, phosphorus is a strong deoxidizing agent for molten metal, and is effective in improving spring properties, mechanical strength, and wear resistance, but if the amount added is less than 0.03% by weight, the molten metal will not be deoxidized. This is because the effect on spring properties, mechanical strength, and wear resistance becomes weaker if the amount of phosphorus added is 0.
.. This is because if it exceeds 35% by weight, processability will be inhibited and the electrical conductivity will drop significantly.

本発明において結晶粒径を5μm以下と限定したのは結
晶粒径が5μmを超えるとKb値の上昇が殆ど詔められ
なくなるからである。
In the present invention, the crystal grain size is limited to 5 μm or less because if the crystal grain size exceeds 5 μm, the Kb value will hardly increase.

こ\で、結晶粒径はJ工S H0501の伸銅品結晶粒
度試験方法における比較法、切断法などに従い測定すれ
ば良いが、本発明においては任意の場所で採取した試料
を、これらの方法により測定したうち最も小さい測定値
を結晶粒径と定義する。
Here, the crystal grain size may be measured according to the comparison method, cutting method, etc. in the method for testing the crystal grain size of rolled copper products in J.Eng. The smallest measured value among the measured values is defined as the crystal grain size.

例えば、結晶粒が楕円状に伸長している場合にはその短
径が本発明における結晶粒径となる。
For example, when crystal grains are elongated in an elliptical shape, the short axis thereof becomes the crystal grain size in the present invention.

又、使用する原料中に含まれるか製造工程で不可避的に
入る不純物としてGま、鉛、鉄、亜鉛等が挙げられる。
In addition, impurities contained in the raw materials used or unavoidably introduced during the manufacturing process include G, lead, iron, zinc, etc.

〔実施例〕〔Example〕

次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.

高周波溶解炉を使用して電気銅と高純度銅、及び銅−1
5%・鷹・母合金を大気中で溶解し、第1表に示す各種
成分組成で、寸法が、長さ200朋、幅100關、厚さ
40順の鋳塊を得た。
Electrolytic copper and high purity copper using high frequency melting furnace, and copper-1
A 5% molten metal master alloy was melted in the atmosphere to obtain ingots having various component compositions shown in Table 1 and having dimensions of 200 mm in length, 100 mm in width, and 40 mm in thickness.

次に該合金鋳塊をアンモニア分解ガス雰囲気中で800
0,3時間の均質化処理を行ない、室温まで徐冷し、切
断、面削して10I+IIB厚とし、次に冷間圧延によ
り0.5朋厚の板材とした。該板材に400〜600 
C110分から1時間の中間焼鈍を施し、結晶粒径の調
整を行なった。その後、0.3111s厚まで冷間圧延
を行ない、200C,1時間の低温焼鈍を実施した。
Next, the alloy ingot was heated to 800°C in an ammonia decomposition gas atmosphere.
The material was homogenized for 0.3 hours, slowly cooled to room temperature, cut and faceted to a thickness of 10I+IIB, and then cold rolled to form a plate material of 0.5mm thickness. 400 to 600 to the plate material
Intermediate annealing was performed from C110 minutes to 1 hour to adjust the crystal grain size. Thereafter, cold rolling was performed to a thickness of 0.3111s, and low temperature annealing was performed at 200C for 1 hour.

上記製造方法により得られた各板材の評価として、Kb
値は繰返したわみ式試験からばね限界値(KbO,1値
)を求めて評価した。強度、加工性については引張試験
におけるす1張強さ、破断伸びによって評価した。導電
性は導電率によって示した。
As an evaluation of each plate material obtained by the above manufacturing method, Kb
The value was evaluated by determining the spring limit value (KbO, 1 value) from repeated deflection type tests. Strength and workability were evaluated by tensile strength and elongation at break in a tensile test. Electrical conductivity was indicated by electrical conductivity.

結晶粒径は板厚方向においてJ工S H0501切断法
にて求めた。
The crystal grain size was determined in the plate thickness direction using the J Engineering SH0501 cutting method.

第   1   表 第1表における実施例から明らかなように、本発明合金
の煮1と従来合金の&12を比較すると本発明合金は同
量の錫を含み、且つ同じ結晶粒径を有する0、2重量%
ニッケル添加合金に比べ高いKb値を示すことが判る。
Table 1 As is clear from the examples in Table 1, when comparing the alloy of the present invention, 1, and the conventional alloy, &12, the alloy of the present invention contains the same amount of tin and has the same crystal grain size. weight%
It can be seen that the alloy exhibits a higher Kb value than the nickel-added alloy.

又、本発明合金A1と従来合金7!19、同じ< A 
3.4と屋10の比較、或いは屋5とAllとを比較す
ると明らかなように、本発明合金は錫含有量が約2重量
%多い従来合金にほぼ匹敵するKl)値を示す。
Moreover, the present invention alloy A1 and the conventional alloy 7!19 have the same <A
As is clear from a comparison between No. 3.4 and No. 10, or No. 5 and All, the alloy of the present invention exhibits a Kl) value that is almost comparable to the conventional alloy, which has a tin content about 2% higher.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなように、本発明合金に合金元素を添加
することなしに錫量を低減しても優れたばね限界値、強
度、加工性を得ることができ、廉価な電気、電子部品用
ばね材料を提供できる。
As is clear from the above, it is possible to obtain excellent spring limit values, strength, and workability even if the amount of tin is reduced without adding alloying elements to the alloy of the present invention, and it is an inexpensive spring material for electrical and electronic components. can be provided.

Claims (1)

【特許請求の範囲】[Claims] (1)1〜9重量%の錫、0.03〜0.35重量%の
燐を含有し残部が銅及び不可避不純物からなる燐青銅で
、該燐青銅の平均結晶粒径が5μm以下であることを特
徴とするばね用銅合金。
(1) Phosphor bronze containing 1 to 9% by weight of tin, 0.03 to 0.35% by weight of phosphorus, and the balance consisting of copper and unavoidable impurities, and the average crystal grain size of the phosphor bronze is 5 μm or less. A copper alloy for springs characterized by:
JP12166387A 1987-05-19 1987-05-19 Copper alloy for spring Expired - Lifetime JPH0788547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12166387A JPH0788547B2 (en) 1987-05-19 1987-05-19 Copper alloy for spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12166387A JPH0788547B2 (en) 1987-05-19 1987-05-19 Copper alloy for spring

Publications (2)

Publication Number Publication Date
JPS63286543A true JPS63286543A (en) 1988-11-24
JPH0788547B2 JPH0788547B2 (en) 1995-09-27

Family

ID=14816818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12166387A Expired - Lifetime JPH0788547B2 (en) 1987-05-19 1987-05-19 Copper alloy for spring

Country Status (1)

Country Link
JP (1) JPH0788547B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394610A (en) * 2020-04-29 2020-07-10 福建紫金铜业有限公司 Production process of copper plate and strip materials of VC (polyvinyl chloride) uniform-temperature plates for 5G

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394610A (en) * 2020-04-29 2020-07-10 福建紫金铜业有限公司 Production process of copper plate and strip materials of VC (polyvinyl chloride) uniform-temperature plates for 5G
CN111394610B (en) * 2020-04-29 2021-03-23 福建紫金铜业有限公司 Production process of copper plate and strip materials of VC (polyvinyl chloride) uniform-temperature plates for 5G

Also Published As

Publication number Publication date
JPH0788547B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
KR101667812B1 (en) Copper alloy plate and method for producing same
EP0175183B1 (en) Copper alloys having an improved combination of strength and conductivity
KR100968717B1 (en) ??-??-??-??-?? based copper alloy for electronic material and method for production thereof
TWI475119B (en) Cu-Zn-Sn-Ni-P alloy
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
JP2007126739A (en) Copper alloy for electronic material
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JPH111735A (en) High strength cu alloy with excellent press blankability and corrosion resistance
JP2001049369A (en) Copper alloy for electronic material and its production
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH0987814A (en) Production of copper alloy for electronic equipment
JPS63286543A (en) Copper alloy for spring
KR100878165B1 (en) Copper-nickel-silicon based copper alloy for electronic material, wrought copper and copper alloy using thereof and electronic device part using therof
US3816109A (en) Copper base alloy
US4606889A (en) Copper-titanium-beryllium alloy
JPH01165733A (en) High strength and high electric conductive copper alloy
JPH0819504B2 (en) Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts
JP3779830B2 (en) Copper alloy for semiconductor lead frames
WO2023140314A1 (en) Copper alloy sheet material and method for manufacturing same
JPH0456755A (en) Manufacture of phosphor bronze excellent in bendability
JPH0832935B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JPS6141751A (en) Manufacture of copper alloy material for lead frame