JPH0819504B2 - Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts - Google Patents
Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast partsInfo
- Publication number
- JPH0819504B2 JPH0819504B2 JP4216603A JP21660392A JPH0819504B2 JP H0819504 B2 JPH0819504 B2 JP H0819504B2 JP 4216603 A JP4216603 A JP 4216603A JP 21660392 A JP21660392 A JP 21660392A JP H0819504 B2 JPH0819504 B2 JP H0819504B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- dimensional change
- casting
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は経年寸法変化フリーの鋳
造用亜鉛合金、特に自動車、OA機器、家電用部品など
の分野で要求されている精密亜鉛合金ダイカスト部品の
製造に用いるのに適した経年寸法変化フリーの亜鉛合
金、該亜鉛合金からなる鋳造部品(特にダイカスト部
品)、ならびに該鋳造部品(特にダイカスト部品)の熱
処理法に関する。INDUSTRIAL APPLICABILITY The present invention is suitable for use in the manufacture of zinc alloys for casting, which are free from dimensional change over time, and in particular, precision zinc alloy die-cast parts required in the fields of automobiles, office automation equipment, household appliances and the like. TECHNICAL FIELD The present invention relates to a zinc alloy free of dimensional change over time, a cast part (particularly a die cast part) made of the zinc alloy, and a heat treatment method for the cast part (particularly a die cast part).
【0002】[0002]
【従来の技術】従来、亜鉛合金からなる鋳造部品、特に
ダイカスト部品は車体装飾用品等の自動車部品、OA機
器部品、家電用部品等として広く用いられている。その
ような用途のための鋳造用亜鉛合金として一般にZDC
#2(Zn−4%Al−0.04%Mg)、ZDC#1
(Zn−4%Al−1%Cu−0.04%Mg)等が用
いられている。2. Description of the Related Art Conventionally, cast parts made of zinc alloy, especially die-cast parts, have been widely used as automobile parts such as car body decoration parts, OA equipment parts, parts for home electric appliances and the like. ZDC generally as a zinc alloy for casting for such applications
# 2 (Zn-4% Al-0.04% Mg), ZDC # 1
(Zn-4% Al-1% Cu-0.04% Mg) and the like are used.
【0003】[0003]
【発明が解決しようとする課題】これらの亜鉛合金から
なる部品は経年により寸法変化する。このような経年寸
法変化を抑制するためには安定化熱処理を行う必要があ
り、このことはコストアップに結付く。しかしながら、
精密亜鉛合金ダイカスト部品における寸法精度への要求
が高まっており、経年寸法変化(本明細書においては常
温で1年間経過後の寸法変化率をいう)が±0.1%の
範囲内であることが必要とされている。The parts made of these zinc alloys change their dimensions with age. In order to suppress such dimensional change over time, it is necessary to perform a stabilizing heat treatment, which leads to an increase in cost. However,
The demand for dimensional accuracy in precision zinc alloy die-cast parts is increasing, and the dimensional change over time (in this specification, the dimensional change rate after one year has passed at room temperature) is within ± 0.1%. Is needed.
【0004】本発明の目的は、上記のような欠点のな
い、即ち経年寸法変化が±0.1%の範囲内である鋳造
用亜鉛合金、該合金からなる鋳造部品、及び該鋳造部品
の熱処理法を提供することにある。An object of the present invention is to provide a zinc alloy for casting which does not have the above-mentioned drawbacks, that is, has a dimensional change within a range of ± 0.1%, a cast part made of the alloy, and a heat treatment for the cast part. To provide the law.
【0005】[0005]
【課題を解決するための手段】本発明者等は上記の課題
を解決するために種々検討を重ねた結果、Zn−Al系
合金においてマグネシウム添加量を0.01重量%以下
にし、銅添加量を1重量%以下にすることにより経年寸
法変化を±0.1%の範囲内に抑制できることを見出
し、本発明を完成した。The inventors of the present invention have conducted various studies in order to solve the above-mentioned problems, and as a result, in the Zn--Al alloy, the magnesium addition amount is set to 0.01% by weight or less, and the copper addition amount is set. It was found that the dimensional change over time can be suppressed within a range of ± 0.1% by making the content of 1% by weight or less, and the present invention has been completed.
【0006】即ち、本発明の鋳造用亜鉛合金は、アルミ
ニウム2〜10重量%を含み、所望により銅1重量%以
下を含み、更に所望によりマグネシウム0.01重量%
以下、リチウム1重量%以下及びベリリウム1重量%以
下の1種以上を合計で1重量%以下追加含有し、或は更
に所望によりチタン、コバルト、マンガン及びランタノ
イドの1種以上を合計で0.3重量%以下追加含有し、
残部が亜鉛と不可避の不純物からなり、経年寸法変化が
±0.1%の範囲内であることを特徴とする。That is, the casting zinc alloy of the present invention contains 2 to 10% by weight of aluminum, optionally 1% by weight or less of copper, and further optionally 0.01% by weight of magnesium.
In the following, 1% by weight or less of lithium and 1% by weight or less of beryllium are additionally contained in a total amount of 1% by weight or less, or, if desired, one or more of titanium, cobalt, manganese and lanthanoids are added in a total amount of 0.3. Additional content of less than wt%,
The balance consists of zinc and unavoidable impurities, and is characterized in that the dimensional change over time is within ± 0.1%.
【0007】また、本発明の鋳造部品は、上記の鋳造用
亜鉛合金からなるものである。The cast component of the present invention is made of the above zinc alloy for casting.
【0008】更に、本発明の熱処理法は、上記の鋳造部
品を70〜150℃の雰囲気中に1時間以上保持して、
経年寸法変化が±0.05の範囲内である鋳造部品を得
ることを特徴とする。Further, in the heat treatment method of the present invention, the above cast parts are held in an atmosphere of 70 to 150 ° C. for 1 hour or more,
It is characterized in that a cast part whose dimensional change over time is within ± 0.05 is obtained.
【0009】Zn−Al−Cu−Mg系合金からなる鋳
造部品の経年寸法変化は、共析反応によるAl相中のZ
n相の析出に起因する経年収縮であり、その収縮量はZ
n−22%Alの場合で0.4〜0.5%である。ま
た、Zn相中のCuのT’相あるいはε相としての析出
に起因する膨張は時間的に遅れて生じる。この膨張量は
Cu含有量に依存するが、Cu含有量が1重量%以下の
場合にはそのような膨張は生じない。それでCu含有量
を1重量%以下とした場合には、上記の共析反応に起因
する経年収縮だけが問題となる。この収縮反応は合金中
にマグネシウムが存在することにより遅れて、即ち鋳造
部品として使用している時期に経年寸法変化として現れ
ることになる。そこでこの収縮反応とマグネシウム含有
量との関係を求めるために種々の試験を実施した結果、
マグネシウム含有量が0.01重量%以下の場合には、
凝固後の冷却過程で収縮反応の大部分が終了し、経年寸
法変化を±0.1%の範囲内に抑制できることを見出し
た。この意味で本発明の技術的中心はマグネシウム量及
び銅量を制限することにある。The dimensional change over time of cast parts made of a Zn-Al-Cu-Mg alloy is caused by the Z in the Al phase due to the eutectoid reaction.
It is an aged shrinkage due to the precipitation of n phase, and the amount of shrinkage is Z
It is 0.4 to 0.5% in the case of n-22% Al. Further, the expansion caused by the precipitation of Cu in the Zn phase as the T ′ phase or the ε phase occurs with a time delay. This expansion amount depends on the Cu content, but when the Cu content is 1% by weight or less, such expansion does not occur. Therefore, when the Cu content is 1% by weight or less, only the aged shrinkage due to the above-described eutectoid reaction becomes a problem. This shrinkage reaction will be delayed by the presence of magnesium in the alloy, that is, it will appear as a dimensional change over time during its use as a cast part. Therefore, as a result of performing various tests to obtain the relationship between the shrinkage reaction and the magnesium content,
When the magnesium content is 0.01% by weight or less,
It was found that most of the shrinkage reaction is completed in the cooling process after solidification, and the aging dimensional change can be suppressed within a range of ± 0.1%. In this sense, the technical center of the present invention is to limit the amount of magnesium and the amount of copper.
【0010】そもそも、マグネシウムはZn−Al系合
金に特有の粒間腐食の抑制のために一般的には0.04
重量%以上の量で添加されている。この粒間腐食とはZ
n−Al系合金中にPb、Sn、Cd等の不純物が混入
している場合に腐食割れが発生するという現象である。
従って、Zn−Al系合金中にPb、Sn、Cd等の不
純物がほとんど混入していない場合にはマグネシウムを
添加しなくても粒間腐食は発生せず、またマグネシウム
を添加しないことで経年収縮も生じない。Zn−Al系
合金中のPb、Sn、Cd等の不純物の混入量が非常に
少ない(通常よりも少ない)場合には0.01重量%以
下のマグネシウムの添加でも粒間腐食を抑制することが
でき、また上記したようにマグネシウム含有量が0.0
1重量%以下の場合には、経年寸法変化が±0.1%の
範囲内に抑制されるのである。従って、本発明の合金に
おいてはマグネシウムを添加する場合と添加しない場合
とがあり、添加する場合にはその添加量は0.01重量
%以下である。In the first place, magnesium is generally used in an amount of 0.04 to suppress intergranular corrosion peculiar to Zn-Al alloys.
It is added in an amount of not less than wt%. What is this intergranular corrosion?
This is a phenomenon in which corrosion cracking occurs when impurities such as Pb, Sn, and Cd are mixed in the n-Al alloy.
Therefore, when impurities such as Pb, Sn, and Cd are hardly mixed in the Zn-Al alloy, intergranular corrosion does not occur even if magnesium is not added. Does not occur. When the amount of impurities such as Pb, Sn, and Cd in the Zn-Al alloy is very small (less than usual), addition of 0.01 wt% or less of magnesium can suppress intergranular corrosion. And the magnesium content is 0.0 as described above.
When it is 1% by weight or less, the dimensional change over time is suppressed within a range of ± 0.1%. Therefore, in the alloy of the present invention, magnesium may or may not be added, and when it is added, the addition amount is 0.01% by weight or less.
【0011】本発明の合金においては、所望によりリチ
ウム及びベリリウムの1種以上を添加することもでき、
これらの元素はマグネシウムと同様に粒間腐食の抑制に
有効である。これらの元素はマグネシウムのように時効
を抑制することがないのでマグネシウムよりも多量に添
加することができる。しかし、それらの添加量が1重量
%を越えると強度面で脆化などの悪影響が生じることが
ある。従って、本発明の合金において粒間腐食抑制元素
を添加する場合には、マグネシウム0.01重量%以
下、リチウム1重量%以下及びベリリウム1重量%以下
の1種以上を合計で1重量%以下、好ましくは0.1〜
0.5重量%、より好ましくは0.01〜0.3重量%
添加することが望ましい。If desired, one or more of lithium and beryllium may be added to the alloy of the present invention.
Similar to magnesium, these elements are effective in suppressing intergranular corrosion. Since these elements do not suppress aging unlike magnesium, they can be added in a larger amount than magnesium. However, if the added amount exceeds 1% by weight, adverse effects such as embrittlement may occur in terms of strength. Therefore, when the intergranular corrosion inhibiting element is added to the alloy of the present invention, one or more of 0.01 wt% or less of magnesium, 1 wt% or less of lithium and 1 wt% or less of beryllium in total is 1 wt% or less, Preferably 0.1-
0.5% by weight, more preferably 0.01-0.3% by weight
It is desirable to add.
【0012】本発明の合金において、所望により銅を添
加することができ、銅は一般的に合金の強度、硬さの向
上に有効である。銅含有量の増加とともにそれらの特性
が向上するが、前記したように銅含有量が1重量%を越
えると合金の経時膨張が生じる傾向がある。従って、本
発明の亜鉛合金において銅を添加する場合には、銅添加
量は1重量%以下である。Copper can be added to the alloy of the present invention if desired, and copper is generally effective in improving the strength and hardness of the alloy. Although the properties thereof improve as the copper content increases, as described above, when the copper content exceeds 1% by weight, the alloy tends to expand with time. Therefore, when copper is added to the zinc alloy of the present invention, the amount of copper added is 1% by weight or less.
【0013】本発明の合金において、アルミニウムは合
金の強度、硬さを増加させるとともに溶湯の流動性を改
善する。アルミニウム含有量の増加とともにそれらの特
性が向上し、2重量%以上の添加でそれらの特性の有意
義な向上が達成される。合金の経年寸法変化が±0.1
%の範囲内に抑制される点だけを考慮すれば、かなり多
量の、例えば30重量%までのアルミニウムを添加する
ことができるが、アルミニウム含有量が多くなりすぎる
と合金の融点が高くなり、ダイカスト可能温度も高くな
る。従って、本発明の亜鉛合金においてはアルミニウム
添加量を2重量%以上、ホットチャンバーダイカストが
可能な10重量%以下、好ましくは3.5〜8重量%と
する。In the alloy of the present invention, aluminum increases the strength and hardness of the alloy and improves the fluidity of the molten metal. Their properties improve with increasing aluminum content and significant additions of these properties are achieved with additions of 2% by weight or more. Change over time of alloy is ± 0.1
Considering only the fact that it is suppressed within the range of%, it is possible to add a considerably large amount of aluminum, for example, up to 30% by weight, but if the aluminum content is too high, the melting point of the alloy becomes high and the die casting The possible temperature will be higher. Therefore, in the zinc alloy of the present invention, the amount of aluminum added is 2% by weight or more and 10% by weight or less, which allows hot chamber die casting, and preferably 3.5 to 8% by weight.
【0014】本発明の合金においては、所望によりチタ
ン、コバルト、マンガン及びランタノイドからなる群か
ら選ばれた1種以上の元素を0.3重量%以下の量で添
加することができ、これらの元素はいずれも機械的強度
を改善する効果を有し、一般に用いられている元素であ
る。しかし、それらの添加量が0.3重量%を超えると
強度面で脆化などの悪影響が生じることがある。従っ
て、本発明の合金においてそれらの元素を添加する場合
には、チタン、コバルト、マンガン及びランタノイドの
1種以上を合計で0.3重量%以下添加する。In the alloy of the present invention, if desired, one or more elements selected from the group consisting of titanium, cobalt, manganese and lanthanoids can be added in an amount of 0.3% by weight or less. Are all commonly used elements that have the effect of improving mechanical strength. However, if the addition amount thereof exceeds 0.3% by weight, adverse effects such as embrittlement may occur in terms of strength. Therefore, when those elements are added to the alloy of the present invention, one or more kinds of titanium, cobalt, manganese and lanthanoid are added in a total amount of 0.3% by weight or less.
【0015】本発明の合金においては、簡便な熱処理に
よって経年寸法変化を更に小さくすることができる。即
ち、本発明の合金からなる鋳造部品を70〜150℃の
雰囲気中に、例えば70〜100℃の水中に又は70〜
150℃の空気中に、好ましくは70〜100℃の水中
に1時間以上保持して、経年寸法変化が±0.05の範
囲内である鋳造部品を得ることができる。この熱処理に
よって、凝固後の冷却過程で終了していなかった収縮反
応を完全に終了させることができる。この熱処理は工程
中に鋳造部品を湯に浸漬する程度のことであり、あまり
コストアップには繋がらない。In the alloy of the present invention, the dimensional change over time can be further reduced by a simple heat treatment. That is, a cast part made of the alloy of the present invention is placed in an atmosphere of 70 to 150 ° C., for example, in water of 70 to 100 ° C. or 70 to 150 ° C.
By holding in air at 150 ° C., preferably in water at 70 to 100 ° C. for 1 hour or more, it is possible to obtain a cast component having a dimensional change within a range of ± 0.05. By this heat treatment, the shrinkage reaction that has not been completed in the cooling process after solidification can be completely completed. This heat treatment is only to immerse the cast parts in hot water during the process, and does not lead to a cost increase.
【0016】実施例1〜7及び比較例1〜3 黒鉛坩堝中に、ベースとしての電気亜鉛及び所要量のA
l 、Cu 、Mg 及びその他の添加成分を装入し、溶融さ
せて、表1に示す合金成分、組成(重量%)を有する
(不可避の不純物を含む)合金を調製した。それらの合
金溶湯から、下記のダイカスト条件で、長さ100m
m、10mm角、端面は機械加工仕上した試験片を作成
した: 東芝135ton コールドチャンバー ダイカスト圧力95kgf/cm2 金型温度 180〜190℃ ダイカスト温度は各合金毎に健全な鋳物が得られる最低
温度として設定これらのダイカストしたままの試験片
(実施例1〜6及び比較例1〜3)及び100℃の湯に
1時間浸漬した試験片(実施例7)を60℃の空気中に
1年間保持し、この間、適宜寸法測定を実施して最大の
寸法変化を求めた。その結果は表1に示す通りであっ
た。Examples 1 to 7 and Comparative Examples 1 to 3 In a graphite crucible, electrolytic zinc as a base and a required amount of A were used.
l, Cu, Mg and other additive components were charged and melted to prepare an alloy having the alloy components and the composition (% by weight) shown in Table 1 (including inevitable impurities). 100m length from the molten alloy under the following die casting conditions
m, 10 mm square, and the end surface were machined to make a test piece: Toshiba 135ton cold chamber die casting pressure 95 kgf / cm 2 mold temperature 180-190 ° C The die casting temperature is the lowest temperature at which a sound casting can be obtained for each alloy. Settings These die-cast test pieces (Examples 1 to 6 and Comparative Examples 1 to 3) and test pieces immersed in 100 ° C. hot water for 1 hour (Example 7) were held in air at 60 ° C. for 1 year. During this period, appropriate dimension measurement was performed to obtain the maximum dimension change. The results were as shown in Table 1.
【0017】[0017]
【表1】例番号 組 成 経年寸法変化 比較例1 Zn−4Al− 0.04 Mg(ZDC 2) −0.23 実施例1 Zn−4Al− 0.01 Mg −0.08 実施例2 Zn−4Al −0.05 比較例2 Zn−4Al−1Cu− 0.04 Mg(ZDC 1) −0.28 比較例3 Zn−4Al−2Cu− 0.04 Mg +0.42 実施例3 Zn−4Al−1Cu− 0.01 Mg −0.09 実施例4 Zn−5Al−1Cu− 0.01 Mg −0.09 実施例5 Zn−8Al−1Cu− 0.02 Li −0.06 実施例6 Zn−8Al−1Cu− 0.02 Be −0.06 実施例7 Zn−5Al−1Cu− 0.01 Mg −0.0025[Table 1] Example No. Composition Composition change over time Comparative example 1 Zn-4Al- 0.04 Mg (ZDC 2) -0.23 Example 1 Zn-4Al- 0.01 Mg -0.08 Example 2 Zn-4Al-0. 05 Comparative Example 2 Zn-4Al-1Cu- 0.04 Mg (ZDC 1) -0.28 Comparative Example 3 Zn-4Al-2Cu- 0.04 Mg +0.42 Example 3 Zn-4Al-1Cu- 0.01 Mg -0.09 Implementation Example 4 Zn-5Al-1Cu-0.01 Mg -0.09 Example 5 Zn-8Al-1Cu- 0.02 Li -0.06 Example 6 Zn-8Al-1Cu- 0.02 Be -0.06 Example 7 Zn-5Al -1Cu-0.01 Mg-0.0025
【0018】上記の実施例の範囲内では、銅含有量が0
〜1重量%で、マグネシウム含有量が0〜0.01重量
%であるZn−Al系合金からなるダイカスト試験片の
経年寸法変化は±0.09%の範囲内であり、更に熱処
理したダイカスト試験片の経年寸法変化は±0.003
%の範囲内であり、合金の組成変化を考慮しても本発明
のZn−Al系合金からなるダイカスト試験片の経年寸
法変化は±0.1%の範囲内であり、更に熱処理したダ
イカスト試験片の経年寸法変化は±0.05%の範囲内
であることは明らかである。Within the range of the above embodiment, the copper content is 0.
-1% by weight and a magnesium content of 0-0.01% by weight of a die-cast test piece made of a Zn-Al alloy is within ± 0.09%, and a heat-treated die-cast test is performed. Change over time of one piece is ± 0.003
%, The aging dimensional change of the die casting test piece made of the Zn-Al alloy of the present invention is within ± 0.1% even if the composition change of the alloy is taken into consideration. It is clear that the secular dimensional change of the pieces is within ± 0.05%.
【0019】[0019]
【発明の効果】本発明の鋳造用亜鉛合金の経年寸法変化
は±0.1%の範囲内にあり、精密亜鉛合金ダイカスト
部品の製造に用いるのに適した経年寸法変化フリーの亜
鉛合金であるので、広範な用途に用いることができる。The aging dimensional change of the zinc alloy for casting of the present invention is within the range of ± 0.1%, which is a zinc alloy free from aging dimensional change suitable for use in the production of precision zinc alloy die casting parts. Therefore, it can be used for a wide range of purposes.
フロントページの続き (72)発明者 星谷 光治 埼玉県上尾市大字原市1333番地の2 三井 金属鉱業株式会社 総合研究所内 (72)発明者 柳 清隆 埼玉県上尾市大字原市1333番地の2 三井 金属鉱業株式会社 総合研究所内 (56)参考文献 特公 昭34−2256(JP,B1)Front page continuation (72) Inventor Koji Hoshitani 2 1333, Ojiwara, Ageo City, Saitama Prefecture Mitsui Mining & Smelting Co., Ltd. (72) Inventor Kiyotaka Yanagi 2 1333, Ojihara, Ageo City, Saitama Mitsui Mining Co., Ltd. Company Research Institute (56) References Japanese Patent Publication Sho 34-2256 (JP, B1)
Claims (8)
及びマグネシウムを含まず、残部が亜鉛と不可避の不純
物からなり、経年寸法変化が±0.1%の範囲内である
ことを特徴とする鋳造用亜鉛合金。1. A content of aluminum is 2 to 10% by weight, copper and magnesium are not contained, and the balance is zinc and unavoidable impurities, and the dimensional change over time is within ± 0.1%. Zinc alloy for casting.
量%以下を含み、マグネシウムを含まず、残部が亜鉛と
不可避の不純物からなり、経年寸法変化が±0.1%の
範囲内であることを特徴とする鋳造用亜鉛合金。2. Aluminium 2 to 10% by weight and copper 1% by weight or less, magnesium is not included, the balance is zinc and inevitable impurities, and the dimensional change over time is within ± 0.1%. Zinc alloy for casting characterized by.
ウム1重量%以下及びベリリウム1重量%以下の1種以
上を合計で1重量%以下追加含有することを特徴とする
請求項1又は2記載の鋳造用亜鉛合金。3. Magnesium 0.01% by weight, characterized by containing additional Li Chi <br/> um 1 wt% or less, and beryllium 1 wt% or less than 1% by weight of one or more of the total billing The zinc alloy for casting according to Item 1 or 2.
ノイドの1種以上を合計で0.3重量%以下追加含有す
ることを特徴とする請求項1、2又は3記載の鋳造用亜
鉛合金。4. The zinc alloy for casting according to claim 1, further comprising 0.3% by weight or less in total of one or more of titanium, cobalt, manganese and lanthanoid.
なる鋳造部品。5. A cast part made of the alloy according to claim 1.
5記載の部品。6. A component according to claim 5, wherein the cast component is a die cast component.
150℃の雰囲気中に1時間以上保持して、経年寸法変
化が±0.05%の範囲内である鋳造部品を得ることを
特徴とする鋳造部品の熱処理法。7. The cast component according to claim 5 or 70
A heat treatment method for cast parts, which is characterized by holding in an atmosphere of 150 ° C. for 1 hour or more to obtain cast parts having a dimensional change within a range of ± 0.05%.
0℃の水中である請求項7記載の熱処理法。8. An atmosphere of 70 to 150 ° C. is 70 to 10
The heat treatment method according to claim 7, which is in water at 0 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4216603A JPH0819504B2 (en) | 1992-07-23 | 1992-07-23 | Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4216603A JPH0819504B2 (en) | 1992-07-23 | 1992-07-23 | Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0649571A JPH0649571A (en) | 1994-02-22 |
JPH0819504B2 true JPH0819504B2 (en) | 1996-02-28 |
Family
ID=16691015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4216603A Expired - Lifetime JPH0819504B2 (en) | 1992-07-23 | 1992-07-23 | Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0819504B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5423893A (en) * | 1992-06-18 | 1995-06-13 | Kotaki; Daizo | Plastic filter, its injection molding die and producing method |
US5650181A (en) * | 1993-06-17 | 1997-07-22 | Kotaki; Daizo | Injection molding die for producing plastic filter |
CN102367531A (en) * | 2011-12-08 | 2012-03-07 | 广东金亿合金制品有限公司 | Zinc alloy special for zipper industry |
CN102367530A (en) * | 2011-12-08 | 2012-03-07 | 广东金亿合金制品有限公司 | Zinc alloy special for sanitary ware industry |
CN112126820A (en) * | 2020-08-05 | 2020-12-25 | 百路达(厦门)工业有限公司 | Zinc alloy and manufacturing method thereof |
-
1992
- 1992-07-23 JP JP4216603A patent/JPH0819504B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0649571A (en) | 1994-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016343539B2 (en) | Aluminum alloy | |
US5855697A (en) | Magnesium alloy having superior elevated-temperature properties and die castability | |
EP3121302A1 (en) | Aluminum alloy for die casting, and die-cast aluminum alloy using same | |
US3759758A (en) | High strength aluminum casting alloy | |
JPH0819504B2 (en) | Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts | |
JPS6128739B2 (en) | ||
JP2534073B2 (en) | Copper alloy for electronic component construction and method for producing the same | |
EP4352273A1 (en) | Aluminium-silicon casting alloy, and castings made from said alloy | |
US3369893A (en) | Copper-zinc alloys | |
JPH0649572A (en) | High strength zinc alloy for die casting and zinc alloy die-cast parts | |
US2795501A (en) | Copper base alloys | |
JP2023527566A (en) | aluminum-silicon-iron casting alloy | |
US2290025A (en) | Aluminum alloy | |
US4407776A (en) | Shape memory alloys | |
JP2002226932A (en) | Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor | |
US2720459A (en) | Highly wear-resistant zinc base alloy | |
JPS6146534B2 (en) | ||
JPS6024169B2 (en) | magnesium alloy | |
KR810002048B1 (en) | Non-erosion aluminium alloy for die-casting | |
JPH01165733A (en) | High strength and high electric conductive copper alloy | |
JPS594496B2 (en) | Aluminum alloy for casting | |
JP7475330B2 (en) | Heat-resistant magnesium alloy for casting | |
US3508916A (en) | Cu base die casting alloy | |
US4128418A (en) | Enhanced grain growth in arsenic modified copper-zinc brasses | |
JPH0832935B2 (en) | High strength and high toughness Cu alloy with little characteristic anisotropy |