WO2018124437A1 - 고강도 방향족 폴리아미드 멀티 필라멘트의 제조방법 - Google Patents

고강도 방향족 폴리아미드 멀티 필라멘트의 제조방법 Download PDF

Info

Publication number
WO2018124437A1
WO2018124437A1 PCT/KR2017/011321 KR2017011321W WO2018124437A1 WO 2018124437 A1 WO2018124437 A1 WO 2018124437A1 KR 2017011321 W KR2017011321 W KR 2017011321W WO 2018124437 A1 WO2018124437 A1 WO 2018124437A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyamide
spinning
polyamide multifilament
tension
denier
Prior art date
Application number
PCT/KR2017/011321
Other languages
English (en)
French (fr)
Inventor
김성수
장세훈
이기환
Original Assignee
(주)효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)효성 filed Critical (주)효성
Publication of WO2018124437A1 publication Critical patent/WO2018124437A1/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • D01D1/065Addition and mixing of substances to the spinning solution or to the melt; Homogenising
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides

Definitions

  • the present invention relates to a method for producing a high strength aromatic polyamide multifilament, specifically, the spinning of filaments with high denier per filament (DPF) and by dividing the length-by-length section from the nozzle to thereby control the rigidity and movement
  • the present invention relates to a method for producing an aromatic polyamide multifilament having excellent energy dispersing efficiency.
  • the process stability and cooling efficiency for the adhesion of the filaments discharged to the spinning nozzle are changed according to the increase in the number of filaments, so that not only the outer diameter of the spinning nozzle, the diameter and spacing of the orifice, but also the aramid solution in the nozzle are uniform.
  • the conditions such as the number of holes, hole spacing, hole diameter, and feed roller of the distribution plate are very important.
  • the wholly aromatic polyamide filament is disclosed in U.S. Patent No. 3,869,492 and U.S. Patent No. 3,869,430 in a polymerization solvent containing N-methyl-2-pyrrolidone for aromatic diamine and aromatic dieside chloride.
  • Preparing a wholly aromatic polyamide polymer by polymerization dissolving the polymer in a concentrated sulfuric acid solvent to prepare a spinning solution, and spinning the spinning solution from a spinneret through a non-coagulating fluid layer. It is produced through a process of forming a filament through the solid-liquid bath, and a process of washing, drying and heat treating the filament.
  • the prior art related to the coagulation method is disclosed in Korean Patent Laid-Open No. 2000-52793 to prepare a para-aramid filament of high strength by extruding a para-aramid solution through a fine capillary tube and drying the filament produced under high tension. Suggesting.
  • Japanese Patent Laid-Open No. 11-189916 discloses a method for producing high strength, high elastic aramid fibers by adjusting the ratio of the amount of coagulated liquid to the mass of the filament passed.
  • US Patent No. 4,965,033 and Japanese Patent Application Laid-Open No. 11-189916 which are patents relating to mass / velocity of coagulation, disclose the ratio of mass of mass to filament and mass of filament, ratio of speed of filament and mass of solidification in the spinning tube, orifice. The diameter and the like.
  • U.S. Patent No. 5,330,698 proposes a method for obtaining high elongation by maintaining the coagulation solution temperature at 40 ⁇ 80 °C.
  • Korean Patent Laid-Open Publication No. 2008-22832 discloses that the filaments finally manufactured have a low strength due to the fact that the skin layer (S) is thinly formed to a level of 1 ⁇ m or less because the radiant is gradually cooled in a coagulating solution at room temperature.
  • a method of using a coagulation bath at -5 ° C is proposed.
  • Japanese Patent Application Laid-Open No. 02-242914, Japanese Patent Application Laid-Open No. 02-242913, US Patent No. 5,173,236, and US Patent No. 5,853,640 require a certain tension to be applied when washing and drying fibers.
  • the aromatic polyamide filament of the present invention is more than 29g / d, elongation at break 4.0 to 5.0%, DPF 2.25 or more, in rigid composite armor due to the high DPF when used in bulletproof material requiring high strength and high elongation characteristics compared to conventional aramid It is an object to provide aromatic polyamide multifilaments that are more efficient in dispersing the kinetic energy of a ballistic projectile.
  • a poly (p-phenylene terephthalamide) unit having an intrinsic viscosity of 5.5 or more relative to 100 parts by weight of the main liquid Preparing a spinning dope, in which 18 to 25 parts by weight of sulfuric acid is dissolved; After spinning the spinning dope through the spinning nozzle, winding the spinning yarn sequentially through the coagulation tank, washing tank, air layer using a feed roller;
  • a tension of 0.3 to 0.7 g / d or less is applied, and a tension of 0.5 to 2.0 g / d is applied to the drying step passing through the air layer after passing the washing tank.
  • it provides a method for producing an aromatic polyamide multifilament, characterized in that the denier of the monofilament is 2.25 to 4.5 denier.
  • the poly (p-phenylene terephthalamide), which is an aromatic polyamide polymer used in the present invention, is prepared by low-temperature polycondensation of p-phenylenediamine and terephthaloyl chloride, and an intrinsic viscosity (I.V.) of 5.5 or more is used. At this time, less than 5.5, the strength of the fiber is reduced.
  • I.V. intrinsic viscosity
  • the aromatic polyamide multifilament has a strength of at least 29 g / d and an elongation at break of 4.0 to 5.0%.
  • the initial modulus of the aromatic polyamide multifilament is characterized in that 450 to 700g / d.
  • the total fineness of the produced aromatic multifilament is characterized in that 400 to 3000 denier.
  • the present invention provides a method for producing an aromatic polyamide multifilament having superior rigidity and kinetic energy dispersing efficiency than the prior art by presenting an optimized process factor while using a high DPF filament.
  • the present invention comprises the steps of dissolving 18 to 25 parts by weight of poly (p-phenylene terephthalamide) units having an intrinsic viscosity of 5.5 or more relative to 100 parts by weight of the main dope liquid in sulfuric acid; After spinning the spinning dope through the spinning nozzle, winding the spinning yarn sequentially through the coagulation tank, washing tank, air layer using a feed roller; including, after the yarn passes the coagulation tank In the washing stage up to the washing tank, a tension of 0.3 to 0.7 g / d or less is applied, and a tension of 0.5 to 2.0 g / d is applied from the washing tank through the air layer to the drying stage, and the denier of the monofilament is 2.25 to Provided is a method for producing an aromatic polyamide multifilament, characterized in that 4.5 denier.
  • the aromatic polyamide multifilament has a strength of at least 29 g / d, an elongation at break of 4.0 to 5.0%, and an initial elastic modulus of the aromatic polyamide multifilament is 450 to 700 g / d.
  • the total fineness of the produced aromatic multifilament is preferably 400 to 3000 denier.
  • aromatic polyamide multifilaments having excellent kinetic energy dispersion efficiency can be obtained.
  • I.V. intrinsic viscosity
  • Spinning may be wet, dry, or wet, but in particular, the wet and dry spinning method enables the production of a high-strength fiber because it is possible to produce a uniform aromatic polyamide fibers.
  • the spinning solution discharged through the spinning nozzle passes through the air layer in the vertical direction to reach the interface of the coagulating solution.
  • the spinning nozzle used is usually circular in shape. Considering the tire cord and the industrial in terms of use, in consideration of the nozzle interval for uniform cooling of the solution, the number of nozzles is preferably 100 to 1,200.
  • the hole spacing of the spinneret is preferably 1.1 to 1.4 mm, more preferably 1.3 to 1.4 mm. At this time, if the hole spacing is less than 1.1mm, the close contact between the filament occurs during high-speed spinning, the physical properties are lowered. If the hole spacing exceeds 1.4mm, the diameter of the spinneret increases, and economic efficiency is low.
  • the spinning speed is preferably 1000 to 1500 m / min. At this time, the productivity is lowered if the spinning speed is less than 1000 m / min, and the physical properties of the filament are sharply lowered when the spinning speed is exceeded 1500 m / min.
  • the air layer is preferably 3 to 20 mm.
  • a roller Inside the coagulation bath is installed a roller to switch in the horizontal direction.
  • the rollers are rotated to reduce the frictional resistance.
  • Intensity is expressed by breaking stress divided by linear density.
  • the modulus of elasticity is represented by the slope of the initial stress / strain curve, converted to the same units as the strength. Elongation is the percent increase in length at break. Both strength and modulus are first entered into the computer in g / denier, then multiplied by 0.8826 to calculate in dN / tex. Each reported measurement is an average of 10 times.
  • Denier is g weight of 9000 m yarn or filament and dtex is g weight of 10,000 m yarn or filament.
  • each yarn is braided with a twist factor of 1.1 (eg, a nominal 1500 denier yarn is braided at about 0.8 twists / cm).
  • a twist factor of 1.1 eg, a nominal 1500 denier yarn is braided at about 0.8 twists / cm.
  • Each twisted sample has a test length of 25.4 cm and is drawn 50% per minute (based on the original unstretched length) using a conventional stress / strain recording device.
  • TM Yarn's twist coefficient
  • tpi is the number of twists per inch
  • the tensile properties of the yarns are different from the tensile properties of the individual filaments, and are smaller than the tensile properties of the individual filaments, so that these figures of yarns cannot be successfully and accurately obtained from the filament values.
  • the spinning dope prepared as described above was spun through a spinning filament of 2.25 denier and 267 holes of monofilament, passed through a 6 mm air layer, and wound by a winding roller through a coagulation bath and a feed roller of 5 ° C. having a sulfuric acid concentration of 7%. do.
  • the tension was adjusted by dividing into two sections within 7m distance from the nozzle. The tension of each section was 0.3g / d in flush tension and 0.7g / d in dry tension.
  • the spinning dope prepared as described above was spun through a monofilament 3 denier and a spinneret of 200 holes and then passed through a 6 mm air layer, and then wound by a winding roller through a coagulation bath and a feed roller having a sulfuric acid concentration of 7%. do.
  • the tension was adjusted by dividing into two sections within 7m distance from the nozzle. The tension of each section was 0.3g / d in flush tension and 0.7g / d in dry tension.
  • the spinning dope prepared as described above was spun through a spinning filament of 2.25 denier and 267 holes of monofilament, passed through a 6 mm air layer, and wound by a winding roller through a coagulation bath and a feed roller of 5 ° C. having a sulfuric acid concentration of 7%. do.
  • the tension was adjusted in two sections within 7m distance from the nozzle. The tension in each section was 0.7g / d in flush tension and 2.0g / d in dry tension.
  • the spinning dope prepared as described above was spun through a monofilament 3 denier and a spinneret of 200 holes and then passed through a 6 mm air layer, and then wound by a winding roller through a coagulation bath and a feed roller having a sulfuric acid concentration of 7%. do.
  • the tension was adjusted in two sections within 7m distance from the nozzle. The tension in each section was 0.7g / d in flush tension and 2.0g / d in dry tension.
  • Example 1 The same dope as Example 1 was used. It was carried out in the range of process factors outside the spinning conditions of the present invention.
  • the spinning dope prepared as described above was spun through 1.5 denier of monofilament and 400 holes of spinneret, passed through an air layer of 6 mm, and then wound by a winding roller through a coagulation bath and a feed roller having a sulfuric acid concentration of 7%. do.
  • the tension was adjusted by dividing into two sections within 7m distance from the nozzle, and the tension of each section was 1.0g / d in flush tension and 2.5g / d in dry tension.
  • Example 1 The same dope as Example 1 was used. It was carried out in the range of process factors outside the spinning conditions of the present invention.
  • the spinning dope prepared above was spun through monofilament 1.0 denier and 600 holes spinneret, passed through a 6 mm air layer, and wound by a winding roller through a coagulation bath and a feed roller at 5 ° C. with a sulfuric acid concentration of 7%. do.
  • the tension was adjusted by dividing into two sections within 7m distance from the nozzle, and the tension of each section was 1.0g / d in flush tension and 2.5g / d in dry tension.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Radiation conditions Denier 600 Filament number 267 200 267 200 400 600 Den./Filament (DPF) 2.25 3.0 2.25 3.0 1.5 One Flushing tension (g / d) 0.3 0.3 0.7 0.7 One One Drying tension (g / d) 0.7 0.7 2.0 2.0 2.5 0.5 Properties Strength (g / d) 30.1 29.3 29.5 29.2 27.5 27.5 Elongation 4.8 4.6 4.3 4.0 3.4 3.3 Bulletproof performance group 1X1 Plain Weaving Density (EPI) 36 * 36 Double 28 Test specification 40.4 Test bomb MIL-STD-662F Ballistic Limit (V50) 630 623 626 620 561 560
  • the aromatic multifilament produced by the manufacturing method of the present invention has excellent strength and efficient kinetic energy dispersion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 고강도의 방향족 폴리아미드 멀티필라멘트의 제조방법에 관한 것으로, 본 발명의 제조방법에 따라 DPF가 높은 필라멘트를 사용하고 공정인자를 최적화하여 강성 및 운동에너지 분산 효율이 우수한 방향족 폴리아미드 멀티 필라멘트를 제조할 수 있다.

Description

고강도 방향족 폴리아미드 멀티 필라멘트의 제조방법
본 발명은 고강도 방향족 폴리아미드 멀티 필라멘트의 제조방법에 관한 것으로, 구체적으로 필라멘트당 데니어(Denier per Filament, DPF)가 높은 필라멘트의 방사하고 노즐로부터 길이별 구간을 나누어 장력을 조절하여 이로 인해 강성 및 운동에너지 분산 효율이 우수한 방향족 폴리아미드 멀티 필라멘트의 제조방법에 관한 것이다.
일반적으로 섬유의 방사에 있어서는 방사 노즐당 오리피스 개수가 50개 정도로 이루어진 의류용 섬유의 방사보다 방사 노즐당 오리피스 개수가 500 내지 2,000개인 산업용 섬유의 방사시 많은 기술적 어려움이 있다. 이러한 이유는 오리피스의 개수가 증가함에 따라 균일한 방사 압력을 조절하기가 어려워서 방사 노즐과 분배판을 적절히 설계하여 제작해야 함은 물론, 특히 공기층에서 균일하게 냉각시킬 수 있는 조건과 500 내지 2,000 필라멘트 전체가 균일하게 수세, 건조시킬 수 있는 조건의 조절이 매우 어려우며, 이 때문에 일정 수준 이상의 물성을 발현하는 것과 전체적으로 필라멘트의 균일한 물성을 유지하는 것이 매우 어렵기 때문에 단순히 50가닥 정도의 섬유 물성을 참조하여 산업용 사에 적용하는 것에는 어려움이 있다.
특히, 공기층 방사는 필라멘트 수의 증가에 따라 방사 노즐에 토출된 필라멘트의 점착에 대한 공정 안정성 및 냉각 효율이 달라지므로 방사 노즐의 외경, 오리피스의 직경과 간격뿐만 아니라, 노즐에 아라미드 용액을 균일
하게 분산시키는 분배판의 홀 수, 홀 간격, 홀 직경 및 피드롤러를 이용할 경우 장력 등의 조건들이 매우 중요하다.
그리고 공기층 길이, 냉각 공기 부여조건, 응고액의 진행방향 및 방사속도에 따른 건조 조건 등을 고려한 새로운 설계가 필요하며 그 설계에 따라 물성 차이를 유발할 수 있다.
전방향족 폴리아미드 필라멘트는 미국특허 제 3,869,492 호 및 미국특허 제 3,869,430호 [0002] 등에 게재되어 있는 바와 같이, 방향족 디아민과 방향족 디에시드클로라이드를 N-메틸-2-피롤리돈을 포함하는 중합용매 중에서 중합시켜 전방향족 폴리아미드 중합체를 제조하는 공정과, 상기 중합체를 농황산 용매에 용해시켜 방사원액을 제조하는 공정과, 상기 방사원액을 방사 구금으로부터 방사하여 방사된 방사물을 비응고성 유체층을 통해 응고액 욕조 내로 통과시켜 필라멘트를 형성하는 공정과, 상기 필라멘트를 수세, 건조 및 열처리하는 공정들을 거쳐 제조된다.
응고방법에 관련된 종래의 기술은 한국공개특허 제2000-52793호에서 미세 모세관을 통해 파라-아라미드 용액을 압출하고, 높은 장력 하에서 생성된 필라멘트를 건조시킴으로써 높은 강도의 파라-아라미드 필라멘트를 제조하는 방법을 제시하고 있다.
또한, 일본공개특허 제11-189916호는 통과필라멘트 질량에 대한 응고액 양 비를 조절함으로써 고강도, 고탄성 아라미드 섬유를 제조하는 방법을 제시하고 있다.
응고액 질량/속도에 관한 특허인 미국등록특허 제4,965,033호와 일본공개특허 제11-189916호는 응고액질량과 필라멘트질량의 비, 방사튜브 내에서의 필라멘트의 속도와 응고액 속도의 비, 오리피스의 직경 등을 제한하고 있다. 미국등록특허 제5,330,698호에서는 응고액 온도를 40~80℃로 유지하여 높은 신도를 얻을 수 있는 방법을 제시하고 있다.
한국공개특허 제2008-22832호는 종래방법에서는 방사물이 상온의 응고액 내에서 서서히 냉각되기 때문에 최종적으로 제조된 필라멘트는 스킨층(S)이 1㎛ 이하 수준으로 얇게 형성되어 강도가 낮은 문제점이 있어, 두꺼운 스킨층을 구비하기 해 -5℃의 응고욕을 사용하는 방법을 제시하고 있다.
일본공개특허 제02-242914호, 일본공개특허 제02-242913호, 미국등록특허 제5,173,236호 및 미국등록특허 제5,853,640호는 섬유의 세척건조 시에 일정한 장력을 가하는 것을 요건으로 하고 있다.
그러나 높은 DPF의 필라멘트와 이에 따른 응고조와 피드롤러 간의 장력이 필라멘트 물성 및 내피로성에 영향을 주는 공정 인자를 개선하여 효율적으로 탄도발사체의 운동에너지를 분산시키기 위한 연구는 아직까지 진행된 바가 없다.
본 발명의 방향족 폴리아미드 필라멘트는 29g/d 이상, 절단 신도 4.0 내지 5.0%, DPF 2.25 이상으로, 종래의 아라미드 대비 고강도, 고신도 특성을 요구하는 방탄 소재에 사용 시 높은 DPF로 인해 강성 복합체 아머에서 탄도 발사체의 운동에너지를 분산시키는 데 더 효율적인 방향족 폴리아미드 멀티필라멘트를 제공하는 것을 목적으로 한다.
상기한 과제를 해결하기 위하여, 본 발명의 적절한 실시 형태에 따르면, 방향족 폴리아미드 멀티필라멘트의 제조방법에 있어서, 주도프액 100중량부에 대비 고유 점도가 5.5 이상인 폴리(p-페닐렌 테레프탈아미드) 단위 18 내지 25중량부를 황산에서 용해시킨, 방사도프를 제조하는 단계; 상기 방사도프를 방사노즐을 통해 방사한 후, 방사된 원사를 피드롤러를 사용하여 응고조, 수세조, 공기층을 순차적으로 통과시켜 권취하는 단계;를 포함하고,
상기 원사가 응고조를 통과한 후 수세조에 이르기까지의 수세단계에서는 0.3~0.7g/d 이하의 장력, 수세조를 통과한 후 공기층을 지나는 건조단계까지는 0.5~2.0g/d의 장력을 적용하고, 모노필라멘트의 데니어가 2.25 내지 4.5데니어인 것을 특징으로 하는 방향족 폴리아미드 멀티필라멘트의 제조방법을 제공한다.
본 발명에서 사용되는 방향족폴리아미드 중합물인 상기 폴리(p-페닐렌 테레프탈아미드)는 p-페닐렌디아민과 테레프탈로일클로라이드의 저온 축중합으로 제조되며 고유점도(I.V.) 5.5 이상인 것이 사용된다. 이때 5.5 미만이면 섬유의 강도가 떨어지게 된다.
상기 방향족폴리아미드 멀티필라멘트의 강도는 29g/d 이상이고, 절단 신도는 4.0 내지 5.0%인 것을 특징으로 한다.
또한, 상기방향족폴리아미드 멀티필라멘트의 초기 탄성률이 450 내지 700g/d인 것을 특징으로 한다.
이때,제작되는 방향족 멀티필라멘트의 총섬도는 400 내지 3000데니어인 것을 특징으로 한다.
본 발명은 높은 DPF의 필라멘트를 사용함과 동시에 최적화된 공정인자를 제시하여 종래 기술보다 강성 및 운동에너지 분산 효율이 우수한 방향족 폴리아미드 멀티필라멘트의 제조방법을 제공한다.
본 발명은 주도프액 100중량부에 대비 고유 점도가 5.5 이상인 폴리(p-페닐렌 테레프탈아미드) 단위 18 내지 25중량부를 황산에서 용해시킨, 방사도프를 제조하는 단계; 상기 방사도프를 방사노즐을 통해 방사한 후, 방사된 원사를 피드롤러를 사용하여 응고조, 수세조, 공기층을 순차적으로 통과시켜 권취하는 단계;를 포함하고, 상기 원사가 응고조를 통과한 후 수세조에 이르기까지의 수세단계에서는 0.3~0.7g/d 이하의 장력, 수세조를 통과한 후 공기층을 지나는 건조단계까지는 0.5~2.0g/d의 장력을 적용하고, 모노필라멘트의 데니어가 2.25 내지 4.5데니어인 것을 특징으로 하는 방향족 폴리아미드 멀티필라멘트의 제조방법을 제공한다.
이때, 모노필라멘트의 데니어가 2.25미만일 경우에는 원사의 강도가 떨어지는 문제가 있고, 모노필라멘트의 데니어가 4.5를 초과할 경우에는 탄성률이 떨어지는 문제가 있다.
본 발명에 있어서, 수세단계에서의 장력이 0.3g/d 미만일 경우에는 생산성이 좋지 않게 되고, 수세단계에서의 장력이 0.7g/d를 초과할 경우에는 신도가 떨어지는 문제가 생긴다. 건조단계에서의 장력이 상기 범위를 벗어날 경우 원사의 물성이 떨어지는 문제가 발생한다.
상기 방향족 폴리아미드 멀티필라멘트의 강도는 29g/d 이상이고, 절단 신도는 4.0 내지 5.0%이며 상기 방향족 폴리아미드 멀티필라멘트의 초기 탄성률이 450 내지 700g/d인 것이 특징이다.
이때, 제작되는 방향족 멀티필라멘트의 총섬도는 400 내지 3000데니어인 것이 바람직하다.
강도, 절단신도, 초기 탄성률 및 총섬도가 상기 범위 이내일 때 운동에너지 분산 효율이 우수한 방향족 폴리아미트 멀티필라멘트가 될 수 있다.
본 발명에서 사용되는 방향족폴리아미드 중합물인 폴리(p-페닐렌 테레프탈아미드)는 p-페닐렌디아민과 테레프탈로일클로라이드의 저온 축중합으로 제조되며 고유점도(I.V.) 5.5 이상인 것이 사용된다. 이때 5.5 미만이면 섬유의 강도가 떨어지게 된다.
방사는 습식, 건식, 건습식 등이 사용 가능하지만 특히 건습식 방사법에서 균일한 구조의 방향족 폴리아미드 섬유 제조가 가능하므로 고강도 섬유 제조가 가능하다.
본 발명에 따른 건습식 방사공정을 구체적으로 설명하면, 기어펌프로부터 방향족 폴리아미드 용액을 정량적으로 공급하면, 방사노즐을 통해 토출된 방사원액이 수직방향으로 공기층을 통과하여 응고액의 계면에 도달한다. 사용한 방사노즐의 형태는 통상 원형이다. 용도 면에서 타이어코드 및 산업용임을 감안하고, 용액의 균일한 냉각을 위한 노즐 간격을 고려하여, 노즐 개수는 100 내지 1,200개가 바람직하다.
본 발명에서는 방사구금의 홀 간격이 1.1 내지 1.4mm가 바람직하며, 더욱 바람직하게는 1.3 내지 1.4mm이다. 이때 홀 간격이 1.1mm 미만이면 고속방사 시 필라멘트간의 접사가 일어나 물성이 저하되고, 1.4mm를 초과하면 방사구금의 직경이 증가하여 경제성이 떨어진다.
본 발명에서는 방사속도가 1000 내지 1500m/min이 바람직하며, 이때 방사속도가 1000m/min 미만이면 생산성이 떨어지고, 1500m/min 초과하면 필라멘트의 물성이 급격히 저하된다.
방사노즐을 통과한 섬유상의 방사원액이 응고액 속에서 응고될 때, 유체의 직경이 크게 되면 표면과 내부 사이에 응고속도의 차이가 커지므로 치밀하고 균일한 조직의 섬유를 얻기가 힘들어진다. 그러므로 방향족 폴리아미드 용액을 방사할 때 동일한 토출량이라도 적절한 공기층을 유지함으로써 방지된 섬유가 보다 가는 직경을 지니며 응고액 속으로 입수할 수 있다. 너무 짧은 공기층 거리는 빠른 표면층 응고와 탈용매 과정에서 발생하는 미세공극 발생분율이 증가하여 연신비 증가에 방해가 되므로 방사속도를 높이기 힘든 반면, 너무 긴 공기층 거리는 필라멘트의 점착과 분위기 온도, 습도의 영향을 상대적으로 많이 받아 공정안전성을 유지하기 힘들다. 상기
공기층은 바람직하게는 3 내지 20mm이다.
응고욕 내부에는 수평방향으로 전환하는 롤러를 설치한다. 롤러는 마찰저항을 줄여줄 수 있도록 회전시킨다.
실시예 및 비교예의 물성 평가는 아래와 같이 측정 또는 평가하였다.
인장특성
강도는 파괴 응력을 선밀도로 나눈 값으로 나타낸다. 탄성률은 강도와 동일한 단위로 전환시킨, 초기 응력/변형 곡선의 기울기로 나타낸다. 신도는 파단시 길이의 증가%이다. 강도 및 탄성률 모두를 우선 g/데니어 단위로 컴퓨터에 입력하고, 0.8826을 곱해서 dN/tex 단위로 산출한다. 각각의 보고된 측정값은 10번의 평균치이다.
데니어는 9000 m의 얀 또는 필라멘트의 g 중량이고, dtex는 10,000 m의 얀 또는 필라멘트의 g 중량이다.
최소 14 시간 동안 24 ℃ 및 상대 습도 55 %의 시험 조건하에서 상태를 조절한 후 얀의 인장 특성을 측정하였다. 시험하기 전에, 각 얀을 꼬임 계수가 1.1이 되게 꼰다 (예를 들어, 공칭 1500 데니어 얀을 약 0.8 꼬임수/cm로 꼰다). 각각의 꼬인 샘플은 시험 길이 25.4 cm를 갖고, 통상적인 응력/변형 기록 장치를 사용하여 (원래 연신되지 않은 길이를 기준으로) 분 당 50 % 연신시킨다.
얀의 꼬임 계수 (TM)은 다음과 같이 정의된다:
Figure PCTKR2017011321-appb-I000001
식 중, tpi는 인치 당 꼬임수이고, 얀의 인장 특성은 개별 필라멘트의 인장 특성과 다르며, 개별 필라멘트의 인장 특성 보다 작기 때문에, 얀의 이러한 수치를 필라멘트 수치로는 성공적이고 정확하게 구할 수 없다.
실시예 1
p-페닐렌디아민과 테레프탈로일클로라이드를 등몰량 저온 축중합으로 제조된 고유점도(I.V.) 6.3의 중합물을 100.1%의 농황산에 19.5%의 솔리드 함량으로 트윈 스크류 압출기에서 85℃에서 용해시켜 방사도프를
제조하였다.
상기와 같이 제조된 방사도프를 모노필라멘트 2.25데니어, 267홀의 방사 구금을 통해 방사한 후 6mm의 공기층을 통과한 후 황산농도가 7%인 5℃의 응고조 및 피드롤러를 거쳐 권취롤러에 의해 권취된다. 노즐로부터 7m 거리 내에서의 두 구간으로 나누어 장력을 조절하였으며, 구간별 장력은 수세장력 0.3g/d, 건조장력은 0.7g/d이다.
실시예 2
실시예 1과 동일한 방사도프를 사용하였으며,
상기와 같이 제조된 방사도프를 모노필라멘트 3데니어, 200홀의 방사 구금을 통해 방사한 후 6mm의 공기층을 통과한 후 황산농도가 7%인 5℃의 응고조 및 피드롤러를 거쳐 권취롤러에 의해 권취된다. 노즐로부터 7m 거리 내에서의 두 구간으로 나누어 장력을 조절하였으며, 구간별 장력은 수세장력 0.3g/d, 건조장력은 0.7g/d이다.
실시예 3
실시예 1과 동일한 방사도프를 사용하였으며,
상기와 같이 제조된 방사도프를 모노필라멘트 2.25데니어, 267홀의 방사 구금을 통해 방사한 후 6mm의 공기층을 통과한 후 황산농도가 7%인 5℃의 응고조 및 피드롤러를 거쳐 권취롤러에 의해 권취된다. 노즐로부터 7m 거리 내에서의 두 구간으로 나누어 장력을 조절하였으며, 구간별 장력은 수세장력 0.7g/d, 건조장력은 2.0g/d이다.
실시예 4
실시예 1과 동일한 방사도프를 사용하였으며,
상기와 같이 제조된 방사도프를 모노필라멘트 3데니어, 200홀의 방사 구금을 통해 방사한 후 6mm의 공기층을 통과한 후 황산농도가 7%인 5℃의 응고조 및 피드롤러를 거쳐 권취롤러에 의해 권취된다. 노즐로부터 7m 거리 내에서의 두 구간으로 나누어 장력을 조절하였으며, 구간별 장력은 수세장력 0.7g/d, 건조장력은 2.0g/d이다.
비교예 1
실시예 1과 동일한 도프를 사용하였으나. 본 발명의 방사조건을 벗어난 공정인자의 범위에서 실시하였다.
상기와 같이 제조된 방사도프를 모노필라멘트 1.5데니어, 400홀의 방사 구금을 통해 방사한 후 6mm의 공기층을 통과한 후 황산농도가 7%인 5℃의 응고조 및 피드롤러를 거쳐 권취롤러에 의해 권취된다. 노즐로부터 7m 거리 내에서의 두 구간으로 나누어 장력을 조절하였으며, 구간별 장력은 수세장력 1.0g/d, 건조장력은 2.5g/d이다.
비교예 2
실시예 1과 동일한 도프를 사용하였으나. 본 발명의 방사조건을 벗어난 공정인자의 범위에서 실시하였다.
상기와 같이 제조된 방사도프를 모노필라멘트 1.0데니어, 600홀의 방사 구금을 통해 방사한 후 6mm의 공기층을 통과한 후 황산농도가 7%인 5℃의 응고조 및 피드롤러를 거쳐 권취롤러에 의해 권취된다. 노즐로부터 7m 거리 내에서의 두 구간으로 나누어 장력을 조절하였으며, 구간별 장력은 수세장력 1.0g/d, 건조장력은 2.5g/d이다.
강성 실험 및 평가
상기 조건에 따른 실시예 1 내지 4 및 비교예 1 내지 2의 실험 결과를 하기 표 1에 나타내었다.
  실시예1 실시예2 실시예3 실시예4 비교예1 비교예2
방사조건 선밀도(denier) 600
필라멘트 수 267 200 267 200 400 600
Den./Filament(DPF) 2.25 3.0 2.25 3.0 1.5 1
수세장력(g/d) 0.3 0.3 0.7 0.7 1 1
건조장력(g/d) 0.7 0.7 2.0 2.0 2.5 0.5
물성 강도(g/d) 30.1 29.3 29.5 29.2 27.5 27.5
절단신도 4.8 4.6 4.3 4.0 3.4 3.3
방탄성능 조직 1X1 Plain
제직밀도(EPI) 36*36
겹수 28
시험규격 40.4
시험탄종 MIL-STD-662F
Ballistic Limit(V50) 630 623 626 620 561 560
상기 표1과 같이, 본 발명에 제조방법에 의해 만들어진 방향족 멀티필라멘트는 그 강도가 우수하고 운동에너지 분산이 효율적인 것을 알 수 있다.

Claims (4)

  1. 방향족 폴리아미드 멀티필라멘트의 제조방법에 있어서, 주도프액 100중량부에 대비 고유 점도가 5.5 이상인 폴리(p-페닐렌 테레프탈아미드) 단위 18 내지 25중량부를 황산에서 용해시킨, 방사도프를 제조하는 단계;
    상기 방사도프를 방사노즐을 통해 방사한 후, 방사된 원사를 피드롤러를 사용하여 응고조, 수세조, 공기층을 순차적으로 통과시켜 권취하는 단계;를 포함하고,
    상기 원사가 응고조를 통과한 후 수세조에 이르기까지의 수세단계에서는 0.3~0.7g/d 이하의 장력, 수세조를 통과한 후 공기층을 지나는 건조단계까지는 0.5~2.0g/d의 장력을 적용하고, 모노필라멘트의 데니어가 2.25 내지 4.5데니어인 것을 특징으로 하는 방향족 폴리아미드 멀티필라멘트의 제조방법.
  2. 제1항에 있어서,
    상기 방향족폴리아미드 멀티필라멘트의 강도는 29g/d 이상이고, 절단 신도는 4.0 내지 5.0%인 것을 특징으로 하는 방향족 폴리아미드 멀티필라멘트의 제조방법.
  3. 제1항에 있어서,
    상기 방향족폴리아미드 멀티필라멘트의 초기 탄성률이 450 내지 700g/d인 것을 특징으로 하는 방향족 폴리아미드 멀티필라멘트의 제조방법.
  4. 제1항에 있어서,
    멀티필라멘트의 총섬도는 400 내지 3000데니어인 것을 특징으로 하는 방향족 폴리아미드 멀티필라멘트의 제조방법.
PCT/KR2017/011321 2016-12-30 2017-10-13 고강도 방향족 폴리아미드 멀티 필라멘트의 제조방법 WO2018124437A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160183625A KR101838500B1 (ko) 2016-12-30 2016-12-30 고강도 방향족 폴리아미드 멀티 필라멘트의 제조방법
KR10-2016-0183625 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018124437A1 true WO2018124437A1 (ko) 2018-07-05

Family

ID=61659697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011321 WO2018124437A1 (ko) 2016-12-30 2017-10-13 고강도 방향족 폴리아미드 멀티 필라멘트의 제조방법

Country Status (2)

Country Link
KR (1) KR101838500B1 (ko)
WO (1) WO2018124437A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950006037A (ko) * 1993-08-03 1995-03-20 하기주 전방향족 폴리아미드 장섬유의 제조방법
KR100769973B1 (ko) * 2006-12-28 2007-10-25 주식회사 효성 수세 공정 특성을 가진 산업용 셀룰로오스 멀티필라멘트의제조 방법 수세 공정
KR20100114978A (ko) * 2009-04-17 2010-10-27 주식회사 코오롱 방탄용 직물 및 그를 이용한 방탄 제품
KR20110084672A (ko) * 2010-01-18 2011-07-26 주식회사 효성 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 및 이의 제조방법
KR20140049721A (ko) * 2012-10-18 2014-04-28 주식회사 효성 고강도의 방향족 폴리아미드 멀티필라멘트 및 이의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360988B1 (ko) 2012-10-19 2014-02-11 주식회사 효성 고강도의 방향족 폴리아미드 멀티필라멘트 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950006037A (ko) * 1993-08-03 1995-03-20 하기주 전방향족 폴리아미드 장섬유의 제조방법
KR100769973B1 (ko) * 2006-12-28 2007-10-25 주식회사 효성 수세 공정 특성을 가진 산업용 셀룰로오스 멀티필라멘트의제조 방법 수세 공정
KR20100114978A (ko) * 2009-04-17 2010-10-27 주식회사 코오롱 방탄용 직물 및 그를 이용한 방탄 제품
KR20110084672A (ko) * 2010-01-18 2011-07-26 주식회사 효성 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 및 이의 제조방법
KR20140049721A (ko) * 2012-10-18 2014-04-28 주식회사 효성 고강도의 방향족 폴리아미드 멀티필라멘트 및 이의 제조방법

Also Published As

Publication number Publication date
KR101838500B1 (ko) 2018-03-15

Similar Documents

Publication Publication Date Title
KR101670525B1 (ko) 높은 하중 지지 용량의 나일론 스테이플 섬유 및 그로부터 제조되는 나일론 블렌딩된 얀 및 직물
US20130012629A1 (en) Meta-type wholly aromatic polyamide fiber
WO2011002165A2 (ko) 산업용 폴리에틸렌테레프탈레이트 멀티 필라멘트
KR100687597B1 (ko) 라이오셀 섬유용 방사 냉각 장치, 및 이를 이용한 라이오셀섬유의 제조 방법
EP0574538B1 (en) Method for spinning poly(p-phenylene terephthalamide) fibres of high tenacity and high elongation at break
WO2018124437A1 (ko) 고강도 방향족 폴리아미드 멀티 필라멘트의 제조방법
CN110234802B (zh) 纤维的制造方法和碳纤维的制造方法
KR101394653B1 (ko) 고강도의 방향족 폴리아미드 멀티필라멘트 및 이의 제조방법
KR101406162B1 (ko) 초기 탄성율이 우수한 아라미드 필라멘트 및 이의 제조방법
WO2023055201A1 (ko) 재생가능한 타이어 코드용 폴리아미드 멀티필라멘트 섬유 및 그를 포함하는 타이어 코드
JP2011017100A (ja) 炭素繊維の製造方法
WO2017026745A1 (ko) 고탄성 공중합 아라미드 섬유
WO2016108429A1 (ko) 폴리에틸렌 섬유, 그의 제조방법 및 그의 제조장치
KR20190091795A (ko) 방탄성능이 향상된 방향족 폴리아미드 섬유의 제조방법
KR101360985B1 (ko) 고신도의 방향족 폴리아미드 모노필라멘트 및 이의 제조방법
WO2023132518A1 (ko) 고강도 메타 아라미드 섬유 및 그의 제조방법
WO2022102889A1 (ko) 해사성이 우수한 에스터계 탄성섬유의 제조방법
KR20190043666A (ko) 방향족 폴리아미드 멀티필라멘트의 제조방법
KR20190063221A (ko) 폴리아크릴로니트릴계 섬유의 제조방법
WO2022030854A1 (ko) 폴리아크릴로니트릴계 내염화 섬유, 탄소섬유 및 그의 제조방법
CN117107373B (zh) 一种差别化间位芳纶长丝的纺丝方法
KR101360987B1 (ko) 고강도의 방향족 폴리아미드 모노필라멘트 및 이의 제조방법
KR101307936B1 (ko) 고강도의 방향족 폴리아미드 모노필라멘트 및 이의 제조방법
WO2017026748A1 (ko) 고신도 공중합 아라미드 섬유
KR20120077370A (ko) 방향족 폴리아미드 필라멘트의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888049

Country of ref document: EP

Kind code of ref document: A1