WO2023132518A1 - 고강도 메타 아라미드 섬유 및 그의 제조방법 - Google Patents

고강도 메타 아라미드 섬유 및 그의 제조방법 Download PDF

Info

Publication number
WO2023132518A1
WO2023132518A1 PCT/KR2022/020707 KR2022020707W WO2023132518A1 WO 2023132518 A1 WO2023132518 A1 WO 2023132518A1 KR 2022020707 W KR2022020707 W KR 2022020707W WO 2023132518 A1 WO2023132518 A1 WO 2023132518A1
Authority
WO
WIPO (PCT)
Prior art keywords
meta
aramid
strength
chloride
spinning
Prior art date
Application number
PCT/KR2022/020707
Other languages
English (en)
French (fr)
Inventor
이주현
김정삼
김도현
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Publication of WO2023132518A1 publication Critical patent/WO2023132518A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • D01F6/805Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides from aromatic copolyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • the present invention relates to meta-aramid fibers, and more particularly, to high-strength meta-aramid fibers and a manufacturing method thereof through polymeric material improvement.
  • polyamide-based synthetic resins are classified into aliphatic polyamides and aromatic polyamides.
  • Aliphatic polyamides are generally known under the trade name nylon, and aromatic polyamides under the trade name aramid.
  • Aliphatic polyamides especially nylon 6 and nylon 6,6, are the most common thermoplastic engineering plastics, and are used as molding materials in various fields as well as fibers for important applications.
  • Nylon resins used in the molding field are reinforced with minerals or glass fibers to make reinforced plastics, which are composite materials, in order to have improved flame retardancy and impact resistance, lower prices, and improve mechanical properties such as elastic modulus.
  • Aromatic polyamide called aramid developed in the 1960s was developed to improve the heat resistance of nylon, an aliphatic polyamide. It has excellent heat resistance and high tensile strength that can be used for textile applications such as tire cords.
  • a general aliphatic polyamide is a synthetic resin in which aliphatic hydrocarbons are bonded between amide groups, but aramid refers to a synthetic resin in which 85% of benzene groups are bonded to two aromatic rings between amide groups. While the aliphatic hydrocarbon of aliphatic polyamide easily undergoes molecular movement when heat is applied, the benzene ring of aromatic polyamide has a rigid molecular chain and does not move easily even when heat is applied, so it is stable to heat and has a high elastic modulus, making it different from general aliphatic polyamides. shows a lot of difference in properties.
  • Aromatic polyamide is classified into para-aramid and meta-aramid, and para-aramid is representative of Kevlar developed by DuPont.
  • Para-aramid is a benzene ring bonded to an amide group at the para position. Since the molecular chain is very stiff and has a linear structure, the strength is very high and the modulus of elasticity is particularly high, so the performance of absorbing shock is very excellent, so it is used in bulletproof vests, bulletproof helmets, safety gloves or boots, firefighting suits, tennis rackets, boats, hockey It is used as a material for sports instruments such as sticks, fishing lines, and golf clubs, and for industrial use, such as FRP (Fiber Reinforced Plastic) and asbestos replacement fibers.
  • FRP Fiber Reinforced Plastic
  • meta aramid examples include Nomex developed by Dupont and Conex developed by Teijin.
  • Meta aramid is a benzene ring bonded to an amide group at the meta position. Its strength and elongation are similar to those of normal nylon, but its heat stability is very good. . As such, meta aramid has excellent heat resistance, but has relatively low strength compared to para aramid.
  • para-aramid since para-aramid has high strength but high viscosity, since liquid crystal spinning using sulfuric acid must be performed, the manufacturing process is complicated because the polymer solution cannot be directly spun.
  • the present invention has been made to solve the above problems, the problem to be solved by the present invention is to provide a meta-aramid fiber based on meta-aramid that can achieve high strength while simplifying the manufacturing process and a method for manufacturing the same .
  • the aramid composition may have a molar ratio of isophthaloyl chloride and terephthaloyl chloride of 3:7 to 5:5.
  • the aramid composition may include 50 mol% of meta-phenylenediamine and 50 mol% of isophthaloyl chloride and terephthaloyl chloride.
  • the glass transition temperature of the high-strength meta-aramid fiber may be 270 to 290 °C.
  • the tensile strength of the high-strength meta-aramid fiber may be 7.0 g / d or more.
  • the elongation of the high-strength meta-aramid fiber may be 25 to 35%.
  • the above object is an agent for preparing an aramid composition by polymerizing meta-phenylene diamine (M-phenylene diamine, MPD), isophthaloyl chloride (IPC) and terephthaloyl chloride (TPC) It is achieved by a method for producing high-strength meta-aramid fibers including a first step, a second step of spinning an aramid composition to prepare an undrawn yarn, and a third step of drawing the undrawn yarn.
  • M-phenylene diamine MPD
  • IPC isophthaloyl chloride
  • TPC terephthaloyl chloride
  • the second step may be dope spinning through dry spinning or wet spinning.
  • the solution viscosity of the aramid composition may be 400 to 800 poise.
  • the aramid composition may have a molar ratio of isophthaloyl chloride and terephthaloyl chloride of 3:7 to 5:5.
  • the aramid composition in the first step may include 50 mol% of meta-phenylenediamine and 50 mol% of isophthaloyl chloride and terephthaloyl chloride.
  • High-strength meta-aramid fiber and its manufacturing method according to the present invention are based on meta-aramid and can produce fibers by general dry/wet spinning method rather than liquid crystal spinning method using sulfuric acid, enabling simplification of the process and at the same time general Compared to meta aramid, relatively high strength can be achieved.
  • the present invention can secure high competitiveness in the industrial product market by improving and improving the mechanical properties of meta-aramid fibers in this way.
  • FIG. 1 is a flow chart showing a method for manufacturing high-strength meta-aramid fibers according to an embodiment of the present invention.
  • High-strength meta-aramid fiber according to an embodiment of the present invention meta-phenylenediamine (M-phenylene diamine, MPD), isophthaloyl chloride (IPC) and terephthaloyl chloride (Terephthaloyl chloride, TPC) It is produced by polymerization.
  • M-phenylene diamine MPD
  • IPC isophthaloyl chloride
  • TPC terephthaloyl chloride
  • Meta-phenylene diamine (M-phenylene diamine, MPD) preferably follows the following chemical formula 1.
  • IPC isophthaloyl chloride
  • TPC Terephthaloyl chloride
  • the molar ratio of isophthaloyl chloride and terephthaloyl chloride is preferably 3:7 to 5:5. If the molar ratio of isophthaloyl chloride is less than 3:7 (less than 3), the solution viscosity is high, and there is a problem that the pack pressure increases during spinning, and if it is more than 5:5 (more than 5), the solution viscosity is low During spinning, there is a problem in manufacturing processability of the fiber due to the generation of drip (meaning a lump formed when the fiber strands passing through the spinneret are partially fused or the strands are irregularly fused after trimming).
  • the aramid composition preferably contains 50 mol% of meta-phenylenediamine and 50 mol% of isophthaloyl chloride and terephthaloyl chloride. That is, in the aramid composition, 50 mol% of the two components, isophthaloyl chloride and terephthaloyl chloride, are included, and in this case, the molar ratio of isophthaloyl chloride and terephthaloyl chloride is preferably 3:7 to 5:5.
  • FIG. 1 is a flow chart showing a method for manufacturing high-strength meta-aramid fibers according to an embodiment of the present invention, and high-strength meta-aramid fibers according to an embodiment of the present invention are manufactured through the manufacturing method shown in FIG.
  • the manufacturing method of high-strength meta-aramid fiber is meta-phenylene diamine (M-phenylene diamine, MPD), isophthaloyl chloride (IPC) and terephthalo
  • M-phenylene diamine MPD
  • IPC isophthaloyl chloride
  • S101 The first step of preparing an aramid composition by polymerizing terephthaloyl chloride (TPC) (S101), the second step of spinning the aramid composition to prepare undrawn yarn (S102), and the third step of drawing the undrawn yarn (S103).
  • MPD meta-phenylene diamine
  • IPC isophthaloyl chloride
  • TPC terephthaloyl chloride
  • the molar ratio of isophthaloyl chloride and terephthaloyl chloride is 3:7 to 5:5, and the total content is 50 mol% of meta-phenylenediamine and 50 mol% of isophthaloyl chloride and terephthaloyl chloride.
  • isophthaloyl chloride and terephthaloyl chloride are dividedly added at the same time.
  • the solution viscosity of the polymerized aramid composition is preferably 400 to 800 poise (poise).
  • the solution viscosity is less than 400 Poise, the viscosity is low and there are problems such as drip generation during spinning, and when it exceeds 800, the spinning pack pressure increases.
  • meta-aramid fibers are prepared by dope-spinning the aramid composition through dry spinning or wet spinning. Then, through the third step (S103) of drawing the undrawn yarn, a stretched meta-aramid fiber is prepared.
  • the glass transition temperature of the high-strength meta-aramid fiber according to an embodiment of the present invention prepared as described above is preferably 270 to 290 ° C.
  • heat resistance and flame retardancy, which are inherent properties of meta-aramid are deteriorated, resulting in a decrease in stability against heat.
  • the high-strength meta-aramid fiber includes meta-phenylenediamine (MPD), isophthaloyl chloride (IPC) and terephthaloyl chloride (TPC), and isophthaloyl
  • MPD meta-phenylenediamine
  • IPC isophthaloyl chloride
  • TPC terephthaloyl chloride
  • isophthaloyl By setting the molar ratio of chloride and terephthaloyl chloride to 3:7 to 5:5, the high-strength meta-aramid fiber of the present invention achieves physical properties including tensile strength, elongation and single yarn fineness defined in the present invention through this.
  • the high-strength meta-aramid fiber prepared in this way may have various forms, and is preferably in the form of nonwoven fabric, filament, or spun yarn.
  • the high-strength meta-aramid fiber according to an embodiment of the present invention preferably has an elongation of 25 to 35%. At this time, if the elongation is less than 25%, the yarn is broken in the carding process for manufacturing the spun yarn, and if it exceeds 35%, the elongation is excessively high and the compoundability is lowered.
  • spun yarn is manufactured through a carding process. In this case, the fibers must be entangled with each other, and the compounding property means the property of the fibers to be entangled with each other. That is, when the elongation exceeds 35%, the fibers are not entangled with each other due to low compoundability, which causes difficulties in manufacturing spun yarn.
  • Isophthaloyl dichloride (1,3-BENZENEDICARBONYL DICHLORIDE, IPC) and terephthaloyl chloride (1,4-BENZENEDICARBONYL DICHLORIDE)
  • a neutralization reaction was performed at a temperature of 60° C. to prepare an aramid composition including an aramid polymer.
  • the neutralization reaction was performed in the order of dividing and introducing isophthaloyl chloride and terephthaloyl chloride at the same time.
  • dimethyl acetamide (DMAc) was used as a solvent.
  • the prepared aramid composition was spun to prepare an undrawn yarn, and then the undrawn yarn was stretched three times to prepare a high-strength meta-aramid fiber filament.
  • a high-strength meta-aramid fiber filament was prepared in the same manner as in Example 1, except that an aramid composition containing an aramid polymer was prepared by performing a polymerization reaction in the contents shown in Table 1 below.
  • a high-strength meta-aramid fiber filament was prepared in the same manner as in Example 1, except that an aramid composition containing an aramid polymer was prepared by performing a polymerization reaction in the contents shown in Table 1 below. Meanwhile, PPD shown in Table 1 represents p-phenylene diamine (Aldrich Co.), and Comparative Example 5 is a conventional meta-aramid fiber.
  • the glass transition temperature was measured using a differential temporal calorimeter (DSC).
  • Tensile strength was measured using a tensile strength measuring instrument under constant temperature and humidity conditions in accordance with ASTM D-828. In addition, the tensile strength increase rate was calculated by comparing the measured tensile strength with Comparative Example 5.
  • the elongation was measured at a length ratio increased until tensile fracture using a tensile strength measuring device under constant temperature and humidity conditions.
  • the elongation increase rate was calculated by comparing the measured elongation with Comparative Example 5.
  • Tensile strength, elongation and fineness were measured at a speed of 40 mm/min under the condition that the load cell range was 210 nN and the gauge length was 1.0 cm using FAVIMAT+ equipment (Textechno Co.).
  • the pack pressure was measured using a pack pressure measuring device installed in the spinneret, and when the management standard was 15 kgf/cm 2 or more, it was judged as an increase in pack pressure and the pack was replaced.
  • the number of occurrences of drips (meaning lumps formed by partial fusion of fiber strands passing through the spinneret or irregular fusion of strands after thread cutting) during spinning processing was counted through a drip detector, and the number of drip occurrences in Example 1 was 0. Based on the standard, the number of drips generated in the remaining Examples and Comparative Examples was checked and classified according to the following criteria.
  • the high-strength meta-aramid fibers according to Examples 1 and 2 according to the present invention are meta-aramid fibers to which PPD is added (Comparative Examples 2 to 4), meta-aramid to which TPC is not added.
  • Comparative Examples 1 to 5 have poor tensile strength, or some comparative examples, especially meta-aramid fibers of Comparative Examples 2 to 4, have lower elongation properties and have a very large deviation in elongation compared to Comparative Example 5, which is a conventional meta-aramid product.
  • the meta aramid fiber of Comparative Example 6 is out of the range of 25 to 35% in terms of elongation and has a large deviation compared to that of Comparative Example 5, which is a conventional meta aramid product, and the meta aramid fiber of Comparative Example 7 has excessive elongation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyamides (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명에 따른 고강도 메타 아라미드 섬유는 메타-페닐렌다이아민(M-phenylene diamine, MPD), 이소프탈로일 클로라이드(Isophthaloyl chloride, IPC) 및 테레프탈로일 클로라이드(Terephthaloyl chloride, TPC)를 포함하는 아라미드 조성물을 방사하고 연신하여 제조된 것으로, 메타 아라미드를 기반으로 하여 황산을 이용한 액정 방사 방식이 아닌 일반 건식/습식 방사 방식으로 섬유를 제조할 수 있어 공정의 간소화를 가능하게 하면서, 동시에 일반적인 메타 아라미드와 비교하여 상대적으로 높은 강도를 달성할 수 있다.

Description

고강도 메타 아라미드 섬유 및 그의 제조방법
본 발명은 메타 아라미드 섬유에 관한 것으로, 보다 구체적으로 중합물질 개선을 통한 고강도 메타 아라미드 섬유 및 그의 제조방법에 관한 것이다.
일반적으로 폴리아미드계 합성수지는 지방족 폴리아미드와 방향족 폴리아미드로 분류된다. 지방족 폴리아미드는 일반적으로 나이론이란 상표명으로, 방향족 폴리아미드는 아라미드라는 상표명으로 잘 알려져 있다.
지방족 폴리아미드, 특히 나일론 6, 그리고 나일론 6,6 등은 가장 일반적인 열가소성 엔지니어링 플라스틱으로 중요한 응용분야로는 섬유뿐 만 아니라 여러 분야의 성형재료로 사용되고 있다. 성형분야에 사용되는 나일론 수지는 향상된 난연성과 내충격성을 갖도록 하고 가격을 낮추고 탄성율과 같은 기계적 물성을 향상시키기 위하여 광물 또는 유리섬유로 보강하여 복합재료인 강화플라스틱(reinforced plastics)으로 제조한다.
1960년대 개발된 아라미드라는 방향족 폴리아미드는 지방족 폴리아미드인 나일론의 내열성을 개선시키기 위해 개발된 것으로, 노멕스(Nomex), 케블라(Kevlar)와 같은 상품명으로 잘 알려져 있는 방향족 폴리아미드는 난연성 섬유직물, 타이어 코드 등의 섬유용도로 사용될 수 있는 뛰어난 내열성과 높은 인장강도를 갖는다.
일반적인 지방족 폴리아미드는 아미드기 사이에 지방족 탄화수소가 결합되어 있는 합성수지이나, 아라미드(aramid)는 아미드기 사이에 벤젠기가 85%의 아미드 결합이 두 개의 방향족 고리에 결합되어 있는 합성수지를 말한다. 지방족 폴리아미드의 지방족 탄화수소는 열을 가하면 쉽게 분자운동이 일어나는 데 반하여, 방향족 폴리아미드의 벤젠 환은 분자쇄가 강직하고 열을 가하여도 분자가 쉽게 움직이지 않으므로 열에 안정하고 탄성률이 높아 일반 지방족 폴리아미드와는 특성에 있어서 많은 차이를 나타낸다.
방향족 폴리아미드는 파라 아라미드(para-aramid)와 메타 아라미드(meta-aramid)로 분류되며, 파라계 아라미드는 듀폰사에서 개발된 케블라(Kevlar)가 대표적이다. 파라계 아라미드는 벤젠 고리가 파라 위치에서 아미드기와 결합된 것이다. 분자쇄가 매우 뻣뻣하고 선상구조를 가지므로 강도가 매우 높고 탄성률이 특히 높아 충격을 흡수하는 성능이 매우 우수하여 방탄복, 방탄 헬멧, 안전용 장갑이나 부츠, 소방복에 사용되며, 테니스 라켓, 보트, 하키용 스틱, 낚시 줄, 골프 클럽 등의 스포츠 기구 재료로 또한 산업용으로는 FRP(Fiber Reinforced Plastic), 석면대체용 섬유 등에 사용되고 있다. 메타 아라미드는 듀폰사에서 개발된 노멕스(Nomex), 데이진사에서 개발된 코넥스(Conex)가 대표적이다. 메타 아라미드는 벤젠고리가 메타 위치에서 아미드기와 결합된 것으로 강도와 신도는 보통의 나일론과 비슷하나 열에 대한 안정성이 대단히 좋으며, 다른 내열용 소재에 비하여 가볍고 땀흡수도 어느정도 가능하므로 쾌적하다는 장점을 가지고 있다. 이와 같이 메타 아라미드는 뛰어난 내열성을 가지지만 파라 아라미드와 비교하여 상대적으로 낮은 강도를 가진다. 반면에, 파라 아라미드는 높은 강도를 가지지만 점도가 높기 때문에 황산을 이용한 액정 방사를 실시하여야 하므로, 폴리머 용액을 직접 방사하지 못하기 때문에 제조공정이 복잡해지는 단점을 가진다.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 본 발명이 해결하고자 하는 과제는 메타 아라미드를 기반으로 하여 제조공정을 단순화하면서도 고강도를 달성할 수 있는 메타 아라미드 섬유 및 그의 제조방법을 제공하는 것이다.
본 발명의 상기 및 다른 목적과 이점은 바람직한 실시예를 설명한 하기의 설명으로부터 분명해질 것이다.
상기 목적은, 메타-페닐렌다이아민(M-phenylene diamine, MPD), 이소프탈로일 클로라이드(Isophthaloyl chloride, IPC) 및 테레프탈로일 클로라이드(Terephthaloyl chloride, TPC)를 포함하는 아라미드 조성물을 방사하고 연신하여 제조된, 고강도 메타 아라미드 섬유에 의해 달성된다.
바람직하게는, 아라미드 조성물은 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드의 몰비가 3:7 내지 5:5인 것일 수 있다.
바람직하게는, 아라미드 조성물은 메타-페닐렌다이아민 50몰%와 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드 50몰%를 포함하는 것일 수 있다.
바람직하게는, 고강도 메타 아라미드 섬유의 유리전이온도는 270 내지 290℃인 것일 수 있다.
바람직하게는, 고강도 메타 아라미드 섬유의 인장강도는 7.0 g/d 이상인 것일 수 있다.
바람직하게는, 고강도 메타 아라미드 섬유의 신도는 25 내지 35 %인 것일 수 있다.
또한, 상기 목적은 메타-페닐렌다이아민(M-phenylene diamine, MPD), 이소프탈로일 클로라이드(Isophthaloyl chloride, IPC) 및 테레프탈로일 클로라이드(Terephthaloyl chloride, TPC)를 중합하여 아라미드 조성물을 제조하는 제1 단계, 아라미드 조성물을 방사하여 미연신사를 제조하는 제2 단계 및 미연신사를 연신하는 제3 단계를 포함하는 고강도 메타 아라미드 섬유의 제조방법에 의해 달성된다.
바람직하게는, 제2 단계는 건식 방사 또는 습식 방사를 통해 도프 방사하는 것일 수 있다.
바람직하게는, 아라미드 조성물의 용액점도는 400 내지 800 포와즈인 것일 수 있다.
바람직하게는, 제1 단계에서 아라미드 조성물은 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드의 몰비가 3:7 내지 5:5인 것일 수 있다.
바람직하게는, 제1 단계에서 아라미드 조성물은 메타-페닐렌다이아민 50몰%와 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드 50몰%를 포함하는 것일 수 있다.
본 발명에 따른 고강도 메타 아라미드 섬유 및 그의 제조방법은 메타 아라미드를 기반으로 하여 황산을 이용한 액정 방사 방식이 아닌 일반 건식/습식 방사 방식으로 섬유를 제조할 수 있어 공정의 간소화를 가능하게 하면서, 동시에 일반적인 메타 아라미드와 비교하여 상대적으로 높은 강도를 달성할 수 있다. 본 발명은 이와 같이 메타 아라미드 섬유의 기계적 물성을 개선 및 향상시켜 산업용 제품 시장에 대한 높은 경쟁력을 확보할 수 있다.
다만, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 고강도 메타 아라미드 섬유의 제조방법을 나타내는 흐름도이다.
첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
달리 정의되지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술 분야의 숙련자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다. 상충되는 경우, 정의를 포함하는 본 명세서가 우선할 것이다. 또한 본 명세서에서 설명되는 것과 유사하거나 동등한 방법 및 재료가 본 발명의 실시 또는 시험에 사용될 수 있지만, 적합한 방법 및 재료가 본 명세서에 기재된다.
본 발명의 일 실시예에 따른 고강도 메타 아라미드 섬유는 메타-페닐렌다이아민(M-phenylene diamine, MPD), 이소프탈로일 클로라이드(Isophthaloyl chloride, IPC) 및 테레프탈로일 클로라이드(Terephthaloyl chloride, TPC)를 중합하여 제조된다.
메타-페닐렌다이아민(M-phenylene diamine, MPD)은 하기 화화식 1을 따르는 것이 바람직하다.
(화학식 1)
Figure PCTKR2022020707-appb-img-000001
그리고 이소프탈로일 클로라이드(Isophthaloyl chloride, IPC)는 하기 화학식 2를 따르는 것이 바람직하다.
(화학식 2)
Figure PCTKR2022020707-appb-img-000002
테레프탈로일 클로라이드(Terephthaloyl chloride, TPC)는 하기 화학식 3을 따르는 것이 바람직하다.
(화학식 3)
Figure PCTKR2022020707-appb-img-000003
일 실시예에 따른 아라미드 조성물은 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드의 몰비가 3:7 내지 5:5인 것이 바람직하다. 이소프탈로일 클로라이드의 몰비가 3:7 미만(3 미만)인 경우 용액 점도가 높아 방사시 팩(Pack)의 압력이 증가하는 문제가 있으며, 5:5 초과(5 초과)인 경우 용액 점도가 낮아 방사 시 토출액이 뭉치는 드립(Drip) 발생(방사 구금을 통과하는 섬유 가닥들이 일부 융착되거나 사절 이후 가닥들이 불규칙하게 융착되어 형성된 덩어리를 의미함)으로 인해 섬유의 제조공정성에 문제를 가진다.
또한, 아라미드 조성물은 메타-페닐렌다이아민 50몰%와 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드 50몰%를 포함하는 것이 바람직하다. 즉 아라미드 조성물에서 2성분인 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드 전체를 50몰% 포함하고, 이때 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드의 몰비는 3:7 내지 5:5인 것이 바람직하다.
도 1은 본 발명의 일 실시예에 따른 고강도 메타 아라미드 섬유의 제조방법을 나타내는 흐름도로서, 본 발명의 일 실시예에 따른 고강도 메타 아라미드 섬유는 도 1에 도시된 제조방법을 통해 제조된다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 고강도 메타 아라미드 섬유의 제조방법은 메타-페닐렌다이아민(M-phenylene diamine, MPD), 이소프탈로일 클로라이드(Isophthaloyl chloride, IPC) 및 테레프탈로일 클로라이드(Terephthaloyl chloride, TPC)를 중합하여 아라미드 조성물을 제조하는 제1 단계(S101), 아라미드 조성물을 방사하여 미연신사를 제조하는 제2 단계(S102) 및 미연신사를 연신하는 제3 단계(S103)를 포함한다.
메타-페닐렌다이아민(M-phenylene diamine, MPD), 이소프탈로일 클로라이드(Isophthaloyl chloride, IPC) 및 테레프탈로일 클로라이드(Terephthaloyl chloride, TPC)를 중합하여 아라미드 조성물을 제조하는 제1 단계(S101)에서는 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드의 몰비는 3:7 내지 5:5로 하고, 전체 함량 대비 메타-페닐렌다이아민 50몰%와 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드 50몰% 포함하도록 아라미드 조성물을 제조한다.
이때, 메타-페닐렌다이아민, 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드의 투입 순서는 메타-페닐렌다이아민을 DMAc에 용해 후, 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드를 동시에 분할 투입한다.
이때, 중합된 아라미드 조성물의 용액점도는 400 내지 800 포와즈(poise)인 것이 바람직하다. 용액점도가 400 포와즈 미만인 경우 점성이 낮아 방사시 드립(Drip) 발생 등의 문제를 가지며, 800 초과인 경우 방사 팩압이 상승하는 문제를 가진다.
아라미드 조성물을 방사하여 미연신사를 제조하는 제2 단계(S102)에서는 건식방사 또는 습식방사를 통해 아라미드 조성물을 도프 방사하여 메타 아라미드 섬유를 제조한다. 그리고 미연신사를 연신하는 제3 단계(S103)를 통해 연신된 메타 아라미드 섬유를 제조한다.
종래의 파라계 아라미드의 경우 파라 아마리드가 가지는 높은 점도 때문에 황산을 이용한 액정 방사를 통해 섬유를 제조하여야 하는 어려움을 가진다. 이를 해결하기 위하여 디아민 성분(MPA 또는 지방족 디아민 성분(HMDA)를 도입하여 공중합 실시 후 방사하는 공정이 개발되었으나, 이와 같은 공정 또한 추가적인 공중합 과정을 필요로 한다. 반면에, 본 발명의 고강도 메타 아라미드 섬유는 메타 아라미드를 기반으로 하여 일반적인 건식 방사 또는 습식 방사만으로 섬유를 제조할 수 있으면서도, 메타 아라미드가 파라 아라미드에 비해 낮은 강도를 가지는 문제를 해결하여, 고강도 메타 아라미드 섬유를 제공할 수 있다.
상술한 바와 같이 제조된 본 발명의 일 실시예에 따른 고강도 메타 아라미드 섬유의 유리전이온도는 270 내지 290℃인 것이 바람직하다. 유리전이온도가 270℃ 미만인 경우 메타아라미드 고유 특성인 내열성 및 난연성이 저하되어 열에 대한 안정성 저하되는 문제점을 가진다.
본 발명의 일 실시예에 따른 고강도 메타 아라미드 섬유는 상술한 바와 같이, 메타-페닐렌다이아민(MPD), 이소프탈로일 클로라이드(IPC) 및 테레프탈로일 클로라이드(TPC)를 포함하며, 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드의 몰비를 3:7 내지 5:5로 함으로써, 본 발명의 고강도 메타 아라미드 섬유는 이를 통해 본 발명에서 한정한 인장강도, 신도 및 단사섬도를 포함하는 물성을 달성하게 된다. 또한, 이와 같이 제조된 고강도 메타 아라미드 섬유는 다양한 형태를 가질 수 있으며, 부직포, 필라멘트, 방적사 형태인 것이 바람직하다.
또한, 본 발명의 일 실시예에 따른 고강도 메타 아라미드 섬유는 25 내지 35%의 신도를 가지는 것이 바람직하다. 이때, 신도가 25% 미만인 경우 방적사를 제조하는 카딩 공정에서 실이 끊어지는 문제가 발생하고, 35%를 초과하는 경우 신도가 과도하게 높아 포합성이 낮아지는 문제가 발생한다. 스테이플 파이버(Staple Fiber)의 경우 카딩 공정을 거쳐 방적사를 제조하는데, 이때 섬유가 서로 얽혀 있어야 하며, 포합성은 섬유가 서로 얽히는 성질을 의미한다. 즉, 신도가 35%를 초과하는 경우 포합성이 낮아 섬유가 서로 얽히지 않아 방적사를 제조하는데 어려움이 발생한다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 본 실시예는 본 설명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 실시예에 한정되는 것은 아니다.
[실시예]
[실시예 1]
이염화 아이소프탈로일(1,3-벤젠디카보닐 이염화물(1,3-BENZENEDICARBONYL DICHLORIDE), IPC) 및 테레프탈로일 클로라이드(1,4-벤젠디카보닐 디염화물(1,4-BENZENEDICARBONYL DICHLORIDE), TPC)를 5:5의 몰비(총 중량 대비 전체 IPC 및 TPC 50 몰%)로 하고, 메타-페닐렌다이아민(m-AMINOANILINE, MPD)을 총 중량 대비 50 몰%로 하여 혼합한 후 중합 반응시키고 에틸렌 글리콜을 사용하여 냉각시킨 다음 중화제로 수산화칼슘(Calcium Hydroxide)을 첨가하고 60℃ 온도에서 중화반응을 수행하여 아라미드 중합체를 포함하는 아라미드 조성물을 제조하였다. 이때, 메타-페닐렌다이아민을 용매에 용해한 후, 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드를 동시에 분할 투입하는 순서로 중화반응을 수행하였다. 이때, 용매로 디메틸아세트아미드(Dimethyl acetamide, DMAc)를 사용하였다.
다음으로 제조된 아라미드 조성물을 방사하여 미연신사를 제조한 다음 미연신사를 3배 연신하여 고강도 메타 아라미드 섬유 필라멘트를 제조하였다.
[실시예 2]
하기 표 1과 같은 함량으로 중합 반응을 수행하여 아라미드 중합체를 포함하는 아라미드 조성물을 제조한 것을 제외하고는 실시예 1과 동일하게 고강도 메타 아라미드 섬유 필라멘트를 제조하였다.
[비교예]
[비교예 1 내지 7]
하기 표 1과 같은 함량으로 중합 반응을 수행하여 아라미드 중합체를 포함하는 아라미드 조성물을 제조한 것을 제외하고는 실시예 1과 동일하게 고강도 메타 아라미드 섬유 필라멘트를 제조하였다. 한편 표 1에 기재된 PPD는 p-phenylene diamine(Aldrich Co.)을 나타내고, 비교예 5는 종래의 메타 아라미드 섬유이다.
실시예 1 및 2와 비교예 1 내지 7에서 제조된 메타 아라미드 섬유 필라멘트에 대하여, 하기 실험예를 통해 물성을 평가하여, 그 결과를 표 1 및 2에 나타내었다.
[실험예]
(1) 유리전이온도
시차주시열량계(DSC)를 이용하여 유리전이온도를 측정하였다.
(2) 인장강도 측정
ASTM D-828에 의거하여 항온항습 조건에서 인장강도 측정기기를 이용하여 인장강도를 측정하였다. 또한 측정된 인장강도를 비교예 5와 비교하여 인장강도 증가율을 산출하였다.
(3) 신도 측정
ASTM D-828에 의거하여 항온항습 조건에서 인장강도 측정기기를 이용하여 인장파단 시까지 늘어난 길이비로 신도를 측정하였다. 또한 측정된 신도를 비교예 5와 비교하여 신도 증가율을 산출하였다.
(4) 단사섬도 측정
FAVIMAT+ 장비(Textechno社)를 이용하여 로드셀(load cell) 범위를 210nN, 표점 거리(Gauge length)는 1.0cm인 조건에서 40 mm/min의 속도로 인장 강도, 신도 및 섬도를 측정하였다.
(5) 팩압 측정
방사 구금에 설치되어 있는 팩압력 측정기를 사용하여 팩압을 측정하였으며, 관리 기준인 15kgf/cm2 이상일 시 팩압 상승으로 판단하고, 팩을 교체하였다.
(6) 드립 발생 여부 확인
방사 가공 중 드립(방사 구금을 통과하는 섬유 가닥들이 일부 융착되거나 사절 이후 가닥들이 불규칙하게 융착되어 형성된 덩어리를 의미함) 발생 수치를 드립 감지기를 통해 카운팅하였고, 실시예 1에서의 드립발생 수치 0을 기준해서 나머지 실시예 및 비교예에서 발생한 드립 개수를 확인하여 아래 기준과 같이 구분하여 표시하였다.
多: 드립 감지 4회 이상
小: 드립 감지 3회 이하
중합 물성 함량 분석 (NMR 분석, mol) Tg
(℃, DSC 분석)
중합 토크
(N/㎠)
I.V 고형분
(%)
용액
점도
(Poise)
MPD PPD IPC TPC
실시예1 655 1.73 17.39 511.7 100 0 50 50 282.8
실시예2 680 1.58 17.31 790.1 100 0 30 70 287.8
비교예1 445 1.39 17.63 162.6 100 0 69.3 30.7 278.8
비교예2 353 1.49 18.5 75.3 68.1 31.9 100 0 278.7
비교예3 226 1.17 18.52 23.3 47.7 52.3 100 0 282.5
비교예4 194 1.11 18.42 16.8 30.3 69.7 100 0 286.6
비교예5 370 1.54 18.07 122.4 100 0 100 0 274.2
비교예6 755 1.60 17.41 881.3 100 0 28 72 289.7
비교예7 590 1.62 17.45 501.5 100 0 51 49 281.5
인장강도 신도 단사섬도
(데니어)
방사 시
팩압 증가 여부
방사 시 드립 발생 여부
강도
(g/d)
증가율
(%)
신도
(%)
증가율
(%)
실시예1 7.6 38.6 33.0 21.0 1.5 변동 없음 미발생
실시예2 7.7 40.5 26.0 -4.8 1.5 변동 없음 미발생
비교예1 6.7 21.2 38.0 39.4 1.5 변동 없음 발생(少)
비교예2 6.6 20.9 17.5 -35.9 1.5 변동 없음 발생(多)
비교예3 6.4 16.1 22.0 -19.5 1.5 변동 없음 발생(多)
비교예4 6.1 10.8 17.7 -35.3 1.5 변동 없음 발생(多)
비교예5 5.5 - 27.30 - 1.5 변동 없음 발생(少)
비교예6 7.9 43.0 24.5 -10.3 1.5 증가 발생(少)
비교예7 7.4 34.1 36.9 35.2 1.5 변동 없음 발생(少)
위 표 1 및 표 2에서 확인할 수 있듯이, 본 발명에 따른 실시예 1 및 2에 따른 고강도 메타 아라미드 섬유는, PPD를 첨가한 메타 아라미드 섬유(비교예 2 내지 4), TPC를 첨가하지 않은 메타 아라미드 섬유(비교예 5, 종래 메타 아라미드 제품) 및 TPC와 IPC 함량이 본 발명의 구성을 벗어나는 메타 아라미드 섬유 (비교예1, 6, 7)와 비교하여, 인장강도가 우수할 뿐만 아니라 종래의 메타 아라미드 제품인 비교예 5에 비해 인장강도가 38% 이상 개선되는 효과를 가지고, 또한 신도 면에서 25 내지 35%의 범위에 있고 종래의 메타 아라미드 제품인 비교예 5에 비해 편차가 크지 않음을 확인할 수 있다.
반면에, 비교예 1 내지 5는 모두 인장강도가 떨어지거나 일부 비교예, 특히 비교예 2 내지 4의 메타 아라미드 섬유는 신도 물성이 저하되고 종래의 메타 아라미드 제품인 비교예 5에 비해 신도 편차가 매우 큰 것을 확인할 수 있다. 또한 비교예 6의 메타 아라미드 섬유는 신도 면에서 25 내지 35%의 범위를 벗어나고 종래의 메타 아라미드 제품인 비교예 5에 비해 편차가 큰 것을 확인할 수 있고, 비교예 7의 메타 아라미드 섬유는 신도가 과도하게 크며 종래의 메타 아라미드 제품인 비교예 5에 비해 신도 편차가 매우 큰 것을 확인할 수 있다. 이와 같이 신도 편차가 크고 본 발명의 신도 범위 미만인 경우 방적사를 제조하는 카딩 공정에서 실이 끊어지는 문제가 발생할 수 있으며, 초과인 경우 포합성이 낮아지는 문제가 발생한다.
또한, 비교예 6은 이소프탈로일 클로라이드의 몰비가 3:7 미만으로 용액 점도가 높아 방사 시 팩압이 증가하는 문제가 발생하였으며, 비교예 7은 몰비가 5:5를 초과하여 방사 시 드립이 발생하여 토출액이 뭉치는 것을 확인할 수 있었다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (11)

  1. 메타-페닐렌다이아민(M-phenylene diamine, MPD), 이소프탈로일 클로라이드(Isophthaloyl chloride, IPC) 및 테레프탈로일 클로라이드(Terephthaloyl chloride, TPC)를 포함하는 아라미드 조성물을 방사하고 연신하여 제조된, 고강도 메타 아라미드 섬유.
  2. 제1항에 있어서,
    상기 아라미드 조성물은 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드의 몰비가 3:7 내지 5:5인, 고강도 메타 아라미드 섬유.
  3. 제1항에 있어서,
    상기 아라미드 조성물은 메타-페닐렌다이아민 50몰%와 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드 50몰%를 포함하는, 고강도 메타 아라미드 섬유.
  4. 제1항에 있어서,
    상기 고강도 메타 아라미드 섬유의 유리전이온도는 270 내지 290℃인, 고강도 메타 아라미드 섬유.
  5. 제1항에 있어서,
    상기 고강도 메타 아라미드 섬유의 인장강도는 7.0 g/de 이상인, 고강도 메타 아라미드 섬유.
  6. 제1항에 있어서,
    상기 고강도 메타 아라미드 섬유의 신도는 25 내지 35%인, 고강도 메타 아라미드 섬유.
  7. 메타-페닐렌다이아민(M-phenylene diamine, MPD), 이소프탈로일 클로라이드(Isophthaloyl chloride, IPC) 및 테레프탈로일 클로라이드(Terephthaloyl chloride, TPC)를 중합하여 아라미드 조성물을 제조하는 제1 단계;
    상기 아라미드 조성물을 방사하여 미연신사를 제조하는 제2 단계;
    상기 미연신사를 연신하는 제3 단계;
    를 포함하는, 고강도 메타 아라미드 섬유의 제조방법.
  8. 제7항에 있어서,
    상기 제2 단계는 건식 방사 또는 습식 방사를 통해 도프 방사하는, 고강도 메타 아라미드 섬유의 제조방법.
  9. 제7항에 있어서,
    상기 아라미드 조성물의 용액점도는 400 내지 800 포와즈인, 고강도 메타 아라미드 섬유의 제조방법.
  10. 제7항에 있어서,
    상기 제1 단계에서 상기 아라미드 조성물은 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드의 몰비가 3:7 내지 5:5인, 고강도 메타 아라미드 섬유의 제조방법.
  11. 제7항에 있어서,
    상기 제1 단계에서 상기 아라미드 조성물은 메타-페닐렌다이아민 50몰%와 이소프탈로일 클로라이드 및 테레프탈로일 클로라이드 50몰%를 포함하는, 고강도 메타 아라미드 섬유의 제조방법.
PCT/KR2022/020707 2022-01-10 2022-12-19 고강도 메타 아라미드 섬유 및 그의 제조방법 WO2023132518A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0003571 2022-01-10
KR1020220003571A KR20230108142A (ko) 2022-01-10 2022-01-10 고강도 메타 아라미드 섬유 및 그의 제조방법

Publications (1)

Publication Number Publication Date
WO2023132518A1 true WO2023132518A1 (ko) 2023-07-13

Family

ID=87073966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020707 WO2023132518A1 (ko) 2022-01-10 2022-12-19 고강도 메타 아라미드 섬유 및 그의 제조방법

Country Status (2)

Country Link
KR (2) KR20230108142A (ko)
WO (1) WO2023132518A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354127A (en) * 1966-04-18 1967-11-21 Du Pont Aromatic copolyamides
US3511819A (en) * 1967-03-01 1970-05-12 Du Pont Thermally durable aromatic copolyamides
JPH0359110A (ja) * 1989-07-26 1991-03-14 Toray Ind Inc ポリメタフェニレンテレフタルアミド系繊維の製造方法
KR920007104A (ko) * 1990-09-05 1992-04-28 나까하라 쯔네오 반도체소자의 제조방법
KR20060012615A (ko) * 2003-05-16 2006-02-08 이 아이 듀폰 디 네모아 앤드 캄파니 폴리아미드의 연속 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140083310A (ko) 2012-12-26 2014-07-04 코오롱인더스트리 주식회사 아라미드 공중합체의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354127A (en) * 1966-04-18 1967-11-21 Du Pont Aromatic copolyamides
US3511819A (en) * 1967-03-01 1970-05-12 Du Pont Thermally durable aromatic copolyamides
JPH0359110A (ja) * 1989-07-26 1991-03-14 Toray Ind Inc ポリメタフェニレンテレフタルアミド系繊維の製造方法
KR920007104A (ko) * 1990-09-05 1992-04-28 나까하라 쯔네오 반도체소자의 제조방법
KR20060012615A (ko) * 2003-05-16 2006-02-08 이 아이 듀폰 디 네모아 앤드 캄파니 폴리아미드의 연속 제조 방법

Also Published As

Publication number Publication date
KR20230108142A (ko) 2023-07-18
KR20240017874A (ko) 2024-02-08

Similar Documents

Publication Publication Date Title
AU628177B2 (en) PVP/para-aramid fibers and process for making them
WO2008075751A1 (ja) ヘテロ環含有芳香族ポリアミド繊維及びその製造方法、並びに該繊維から構成された布帛及び該繊維により補強された繊維強化複合材料
WO2016028078A1 (ko) 고강도 공중합 아라미드 섬유 및 그의 제조방법
KR20160134295A (ko) 방염성이 우수한 메타아라미드 섬유 및 그의 제조방법
WO2014084470A1 (ko) 폴리에틸렌 섬유 및 그의 제조방법
WO2023132518A1 (ko) 고강도 메타 아라미드 섬유 및 그의 제조방법
US7955692B2 (en) Protective garment comprising fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4′ diamino diphenyl sulfone
CN107675283B (zh) 高强芳香族共聚酰胺纤维及其制备方法
EP2181211B1 (en) Fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4' diamino diphenyl sulfone and methods for making same
WO2023055201A1 (ko) 재생가능한 타이어 코드용 폴리아미드 멀티필라멘트 섬유 및 그를 포함하는 타이어 코드
KR101587048B1 (ko) 공중합 아라미드 섬유의 제조방법 및 이로 제조된 공중합 아라미드 섬유
KR960000791B1 (ko) 방향족 폴리아미드 혼합물로부터 제조된 화이버 및 얀
CA2694588C (en) Fibers comprising copolymers containing structures derived from a plurality of amine monomers including 3,3' diamino diphenyl sulfone and methods for making same
EP2181210B1 (en) Fibers comprising copolymers containing structures derived from 4.4' diamino diphenyl sulfone and a plurality of acid monomers and methods of making same
WO2022260239A1 (ko) 아라미드 원착사 및 그의 제조방법
CN114182407A (zh) 一种耐起球、染色性好的涤纶纱线及其制备方法
WO2016108429A1 (ko) 폴리에틸렌 섬유, 그의 제조방법 및 그의 제조장치
JP2023078567A (ja) 高耐熱性高タフネス繊維、およびその製造方法
JP2022128969A (ja) 耐熱性高タフネス繊維、およびその製造方法
WO2018124437A1 (ko) 고강도 방향족 폴리아미드 멀티 필라멘트의 제조방법
KR20140075198A (ko) 메타아라미드 잠재권축사의 제조방법 및 이를 통해 제조된 메타아라미드 잠재권축사
JP2024027796A (ja) 高耐熱性高タフネス繊維、および、その製造方法
WO2019013504A2 (ko) 고기능성 공중합 아라미드 섬유 및 그의 제조방법
JP2023020354A (ja) 共重合アラミド繊維、その製造方法、それを含む繊維製品
WO2022181558A1 (ja) 耐熱性高タフネス繊維、その製造方法、および耐熱性高タフネスフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919055

Country of ref document: EP

Kind code of ref document: A1