WO2018124300A1 - 二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ - Google Patents
二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ Download PDFInfo
- Publication number
- WO2018124300A1 WO2018124300A1 PCT/JP2017/047353 JP2017047353W WO2018124300A1 WO 2018124300 A1 WO2018124300 A1 WO 2018124300A1 JP 2017047353 W JP2017047353 W JP 2017047353W WO 2018124300 A1 WO2018124300 A1 WO 2018124300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- polypropylene
- less
- resin
- polypropylene resin
- Prior art date
Links
- 239000010408 film Substances 0.000 title claims description 363
- 239000003990 capacitor Substances 0.000 title claims description 88
- 239000011104 metalized film Substances 0.000 title claims description 23
- 229920006378 biaxially oriented polypropylene Polymers 0.000 title abstract description 6
- 239000011127 biaxially oriented polypropylene Substances 0.000 title abstract description 6
- -1 polypropylene Polymers 0.000 claims abstract description 505
- 239000004743 Polypropylene Substances 0.000 claims abstract description 502
- 229920001155 polypropylene Polymers 0.000 claims abstract description 501
- 229920005989 resin Polymers 0.000 claims abstract description 346
- 239000011347 resin Substances 0.000 claims abstract description 346
- 238000005259 measurement Methods 0.000 claims abstract description 38
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 238000009826 distribution Methods 0.000 claims description 98
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 description 72
- 238000004519 manufacturing process Methods 0.000 description 39
- 230000007774 longterm Effects 0.000 description 32
- 238000006116 polymerization reaction Methods 0.000 description 23
- 239000003963 antioxidant agent Substances 0.000 description 19
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 16
- 239000004744 fabric Substances 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 14
- 238000004804 winding Methods 0.000 description 14
- 230000003078 antioxidant effect Effects 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 11
- 239000013078 crystal Substances 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 11
- 238000004898 kneading Methods 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 230000000704 physical effect Effects 0.000 description 11
- 238000007740 vapor deposition Methods 0.000 description 11
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- 239000004793 Polystyrene Substances 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229920002223 polystyrene Polymers 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 239000011342 resin composition Substances 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 6
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000002530 phenolic antioxidant Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000004742 high temperature nuclear magnetic resonance Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 239000013081 microcrystal Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 239000002685 polymerization catalyst Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229920005604 random copolymer Polymers 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003878 thermal aging Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 2
- ZVVFVKJZNVSANF-UHFFFAOYSA-N 6-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]hexyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCCCCCCOC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 ZVVFVKJZNVSANF-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- OKOBUGCCXMIKDM-UHFFFAOYSA-N Irganox 1098 Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)NCCCCCCNC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 OKOBUGCCXMIKDM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001384 propylene homopolymer Polymers 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000011115 styrene butadiene Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- KJYSXRBJOSZLEL-UHFFFAOYSA-N (2,4-ditert-butylphenyl) 3,5-ditert-butyl-4-hydroxybenzoate Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OC(=O)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 KJYSXRBJOSZLEL-UHFFFAOYSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- VFBJXXJYHWLXRM-UHFFFAOYSA-N 2-[2-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]ethylsulfanyl]ethyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCCSCCOC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 VFBJXXJYHWLXRM-UHFFFAOYSA-N 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-M 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=CC(CCC([O-])=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-M 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- RYPKRALMXUUNKS-UHFFFAOYSA-N hex-2-ene Chemical compound CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical class CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- DJWFNQUDPJTSAD-UHFFFAOYSA-N n-octadecyloctadecanamide Chemical class CCCCCCCCCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCC DJWFNQUDPJTSAD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical class CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical class [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 230000003617 peroxidasic effect Effects 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920005630 polypropylene random copolymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 150000003140 primary amides Chemical class 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003334 secondary amides Chemical class 0.000 description 1
- 125000000467 secondary amino group Chemical class [H]N([*:1])[*:2] 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/06—Coating with compositions not containing macromolecular substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/18—Organic dielectrics of synthetic material, e.g. derivatives of cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/16—Capacitors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/10—Homopolymers or copolymers of propene
- C08J2423/12—Polypropene
Definitions
- the present invention relates to a biaxially stretched polypropylene film, a metallized film, and a capacitor.
- the biaxially stretched polypropylene film has excellent electrical characteristics such as voltage resistance and low dielectric loss characteristics, and high moisture resistance.
- Biaxially stretched polypropylene film is a dielectric film for capacitors such as high-voltage capacitors, various switching power supplies, filter capacitors such as converters and inverters, and smoothing capacitors, taking advantage of these characteristics. Etc. are widely used.
- Polypropylene film has also begun to be used as a capacitor for inverter power supply equipment for controlling drive motors of electric vehicles and hybrid vehicles, for which demand has been increasing in recent years.
- polypropylene films used in capacitors for automobiles are required to be excellent in dimensional stability, mechanical properties, voltage resistance, etc. at high temperatures because they are exposed to high temperatures during use. Therefore, various studies have been made to improve heat resistance. In recent years, there has been an increasing demand for miniaturization and higher capacity of capacitors. In order to meet such demands, it has been studied to make the film thinner for the purpose of improving the capacitance without changing the volume of the capacitor.
- Patent Document 1 discloses a biaxially stretched polypropylene film in which the crystallite size, the birefringence value ( ⁇ Nyz) in the thickness direction, and the total volume of protrusions per field of view are controlled within a specific range.
- Patent Document 2 describes a stretched polypropylene film composed of a polypropylene resin in which the mesopentad fraction, the amount of copolymerization monomers other than propylene are controlled in a specific range, and the plane orientation coefficient of the film is controlled in a predetermined range. Has been.
- Patent Documents 3 to 5 describe polypropylene films in which the isotacticity, mesopentad fraction, crystallinity, etc. of the polypropylene resin are controlled within a specific range.
- Patent Document 6 describes a polypropylene film obtained by irradiating a pellet of a polypropylene resin having a high mesopentad fraction or a cast raw sheet with radiation.
- Patent Document 7 describes a polypropylene film that optimizes the mechanical strength and surface structure of the film.
- Japanese Patent No. 5929838 JP 2014-55276 A Japanese Patent No. 3754747 Japanese Patent No. 3791038 Japanese Patent No. 5660261 Japanese Patent Laid-Open No. 2014-231604 International Publication No. 2012/002123
- Patent Document 1 discloses that the crystallite size of a polypropylene film, the birefringence value ( ⁇ Nyz) in the thickness direction, and the total volume of protrusions per field of view are controlled within a specific range, thereby providing long-term heat resistance and voltage resistance. It is described that a capacitor having excellent resistance can be obtained. Patent Document 1 also describes that when the orientation is given in the plane direction of the polypropylene film, the refractive index Nz in the thickness direction changes, the birefringence value ⁇ Nyz increases, and the withstand voltage improves. .
- Patent Document 2 if the mesopentad fraction of the polypropylene resin constituting the stretched polypropylene film, the amount of copolymerization monomer other than propylene is controlled within a predetermined range, and the plane orientation coefficient of the film is controlled within a specific range, Further, it is described that the shrinkage rate and rigidity at 150 ° C. can be improved to the same level as that of a polyethylene terephthalate film.
- Patent Documents 3 to 5 describe that, when the isotacticity, mesopentad fraction, crystallinity, etc. of polypropylene resin are in a specific range, the withstand voltage at high temperatures is improved.
- Patent Document 6 describes that, by irradiating a polypropylene resin pellet or cast raw sheet having a high mesopentad fraction with radiation, both stretchability during film formation and dielectric breakdown strength of the film are achieved. Yes.
- Patent Document 7 describes that a polypropylene film having a large number of protrusions having a low height on the surface of the film is suitable for use in an AC voltage capacitor.
- the film specifically disclosed in Patent Document 2 is a film having a thickness of about 20 ⁇ m
- the film specifically disclosed in Patent Document 6 is a film having a thickness of about 15 ⁇ m.
- Problems such as breakage that may occur when the film is stretched into a thin film cannot be said to have been sufficiently studied.
- the polypropylene resin which comprises the film disclosed by patent document 2 has high stereoregularity, it does not have sufficient drawability for extending
- [(Nx + Ny) / 2] ⁇ Nz described in Patent Document 2 is clearly different from the definition in the present embodiment as described later.
- the manufacturing method using radiation irradiation as described in Patent Document 6 is not preferable as a practical production facility because the process becomes complicated.
- Patent Documents 3 to 5 there is a contradictory relationship between improvement in voltage resistance by increasing stereoregularity and / or crystallinity and thin film forming property, and when the film is a thin film A film may not be manufactured continuously and stably.
- the polypropylene films described in Patent Documents 3 and 5 pay attention to the long-term durability (capacity change rate) that can withstand a voltage load test of up to 1000 hours, which is required especially for capacitors for automobiles in recent years. It has not been made, and cannot be said to meet recent strict requirements for long-term durability.
- Patent Document 7 describes that the coexistence of device workability and voltage resistance has been studied, but no attention is paid to stretchability.
- the film specifically disclosed in Patent Document 7 is a film having a thickness of 7 ⁇ m, problems such as breakage that may occur when a polypropylene film is stretched into a thin film are sufficiently studied. I can't say that.
- the present invention provides a biaxially stretched polypropylene film that can be suitably used in capacitors for automobiles, etc., and is excellent in long-term durability under high temperature and high voltage while being thin, and excellent in film quality and productivity. For the purpose.
- the inventors of the present invention have made extensive studies on a thin biaxially stretched polypropylene film, particularly focusing on the refractive index, which is one of indices indicating the orientation of polypropylene resin.
- the present inventors have found that the above problems can be solved by a biaxially stretched polypropylene film having a molecular orientation coefficient ⁇ Nx calculated by the following formula of 0.013 to 0.016, and completed the present invention. That is, the present invention includes the following preferred embodiments.
- the biaxially stretched polypropylene film of the present invention has a very thin thickness of 1.0 to 3.0 ⁇ m, it has excellent long-term durability under high temperature and high voltage and causes poor stretching of the film during production. Since it is difficult, the film quality is excellent, and since the film is not easily broken during production, the productivity is excellent.
- the biaxially stretched polypropylene film of the present invention has the above properties, and is particularly suitably used as a biaxially stretched polypropylene film for capacitors.
- the capacitor obtained using the biaxially stretched polypropylene film of the present invention can be reduced in size, weight and capacity because the biaxially stretched polypropylene film is a thin film. Further, since the biaxially stretched polypropylene film of the present invention is excellent in long-term durability under high temperature and high voltage, a capacitor obtained using this is suitable as a high-capacitance capacitor to which high voltage is applied at high temperature. Can be used.
- the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
- the expression “capacitor” includes the concept of “capacitor”, “capacitor element”, and “film capacitor”.
- the biaxially stretched polypropylene film of this embodiment is not a microporous film, it does not have a large number of pores.
- the biaxially stretched polypropylene film of this embodiment may be composed of two or more layers, but is preferably composed of a single layer.
- the biaxially stretched polypropylene film of the present embodiment achieves the above-described problem when the thickness is very small (thin) of 1.0 to 3.0 ⁇ m, and has a thickness such as 7 ⁇ m, 15 ⁇ m, 20 ⁇ m, etc. No large biaxially oriented polypropylene film is assumed.
- Biaxially oriented polypropylene film >> The biaxially stretched polypropylene film of this embodiment has a thickness of 1.0 to 3.0 ⁇ m, a birefringence value ⁇ Nxy in the slow axis direction with respect to the fast axis direction and a retardation in the thickness direction obtained by optical birefringence measurement. From the birefringence value ⁇ Nxz in the phase axis direction, the following formula (1): A biaxially stretched polypropylene film having a molecular orientation coefficient ⁇ Nx calculated by the following formula of 0.013 to 0.016.
- the biaxially stretched polypropylene film of the present embodiment is also referred to as “a polypropylene film of the present embodiment”.
- the polypropylene film of this embodiment having the above characteristics has a very thin thickness of 1.0 to 3.0 ⁇ m, the film quality is excellent because (a) it is difficult to cause poor stretching of the film during production, and (B) Since the film is hardly broken during production, the productivity is excellent.
- the capacitor including the polypropylene film of the present embodiment having the above characteristics has a high voltage at a high temperature for a long time even though the film has a very thin thickness of 1.0 to 3.0 ⁇ m. Since the capacity drop after loading is suppressed, the long-term durability under high temperature and high voltage is excellent. That is, the polypropylene film of this embodiment is excellent in long-term durability under high temperature and high voltage, and is excellent in film quality and productivity.
- excellent long-term durability in use under high temperature and high voltage is, for example, a capacitor per unit thickness of DC 300 V / ⁇ m in a temperature environment of 105 ° C. or higher. It is mentioned that the capacity change rate is suppressed even after the voltage is continuously loaded for 1000 hours.
- Molecular orientation coefficient ⁇ Nx > The molecular orientation coefficient ⁇ Nx is calculated from the birefringence value ⁇ Nxy in the slow axis direction with respect to the fast axis direction and the birefringence value ⁇ Nxz in the slow axis direction with respect to the thickness direction obtained by optical birefringence measurement as follows: Is calculated by In addition, the molecular orientation coefficient “ ⁇ Nx” may be simply described as “X”.
- ⁇ Nxy which is a birefringence value in the slow axis direction with respect to the fast axis direction in the above formula (1), is expressed by the following formula (2): [In the formula, Nx represents the three-dimensional refractive index in the x-axis direction (slow axis direction), and Ny represents the three-dimensional refractive index in the y-axis direction (fast axis direction). ] Is a value calculated by. More specifically, ⁇ Nxy is calculated as follows.
- the slow axis that is the direction with the higher refractive index is the x-axis
- the fast axis that is the direction with the lower refractive index is the y-axis.
- the refractive index is a parameter indicating the molecular orientation in the polypropylene film, and the higher the refractive index in a certain direction, the more the molecules are oriented in that direction. Generally, the higher the draw ratio in a certain direction, the higher the refractive index because the molecules are oriented in that direction.
- the flow direction of the biaxially stretched polypropylene film Becomes the fast axis (y axis), and the width direction becomes the slow axis (x axis).
- the birefringence value ⁇ Nxy is calculated by subtracting the three-dimensional refractive index in the y-axis direction from the three-dimensional refractive index in the x-axis direction.
- the birefringence value ⁇ Nxy is specifically measured using a retardation measuring device (retardation measuring device RE-100 manufactured by Otsuka Electronics Co., Ltd.). More specifically, for a measurement sample obtained by cutting a film into a predetermined size (for example, 50 mm ⁇ 50 mm), the retardation is measured at a wavelength of 550 nm using the above apparatus. A value (R / d) obtained by dividing the obtained retardation value (R) by the thickness (d) is ⁇ Nxy.
- a retardation measuring device RE-100 manufactured by Otsuka Electronics Co., Ltd.
- ⁇ Nxz which is the birefringence value in the slow axis direction with respect to the thickness direction, is expressed by the following formula (3): [In the formula, Nx represents a three-dimensional refractive index in the x-axis direction (slow axis direction), and Nz represents a three-dimensional refractive index in the z-axis direction (thickness direction). ] Is a value calculated by. More specifically, ⁇ Nxz is calculated as follows.
- the principal axes in the in-plane direction of the film are the x-axis and the y-axis, and the slow axis that is the direction of higher refractive index among these principal axes is the x-axis, and the film thickness direction (normal direction to the in-plane direction) is Assuming the z-axis, a value obtained by subtracting the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the x-axis direction is a birefringence value ⁇ Nxz.
- the birefringence value ⁇ Nxz is specifically determined using a retardation measuring device (retardation measuring device RE-100 manufactured by Otsuka Electronics Co., Ltd.). 105-120, 2001 ", measured by the gradient method.
- the retardation value R for each inclination angle ⁇ is measured at a wavelength of.
- the obtained retardation value R for each inclination angle ⁇ is divided by the thickness d subjected to inclination correction to obtain R / d for each inclination angle ⁇ .
- the value of the refraction angle r at each inclination angle ⁇ for polypropylene the value described on page 109 of the non-patent document may be used.
- An average value of the birefringence values ⁇ Nzy at ⁇ 20 °, 30 °, 40 °, and 50 ° is defined as a birefringence value ⁇ Nzy.
- ⁇ Nzy is divided from ⁇ Nxy obtained above to calculate a birefringence value ⁇ Nxz.
- the molecular orientation coefficient ⁇ Nx is ⁇ Nxy relating to the in-plane orientation of the polypropylene film, and the orientation in the slow axis (x axis) and the thickness direction (z axis) having the highest orientation. Is the average value with ⁇ Nxz.
- the present inventor has contributed to the balance between the orientation in the x-axis direction and the orientation in the y-axis direction with respect to the film quality and productivity of the thin biaxially stretched film that is particularly prone to stretch failure and breakage during stretching.
- the birefringence value ⁇ Nxy was examined as an index for film quality and productivity.
- the long-term durability particularly in use under high temperature and high voltage includes the orientation in the x-axis direction having the highest orientation among the x-axis, y-axis and z-axis, and the orientation in the z-axis direction which is the thickness direction.
- the birefringence value ⁇ Nxz was examined as an index for long-term durability.
- the refractive indexes in the x-axis direction, the y-axis direction, and the z-axis direction are closely related to each other, for example, the in-plane direction of the polypropylene film (x-axis direction and / or y-axis direction).
- the orientation in the thickness direction becomes small.
- the refractive index in the in-plane direction is high and the refractive index in the thickness direction is low. Therefore, the birefringence values ⁇ Nxy and ⁇ Nxz are also closely related to each other. From this, the present inventor pays attention to the molecular orientation coefficient ⁇ Nx represented by the above formula (1), which means the average value of the birefringence values ⁇ Nxy and ⁇ Nxz, and the molecular orientation coefficient ⁇ Nx falls within the predetermined range.
- the molecular orientation coefficient ⁇ Nx calculated by the formula (1) is 0.0130 to 0.0160.
- the molecular orientation coefficient ⁇ Nx is smaller than 0.013, when the polypropylene film is stretched, stretching failure such as stretching unevenness is likely to occur, and the quality of the biaxially stretched film is lowered or the film is broken continuously. Manufacturing is impossible. This is considered to be due to the following reason.
- the molecular orientation coefficient ⁇ Nx is smaller than 0.013, particularly when ⁇ Nxy becomes too small, in other words, the molecular orientation in the y-axis direction becomes too high, so that the fracture occurs when the polypropylene film is biaxially stretched. Is likely to occur.
- the film breaks during stretching, continuous production cannot be performed and productivity is lowered.
- the stretch ratio in the width direction TD direction
- the stretch ratio in the flow direction MD direction
- the flow direction of the biaxially stretched polypropylene film is advanced. It becomes a phase axis (y axis), and the width direction becomes a slow axis (x axis).
- the molecular orientation in the flow direction becomes too high, a stretching defect may easily occur when stretching in the width direction.
- a film may become easy to fracture
- the biaxially stretched polypropylene film having a small thickness is likely to be broken due to stretching at the time of manufacture as compared with a polypropylene film having a normal thickness.
- a biaxially stretched polypropylene film having a small thickness even if slight stretching unevenness occurs due to poor stretching, the influence of the thickness unevenness caused by stretching unevenness on the quality of the biaxially stretched film becomes large. For this reason, it is particularly important to suppress the stretching failure and breakage of the film during production when producing a biaxially oriented polypropylene film having a small thickness.
- the long-term durability of the film at high temperatures may be reduced. This is considered to be due to the following reason.
- ⁇ Nxz is particularly too small, in other words, the molecular orientation in the z-axis direction becomes too high, and thus the electrical conductivity in the thickness direction of the film is high. It is considered to be.
- a capacitor including a biaxially stretched polypropylene film is used, a voltage is applied in the thickness direction of the polypropylene film.
- current flows along molecular chains oriented in the polypropylene film. For this reason, if the molecular orientation in the thickness direction (z-axis direction) is too high, electricity tends to flow in the thickness direction and the voltage resistance is lowered, and it is considered that the long-term durability under high temperature and high voltage is lowered.
- the molecular orientation coefficient ⁇ Nx is a viewpoint that suppresses poor stretching and breakage during the production of a biaxially stretched polypropylene film, easily improves film quality and productivity, and easily improves long-term durability under high temperature and high voltage. Therefore, it is preferably 0.0130 or more, more preferably 0.0132 or more, further preferably 0.0135 or more, and particularly preferably 0.0138 or more.
- the molecular orientation coefficient ⁇ Nx is larger than 0.016, a film satisfying the long-term durability under a high temperature and high voltage required particularly for a capacitor for automobiles cannot be obtained. This is considered to be due to the following reason.
- the current is shielded by the microcrystals in the film. It is considered that the microcrystals in the film are arranged in parallel to the film surface direction in each stretching step in the direction of two axes orthogonal to the fast axis (y axis) and the slow axis (x axis). This is considered to make it difficult for the current in the thickness direction to flow.
- the microcrystals are considered to be in a state of being constrained in the plane direction of the film with little freedom of rotation.
- ⁇ Nxy is particularly too large, in other words, due to the molecular orientation in the fast axis (y-axis) direction becoming too small.
- the binding property in the fast axis (y-axis) direction is lowered. For this reason, the molecular orientation in the film surface direction cannot be maintained particularly at high temperatures, and the current shielding ability in the thickness direction is reduced, so that it is considered that long-term durability under high temperature and high voltage cannot be obtained.
- the molecular orientation coefficient ⁇ Nx is a viewpoint that suppresses poor stretching and breakage during the production of a biaxially stretched polypropylene film, easily improves film quality and productivity, and easily improves long-term durability under high temperature and high voltage. Therefore, it is preferably 0.0155 or less, more preferably 0.0150 or less, still more preferably 0.0149 or less, and particularly preferably 0.0148 or less.
- the birefringence value ⁇ Nxy is not particularly limited as long as the molecular orientation coefficient ⁇ Nx falls within the above range, but the balance between the orientation in the x-axis direction and the orientation in the y-axis direction is good, and a thin biaxially stretched polypropylene film is used.
- the lower limit of ⁇ Nxy is preferably 0.009 or more, more preferably 0.01 or more. More preferably, it is 0.011 or more.
- the upper limit value is preferably 0.014 or less, more preferably 0.013 or less, and still more preferably 0.012 or less.
- the birefringence value ⁇ Nxz is not particularly limited as long as the molecular orientation coefficient ⁇ Nx falls within the above range.
- the lower limit of ⁇ Nxz is preferably 0.015 or more, More preferably, it is 0.016 or more, More preferably, it is 0.017 or more.
- the upper limit value of ⁇ Nxz is preferably 0.023 or less, more preferably 0.022 or less, still more preferably 0.02 or less, and most preferably 0.019 or less. is there.
- the molecular orientation coefficient ⁇ Nx is obtained by adjusting the birefringence values ⁇ Nxy and ⁇ Nxz, more specifically, the refractive indices (Nx, Ny and Nz), in other words, by adjusting the molecular orientation in the x-axis, y-axis, and z-axis directions can be within the predetermined range.
- the stretching temperature and the stretching ratio when stretching in the flow direction are stretched.
- Stretching temperature, stretching ratio and stretching angle (hereinafter also referred to as “lateral stretching temperature”, “lateral stretching ratio” and “lateral stretching angle”, respectively), relaxation temperature and relaxation rate after stretching in the flow direction and width direction
- the molecular orientation coefficient ⁇ Nx can be adjusted within the above range by appropriately adjusting the above. Examples of preferable stretching conditions in the present embodiment will be described later in the section “1-5. Manufacturing method”.
- vertical direction and “flow direction” are synonymous, and “lateral direction” and “width direction” are synonymous.
- the molecular orientation coefficient ⁇ Nx can be adjusted by selecting a polypropylene resin (particularly, the molecular weight distribution of the polypropylene resin). Examples of preferred polypropylene resins in this embodiment will be described later in the section “1-2. Resins”.
- the polypropylene film of this embodiment contains a polypropylene resin as a resin.
- the main component of the polypropylene film of this embodiment is a polypropylene resin, and more preferably the resin component constituting the film is a polypropylene resin.
- the “main component” means that the resin as the main component is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass in terms of solid content in the polypropylene film. As mentioned above, it means containing 99 mass% or more especially preferably.
- the polypropylene resin is not particularly limited as long as a polypropylene film having a thickness and a molecular orientation coefficient ⁇ Nx within the above ranges can be obtained, and those that can be used to form the film can be widely used.
- the polypropylene resin include propylene homopolymers such as isotactic polypropylene and syndiotactic polypropylene; copolymers of propylene and ethylene; long chain branched polypropylenes; ultrahigh molecular weight polypropylene, and preferably propylene homopolymers.
- isotactic polypropylene is more preferable from the viewpoint of heat resistance, and isotactic polypropylene obtained by homopolymerizing polypropylene in the presence of an olefin polymerization catalyst is more preferable.
- the polypropylene resin may be used alone or in combination of two or more.
- the weight average molecular weight (Mw) of the polypropylene resin is preferably 250,000 to 450,000.
- Mw weight average molecular weight
- an appropriate resin fluidity can be obtained during biaxial stretching, and the thickness of the cast raw sheet can be easily controlled.
- an ultrathin biaxially stretched polypropylene film suitable for a small and high-capacity capacitor can be easily obtained.
- produce the nonuniformity of the thickness of a cast raw fabric sheet and a biaxially stretched polypropylene film it is preferable.
- the weight average molecular weight (Mw) of the polypropylene resin is preferably 270,000 or more, more preferably 290,000 or more, from the viewpoints of thickness uniformity, mechanical properties, thermo-mechanical properties, etc. of the biaxially oriented polypropylene film.
- the weight average molecular weight (Mw) of the polypropylene resin is more preferably 400,000 or less from the viewpoint of the fluidity of the polypropylene resin and the stretchability when obtaining an ultrathin biaxially stretched polypropylene film.
- the molecular weight distribution (Mw / Mn) calculated as a ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polypropylene resin is preferably 7 or more and 12 or less.
- the molecular weight distribution (Mw / Mn) is more preferably 7.1 or more, still more preferably 7.5 or more, and particularly preferably 8 or more.
- the molecular weight distribution (Mw / Mn) is more preferably 11 or less, still more preferably 10 or less.
- Use of such a polypropylene resin is preferable because appropriate resin fluidity can be obtained at the time of biaxial stretching, and it becomes easy to obtain a very thin biaxially stretched propylene film having no thickness unevenness.
- such a polypropylene resin is also preferable from the viewpoint of voltage resistance of the biaxially stretched polypropylene film.
- the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of the polypropylene resin can be measured using a gel permeation chromatograph (GPC) apparatus. More specifically, it can be measured using, for example, HLC-8121GPC-HT (trade name) manufactured by Tosoh Corporation, a differential refraction system (RI) built-in type high temperature GPC measuring machine. Mw and Mn are measured as follows, for example.
- TSKgel GMWHR-H (20) HT manufactured by Tosoh Corporation are connected and used, the column temperature is set to 140 ° C., and trichlorobenzene is used as an eluent at 1.0 ml / 10 min. Flow at a flow rate to obtain Mw and Mn measurements.
- a calibration curve for the molecular weight M is prepared using standard polystyrene manufactured by Tosoh Corporation, and the measured values are converted into polystyrene values to obtain Mw and Mn.
- logarithm of the bottom 10 of the molecular weight M of standard polystyrene is called logarithmic molecular weight (Log (M)).
- D M difference
- it is preferably ⁇ 2% or more and 18% or less, more preferably 0% or more and 18% or less, and further preferably 2%.
- the “logarithmic molecular weight” is the logarithm of the molecular weight (M) (Log (M)), and “the difference obtained by subtracting the differential distribution value when the logarithmic molecular weight is 6 from the differential distribution value when the logarithmic molecular weight is 4.5.
- low molecular weight component a component having a molecular weight of about 1 million on the high molecular weight side
- high molecular weight component a typical distribution value of a component having a molecular weight of about 1 million on the high molecular weight side
- the value of the difference (D M ) being “positive” means that the amount of the low molecular weight component is larger than the amount of the high molecular weight component.
- differential distribution values can be obtained using GPC as follows.
- a curve (generally also referred to as “elution curve”) showing the intensity with respect to time obtained by a differential refraction (RI) detector of GPC is used.
- the elution curve is converted into a curve showing the intensity with respect to Log (M) by converting the time axis into logarithmic molecular weight (Log (M)). Since the RI detection intensity is proportional to the component concentration, an integral distribution curve with respect to the logarithmic molecular weight Log (M) can be obtained when the total area of the curve indicating the intensity is 100%.
- the differential distribution curve is obtained by differentiating the integral distribution curve with Log (M). Therefore, “differential distribution” means a differential distribution with respect to the molecular weight of the concentration fraction. From this curve, the differential distribution value at a specific Log (M) is read, and the difference (D M ) can be obtained.
- the melt flow rate (MFR) at 230 ° C. and a load of 2.16 kg of the polypropylene resin is not particularly limited, but is preferably 7 g / 10 minutes or less, more preferably 6 g from the viewpoint of the stretchability of the obtained film. / 10 minutes or less. Moreover, from a viewpoint of improving the precision of the thickness of the polypropylene film of this embodiment, it is preferably 0.3 g / 10 min or more, and more preferably 0.5 g / 10 min or more.
- the MFR can be measured according to JIS K 7210-1999.
- the mesopentad fraction ([mmmm]) of the polypropylene resin is preferably 94% or more, more preferably 95% or more, and even more preferably 96%.
- the mesopentad fraction of the polypropylene resin is preferably 98.5% or less, more preferably 98.4% or less, and even more preferably 98% or less.
- the mesopentad fraction of the polypropylene resin is preferably 94% or more and 99% or less, and more preferably 95% or more and 98.5% or less.
- the mesopentad fraction ([mmmm]) is an index of stereoregularity that can be obtained by high temperature nuclear magnetic resonance (NMR) measurement. Specifically, it can be measured using, for example, JEOL Ltd., high temperature Fourier transform nuclear magnetic resonance apparatus (high temperature FT-NMR), JNM-ECP500.
- the measurement method by high temperature NMR is, for example, the method described in “Japan Analytical Chemistry / Polymer Analysis Research Roundtable, New Edition, Polymer Analysis Handbook, Kinokuniya, 1995, p. 610”. Can be done with reference.
- the pentad fraction representing the degree of stereoregularity is a combination of the quintet (pentad) of the consensus “meso (m)” arranged in the same direction and the consensus “rasemo (r)” arranged in the opposite direction (mmmm and mrrm). Etc.) based on the integrated value of the intensity of each signal derived from.
- Each signal derived from mmmm, mrrm and the like can be assigned with reference to, for example, “T. Hayashi et al., Polymer, 29, 138 (1988)”.
- the polypropylene film of this embodiment contains the polypropylene resin A whose difference (D M ) is 10% or more and 18% or less.
- the polypropylene resin contained in the polypropylene film of this embodiment may be only the polypropylene resin A.
- the content thereof is not limited. However, when the total polypropylene resin contained in the polypropylene film of this embodiment is 100% by mass, the content is preferably 50% by mass or more and 100%. % By mass or less, more preferably 55% by mass or more and 90% by mass or less, still more preferably 55% by mass or more and 85% by mass or less, and still more preferably 60% by mass or more and 85% by mass or less. Preferably they are 60 mass% or more and 80 mass% or less, Most preferably, they are 60 mass% or more and 70 mass% or less.
- the weight average molecular weight of the polypropylene resin A is preferably 250,000 to 450,000, more preferably 250,000 to 400,000.
- the resin fluidity is appropriate, the thickness of the cast raw sheet is easy to control, and it is easy to produce a thin stretched film. Can be. Furthermore, it is preferable because unevenness in the thickness of the sheet and film is less likely to occur, and the sheet can have appropriate stretchability.
- the molecular weight distribution (weight average molecular weight / number average molecular weight (Mw / Mn)) of the polypropylene resin A is preferably 5.5 or more and 12 or less.
- the Mw / Mn of the polypropylene resin A is preferably 7.0 or more, more preferably 7.5 or more, still more preferably 8 or more, still more preferably 8.6 or more, and particularly preferably 9 or more.
- the Mw / Mn of the polypropylene resin A is preferably 11.5 or less, more preferably 11 or less, further preferably 10.5 or less, and particularly preferably 10 or less.
- the combination of the upper limit and the lower limit of Mw / Mn of the polypropylene resin A is more preferably 7.5 or more and 12 or less, further preferably 7.5 or more and 11 or less, and particularly preferably 8.6 or more and 10 or less. .5 or less, and most preferably 9 or more and 10 or less.
- the molecular weight distribution (Z average molecular weight / number average molecular weight (Mz / Mn)) of the polypropylene resin A is preferably 15 or more and 70 or less, more preferably 20 or more and 60 or less, and further preferably 25 or more and 50 or less. .
- Mz / Mn can be measured using a gel permeation chromatograph (GPC) device in the same manner as the measurement of the weight average molecular weight (Mw) and the like.
- the difference (D M ) of the polypropylene resin A is 10% or more and 18% or less, preferably 10.5% or more and 17% or less, more preferably 11% or more and 16% or less.
- the polypropylene resin A preferably has a wide molecular weight distribution, and at the same time contains a large amount of components having a molecular weight of 10,000 to 100,000 at a ratio of 10% or more and 18% or less as compared with a component having a molecular weight of 1,000,000. preferable.
- the difference (D M ) of the polypropylene resin A is 10% or more and 18% or less
- the polypropylene resin contains a large amount of low molecular weight components at a ratio of 10% or more and 18% or less compared with the high molecular weight components. . In this case, it is preferable because of excellent stretchability.
- the mesopentad fraction ([mmmm]) of the polypropylene resin A is preferably 94% or more and 99% or less, more preferably 94.5% or more and 98.5% or less, and further preferably 95% or more and 98% or less. It is.
- the mesopentad fraction [mmmm] is within the above range, the crystallinity of the resin is moderately improved due to the reasonably high stereoregularity, and the initial voltage resistance and the voltage resistance over a long period tend to be moderately improved. It is in.
- the rate of solidification (crystallization) at the time of forming the cast original fabric sheet is appropriate, and it can have appropriate stretchability.
- the heptane-insoluble content (HI) of the polypropylene resin A is preferably 96.0% or more, more preferably 97.0% or more. Further, the heptane-insoluble content (HI) of the polypropylene resin A is preferably 99.5% or less, more preferably 98.5% or less, and further preferably 98.0% or less.
- the heptane-insoluble content indicates that the greater the stereoregularity of the resin, the greater the amount.
- the heptane-insoluble content (HI) is 96.0% or more and 98.5% or less, the crystallinity of the resin is moderately improved due to a reasonably high stereoregularity, and the withstand voltage at high temperature is improved. To do. On the other hand, the rate of solidification (crystallization) during molding of the cast sheet is moderate, and it has moderate stretchability.
- the method for measuring heptane-insoluble matter (HI) is according to the method described in the examples.
- the polypropylene resin A has a melt flow rate (MFR) at 230 ° C. of preferably 1.0 to 15.0 g / 10 min, more preferably 2.0 to 10.0 g / 10 min, and 4.0. More preferably, it is ⁇ 10.0 g / 10 min, and particularly preferably 4.3 to 6.0 g / 10 min.
- MFR melt flow rate
- the method for measuring the melt flow rate is the method described in the examples.
- the polypropylene film of this embodiment contains the polypropylene resin A 'whose said difference (D M ) is 8% or more and 18% or less instead of the polypropylene resin A.
- the polypropylene resin contained in the polypropylene film of the present embodiment may be only the polypropylene resin A ′.
- the content, weight average molecular weight, molecular weight distribution (Mw / Mn and Mz / Mn), mesopentad fraction, etc. of the polypropylene resin A ′ are the content, weight average molecular weight, molecular weight distribution (Mw / Mn and Mz / Mn) and mesopentad fraction.
- the difference (D M ) of the polypropylene resin A ′ is preferably 9% or more, and more preferably 10% or more. Further, the difference (D M ) of the polypropylene resin A ′ is preferably 17% or less, and more preferably 16% or less.
- the polypropylene film of this embodiment preferably includes a polypropylene resin B having a difference (D M ) of ⁇ 1% or more and less than 10%.
- the polypropylene resin contained in the polypropylene film of this embodiment may be only the polypropylene resin B.
- the content is preferably 10% by mass or more and 100% by mass or less when the polypropylene resin contained in the polypropylene film of this embodiment is 100% by mass. More preferably, it is 10 mass% or more and 45 mass% or less, More preferably, it is 15 mass% or more and 45 mass% or less, More preferably, it is 15 mass% or more and 40 mass% or less, Especially preferably, it is 20 mass% or more It is 40 mass% or less, Most preferably, it is 30 mass% or more and 40 mass% or less.
- the polypropylene resin is 55% by mass or more and 90% by mass or less based on the total (100% by mass) of the polypropylene resin contained in the polypropylene film of this embodiment. It is preferable that A and 10 mass% or more and 45 mass% or less polypropylene resin B are included, 55 mass% or more and 85 mass% or less polypropylene resin A, and 15 mass% or more and 45 mass% or less polypropylene resin B. More preferably, it contains 60% by mass to 85% by mass of polypropylene resin A and 15% by mass to 40% by mass of polypropylene resin B, and more preferably 60% by mass to 80% by mass of polypropylene resin.
- Resin A and 20% by mass to 40% by mass of polypropylene Particularly preferably comprising a resin B, it is highly preferred to include a 60 wt% to 70 wt% of polypropylene resin A, a polypropylene resin B over 30 wt% 40 wt% or less.
- the Mw of the polypropylene resin B is preferably from 300,000 to 400,000, more preferably from 330,000 to 380,000.
- the Mw / Mn of the polypropylene resin B is preferably 6 or more, more preferably 7 or more, still more preferably 7.1 or more, and particularly preferably 7.5 or more. Further, the Mw / Mn of the polypropylene resin B is preferably 9 or less, more preferably 8.7 or less, further preferably 8.5 or less, and particularly preferably 8.4 or less.
- the combination of the upper limit and the lower limit of Mw / Mn of the polypropylene resin is preferably 6 or more and 9 or less, more preferably 7 or more and 8.5 or less, and further preferably 7.5 or more and 8.5 or less. is there.
- the difference (D M ) of the polypropylene resin B is ⁇ 1% or more and less than 10%, preferably 0.1% or more and 9.5% or less, more preferably 0.3% or more and 9% or less. More preferably, it is 0.3% or more and 8% or less.
- the molecular weight distribution (Z average molecular weight / number average molecular weight (Mz / Mn)) of the polypropylene resin B is preferably 20 or more and 70 or less, more preferably 25 or more and 60 or less, and further preferably 25 or more and 50 or less. .
- the mesopentad fraction ([mmmm]) of the polypropylene resin B is preferably 94% or more and less than 98%, more preferably 94.5% or more and 97.5% or less, and further preferably 95% or more and 97% or less. It is.
- the heptane-insoluble content (HI) of the polypropylene resin B is preferably 97.5% or more, more preferably 98% or more, still more preferably 98.5%, and particularly preferably 98.6. % Or more.
- the linear polypropylene resin B preferably has a heptane-insoluble content (HI) of 99.5% or less, more preferably 99% or less.
- the polypropylene resin B has a melt flow rate (MFR) at 230 ° C. of preferably 0.1 to 6.0 g / 10 min, more preferably 0.1 to 5.0 g / 10 min, More preferably, it is ⁇ 3.9 g / 10 min.
- MFR melt flow rate
- Resin B1 is a polypropylene resin having a difference (D M ) of 2% or more and less than 10%.
- the difference (D M ) of the resin B1 is preferably 3% or more and 9.5% or less, more preferably 5% or more and 9% or less, and further preferably 6% or more and 8% or less.
- Resin B2 is a polypropylene resin having a difference (D M ) of ⁇ 1% or more and less than 2%.
- the difference (D M ) of the resin B2 is preferably 0% or more and 1.9% or less, more preferably 0.1% or more and 1.5% or less, and further preferably 0.3% or more and 1% or less. It is.
- the preferred weight average molecular weight, mesopentad fraction, heptane insoluble content and melt flow rate of Resin B1 and Resin B2 are the same as the preferred weight average molecular weight, mesopentad fraction, heptane insoluble content and melt flow rate in Resin B described above. is there.
- the molecular weight distribution (Mw / Mn) of the resin B1 is preferably 7 or more and 8.5 or less, more preferably 7.1 or more and less than 8.1, still more preferably 7.1 or more and 8 or less, More preferably, it is 7.3 or more and less than 8, and particularly preferably 7.5 or more and 7.9 or less.
- the molecular weight distribution (Mw / Mn) of the resin B2 is preferably 7.5 or more and 9 or less, more preferably 7.7 or more and 8.9 or less, and further preferably 8 or more and 8.7 or less. Preferably they are 8.1 or more and 8.5 or less.
- the resin B1 or the resin B2 may be used alone, or the resin B1 and the resin B2 may be used in combination.
- the transverse stretching temperature when stretching in the width direction is preferably more than 140 ° C. and less than 165 ° C., more preferably 150 ° C. or more and 164 ° C. or less, Preferably they are 153 degreeC or more and 160 degrees C or less, Especially preferably, they are 155 degreeC or more and less than 160 degrees C, Most preferably, they are 155 degreeC or more and 159 degrees C or less.
- the transverse stretching temperature when stretching in the width direction is preferably 159 ° C. or more and 180 ° C. or less, more preferably 160 ° C. or more and 175 ° C.
- Is 160 ° C. or higher and 170 ° C. or lower particularly preferably 161 ° C. or higher and 167 ° C. or lower, and very preferably 162 ° C. or higher and 165 ° C. or lower.
- the polypropylene resin contained in the polypropylene film of this embodiment may be only the polypropylene resin B ′.
- the content, weight average molecular weight, molecular weight distribution (Mw / Mn and Mz / Mn), mesopentad fraction, heptane insoluble content and melt flow rate of the polypropylene resin B ′ are the content and weight average molecular weight of the polypropylene resin B.
- the difference (D M ) of the polypropylene resin B ′ is preferably ⁇ 10% or more, more preferably ⁇ 5% or more, still more preferably 0% or more, and particularly preferably 0.5% or more. Further, the difference (D M ) of the polypropylene resin B ′ is preferably 7.9% or less, and more preferably 7.5 or less.
- Resin B′1 is a polypropylene resin having the difference (D M ) of 3.6% or more and less than 8%.
- the difference (D M ) of the resin B1 is preferably 3.6% or more and 7.5% or less.
- Resin B′2 is a polypropylene resin having the difference (D M ) of ⁇ 20% or more and less than 3.6%.
- the difference (D M ) of the resin B′2 is preferably ⁇ 10% to 3.5%, more preferably 0% to 3.5%, and further preferably 0.1% to 3%. .5% or less.
- each preferred weight average molecular weight, mesopentad fraction, heptane insoluble content and melt flow rate of the resin B′1 and resin B′2 each preferred weight average molecular weight, mesopentad fraction, heptane insoluble content and melt flow in the above-mentioned resin B Same as rate.
- the preferred molecular weight distribution (Mw / Mn) of the resin B′1 is the same as the preferred molecular weight distribution (Mw / Mn) of the polypropylene resin B1
- the preferred molecular weight distribution (Mw / Mn) of the resin B′2 is the polypropylene. This is the same as the preferable molecular weight distribution (Mw / Mn) of the resin B2. Therefore, the above description of the polypropylene resins B′1 and B′2 is omitted.
- the polypropylene film of this embodiment may include polypropylene resins A and B, it may include polypropylene resin A and polypropylene resin B1, may include polypropylene resin A and polypropylene resin B2, or may include polypropylene resin A and polypropylene resin. Resin B1 and polypropylene resin B2 may be included.
- the polypropylene film of this embodiment includes polypropylene resins A ′ and B ′, the polypropylene film may include polypropylene resin A ′ and polypropylene resin B′1, or may include polypropylene resin A ′ and polypropylene resin B′2. It may include polypropylene resin A ′, polypropylene resin B′1, and polypropylene resin B′2.
- the polypropylene film of the present embodiment can contain long-chain branched polypropylene (branched polypropylene, hereinafter also referred to as “polypropylene resin C”) for the purpose of improving surface smoothness and heat resistance. Even if the polypropylene film of this embodiment does not contain the polypropylene resin C, the desired polypropylene film can be suitably obtained.
- polypropylene resin C long-chain branched polypropylene
- the polypropylene resin C is a polypropylene generally referred to as “long-chain branched polypropylene”, which has long-chain branching and is particularly limited as long as the polypropylene film of this embodiment can be obtained.
- Specific examples of such polypropylene resin C include, for example, Profax PF-814, PF-611, PF-633 manufactured by Basell, and Daploy HMS-PP (WB130HMS, WB135HMS, WB140HMS, etc.) manufactured by Borealis. Can be illustrated.
- the polypropylene film of this embodiment preferably contains the polypropylene resin C from the viewpoint of easily smoothing the surface of the obtained film and improving the heat resistance because the melting point of the film can be increased by several degrees Celsius.
- the content thereof is preferably 5% by mass or less based on the total (100% by mass) of the polypropylene resin contained in the polypropylene film of this embodiment. More preferably, it is 0.1 mass% or more and 5 mass% or less, More preferably, it is 0.5 mass% or more and 4 mass% or less, Most preferably, it is 1 mass% or more and 3 mass% or less, Most preferably It is 1.5 mass% or more and 2.5 mass% or less.
- polypropylene film of this embodiment contains polypropylene resins A to C, or A ′, B ′, and C, 55 mass based on the total (100 mass%) of the polypropylene resin contained in the polypropylene film of this embodiment % Or more and 90% by mass or less of polypropylene resin A or A ′, preferably 10% by mass or more and 45% by mass or less of polypropylene resin B or B ′, and 5% by mass or less of polypropylene resin C, preferably 55% by mass or more.
- polypropylene resin A or A ′ 89.9% by mass or less of polypropylene resin A or A ′, 10% by mass to 44.9% by mass of polypropylene resin B or B ′, and 0.1% by mass to 5% by mass of polypropylene resin C More preferably, 60% by mass or more and 84.5% by mass or less of polypropylene resin A or A ′, 15% by mass or more It is particularly preferable that 9.5% by mass or less of polypropylene resin B or B ′ and 0.5% by mass or more and 4% by mass or less of polypropylene resin C are included, and 60% by mass or more and 79% by mass or less of polypropylene resin A or It is particularly preferable that A ′, 20% by mass or more and 39% by mass or less of polypropylene resin B or B ′ and 1% by mass or more and 3% by mass or less of polypropylene resin C are included.
- the polypropylene film of the present embodiment can contain a polypropylene resin other than the above (hereinafter also referred to as “other polypropylene resin”).
- the “other polypropylene resin” is a resin that is generally a polypropylene resin, and is not particularly limited as long as the polypropylene film of this embodiment can be obtained.
- the polypropylene film of this embodiment may contain such other polypropylene resin in an amount that does not adversely affect the film.
- the polypropylene film of this embodiment contains two types of polypropylene resins (polypropylene resin I and polypropylene resin II) having different molecular weight distributions (Mw / Mn) and / or differences (D M ). Furthermore, it is more preferable that the resin constituting the polypropylene film of the present embodiment is two or more kinds different from each other in the molecular weight distribution and / or difference (D M ). In particular, the resins constituting the polypropylene film of the present embodiment are preferably two types having different molecular weight distributions and / or differences (D M ).
- the polypropylene resin I may be the above-described polypropylene resin A or A ′
- the polypropylene resin II may be the above-described polypropylene resin B or B ′ (for example, the polypropylene resin B1 and / or the polypropylene resin B2 or the polypropylene resin B). It may be '1 and / or polypropylene resin B' 2).
- the molecular orientation coefficient ⁇ Nx can be easily adjusted to a desired range.
- the molecular weight distribution (Mw / Mn) of the polypropylene resin I is preferably 5.5 or more and 12 or less, more preferably 7 or more and 12 or less, still more preferably 7.5 or more and 11 or less, and particularly preferably 8 It is 6 or more and 10.5 or less, and very preferably 9 or more and 10 or less.
- the molecular weight distribution (Mw / Mn) of the polypropylene resin II is preferably 6 or more and 9 or less, more preferably 7 or more and 8.5 or less, and further preferably 7.5 or more and 8.5 or less.
- the difference (D M ) of the polypropylene resin I is, for example, 8% or more and 18% or more, preferably 10% or more and 18% or less, more preferably 10.5% or more and 17% or less, and even more preferably 11 % To 16%.
- the difference between the difference polypropylene difference Resin I (D M) and the polypropylene resin II (D M) (D MI -D MII) for example 17% 2% or more, preferably 14% to 2.5% inclusive, More preferably, it is 3% or more and 12% or less.
- D M polypropylene resin II is less than 10% -1% or more as an example, and preferably 9.5% to 0.1% or less, more preferably 9% or less than 0.3%.
- Examples of the resin I and the resin II that form such a combination include the resin A and the resin B described above.
- the difference (D M ) of the polypropylene resin II is, for example, from ⁇ 1% to less than 8%, preferably from 0.1% to 7.9%, more preferably from 0.5% to 7.5%. is there.
- the resin I and the resin II that form such a combination include the resin A ′ and the resin B ′ described above.
- Polypropylene resin II satisfying such a relationship is referred to as polypropylene resin II ⁇ .
- the difference (D M ) of the polypropylene resin II ⁇ is, for example, 2% or more and less than 10%, preferably 3% or more and 9.5% or less, more preferably 5% or more and 9% or less.
- the resin I and the resin II ⁇ that are such a combination include the resin A and the resin B1, and the resin A ′ and the resin B′1 described above.
- the difference between the difference between the difference (D M) and the polypropylene resin II polypropylene resin I (D M) (D MI -D MII) for example 17% less than 5% or less, It is preferably 6.5% to 17%, more preferably 8% to 14%, and particularly preferably 9% to 12%.
- Polypropylene resin II satisfying such a relationship is referred to as polypropylene resin II ⁇ .
- the difference (D M ) of the polypropylene resin II ⁇ is, for example, ⁇ 1% to less than 2%, preferably 0% to 1.9%, more preferably 0.1% to 1.5%.
- the resin I and the resin II ⁇ used in such a combination include the resin A and the resin B2 and the resin A ′ and the resin B′2 described above.
- the content of polypropylene resin I is, for example, 50% by mass or more and 90% by mass with respect to 100% by mass in total of polypropylene resin I and polypropylene resin II. Or less, preferably 55% by mass or more and 80% by mass or less, more preferably 60% by mass or more and 70% by mass or less, and the content of the polypropylene resin II is 100% by mass with respect to the total of the polypropylene resin I and the polypropylene resin II.
- the total content of polypropylene resin I and polypropylene resin II is, for example, 100% by mass of polypropylene resin contained in the polypropylene film of this embodiment. It is 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
- the polypropylene film of the present embodiment can further contain other resins other than the polypropylene resin (hereinafter also referred to as “other resins”).
- the “other resin” is generally a resin other than a polypropylene resin, and is not particularly limited as long as the polypropylene film of the present embodiment can be obtained.
- resins include, for example, polyolefins other than polypropylene, such as polyethylene, poly (1-butene), polyisobutene, poly (1-pentene), poly (1-methylpentene), ethylene-propylene copolymers, propylene -Copolymers of ⁇ -olefins such as butene copolymers and ethylene-butene copolymers, vinyl monomers such as styrene-butadiene random copolymers, random copolymers of diene monomers, styrene-butadiene -Vinyl monomers such as styrene block copolymers-Diene monomers-Random copolymers of vinyl monomers and the like are included.
- polyolefins other than polypropylene such as polyethylene, poly (1-butene), polyisobutene, poly (1-pentene), poly (1-methylpentene), ethylene-propylene copolymers, propy
- the polypropylene film of this embodiment can contain such other resins in an amount that does not adversely affect the polypropylene film of this embodiment.
- the polypropylene film of the present embodiment may contain other resin, preferably 10 parts by weight or less, more preferably 5 parts per 100 parts by weight of the polypropylene resin contained in the polypropylene film of the present embodiment. It may contain up to parts by weight.
- the polypropylene film of this embodiment can further contain an additive.
- the “additive” is generally an additive used for a polypropylene resin, and is not particularly limited as long as the polypropylene film of the present embodiment can be obtained.
- Additives include, for example, necessary stabilizers such as antioxidants, chlorine absorbers and ultraviolet absorbers, lubricants, plasticizers, flame retardants, antistatic agents, colorants and the like.
- the polypropylene resin for producing the polypropylene film of this embodiment can contain such an additive in an amount that does not adversely affect the polypropylene film of this embodiment.
- the “antioxidant” is generally called an antioxidant and is not particularly limited as long as it is used for polypropylene and can obtain the polypropylene film of the present embodiment.
- Antioxidants are generally used for two purposes. One purpose is to suppress thermal deterioration and oxidation deterioration in the extruder, and the other purpose is to contribute to the suppression of deterioration and the improvement of capacitor performance in long-term use as a capacitor film.
- An antioxidant that suppresses thermal degradation and oxidative degradation in the extruder is also referred to as a “primary agent”, and an antioxidant that contributes to improving capacitor performance is also referred to as a “secondary agent”.
- antioxidants Two types of antioxidants may be used for these two purposes, or one type of antioxidant may be used for the two purposes.
- the polypropylene resin for producing the polypropylene film of the present embodiment is based on the polypropylene resin (100 parts by weight) as a primary agent, for example, 2,6-ditertiary.
- Lee-butyl-para-cresol (generic name: BHT) can be contained in an amount of about 1000 ppm to 4000 ppm. Most of the antioxidant for this purpose is consumed in the molding process in the extruder, and hardly remains in the film after film formation (generally, the residual amount is less than 100 ppm).
- a hindered phenol-based antioxidant having a carbonyl group can be used.
- the “hindered phenol-based antioxidant having a carbonyl group” is usually a hindered phenol-based antioxidant having a carbonyl group, and is not particularly limited as long as the polypropylene film of this embodiment can be obtained.
- hindered phenol-based antioxidant having a carbonyl group for example, triethylene glycol-bis [3- (3-tertiary-butyl-5-methyl-4-hydroxyphenyl) propionate] (trade name: Irganox 245 ), 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (trade name: Irganox 259), pentaerythryl tetrakis [3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (trade name: Irganox 1010), 2,2-thio-diethylenebis [3- (3,5-di-tertiary-butyl-4- Hydroxyphenyl) propionate] (trade name: Irganox 1035), octadecyl 3- (3,5-di-tertiary-butyl-4-hydroxyphenyl) propionate] (
- the polypropylene resin for producing the polypropylene film of this embodiment is based on the polypropylene resin as a reference (100 parts by weight), and hindered phenol-based antioxidants having a carbonyl group are from 5000 ppm (mass basis) to 7000 ppm (mass basis). It is preferable to contain below, and it is more preferable to contain 5500 ppm (mass basis) or more and 7000 ppm (mass basis) or less.
- the polypropylene resin for producing the polypropylene film of this embodiment may contain the antioxidant in the above amount. preferable.
- the polypropylene resin for producing the polypropylene film of this embodiment does not contain a primary agent, more hindered phenolic antioxidants having a carbonyl group can be used. Since consumption of the hindered phenolic antioxidant having a carbonyl group increases in the extruder, the polypropylene resin has a hindered phenolic antioxidant having a carbonyl group based on the polypropylene resin (100 parts by weight). It is preferable to contain 6000 ppm (mass basis) or more and 8000 ppm (mass basis) or less.
- the polypropylene film of this embodiment preferably contains one or more hindered phenol antioxidants (secondary agents) having a carbonyl group for the purpose of suppressing deterioration that progresses with time during long-term use.
- the content in the film is preferably 4000 ppm (mass basis) or more and 6000 ppm (mass basis) or less based on the polypropylene resin (100 parts by weight). Yes, and more preferably 4500 ppm (mass basis) or more and 6000 ppm (mass basis) or less.
- the content in the film is preferably 4000 ppm (mass basis) or more and 6000 ppm (mass basis) or less from the viewpoint of appropriate effects.
- the polypropylene resin undergoes thermal deterioration (oxidation deterioration) and shear deterioration.
- the degree of progress of such deterioration is caused by the nitrogen purge (suppression of oxidation) in the extruder, the screw shape (shearing force) in the extruder, and the internal shape (shear) of the T die when cast. Force), the amount of antioxidant added (suppression of oxidation), the winding speed during casting (extension force), and the like.
- chlorine absorbent is generally called a chlorine absorbent and is not particularly limited as long as it is used for polypropylene and the polypropylene film of this embodiment can be obtained.
- examples of the chlorine absorbent include metal soaps such as calcium stearate.
- ultraviolet absorber is not particularly limited as long as it is normally used for polypropylene.
- ultraviolet absorbers include benzotriazole (such as Tinuvin 328 manufactured by BASF), benzophenone (such as Cysorb UV-531 manufactured by Cytec), and hydroxybenzoate (such as UV-CHEK-AM-340 manufactured by Ferro).
- “Lubricant” is not particularly limited as long as it is usually used for polypropylene.
- examples of lubricants include primary amides (such as stearic acid amides), secondary amides (such as N-stearyl stearic acid amides), ethylene bisamides (such as N, N'-ethylene bisstearic acid amides), and the like.
- Plasticizer is not particularly limited as long as it is usually used for polypropylene.
- a plasticizer a polypropylene random copolymer etc. can be illustrated, for example.
- “Flame retardant” is not particularly limited as long as it is usually used for polypropylene.
- Examples of the flame retardant include halogen compounds, aluminum hydroxide, magnesium hydroxide, phosphates, borates, and antimony oxides.
- the “antistatic agent” is not particularly limited as long as it is usually used for polypropylene.
- examples of the antistatic agent include glycerin monoester (glycerin monostearate and the like), ethoxylated secondary amine and the like.
- the “colorant” is not particularly limited as long as it is usually used for polypropylene.
- Examples of the colorant include cadmium and chromium-containing inorganic compounds to azo and quinacridone organic pigments.
- the method for producing the polypropylene film of the present embodiment is not limited to the following, but for example, the following steps 1 to 4: (1) Step 1 for heating and melting a resin composition containing a polypropylene raw resin, (2) Step 2 for extruding the heat-melted resin composition, (3) Step 3 of cooling and solidifying the extruded resin composition to obtain a cast original fabric sheet, and (4) Step 4 of stretching the cast original fabric sheet in the flow direction and the width direction.
- Step 1 for heating and melting a resin composition containing a polypropylene raw resin
- Step 2 for extruding the heat-melted resin composition
- Step 3 of cooling and solidifying the extruded resin composition to obtain a cast original fabric sheet
- Step 4 of stretching the cast original fabric sheet in the flow direction and the width direction.
- the transverse stretching temperature when stretching in the width direction in Step 4 is more than 140 ° C. and 180 ° C. or less
- the stretching angle is more than 8 ° and less than 14 °. preferable.
- Polypropylene raw material resins including, for example, the above-described polypropylene resin A, polypropylene resin B, and polypropylene resin C, or the above-described polypropylene resin I and polypropylene resin II
- the method for producing the polypropylene resin is not particularly limited as long as the polypropylene film of the present embodiment is finally obtained using the produced polypropylene resin. Examples of such a polymerization method include a gas phase polymerization method, a bulk polymerization method, and a slurry polymerization method.
- the polymerization may be single-stage (one-stage) polymerization using one polymerization reactor, or may be multi-stage polymerization using at least two polymerization reactors. Furthermore, hydrogen or comonomer may be added to the reactor as a molecular weight regulator.
- the catalyst is not particularly limited as long as a generally known Ziegler-Natta catalyst can be used and the polypropylene film of the present embodiment can be finally obtained.
- the catalyst can also contain a promoter component and a donor.
- the molecular weight, molecular weight distribution, stereoregularity, and the like can be controlled by adjusting the catalyst and polymerization conditions.
- D M “Differential distribution value difference (D M )” is, for example, adjusting the polymerization conditions to adjust the molecular weight distribution, using a decomposing agent, selectively decomposing high molecular weight components, and / or The desired value can be adjusted by mixing resins having different molecular weights.
- a method using a polymerization catalyst which will be described later, is preferable because the molecular weight distribution and the composition of the molecular weight can be easily adjusted.
- Examples of a method for obtaining a polypropylene resin by a multistage polymerization reaction include the following methods.
- the polymerization reaction is performed at a high temperature using a plurality of reactors of a high molecular weight polymerization reactor and a low molecular weight or medium molecular weight polymerization reactor.
- the high molecular weight component and the low molecular weight component of the product resin are adjusted regardless of the order in the reactor.
- propylene and a catalyst are supplied to the first polymerization reactor.
- hydrogen as a molecular weight modifier is mixed in an amount necessary to reach the required polymer molecular weight.
- the reaction temperature is about 70 to 100 ° C.
- the residence time is about 20 to 100 minutes.
- Multiple reactors can be used, for example, in series, in which case the polymerization product of the first step is sent continuously to the next reactor along with additional propylene, catalyst, molecular weight modifier, followed by Thus, the second polymerization in which the molecular weight is adjusted to a low molecular weight or a high molecular weight in the first polymerization step is performed.
- the yield (production amount) of the first and second reactors By adjusting the yield (production amount) of the first and second reactors, the composition (configuration) of the high molecular weight component and the low molecular weight component can be adjusted.
- a general Ziegler-Natta catalyst is preferable. Further, a promoter component and a donor may be included. The molecular weight distribution can be controlled by appropriately adjusting the catalyst and polymerization conditions.
- a method by peroxidation treatment with a decomposing agent such as hydrogen peroxide or organic peroxide is preferable.
- a peroxide When a peroxide is added to a collapsible polymer such as polypropylene, a hydrogen abstraction reaction occurs from the polymer, and the resulting polymer radical partially recombines to cause a crosslinking reaction, but most radicals undergo secondary decomposition ( ⁇ cleavage). ) And is divided into two polymers having smaller molecular weights. Therefore, decomposition proceeds with a high probability from the high molecular weight component, so that the low molecular weight component increases and the structure of the molecular weight distribution can be adjusted. Examples of the method for obtaining a resin containing a moderately low molecular weight component by peroxide decomposition include the following methods.
- 1,3-bis- (tertiary-butyl peroxide isopropyl) -benzene or the like as an organic peroxide is added to the polymer powder or pellets of the polypropylene resin obtained by the polymerization reaction in an amount of 0.001% by mass to 0.5%. It is adjusted and added while taking into consideration the composition (configuration) of the target high molecular weight component and low molecular weight component. Subsequently, the composition of the molecular weight distribution can be adjusted by melt-kneading them at a temperature of about 180 ° C. to 300 ° C. with a melt-kneader.
- At least two kinds of resins having different molecular weights may be dry mixed or melt mixed.
- an additive resin having a weight average molecular weight higher or lower than the weight average molecular weight of the main resin is added to the main resin at a ratio of about 1 to 40% by mass based on the total amount of the main resin and the added resin. Is preferable because it is easy to adjust the amount of the low molecular weight component.
- melt flow rate may be used as a measure of the average molecular weight.
- the difference in MFR between the main resin and the additive resin is preferably about 1 to 30 g / 10 minutes from the viewpoint of convenience during adjustment.
- the method of mixing these raw resins is not particularly limited, and any method may be used. Examples thereof include a method of dry blending polymer powders or pellets of each raw material resin using a mixer or the like, a method of supplying a kneader and melt-kneading to obtain a blend resin.
- any of a single screw type, a biaxial screw type, or a triaxial or more multi-screw type may be used.
- a screw type having two or more axes either a kneading type rotating in the same direction or rotating in a different direction may be used.
- the kneading temperature is not particularly limited as long as good kneading can be obtained.
- the kneading temperature is generally 200 ° C. to 300 ° C., preferably 230 ° C. to 270 ° C.
- the kneading temperature is not more than the above upper limit, it is preferable because deterioration of the resin is easily suppressed.
- the kneader may be purged with an inert gas such as nitrogen.
- Mixed polypropylene raw material resin pellets can be obtained by pelletizing the melt-kneaded resin to an appropriate size using a generally known granulator.
- the total ash due to the polymerization catalyst residue contained in the polypropylene raw resin is as small as possible in order to improve the electrical characteristics of the polypropylene film of this embodiment.
- the total ash content is preferably 50 ppm or less, more preferably 40 ppm or less, and particularly preferably 30 ppm or less, based on the polypropylene resin (100 parts by weight).
- the “cast raw sheet” which is a sheet before stretching for producing the biaxially stretched polypropylene film of the present embodiment, uses, for example, the polypropylene raw resin produced as described above.
- Step 1 for heating and melting a resin composition containing a polypropylene raw resin (2) Step 2 for extruding the heat-melted resin composition, and (3) Step 3 for cooling and solidifying the extruded resin composition to obtain a cast original fabric sheet, thereby producing a cast original fabric sheet. can do.
- polypropylene resin pellets, dry-mixed polypropylene resin pellets (and / or polymerized powder), or mixed polypropylene resin pellets prepared by melt-kneading in advance are supplied to an extruder and heated and melted ( Step 1) After passing through a filtration filter, it is preferably melted by heating to 170 ° C. to 320 ° C., more preferably 200 ° C. to 300 ° C. and melt extrusion from the T-die (Step 2), preferably 92 ° C. to 105 ° C.
- the cast original fabric sheet can be formed by cooling and solidifying with at least one held metal drum (step 3).
- the ⁇ crystal fraction of the cast original fabric sheet can be set within a preferable range, and the desired physical properties of this embodiment can be affected.
- the ⁇ crystal fraction is preferably 1% or more and 50% or less, more preferably 5% or more and 30% or less, and still more preferably 5% or more and 20% or less as measured by the X-ray method. This value is a value when no ⁇ crystal nucleating agent is included.
- the range of the ⁇ crystal fraction described above is preferable because it easily satisfies both the physical properties of the capacitor characteristics and the element winding workability.
- the ⁇ crystal fraction is obtained by X-ray diffraction intensity measurement, and can be calculated by the method described in “A. Turner-Jones et al., Makromol. Chem., 75, 134 (1964)”. Can be called the K value. That is, the ratio of the ⁇ crystal is expressed by the ratio of the sum of the heights of the three diffraction peaks derived from the ⁇ crystal and the single diffraction peak derived from the ⁇ crystal.
- the thickness of the cast original sheet is not particularly limited as long as the polypropylene film of the present embodiment can be obtained, but is preferably 0.05 mm to 2 mm, more preferably 0.1 mm to 1 mm.
- the polypropylene film of this embodiment can be manufactured by extending
- the cast raw sheet is first maintained at a temperature of about 100 to 160 ° C. (longitudinal stretching temperature) and passed between rolls provided with a speed difference 3 to 7 times (longitudinal). (Drawing ratio) and immediately cooled to room temperature. Subsequently, the stretched film is guided to a tenter and stretched at a stretching angle of 8.5 to 13.5 ° (transverse stretching angle) at a temperature of 150 ° C. or more (transverse stretching temperature) 3 to 11 times in the width direction (transverse stretching) The film is stretched to the extent of (magnification), then relaxed and heat-set, and wound up. The wound film can be cut to a desired product width after being subjected to an aging treatment in an atmosphere of about 20 to 45 ° C.
- the transverse stretching angle, and edge P x of one of the width direction of the stretched film at the start of the transverse stretching, the width direction of the stretched film at the end of the transverse stretching (the same side as the P x)
- the rate, relaxation temperature, and the like are parameters that affect the desired physical properties of this embodiment (thickness is 1.0 to 3.0 ⁇ m and molecular orientation coefficient ⁇ Nx is 0.013 to 0.016). By adjusting these appropriately, the polypropylene film of this embodiment can be obtained more easily.
- the longitudinal stretching ratio, the transverse stretching temperature, and the transverse stretching angle are parameters that particularly affect the desired physical properties of the present embodiment. An example of the adjustment range for some of these is shown below. However, in the present embodiment, the parameters are not limited to the following ranges.
- the longitudinal stretching temperature is preferably 120 to 150 ° C, more preferably 125 to 142 ° C, and still more preferably 128 to 140 ° C, from the viewpoint that the desired physical properties of this embodiment can be easily provided.
- the transverse stretch angle is preferably 8.5 ° to 13.5 °, more preferably 9 ° to 13.5 °, and still more preferably. Is from 10 ° to 13.5 °, particularly preferably from 10.5 ° to 13 °, very particularly preferably from 10.5 ° to 12 °.
- the lateral stretching temperature is preferably more than 140 ° C. and 180 ° C.
- the transverse stretching temperature is preferably more than 140 ° C. and less than 165 ° C., more preferably 150 ° C. or more and less than 160 ° C., and still more preferably. It is 153 ° C. or higher and lower than 160 ° C., particularly preferably 155 ° C. or higher and 159 ° C.
- the transverse stretching temperature is preferably 159 ° C. or higher and 180 ° C. or lower, more preferably 160 ° C. or higher and 175 ° C. or lower, and still more preferably 161 It is not less than 170 ° C. and particularly preferably not less than 161 ° C. and not more than 167 ° C., and very preferably not less than 162 ° C. and not more than 165 ° C.
- the transverse stretching temperature is raised, ⁇ Nx tends to increase, and when the transverse stretching temperature is lowered, ⁇ Nx tends to fall.
- the lateral stretch ratio is preferably 5 to 11 times, more preferably 7 to 11 times, and still more preferably 9 to 11 times.
- the polypropylene film of this embodiment can be produced by such a stretching process. It is preferable that the surface of the polypropylene film of the present embodiment is imparted with an appropriate surface roughness that improves the winding properties and also improves the capacitor characteristics.
- the thickness of the polypropylene film of the present embodiment is 1.0 to 3.0 ⁇ m from the viewpoint of obtaining a biaxially stretched polypropylene film that is a thin film but excellent in long-term durability under high temperature and high voltage, film quality and productivity. is there.
- the thickness of the biaxially stretched polypropylene film of the present embodiment is preferably 1.2 ⁇ m or more, more preferably 1.5 ⁇ m or more, and even more preferably from the viewpoint of mechanical strength, dielectric breakdown strength, and the like. It is 9 ⁇ m or more, and particularly preferably 2.0 ⁇ m or more.
- the thickness is preferably 2.9 ⁇ m or less, more preferably 2.7 ⁇ m or less, further preferably 2.5 ⁇ m or less, particularly preferably from the viewpoint of facilitating miniaturization and high capacity of the capacitor. Is 2.4 ⁇ m or less.
- the thickness of the biaxially stretched polypropylene film is measured according to JIS-C2330 using a micrometer (JIS-B7502). The tendency of the relationship between the thickness of the polypropylene film and ⁇ Nx varies depending on the type of resin and its physical properties, longitudinal and lateral stretching ratios, longitudinal and lateral stretching temperatures, lateral stretching angles, and the like.
- the biaxially stretched polypropylene film of the present embodiment preferably has a total (T MD + T TD ) of tensile strength in the MD direction (T MD ) and tensile strength in the TD direction (T TD ) of 450 MPa or more. More preferably, it is more preferably 480 MPa or more.
- the tensile strength of the polypropylene film of this embodiment is a value obtained by the measurement method described in the examples.
- the total tensile strength of the polypropylene film of the present embodiment is preferably not more than 700 MPa, more preferably at most 600 MPa, more preferably at most 540 MPa, 520 MPa It is particularly preferred that When the total of the tensile strength in the MD direction and the tensile strength in the TD direction of the polypropylene film at 23 ° C. (described in JIS-C2151), which is the measurement temperature, is within the above preferred ranges, the tensile strength at high temperatures is also compared. Become bigger. Therefore, even if it is used for a long time at high temperature, it can suppress that a crack etc. arise.
- the ratio of the tensile strength in the TD direction and the tensile strength in the MD direction (T TD / TMD ) of the tensile strength of the polypropylene film of the present embodiment is preferably 2.00 or less, more preferably 1.90 or less, 1.80 or less is more preferable, and 1.75 or less is particularly preferable. Further, T TD / T MD is preferably at least 1.00, more preferably 1.10 or more, more preferably 1.50 or more, still more preferably 1.60 or more, particularly preferably 1.65 or more.
- T TD / TMD When T TD / TMD is within the above preferred ranges, the tensile strength in the width direction is large while having a tensile strength that is relatively balanced in two orthogonal directions. For this reason, in the molding process, the molding failure is suppressed due to unstretched parts and undrawn portions, and the continuous productivity is further improved.
- the biaxially stretched polypropylene film of this embodiment preferably has a total elongation (E MD + E TD ) of 100% or more in the MD direction breaking elongation (E MD ) and the TD direction breaking elongation (E TD ), It is more preferably 130% or more, further preferably 180% or more, and particularly preferably 190% or more.
- the breaking elongation of the polypropylene film of this embodiment is a value obtained by the measurement method described in the examples.
- the total (E MD + E TD ) of the elongation at break of the polypropylene film of the present embodiment is preferably 300% or less, more preferably 250% or less, and further preferably 220% or less. It is preferably 200% or less.
- the ratio of the breaking elongation in the TD direction to the breaking elongation in the MD direction (E TD / E MD ) of the breaking elongation of the polypropylene film of the present embodiment is preferably 0.95 or less, more preferably 0.7 or less.
- E TD / E MD is preferably 0.2 or more, more preferably 0.35 or more, further preferably 0.4 or more, still more preferably 0.45 or more, and particularly preferably 0.47 or more.
- the biaxially stretched polypropylene film of the present embodiment preferably has a sum of the tensile elastic modulus (M MD ) in the MD direction and the tensile elastic modulus (M TD ) in the TD direction (M MD + M TD ) of 3 GPa or more. More preferably, it is more preferably 5.5 GPa or more, and particularly preferably 6 GPa or more.
- the tensile elastic modulus of the polypropylene film of the present embodiment is a value obtained by the measurement method described in the examples.
- the total (M MD + M TD ) of the tensile elastic modulus of the polypropylene film of the present embodiment is preferably 10 GPa or less, more preferably 9 GPa or less, further preferably 8 GPa or less, 7 It is particularly preferable that the pressure be 5 GPa or less.
- the total of the tensile modulus in the MD direction and the tensile modulus in the TD direction of the polypropylene film at 23 ° C. (described in JIS-K7127), which is the measurement temperature, is within the above preferred ranges, the tensile elasticity at high temperatures The rate is also relatively large. Therefore, even if it is used for a long time at high temperature, it can suppress that a crack etc. arise.
- the ratio of the tensile elastic modulus in the TD direction and the tensile elastic modulus in the MD direction (M TD / M MD ) of the tensile elastic modulus of the polypropylene film of the present embodiment is preferably 1.8 or less, more preferably 1.7 or less. 1.6 or less is more preferable, and 1.55 or less is particularly preferable. Further, M TD / M MD is preferably 0.85 or more, more preferably 1.0 or more, further preferably 1.3 or more, and particularly preferably 1.4 or more.
- the tensile elastic modulus in the width direction is large while having a tensile elastic modulus relatively balanced in the two orthogonal directions. For this reason, in the molding process, the molding failure is suppressed due to unstretched parts and undrawn portions, and the continuous productivity is further improved.
- the polypropylene film of this embodiment preferably has a surface roughness of 0.03 ⁇ m or more and 0.08 ⁇ m or less in terms of centerline average roughness (Ra) on at least one surface, and a maximum height (Rz). Or also called Rmax in the old JIS definition), it is preferable that the surface is finely roughened to 0.6 ⁇ m or more and 1.1 ⁇ m or less.
- Ra and Rmax are in the above-described preferable ranges, the surface can be a finely roughened surface, and during capacitor processing, it is difficult to cause winding wrinkles in element winding processing, and the surface can be preferably wound up. it can. Furthermore, since uniform contact can be made between the films, the voltage resistance and the voltage resistance over a long period of time can be improved.
- Ra and Rmax are, for example, stylus type surface roughness that is generally widely used by the method defined in JIS-B0601: 2001, etc. The value measured using a meter (for example, a stylus type surface roughness meter using a diamond needle or the like). More specifically, “Ra” and “Rmax” are, for example, a method defined in JIS-B0601: 2001 using a three-dimensional surface roughness meter Surfcom 1400D-3DF-12 manufactured by Tokyo Seimitsu Co., Ltd. It can be determined in compliance.
- various known roughening methods such as an embossing method and an etching method can be adopted, and among them, a ⁇ crystal that does not need to be mixed with impurities is used.
- a roughening method is preferred.
- the production rate of ⁇ crystals can be generally controlled by changing the casting temperature and the casting speed.
- the melting / transition ratio of the ⁇ crystal can be controlled by the roll temperature in the longitudinal stretching process, and fine roughening can be achieved by selecting optimum production conditions for these two parameters of ⁇ crystal formation and its melting / transition. Surface property can be obtained.
- the polypropylene film of this embodiment has high initial voltage resistance and excellent long-term voltage resistance. Furthermore, since it can be made very thin, it is easy to develop a high capacitance. Therefore, it can be very suitably used for a small capacitor having a high capacity of 5 ⁇ F or more, preferably 10 ⁇ F or more, more preferably 20 ⁇ F or more.
- the polypropylene film of this embodiment can be subjected to a corona discharge treatment online or offline after the stretching and heat setting steps for the purpose of enhancing the adhesive properties in the subsequent steps such as a metal deposition process.
- the corona discharge treatment can be performed using a known method.
- As the atmospheric gas it is preferable to use air, carbon dioxide gas, nitrogen gas, and a mixed gas thereof.
- the present embodiment also provides a metallized film having a metal film on one or both sides of the polypropylene film of the present embodiment.
- the metallized film of this embodiment will be described in detail.
- the capacitor obtained by winding the metallized film of this embodiment is excellent in long-term durability under high temperature and high voltage.
- the polypropylene film of this embodiment can be provided with electrodes on one or both sides for processing as a capacitor.
- Such an electrode is not particularly limited as long as the objective capacitor of the present invention can be obtained, and an electrode usually used for manufacturing a capacitor can be used.
- Examples of the electrode include metal foil, paper having at least one side metalized, and a plastic film.
- the capacitor is further required to be smaller and lighter, it is preferable to form an electrode by directly metalizing one or both sides of the film of this embodiment.
- the metal used for example, simple metals such as zinc, lead, silver, chromium, aluminum, copper, and nickel, a mixture of plural kinds thereof, and alloys thereof can be used. In consideration of the capacitor performance and the like, zinc and aluminum are preferable.
- a vacuum deposition method and a sputtering method can be exemplified, and the method is not particularly limited as long as the capacitor intended by the present invention can be obtained.
- the vacuum deposition method is preferable.
- a vacuum deposition method a crucible method, a wire method, etc. can be generally exemplified, but it is not particularly limited as long as a capacitor intended by the present invention can be obtained, and an optimum one can be selected as appropriate. .
- the film resistance of the metal vapor deposition film is preferably about 1 to 100 ⁇ / ⁇ from the viewpoint of the electrical characteristics of the capacitor. A higher value within this range is desirable from the viewpoint of self-healing (self-healing) characteristics, and the film resistance is more preferably 5 ⁇ / ⁇ or more, and further preferably 10 ⁇ / ⁇ or more. From the viewpoint of safety as a capacitor, the membrane resistance is more preferably 50 ⁇ / ⁇ or less, and further preferably 30 ⁇ / ⁇ or less.
- the film resistance of a metal vapor deposition film can be measured during metal vapor deposition, for example, by a four-terminal method known to those skilled in the art.
- the film resistance of the metal vapor deposition film can be adjusted by adjusting the evaporation amount by adjusting the output of the evaporation source, for example.
- an insulating margin is formed without depositing a certain width from one end of the film so that a capacitor is formed when the film is wound. Furthermore, in order to strengthen the bonding between the metallized polypropylene film and the metallicon electrode, it is preferable to form a heavy edge structure at the end opposite to the insulation margin, and the film resistance of the heavy edge is usually about 1 to 8 ⁇ / ⁇ . It is preferably about 1 to 5 ⁇ / ⁇ .
- the thickness of the metal film is not particularly limited, but is preferably 1 to 200 nm.
- the margin pattern of the metal vapor deposition film to be formed is not particularly limited, but is preferably a pattern including a so-called special margin such as a fish net pattern or a T margin pattern from the viewpoint of improving characteristics such as the safety of the capacitor. .
- a metal vapor deposition film is formed on one side of the polypropylene film of this embodiment with a pattern including a special margin, the safety of the obtained capacitor is improved, and it is also effective in terms of capacitor destruction, short-circuit suppression, etc., which is preferable. .
- a known method such as a tape method in which masking is performed with a tape at the time of vapor deposition or an oil method in which masking is performed by application of oil can be used without any limitation.
- the metallized film of the present embodiment can be processed into a capacitor of the present embodiment, which will be described later, through a winding process in which the film is wound along the lengthwise direction of the film. That is, two metallized films of the present embodiment are paired and wound so that metal vapor deposition films and polypropylene films are alternately laminated. Then, a capacitor is obtained by forming a pair of metallicon electrodes on both end faces by metal spraying to produce a film capacitor.
- the present invention provides a capacitor including the metallized film of the present embodiment.
- the capacitor of this embodiment will be described in detail.
- film winding is performed.
- a pair of the present embodiments such that the metal film in the metallized film of the present embodiment and the polypropylene film of the present embodiment are alternately laminated, and further, the insulating margin portion is on the opposite side.
- the metallized film of the form is overlapped and wound.
- it is preferable that two pairs of metallized films of the present embodiment are laminated with a shift of 1 to 2 mm.
- the winding machine to be used is not particularly limited, and for example, an automatic winder 3KAW-N2 manufactured by Minato Seisakusho Co., Ltd. can be used.
- the obtained wound product is usually pressed. Press to promote capacitor tightening and element molding.
- the optimum value of the applied pressure varies depending on the thickness of the polypropylene film of the present embodiment, but is, for example, 2 to 20 kg / cm 2 .
- a metallized electrode is provided by spraying metal on both end faces of the wound material to produce a capacitor.
- the capacitor is further subjected to a predetermined heat treatment.
- the present embodiment includes a step of subjecting the capacitor to heat treatment at a temperature of 80 to 125 ° C. under a vacuum of 1 hour or longer (hereinafter sometimes referred to as “thermal aging”).
- the temperature of the heat treatment is usually 80 ° C. or higher, preferably 90 ° C. or higher.
- the temperature of the heat treatment is usually 130 ° C. or lower, preferably 125 ° C. or lower.
- the temperature of the heat treatment When the temperature of the heat treatment is lower than the predetermined temperature, the above effect due to thermal aging cannot be obtained sufficiently. On the other hand, when the temperature of the heat treatment is higher than a predetermined temperature, the polypropylene film may be thermally decomposed or oxidized and deteriorated.
- a method of performing heat treatment on the capacitor for example, a known method including a method using a thermostatic bath or a method using high-frequency induction heating in a vacuum atmosphere may be appropriately selected. Specifically, it is preferable to employ a method using a thermostatic bath.
- the time for performing the heat treatment is preferably 1 hour or more, more preferably 10 hours or more from the viewpoint of obtaining mechanical and thermal stability, but it prevents molding defects such as thermal wrinkles and molding. In this respect, it is more preferable that the time be 20 hours or less.
- a lead wire is usually welded to the metallicon electrode of a capacitor subjected to heat aging.
- the capacitor according to the present embodiment is a small and large-capacity capacitor based on the metallized film according to the present embodiment, and has high withstand voltage at high temperature and long-term durability at high temperature and high voltage. .
- Measuring machine manufactured by Tosoh Corporation, differential refractometer (RI) built-in high temperature GPC HLC-8121GPC / HT type column: manufactured by Tosoh Corporation, TSKgel GMHhr-H (20) HT, connected column temperature: 145 ° C Eluent: Trichlorobenzene Flow rate: 1.0 ml / min
- RI differential refractometer
- GPC HLC-8121GPC / HT type column manufactured by Tosoh Corporation
- TSKgel GMHhr-H (20) HT connected column temperature: 145 ° C
- Eluent Trichlorobenzene Flow rate: 1.0 ml / min
- a calibration curve was prepared using standard polystyrene manufactured by Tosoh Corporation, and the measured molecular weight value was converted to a polystyrene value to obtain a weight average molecular weight (Mw) and a number average molecular weight (Mn).
- Mw weight average
- the mesopentad fraction was measured by dissolving the resin in a solvent and using a high-temperature Fourier transform nuclear magnetic resonance apparatus (high-temperature FT-NMR) under the following conditions.
- High-temperature nuclear magnetic resonance (NMR) apparatus JEOL Ltd., high-temperature Fourier transform nuclear magnetic resonance apparatus (high-temperature FT-NMR), JNM-ECP500 Observation nucleus: 13C (125MHz) Measurement temperature: 135 ° C
- the pentad fraction representing the degree of stereoregularity is a combination of a quintet (pentad) of
- Etc. was calculated as a percentage (%) from the integrated value of the intensity of each signal.
- attribution of each signal derived from mmmm, mrrm, etc. for example, the description of spectra such as “T. Hayashi et al., Polymer, 29, 138 (1988)” was referred to.
- melt flow rate (MFR) in the form of raw material resin pellets was measured according to the condition M of JIS K 7210 using a melt indexer manufactured by Toyo Seiki Co., Ltd. Specifically, first, a sample weighed to 4 g was inserted into a cylinder set at a test temperature of 230 ° C., and preheated for 3.5 minutes under a load of 2.16 kg. Thereafter, the weight of the sample extruded from the bottom hole in 30 seconds was measured to obtain MFR (g / 10 min). The above measurement was repeated three times, and the average value was taken as the MFR measurement value.
- the biaxially stretched polypropylene film after the aging treatment was cut into 50 mm ⁇ 50 mm to obtain a measurement sample.
- the angular dependence of the retardation value was measured in a room temperature environment of 0 to 30 ° C. by the following gradient method.
- the main axis in the in-plane direction of the film is the x-axis and y-axis
- the thickness direction of the film is the z-axis.
- the slow axis in the higher in-plane direction is the x-axis and the x-axis is the tilt axis, and tilted by 10 ° with respect to the z-axis in the range of 0 ° to 50 °.
- each retardation value of was calculated
- the measured retardation value R is divided by the thickness d subjected to the inclination correction, and each inclination angle is obtained.
- R / d for ⁇ was determined.
- the average value of the birefringence values ⁇ Nzy at ⁇ 20 °, 30 °, 40 °, and 50 ° was defined as the birefringence value ⁇ Nzy.
- ⁇ Nzy was divided from ⁇ Nxy obtained above to calculate a birefringence value ⁇ Nxz. More specifically, the light incident on the measurement sample through the polarizer and the quarter-wave plate is received by using a light receiving module including a CCD camera to which an array of polarizers having 16 angles is attached. By simultaneously measuring the received light intensity at the polarization angle (azimuth angle), the state of polarization (ellipticity of transmitted polarized light) by the sample was measured, and the retardation was calculated.
- the tensile strength of the polypropylene film was measured according to JIS-C2151.
- the measurement direction was the MD direction (flow direction) and the TD direction (width direction).
- the temperature during the measurement was 23 ° C.
- the center line average roughness (Ra) and Rmax (formerly JIS definition) of the biaxially stretched polypropylene film were determined by JIS-B0601 using a 3D surface roughness meter Surfcom 1400D-3DF-12 manufactured by Tokyo Seimitsu Co., Ltd.
- the contact method was used in accordance with a prescribed method. The measurement was performed 3 times, and the average value was obtained. Ra and Rmax were measured using a contact method, and the reliability of the values was confirmed by a non-contact method value as necessary.
- Continuous productivity Film production is started using a biaxial stretching device set to a predetermined thickness, and continuous film formation is possible from when the obtained film thickness reaches the target thickness ⁇ 2% until the film breaks. Time (hereinafter also referred to as “continuous film formation time”) was measured. In addition, when the thickness reached the target thickness ⁇ 2%, the film was cut out and measured by using a micrometer (JIS-B7502) in accordance with JIS-C2330. Based on the obtained continuous film formation time, continuous productivity was evaluated according to the following evaluation criteria. (Evaluation criteria for continuous productivity) A: Even if it exceeded 8 hours, the film could be formed without stretching. B: The film could be formed without stretching and breaking in more than 1 hour and less than 8 hours. C: The film was stretched and broken within 1 hour, and film formation exceeding 1 hour was impossible.
- a capacitor for measuring the capacitance was produced as follows. A T margin vapor deposition pattern was applied to the biaxially stretched polypropylene films obtained in Examples and Comparative Examples described later using aluminum vapor deposition so that the vapor deposition resistance was 15 ⁇ / ⁇ to obtain a metallized film. After slitting to a width of 60 mm, the two metallized films were combined, and 1076 turns were wound using an automatic winder 3KAW-N2 manufactured by Minato Seisakusho Co., Ltd. at a winding tension of 250 g. The element wound element was heat-treated at 120 ° C. for 15 hours while being pressed, and then sprayed with zinc metal on the element end face to obtain a flat capacitor.
- the initial capacitance (C 0 ) of the obtained capacitor before the test was measured using an LCR high tester 3522-50 manufactured by Hioki Electric Co., Ltd.
- the capacitor was continuously loaded with a voltage per unit thickness of DC 300 V / ⁇ m for 1000 hours.
- the capacity (C 1000 ) of the device after 1000 hours was measured with an LCR high tester, and the capacity change rate ( ⁇ C) before and after voltage loading was calculated.
- the capacity change rate is calculated by the following equation.
- the capacity change rate after 1000 hours was evaluated by the average value of two capacitors.
- the capacity change rate after 1000 hours is preferably in the range of 0 to -5%.
- the initial capacitance of the capacitor produced using the polypropylene film of Example 1 described later was 75 ⁇ F.
- the initial capacitance of the capacitors produced using the polypropylene films of Examples 2 to 10 was almost the same as that of Example 1.
- Example 1 The unstretched cast original sheet 1 obtained in Production Example 1 was kept at a temperature of 140 ° C., passed between rolls provided with a speed difference, stretched 4.5 times in the flow direction, and immediately cooled to room temperature. Subsequently, after the stretched film obtained by stretching the cast original sheet 1 in the flow direction is guided to a tenter and stretched 10 times in the width direction at a stretching angle of 11 ° and a transverse stretching temperature of 158 ° C., relaxation, heat Fixing was performed, and a biaxially stretched polypropylene film having a thickness of 2.3 ⁇ m was wound up.
- Example 2 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the thickness of the biaxially stretched polypropylene film was 2.4 ⁇ m.
- Example 3 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the thickness of the biaxially stretched polypropylene film was 2.5 ⁇ m.
- Example 4 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the thickness of the biaxially stretched polypropylene film was 2.8 ⁇ m.
- Example 5 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the transverse stretching temperature during stretching in the width direction was 156 ° C. and the thickness of the biaxially stretched polypropylene film was 2.0 ⁇ m.
- Example 6 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the cast original sheet was stretched 4.0 times in the flow direction and the transverse stretching temperature when stretching in the width direction was 156 ° C.
- Example 7 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the cast original fabric sheet was stretched 4.0 times in the flow direction and the thickness of the biaxially stretched polypropylene film was 2.5 ⁇ m.
- Example 8> A biaxially stretched polypropylene film was obtained in the same manner as in Example 5 except that the cast sheet was stretched 4.0 times in the flow direction.
- Example 9 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the stretching angle when stretching in the width direction was 9.0 ° and the transverse stretching temperature was 156 ° C.
- Example 10 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the unstretched cast original sheet 2 obtained in Production Example 2 was used and the transverse stretching temperature when stretching in the width direction was 165 ° C. It was.
- Example 11 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the unstretched cast original sheet 2 obtained in Production Example 2 was used and the transverse stretching temperature when stretching in the width direction was 167 ° C. It was.
- Example 5 A biaxially stretched polypropylene film was wound up in the same manner as in Example 5 except that the transverse stretching temperature when stretching in the width direction was 154 ° C. However, the winding length necessary to produce a capacitor could not be obtained due to stretch fracture, and evaluation with a capacitor could not be performed.
- Example 7 A biaxially stretched polypropylene film was wound up in the same manner as in Example 10 except that the transverse stretching temperature when stretching in the width direction was 158 ° C. However, the winding length necessary to produce a capacitor could not be obtained due to stretch fracture, and evaluation with a capacitor could not be performed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
本願は、2016年12月28日に出願された日本国特許出願第2016-256161号に基づく優先権の利益を主張するものである。当該日本国特許出願の開示は、援用によりその全体が本願に含まれるものとする。
本発明は、二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサに関する。
ポリプロピレン樹脂を含む二軸延伸ポリプロピレンフィルムであって、厚みが1.0~3.0μmであり、光学的複屈折測定により求めた進相軸方向に対する遅相軸方向の複屈折値ΔNxy及び厚み方向に対する遅相軸方向の複屈折値ΔNxzから次の式(1):
により算出される分子配向係数ΔNxが0.013~0.016である、二軸延伸ポリプロピレンフィルム
によって上記課題が解決されることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の好適な態様を含む。
〔1〕ポリプロピレン樹脂を含む二軸延伸ポリプロピレンフィルムであって、厚みが1.0~3.0μmであり、光学的複屈折測定により求めた進相軸方向に対する遅相軸方向の複屈折値ΔNxy及び厚み方向に対する遅相軸方向の複屈折値ΔNxzから次の式(1):
により算出される分子配向係数ΔNxが0.013~0.016である、二軸延伸ポリプロピレンフィルム。
〔2〕コンデンサ用である前記〔1〕に記載の二軸延伸ポリプロピレンフィルム。
〔3〕TD方向の引張弾性率とMD方向の引張弾性率の比率MTD/MMDが0.85以上1.8以下である前記〔1〕又は〔2〕に記載の二軸延伸ポリプロピレンフィルム。
〔4〕分子量分布曲線において対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差(DM)が、Log(M)=6.0のときの微分分布値を100%とすると、10%以上18%以下であるポリプロピレン樹脂Aを含む、前記〔1〕~〔3〕のいずれかに記載の二軸延伸ポリプロピレンフィルム。
〔5〕分子量分布曲線において対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差(DM)が、Log(M)=6.0のときの微分分布値を100%とすると、-1%以上10%未満であるポリプロピレン樹脂Bを含む、前記〔1〕~〔4〕のいずれかに記載の二軸延伸ポリプロピレンフィルム。
〔6〕前記〔1〕~〔5〕のいずれかに記載の二軸延伸ポリプロピレンフィルムの片面又は両面に金属膜を有する、金属化フィルム。
〔7〕前記〔6〕に記載の金属化フィルムを含む、コンデンサ。
〔8〕分子量分布曲線において対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差(DM)が、Log(M)=6.0のときの微分分布値を100%とすると、8%以上18%以下であるポリプロピレン樹脂Aを含む、前記〔1〕に記載の二軸延伸ポリプロピレンフィルム。
〔9〕分子量分布曲線において対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差(DM)が、Log(M)=6.0のときの微分分布値を100%とすると、-20%以上8%未満であるポリプロピレン樹脂Bを含む、前記〔1〕又は〔8〕に記載の二軸延伸ポリプロピレンフィルム。
〔10〕前記〔1〕、〔8〕又は〔9〕に記載の二軸延伸ポリプロピレンフィルムの片面又は両面に金属膜を有する、金属化フィルム。
〔11〕前記〔10〕に記載の金属化フィルムを含む、コンデンサ。
〔12〕コンデンサ用フィルムとして用いる、ポリプロピレン樹脂を含む二軸延伸ポリプロピレンフィルムであって、厚みが1.0~3.0μmであり、光学的複屈折測定により求めた進相軸方向に対する遅相軸方向の複屈折値ΔNxy及び厚み方向に対する遅相軸方向の複屈折値ΔNxzから次の式(1):
により算出される分子配向係数ΔNxが0.013~0.016である、二軸延伸ポリプロピレンフィルムの使用。
本明細書中において、「コンデンサ」なる表現は、「コンデンサ」、「コンデンサ素子」及び「フィルムコンデンサ」という概念を含む。
本実施形態の二軸延伸ポリプロピレンフィルムは、2層以上の複数層で構成されていてもよいが、単層で構成されていることが好ましい。
本実施形態の二軸延伸ポリプロピレンフィルムは、1.0~3.0μmという非常に厚さが小さい(薄い)場合における上記課題を達成したものであり、7μm、15μm、20μm等のような厚さの大きい二軸延伸ポリプロピレンフィルムについては想定されていない。
本実施形態の二軸延伸ポリプロピレンフィルムは、厚みが1.0~3.0μmであり、光学的複屈折測定により求めた進相軸方向に対する遅相軸方向の複屈折値ΔNxy及び厚み方向に対する遅相軸方向の複屈折値ΔNxzから次の式(1):
により算出される分子配向係数ΔNxが0.013~0.016である、二軸延伸ポリプロピレンフィルムである。本実施形態の二軸延伸ポリプロピレンフィルムを、以下において、「本実施形態のポリプロピレンフィルム」とも称する。上記特徴を有する本実施形態ポリプロピレンフィルムは、1.0~3.0μmと非常に薄い厚みを有するにもかかわらず、(a)製造時におけるフィルムの延伸不良が生じにくいためフィルム品質に優れ、且つ、(b)製造時におけるフィルムの破断が生じにくいため生産性に優れる。しかも、上記特徴を有する本実施形態のポリプロピレンフィルムを含むコンデンサは、当該フィルムの厚さが1.0~3.0μmと非常に薄いにもかかわらず、(c)高温下で高電圧を長期間負荷した後の容量低下が抑えられているため、高温高電圧下での長期耐用性に優れている。つまり、本実施形態のポリプロピレンフィルムは、高温高電圧下での長期耐用性に優れると共に、フィルム品質及び生産性に優れる。ここで、本明細書において、高温高電圧下での使用における長期耐用性に優れるとは、一例として、105℃又はそれ以上の温度環境下にて、コンデンサに直流300V/μmの単位厚み当たりの電圧を1000時間負荷し続けた後も容量変化率が抑えられていることが挙げられる。
分子配向係数ΔNxは、光学的複屈折測定により求めた進相軸方向に対する遅相軸方向の複屈折値ΔNxy及び厚み方向に対する遅相軸方向の複屈折値ΔNxzから次の式(1):
により算出される。なお、分子配向係数「ΔNx」は、単に「X」とも記載され得る。
[式中、Nxはx軸方向(遅相軸方向)の三次元屈折率を表し、Nyはy軸方向(進相軸方向)の三次元屈折率を表す。]
により算出される値である。ΔNxyは、より具体的には次のようにして算出される。フィルムの面内の主軸であるx軸及びy軸のうち屈折率がより高い方向である遅相軸をx軸とし、屈折率がより低い方向である進相軸をy軸とする。ここで、屈折率はポリプロピレンフィルム内の分子配向を示すパラメータであり、ある方向の屈折率が高いほどその方向に分子が配向していることを表す。一般的に、ある方向に対する延伸倍率が高いほど、分子はその方向により配向するため、屈折率も高くなる。よって、未延伸のポリプロピレンフィルムを二軸延伸する場合に、例えば流れ方向(MD方向)の延伸倍率よりも幅方向(TD方向)の延伸倍率が高い場合には、二軸延伸ポリプロピレンフィルムの流れ方向が進相軸(y軸)となり、幅方向が遅相軸(x軸)となる。そして、複屈折値ΔNxyは、x軸方向の三次元屈折率からy軸方向の三次元屈折率を差し引いて算出される。
[式中、Nxはx軸方向(遅相軸方向)の三次元屈折率を表し、Nzはz軸方向(厚み方向)の三次元屈折率を表す。]
により算出される値である。ΔNxzは、より具体的には次のようにして算出される。フィルムの面内方向の主軸をx軸及びy軸とし、これらの主軸のうち屈折率がより高い方向である遅相軸をx軸とし、フィルムの厚み方向(面内方向に対する法線方向)をz軸とすると、x軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値が、複屈折値ΔNxzとなる。
まず、上記に述べたように、傾斜角φ=0°に対し測定されたレタデーション値(R)を厚み(d)で除してΔNxy(R/d)を得る。
次に、遅相軸(x軸)を傾斜軸として、測定試料を傾斜角φ=10°、20°、30°、40°、50°にて傾斜させた状態で、上記装置を用いて550nmの波長で、各傾斜角φに対するレタデーション値Rを測定する。得られた各傾斜角φに対するレタデーション値Rを傾斜補正が施された厚みdで除して、各傾斜角φに対するR/dを求める。各傾斜角φに対するR/dについて、φ=0°のR/dとの差を求め、それらをさらにsin2r(r:屈折角)で除した値を、各傾斜角φにおける複屈折値ΔNzyとする。なお、ポリプロピレンについての、各傾斜角φにおける屈折角rの値は、前記非特許文献の109頁に記載されているものを用いてよい。φ=20°、30°、40°、50°における複屈折値ΔNzyの平均値を、複屈折値ΔNzyとする。次に、前述で求めたΔNxyからΔNzyを除算し、複屈折値ΔNxzが算出される。
本実施形態のポリプロピレンフィルムは樹脂としてポリプロピレン樹脂を含む。好ましくは、本実施形態のポリプロピレンフィルムの主成分がポリプロピレン樹脂であり、より好ましくはフィルムを構成する樹脂成分がポリプロピレン樹脂である。なお、上記「主成分」とは、主成分である樹脂をポリプロピレンフィルム中に固形分換算で50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上含むことをいう。
立体規則性度を表すペンタッド分率は、同方向並びの連子「メソ(m)」と異方向の並びの連子「ラセモ(r)」の5連子(ペンタッド)の組み合わせ(mmmm及びmrrm等)に由来する各シグナルの強度の積分値に基づいて百分率で計算される。mmmm及びmrrm等に由来する各シグナルは、例えば、「T.Hayashi et al.,Polymer,29巻,138頁(1988)」等を参照して帰属することができる。
樹脂B2は、差(DM)が、-1%以上2%未満であるポリプロピレン樹脂である。樹脂B2の差(DM)は、好ましくは0%以上1.9%以下であり、より好ましくは0.1%以上1.5%以下であり、さらに好ましくは0.3%以上1%以下である。
本実施形態のポリプロピレンフィルムは、更に、添加剤を含むことができる。「添加剤」とは、一般的に、ポリプロピレン樹脂に使用される添加剤であって、本実施形態のポリプロピレンフィルムを得ることができる限り特に制限されない。添加剤には、例えば、酸化防止剤、塩素吸収剤や紫外線吸収剤等の必要な安定剤、滑剤、可塑剤、難燃化剤、帯電防止剤、着色剤等が含まれる。本実施形態のポリプロピレンフィルムを製造するためのポリプロピレン樹脂は、そのような添加剤を、本実施形態のポリプロピレンフィルムに悪影響を与えない量で含むことができる。
本実施形態のポリプロピレンフィルムの製造方法としては、以下に限定されないが、例えば次の工程1~4:
(1)ポリプロピレン原料樹脂を含む樹脂組成物を加熱溶融する工程1、
(2)前記加熱溶融された樹脂組成物を押し出す工程2、
(3)前記押し出された樹脂組成物を冷却及び固化してキャスト原反シートを得る工程3、並びに
(4)前記キャスト原反シートを流れ方向及び幅方向に延伸する工程4
をこの順に含む製造方法が挙げられる。ここで、前記工程4において幅方向に延伸する際の(a)横延伸温度が140℃を超え180℃以下であり、且つ、(b)延伸角度が8°を超え14°未満であることが好ましい。
このような製造方法によれば、分子配向係数ΔNxを所望の範囲に調整しやすく、厚みが薄いにもかかわらず、高温高電圧下での長期耐用性に優れると共に、製造時にフィルムの延伸不良及び破断が生じにくく、フィルム品質及び生産性に優れる本実施形態のポリプロピレンフィルムを製造しやすい。以下、上記製造方法の詳細について説明する。
本実施形態のポリプロピレンフィルムに含まれ得るポリプロピレン原料樹脂(例えば上記のポリプロピレン樹脂A、ポリプロピレン樹脂B及びポリプロピレン樹脂C、又は、上記のポリプロピレン樹脂I及びポリプロピレン樹脂IIを含む)は、一般的に公知の重合方法を用いて製造することができる。ポリプロピレン樹脂の製造方法は、製造されたポリプロピレン樹脂を用いて最終的に本実施形態のポリプロピレンフィルムが得られる限り、特に制限されない。そのような重合方法として、例えば、気相重合法、塊状重合法及びスラリー重合法を例示できる。
本実施形態の二軸延伸ポリプロピレンフィルムを製造するための延伸前のシートである「キャスト原反シート」は、例えば、上記のようにして製造したポリプロピレン原料樹脂を用いて、
(1)ポリプロピレン原料樹脂を含む樹脂組成物を加熱溶融する工程1、
(2)前記加熱溶融された樹脂組成物を押し出す工程2、及び
(3)前記押し出された樹脂組成物を冷却及び固化してキャスト原反シートを得る工程3を経て、キャスト原反シートを製造することができる。樹脂組成物としての、ポリプロピレン樹脂ペレット、ドライ混合されたポリプロピレン樹脂ペレット(及び/又は重合粉)あるいは、予め溶融混練して作製した混合ポリプロピレン樹脂ペレット等を押出機に供給して、加熱溶融し(工程1)、ろ過フィルターを通した後、好ましくは170℃~320℃、より好ましくは200℃~300℃に加熱溶融してTダイから溶融押し出し(工程2)、好ましくは92℃~105℃に保持された少なくとも1個以上の金属ドラムで、冷却、固化させることで、キャスト原反シートを成形することができる(工程3)。
本実施形態のポリプロピレンフィルムは、工程4において、前記キャスト原反シートを流れ方向及び幅方向に延伸することにより製造することができる。延伸は、縦及び横に二軸に配向させる二軸延伸が行われ、延伸方法としては同時又は逐次の二軸延伸方法が挙げられるが、逐次二軸延伸方法が好ましい。
<縦延伸倍率>本実施形態の所望の物性を備えさせ易いという観点から、縦延伸倍率は、好ましくは3~4.7倍、より好ましくは3.5~4.7倍である。縦延伸倍率を上げるとΔNxは下がり、縦延伸倍率を下げるとΔNxは上がる傾向にある。
<横延伸温度>本実施形態の所望の物性を備えさせ易いという観点から、横延伸温度は、好ましくは140℃を超え180℃以下、より好ましくは155℃以上165℃以下、さらに好ましくは155℃以上160℃未満、特に好ましくは155℃以上159℃以下である。なお、横延伸温度を上記の範囲とするためには、テンター温度を上記の範囲に設定すればよい。本実施形態のポリプロピレンフィルムが上記樹脂B1又はB’1を含む場合、横延伸温度は、好ましくは140℃を超え165℃未満であり、より好ましくは150℃以上160℃未満であり、さらに好ましくは153℃以上160℃未満であり、特に好ましくは155℃以上159℃以下であり、きわめて好ましくは155℃以上158℃以下である。本実施形態のポリプロピレンフィルムが上記樹脂B2又はB’2を含む場合、横延伸温度は、好ましくは159℃以上180℃以下であり、より好ましくは160℃以上175℃以下であり、さらに好ましくは161℃以上170℃以下であり、特に好ましくは161℃以上167℃以下であり、きわめて好ましくは162℃以上165℃以下である。横延伸温度を上げるとΔNxは上がり、横延伸温度を下げるとΔNxは下がる傾向にある。
<横延伸倍率>本実施形態の所望の物性を備えさせ易いという観点から、横延伸倍率は、好ましくは5~11倍、より好ましくは7~11倍、さらに好ましくは9~11倍である。
本実施形態のポリプロピレンフィルムの厚みは、薄膜でありながらも高温高電圧下での長期耐用性、フィルム品質及び生産性に優れる二軸延伸ポリプロピレンフィルムを得る観点から、1.0~3.0μmである。本実施形態の二軸延伸ポリプロピレンフィルムの厚みは、機械的強度や絶縁破壊強度等の観点からは、好ましくは1.2μm以上であり、より好ましくは1.5μm以上であり、さらに好ましくは1.9μm以上であり、特に好ましくは2.0μm以上である。また、上記厚みは、コンデンサを小型化及び高容量化しやすい観点からは、好ましくは2.9μm以下であり、より好ましくは2.7μm以下であり、さらに好ましくは2.5μm以下であり、特に好ましくは2.4μm以下である。二軸延伸ポリプロピレンフィルムの厚みは、マイクロメーター(JIS-B7502)を用いて、JIS-C2330に準拠して測定される。ポリプロピレンフィルムの厚みとΔNxとの関係は、樹脂の種類及びその物性、縦及び横延伸倍率、縦及び横延伸温度、横延伸角度等によって傾向が異なる。
本実施形態のポリプロピレンフィルムの引張り強さの、TD方向の引張り強さとMD方向の引張り強さの比率(TTD/TMD)は、2.00以下が好ましく、1.90以下がより好ましく、1.80以下がさらに好ましく、1.75以下が特に好ましい。また、TTD/TMDは、1.00以上が好ましく、1.10以上がより好ましく、1.50以上がさらに好ましく、1.60以上がさらに一層好ましく、1.65以上が特に好ましい。TTD/TMDが上記各好ましい範囲であると、直交二方向に比較的均衡した引張り強さを有しつつ幅方向の引張り強さが大きい。そのため、成形過程において、未延伸部や引き残しに起因する延伸不良は抑制されて成形されるので、連続生産性もさらに優れる。
本実施形態のポリプロピレンフィルムの破断伸度の、TD方向の破断伸度とMD方向の破断伸度の比率(ETD/EMD)は、0.95以下が好ましく、0.7以下がより好ましく、0.6以下がさらに好ましく、0.55以下がさらに一層好ましく0.52以下が特に好ましい。また、ETD/EMDは、0.2以上が好ましく、0.35以上がより好ましく、0.4以上がさらに好ましく、0.45以上がさらに一層好ましく、0.47以上が特に好ましい。ETD/EMDが上記各好ましい範囲であると、直交二方向に比較的均衡した破断伸度を有することによりコンデンサ素子作製時の成形不良が抑制されるため、フィルム層間の空隙が維持しやすい。その結果、高温下における長期耐電圧性を好適に向上させることができる。
本実施形態のポリプロピレンフィルムの引張弾性率の、TD方向の引張弾性率とMD方向の引張弾性率の比率(MTD/MMD)は、1.8以下が好ましく、1.7以下がより好ましく、1.6以下がさらに好ましく、1.55以下が特に好ましい。また、MTD/MMDは、0.85以上が好ましく、1.0以上がより好ましく、1.3以上がさらに好ましく、1.4以上が特に好ましい。MTD/MMDが上記各好ましい範囲であると、直交二方向に比較的均衡した引張弾性率を有しつつ幅方向の引張弾性率が大きい。そのため、成形過程において、未延伸部や引き残しに起因する延伸不良は抑制されて成形されるので、連続生産性もさらに優れる。
フィルム表面に微細な凹凸を与える方法としては、エンボス法、エッチング法等、公知の各種粗面化方法を採用することができるが、その中でも、不純物の混入等の必要がないβ晶を用いた粗面化法が好ましい。β晶の生成割合は、一般的には、キャスト温度及びキャストスピードを変更することによって制御することができる。また、縦延伸工程のロール温度によってβ晶の融解/転移割合を制御することができ、これらのβ晶生成とその融解/転移の二つのパラメータについて最適な製造条件を選択することによって微細な粗表面性を得ることができる。
本実施形態は、その一態様において、本実施形態のポリプロピレンフィルムの片面又は両面に金属膜を有する金属化フィルムも提供する。以下、本実施形態の金属化フィルムについて詳細に説明する。本実施形態の金属化フィルムを巻回して得られるコンデンサは、高温高電圧下での長期耐用性に優れる。
本発明は、その一態様において、本実施形態の金属化フィルムを含むコンデンサを提供する。以下、本実施形態のコンデンサについて詳細に説明する。
〔重量平均分子量(Mw)、分子量分布(Mn/Mw)、差(DM)〕
GPC(ゲルパーミエーションクロマトグラフィー)を用いて、以下の条件で、ポリプロピレン樹脂の重量平均分子量(Mw)、数平均分子量(Mn)及び微分分布曲線の微分分布値を測定した。
測定機:東ソー株式会社製、示差屈折計(RI)内蔵高温GPC HLC-8121GPC/HT型
カラム:東ソー株式会社製、TSKgel GMHhr-H(20)HTを3本連結
カラム温度:145℃
溶離液:トリクロロベンゼン
流速:1.0ml/min
検量線を、東ソー株式会社製の標準ポリスチレンを用いて作製し、測定された分子量の値をポリスチレンの値に換算して、重量平均分子量(Mw)及び数平均分子量(Mn)を得た。得られたMwとMnの値を用いて分子量分布(Mw/Mn)を算出した。
微分分布値は、次のような方法で得た。まず、RI検出計を用いて検出される強度分布の時間曲線(溶出曲線)を、上記標準ポリスチレンを用いて作製した検量線を用いて標準ポリスチレンの分子量M(Log(M))に対する分布曲線に変換した。次に、分布曲線の全面積を100%とした場合のLog(M)に対する積分分布曲線を得た後、この積分分布曲線をLog(M)で、微分することによってLog(M)に対する微分分布曲線を得た。この微分分布曲線から、Log(M)=4.5及びLog(M)=6.0のときの微分分布値を読んだ。なお、微分分布曲線を得るまでの一連の操作は、使用したGPC測定装置に内蔵されている解析ソフトウェアを用いて行った。差(DM)は、上記のようにして得たLog(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いて算出した。
メソペンタッド分率は、樹脂を溶媒に溶解し、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)を用いて、以下の条件で測定した。
高温型核磁気共鳴(NMR)装置:日本電子株式会社製、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)、JNM-ECP500
観測核:13C(125MHz)
測定温度:135℃
溶媒:オルト-ジクロロベンゼン(ODCB:ODCBと重水素化ODCBの混合溶媒(混合比=4/1))
測定モード:シングルパルスプロトンブロードバンドデカップリング
パルス幅:9.1μsec(45°パルス)
パルス間隔:5.5sec
積算回数:4,500回
シフト基準:CH3(mmmm)=21.7ppm
立体規則性度を表すペンタッド分率は、同方向並びの連子「メソ(m)」と異方向の並びの連子「ラセモ(r)」の5連子(ペンタッド)の組み合わせ(mmmmやmrrm等)に由来する各シグナルの強度積分値より、百分率(%)で算出した。mmmmやmrrm等に由来する各シグナルの帰属に関し、例えば、「T.Hayashi et al.,Polymer,29巻,138頁(1988)」等のスペクトルの記載を参考とした。
各樹脂について、10mm×35mm×0.3mmにプレス成形して約3gの測定用サンプルを作製した。次に、ヘプタン約150mLを加えてソックスレー抽出を8時間行った。抽出前後の試料質量よりヘプタン不溶分を算出した。
各樹脂について原料樹脂ペレットの形態でのメルトフローレート(MFR)を、東洋精機株式会社のメルトインデックサを用いてJIS K 7210の条件Mに準じて測定した。具体的には、まず、試験温度230℃にしたシリンダ内に、4gに秤りとった試料を挿入し、2.16kgの荷重下で3.5分予熱した。その後、30秒間で底穴より押出された試料の重量を測定し、MFR(g/10min)を求めた。上記の測定を3回繰り返し、その平均値をMFRの測定値とした。
マイクロメーター(JIS-B7502)を用いて、JIS-C2330に準拠して測定した。
二軸延伸ポリプロピレンフィルムの複屈折値ΔNxy及びΔNzyは、非特許文献「粟屋裕、高分子素材の偏光顕微鏡入門、105~120頁、2001年」に記載の通り、傾斜法により測定した。
測定機:大塚電子株式会社製レタデーション測定装置 RE-100
光源:レーザー発光ダイオード(LED)
バンドパスフィルター:550nm(測定波長)
測定方法:後述する実施例及び比較例で得た二軸延伸フィルムを巻き取った後、20~45℃程度の雰囲気中に24時間置き、エージング処理を施した。エージング処理後の二軸延伸ポリプロピレンフィルムを50mm×50mmに切り出し測定試料を得た。次のような傾斜法により、0~30℃の室温環境下で、レタデーション値の角度依存性を測定した。まず、フィルムの面内方向の主軸をx軸及びy軸、また、フィルムの厚さ方向(面内方向に対する法線方向)をz軸とする。そして、面内方向のうち、屈折率のより高い方向の遅相軸をx軸とし、x軸を傾斜軸として、0°~50°の範囲でz軸に対して10°ずつ傾斜させたときの各レタデーション値を求めた。ここで、逐次延伸法において、例えばMD方向(流れ方向)の延伸倍率よりも、TD方向(幅方向)の延伸倍率が高い場合、TD方向が遅相軸(x軸)、MD方向がy軸となる。
具体的には、まず、傾斜角φ=0°に対し、測定されたレタデーション値(R)を厚み(d)で除してR/dを求めΔNxyとした。
次に、φ=10°、20°、30°、40°、50°の各傾斜角φに対し、測定されたレタデーション値Rを、傾斜補正が施された厚みdで除して各傾斜角φに対するR/dを求めた。φ=10°、20°、30°、40°、50°の各R/dについて、φ=0°のR/dとの差を求め、それらをさらにsin2r(r:屈折角)で割ったものを、各傾斜角φに対する複屈折値ΔNzyとした。φ=20°、30°、40°、50°における複屈折値ΔNzyの平均値を、複屈折値ΔNzyとした。次に、前述で求めたΔNxyからΔNzyを除算し、複屈折値ΔNxzを算出した。
より具体的には、偏光子及び1/4波長板を通して、測定試料に入射した光を、16個の角度を有したアレイ状偏光子を貼り付けたCCDカメラからなる受光モジュールを用いて、複数の偏光角(方位角)の受光強度を同時に測定する事により、サンプルによる偏光(透過偏光の楕円率)状態を計測して、レタデーションを算出した。測定及び解析は、解析コンピューターを用いて、装置標準付属のソフトウェアREseriesにより行った。
最後に、複屈折値のΔNxyとΔNxzを、式(1):
に代入し分子配向係数ΔNxを求めた。なお、ポリプロピレンについての、各傾斜角φにおける屈折角rの値は、前記非特許文献の109頁に記載されているものを用いた。
ポリプロピレンフィルムの引張り強さは、JIS-C2151に準拠して測定した。なお、測定方向は、MD方向(流れ方向)およびTD方向(幅方向)とした。測定の際の温度は23℃とした。
破断点伸度は、JIS K-7127(1999)に準拠して測定した。具体的には、引張圧縮試験機(ミネベア株式会社製)を用いて、試験条件(測定温度23℃、試験片長140mm、試験長100mm、試験片幅15mm、引張速度100mm/分)で引張試験を行った。次いで、同試験機に内蔵されたデータ処理ソフトによる自動解析より、破断点伸度(%)、及び引張弾性率(GPa)を求めた。
二軸延伸ポリプロピレンフィルムの中心線平均粗さ(Ra)、および、Rmax(旧JIS定義)は、東京精密社製、三次元表面粗さ計 サーフコム1400D-3DF-12型を用い、JIS-B0601に定められている方法に準拠して、接触法で測定した。測定は3回行い、平均値を求めた。Ra及びRmaxは、接触法を用いて測定したが、その値の信頼性は、必要に応じて非接触法値により確認した。
所定の厚みに設定した二軸延伸装置を用いてフィルムの製造を開始し、得られるフィルム厚みが目標とする厚み±2%に到達した時点からフィルムが破断等するまでの連続して製膜可能な時間(以下において「連続製膜時間」とも称する)を計測した。なお、厚みが目標とする厚み±2%に到達した時点は、フィルムを切り出してマイクロメーター(JIS‐B7502)を用いてJIS‐C2330に準拠してフィルム厚さを測定し、確認した。得られた連続製膜時間に基づき次の評価基準に従い連続生産性を評価した。
(連続生産性の評価基準)
A:8時間を超えても延伸破断なく製膜できた。
B:1時間を超え8時間未満で延伸破断なく製膜できた。
C:1時間以内に延伸破断し、1時間を超える製膜が不可能であった。
巻き取ったフィルムにおける延伸不良(延伸ムラ及び未延伸など)が生じている部分の幅方向の長さを測定し、幅長に対する延伸不良が生じている部分の幅方向の長さの割合を算出し、延伸不良占有率とした。得られた延伸不良占有率を、次の評価基準に従い評価した。
(延伸不良占有率の評価基準)
A:2%未満
B:2%以上7%未満
C:7%以上
静電容量を測定するためのコンデンサを次のようにして作製した。後述する実施例及び比較例で得た二軸延伸ポリプロピレンフィルムに、Tマージン蒸着パターンを、蒸着抵抗15Ω/□となるようにアルミニウム蒸着を用いて施し、金属化フィルムを得た。60mm幅にスリットした後に、2枚の金属化フィルムを相合わせて、株式会社皆藤製作所製、自動巻取機3KAW-N2型を用い、巻き取り張力250gにて、1076ターン巻回を行った。素子巻きした素子は、プレスしながら120℃にて15時間熱処理を施した後、素子端面に亜鉛金属を溶射し、扁平型コンデンサを得た。扁平型コンデンサの端面にリード線をはんだ付けし、その後エポキシ樹脂で封止した。
得られたコンデンサの試験前の初期静電容量(C0)を、日置電機株式会社製LCRハイテスター3522-50を用いて測定した。次に、105℃の高温槽中にて、コンデンサに直流300V/μmの単位厚み当たりの電圧を1000時間負荷し続けた。1000時間経過後の素子の容量(C1000)をLCRハイテスターで測定し、電圧負荷前後の容量変化率(ΔC)を算出した。ここで、当該容量変化率とは、次の式により算出される。
1000時間経過後の容量変化率を、コンデンサ2個の平均値により評価した。1000時間経過後の容量変化率は、0~-5%の範囲内であることが好ましい。なお、後述する実施例1のポリプロピレンフィルムを用いて作製したコンデンサの初期静電容量は75μFであった。また、実施例2~10のポリプロピレンフィルムを用いて作製したコンデンサの初期静電容量も、実施例1と同程度であった。
ポリプロピレン樹脂A(Mw=32万、Mw/Mn=9.3、DM=11.2、メソペンタッド分率[mmmm]=95%、HI=97.3%、MFR=4.9g/10min、プライムポリマー製)と、ポリプロピレン樹脂B1(Mw=35万、Mw/Mn=7.7、DM=7.2、メソペンタッド分率[mmmm]=96.5%、HI=98.6%、MFR=3.8g/10min、大韓油化製)とを、65:35の質量比で押出機へ供給し、樹脂温度250℃で溶融した後、Tダイを用いて押出し、表面温度を95℃に保持した金属ドラムに巻きつけて固化させてキャスト原反シート1を作製した。
ポリプロピレン樹脂B1に代えてポリプロピレン樹脂B2(Mw=38万、Mw/Mn=8.3、DM=0.6、メソペンタッド分率[mmmm]=96.7%、HI=98.8%、MFR=2.3g/10min、大韓油化製)を用いた以外は製造例1と同様にして、キャスト原反シート2を作製した。
製造例1で得た未延伸のキャスト原反シート1を140℃の温度に保ち、速度差を設けたロール間に通して流れ方向に4.5倍に延伸し、直ちに室温に冷却した。引き続き、当該キャスト原反シート1を流れ方向に延伸して得られた延伸フィルムをテンターに導いて、延伸角度11°、横延伸温度158℃で幅方向に10倍に延伸した後、緩和、熱固定を施して、厚み2.3μmの二軸延伸ポリプロピレンフィルムを巻き取った。
二軸延伸ポリプロピレンフィルムの厚みを2.4μmとした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
二軸延伸ポリプロピレンフィルムの厚みを2.5μmとした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
二軸延伸ポリプロピレンフィルムの厚みを2.8μmとした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
幅方向に延伸する際の横延伸温度を156℃とし、二軸延伸ポリプロピレンフィルムの厚みを2.0μmとした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
キャスト原反シートを流れ方向に4.0倍に延伸し、幅方向に延伸する際の横延伸温度を156℃とした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
キャスト原反シートを流れ方向に4.0倍に延伸し、二軸延伸ポリプロピレンフィルムの厚みを2.5μmとした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
キャスト原反シートを流れ方向に4.0倍に延伸した以外は実施例5と同様にして、二軸延伸ポリプロピレンフィルムを得た。
幅方向に延伸する際の延伸角度を9.0°とし、横延伸温度を156℃とした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
製造例2で得た未延伸のキャスト原反シート2を使用し、幅方向に延伸する際の横延伸温度を165℃とした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
製造例2で得た未延伸のキャスト原反シート2を使用し、幅方向に延伸する際の横延伸温度を167℃とした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
幅方向に延伸する際の横延伸温度を165℃とした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
キャスト原反シートを流れ方向に5.0倍に延伸し、幅方向に延伸する際の横延伸温度を165℃とした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムを得た。
幅方向に延伸する際の横延伸温度を165℃とした以外は実施例3と同様にして、二軸延伸ポリプロピレンフィルムを得た。
キャスト原反シートを流れ方向に5.0倍に延伸し、幅方向に延伸する際の横延伸温度を165℃とした以外は実施例3と同様にして、二軸延伸ポリプロピレンフィルムを得た。
幅方向に延伸する際の横延伸温度を154℃とした以外は実施例5と同様にして、二軸延伸ポリプロピレンフィルムを巻き取った。しかし、延伸破断によりコンデンサを作製するに必要な巻き長を得ることができず、コンデンサでの評価はできなかった。
幅方向に延伸する際の延伸角度を14°とした以外は実施例9と同様にして、二軸延伸ポリプロピレンフィルムを得た。
幅方向に延伸する際の横延伸温度を158℃とした以外は実施例10と同様にして、二軸延伸ポリプロピレンフィルムを巻き取った。しかし、延伸破断によりコンデンサを作製するに必要な巻き長を得ることができず、コンデンサでの評価はできなかった。
幅方向に延伸する際の延伸角度を8.0°とし、横延伸温度を156℃とした以外は実施例3と同様にして、二軸延伸ポリプロピレンフィルムを得た。
Claims (7)
- コンデンサ用である請求項1に記載の二軸延伸ポリプロピレンフィルム。
- TD方向の引張弾性率とMD方向の引張弾性率の比率MTD/MMDが0.85以上1.8以下である、請求項1又は2に記載の二軸延伸ポリプロピレンフィルム。
- 分子量分布曲線において対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差(DM)が、Log(M)=6.0のときの微分分布値を100%とすると、10%以上18%以下であるポリプロピレン樹脂Aを含む、請求項1~3のいずれか一項に記載の二軸延伸ポリプロピレンフィルム。
- 分子量分布曲線において対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差(DM)が、Log(M)=6.0のときの微分分布値を100%とすると、-1%以上10%未満であるポリプロピレン樹脂Bを含む、請求項1~4のいずれか一項に記載の二軸延伸ポリプロピレンフィルム。
- 請求項1~5のいずれかに記載の二軸延伸ポリプロピレンフィルムの片面又は両面に金属膜を有する、金属化フィルム。
- 請求項6に記載の金属化フィルムを含む、コンデンサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17888298.1A EP3564009B1 (en) | 2016-12-28 | 2017-12-28 | Biaxially oriented polypropylene film, metallized film, and capacitor |
JP2018519061A JP6365918B1 (ja) | 2016-12-28 | 2017-12-28 | 二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ |
CN201780080586.9A CN110139738B (zh) | 2016-12-28 | 2017-12-28 | 双轴拉伸聚丙烯薄膜、金属化薄膜和电容器 |
US16/470,127 US20190315047A1 (en) | 2016-12-28 | 2017-12-28 | Biaxially oriented polypropylene film, metallized film, and capacitor |
KR1020197015900A KR102194446B1 (ko) | 2016-12-28 | 2017-12-28 | 2축 연신 폴리프로필렌 필름, 금속화 필름 및 콘덴서 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-256161 | 2016-12-28 | ||
JP2016256161 | 2016-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124300A1 true WO2018124300A1 (ja) | 2018-07-05 |
Family
ID=62709597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/047353 WO2018124300A1 (ja) | 2016-12-28 | 2017-12-28 | 二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190315047A1 (ja) |
EP (1) | EP3564009B1 (ja) |
JP (2) | JP6365918B1 (ja) |
KR (1) | KR102194446B1 (ja) |
CN (1) | CN110139738B (ja) |
WO (1) | WO2018124300A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020045523A1 (ja) * | 2018-08-29 | 2020-03-05 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、金属化フィルムロールおよびフィルムコンデンサ |
JPWO2020217930A1 (ja) * | 2019-04-22 | 2020-10-29 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018056404A1 (ja) * | 2016-09-23 | 2018-03-29 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、コンデンサ用金属化フィルム、及び、コンデンサ |
US20230212362A1 (en) * | 2020-06-17 | 2023-07-06 | Toyobo Co., Ltd. | Biaxially oriented polypropylene film |
US12047016B2 (en) * | 2020-07-17 | 2024-07-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | Artificial muscle actuators comprising electrodes with an insulation bilayer |
JP2024513157A (ja) * | 2021-03-31 | 2024-03-22 | ケメット エレクトロニクス コーポレーション | 耐熱性が向上した電子部品 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5929838B2 (ja) | 1977-11-28 | 1984-07-23 | シチズン時計株式会社 | 電子時計用ic回路 |
JP3752747B2 (ja) | 1996-10-17 | 2006-03-08 | 東レ株式会社 | コンデンサー |
JP3791038B2 (ja) | 1995-02-28 | 2006-06-28 | 東レ株式会社 | 耐熱耐電圧性コンデンサ用ポリプロピレンフィルム |
JP2007084813A (ja) * | 2005-08-26 | 2007-04-05 | Toray Ind Inc | ポリプロピレンフィルムおよびその製造方法 |
JP2010254868A (ja) * | 2009-04-28 | 2010-11-11 | Oji Paper Co Ltd | コンデンサー用二軸延伸ポリプロピレンフィルムおよびその金属蒸着フィルム |
WO2012002123A1 (ja) | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2014051657A (ja) * | 2012-08-09 | 2014-03-20 | Toyobo Co Ltd | ポリプロピレンフィルム |
JP2014055276A (ja) | 2012-01-24 | 2014-03-27 | Toyobo Co Ltd | 延伸ポリプロピレンフィルム |
JP2014231604A (ja) | 2009-03-17 | 2014-12-11 | 株式会社プライムポリマー | フィルムコンデンサ用ポリプロピレン、フィルムコンデンサ用ポリプロピレンシート、それらの製造方法、およびその用途 |
JP2014231584A (ja) * | 2013-05-30 | 2014-12-11 | 王子ホールディングス株式会社 | コンデンサー用二軸延伸ポリプロピレンフィルム |
JP5660261B1 (ja) | 2013-03-22 | 2015-01-28 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5651329A (en) * | 1979-10-05 | 1981-05-08 | Toray Ind Inc | Manufacture of tempered polypropylene film |
JP4623831B2 (ja) * | 1998-10-28 | 2011-02-02 | トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コー・カーゲー | 昇温下において改善された収縮性を有する二軸配向電気絶縁性フィルム |
JPWO2007034920A1 (ja) * | 2005-09-22 | 2009-03-26 | 三井化学株式会社 | エチレン系重合体、該重合体を含む熱可塑性樹脂組成物及び成形体 |
JP4784279B2 (ja) * | 2005-11-17 | 2011-10-05 | 王子製紙株式会社 | コンデンサーフィルム |
WO2009060944A1 (ja) | 2007-11-07 | 2009-05-14 | Oji Paper Co., Ltd. | コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー |
JP5149240B2 (ja) * | 2009-06-04 | 2013-02-20 | 王子ホールディングス株式会社 | コンデンサー用二軸延伸ポリプロピレンフィルム、その金属蒸着フィルム及びキャスト原反シート |
US9123471B2 (en) * | 2011-03-10 | 2015-09-01 | Toray Industries, Inc. | Biaxially stretched polypropylene film, metallized film and film capacitor |
US9605093B2 (en) | 2012-01-11 | 2017-03-28 | Oji Holdings Corporation | Biaxially stretched polypropylene film for capacitors |
ES2531334T3 (es) * | 2012-11-16 | 2015-03-13 | Borealis Ag | Resina de PP altamente isotáctico con ancha distribución de fusión y que tiene mejoradas propiedades como película de BOPP y características de fácil procesamiento |
JP6203405B2 (ja) | 2013-12-18 | 2017-09-27 | ボレアリス エージー | 剛性/靭性バランスが改良されたboppフィルム |
CN106103553B (zh) * | 2014-03-28 | 2020-05-12 | 东丽株式会社 | 双轴取向聚丙烯膜 |
CN107405823A (zh) | 2015-03-27 | 2017-11-28 | 东丽株式会社 | 电容器用双轴取向聚丙烯膜、金属层叠膜及薄膜电容器 |
KR102496307B1 (ko) | 2015-03-31 | 2023-02-03 | 니폰 제온 가부시키가이샤 | 연신 필름의 제조 방법 및 연신 필름 |
WO2016167328A1 (ja) * | 2015-04-15 | 2016-10-20 | 王子ホールディングス株式会社 | コンデンサ用二軸延伸ポリプロピレンフィルム |
-
2017
- 2017-12-28 WO PCT/JP2017/047353 patent/WO2018124300A1/ja unknown
- 2017-12-28 JP JP2018519061A patent/JP6365918B1/ja active Active
- 2017-12-28 KR KR1020197015900A patent/KR102194446B1/ko active IP Right Grant
- 2017-12-28 CN CN201780080586.9A patent/CN110139738B/zh active Active
- 2017-12-28 EP EP17888298.1A patent/EP3564009B1/en active Active
- 2017-12-28 US US16/470,127 patent/US20190315047A1/en not_active Abandoned
-
2018
- 2018-07-06 JP JP2018129059A patent/JP2018197342A/ja active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5929838B2 (ja) | 1977-11-28 | 1984-07-23 | シチズン時計株式会社 | 電子時計用ic回路 |
JP3791038B2 (ja) | 1995-02-28 | 2006-06-28 | 東レ株式会社 | 耐熱耐電圧性コンデンサ用ポリプロピレンフィルム |
JP3752747B2 (ja) | 1996-10-17 | 2006-03-08 | 東レ株式会社 | コンデンサー |
JP2007084813A (ja) * | 2005-08-26 | 2007-04-05 | Toray Ind Inc | ポリプロピレンフィルムおよびその製造方法 |
JP2014231604A (ja) | 2009-03-17 | 2014-12-11 | 株式会社プライムポリマー | フィルムコンデンサ用ポリプロピレン、フィルムコンデンサ用ポリプロピレンシート、それらの製造方法、およびその用途 |
JP2010254868A (ja) * | 2009-04-28 | 2010-11-11 | Oji Paper Co Ltd | コンデンサー用二軸延伸ポリプロピレンフィルムおよびその金属蒸着フィルム |
WO2012002123A1 (ja) | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2014055276A (ja) | 2012-01-24 | 2014-03-27 | Toyobo Co Ltd | 延伸ポリプロピレンフィルム |
JP2014051657A (ja) * | 2012-08-09 | 2014-03-20 | Toyobo Co Ltd | ポリプロピレンフィルム |
JP5660261B1 (ja) | 2013-03-22 | 2015-01-28 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2014231584A (ja) * | 2013-05-30 | 2014-12-11 | 王子ホールディングス株式会社 | コンデンサー用二軸延伸ポリプロピレンフィルム |
Non-Patent Citations (3)
Title |
---|
A. TURNER-JONES ET AL., MAKROMOL. CHEM., vol. 75, 1964, pages 134 |
HIROSHI AWAYA, GUIDE FOR POLARIZATION MICROSCOPE OF HIGH-MOLECULAR-WEIGHT MATERIAL, 2001, pages 105 - 120 |
T. HAYASHI ET AL., POLYMER, vol. 29, 1988, pages 138 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020045523A1 (ja) * | 2018-08-29 | 2020-03-05 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、金属化フィルムロールおよびフィルムコンデンサ |
JP2021036005A (ja) * | 2018-08-29 | 2021-03-04 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、金属化フィルムロールおよびフィルムコンデンサ |
CN112601652A (zh) * | 2018-08-29 | 2021-04-02 | 王子控股株式会社 | 双轴拉伸聚丙烯薄膜、金属化薄膜、金属化薄膜卷和薄膜电容器 |
JP7182080B2 (ja) | 2018-08-29 | 2022-12-02 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、金属化フィルムロールおよびフィルムコンデンサ |
CN112601652B (zh) * | 2018-08-29 | 2023-02-24 | 王子控股株式会社 | 双轴拉伸聚丙烯薄膜、金属化薄膜、金属化薄膜卷和薄膜电容器 |
US11961683B2 (en) | 2018-08-29 | 2024-04-16 | Oji Holdings Corporation | Biaxially stretched polypropylene film, metallized film, metallized film roll and film capacitor |
JPWO2020217930A1 (ja) * | 2019-04-22 | 2020-10-29 | ||
WO2020217930A1 (ja) * | 2019-04-22 | 2020-10-29 | 王子ホールディングス株式会社 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、及び、フィルムコンデンサ |
JP7192973B2 (ja) | 2019-04-22 | 2022-12-20 | 王子ホールディングス株式会社 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、及び、フィルムコンデンサ |
Also Published As
Publication number | Publication date |
---|---|
CN110139738B (zh) | 2021-04-27 |
EP3564009A1 (en) | 2019-11-06 |
JP6365918B1 (ja) | 2018-08-01 |
CN110139738A (zh) | 2019-08-16 |
KR102194446B1 (ko) | 2020-12-23 |
JPWO2018124300A1 (ja) | 2018-12-27 |
EP3564009B1 (en) | 2023-02-22 |
EP3564009A4 (en) | 2020-08-12 |
US20190315047A1 (en) | 2019-10-17 |
JP2018197342A (ja) | 2018-12-13 |
KR20190082269A (ko) | 2019-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6365918B1 (ja) | 二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ | |
JP6304470B1 (ja) | 二軸延伸ポリプロピレンフィルム、コンデンサ用金属化フィルム、及び、コンデンサ | |
US10431380B2 (en) | Biaxially stretched polypropylene film for capacitor | |
JP5929838B2 (ja) | コンデンサー用二軸延伸ポリプロピレンフィルム | |
US10910164B2 (en) | Biaxially stretched polypropylene film for capacitors, metallized film, and capacitor | |
CN109320835B (zh) | 电容器用双轴拉伸聚丙烯薄膜 | |
JP6766805B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム | |
JP6729695B2 (ja) | 二軸延伸ポリプロピレンフィルム、金属化フィルム、及び、コンデンサ | |
JP6314509B2 (ja) | コンデンサ素子の製造方法 | |
WO2015151591A1 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム | |
JP6620830B2 (ja) | コンデンサ素子の製造方法 | |
JP2018067729A (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018519061 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17888298 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197015900 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017888298 Country of ref document: EP Effective date: 20190729 |