WO2018123969A1 - 電子部品装置、高周波フロントエンド回路、及び通信装置 - Google Patents

電子部品装置、高周波フロントエンド回路、及び通信装置 Download PDF

Info

Publication number
WO2018123969A1
WO2018123969A1 PCT/JP2017/046431 JP2017046431W WO2018123969A1 WO 2018123969 A1 WO2018123969 A1 WO 2018123969A1 JP 2017046431 W JP2017046431 W JP 2017046431W WO 2018123969 A1 WO2018123969 A1 WO 2018123969A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
electrode
internal electrode
adjustment
thermal expansion
Prior art date
Application number
PCT/JP2017/046431
Other languages
English (en)
French (fr)
Inventor
正人 野宮
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780078831.2A priority Critical patent/CN110089204B/zh
Priority to JP2018559457A priority patent/JP6583570B2/ja
Publication of WO2018123969A1 publication Critical patent/WO2018123969A1/ja
Priority to US16/452,590 priority patent/US10607775B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/008Details of transformers or inductances, in general with temperature compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/258Temperature compensation means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/004Printed inductances with the coil helically wound around an axis without a core

Definitions

  • the present invention relates to an electronic component device, a high-frequency front end circuit, a communication device, and the like.
  • Patent Document 1 discloses a semiconductor package in which an electronic component is incorporated in an insulating resin layer.
  • a through electrode for connecting the electronic component to a terminal outside the semiconductor package is provided at a position where the electronic component of the insulating resin layer is not disposed.
  • a wiring layer is provided from the electronic component to the through electrode on the main surface of the semiconductor package. The wiring layer is routed on the insulating resin layer from the electronic component to the through electrode.
  • the element body portion of the region where the electronic component is formed is, for example, ceramic
  • the region surrounding the element body portion is, for example, a resin structure made of resin. That is, materials having different thermal expansion coefficients are used for the element body portion and the region surrounding the element body portion.
  • the resin structure has a feature that the coefficient of thermal expansion is larger than that of the element body portion and is easily expanded by heat. As a result, when the element part and the resin structure are heated due to a change in the use environment temperature, the resin part is more likely to be the element part due to the difference in thermal expansion coefficient between the element part and the resin structure. This causes a problem that the wiring is cut at the boundary between the resin structure and the element body portion.
  • the present invention has been made to solve the above-described problems, and an electronic component device and a high-frequency front end that can suppress the cutting of wiring at the boundary between a resin structure and an element body portion of the electronic component
  • An object is to provide a circuit and a communication device.
  • an electronic component device includes an electronic component, a resin structure including the electronic component in a state where one main surface of the electronic component is exposed, A wiring layer formed on the surface of the resin structure, and the electronic component includes an element body, an internal electrode embedded in the element body and connected to the wiring layer, and at least the element body
  • An adjustment electrode provided in an adjustment region between the internal electrode and the side surface of the resin structure closest to the internal electrode, and the wiring layer includes the internal electrode, the adjustment region, and the resin structure.
  • the thermal expansion coefficient of the resin structure, the thermal expansion coefficient of the adjustment region, and the thermal expansion coefficient of the internal electrode are the thermal expansion coefficient of the resin structure ⁇ the adjustment region. Coefficient of thermal expansion ⁇ coefficient of thermal expansion of the internal electrode Satisfy the relational expression.
  • the adjustment electrode in the element body portion arranged between the resin structure and the internal electrode, an area between the resin structure and the internal electrode is provided as an adjustment area, and the resin structure
  • the thermal expansion coefficient, the thermal expansion coefficient of the adjustment region, and the thermal expansion coefficient of the internal electrode are adjusted to the relationship of thermal expansion coefficient of the resin structure ⁇ thermal expansion coefficient of the adjustment region ⁇ thermal expansion coefficient of the internal electrode.
  • the thermal expansion coefficient of the adjustment electrode may be larger than the thermal expansion coefficient of the element body.
  • the thermal expansion coefficient in the adjustment region can be made larger than the thermal expansion coefficient of the element body before the adjustment electrode is provided. Therefore, the difference in thermal expansion coefficient between the resin structure and the element body, and between the element body and the internal electrode can be reduced. Therefore, it is possible to prevent the wiring from being cut at the boundary between the resin structure and the element body.
  • the adjustment electrode may be in contact with the resin structure.
  • the thermal expansion coefficient of the adjustment region closer to the resin structure can be increased.
  • the thermal expansion coefficient of the adjustment region is adjusted to a value between the thermal expansion coefficient of the resin structure and the thermal expansion coefficient of the element body, and the difference in thermal expansion coefficient at the boundary between the resin structure and the element body is reduced. Therefore, it is possible to suppress the wiring from being cut at the boundary between the resin structure and the element body.
  • the adjustment electrode may be in contact with the internal electrode.
  • the thermal expansion coefficient of the adjustment region closer to the internal electrode can be increased.
  • the difference in thermal expansion coefficient at the boundary between the adjustment resin structure and the element body is reduced to a value between the coefficient of thermal expansion of the resin structure and the coefficient of thermal expansion of the element body. Therefore, the wiring can be prevented from being cut at the boundary between the resin structure and the element body.
  • a plurality of the adjustment electrodes may be arranged in the depth direction of the element body along the internal electrodes.
  • the thermal expansion coefficient of the adjustment region can be adjusted to a value between the thermal expansion coefficient of the resin structure and the thermal expansion coefficient of the element body over the entire adjustment region. Therefore, it is possible to suppress the wiring from being cut at the boundary between the resin structure and the element body.
  • the plurality of adjustment electrodes may have the same thickness in the depth direction of the element body.
  • the thermal expansion coefficient in the depth direction of the element body can be adjusted substantially uniformly.
  • the thermal expansion coefficient of the adjustment region can be adjusted to a value between the thermal expansion coefficient of the resin structure and the element thermal expansion coefficient over the entire adjustment region. Therefore, it is possible to suppress the wiring from being cut at the boundary between the resin structure and the element body.
  • the plurality of adjustment electrodes may be periodically arranged in the depth direction of the element body along the internal electrodes.
  • the thermal expansion coefficient in the adjustment region can be adjusted uniformly along the internal electrode.
  • the thermal expansion coefficient of the adjustment region along the internal electrode can be adjusted to a value between the thermal expansion coefficient of the resin structure and the element thermal expansion coefficient. Therefore, it is possible to suppress the wiring from being cut at the boundary between the resin structure and the element body.
  • the adjustment electrode may be made of metal.
  • the coefficient of thermal expansion of the adjustment region can be increased by using metal as the adjustment electrode.
  • the thermal expansion coefficient of the adjustment region can be adjusted to a value between the thermal expansion coefficient of the resin structure and the element body thermal expansion coefficient. It is possible to suppress the wiring from being cut at the boundary between the resin structure and the element body.
  • the adjustment electrode may be made of the same material as the internal electrode.
  • the thermal expansion coefficient in the adjustment region can be adjusted to a value between the thermal expansion coefficient of the resin structure and the thermal expansion coefficient of the element body, and can be brought close to the thermal expansion coefficient of the wiring layer. Thereby, it can suppress that a wiring cut
  • the adjustment electrode may be formed so as to protrude from the internal electrode.
  • the thermal expansion coefficient of the adjustment region should be adjusted to a value between the thermal expansion coefficient of the resin structure and the element thermal expansion coefficient to reduce the difference in thermal expansion coefficient at the boundary between the resin structure and the element body. Therefore, the wiring can be prevented from being cut at the boundary between the resin structure and the element body.
  • the internal electrode includes a first internal electrode and a second internal electrode connected to the first internal electrode, and at least one of the first internal electrode and the second internal electrode. May be an inductor.
  • the internal electrode includes a first internal electrode and a second internal electrode
  • the wiring layer includes a first wiring layer and a second wiring layer
  • the first internal electrode Is connected to the first wiring layer and is in contact with the adjustment region
  • the second internal electrode is connected to the second wiring layer and is in contact with the adjustment region
  • the component may be a capacitor including a first planar electrode connected to the first internal electrode and a second planar electrode connected to the second internal electrode.
  • the element body has a rectangular shape when viewed from the surface side on which the wiring layer is formed, and the adjustment electrode has at least one corner of the element body rectangular shape. It may be formed along a part of each of the two sides constituting.
  • an adjustment region can be provided in an L shape at at least one corner of the rectangular shape of the element body.
  • many adjustment electrodes can be formed in an adjustment area
  • a mounting substrate an electronic component device having the above-described characteristics mounted on the mounting substrate, and a mounting component further mounted on the electronic component device may be provided.
  • an electronic component device that includes the electronic component device having the above-described characteristics and can suppress the wiring from being cut at the boundary between the resin structure and the element body.
  • the resin structure may have a through electrode that penetrates both surfaces of the resin structure, and the through electrode may be connected to the mounting substrate and the wiring layer.
  • the mounting component and the electronic component device can be electrically connected to the mounting substrate. Therefore, the electronic component device that can suppress the wiring from being cut at the boundary between the resin structure and the element body can be mounted on the mounting substrate.
  • a plurality of the electronic component devices may be provided, and a plurality of the electronic component devices may be stacked between the mounting substrate and the mounting component.
  • a high frequency front end circuit includes an electronic component device having the above-described characteristics as a high frequency element.
  • a high-frequency front-end circuit that includes the electronic component device having the above-described characteristics as a high-frequency element and can suppress the disconnection of the wiring at the boundary between the resin structure and the element body.
  • a communication device includes an RF signal processing circuit that processes a high-frequency signal transmitted and received by an antenna element, and the antenna element and the RF signal processing circuit. And a high-frequency front-end circuit having the above-described characteristics for transmitting the high-frequency signal.
  • an electronic component device a high-frequency front-end circuit, and a communication device that can prevent the wiring from being cut at the boundary between the resin structure and the body portion of the electronic component.
  • FIG. 1 is a plan view showing an example of the appearance of the electronic component device according to the first embodiment.
  • 2A is a plan perspective view showing the internal configuration of the electronic component device according to Embodiment 1.
  • FIG. 2B is a cross-sectional perspective view showing the internal configuration of the electronic component device according to Embodiment 1.
  • FIG. 3A is a cross-sectional perspective view showing an example of the internal configuration of the electronic component device according to Embodiment 1.
  • FIG. 3B is a cross-sectional perspective view illustrating another example of the internal configuration of the electronic component device according to Embodiment 1.
  • FIG. FIG. 4 is a cross-sectional perspective view showing the internal configuration of the electronic component device according to the second embodiment.
  • FIG. 5 is a cross-sectional perspective view showing the internal configuration of the electronic component device according to the third embodiment.
  • 6A is a plan perspective view showing an example of an internal configuration of the electronic component device according to Embodiment 3.
  • FIG. 6B is a perspective plan view showing another example of the internal configuration of the electronic component device according to Embodiment 3.
  • FIG. 7A is a perspective plan view showing the internal configuration of the electronic component device according to Embodiment 4.
  • FIG. 7B is a plan perspective view showing the internal configuration of the electronic component device according to Embodiment 4.
  • FIG. 8 is a configuration diagram of a communication device and a high-frequency front-end circuit according to the fifth embodiment.
  • FIG. 9A is a cross-sectional view showing another configuration of the electronic component device.
  • FIG. 9B is a cross-sectional view showing another configuration of the electronic component device.
  • the electronic component device 1 is provided in, for example, a communication device used for transmission / reception of a high-frequency signal.
  • FIG. 1 is a plan view illustrating an example of an external appearance of the electronic component device 1 according to the present embodiment when viewed in plan.
  • FIG. 2A is a plan perspective view showing the internal configuration of the electronic component device 1 according to the present embodiment.
  • 2B to 3B are cross-sectional perspective views showing the internal configuration of the electronic component device 1 according to the present embodiment.
  • the electronic component device 1 includes a resin structure 10 and an electronic component 20 built in the resin structure 10.
  • the electronic component 20 is built in the resin structure 10 with one main surface exposed.
  • a first wiring layer 32 a and a second wiring layer 32 b are disposed on the surfaces of the electronic component 20 and the resin structure 10.
  • the first wiring layer 32 a and the second wiring layer 32 b are connected to the internal electrode 23 of the electronic component 20, and are continuously on the internal electrode 23, the adjustment region 25 described later, and the resin structure 10. Is provided.
  • the resin structure 10 is made of, for example, a resin material such as a synthetic resin.
  • a resin material such as a synthetic resin.
  • an epoxy resin or an acrylic resin may be used.
  • an inorganic filler such as silica or alumina may be added to a synthetic resin such as an epoxy resin.
  • the method of adjusting the linear expansion coefficient of the resin structure 10 is well-known, in the well-known method, the line between the resin structure 10 and the element body 21 of the electronic component 20, and the element body 21 and the internal electrode 23 is known. It is difficult to adjust the expansion coefficient.
  • the electronic component device 1 the linear expansion coefficients between the resin structure 10 and the element body 21 of the electronic component 20 and between the element body 21 and the internal electrode 23 are adjusted.
  • the electronic component 20 is an electronic component having an internal electrode 23 in the element body 21, as shown in FIGS. 2A and 2B. More specifically, the element body 21 is a laminated body in which a plurality of layers composed of ceramic inclusions and the like are laminated, and an internal electrode 23 is formed inside the element body 21.
  • the element body 21 is made of, for example, alumina, ceramic powder, glass, resin, or a mixture thereof.
  • the internal electrode 23 includes a first internal electrode 23a and a second internal electrode 23b. As shown in FIG. 2B, the first internal electrode 23 a is an electrode that penetrates each layer constituting the element body 21 and is formed in a column shape in the thickness direction of the element body 21.
  • the second internal electrode 23b is a functional element formed at a position different from that of the first internal electrode 23a.
  • the second internal electrode 23b includes an electrode formed in a planar shape on each layer constituting the element body 21, and a columnar electrode connecting the electrodes formed in a planar shape on each layer.
  • the inductor has a coil pattern.
  • the first internal electrode 23 a and the second internal electrode 23 b are the other main surface of the element body 21 opposite to the one main surface exposed from the resin structure 10. Connected in the vicinity.
  • the second internal electrode 23b is not limited to the inductor, and may be another functional element such as a capacitor.
  • the second internal electrode 23b penetrates each layer constituting the element body 21, and It may be an electrode formed in a columnar shape in the thickness direction of the body 21.
  • the element body 21 is made of, for example, alumina, ceramic powder, glass, resin, or a mixture thereof.
  • the first internal electrode 23a and the second internal electrode 23b are made of Cu, for example.
  • the first internal electrode 23a and the second internal electrode 23b may be made of a material other than Cu.
  • the first internal electrode 23a and the second internal electrode 23b are each composed mainly of a good conductor such as Ag, W, Au, or Ni, an alloy, or the main component and glass, resin, ceramics, or the like. Or a mixture thereof.
  • the first internal electrode 23a and the second internal electrode 23b are not limited to being made of the same material, and may be made of different materials.
  • the first internal electrode 23a is an electrode formed in a columnar shape in the thickness direction of the element body 21 as an example, but the first internal electrode 23a constitutes the element body 21.
  • Each of the layers to be formed may be composed of electrodes formed in a planar shape and columnar electrodes that connect the electrodes formed in a planar shape in each layer.
  • the first internal electrode 23a may be an inductor like the above-described second internal electrode 23b, or may be another functional element such as a capacitor.
  • a semiconductor element made of Si or the like may be formed on the second internal electrode 23b.
  • an adjustment region 25 is provided between the first internal electrode 23a and the side surface of the resin structure 10 closest to the first internal electrode 23a.
  • the adjustment region 25 is a region for reducing the influence of the difference in thermal expansion coefficient between the first internal electrode 23a and the element body 21 and between the element body 21 and the resin structure 10 on the first wiring layer 32a.
  • the adjustment region 25 includes an element body 21 of the electronic component 20 and an adjustment electrode 27 formed on the element body 21. The relationship among the thermal expansion coefficients of the resin structure 10, the first internal electrode 23a, the element body 21, the adjustment electrode 27, and the adjustment region 25 will be described later.
  • the adjustment electrode 27 is an electrode formed in a planar shape from the first internal electrode 23a to the side surface of the resin structure 10 closest to the first internal electrode 23a.
  • a plurality of adjustment electrodes 27 are provided in the depth direction of the element body 21 along the first internal electrode 23a.
  • the plurality of adjustment electrodes 27 have the same shape, and are formed such that the thickness of the element body 21 in the depth direction is the same.
  • the plurality of adjustment electrodes 27 are arranged so as to protrude from the first internal electrode 23a in a comb-tooth shape with a certain interval (for example, the interval A).
  • the adjustment electrode 27 is not limited to a plurality, and may be one. Further, the adjustment electrode 27 does not have to be planar, and may have another shape.
  • the shape of the adjustment electrodes 27 may be different, or the shape of each adjustment electrode 27 may be completely different.
  • the adjustment electrode 27 may be periodically arranged in the depth direction of the element body 21 (for example, the interval A and the interval B are alternately repeated).
  • the adjustment electrode 27 is made of Cu, for example.
  • the adjustment electrode 27 is not limited to Cu, and may be made of other metal materials such as Ag, Ni, and W.
  • the adjustment electrode 27 may be made of the same material as the internal electrode 23 of the electronic component 20, or may be made of the same material as a first wiring layer 32a and a second wiring layer 32b described later. Good.
  • a first wiring layer 32a connected to the first internal electrode 23a of the electronic component 20 and a second wiring layer connected to the second internal electrode 23b are provided above the electronic component 20 and the resin structure 10.
  • a wiring layer 32b is disposed above the electronic component 20 and the resin structure 10.
  • An insulating layer 30 is provided between the first wiring layer 32 a and the resin structure 10 and between the first wiring layer 32 a and the element body 21 of the electronic component 20.
  • an insulating layer 30 is provided between the second wiring layer 32 b and the resin structure 10 and between the second wiring layer 32 b and the element body 21 of the electronic component 20.
  • the insulating layer 30 is made of, for example, epoxy resin, acrylic resin, polyimide, PBO (paraphenylene benzobisoxazole), BCB (benzocyclobutene), or the like.
  • the insulating layer 30 may be partially or completely deleted if the insulating characteristics of the resin structure and the element body can be sufficiently secured.
  • the thermal expansion coefficient of the internal electrode 23 is the average thermal expansion coefficient of the entire first internal electrode 23a and the second internal electrode 23b.
  • the element body 21 of the electronic component 20 incorporated in the resin structure 10 is made of, for example, a ceramic-containing material, the coefficient of thermal expansion of the element body 21 is smaller than both the resin structure 10 and the internal electrode 23. Is preferred. In this case, in the electronic component device 1, the element body 21 having a smaller coefficient of thermal expansion than the resin structure 10 and the internal electrode 23 is disposed between the resin structure 10 and the internal electrode 23. The first wiring layer 32 a disposed on 21 is likely to be disconnected at the boundary between the element body 21 and the resin structure 10.
  • the region where the element body 21 between the resin structure 10 and the first internal electrode 23a is disposed is used as the adjustment region 25, and the adjustment electrode 27 is provided in the adjustment region 25.
  • the thermal expansion coefficient of the adjustment electrode 27 is larger than that of the element body 21. Therefore, the thermal expansion coefficient in the adjustment region 25 is larger than that in the case where the adjustment region 25 is configured by only the element body 21.
  • the thermal expansion coefficient of the resin structure 10, the adjustment region 25, and the internal electrode 23 is such that the thermal expansion coefficient of the adjustment region 25 is larger than the thermal expansion coefficient of the internal electrode 23. Adjust so that it is smaller than the coefficient.
  • the resin structure 10 by adjusting the thermal expansion coefficient in order of the thermal expansion coefficient of the resin structure 10 ⁇ the thermal expansion coefficient of the adjustment region 25 ⁇ the thermal expansion coefficient of the internal electrode 23, the resin structure 10 and the adjustment region 25, and By reducing the difference in thermal expansion coefficient between the adjustment region 25 and the internal electrode 23, the first wiring layer 32a is prevented from being disconnected.
  • thermal expansion coefficient of the resin structure 10 and the thermal expansion coefficient of the adjustment region 25 may be the same, or the thermal expansion coefficient of the adjustment region 25 and the internal electrode 23 may be the same. That is, the thermal expansion coefficients of the resin structure 10, the adjustment region 25, and the internal electrode 23 satisfy the relational expression: thermal expansion coefficient of the resin structure 10 ⁇ thermal expansion coefficient of the adjustment region 25 ⁇ thermal expansion coefficient of the internal electrode 23. You may adjust as follows.
  • the adjustment of the thermal expansion coefficient of the adjustment region 25 can be adjusted by the size of the adjustment electrode 27, the material, the proportion of the adjustment region 25, the arrangement position, and the like.
  • the thermal expansion coefficient of the internal electrode 23 is, for example, 16.8 ppm / ° C. which is the thermal expansion coefficient of Cu when Cu is used as the internal electrode 23.
  • the thermal expansion coefficient of the element body 21 is, for example, 6 to 11 ppm / ° C. because the element body 21 is a ceramic or a ceramic-containing material.
  • the thermal expansion coefficient of the internal electrode 23 is a value close to the linear expansion coefficient of the conductor metal that is the material of the internal electrode 23.
  • the thermal expansion coefficient of the internal electrode 23 can be changed. For example, when an additive having a linear expansion coefficient smaller than that of the conductor metal is added to the internal electrode 23, the linear expansion coefficient of the internal electrode 23 can be made smaller than the linear expansion coefficient of the conductor metal. . Further, when an additive having a linear expansion coefficient larger than that of the conductor metal is added to the internal electrode 23, the linear expansion coefficient of the internal electrode 23 can be made larger than the linear expansion coefficient of the conductor metal. .
  • the thermal expansion coefficient of the electronic component 20 is, for example, 6 to 11 ppm / ° C., although the linear expansion coefficient value is different between the element body 21 and the internal electrode 23.
  • the thermal expansion coefficient of the resin structure 10 may be set as appropriate in relation to the electrode or the like built in the element body 21.
  • the thermal expansion coefficient of the resin structure 10 may be a value close to the thermal expansion coefficient of the internal electrode 23.
  • the thermal expansion coefficient of the resin structure 10 may be about 16.8 ppm / ° C., which is the same as the thermal expansion coefficient of Cu.
  • the thermal expansion coefficient of the resin structure 10 is 7 to 18 ppm / ° C.
  • the thermal expansion coefficient of the element body 21 is 6 to 11 ppm / ° C.
  • the thermal expansion coefficient of the internal electrode 23 is 12 to 26 ppm / ° C.
  • the thermal expansion coefficient of the region 25 will be described. In this case, by arranging the adjustment electrode 27 with respect to the element body 21 in the adjustment region 25, the thermal expansion coefficient of the adjustment region 25 is brought close to the thermal expansion coefficient of the resin structure 10.
  • the thermal expansion coefficient of the resin structure 10 is 7 to 18 ppm / ° C., and the thermal expansion coefficient of the adjusted region 25 after adjustment is 6 to 24 ppm / ° C.
  • the coefficient of thermal expansion is not limited to this range depending on the actual structure and the degree of desired improvement effect.
  • the adjustment area 25 is provided in the adjustment area 25 when the element body 21 is structured as it is.
  • the adjustment electrode 27 is preferably provided so that the difference in thermal expansion coefficient between the resin structure 10 and the adjustment region 25 after adjustment (after the adjustment electrode 27 is provided) is 6 ppm / ° C. or less.
  • the thermal expansion of the resin structure 10 and the adjustment region 25 after adjustment (after the adjustment electrode 27 is provided)
  • the coefficient difference is within 6 ppm / ° C.
  • the disconnection failure of the first wiring layer 32a after 100 cycles did not occur, but the adjustment after adjustment with the resin structure 10 (after the adjustment electrode 27 was provided)
  • the difference in thermal expansion coefficient in the region 25 is larger than 6 ppm / ° C.
  • the first wiring layer 32a is disconnected or the resistance value of the first wiring layer 32a is deteriorated. Therefore, it is preferable to provide the adjustment electrode 27 so that the difference in thermal expansion coefficient between the resin structure 10 and the adjustment region 25 after adjustment (after the adjustment electrode 27 is provided) is 6 ppm / ° C. or less.
  • the difference in thermal expansion coefficient between the resin structure 10 and the adjustment region 25 after adjustment is preferably within 3 ppm / ° C. Therefore, the ratio of the adjustment electrode 27 provided in the adjustment region 25 may be adjusted, and the adjustment electrode 27 may be provided so that the thermal expansion coefficient in the adjustment region 25 is 13 ppm / ° C. That is, the adjustment electrode 27 may be provided so that the difference in thermal expansion coefficient between the resin structure 10 and the adjustment region 25 after adjustment (after the adjustment electrode 27 is provided) is 3 ppm / ° C. or less.
  • the adjustment of the thermal expansion coefficient of the adjustment region 25 can be adjusted by the type and size of the material used as the adjustment electrode 27, the ratio of the adjustment electrode 27 to the adjustment region 25, the arrangement position, and the like.
  • the adjustment electrode 27 is in contact with the first internal electrode 23a in the electronic component device 1 shown in FIG. 2B, the adjustment electrode 27 is not limited to this configuration, and the adjustment electrode 27 is connected to the first internal electrode 23a. It is good also as a structure which is not contacting.
  • the adjustment electrode 27 is in contact with the resin structure 10.
  • the adjustment electrode 27 is not limited to this configuration, and the adjustment electrode is not in contact with the resin structure 10. It is good.
  • the adjustment electrode 27 may be in contact with the first internal electrode 23a and not in contact with the resin structure 10.
  • the adjustment electrode 27 may be in contact with the resin structure 10 and not in contact with the first internal electrode 23a.
  • the material of the adjustment electrode 27 is used as the material of the adjustment electrode 27.
  • the material of the adjustment electrode 27 is not limited to this, and a metal material such as Ag, Ni, or W may be used.
  • the material of the adjustment electrode 27 may be appropriately selected according to the thermal expansion coefficients of the internal electrode 23, the resin structure 10, and the element body 21.
  • the material of the adjustment electrode 27 is not limited to an electrode formed of a metal material, and may be formed of other materials as long as it is a member formed of a material having a linear expansion coefficient larger than that of the element body 21.
  • a plurality of adjustment electrodes 27 may be provided, and the plurality of adjustment electrodes 27 may have the same shape. Further, the plurality of adjustment electrodes 27 may be arranged in the depth direction of the element body 21 along the internal electrode 23 with a certain interval. Further, the number of adjustment electrodes 27 is not limited to a plurality, and may be one. When there are a plurality of adjustment electrodes 27, the shape of the adjustment electrodes 27 may be different, and the adjustment electrodes 27 may be arranged periodically or may not be arranged periodically. .
  • the adjustment electrode 27 is disposed on the element body 21 that is disposed between the resin structure 10 and the internal electrode 23, whereby the resin structure 10 and the internal structure are arranged.
  • the region between the electrode 23 and the adjustment region 25 is used as the adjustment region 25, and the difference in thermal expansion coefficient between the resin structure 10 and the element body 21, and between the element body 21 and the internal electrode 23 can be reduced. Thereby, it can suppress that a wiring cut
  • condenser, the inductor, etc. were illustrated as a specific example as the 2nd built-in electrode 23b built in the electronic component 20, in this invention, it is by adjustment of the thermal expansion coefficient of the resin structure 10 and the internal electrode 23. Since the purpose is to improve thermal shock resistance, the effects of the present invention can be obtained regardless of the type of functional elements such as capacitors and inductors.
  • the electronic component device 1 in the above-described embodiment can be mounted on a printed wiring board or the like alone to function, but the internal electrode 23, the first wiring layer 32a, or the second wiring layer 32b.
  • a mounting component or the like connected via the connector may be provided.
  • it can also be used as an electronic component device or a package whose density is increased by resin molding of a mounted component on the electronic component device.
  • FIG. 4 is a cross-sectional view showing an internal configuration of the electronic component device 2 according to the present embodiment.
  • the electronic component device 2 according to the present embodiment is different from the electronic component device 1 shown in the first embodiment in that the shape of the internal electrode 123 and the adjustment electrode 127 is the same as that of the internal electrode 23 and the adjustment electrode according to the first embodiment. 27 and different from FIG. Since other parts are the same as those of the electronic component device 2 shown in the first embodiment, detailed description thereof is omitted.
  • the internal electrode 123 includes a plurality of first internal electrodes 123a and second internal electrodes 123b. Since the configuration of the second internal electrode 123b is the same as that of the second internal electrode 23b shown in the first embodiment, description thereof is omitted.
  • Each of the plurality of first internal electrodes 123 a is a columnar internal electrode having a predetermined height in the depth direction of the element body 21.
  • the predetermined height is a size obtained by dividing the thickness of the element body 21 in the electronic component 120 into five equal parts.
  • the plurality of first internal electrodes 123a are alternately arranged in the region below the end of the first wiring layer 32a on the side connected to the electronic component 20 and the adjustment region 125.
  • adjustment electrodes 127 are connected to the upper and lower sides of each of the plurality of first internal electrodes 123a. Further, the plurality of first internal electrodes 123a are connected via the adjustment electrode 127 by connecting the adjustment electrodes 127 connected to the adjacent different first internal electrodes 123a to each other.
  • three first internal electrodes 123a are arranged in a region below the end of the first wiring layer 32a on the side connected to the electronic component 120.
  • An adjustment electrode 127 is connected to the upper and lower surfaces of each first internal electrode 123a.
  • three first internal electrodes 123 a are arranged in the adjustment region 125.
  • the adjustment electrode 127 is connected to the upper and lower surfaces of each first internal electrode 123a.
  • the adjustment electrode 127 in the region below the end portion of the first wiring layer 32 a connected to the electronic component 120 and the adjustment electrode 127 in the adjustment region 125 are the first in the thickness direction of the element body 21.
  • the internal electrodes 123a are arranged in the respective regions so as to be connected to the alternately arranged heights.
  • the number of the first internal electrodes 123a and the adjustment electrodes 127 arranged is the same or Since the arrangement numbers are close, the difference between the thermal expansion coefficient in the region below the end of the first wiring layer 32a connected to the electronic component 120 and the thermal expansion coefficient in the adjustment region 125 can be further reduced. it can. Therefore, the first wiring layer 32 a can be prevented from being disconnected at the boundary between the internal electrode and the adjustment region 125.
  • the height of the first internal electrode 123a is a size obtained by dividing the thickness of the element body 21 in the electronic component 120 into five equal parts.
  • the height of 123a is not limited to this, and any structure may be used as long as a plurality of first internal electrodes 123a are arranged in the thickness direction of the element body 21 in the electronic component 120.
  • FIG. 5 is a cross-sectional view showing the internal configuration of the electronic component device according to the present embodiment.
  • FIG. 6A is a plan perspective view showing an example of the internal configuration of the electronic component device according to the present embodiment.
  • FIG. 6B is a perspective plan view showing another example of the internal configuration of the electronic component device according to the present embodiment. 6A and 6B, the illustration of the resin structure 10 is omitted, and only the electronic component portion is shown. The resin structure 10 is disposed around the structure shown in FIGS. 6A and 6B.
  • the electronic component device 3 according to the present embodiment is different from the electronic component device 1 shown in the first embodiment in that the electronic component 220 constitutes a capacitor.
  • the electronic component 220 has an internal electrode 223 on an element body 221.
  • the internal electrode 223 includes a first internal electrode 223a and a second internal electrode 223b.
  • the configurations of the first internal electrode 223a and the second internal electrode 223b are the same as those of the first internal electrode 23a described in Embodiment 1, and thus detailed description thereof is omitted.
  • the first internal electrode 223a has an adjustment electrode 227a in the adjustment region 226.
  • the configurations of the adjustment region 226 and the adjustment electrode 227a are the same as those of the adjustment region 25 and the adjustment electrode 27 described in the first embodiment, and thus detailed description thereof is omitted.
  • the first internal electrode 223a includes electrodes 224a and 225a connected to the first internal electrode 223a in a region opposite to the adjustment region 226 with the first internal electrode 223a interposed therebetween.
  • the electrodes 224a and 225a are alternately arranged in the depth direction of the element body 221 along the first internal electrodes 223a.
  • the length of the electrode 224a is longer than that of the electrode 225a.
  • the second internal electrode 223b includes electrodes 224b and 225b connected to the second internal electrode 223b in a region opposite to the adjustment region 226 with the second internal electrode 223b interposed therebetween.
  • the electrodes 224b and 225b are alternately arranged in the depth direction of the element body 221 along the first internal electrode 223b.
  • the length of the electrode 224b is longer than that of the electrode 225b.
  • FIG. 6A shows a cross-sectional view of the electronic component 220 along the VIA-VIA line shown in FIG.
  • the electrode 225a and the electrode 224b are formed in the same layer with a space therebetween.
  • the element body 221 is exposed between the electrode 225a and the electrode 224b.
  • the electrode 224a and the electrode 225b are formed in the same layer with a space therebetween.
  • the element body 21 is exposed between the electrode 224a and the electrode 225b.
  • the electrode 224a and the electrode 224b are arranged so that a part of each of the electrode 224a and the electrode 224b overlaps when seen in a plan view.
  • the electrode 224a and the electrode 224b function as a capacitor. Further, the capacitor constituted by the electrode 224a and the electrode 225b is connected to the first internal electrode 223a and the second internal electrode 223b, respectively.
  • the electrodes 224a and 224b correspond to the first planar electrode and the second planar electrode in the present invention.
  • first internal electrode 223a and the second internal electrode 223b are connected to the first wiring layer 32a and the second wiring layer 32b, respectively.
  • the first wiring layer 32a and the second wiring layer 32b are the same as the first wiring layer 32a and the second wiring layer 32b described in the first embodiment, and thus description thereof is omitted.
  • the electronic component 220 having a capacitor as an electronic component is also provided by arranging the adjustment electrode 227a on the element body 221 in the adjustment region 226 between the resin structure 10 and the first internal electrode 223a.
  • the difference in thermal expansion coefficient between the resin structure 10 and the element body 221 and the difference in thermal expansion coefficient between the element body 221 and the first internal electrode 223a can be reduced. Therefore, it is possible to prevent the first wiring layer 32a from being cut at the boundary between the resin structure 10 and the element body 221.
  • the difference in thermal expansion coefficient between the resin structure 10 and the element body 221 is as follows:
  • the difference in thermal expansion coefficient between the element body 221 and the second internal electrode 223b can be reduced. Thereby, it can suppress that the 2nd wiring layer 32b cut
  • the electrode element 225a and the electrode 224b may be exposed at positions other than between the electrode 225a and the electrode 224b as shown in FIG. 6B.
  • the element body 221 may be exposed between the electrode 224a and the electrode 225b other than between the electrode 224a and the electrode 225b.
  • FIGS. 7A and 7B are plan perspective views showing an example of the internal configuration of the electronic component devices 4 and 5 according to the present embodiment.
  • the resin structure 10, the first wiring layer 32a, and the second wiring layer 32b are not shown, and only the electronic component portion is shown.
  • the resin structure 10 is disposed around the structure shown in FIG. 7A.
  • the first wiring layer 32 a is connected to the internal electrode 323 of the electronic component 20 and is continuously provided on the internal electrode 323, the adjustment region 325 a, and the resin structure 10.
  • the second wiring layer 32 b is connected to the internal electrode 323 of the electronic component 20, and is continuously provided on the internal electrode 323, the adjustment region 325 b, and the resin structure 10.
  • the electronic component device 4 according to the present embodiment is different from the electronic component device 1 shown in the first embodiment in that the position where the adjustment electrode is arranged is different from the electronic component device 1 shown in the first embodiment. .
  • the element body 21 of the electronic component device 4 has an internal electrode 323.
  • the internal electrode 323 includes a first internal electrode 323a and a second internal electrode 323b.
  • the configuration of the second internal electrode 323b is the same as that of the second internal electrode 23b shown in Embodiment 1, and thus the description thereof is omitted.
  • the element body 21 has a rectangular shape when the electronic component device 4 is viewed in plan view from one main surface of the element body 21, that is, the surface side on which the first wiring layer 32a (see FIGS. 2A and 2B) is formed. I am doing. Then, adjustment electrodes 327 a and 327 b are formed at corners of the rectangular element body 21 along parts of two sides constituting at least one corner part of the element body 21. That is, the adjustment electrodes 327 a and 327 b are formed in an L shape at at least one corner of the rectangular shape of the element body 21.
  • the adjustment electrodes 327a and 327b are provided at a pair of corners facing each other in the element body 21.
  • the adjustment electrode 327a is connected to the first internal electrode 323a.
  • the area where the adjusting electrodes 327a and 327b and the resin structure 10 and the adjusting electrodes 327a and 327b and the element body 21 are in contact with each other can be increased. Therefore, the coefficient of thermal expansion in the adjusting region 325a can be reduced. 10 and the thermal expansion coefficient of the internal electrode 323 can be approached more quickly. Thereby, it can suppress that the 1st wiring layer 32a and the 2nd wiring layer 32b cut
  • the adjustment electrodes 327a and 327b described above are provided at a pair of corner portions facing each other in the element body 21 when the electronic component device 4 is viewed in plan from the surface side on which the first wiring layer 32a is formed.
  • the present invention is not limited to this, and the corners that are not opposed to each other in the element body 21, that is, adjacent corners may be provided.
  • the adjustment region 325a and the adjustment electrode 327a may be provided only at one corner.
  • Embodiment 5 Next, Embodiment 5 will be described with reference to FIG.
  • the electronic component device described in the first to fourth embodiments can be applied to a high-frequency front-end circuit and a communication device including the high-frequency front-end circuit. Therefore, in the present embodiment, a configuration including the electronic component device according to Embodiments 1 to 4 described above will be described for such a high-frequency front-end circuit and communication device.
  • FIG. 8 is a configuration diagram of the high-frequency front-end circuit 51 and its peripheral circuits according to the embodiment.
  • FIG. 8 shows an antenna element 52 and an RFIC 53 that constitute the communication device 50 together with the high-frequency front-end circuit 51.
  • the communication device 50 includes the antenna element 52 in the present embodiment, but may not include the antenna device 52.
  • the antenna element 52 is, for example, a multiband antenna that transmits and receives high-frequency signals.
  • the RFIC 53 is an RF signal processing circuit that processes a high-frequency signal transmitted and received by the antenna element 52. Specifically, the RFIC 53 processes a transmission signal input from a baseband signal processing circuit (not shown) by up-conversion and the like, and generates a high-frequency signal (here, a high-frequency transmission signal) generated by the signal processing. Is output to the transmission-side signal path of the high-frequency front-end circuit 51. The RFIC 53 processes a high-frequency signal (here, a high-frequency reception signal) input from the antenna element 52 via a reception-side signal path (not shown) of the high-frequency front-end circuit 51 by down-conversion, etc. The received signal generated by the signal processing is output to the baseband signal processing circuit.
  • a high-frequency signal here, a high-frequency reception signal
  • the received signal generated by the signal processing is output to the baseband signal processing circuit.
  • the high frequency front end circuit 51 is a circuit that transmits a high frequency signal between the antenna element 52 and the RFIC 53. Specifically, the high-frequency front end circuit 51 transmits a high-frequency signal (here, a high-frequency transmission signal) output from the RFIC 53 to the antenna element 52 via the transmission-side signal path. The high-frequency front end circuit 51 may transmit a high-frequency signal (here, a high-frequency reception signal) received by the antenna element 52 to the RFIC 53 via a reception-side signal path (not shown).
  • a high-frequency signal here, a high-frequency transmission signal
  • the high-frequency front end circuit 51 may transmit a high-frequency signal (here, a high-frequency reception signal) received by the antenna element 52 to the RFIC 53 via a reception-side signal path (not shown).
  • the high frequency front end circuit 51 includes an amplifier circuit group 520, a filter group 530, and a switch circuit 540.
  • the amplifier circuit group 520 includes amplifier circuits individually corresponding to a plurality of bands. Specifically, the amplifier circuit is composed of one or more power amplifiers that amplify the high-frequency transmission signal output from the RFIC 53, and in this embodiment, the amplifier circuit is composed of two-stage power amplifiers connected in multiple stages (cascade connection). Composed.
  • the filter group 530 includes filters individually corresponding to a plurality of bands, and filters the high-frequency signals amplified by the amplifier circuit group 520 in the frequency bands of the corresponding bands.
  • filter group 530 includes a filter having a low-band frequency band (low-band cellular band) as a pass band and a filter having a high-band frequency band (high-band cellular band) as a pass band. .
  • the switch circuit 540 has a common terminal connected to the antenna element 52 and a plurality of selection terminals (two selection terminals in this embodiment) selectively connected to the terminal.
  • the plurality of selection terminals are individually connected to the plurality of filters constituting the filter group 530.
  • the switch circuit 540 connects any of the plurality of selection terminals and the common terminal in accordance with a control signal from a control unit such as the RFIC 53. Note that the number of selection terminals connected to the common terminal is not limited to one and may be plural.
  • At least one of the amplifier circuit group 520, the filter group 530, and the switch circuit 540 is provided with the electronic component device described in the first to fourth embodiments.
  • the communication device 50 and the high-frequency front-end circuit 51 configured as described above amplify a high-frequency signal (here, a high-frequency transmission signal) output from the RFIC 53 and transmit it to the antenna element 52 via the transmission-side signal path.
  • the high-frequency front end circuit 51 may transmit a high-frequency signal (here, a high-frequency reception signal) received by the antenna element 52 to the RFIC 53 via a reception-side signal path (not shown).
  • the electronic component device has a difference in thermal expansion coefficient between the resin structure and the element body, and the thermal expansion coefficient between the element body and the internal electrode.
  • the difference can be reduced. Thereby, it can suppress that a 1st wiring layer cut
  • the communication device 50 and the high-frequency front end circuit 51 may be configured to include only one reception filter or only one transmission filter, or may be configured to include a plurality of reception filters or a plurality of transmission filters. Good. Further, the communication device 50 and the high-frequency front end circuit 51 may have a transmission / reception configuration including at least one transmission filter and at least one reception filter.
  • the electronic component device may be one in which the mounting component 102 is mounted on a solder mounting pad formed in the first wiring layer 32a and the second wiring layer 32b.
  • the mounting component 102 is, for example, a high-frequency circuit component such as a filter, or an electronic component such as an inductor or a capacitor. More specifically, an electronic component such as an acoustic wave filter, a piezoelectric resonator, or a multilayer capacitor may be used as the high-frequency circuit component. Further, a module component may be used as the mounting component 102. Further, the mounting component 102 may be a mounting board.
  • the electronic component device 1 on which the mounting component 102 is mounted may further include a sealing layer 104 that seals the mounting component 102 on the electronic component device 100.
  • a resin such as polyimide, benzocyclobutene, polybenzoxazole, phenol, or silicone may be used.
  • the electronic component device may be mounted on a module substrate 150, which is a mounting substrate, via solder balls 105.
  • the electronic component device may have a configuration in which a plurality of electronic component devices 100 are stacked between the mounting component 102 and the module substrate 150 shown in FIG. 9A.
  • a plurality of electronic component devices 100 are stacked between the mounting component 102 and the module substrate 150 shown in FIG. 9A.
  • FIG. 9B two electronic component devices 100 are stacked between the mounting component 102 and the module substrate 150.
  • the mounting component 102, the two electronic component devices 100, and the module substrate 150 may be electrically connected via the solder balls 105 and the through electrodes 121 that penetrate both surfaces of the substrate 10 of the electronic component device 100.
  • the electronic component may include a capacitor or an inductor.
  • another multilayer electronic component may be included.
  • the element body in the electronic component may be composed of ceramic and ceramic-containing material.
  • the element body may be made of, for example, a mixture of alumina, ceramic powder, glass, resin or the like, or may be made of another material.
  • the internal electrode may be composed of, for example, a single component mainly composed of a good conductor such as Cu, Ag, W, Au, Ni, or a mixture of the main component and glass, resin, ceramics, or the like. .
  • the electronic component and the internal electrode may be formed of the same material, or may be formed of different materials.
  • the adjustment electrode may or may not be connected to the internal electrode. Moreover, the adjustment electrode may be in contact with the resin structure or may not be in contact.
  • the material of the adjustment electrode for example, a metal material such as Cu, Ag, Ni, W may be used, or other materials may be used. Depending on the thermal expansion coefficients of the internal electrode, the resin structure, and the element body, these metal materials may be appropriately selected as the adjustment electrode material. Further, the configuration is not limited to an electrode formed of a metal material, but may be any configuration as long as the member is formed of a material having a linear expansion coefficient larger than that of the element body.
  • a plurality of adjustment electrodes may be provided, and the plurality of adjustment electrodes 27 may have the same shape. Further, the plurality of adjustment electrodes may be arranged in the depth direction of the element body along the internal electrodes with a certain interval. Further, the number of adjustment electrodes is not limited to a plurality, and may be one. When there are a plurality of adjustment electrodes, the shape of the adjustment electrodes may be different, and the adjustment electrodes may be arranged periodically or may not be arranged periodically.
  • the electronic component device described above may be used for a communication device including a duplexer, a high frequency front end circuit, a filter, and the like.
  • the present invention can be used for a communication module including a switch, a duplexer, a filter, and the like with built-in electronic components, for example, an RF module used for a mobile phone or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

電子部品(20)と、一方の主面が露出する状態で電子部品(20)を内蔵する樹脂構造体(10)と、貫通電極(121)と、第1の配線層(32a)および第2の配線層(32b)とを備え、電子部品(20)は、素体(21)と、素体(21)に内蔵され第1の配線層(32a)および第2の配線層(32b)と接続された内部電極(23)と、素体(21)において少なくとも調整領域(25)に設けられた調整電極(27)と、を有し、第1の配線層(32a)は、内部電極(23)、調整領域(25)および樹脂構造体(10)の上に連続して設けられており、樹脂構造体(10)の熱膨張係数、調整領域(25)の熱膨張係数および内部電極(23)の熱膨張係数は、樹脂構造体(10)の熱膨張係数≦調整領域(25)の熱膨張係数≦内部電極(23)の熱膨張係数という関係式を満たす。

Description

電子部品装置、高周波フロントエンド回路、及び通信装置
 本発明は、電子部品装置、高周波フロントエンド回路、及び通信装置等に関する。
 近年、セラミック等の積層体を素体として、電子部品を形成し、電子部品が形成された素体を樹脂構造体に埋め込んだ半導体パッケージ等の電子部品装置が開発されている(例えば、特許文献1参照)。
 特許文献1に記載の半導体パッケージでは、絶縁樹脂層に電子部品が内蔵された半導体パッケージが開示されている。この半導体パッケージでは、絶縁樹脂層の電子部品が配置されていない位置には、電子部品を半導体パッケージの外部の端子と接続するための貫通電極が設けられている。そして、半導体パッケージの主面において、電子部品から貫通電極まで配線層が設けられている。配線層は、電子部品から貫通電極まで絶縁樹脂層の上に引き回されている。
特開2005-310954号公報
 しかし、電子部品装置において、電子部品が形成された領域の素体部分は例えばセラミックであり、当該素体部分を囲む領域は例えば樹脂で構成された樹脂構造体である。つまり、素体部分と当該素体部分を囲む領域とでは、熱膨張係数が異なる材料が用いられている。例えば、樹脂構造体の方が素体部分よりも熱膨張率が大きく、熱により膨張しやすいといった特徴を有している。これにより、使用環境温度の変化により、素体部分と樹脂構造体とが加熱された場合、素体部分と樹脂構造体との熱膨張係数との差により、樹脂構造体の方が素体部分よりも膨張しやすく、樹脂構造体と素体部分との境界において配線が切断してしまうという問題が生じている。
 本発明は、上記課題を解決するためになされたものであって、樹脂構造体と電子部品の素体部分との境界において配線が切断するのを抑制することができる電子部品装置、高周波フロントエンド回路、及び通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る電子部品装置は、電子部品と、前記電子部品の一方の主面が露出する状態で、前記電子部品を内蔵する樹脂構造体と、前記樹脂構造体の表面に形成された配線層とを備え、前記電子部品は、素体と、前記素体に内蔵され、前記配線層と接続された内部電極と、前記素体において、少なくとも、前記内部電極と前記内部電極に最も近い前記樹脂構造体の側面との間の調整領域に設けられた調整電極と、を有し、前記配線層は、前記内部電極、前記調整領域および前記樹脂構造体の上に連続して設けられており、前記樹脂構造体の熱膨張係数、前記調整領域の熱膨張係数および前記内部電極の熱膨張係数は、前記樹脂構造体の熱膨張係数≦前記調整領域の熱膨張係数≦前記内部電極の熱膨張係数という関係式を満たす。
 これにより、樹脂構造体と内部電極との間に配置されている素体部分に調整電極を配置することにより、樹脂構造体と内部電極との間の領域を調整領域として設け、樹脂構造体の熱膨張係数、調整領域の熱膨張係数および内部電極の熱膨張係数を、樹脂構造体の熱膨張係数≦調整領域の熱膨張係数≦内部電極の熱膨張係数、という関係に調整する。これにより、樹脂構造体と調整領域、および、調整領域と内部電極のそれぞれの熱膨張係数の差を小さくすることができる。したがって、樹脂構造体と内部電極との間の領域で熱膨張係数の変化を緩やかにすることができるため、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記調整電極の熱膨張係数は、前記素体の熱膨張係数よりも大きくてもよい。
 これにより、調整領域における熱膨張係数を、調整電極を設ける前の素体の熱膨張係数よりも大きくすることができる。したがって、樹脂構造体と素体、素体と内部電極との熱膨張係数の差を小さくすることができる。よって、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記調整電極は、前記樹脂構造体と接触していてもよい。
 これにより、調整領域において、樹脂構造体に近い側の調整領域の熱膨張係数を大きくすることができる。これにより、調整領域の熱膨張係数を樹脂構造体の熱膨張係数と素体の熱膨張係数の間の値に調整し、樹脂構造体と素体との境界での熱膨張係数の差を小さくすることができるので、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記調整電極は、前記内部電極と接触していてもよい。
 これにより、調整領域において、内部電極に近い側の調整領域の熱膨張係数を大きくすることができる。これにより、調整領域の熱膨張係数を樹脂構造体の熱膨張係数と素体の熱膨張係数の間の値に調整樹脂構造体と素体との境界での熱膨張係数の差を小さくすることができるので、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記調整電極は、前記内部電極に沿って前記素体の深さ方向に複数配置されていてもよい。
 これにより、素体の深さ方向の熱膨張係数を満遍なく大きくすることができる。これにより、調整領域の全体にわたって、調整領域の熱膨張係数を樹脂構造体の熱膨張係数と素体の熱膨張係数の間の値に調整することができる。したがって、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記複数の調整電極は、前記素体の深さ方向の厚さが同一であってもよい。
 これにより、素体の深さ方向の熱膨張係数を略均一に調整することができる。これにより、調整領域の全体にわたって、調整領域の熱膨張係数を樹脂構造体の熱膨張係数と素体熱膨張係数の間の値に調整することができる。したがって、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記複数の調整電極は、前記内部電極に沿って前記素体の深さ方向に周期的に配置されていてもよい。
 これにより、調整領域における熱膨張係数を、内部電極に沿って均一に調整することができる。これにより、内部電極に沿って調整領域の熱膨張係数を樹脂構造体の熱膨張係数と素体熱膨張係数の間の値に調整することができる。したがって、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記調整電極は、金属により構成されていてもよい。
 これにより、調整電極として金属を用いることで、調整領域の熱膨張率を大きくすることができる。これにより、調整領域の熱膨張係数を樹脂構造体の熱膨張係数と素体熱膨張係数の間の値に調整することができる。樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記調整電極は、前記内部電極と同一の材料により構成されていてもよい。
 これにより、調整領域における熱膨張係数を樹脂構造体の熱膨張係数と素体熱膨張係数の間の値に調整するとともに、配線層の熱膨張係数に近づけることができる。これにより、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記調整電極は、前記内部電極から突出して形成されていてもよい。
 これにより、内部電極から徐々に熱膨張係数を大きくすることができる。したがって、調整領域の熱膨張係数を樹脂構造体の熱膨張係数と素体熱膨張係数の間の値に調整し、樹脂構造体と素体との境界での熱膨張係数の差を小さくすることができるので、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記内部電極は、第1の内部電極と前記第1の内部電極に接続された第2の内部電極とで構成され、前記第1の内部電極および前記第2の内部電極の少なくとも1つは、インダクタであってもよい。
 これにより、電子部品としてインダクタを備える電子部品装置の熱膨張係数を調整することができる。これにより、樹脂構造体とインダクタが形成された素体との境界での熱膨張係数の差を小さくすることができるので、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記内部電極は、第1の内部電極と第2の内部電極とで構成され、前記配線層は、第1の配線層と第2の配線層とで構成され、前記第1の内部電極は、前記第1の配線層と接続され、前記調整領域と接触しており、前記第2の内部電極は、前記第2の配線層と接続され、前記調整領域と接触しており、前記電子部品は、前記第1の内部電極に接続された第1の平面電極と、前記第2の内部電極に接続された第2の平面電極とで構成されるコンデンサであってもよい。
 これにより、電子部品としてコンデンサを備える電子部品装置の熱膨張係数を調整することができる。これにより、樹脂構造体とコンデンサが形成された素体との境界での熱膨張係数の差を小さくすることができるので、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、前記素体は、前記配線層が形成された面側から平面視したときに矩形状の形状を有し、前記調整電極は、前記素体の矩形状の形状の少なくとも1つの角部を構成する2つの辺それぞれの一部に沿って形成されていてもよい。
 これにより、素体の矩形状の形状の少なくとも1つの角部にL字状に調整領域を設けることができる。これにより、調整電極を調整領域に多く形成できるので、調整電極と樹脂構造体、調整電極と素体21とが接触する面積を大きくすることができる。よって、樹脂構造体と素体との境界において配線が切断するのを抑制することができる。
 また、実装基板と、前記実装基板上に実装された上述した特徴を有する電子部品装置と、前記電子部品装置上にさらに実装された実装部品とを備えてもよい。
 これにより、上述した特徴を有する電子部品装置を備えた、樹脂構造体と素体との境界において配線が切断するのを抑制することができる電子部品装置を提供することができる。
 また、前記樹脂構造体は、前記樹脂構造体の両面を貫通する貫通電極を有し、前記貫通電極は、前記実装基板および前記配線層に接続されていてもよい。
 これにより、実装部品および電子部品装置を実装基板に電気的に接続することができる。したがって、樹脂構造体と素体との境界において配線が切断するのを抑制することができる電子部品装置を、実装基板に実装することができる。
 また、前記電子部品装置を複数有し、前記実装基板と前記実装部品との間に複数の前記電子部品装置が積層されていてもよい。
 これにより、樹脂構造体と素体との境界において配線が切断するのを抑制することができる、電子部品装置が複数積層された電子部品装置を提供することができる。
 また、上記目的を達成するために、本発明の一態様に係る高周波フロントエンド回路は、上述した特徴を有する電子部品装置を高周波素子として備える。
 これにより、上述した特徴を有する電子部品装置を高周波素子として備え、樹脂構造体と素体との境界において配線が切断するのを抑制することができる高周波フロントエンド回路を提供することができる。
 また、上記目的を達成するために、本発明の一態様に係る通信装置は、アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する、上述した特徴を有する高周波フロントエンド回路と、を備える。
 これにより、上述した特徴を有する高周波フロントエンド回路を備え、樹脂構造体と素体との境界において配線が切断するのを抑制することができる通信装置を提供することができる。
 本発明によれば、樹脂構造体と電子部品の素体部分との境界において配線が切断するのを抑制することができる電子部品装置、高周波フロントエンド回路、及び通信装置を提供することができる。
図1は、実施の形態1に係る電子部品装置の外観の一例を示す平面図である。 図2Aは、実施の形態1に係る電子部品装置の内部構成を示す平面透視図である。 図2Bは、実施の形態1に係る電子部品装置の内部構成を示す断面透視図である。 図3Aは、実施の形態1に係る電子部品装置の内部構成の一例を示す断面透視図である。 図3Bは、実施の形態1に係る電子部品装置の内部構成の他の例を示す断面透視図である。 図4は、実施の形態2に係る電子部品装置の内部構成を示す断面透視図である。 図5は、実施の形態3に係る電子部品装置の内部構成を示す断面透視図である。 図6Aは、実施の形態3に係る電子部品装置の内部構成の一例を示す平面透視図である。 図6Bは、実施の形態3に係る電子部品装置の内部構成の他の例を示す平面透視図である。 図7Aは、実施の形態4に係る電子部品装置の内部構成を示す平面透視図である。 図7Bは、実施の形態4に係る電子部品装置の内部構成を示す平面透視図である。 図8は、実施の形態5に係る通信装置および高周波フロントエンド回路の構成図である。 図9Aは、電子部品装置の他の構成を示す断面図である。 図9Bは、電子部品装置の他の構成を示す断面図である。
 以下、本発明の実施の形態について、実施の形態およびその図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 また、以下に示す図面において平面透視図および断面透視図では、簡明のため、厳密には別断面にある構成要素を同一図面内に示して説明している場合がある。
 (実施の形態1)
 本実施の形態に係る電子部品装置1は、例えば高周波信号の送受信に用いられる通信装置等に設けられている。
 [1.電子部品装置の構成]
 はじめに、本実施の形態に係る電子部品装置1の構成について説明する。図1は、本実施の形態に係る電子部品装置1を平面視したときの外観の一例を示す平面図である。図2Aは、本実施の形態に係る電子部品装置1の内部構成を示す平面透視図である。図2B~図3Bは、本実施の形態に係る電子部品装置1の内部構成を示す断面透視図である。
 図1に示すように、電子部品装置1は、樹脂構造体10と、樹脂構造体10に内蔵された電子部品20とを備えている。電子部品20は、一方の主面が露出する状態で樹脂構造体10に内蔵されている。また、電子部品20および樹脂構造体10の表面には、第1の配線層32aおよび第2の配線層32bが配置されている。第1の配線層32aおよび第2の配線層32bは、電子部品20の内部電極23に接続されており、内部電極23、後述する調整領域25、および、樹脂構造体10の上に連続して設けられている。
 樹脂構造体10は、例えば、合成樹脂等の樹脂材料で構成されている。合成樹脂としては、エポキシ樹脂やアクリル樹脂などを用いてもよい。好ましくは、エポキシ樹脂などの合成樹脂に対し、シリカやアルミナなどの無機フィラーを添加したものであってもよい。このような無機フィラーが添加されていることにより、樹脂構造体10による後述の電子部品20の封止性を高めることができる。また、樹脂構造体10の剛性を高めることができる。さらに、樹脂構造体10の硬化時の収縮が小さくなるため、封止の精度を高めることができる。なお、樹脂構造体10の線膨張係数を調整する方法は公知であるが、公知の方法では、樹脂構造体10と電子部品20の素体21、素体21と内部電極23との間の線膨張係数を調整することは難しい。これに対し、電子部品装置1では、樹脂構造体10と電子部品20の素体21、素体21と内部電極23との間の線膨張係数が調整されている。
 電子部品20は、図2Aおよび図2Bに示すように、素体21内に内部電極23を有する電子部品である。より詳細には、素体21はセラミック含有物等で構成される層が複数層積層された積層体であり、当該素体21の内部に内部電極23が形成されている。
 素体21は、例えば、アルミナ、セラミック粉末、ガラス、樹脂、または、それらの混合体により構成されている。
 内部電極23は、第1の内部電極23aと第2の内部電極23bとで構成されている。第1の内部電極23aは、図2Bに示すように、素体21を構成する各層を貫通し、素体21の厚さ方向に柱状に形成された電極である。
 第2の内部電極23bは、第1の内部電極23aと異なる位置に形成された機能素子である。例えば、図2Bに示すように、第2の内部電極23bは、素体21を構成する各層に平面状に形成された電極と、各層に平面状に形成された電極を接続する柱状の電極とによりコイルパターンが構成されたインダクタである。図2Bに示す電子部品装置1では、第1の内部電極23aと第2の内部電極23bとは、素体21において、樹脂構造体10から露出した一方の主面と反対側の他方の主面の近傍で接続されている。なお、第2の内部電極23bは、インダクタに限らず、コンデンサ等の他の機能素子であってもよいし、第1の内部電極23aと同様、素体21を構成する各層を貫通し、素体21の厚さ方向に柱状に形成された電極であってもよい。
 電子部品20において、素体21は、例えば、アルミナ、セラミック粉末、ガラス、樹脂、または、それらの混合体により構成されている。第1の内部電極23aおよび第2の内部電極23bは、例えば、Cuで構成されている。なお、第1の内部電極23aと第2の内部電極23bとは、Cu以外の他の材料で構成されていてもよい。例えば、第1の内部電極23aおよび第2の内部電極23bは、Ag、W、Au、Ni等の良導体を主成分とする単独、合金、あるいは、上記主成分と、ガラス、樹脂、セラミックス等との混合物等で構成されていてもよい。また、第1の内部電極23aと第2の内部電極23bとは、同一の材料で構成されていることに限らず、異なる材料で構成されていてもよい。
 なお、上述した電子部品装置1では、一例として第1の内部電極23aを素体21の厚さ方向に柱状に形成された電極としたが、第1の内部電極23aは、素体21を構成する各層に平面状に形成された電極と、各層に平面状に形成された電極を接続する柱状の電極とで構成されていてもよい。第1の内部電極23aは、上述した第2の内部電極23bと同様インダクタであってもよいし、コンデンサ等の他の機能素子であってもよい。また、第2の内部電極23bには、Siなどによる半導体素子が形成されていてもよい。
 さらに、第1の内部電極23aと、第1の内部電極23aに最も近い樹脂構造体10の側面との間には、調整領域25が設けられている。調整領域25は、第1の内部電極23aと素体21、素体21と樹脂構造体10との熱膨張係数の差が第1の配線層32aに与える影響を緩和するための領域である。調整領域25は、電子部品20の素体21と、素体21に形成された調整電極27とを有している。なお、樹脂構造体10、第1の内部電極23a、素体21、調整電極27および調整領域25の熱膨張係数の関係については、後述する。
 調整電極27は、第1の内部電極23aから第1の内部電極23aに最も近い樹脂構造体10の側面まで、平面状に形成された電極である。調整電極27は、第1の内部電極23aに沿って、素体21の深さ方向に複数設けられている。複数の調整電極27は同一の形状を有し、素体21の深さ方向の厚さが同一となるように形成されている。複数の調整電極27は、一定の間隔(例えば、間隔A)を空けて第1の内部電極23aから櫛歯状に突出するように配置されている。なお、調整電極27は、複数であることに限らず、1つであってもよい。また、調整電極27は平面状でなくてもよく、他の形状であってもよい。また、調整電極27が複数の場合、調整電極27の形状は異なっていてもよいし、各調整電極27の形状が全く異なるものであってもよい。また、調整電極27は、素体21の深さ方向に周期的(例えば、間隔Aと間隔Bとを交互に繰り返す等)に配置されていてもよい。
 調整電極27は、例えばCuで構成されている。なお、調整電極27は、Cuに限らず、Ag、Ni、Wなど他の金属材料により構成されていてもよい。調整電極27は、電子部品20の内部電極23と同一の材料により構成されていてもよいし、後述する第1の配線層32aおよび第2の配線層32bと同一の材料により構成されていてもよい。
 さらに、電子部品20および樹脂構造体10の上方には、電子部品20の第1の内部電極23aに接続された第1の配線層32aと、第2の内部電極23bに接続された第2の配線層32bとが配置されている。第1の配線層32aと樹脂構造体10との間、および、第1の配線層32aと電子部品20の素体21との間には、絶縁層30が設けられている。同様に、第2の配線層32bと樹脂構造体10との間、および、第2の配線層32bと電子部品20の素体21との間には、絶縁層30が設けられている。絶縁層30は、例えば、エポキシ樹脂、アクリル樹脂、ポリイミド、PBO(パラフェニレンベンゾビスオキサゾール)、BCB(ベンゾシクロブテン)等で構成されている。
 ただし、絶縁層30に関しては、樹脂構造体、素体の絶縁特性が十分確保できる場合には、部分的に、あるいは全面的に削除されていてもかまわない。
 [2.熱膨張係数の調整]
 ここで、樹脂構造体10、内部電極23、素体21、調整電極27および調整領域25の熱膨張係数の関係について説明する。なお、以下では、内部電極23の熱膨張係数は、第1の内部電極23aと第2の内部電極23bの全体の平均的な熱膨張係数とする。
 樹脂構造体10に内蔵された電子部品20の素体21は、例えばセラミック含有物で構成されているため、素体21の熱膨張係数は、樹脂構造体10および内部電極23のいずれよりも小さい方が好ましい。この場合には、電子部品装置1では、樹脂構造体10と内部電極23の間に、樹脂構造体10および内部電極23よりも熱膨張係数の小さい素体21が配置されているため、素体21の上に配置された第1の配線層32aは、素体21と樹脂構造体10との境界で断線が生じやすい。
 そこで、樹脂構造体10と第1の内部電極23aの間の素体21が配置された領域を調整領域25とし、調整領域25に調整電極27を設けている。調整電極27の熱膨張係数は、素体21よりも大きい。したがって、調整領域25における熱膨張係数は、調整領域25が素体21のみで構成されている場合に比べて大きくなる。このとき、樹脂構造体10、調整領域25および内部電極23の熱膨張係数の関係は、調整領域25の熱膨張係数が、内部電極23の熱膨張係数よりも大きく、樹脂構造体10の熱膨張係数よりも小さくなるように調整する。つまり、樹脂構造体10の熱膨張係数<調整領域25の熱膨張係数<内部電極23の熱膨張係数の順に熱膨張係数の大きさを調整することにより、樹脂構造体10と調整領域25、および、調整領域25と内部電極23のそれぞれの熱膨張係数差を小さくすることで、第1の配線層32aが断線するのを抑制している。
 なお、樹脂構造体10の熱膨張係数と調整領域25の熱膨張係数は同一であってもよいし、調整領域25と内部電極23の熱膨張係数は同一であってもよい。つまり、樹脂構造体10、調整領域25および内部電極23の熱膨張係数を、樹脂構造体10の熱膨張係数≦調整領域25の熱膨張係数≦内部電極23の熱膨張係数、という関係式を満たすように調整してもよい。
 調整領域25の熱膨張係数の調整は、調整電極27の大きさ、材料、調整領域25に占める割合、配置位置等により調整することができる。
 以下、熱膨張係数の実際の値及び調整値の一例について、説明する。
 内部電極23の熱膨張係数は、例えば、内部電極23としてCuを用いる場合、Cuの熱膨張係数である16.8ppm/℃である。
 また、素体21の熱膨張係数は、素体21はセラミックまたはセラミック含有物であるため、例えば6~11ppm/℃である。
 また、内部電極23の熱膨張係数は、内部電極23の材料である導体金属の線膨張係数に近い値となる。なお、内部電極23の一部に内部電極23と線膨脹係数の異なる添加物を加えた場合には、内部電極23の熱膨張係数を変化させることができる。例えば、導体金属の線膨脹係数よりも線膨脹係数が小さい添加物を内部電極23に添加した場合は、内部電極23の線膨脹係数を導体金属の線膨脹係数よりも小さくすることが可能となる。また、導体金属の線膨脹係数よりも線膨脹係数が大きい添加物を内部電極23に添加した場合は、内部電極23の線膨脹係数を導体金属の線膨脹係数よりも大きくすることが可能となる。
 また、電子部品20の熱膨張係数は、素体21の部分と内部電極23の部分では線膨張係数値は異なるが、例えば6~11ppm/℃である。
 さらに、樹脂構造体10の熱膨張係数は、素体21に内蔵される電極等と関連して適宜設定してもよい。例えば、樹脂構造体10の熱膨張係数は、内部電極23の熱膨張係数と近い値としてもよい。内部電極23としてCuを用いる場合、樹脂構造体10の熱膨張係数は、Cuの熱膨張係数と同一の16.8ppm/℃程度としてもよい。
 ここで、樹脂構造体10の熱膨張係数が7~18ppm/℃、素体21の熱膨張係数が6~11ppm/℃、内部電極23の熱膨張係数が12~26ppm/℃である場合の調整領域25の熱膨張係数について説明する。この場合、調整領域25における素体21に対して調整電極27を配置することにより、調整領域25の熱膨張係数を樹脂構造体10の熱膨張係数に近接させる。
 上述した熱膨張係数範囲内においては、樹脂構造体10の熱膨張係数は7~18ppm/℃、調整後の調整領域25の熱膨張係数は6~24ppm/℃であることが好ましい。なお、実際の構成構造や所望の改善効果の度合いによっては、熱膨張係数は、この範囲内に限定されるものではない。
 例えば、樹脂構造体10を16ppm/℃、素体21を8ppm/℃、内部電極23を18ppm/℃とした場合では、調整領域25を素体21そのままの構造としたとき、調整領域25に設けられる調整電極27の占める比率を調整して、調整領域25における熱膨張係数を10ppm/℃となるように調整電極27を設けることにより、不具合は解消される。つまり、樹脂構造体10と調整後(調整電極27を設けた後)の調整領域25の熱膨張係数差が6ppm/℃またはこれ以下となるように調整電極27を設けることが好ましい。
 例えば、-40℃と125℃で各30分加熱または冷却するヒートサイクル試験を100サイクル行った後において、樹脂構造体10と調整後(調整電極27を設けた後)の調整領域25の熱膨張係数差が6ppm/℃以内の場合は、100サイクル後の第1の配線層32aの断線故障は発生していなかったが、樹脂構造体10と調整後(調整電極27を設けた後)の調整領域25の熱膨張係数差が6ppm/℃より大きい場合には、第1の配線層32aの断線または第1の配線層32aの抵抗値の悪化が生じている。したがって、樹脂構造体10と調整後(調整電極27を設けた後)の調整領域25の熱膨張係数差が6ppm/℃またはこれ以下となるように調整電極27を設けることが好ましい。
 また、上記ヒートサイクル試験において、樹脂構造体10と調整後(調整電極27を設けた後)の調整領域25の熱膨張係数差は、3ppm/℃以内としておくことがより望ましいと分かった。したがって、調整領域25に設けられる調整電極27の占める比率を調整して、調整領域25における熱膨張係数が13ppm/℃となるように調整電極27を設けてもよい。つまり、樹脂構造体10と調整後(調整電極27を設けた後)の調整領域25の熱膨張係数差が3ppm/℃またはこれ以下となるように調整電極27を設けてもよい。
 調整領域25の熱膨張係数の調整は、調整電極27として用いる材料の種類、大きさ、調整電極27の調整領域25に占める割合、配置位置等により調整することができる。
 例えば、調整電極27は、図2Bに示す電子部品装置1では、第1の内部電極23aと接触しているとしたが、この構成に限定されず、調整電極27は第1の内部電極23aに接触していない構成としてもよい。また、調整電極27は、図2Bに示す電子部品装置1では、樹脂構造体10と接触しているとしたが、この構成に限定されず、調整電極は樹脂構造体10に接触していない構成としてもよい。例えば、図3Aに示す電子部品装置1aのように、調整電極27は、第1の内部電極23aとは接触し、樹脂構造体10とは接触していない構成であってもよい。また、図3Bに示す電子部品装置1bのように、調整電極27は、樹脂構造体10とは接触し、第1の内部電極23aとは接触していない構成であってもよい。
 また、図2Bに示す電子部品装置1では、調整電極27の材料としてCuを用いたが、調整電極27の材料はこれに限定されず、Ag、Ni、Wなどの金属材料を用いてもよい。調整電極27の材料は、内部電極23、樹脂構造体10および素体21の熱膨張係数に応じて、これらの金属材料を適宜選択してもよい。また、調整電極27の材料は、金属材料により形成された電極に限らず、素体21よりも線膨張係数の大きい材料により形成された部材であれば、他の材料により構成されてもよい。
 また、上述したように、調整電極27を複数設け、複数の調整電極27を同一の形状としてもよい。また、複数の調整電極27は、一定の間隔を空けて内部電極23に沿って素体21の深さ方向に配置してもよい。また、調整電極27は、複数であることに限らず、1つであってもよい。また、調整電極27が複数の場合、調整電極27の形状は異なっていてもよいし、また、調整電極27は、周期的に配置されてもよいし、周期的に配置されていなくてもよい。
 [3.効果等]
 以上、本実施の形態に係る電子部品装置1によると、樹脂構造体10と内部電極23との間に配置されている素体21に調整電極27を配置することにより、樹脂構造体10と内部電極23との間の領域を調整領域25として、樹脂構造体10と素体21、素体21と内部電極23との熱膨張係数の差を小さくすることができる。これにより、樹脂構造体10と素体21との境界において配線が切断するのを抑制することができる。
 なお、電子部品20に内蔵される第2の内蔵電極23bとして、コンデンサ、インダクタなどを具体例として例示したが、本発明においては、樹脂構造体10と内部電極23との熱膨張係数の調整による熱衝撃耐性の向上を目的としているため、コンデンサ、インダクタなどの機能素子の種類によらず、本発明による効果を得ることができる。
 また、上記実施の形態における電子部品装置1は、それ単体でもプリント配線基板などに搭載して機能させることが可能であるが、内部電極23、第1の配線層32aまたは第2の配線層32bを介して接続された実装部品などを設けてもよい。さらに、実装部品を電子部品装置に樹脂モールドするなどして密度を高めた電子部品装置、パッケージとしても使用可能である。
 (実施の形態2)
 次に、実施の形態2について図4を用いて説明する。図4は、本実施の形態に係る電子部品装置2の内部構成を示す断面図である。
 本実施の形態に係る電子部品装置2が実施の形態1に示した電子部品装置1と異なる点は、内部電極123および調整電極127の形状が、実施の形態1にかかる内部電極23および調整電極27と異なる点である。その他の部分については、実施の形態1に示した電子部品装置2と同様であるため、詳細な説明は省略する。
 図4に示すように、電子部品装置2では、内部電極123は、複数の第1の内部電極123aと、第2の内部電極123bとで構成されている。第2の内部電極123bの構成は、実施の形態1に示した第2の内部電極23bと同様であるため、説明を省略する。
 複数の第1の内部電極123aのそれぞれは、素体21の深さ方向に所定の高さを有する柱状の内部電極である。所定の高さとは、たとえば、図4に示したように、電子部品120における素体21の厚さを5等分した大きさである。複数の第1の内部電極123aは、第1の配線層32aの電子部品20と接続される側の端部の下の領域と調整領域125とに、交互に配置されている。
 また、複数の第1の内部電極123aのそれぞれの上下には、調整電極127が接続されている。さらに、隣接する異なる第1の内部電極123aに接続された調整電極127を互いに接続することにより、複数の第1の内部電極123aは、調整電極127を介して接続されている。
 例えば、図4では、第1の配線層32aの電子部品120と接続される側の端部の下の領域には、第1の内部電極123aが3つ配置されている。また、各第1の内部電極123aの上下面には、調整電極127が接続されている。同様に、調整領域125には、第1の内部電極123aが3つ配置されている。各第1の内部電極123aの上下面には、調整電極127が接続されている。さらに、第1の配線層32aの電子部品120と接続される側の端部の下の領域の調整電極127と調整領域125の調整電極127とは、素体21の厚さ方向に第1の内部電極123aが交互に配置される高さに接続されるように、それぞれの領域に配置されている。
 このように、第1の配線層32aの電子部品120と接続される側の端部の下の領域と調整領域125とでは、第1の内部電極123aと調整電極127との配置数が同数または近い配置数であるので、第1の配線層32aの電子部品120と接続される側の端部の下の領域の熱膨張係数と調整領域125における熱膨張係数との差をより小さくすることができる。したがって、第1の配線層32aが内部電極と調整領域125との境界で断線するのを抑制することができる。
 なお、本実施の形態に係る電子部品装置2では、第1の内部電極123aの高さは、電子部品120における素体21の厚さを5等分した大きさとしたが、第1の内部電極123aの高さはこれに限定されず、電子部品120における素体21の厚さ方向に複数個の第1の内部電極123aが配置される構成であればよい。
 (実施の形態3)
 次に、実施の形態3について図5~図6Bを用いて説明する。図5は、本実施の形態に係る電子部品装置の内部構成を示す断面図である。図6Aは、本実施の形態に係る電子部品装置の内部構成の一例を示す平面透視図である。図6Bは、本実施の形態に係る電子部品装置の内部構成の他の例を示す平面透視図である。なお、図6Aおよび図6Bでは、樹脂構造体10の図示を省略し、電子部品の部分のみ示している。樹脂構造体10は、図6Aおよび図6Bに示した構造の周囲に配置される。
 本実施の形態に係る電子部品装置3が実施の形態1に示した電子部品装置1と異なる点は、電子部品220がコンデンサを構成している点である。
 図5に示すように、電子部品220は、素体221に内部電極223を有している。内部電極223は、第1の内部電極223aと第2の内部電極223bとで構成されている。第1の内部電極223aと第2の内部電極223bの構成は、実施の形態1に示した第1の内部電極23aと同様であるため、詳細な説明は省略する。
 第1の内部電極223aは、調整領域226に調整電極227aを有している。調整領域226および調整電極227aの構成は、実施の形態1に示した調整領域25および調整電極27と同様であるため、詳細な説明は省略する。
 また、第1の内部電極223aは、調整領域226から第1の内部電極223aを挟んで反対側の領域に、第1の内部電極223aと接続された電極224aおよび225aとを備えている。電極224aおよび225aは、第1の内部電極223aに沿って素体221の深さ方向に交互に配置されている。電極224aの長さは電極225aと比べて長く形成されている。
 同様に、第2の内部電極223bは、調整領域226から第2の内部電極223bを挟んで反対側の領域に、第2の内部電極223bと接続された電極224bおよび225bとを備えている。電極224bおよび225bは、第1の内部電極223bに沿って素体221の深さ方向に交互に配置されている。電極224bの長さは電極225bと比べて長く形成されている。
 ここで、図6Aは、図5に示したVIA-VIA線における、電子部品220の断面図を示している。図6Aに示すように、素体221において、電極225aと電極224bは、間を空けて同層に形成されている。電極225aと電極224bとの間では、素体221が露出している。同様に、電極224aと電極225bは、間を空けて同層に形成されている。電極224aと電極225bとの間では、素体21が露出している。また、電極224aと電極224bとは、平面視したときに電極224aと電極224bそれぞれの一部が重複するように配置されている。これにより、電極224aと電極224bはコンデンサとして機能する。また、電極224aと電極225bとで構成されるコンデンサは、それぞれ第1の内部電極223aと第2の内部電極223bとに接続されている。なお、電極224aと電極224bは、本発明における第1の平面電極および第2の平面電極に相当する。
 さらに、第1の内部電極223aと第2の内部電極223bは、それぞれ第1の配線層32aと第2の配線層32bに接続されている。第1の配線層32aと第2の配線層32bは、実施の形態1に示した第1の配線層32aおよび第2の配線層32bと同様であるため、説明を省略する。
 このような構成により、電子部品としてコンデンサを有する電子部品220についても、樹脂構造体10と第1の内部電極223aとの間の調整領域226において、素体221に調整電極227aを配置することにより、樹脂構造体10と素体221との熱膨張係数の差、素体221と第1の内部電極223aとの熱膨張係数の差を小さくすることができる。よって、樹脂構造体10と素体221との境界において第1の配線層32aが切断するのを抑制することができる。
 なお、樹脂構造体10と第2の内部電極223bとの間においても同様に、素体221に調整電極227bを配置することにより、樹脂構造体10と素体221との熱膨張係数の差、素体221と第2の内部電極223bとの熱膨張係数の差を小さくすることができる。これにより、樹脂構造体10と素体221との境界において第2の配線層32bが切断するのを抑制することができる。
 また、素体221において、電極225aと電極224bとは、図6Bに示すように、電極225aと電極224bとの間以外でも素体221が露出していてもよい。同様に、電極224aと電極225bとは、電極224aと電極225bとの間以外でも素体221が露出していてもよい。
 (実施の形態4)
 次に、実施の形態4について図7Aおよび図7Bを用いて説明する。図7Aおよび図7Bは、本実施の形態に係る電子部品装置4および5の内部構成の一例を示す平面透視図である。なお、図7Aおよび図7Bでは、樹脂構造体10および第1の配線層32aおよび第2の配線層32bの図示を省略し、電子部品の部分のみ示している。樹脂構造体10は、図7Aに示した構造の周囲に配置される。第1の配線層32aは、電子部品20の内部電極323に接続されており、内部電極323、調整領域325a、樹脂構造体10の上に連続して設けられている。第2の配線層32bは、電子部品20の内部電極323に接続されており、内部電極323、調整領域325b、樹脂構造体10の上に連続して設けられている。
 本実施の形態に係る電子部品装置4が実施の形態1に示した電子部品装置1と異なる点は、調整電極を配置する位置が実施の形態1に示した電子部品装置1と異なる点である。
 図7Aに示すように、電子部品装置4の素体21は、内部電極323を有している。内部電極323は、第1の内部電極323aと第2の内部電極323bとで構成されている。第2の内部電極323bの構成は、実施の形態1に示した第2の内部電極23bと同様であるため、説明を省略する。
 素体21は、素体21の一方の主面すなわち第1の配線層32a(図2Aおよび図2B参照)が形成される面側から電子部品装置4を平面視したときに、矩形状の形状をしている。そして、矩形状の素体21の角部には、素体21の少なくとも1つの角部を構成する2つの辺それぞれの一部に沿って、調整電極327aおよび327bが形成されている。つまり、調整電極327aおよび327bは、素体21の矩形状の形状の少なくとも1つの角部に、L字状に形成されている。
 また、図7Aに示すように、調整電極327aおよび327bは、素体21において対向する一組の角部に設けられている。調整電極327aは、第1の内部電極323aに接続されている。
 この構成によれば、調整電極327aおよび327bと樹脂構造体10、調整電極327aおよび327bと素体21とが接触する面積を大きくすることができるので、調整領域325aにおける熱膨張係数を樹脂構造体10および内部電極323の熱膨張係数により早く近づけることができる。これにより、樹脂構造体10と素体21、素体21と内部電極323との境界において、第1の配線層32aおよび第2の配線層32bが切断するのを抑制することができる。
 なお、上述した調整電極327aおよび327bは、第1の配線層32aが形成される面側から電子部品装置4を平面視したときに、素体21において対向する一組の角部に設けられているとしたが、これに限定されず、素体21において対向しない角部、すなわち、隣り合う角部に設けられていてもよい。
 また、図7Bに示す電子部品装置5のように、素体21において、1つの角部にのみ調整領域325aおよび調整電極327aが設けられていてもよい。
 (実施の形態5)
 次に、実施の形態5について図8を用いて説明する。
 上述した実施の形態1~4で説明した電子部品装置は、高周波フロントエンド回路および高周波フロントエンド回路を備えた通信装置等に適用することができる。そこで、本実施の形態では、このような高周波フロントエンド回路および通信装置について、上述した実施の形態1~4に係る電子部品装置を備える構成について説明する。
 図8は、実施の形態に係る高周波フロントエンド回路51及びその周辺回路の構成図である。図8には、高周波フロントエンド回路51とともに通信装置50を構成する、アンテナ素子52及びRFIC53とが示されている。なお、通信装置50は、本実施の形態ではアンテナ素子52を内蔵しているが、内蔵していなくてもかまわない。
 アンテナ素子52は、高周波信号を送受信する、例えばマルチバンド対応のアンテナである。
 RFIC53は、アンテナ素子52で送受信される高周波信号を処理するRF信号処理回路である。具体的には、RFIC53は、ベースバンド信号処理回路(図示せず)から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波信号(ここでは高周波送信信号)を高周波フロントエンド回路51の送信側信号経路に出力する。また、RFIC53は、アンテナ素子52から高周波フロントエンド回路51の受信側信号経路(図示せず)を介して入力された高周波信号(ここでは高周波受信信号)を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路へ出力する。
 高周波フロントエンド回路51は、アンテナ素子52とRFIC53との間で高周波信号を伝達する回路である。具体的には、高周波フロントエンド回路51は、RFIC53から出力された高周波信号(ここでは高周波送信信号)を、送信側信号経路を介してアンテナ素子52に伝達する。なお、高周波フロントエンド回路51は、アンテナ素子52で受信された高周波信号(ここでは高周波受信信号)を、受信側信号経路(図示せず)を介してRFIC53に伝達してもよい。
 本実施の形態では、高周波フロントエンド回路51は、増幅回路群520と、フィルタ群530と、スイッチ回路540とを備える。
 増幅回路群520は、複数のバンドに個別に対応する増幅回路を含む。具体的には、増幅回路は、RFIC53から出力された高周波送信信号を電力増幅する1以上のパワーアンプによって構成され、本実施の形態では、多段接続(縦続接続)された2段のパワーアンプによって構成される。
 フィルタ群530は、複数のバンドに個別に対応するフィルタを含み、増幅回路群520で増幅された高周波信号を対応するバンドの周波数帯域でフィルタリングする。本実施の形態では、フィルタ群530は、ローバンドの周波数帯域(ローバンドのセルラー帯域)を通過帯域とするフィルタと、ハイバンドの周波数帯域(ハイバンドのセルラー帯域)を通過帯域とするフィルタとを有する。
 スイッチ回路540は、アンテナ素子52に接続された共通端子、および、当該端子と選択的に接続される複数の選択端子(本実施の形態では2つの選択端子)を有する。ここで、複数の選択端子は、フィルタ群530を構成する複数のフィルタに個別に接続されている。スイッチ回路540は、RFIC53等の制御部からの制御信号にしたがって、複数の選択端子のいずれかと共通端子とを接続する。なお、共通端子と接続される選択端子は1つに限らず、複数であってもかまわない。
 本実施の形態において、増幅回路群520、フィルタ群530、スイッチ回路540の少なくともいずれかには、実施の形態1~4に示した電子部品装置が設けられている。
 このように構成された通信装置50および高周波フロントエンド回路51は、RFIC53から出力された高周波信号(ここでは高周波送信信号)を増幅して送信側信号経路を介してアンテナ素子52に伝達する。なお、高周波フロントエンド回路51は、アンテナ素子52で受信された高周波信号(ここでは高周波受信信号)を受信側信号経路(図示せず)を介してRFIC53に伝達してもよい。
 上述した実施の形態1~4に示した電子部品装置を使用することにより、電子部品装置は、樹脂構造体と素体との熱膨張係数の差、素体と内部電極との熱膨張係数の差を小さくすることができる。これにより、樹脂構造体と素体との境界において第1の配線層が切断するのを抑制することができる。よって、電子部品装置、高周波フロントエンド回路、通信装置において、熱膨張係数の差により生じる配線の断線等を抑制することができる。
 なお、通信装置50および高周波フロントエンド回路51は、1つの受信フィルタのみあるいは1つの送信フィルタのみを備える構成であってもよいし、複数の受信フィルタあるいは複数の送信フィルタを備える構成であってもよい。また、通信装置50および高周波フロントエンド回路51は、少なくとも1つの送信フィルタと少なくとも1つの受信フィルタとを備える送受信用の構成であってもよい。
 (その他の実施の形態など)
 以上、本発明の実施の形態に係る電子部品装置について、実施の形態を挙げて説明したが、本発明に係る電子部品装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記電子部品装置を内蔵した通信装置、各種機器も本発明に含まれる。
 例えば、図9Aに示すように、電子部品装置は、第1の配線層32aおよび第2の配線層32bに形成されたはんだ実装用パッド上に実装部品102を実装したものであってもよい。実装部品102は、例えばフィルタ等の高周波回路部品、インダクタ、コンデンサ等の電子部品である。より詳細には、高周波回路部品として、弾性波フィルタ、圧電共振子、積層コンデンサなどの電子部品を用いてもよい。また、実装部品102として、モジュール部品を用いてもよい。また、実装部品102は、実装基板であってもよい。
 また、実装部品102が実装された電子部品装置1は、さらに、電子部品装置100上に実装部品102を封止する封止層104を備えていてもよい。封止層104を構成する材料としては、ポリイミド、ベンゾシクロブテン、ポリベンゾオキサゾール、フェノール系、シリコーン系などの樹脂を用いてもよい。
 さらに、電子部品装置は、図9Aに示すように、はんだボール105を介して実装基板であるモジュール基板150の上に実装されていてもよい。
 また、電子部品装置は、図9Aに示した実装部品102とモジュール基板150との間に、複数の電子部品装置100が積層された構成であってもよい。例えば、図9Bに示すように、実装部品102とモジュール基板150との間に2つの電子部品装置100が積層されている。はんだボール105と、電子部品装置100の基板10の両面を貫通する貫通電極121とを介して、実装部品102、2つの電子部品装置100、モジュール基板150が電気的に接続されていてもよい。
 また、上記実施の形態に係る電子部品装置において、電子部品は、コンデンサを含むものであってもよいし、インダクタを含むものであってもよい。また、他の多層電子部品を含むものであってもよい。
 また、電子部品における素体は、セラミックおよびセラミック含有物等で構成されていてもよい。素体は、例えば、アルミナ、セラミック粉末、ガラス、樹脂などの混合体により構成されていてもよいし他の材料で構成されていてもよい。内部電極は、例えばCu、Ag、W、Au、Ni等の良導体を主成分とする単独、合金、あるいは、上記主成分と、ガラス、樹脂、セラミックス等との混合物等で構成されていてもよい。電子部品と内部電極とは、同一の材料で形成されていてもよいし、異なる材料で形成されていてもよい。
 また、調整電極は、内部電極と接続していてもよいし、接続していなくてもよい。また、調整電極は、樹脂構造体と接触していてもよいし、接触していなくてもよい。
 また、調整電極の材料としては、例えばCu、Ag、Ni、Wなどの金属材料を用いてもよいしその他の材料を用いてもよい。内部電極、樹脂構造体および素体の熱膨張係数に応じて、調整電極の材料としてこれらの金属材料を適宜選択してもよい。また、金属材料により形成された電極に限らず、素体よりも線膨張係数の大きい材料により形成された部材であれば、どのような構成であってもよい。
 また、調整電極を複数設け、複数の調整電極27を同一の形状としてもよい。また、複数の調整電極は、一定の間隔を空けて内部電極に沿って素体の深さ方向に配置してもよい。また、調整電極は、複数であることに限らず、1つであってもよい。また、調整電極が複数の場合、調整電極の形状は異なっていてもよいし、また、調整電極は、周期的に配置されてもよいし、周期的に配置されていなくてもよい。
 また、上述した電子部品装置は、デュプレクサ、高周波フロントエンド回路、フィルタなどを含む通信装置に用いてもよい。
 本発明は、電子部品が内蔵されたスイッチ、デュプレクサ、及びフィルタなどを含む通信モジュール、例えば、携帯電話機等に用いられるRFモジュール等に利用できる。
 1、1a、1b、2、3、4、5、100  電子部品装置
 10  樹脂構造体
 20、120、220  電子部品
 21、221  素体
 23、123、223、323  内部電極
 23a、123a、223a、323a  第1の内部電極
 23b、123b、223b、323b  第2の内部電極
 25、125、226、325a、325b  調整領域
 27、127、227a、227b、327a、327b  調整電極
 30  絶縁層
 32a  第1の配線層
 32b  第2の配線層
 50  通信装置
 51  高周波フロントエンド回路
 52  アンテナ素子
 53  RFIC(RF信号処理回路)
 102  実装部品
 103、105  バンプ
 104  封止層
 105  はんだボール
 121  貫通電極
 122a、122c  第1の配線
 124a、124c  第2の配線 150  モジュール基板(実装基板)
 224a  電極(第1の平面電極)
 224b  電極(第2の平面電極)
 225a、225b  電極(調整電極)
 520  送信増幅回路群
 530  フィルタ群
 540  スイッチ回路

Claims (18)

  1.  電子部品と、
     前記電子部品の一方の主面が露出する状態で、前記電子部品を内蔵する樹脂構造体と、
     前記樹脂構造体と前記電子部品のそれぞれの表面の少なくとも一部に形成された配線層とを備え、
     前記電子部品は、
      素体と、
      前記素体に内蔵され、前記配線層と接続された内部電極と、
      前記素体において、少なくとも、前記内部電極と前記内部電極に最も近い前記樹脂構造体の側面との間の調整領域に設けられた調整電極と、を有し、
     前記配線層は、前記内部電極、前記調整領域および前記樹脂構造体の上に連続して設けられており、
     前記樹脂構造体の熱膨張係数、前記調整領域の熱膨張係数および前記内部電極の熱膨張係数は、
     前記樹脂構造体の熱膨張係数≦前記調整領域の熱膨張係数≦前記内部電極の熱膨張係数という関係式を満たす、
     電子部品装置。
  2.  前記調整電極の熱膨張係数は、前記素体の熱膨張係数よりも大きい、
     請求項1に記載の電子部品装置。
  3.  前記調整電極は、前記樹脂構造体と接触している、
     請求項1または2に記載の電子部品装置。
  4.  前記調整電極は、前記内部電極と接触している、
     請求項1~3のいずれか1項に記載の電子部品装置。
  5.  前記調整電極は、前記内部電極に沿って前記素体の深さ方向に複数配置されている、
     請求項1~4のいずれか1項に記載の電子部品装置。
  6.  前記複数の調整電極は、前記素体の深さ方向の厚さが同一である、
     請求項5に記載の電子部品装置。
  7.  前記複数の調整電極は、前記内部電極に沿って前記素体の深さ方向に周期的に配置されている、
     請求項5または6に記載の電子部品装置。
  8.  前記調整電極は、金属により構成されている、
     請求項1~7のいずれか1項に記載の電子部品装置。
  9.  前記調整電極は、前記内部電極と同一の材料により構成されている、
     請求項1~8のいずれか1項に記載の電子部品装置。
  10.  前記調整電極は、前記内部電極から突出して形成されている、
     請求項4に記載の電子部品装置。
  11.  前記内部電極は、第1の内部電極と前記第1の内部電極に接続された第2の内部電極とで構成され、
     前記第1の内部電極および前記第2の内部電極の少なくとも1つは、インダクタである、
     請求項1~10のいずれか1項に記載の電子部品装置。
  12.  前記内部電極は、第1の内部電極と第2の内部電極とで構成され、
     前記配線層は、第1の配線層と第2の配線層とで構成され、
     前記第1の内部電極は、前記第1の配線層と接続され、前記調整領域と接触しており、
     前記第2の内部電極は、前記第2の配線層と接続され、前記調整領域と接触しており、
     前記電子部品は、前記第1の内部電極に接続された第1の平面電極と、前記第2の内部電極に接続された第2の平面電極とで構成されるコンデンサである、
     請求項1~10のいずれか1項に記載の電子部品装置。
  13.  前記素体は、前記配線層が形成された面側から平面視したときに矩形状の形状を有し、
     前記調整電極は、前記素体の矩形状の形状の少なくとも1つの角部を構成する2つの辺それぞれの一部に沿って形成されている、
     請求項1~12のいずれか1項に記載の電子部品装置。
  14.  実装基板と、
     前記実装基板上に実装された請求項1~13のいずれか1項に記載の電子部品装置と、
     前記電子部品装置上にさらに実装された実装部品とを備える、
     電子部品装置。
  15.  前記樹脂構造体は、前記樹脂構造体の両面を貫通する貫通電極を有し、
     前記貫通電極は、前記実装基板および前記配線層に接続されている、
     請求項14に記載の電子部品装置。
  16.  前記電子部品装置を複数有し、前記実装基板と前記実装部品との間に複数の前記電子部品装置が積層されている、
     請求項14または15に記載の電子部品装置。
  17.  請求項1~16のいずれか1項に記載の電子部品装置を高周波素子として備える、
     高周波フロントエンド回路。
  18.  アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項17に記載の高周波フロントエンド回路と、を備える、
     通信装置。
PCT/JP2017/046431 2016-12-27 2017-12-25 電子部品装置、高周波フロントエンド回路、及び通信装置 WO2018123969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780078831.2A CN110089204B (zh) 2016-12-27 2017-12-25 电子部件装置、高频前端电路、以及通信装置
JP2018559457A JP6583570B2 (ja) 2016-12-27 2017-12-25 電子部品装置、高周波フロントエンド回路、及び通信装置
US16/452,590 US10607775B2 (en) 2016-12-27 2019-06-26 Electronic component device, high-frequency front end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016254500 2016-12-27
JP2016-254500 2016-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/452,590 Continuation US10607775B2 (en) 2016-12-27 2019-06-26 Electronic component device, high-frequency front end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2018123969A1 true WO2018123969A1 (ja) 2018-07-05

Family

ID=62710519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046431 WO2018123969A1 (ja) 2016-12-27 2017-12-25 電子部品装置、高周波フロントエンド回路、及び通信装置

Country Status (4)

Country Link
US (1) US10607775B2 (ja)
JP (1) JP6583570B2 (ja)
CN (1) CN110089204B (ja)
WO (1) WO2018123969A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261784B2 (ja) * 2020-11-30 2023-04-20 プライムプラネットエナジー&ソリューションズ株式会社 蓋体および密閉型電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100874A (ja) * 1999-09-02 2002-04-05 Ibiden Co Ltd プリント配線板及びプリント配線板の製造方法
JP2004304159A (ja) * 2003-03-19 2004-10-28 Ngk Spark Plug Co Ltd 中継基板、半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101084525B1 (ko) 1999-09-02 2011-11-18 이비덴 가부시키가이샤 프린트배선판 및 그 제조방법
JP2002158135A (ja) * 2000-11-16 2002-05-31 Tdk Corp 電子部品
US7327554B2 (en) 2003-03-19 2008-02-05 Ngk Spark Plug Co., Ltd. Assembly of semiconductor device, interposer and substrate
JP2005019686A (ja) * 2003-06-26 2005-01-20 Kyocera Corp コンデンサ素子内蔵多層配線基板
JP2005310954A (ja) 2004-04-20 2005-11-04 Nec Corp 半導体パッケージとその製造方法
JP2006295076A (ja) * 2005-04-14 2006-10-26 Rohm Co Ltd セラミック製チップ型電子部品とその製造方法
JP4671829B2 (ja) * 2005-09-30 2011-04-20 富士通株式会社 インターポーザ及び電子装置の製造方法
JP4453711B2 (ja) * 2007-03-30 2010-04-21 Tdk株式会社 薄膜部品及び製造方法
JP4687760B2 (ja) * 2008-09-01 2011-05-25 株式会社村田製作所 電子部品
CN201781678U (zh) * 2010-08-03 2011-03-30 广东达进电子科技有限公司 一种带导通孔的陶瓷基刚挠结合电路板
JP2014072279A (ja) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd 部品内蔵配線基板の製造方法
KR20140080119A (ko) * 2012-12-20 2014-06-30 삼성전기주식회사 빌드업 필름 구조물 및 이를 이용하여 제조된 회로기판, 그리고 상기 빌드업 필름 구조물을 이용한 회로기판의 제조 방법
JP2014192223A (ja) * 2013-03-26 2014-10-06 Ngk Spark Plug Co Ltd 配線基板の製造方法
KR102231101B1 (ko) * 2014-11-18 2021-03-23 삼성전기주식회사 소자 내장형 인쇄회로기판 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100874A (ja) * 1999-09-02 2002-04-05 Ibiden Co Ltd プリント配線板及びプリント配線板の製造方法
JP2004304159A (ja) * 2003-03-19 2004-10-28 Ngk Spark Plug Co Ltd 中継基板、半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体

Also Published As

Publication number Publication date
CN110089204A (zh) 2019-08-02
US10607775B2 (en) 2020-03-31
JP6583570B2 (ja) 2019-10-02
CN110089204B (zh) 2020-11-03
JPWO2018123969A1 (ja) 2019-10-31
US20190318871A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP5677499B2 (ja) 高周波回路モジュール
CN110392926B (zh) 高频模块
US6456172B1 (en) Multilayered ceramic RF device
US11757429B2 (en) Hybrid filter device and multiplexer
EP2760132B1 (en) Module substrate and duplexer module
WO2020184613A1 (ja) 高周波モジュールおよび通信装置
KR101389149B1 (ko) 회로 기판
US11825603B2 (en) High-frequency module
US11251829B2 (en) Radio frequency module
KR102414508B1 (ko) 고주파 모듈 및 통신 장치
US11316544B2 (en) Front-end module and communication device
KR102496904B1 (ko) 고주파 모듈 및 통신 장치
KR102417481B1 (ko) 고주파 모듈 및 통신 장치
WO2021002157A1 (ja) 高周波モジュール及び通信装置
JP2021082914A (ja) 高周波モジュール及び通信装置
JP2021103713A (ja) 高周波モジュール及び通信装置
JP6583570B2 (ja) 電子部品装置、高周波フロントエンド回路、及び通信装置
JP2003142981A5 (ja)
JP2021145283A (ja) 高周波モジュールおよび通信装置
JP2021048561A (ja) 高周波モジュールおよび通信装置
WO2019065668A1 (ja) 高周波モジュールおよび通信装置
WO2021192429A1 (ja) 高周波モジュール及び通信装置
WO2018186093A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2022123823A1 (ja) ハイブリッドフィルタ、マルチプレクサ、高周波モジュールおよび通信装置
US20240113848A1 (en) High frequency module and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887072

Country of ref document: EP

Kind code of ref document: A1