WO2018123171A1 - 成形品および成形品の製造方法 - Google Patents

成形品および成形品の製造方法 Download PDF

Info

Publication number
WO2018123171A1
WO2018123171A1 PCT/JP2017/034700 JP2017034700W WO2018123171A1 WO 2018123171 A1 WO2018123171 A1 WO 2018123171A1 JP 2017034700 W JP2017034700 W JP 2017034700W WO 2018123171 A1 WO2018123171 A1 WO 2018123171A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
polyamide resin
housing
resin
melting point
Prior art date
Application number
PCT/JP2017/034700
Other languages
English (en)
French (fr)
Inventor
岡元 章人
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to KR1020217041532A priority Critical patent/KR102546859B1/ko
Priority to EP17889333.5A priority patent/EP3564723B1/en
Priority to KR1020197019438A priority patent/KR102546858B1/ko
Priority to CN201780080756.3A priority patent/CN110140075B/zh
Priority to CN202110895470.9A priority patent/CN113608314B/zh
Priority to US16/473,575 priority patent/US11397372B2/en
Priority to JP2018558818A priority patent/JP6998889B2/ja
Publication of WO2018123171A1 publication Critical patent/WO2018123171A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • B29C66/73116Melting point of different melting point, i.e. the melting point of one of the parts to be joined being different from the melting point of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • B29C66/73774General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline the to-be-joined areas of both parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/022Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread

Definitions

  • the present invention relates to a molded product and a method for manufacturing the molded product.
  • the present invention relates to a molded product suitable for camera parts, and a method for manufacturing the molded product.
  • Patent Document 1 contains 60 to 100 mol% of a dicarboxylic acid unit containing 60 to 100 mol% of a terephthalic acid unit and 1,9-diaminononane unit and / or 2-methyl-1,8-diaminooctane unit.
  • the polyamide (A) having a diamine unit and the fibrous reinforcing material (B) are melt-kneaded and the content of the polyamide (A) is 50 to 80% by mass, and the content of the fibrous reinforcing material (B) is A barrel or holder of a camera module formed by molding a polyamide composition of 20 to 50% by mass, the barrel of the camera module having an average length of 300 ⁇ m or less before melt-kneading of the fibrous reinforcing material (B) Or a holder is disclosed.
  • the laser transmission welding method is a resin member (hereinafter also referred to as “transmission resin member”) that is transparent (also referred to as non-absorbing or weakly absorbing) to laser light, and absorbable to laser light.
  • transmission resin member a resin member (hereinafter sometimes referred to as an “absorbing resin member”) having a contact is welded to be bonded to each other.
  • absorbing resin member a resin member having a contact is welded to be bonded to each other.
  • the joining surface is irradiated with laser light from the side of the transmissive resin member, and the absorbing resin member forming the joining surface is melted and joined by the energy of the laser light.
  • the camera component 5 includes a plurality of resin lens holders 2 that hold the lens unit 1, a connector 3, and a resin case 4 that holds the connector. Consists of parts.
  • the lens unit 1 is normally held by a resin lens holder, and the connector 3 is held by a resin case 4 that holds the connector, and then the resin lens holder 2 and the connector. It is manufactured by bonding a resin case 4 that holds
  • both the lens holder 2 and the case 4 holding the connector are made of resin, they can be joined by a welding technique such as laser welding, but at the time of joining, they are joined to the joining interface (dotted line portion in FIG. 1). There may be a gap.
  • An object of the present invention is to solve such a problem, and includes a first housing made of resin, a second housing joined to the first housing made of resin, In the molded product having the transparent member held in the housing 2, no condensation or fogging occurs in the transparent member, and the appearance of the joint portion between the first housing and the second housing is good. And it aims at providing the manufacturing method of the said molded article.
  • the casings are slowly joined together by using a polyamide resin having a melting point of the polyamide resin + 20 ° C. and a semi-crystallization time of 10 to 60 seconds.
  • the present invention has been completed by successfully reducing the gap between the casings.
  • the above problem has been solved by the following means ⁇ 1>, preferably ⁇ 2> to ⁇ 11>.
  • the body and the second casing are each independently formed from a resin composition containing a polyamide resin having a polyamide resin semi-crystallization time of 10 to 60 seconds and a melting point of 200 to 280 ° C., Molded product in which the transparent member has a pencil hardness of 8H or more and a linear expansion coefficient of 1 ⁇ 10 ⁇ 6 to 9 ⁇ 10 ⁇ 6 / ° C .; the semi-crystallization time is the melting point of the polyamide resin + 20 ° C., the polyamide resin The time measured by depolarization photometry under the conditions of a melting time of 5 minutes and a crystallization bath temperature of 150 ° C.
  • the polyamide resin is composed of a structural unit derived from a diamine and a structural unit derived from a dicarboxylic acid, 50 mol% or more of the structural unit derived from the diamine is derived from xylylenediamine, and the structural unit derived from the dicarboxylic acid
  • ⁇ 3> The molded article according to ⁇ 1> or ⁇ 2>, wherein a difference in melting point between the polyamide resin contained in the first housing and the polyamide resin contained in the second housing is 50 ° C. or less.
  • ⁇ 4> The molded article according to any one of ⁇ 1> to ⁇ 3>, wherein the first casing and the second casing each independently include a filler.
  • One of the first casing and the second casing includes a light-absorbing dye, and the other one includes a light-transmitting dye, and any one of ⁇ 1> to ⁇ 4> Articles described in 1.
  • ⁇ 6> The molded article according to any one of ⁇ 1> to ⁇ 5>, wherein the transparent member is made of glass.
  • ⁇ 7> The molded product according to any one of ⁇ 1> to ⁇ 6>, which is a camera part.
  • each of the bodies is independently formed of a resin composition containing a polyamide resin having a polyamide resin semi-crystallization time of 10 to 60 seconds and a melting point of 200 to 280 ° C., and the transparent member has a pencil hardness of 8H or more.
  • One of the first casing and the second casing includes a light-absorbing dye, and the remaining one of the molded article according to ⁇ 8> or ⁇ 9> includes a light-transmitting dye. Production method.
  • ⁇ 11> Any one of ⁇ 8> to ⁇ 10>, wherein a difference in melting point between the polyamide resin included in the first casing and the polyamide resin included in the second casing is 50 ° C. or less.
  • a transparent member In a molded article having a first housing made of resin, a second housing joined to the first housing made of resin, and a transparent member held by the second housing, a transparent member.
  • the molded product of the present invention includes a first housing, a second housing joined to the first housing, and a transparent member held by the second housing,
  • the first casing and the second casing are each independently made of a resin composition containing a polyamide resin having a polyamide resin semi-crystallization time of 10 to 60 seconds and a melting point of 200 to 280 ° C.
  • the transparent member is formed and has a pencil hardness of 8H or more and a linear expansion coefficient of 1 ⁇ 10 ⁇ 6 to 9 ⁇ 10 ⁇ 6 / ° C.
  • the semi-crystallization time means the time measured by the depolarization photometric method under the conditions of the melting point of the polyamide resin + 20 ° C., the melting time of the polyamide resin of 5 minutes, and the crystallization bath temperature of 150 ° C.
  • the heat welding can be slowly advanced at the time of joining the first housing and the second housing. And the gap at the interface of the second housing can be reduced. For this reason, moisture or the like is less likely to enter the molded product obtained by joining the first housing and the second housing, so that condensation does not easily occur on the transparent member and clouding is less likely to occur.
  • the molded product of the present invention can be applied to various storage containers having transparent members, electrical and electronic equipment parts, office automate (OA) equipment parts, home appliance parts, machine mechanism parts, vehicle mechanism parts, and the like.
  • the molded article of the present invention is preferably a camera part, and more preferably a vehicle-mounted camera part.
  • the depolarized intensity method is a method for measuring the progress of crystallization of a resin by utilizing a phenomenon in which light transmitted through the resin due to crystallization causes birefringence.
  • the amount of light transmitted through the polarizing plate increases in proportion to the degree of progress of crystallization.
  • the amount of transmitted light (transmitted light intensity) is measured by a light receiving element.
  • the semi-crystallization time is that after the resin is in an amorphous state or a molten state, the transmitted light intensity is (I ⁇ I0) / 2 (I0 is the transmitted light intensity in the amorphous state or the molten state, and I ⁇ is constant. This represents a time required to reach a value), that is, a time required for crystallization to proceed in half, and serves as an index of crystallization speed.
  • the depolarization intensity method is measured in accordance with the description of the examples described later.
  • the molded article of the present invention usually further includes one or more members.
  • An example of the member is a camera component connector.
  • the molded article of the present invention preferably has a hollow structure separated from the outside and formed by at least a first casing, a second casing, and a transparent member.
  • the camera component 5 in FIG. 1 includes a resin case 4 (corresponding to a first housing) holding a connector, a resin lens holder 2 (corresponding to a second housing), and a lens unit 1 (transparent).
  • a hollow structure for holding the connector 3 is formed. Further, the hollow structure is not necessarily formed only by the first casing, the second casing, and the transparent member.
  • the molded product of the present invention may include a third housing and a member and a hollow structure separated from the outside.
  • the third housing is also preferably formed from a resin composition containing a polyamide resin that satisfies the predetermined crystallization speed and melting point. The higher the degree of sealing of the hollow structure, the more effectively the fogging and condensation of the transparent member can be suppressed.
  • the first casing and the second casing are each independently formed from a resin composition.
  • the resin composition used for forming the first housing and the resin composition used for forming the second housing may be the same or different.
  • the resin composition used for forming the first casing and the resin composition used for forming the second casing have a common composition of 80% by mass or more and less than 100% by mass.
  • the resin composition forming one of the first casing and the second casing and the resin composition forming the other have 80 to 100% by mass of the polyamide resin component in common.
  • casing contains a light absorptive pigment
  • the resin composition forming the other casing contains a light-transmitting dye.
  • the method for producing the resin composition is not particularly limited, but a method of using a uniaxial or biaxial extruder having equipment capable of devolatilization from the vent port as a kneader is preferable.
  • the polyamide resin and other components blended as necessary may be supplied to the kneader all at once, or other blended components may be sequentially supplied to the polyamide resin component.
  • the filler is preferably supplied from the middle of the extruder in order to suppress crushing during kneading.
  • two or more kinds of components selected from each component may be mixed and kneaded in advance.
  • the light-transmitting dye is prepared in advance as a master batch, melt-kneaded with the remaining blending components, and extruded to have a predetermined blending ratio.
  • the first casing and the second casing are formed from a resin composition, but the molding method is not particularly limited, and can be molded by a molding method generally used for thermoplastic resins. Specifically, a molding method such as injection molding, hollow molding, extrusion molding, or press molding can be applied. In this case, a particularly preferable molding method is injection molding because of good fluidity. In the injection molding, the resin temperature is preferably controlled to 240 to 300 ° C.
  • the polyamide resin used in the present invention is a polyamide resin having a semi-crystallization time of 10 to 60 seconds and a melting point of 200 to 280 ° C. By setting it as the said range, since the softening time is long at the time of welding, joint strength improves. When the half crystallization time is less than 10 seconds, the resin solidifies quickly, and appropriate adhesion strength cannot be obtained. In addition, when the half crystallization time exceeds 60 seconds, the resin is soft and it is difficult to apply an appropriate pressure during bonding.
  • the semi-crystallization time of the polyamide resin is measured according to the method described in Examples described later.
  • the resin composition used in the present invention may contain only one type of polyamide resin or two or more types.
  • the half crystallization time of the polyamide resin with the largest blending amount is defined as the half crystallization time of the polyamide resin in the present invention.
  • the lower half value of the polyamide resin contained in the first housing and the polyamide resin contained in the second housing is independently 10 seconds or more and 20 seconds or more. Preferably, it is 25 seconds or more, and more preferably 30 seconds or more.
  • the upper limit value of the half crystallization time is independently 60 seconds or less, preferably 55 seconds or less, more preferably 50 seconds or less, and further preferably 45 seconds or less. By setting it as such a range, the welding intensity
  • the polyamide resin used in the present invention has a melting point of 200 to 280 ° C.
  • the lower limit of the melting point is preferably 205 ° C. or higher, and more preferably 210 ° C. or higher.
  • the upper limit of the melting point is preferably 260 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 240 ° C. or lower.
  • the melting point of the polyamide resin is measured according to the method described in Examples described later.
  • the melting point of the polyamide resin having the largest blending amount is defined as the melting point of the polyamide resin in the present invention.
  • the polyamide resin has two or more melting points, the lowest melting point is defined as the melting point of the polyamide resin in the present invention.
  • the difference in melting point between the polyamide resin contained in the first housing and the polyamide resin contained in the second housing is preferably 50 ° C. or less, and more preferably 30 ° C. or less. 20 ° C. or lower is more preferable, 10 ° C.
  • casing can be decreased more.
  • the difference in melting point is preferably 0 ° C.
  • the polyamide resin used in the present invention satisfies the above-mentioned half crystallization time and melting point, the kind thereof is not particularly defined, and widely known polyamide resins can be used.
  • the polyamide resin used in the present invention is composed of a structural unit derived from a diamine and a structural unit derived from a dicarboxylic acid, and 50 mol% or more of the structural unit derived from a diamine is derived from xylylenediamine, and is derived from a dicarboxylic acid.
  • 70 mol% or more of the unit is a polyamide resin derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms (hereinafter sometimes referred to as “XD polyamide”).
  • the XD-based polyamide is composed of 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, further preferably 90 mol% or more, more preferably 95 mol% or more of diamine-derived structural units. (Preferably at least one of metaxylylenediamine and paraxylylenediamine), 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more of the structural unit derived from dicarboxylic acid, Preferably 90 mol%, more preferably 95 mol% or more is derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms.
  • the XD polyamide used in the present invention is preferably 30 mol% or more, more preferably 50 mol% or more, and still more preferably 60 mol% or more of the structural unit derived from diamine is metaxylylenediamine.
  • diamines other than metaxylylenediamine and paraxylylenediamine that can be used as raw material diamine components for XD polyamides include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, Aliphatic diamines such as methylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3-bis (amino Methyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis ( --Aminocyclohexyl) propane, bis ( --
  • diamine other than xylylenediamine When a diamine other than xylylenediamine is used as the diamine component, it is less than 50 mol% of the structural unit derived from diamine, preferably 30 mol% or less, more preferably 1 to 25 mol%, still more preferably. Used in a proportion of 5 to 20 mol%.
  • Preferred examples of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms to be used as the raw material dicarboxylic acid component of the polyamide resin include succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, Examples thereof include aliphatic dicarboxylic acids such as sebacic acid, undecanedioic acid, and dodecanedioic acid, and one or a mixture of two or more types can be used.
  • the melting point of the polyamide resin is an appropriate range for molding processing Therefore, adipic acid or sebacic acid is preferable, and sebacic acid is more preferable.
  • dicarboxylic acid component other than the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms examples include phthalic acid compounds such as isophthalic acid, terephthalic acid and orthophthalic acid, 1,2-naphthalenedicarboxylic acid, 1,3 -Naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalene
  • naphthalenedicarboxylic acid compounds such as dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid, and one kind or a mixture of two or more kinds can be used.
  • a dicarboxylic acid other than an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms is used as the dicarboxylic acid component
  • at least one of terephthalic acid and isophthalic acid is used from the viewpoint of molding processability and barrier properties. It is preferable to use, and it is more preferable to use isophthalic acid.
  • the proportion of terephthalic acid and isophthalic acid is preferably 30 mol% or less, more preferably 1 to 30 mol%, still more preferably 5 to 20 mol% of the dicarboxylic acid structural unit. Details of these can be referred to the description in JP-A-2005-002327.
  • lactams such as ⁇ -caprolactam and laurolactam
  • aliphatics such as aminocaproic acid and aminoundecanoic acid, as long as the effects of the present invention are not impaired.
  • Aminocarboxylic acids can also be used as copolymerization components.
  • Preferred polyamide resins used in the present invention include polyamide resin (MXD6I) composed of metaxylylenediamine, adipic acid and isophthalic acid, polyamide resin (MXD6) composed of metaxylylenediamine and adipic acid, metaxylylene diene Polyamide resin composed of amine, paraxylylenediamine and adipic acid (MP6), Polyamide resin composed of metaxylylenediamine and sebacic acid (MXD10), composed of metaxylylenediamine, paraxylylenediamine and sebacic acid An example is a polyamide resin (MP10).
  • the polyamide resin used in the present invention preferably has a number average molecular weight (Mn) of 6,000 to 30,000, more preferably 8,000 to 28,000, and still more preferably 9,000 to 26,000. 000, more preferably 10,000 to 24,000, and even more preferably 11,000 to 22,000. Within such a range, the heat resistance, elastic modulus, dimensional stability, and moldability become better.
  • Mn number average molecular weight
  • the polyamide resin used in the present invention preferably has a molecular weight distribution (weight average molecular weight / number average molecular weight (Mw / Mn)) of 1.8 to 3.1.
  • the molecular weight distribution is more preferably 1.9 to 3.0, still more preferably 2.0 to 2.9.
  • the molecular weight distribution of the polyamide resin can be adjusted, for example, by appropriately selecting the polymerization reaction conditions such as the type and amount of the initiator and catalyst used during the polymerization, and the reaction temperature, pressure, and time. It can also be adjusted by mixing a plurality of types of polyamide resins having different average molecular weights obtained under different polymerization conditions or by separately precipitating the polyamide resins after polymerization.
  • the molecular weight distribution can be obtained by GPC measurement. Specifically, using “HLC-8320GPC” manufactured by Tosoh Corporation as an apparatus and two “TSK gel Super HM-H” manufactured by Tosoh Corporation as a column, eluent Measured under conditions of hexafluoroisopropanol (HFIP) having a sodium trifluoroacetate concentration of 10 mmol / L, a resin concentration of 0.02% by mass, a column temperature of 40 ° C., a flow rate of 0.3 mL / min, and a refractive index detector (RI). It can be determined as a value in terms of polymethyl methacrylate (PMMA). A calibration curve is prepared by dissolving 6 levels of PMMA in HFIP.
  • HFIP hexafluoroisopropanol
  • the polyamide resin used in the present invention has a moisture permeability coefficient of 3.0 g ⁇ mm / day ⁇ m 2 or less after being molded to a thickness of 1 mm and left to stand at 40 ° C. and a relative humidity of 90% for 40 hours.
  • the lower limit value of the moisture permeability coefficient is preferably 0 g ⁇ mm / day ⁇ m 2 , but 0.1 g ⁇ mm / day ⁇ m 2 or more, or even 1.0 g ⁇ mm / day ⁇ m 2 or more. It is sufficiently practical.
  • the moisture permeability coefficient is a value measured by the method described in the examples. Even if the water absorption rate of the polyamide resin is low, it cannot be said that the moisture permeability coefficient is small. This is because the polyamide resin has a different water absorption rate and diffusion rate.
  • the resin composition used in the present invention preferably contains 25% by mass or more, and more preferably 30% by mass or more of the polyamide resin. As an upper limit, it is less than 100 mass%, 90 mass% or less is preferable, 70 mass% or less is more preferable, and 60 mass% or less is further more preferable.
  • the resin composition used in the present invention preferably occupies 90% by mass or more of the total of the polyamide resin and the filler described later.
  • the resin composition used in the present invention may contain one or more polyamide resins other than those described above.
  • polyamide resins include polyamide 4, polyamide 6, polyamide 11, polyamide 12, polyamide 46, polyamide 66, polyamide 610, polyamide 612, polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (Polyamide 6I), polyamide 66 / 6T, polyamide 9MT, polyamide 6I / 6T and the like.
  • polyamide resins are not substantially contained.
  • “Substantially not contained” means that, in the resin composition used in the present invention, it means 2% by mass or less of the content of the polyamide resin satisfying the predetermined crystallization rate and the melting point, preferably 1% by mass or less, 0.1 mass% or less is more preferable.
  • the resin composition used in the present invention may contain a filler.
  • the filler may be an organic filler or an inorganic filler, but an inorganic filler is preferred.
  • the inorganic filler include glass fillers, carbon fibers, silica, alumina, and fillers that can absorb laser light such as inorganic powders coated with a material that absorbs lasers, glass fillers are preferable, and glass fibers are more preferable.
  • the glass filler is composed of a glass composition such as A glass, C glass, E glass, or S glass, and E glass (non-alkali glass) is particularly preferable.
  • the glass fiber used in the present invention may be a single fiber or a plurality of single fibers twisted together.
  • the form of the glass fiber is “glass roving” in which single fibers or a plurality of twisted strands are continuously wound, “chopped strand” trimmed to a length of 1 to 10 mm, and pulverized to a length of about 10 to 500 ⁇ m. Any of "Mildo fiber” etc. may be sufficient.
  • Such glass fibers are commercially available from Asahi Fiber Glass Co., Ltd. under the trade names “Glasslon Chopped Strand” and “Glasslon Milled Fiber”, and are easily available.
  • glass fibers having an irregular cross-sectional shape are also preferable.
  • This irregular cross-sectional shape means that the flatness indicated by the long diameter / short diameter ratio (D2 / D1) when the long diameter of the cross section perpendicular to the length direction of the fiber is D2 and the short diameter is D1, is, for example, 1. It is preferably 5 to 10, more preferably 2.5 to 10, more preferably 2.5 to 8, and particularly preferably 2.5 to 5. Regarding such flat glass, the description of paragraph numbers 0065 to 0072 of JP-A-2011-195820 can be referred to, and the contents thereof are incorporated herein.
  • the glass fiber used in the present invention is particularly preferably a glass fiber having a weight average fiber diameter of 1 to 20 ⁇ m and a cut length of 1 to 10 mm.
  • the weight average fiber diameter is calculated as a weight average fiber diameter in a circle having the same area.
  • the glass fiber used in the present invention may be bundled with a sizing agent. In this case, an acid-based sizing agent is preferable as the sizing agent.
  • the glass filler in the present invention may be glass beads.
  • the glass beads are spherical ones having an outer diameter of 10 to 100 ⁇ m.
  • they are commercially available from Potters Barotini under the trade name “EGB731” and can be easily obtained.
  • Glass flakes are flakes having a thickness of 1 to 20 ⁇ m and a side length of 0.05 to 1 mm.
  • they are commercially available from Nippon Sheet Glass under the trade name “Fureka”. Are readily available.
  • the filler content in the resin composition used in the present invention is preferably 25% by mass or more of the resin composition, and more preferably 30% by mass or more. About an upper limit, 70 mass% or less is preferable, 65 mass% or less is more preferable, 60 mass% or less is more preferable, 55 mass% or less is still more preferable, 50 mass% or less is still more preferable, 45 mass% or less is 45 mass% or less. Even more preferred.
  • the resin composition used in the present invention may contain only one type of filler, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • One of the resin compositions used in the present invention preferably contains a light-absorbing dye. With this configuration, laser welding can be performed.
  • the other of the resin compositions used in the present invention may contain a light-transmitting dye. By including the light-transmitting dye, the first casing and the second casing can be more strongly laser-welded.
  • the light-absorbing dye examples include those having an absorption wavelength in the range of the wavelength of the laser beam to be irradiated, for example, in the wavelength range of 800 nm to 1100 nm.
  • inorganic pigments black pigments such as carbon black (eg, acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black), red pigments such as iron oxide red, molybdate orange, etc.
  • inorganic pigments generally have a strong hiding power and are preferably black pigments.
  • These light absorbing dyes may be used in combination of two or more. When blended, the amount of the light-absorbing dye is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the resin composition.
  • the light transmissive dye is a dye having a high transmittance in the range of the wavelength of the laser beam to be irradiated, for example, in the wavelength range of 800 nm to 1100 nm.
  • Specific examples include nigrosine, perinone, naphthalocyanine, aniline black, phthalocyanine, porphyrin, perylene, quaterylene, azo dye, anthraquinone, squaric acid derivative, and immonium dye.
  • Examples of commercially available products include e-BIND LTW-8931H and e-BIND LTW-8701H, which are colorants manufactured by Orient Chemical Industries.
  • the content of the light transmissive pigment is preferably 0.001% by mass or more, more preferably 0.006% by mass or more, and further 0.018% by mass of the resin composition. As mentioned above, it may be 0.024 mass% or more, 0.030 mass% or more, or 0.050 mass% or more.
  • the upper limit is preferably 5.0% by mass or less, more preferably 2.0% by mass or less, further preferably 1.0% by mass or less, 0.2% by mass or less, It may be 0.1% by mass or less and 0.06% by mass or less.
  • the light-transmitting dye may contain only one type or two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition used in the present invention may contain one or more resin components other than the polyamide resin.
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate
  • thermoplastic resins such as polycarbonate resin and polyacetal resin
  • the resin composition used in the present invention may have a configuration in which a resin component other than the polyamide resin is not substantially blended. In particular, it may be 0.4% by mass or less.
  • the resin composition used in the present invention may contain talc.
  • crystallization can be promoted by blending talc.
  • the blending amount of talc in the resin composition used in the present invention is preferably 0.05 to 20% by mass, more preferably 0.1 to 10% by mass with respect to the resin composition.
  • the content is more preferably 15 to 5% by mass, and further preferably 0.2 to 1.0% by mass.
  • Only one type of talc may be used, or two or more types may be used in combination. In the case of two or more types, the total amount is preferably within the above range.
  • the resin composition used in the present invention may contain a release agent.
  • the release agent include aliphatic carboxylic acids, salts of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils. Etc.
  • the aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids.
  • the aliphatic carboxylic acid includes alicyclic carboxylic acid.
  • preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetratriacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
  • the salt of the aliphatic carboxylic acid include sodium salt, potassium salt, calcium salt, and magnesium salt.
  • the aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol for example, the same one as the aliphatic carboxylic acid can be used.
  • the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monohydric or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic or alicyclic saturated monohydric alcohols or aliphatic saturated polyhydric alcohols having 30 or less carbon atoms are more preferable.
  • alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, trimethylolpropane, ditrimethylolpropane, And dipentaerythritol.
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastea
  • Examples of the aliphatic hydrocarbon having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and ⁇ -olefin oligomer having 3 to 12 carbon atoms.
  • the aliphatic hydrocarbon includes alicyclic hydrocarbons.
  • the number average molecular weight of the aliphatic hydrocarbon is preferably 5,000 or less.
  • paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable.
  • the content of the release agent is preferably 0.001 to 2% by mass, and 0.01 to 1% by mass with respect to the resin composition. More preferably. Only one type of release agent may be used, or two or more types may be included. When two or more types are included, the total amount is preferably within the above range. When the content of the release agent is less than the lower limit of the range, the effect of releasability may not be sufficient, and when the content of the release agent exceeds the upper limit of the range, hydrolysis resistance And mold contamination during injection molding may occur.
  • the resin composition used in the present invention may contain other components without departing from the spirit of the present invention.
  • additives include light stabilizers, antioxidants, flame retardants, UV absorbers, fluorescent brighteners, anti-dripping agents, antistatic agents, antifogging agents, lubricants, antiblocking agents, and flow improvers.
  • Plasticizers, dispersants, antibacterial agents and the like may use only 1 type and may use 2 or more types together.
  • the molded article of the present invention includes a transparent member having a pencil hardness of 8H or more and a linear expansion coefficient of 1 ⁇ 10 ⁇ 6 to 9 ⁇ 10 ⁇ 6 / ° C.
  • a transparent member constitutes a lens part of a camera component, for example.
  • the pencil hardness of the transparent member is preferably 8H to 9H.
  • the pencil hardness is a value measured according to JIS K 5600.
  • the linear expansion coefficient of the transparent member is preferably 5 ⁇ 10 ⁇ 6 to 9 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient is a value measured according to JIS K 7197. Examples of the material of the transparent member include glass and resin, and glass is preferable.
  • the transparent member in the present invention is held by the second casing. As an example of being held, a state in which the transparent member is directly or indirectly fitted to the second casing can be given. Indirect fitting means a state of fitting through a member such as packing.
  • the method for manufacturing a molded article of the present invention includes welding a first casing and a second casing, the second casing including a first casing holding a transparent member, The second casing holds a transparent member, and the first casing and the second casing are each independently a semi-crystalline polyamide resin.
  • a resin composition containing a polyamide resin having a melting time of 10 to 60 seconds and a melting point of 200 to 280 ° C. the difference in melting point is 50 ° C. or less
  • the transparent member has a pencil hardness of 8H or more
  • the linear expansion coefficient is 1 ⁇ 10 ⁇ 6 to 9 ⁇ 10 ⁇ 6 / ° C.
  • the semi-crystallization time is a time measured by a depolarization photometric method under the conditions of a melting point of polyamide resin + 20 ° C., a melting time of polyamide resin of 5 minutes, and a crystallization bath temperature of 150 ° C.
  • the first casing, the second casing, the transparent member, and the resin composition can each refer to the description in the molded product, and preferable ranges thereof are also the same.
  • the manufacturing method of the present invention includes thermally welding the first casing and the second casing.
  • the method of heat welding is not particularly defined as long as it is a method of melting and joining the joining portions of the first housing and the second housing with heat, but laser welding is preferable.
  • the temperature for heat welding is determined based on the melting point of the polyamide resin, and is preferably heated to the melting point of the polyamide resin +50 to 300 ° C.
  • the melting point of the polyamide resin here is set based on the polyamide resin having the lowest melting point among the polyamide resins included in the first casing and the second casing and satisfying the predetermined crystallization speed and the melting point. .
  • the first casing and the second casing can be formed into a molded product by laser welding.
  • one of the first housing and the second housing is a transmissive resin member, and the other is an absorbent resin member.
  • the transmissive resin member and the absorbing resin member can be firmly welded without using an adhesive.
  • the shape of the joining portion between the first housing and the second housing is not particularly limited, but is usually a shape having at least a surface contact portion (a flat surface or a curved surface) because the members are joined together by laser welding. .
  • the thickness of the member through which the laser beam is transmitted (the thickness in the laser transmission direction at the portion through which the laser beam is transmitted) can be appropriately determined in consideration of the application, the composition of the resin composition, and the like. Preferably, it is 4 mm or less.
  • laser light sources used for laser welding include fiber laser (wavelength 1070 nm), YAG (yttrium, aluminum, garnet crystal) laser (wavelength 1064 nm), and LD (laser diode) (wavelength 808, 840, 940 nm).
  • the optimum laser is selected by comprehensively judging the beam quality (heat source), power stability, cost, etc.
  • the welded portions are brought into contact with each other.
  • surface contact is desirable between the welded portions of the two, and may be flat surfaces, curved surfaces, or a combination of flat and curved surfaces.
  • laser light is irradiated from the transmissive resin member side (preferably, the weld surface is irradiated from an angle of 85 to 95 °).
  • the laser beam may be condensed at the interface between the two using a lens system if necessary. The condensed beam passes through the transmissive resin member, is absorbed near the surface of the absorbent resin member, generates heat, and melts.
  • the heat is transferred to the permeable resin member by heat conduction and melted to form a molten pool at the interface between the two, and after cooling, both are joined.
  • the molded product in which the permeable resin member and the absorbent resin member are welded in this way has high bonding strength.
  • the obtained polyamide had a melting point of 215 ° C., a glass transition point of 64.4 ° C., a number average molecular weight of 14,286, and a relative viscosity (measured in 96% sulfuric acid, resin concentration 1 g / 100 cc, temperature 25 ° C.) of 2. 0.09, the terminal amino group concentration was 60.0 ⁇ equivalent / g, and the terminal carboxyl group concentration was 80.0 ⁇ equivalent / g.
  • PA66 Polyamide 66, manufactured by Toray, trade name “CM3001-N”
  • the mass of the calcium chloride particles was measured, and the water permeation coefficient was calculated by taking the difference (increase) from that before standing as the amount of permeated water.
  • the unit of the moisture permeability coefficient is g ⁇ mm / day ⁇ m 2 .
  • the semi-crystallization time was measured by a depolarization photometric method under the conditions of a melting point of polyamide resin + 20 ° C., a melting time of polyamide resin of 5 minutes, and a crystallization bath temperature of 150 ° C.
  • model number: MK701 manufactured by Kotaki Seisakusho Co., Ltd. was used as the semi-crystallization time measuring device. Specifically, a polyamide resin is melted at a melting point of + 20 ° C. using a single screw extruder or the like, and is formed by stacking five sheets of a film having a glass transition temperature of ⁇ 5 ° C. and a chill roll temperature of 100 ⁇ m.
  • the unit of half crystallization time is seconds.
  • the melting point was measured as the peak top temperature of the endothermic peak at the time of temperature rise observed by DSC (Differential Scanning Calorimetry).
  • DSC Different Scanning Calorimetry
  • the sample amount was about 1 mg
  • nitrogen was flowed at 30 mL / min as the atmospheric gas
  • the rate of temperature increase was from room temperature to a temperature higher than the expected melting point at 10 ° C./min.
  • the melting point was determined from the temperature at the peak top of the endothermic peak observed when heated and melted.
  • DSC-60 manufactured by SHIMADZU CORPORATION was used.
  • the unit of melting point is ° C.
  • ⁇ Filler> T756H Glass fiber, manufactured by Nippon Electric Glass Co., Ltd., ECS03T-756H (trade name), weight average fiber diameter 10.5 ⁇ m, cut length 3 to 4 mm, ⁇ Light transmissive dye> 8731H: Orient Chemical Industries, Ltd., e-BIND LTW-8731H (trade name), polyamide 66 and light-transmitting dye master batch ⁇ light-absorbing dye> Carbon black (Mitsubishi Chemical Corporation MA600B) ⁇ Talc> Micron White # 5000S: Hayashi Kasei Co., Ltd. ⁇ release agent> Light Amide WH255: Kyoeisha Chemical Co., Ltd.
  • Example 1 ⁇ Production of light-transmitting casing> ⁇ Manufacture of resin composition >> The polyamide resin, talc, release agent and light-transmitting dye shown in Table 2 were weighed and dry blended, and then the twin screw type cassette weighing from the screw root of a twin screw extruder (Toshiki Machine Co., Ltd., TEM26SS). A feeder (manufactured by Kubota Corporation, CE-W-1-MP) was used. Further, the glass fibers shown in Table 2 were introduced into the above-described twin-screw extruder from the side of the extruder using a vibrating cassette weighing feeder (manufactured by Kubota Corporation, CE-V-1B-MP), and resin components, etc. And kneaded to obtain pellets. The temperature setting of the extruder was 280 ° C.
  • the glass fibers shown in Table 3 were introduced into the above twin screw extruder from the side of the extruder using a vibrating cassette weighing feeder (manufactured by Kubota Corporation, CE-V-1B-MP), and the resin components, etc. And kneaded to obtain pellets.
  • the temperature setting of the extruder was 280 ° C.
  • a glass lens was fitted as a transparent member into the light-transmitting casing obtained above, and laser-welded to the light-absorbing casing.
  • the light-transmitting casing and the light-absorbing casing were overlapped, and laser irradiation was performed from the light transmitting casing side.
  • the glass lens has a pencil hardness of 8H and a linear expansion coefficient of about 8.5 ⁇ 10 ⁇ 6 .
  • the laser beam wavelength was 940 nm (semiconductor laser), the welding spot diameter was 2.0 mm, and the welding length was 20 mm.
  • the scanning speed of the laser beam was 5 mm / second, the laser output was 13 W, and the clamp pressure was 0.5 MPa.
  • As the laser welding apparatus a PARK LASER SYSTEM manufactured by Scan type Parker Corporation was used.
  • Example 2 Comparative Example 1 and Comparative Example 2
  • the polyamide resin used for the light-absorbing casing and the light-transmitting casing was changed to the polyamide resin shown in Table 4 below, and the others were performed in the same manner.
  • Example 3 ⁇ Production of light-absorbing housing> ⁇ Manufacture of resin composition >> The polyamide resin, talc, release agent, and light-absorbing dye shown in Table 3 were weighed, dry blended, and then twin screw type cassette weighing from the screw root of a twin screw extruder (Toshiki Machine Co., Ltd., TEM26SS). A feeder (manufactured by Kubota Corporation, CE-W-1-MP) was used. About the light absorptive pigment
  • the glass fibers shown in Table 3 were introduced into the above twin screw extruder from the side of the extruder using a vibrating cassette weighing feeder (manufactured by Kubota Corporation, CE-V-1B-MP), and the resin components, etc. And kneaded to obtain pellets.
  • the temperature setting of the extruder was 280 ° C.
  • a glass lens was fitted as a transparent member into the light-absorbing casing obtained above, and laser-welded to the light-transmitting casing.
  • the light-absorbing casing and the light-transmitting casing were overlapped, and laser irradiation was performed from the light-transmitting casing side.
  • the glass lens has a pencil hardness of 8H and a linear expansion coefficient of about 8.5 ⁇ 10 ⁇ 6 .
  • the laser beam wavelength was 940 nm (semiconductor laser), the welding spot diameter was 2.0 mm, and the welding length was 20 mm.
  • the scanning speed of the laser beam was 5 mm / second, the laser output was 13 W, and the clamp pressure was 0.5 MPa.
  • As the laser welding apparatus a PARK LASER SYSTEM manufactured by Scan type Parker Corporation was used.
  • the resulting molded product was evaluated in the same manner as in Example 1 for ⁇ cloudiness or condensation> and ⁇ appearance>.
  • Example 4 In Example 3, the polyamide resin used for the light-absorbing casing and the light-transmitting casing was changed to the polyamide resin shown in Table 4, and the others were performed in the same manner.

Abstract

樹脂製の第1の筐体と、樹脂製の第1の筐体と接合している第2の筐体と、第2の筐体に保持されている透明部材を有する成形品において、透明部材に結露や曇りが生じず、かつ、第1の筐体と第2の筐体の接合部分の外観が良好な成形品、ならびに、前記成形品の製造方法の提供。 第1の筐体と、前記第1の筐体と接合している第2の筐体と、前記第2の筐体に保持されている透明部材を有し、前記第1の筐体および第2の筐体は、それぞれ独立に、ポリアミド樹脂の半結晶化時間が10~60秒であり、かつ、融点が200~280℃であるポリアミド樹脂を含む樹脂組成物から形成され、前記透明部材が鉛筆硬度8H以上、かつ、線膨張係数が1×10-6~9×10-6/℃である成形品;ここで、半結晶化時間とは、ポリアミド樹脂の融点+20℃、ポリアミド樹脂の溶融時間5分、結晶化浴温度150℃の条件下において脱偏光光度法により測定した時間をいう。

Description

成形品および成形品の製造方法
 本発明は、成形品および成形品の製造方法に関する。特に、カメラ部品に適した成形品、ならびに、成形品の製造方法に関する。
 代表的なエンジニアリングプラスチックであるポリアミド樹脂は、加工が容易であり、さらに、機械的物性、電気特性、耐熱性、その他の物理的および化学的特性に優れている。このため、電気電子機器部品、その他の精密機器部品等に幅広く使用されている。
 例えば、特許文献1には、テレフタル酸単位を60~100モル%含有するジカルボン酸単位と1,9-ジアミノノナン単位および/または2-メチル-1,8-ジアミノオクタン単位を60~100モル%含有するジアミン単位とを有するポリアミド(A)および繊維状強化材(B)を溶融混練してなりポリアミド(A)の含有率が50~80質量%であり繊維状強化材(B)の含有率が20~50質量%であるポリアミド組成物を成形してなるカメラモジュールのバレルまたはホルダであって、上記繊維状強化材(B)の溶融混練前における平均長さが300μm以下であるカメラモジュールのバレルまたはホルダが開示されている。
 さらに、最近では、形状の複雑な成形品もポリアミド樹脂で製造されるようになってきている。ポリアミド樹脂で成形される成形品の形状が複雑になるに伴い、成形品の成形に際し、レーザー溶着技術などが使用されるようになっている。
 レーザー透過溶着法は、レーザー光に対して透過性(非吸収性、弱吸収性とも言う)を有する樹脂部材(以下、「透過樹脂部材」ということがある)と、レーザー光に対して吸収性を有する樹脂部材(以下、「吸収樹脂部材」とういうことがある)とを接触させ溶着して、両樹脂部材を接合させる方法である。具体的には、透過樹脂部材側からレーザー光を接合面に照射して、接合面を形成する吸収樹脂部材をレーザー光のエネルギーで溶融させ接合する方法である。レーザー溶着は、摩耗粉やバリの発生が無く、製品へのダメージも少なく、さらに、ポリアミド樹脂自体、レーザー透過率が比較的高い材料であることから、ポリアミド樹脂製品のレーザー溶着技術による加工が、最近注目されている。このようなレーザー溶着用のポリアミド樹脂組成物は、例えば、特許文献2や特許文献3に記載がある。
特開2010-286544号公報 特開2008-308526号公報 特開2014-74150号公報
 ここで、例えば、図1に示すように、カメラ部品5は、レンズ部1を保持する樹脂製のレンズホルダ2と、コネクタ3と、コネクタを保持する樹脂製のケース4のように、複数の部品から構成される。図1に示すカメラ部品5では、通常、レンズ部1を樹脂製のレンズホルダで保持し、コネクタ3を、コネクタを保持する樹脂製のケース4で保持した後、樹脂製のレンズホルダ2とコネクタを保持する樹脂製のケース4を接合することによって製造される。ここで、レンズホルダ2とコネクタを保持するケース4は、いずれも樹脂から形成されるため、レーザー溶着等の溶着技術によって接合できるが、接合の際に、接合界面(図1の点線部)にギャップができてしまう場合がある。レンズホルダ2とコネクタを保持するケース4の間にギャップができると、このギャップから水分が侵入してしまい、レンズ部1に結露が生じたり、曇ってしまったりする。また、接合不良によって、カメラ部品5の外観が劣る場合もある。
 本発明は、かかる課題を解決することを目的としたものであって、樹脂製の第1の筐体と、樹脂製の第1の筐体と接合している第2の筐体と、第2の筐体に保持されている透明部材を有する成形品において、透明部材に結露や曇りが生じず、かつ、第1の筐体と第2の筐体の接合部分の外観が良好な成形品、ならびに、前記成形品の製造方法を提供することを目的とする。
 上記課題のもと、本発明者が鋭意検討を行った結果、ポリアミド樹脂の融点+20℃における半結晶化時間が10~60秒のポリアミド樹脂を用いることにより、上記筐体同士の接合をゆっくり行い、筐体間のギャップを少なくすることに成功し、本発明を完成するに至った。具体的には、下記手段<1>により、好ましくは<2>~<11>により、上記課題は解決された。
<1>第1の筐体と、前記第1の筐体と接合している第2の筐体と、前記第2の筐体に保持されている透明部材を有し、前記第1の筐体および第2の筐体は、それぞれ独立に、ポリアミド樹脂の半結晶化時間が10~60秒であり、かつ、融点が200~280℃であるポリアミド樹脂を含む樹脂組成物から形成され、前記透明部材が鉛筆硬度8H以上、かつ、線膨張係数が1×10-6~9×10-6/℃である成形品;但し、半結晶化時間とは、ポリアミド樹脂の融点+20℃、ポリアミド樹脂の溶融時間5分、結晶化浴温度150℃の条件下において脱偏光光度法により測定した時間をいう。
<2>前記ポリアミド樹脂が、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の70モル%以上が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来する、<1>に記載の成形品。
<3>前記第1の筐体に含まれるポリアミド樹脂と、前記第2の筐体に含まれるポリアミド樹脂の融点の差が50℃以下である、<1>または<2>に記載の成形品。
<4>前記第1の筐体および第2の筐体は、それぞれ独立に、フィラーを含む、<1>~<3>のいずれか1つに記載の成形品。
<5>前記第1の筐体および第2の筐体の一方は、光吸収性色素を含み、残りの一方には、光透過性色素を含む<1>~<4>のいずれか1つに記載の成形品。
<6>前記透明部材がガラスから構成される、<1>~<5>のいずれか1つに記載の成形品。
<7>カメラ部品である、<1>~<6>のいずれか1つに記載の成形品。
<8>第1の筐体と、第2の筐体を熱溶着することを含み、前記第2の筐体は、透明部材を保持しており、前記第1の筐体および第2の筐体は、それぞれ独立にポリアミド樹脂の半結晶化時間が10~60秒であり、かつ、融点が200~280℃であるポリアミド樹脂を含む樹脂組成物から形成され、前記透明部材が鉛筆硬度8H以上、かつ、線膨張係数が1×10-6~9×10-6/℃である成形品の製造方法;但し、半結晶化時間とは、ポリアミド樹脂の融点+20℃、ポリアミド樹脂の溶融時間5分、結晶化浴温度150℃の条件下において脱偏光光度法により測定した時間をいう。
<9>前記熱溶着がレーザー溶着である、<8>に記載の成形品の製造方法。
<10>前記第1の筐体および第2の筐体の一方は、光吸収性色素を含み、残りの一方には光透過性色素を含む<8>または<9>に記載の成形品の製造方法。
<11>前記第1の筐体に含まれるポリアミド樹脂と、前記第2の筐体に含まれるポリアミド樹脂の融点の差が50℃以下である、<8>~<10>のいずれか1つに記載の成形品の製造方法。
 樹脂製の第1の筐体と、樹脂製の第1の筐体と接合している第2の筐体と、第2の筐体に保持されている透明部材を有する成形品において、透明部材に結露や曇りが生じず、かつ、第1の筐体と第2の筐体の接合部分の外観が良好な成形品、ならびに、前記成形品の製造方法を提供可能になった。
カメラ部品の構成の一例を示す断面図である。 水分透過係数の測定装置を示す概略図である。
 以下において、本発明の内容について詳細に説明する。尚、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本発明の成形品は、第1の筐体と、前記第1の筐体と接合している第2の筐体と、前記第2の筐体に保持されている透明部材を有し、前記第1の筐体および第2の筐体は、それぞれ独立に、ポリアミド樹脂の半結晶化時間が10~60秒であり、かつ、融点が200~280℃であるポリアミド樹脂を含む樹脂組成物から形成され、前記透明部材が鉛筆硬度8H以上、かつ、線膨張係数が1×10-6~9×10-6/℃であることを特徴とする。但し、半結晶化時間とは、ポリアミド樹脂の融点+20℃、ポリアミド樹脂の溶融時間5分、結晶化浴温度150℃の条件下において脱偏光光度法により測定した時間をいう。
 本発明では、結晶化速度が比較的遅いポリアミド樹脂を用いることにより、第1の筐体と第2の筐体の接合の際に、熱溶着をゆっくり進行させることができ、第1の筐体と第2の筐体の界面のギャップが少なくすることができる。このため、第1の筐体と第2の筐体を接合して得られる成形品の内部には、水分などが侵入しにくくなり、透明部材に結露が生じにくくなり、また、曇りにくくなる。加えて、第1の筐体と第2の筐体の界面のギャップが少なくても、接合界面がきれいでないと、外観不良の問題がある。本発明では、第1の筐体と第2の筐体をゆっくり接合させるため、界面がきれいであり、外観に優れた成形品が得られる。
 本発明の成形品は、透明部材を有する各種保存容器、電気電子機器部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、車両機構部品などに適用できる。本発明の成形品は、カメラ部品であることが好ましく、車載用カメラ部品であることがより好ましい。
 尚、脱偏光強度法とは、結晶化により樹脂を透過する光が複屈折を起こす現象を利用して樹脂の結晶化の進行度を測定する方法である。直交した1対の偏光板の間で非晶または溶融状態の樹脂を結晶化させると、結晶化の進行度に比例して偏光板を透過する光量が増加する。透過光量(透過光強度)は受光素子により測定される。半結晶化時間は、樹脂を非晶状態または溶融状態にした後、透過光強度が(I∞-I0)/2(I0は非晶状態または溶融状態のときの透過光強度、I∞は一定値に達したときの透過光強度を表す)に達するまでの時間、すなわち結晶化が半分進行する迄にかかる時間を示し、結晶化速度の指標となる値である。脱偏光強度法は、具体的には後述する実施例の記載に従って測定される。
 本発明の成形品は、第1の筐体、第2の筐体、および透明部材に加え、通常は、さらに、1つ以上の部材を有する。前記部材の一例は、カメラ部品のコネクタである。
 本発明の成形品は、少なくとも、第1の筐体、第2の筐体および透明部材によって形成される、外部から隔てられた中空構造を有することが好ましい。例えば、図1におけるカメラ部品5は、コネクタを保持する樹脂製のケース4(第1の筐体に相当)、樹脂製のレンズホルダ2(第2の筐体に相当)およびレンズ部1(透明部材に相当)によって、コネクタ3を保持する中空構造が形成されている。また、前記中空構造は、必ずしも、第1の筐体、第2の筐体および透明部材のみによって形成される必要はない。本発明の成形品は、第1の筐体、第2の筐体および透明部材に加え、第3の筐体や部材を含めて、外部から隔てられた中空構造が形成されていてもよい。この場合、第3の筐体も、上記所定の結晶化速度および融点を満たすポリアミド樹脂を含む樹脂組成物から形成されることが好ましい。中空構造の密閉度が高いほど、透明部材の曇りや結露を効果的に抑制できる。
<樹脂組成物>
 本発明において、第1の筐体および第2の筐体は、それぞれ独立に、樹脂組成物から形成される。
 第1の筐体の形成に用いられる樹脂組成物と、第2の筐体の形成に用いられる樹脂組成物は、同一であってもよいが、異なっていてもよい。
 本発明では、第1の筐体の形成に用いられる樹脂組成物と、第2の筐体の形成に用いられる樹脂組成物は、組成の80質量%以上100質量%未満が共通することが好ましい。特に、前記第1の筐体と第2の筐体の一方を形成する樹脂組成物と他方を形成する樹脂組成物は、ポリアミド樹脂成分の80~100質量%が共通することが好ましい。
 尚、レーザー溶着を行う場合、第1の筐体と第2の筐体の一方を形成する樹脂組成物は、光吸収性色素を含むことが好ましい。また、他方の筐体を形成する樹脂組成物は、光透過性色素を含むことがさらに好ましい。
 樹脂組成物の製造方法は、特に制限されないが、ベント口から脱揮できる設備を有する1軸または2軸の押出機を混練機として使用する方法が好ましい。上記ポリアミド樹脂および必要に応じて配合される他の成分は、混練機に一括して供給してもよいし、ポリアミド樹脂成分に他の配合成分を順次供給してもよい。フィラーは、混練時に破砕するのを抑制するため、押出機の途中から供給することが好ましい。また、各成分から選ばれた2種類以上の成分を予め混合、混練しておいてもよい。例えば、光透過性色素は、マスターバッチ化したものをあらかじめ調製し、これを残りの配合成分と溶融混練し、押出して所定の配合比率とすることも好ましい。
 第1の筐体および第2の筐体は、樹脂組成物から形成されるが、その成形方法は、特に制限されず、熱可塑性樹脂について一般に使用されている成形方法で成形できる。具体的には、射出成形、中空成形、押出成形、プレス成形などの成形方法を適用することができる。この場合、特に好ましい成形方法は、流動性の良さから、射出成形である。射出成形に当たっては、樹脂温度を240~300℃にコントロールするのが好ましい。
<<ポリアミド樹脂>>
 本発明で用いるポリアミド樹脂は、半結晶化時間が10~60秒であり、かつ、融点が200~280℃であるポリアミド樹脂である。前記の範囲とすることにより、溶着の際、軟化している時間が長いため、接合強度が向上する。
半結晶化時間が10秒未満の場合は、樹脂が早く固化してしまい適切な密着強度が得られなくなる。また、半結晶化時間が60秒を超える場合は樹脂が軟らかく、接合の際に適切な圧力を加えることが難しくなる。
 ポリアミド樹脂の半結晶化時間の測定は、後述する実施例に記載の方法に従う。実施例に記載の機器等が廃版等により入手不可能な場合、他の同等の性能を有する機器を用いることができる。以下、他の測定方法についても、同様である。
 本発明で用いる樹脂組成物は、ポリアミド樹脂を1種類のみ含んでいても、2種類以上含んでいてもよい。本発明で用いる樹脂組成物が、ポリアミド樹脂を2種類以上含む場合、最も配合量の多いポリアミド樹脂の半結晶化時間を本発明におけるポリアミド樹脂の半結晶化時間とする。
 本発明では、第1の筐体に含まれるポリアミド樹脂と、第2の筐体に含まれるポリアミド樹脂の、半結晶化時間は、それぞれ独立に、下限値が10秒以上であり、20秒以上であることが好ましく、25秒以上であることがより好ましく、30秒以上であることがさらに好ましい。前記半結晶化時間の上限値は、それぞれ独立に、60秒以下であり、55秒以下が好ましく、50秒以下がより好ましく、45秒以下がさらに好ましい。
 このような範囲とすることにより、より第1の筐体と第2の筐体の界面の溶着強度を向上することができる。
 本発明で用いるポリアミド樹脂は、融点が200~280℃である。前記上限値以下とすることにより、比較的射出成形しやすく、レーザー溶着の際の出力が低出力で済むという利点がある。一方、前記下限値以上とすることにより、筐体に必要とされる耐熱性に適合しやすくなる。前記融点の下限は、205℃以上が好ましく、210℃以上がより好ましい。前記融点の上限は、260℃以下が好ましく、250℃以下がより好ましく、240℃以下がさらに好ましい。
 ポリアミド樹脂の融点の測定は、後述する実施例に記載の方法に従う。実施例に記載の機器等が廃版等により入手不可能な場合、他の同等の性能を有する機器を用いることができる。
 本発明で用いる樹脂組成物が、ポリアミド樹脂を2種類以上含む場合、最も配合量の多いポリアミド樹脂の融点を本発明におけるポリアミド樹脂の融点とする。ポリアミド樹脂が融点を2点以上有する場合、最も低い融点を本発明におけるポリアミド樹脂の融点とする。
 本発明では、第1の筐体に含まれるポリアミド樹脂と、第2の筐体に含まれるポリアミド樹脂の、融点の差が50℃以下であることが好ましく、30℃以下であることがより好ましく、20℃以下であることがさらに好ましく、10℃以下であることが一層好ましく、5℃以下であることがより一層好ましい。このような範囲とすることにより、より第1の筐体と第2の筐体の界面のギャップをより少なくすることができる。前記融点の差は0℃が好ましい。
 本発明で用いるポリアミド樹脂は、上記半結晶化時間および融点を満たす限り、その種類等は特に定めるものではなく、広く公知のポリアミド樹脂を用いることができる。その中でも、本発明で用いるポリアミド樹脂は、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の70モル%以上が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂(以下、「XD系ポリアミド」ということがある)であることが好ましい。
 XD系ポリアミドは、ジアミン由来の構成単位の50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、一層好ましくは95モル%以上がキシリレンジアミン(好ましくは、メタキシリレンジアミンおよびパラキシリレンジアミンの少なくとも1種類)に由来し、ジカルボン酸由来の構成単位の70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは90モル%、一層好ましくは95モル%以上が、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来する。本発明で用いるXD系ポリアミドは、ジアミン由来の構成単位の、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは60モル%以上がメタキシリレンジアミンである。
 XD系ポリアミドの原料ジアミン成分として用いることが出来るメタキシリレンジアミンおよびパラキシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン等を例示することができ、1種類または2種類以上を混合して使用できる。
 ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン由来の構成単位の50モル%未満であり、30モル%以下であることが好ましく、より好ましくは1~25モル%、さらに好ましくは5~20モル%の割合で用いる。
 ポリアミド樹脂の原料ジカルボン酸成分として用いるのに好ましい炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸としては、例えばコハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種類または2種類以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、アジピン酸またはセバシン酸が好ましく、セバシン酸がより好ましい。
 上記炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸成分としては、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といったナフタレンジカルボン酸化合物等を例示することができ、1種類または2種類以上を混合して使用できる。
 ジカルボン酸成分として、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸を用いる場合は、成形加工性およびバリア性の観点から、テレフタル酸およびイソフタル酸の少なくとも1種類を用いることが好ましく、イソフタル酸を用いることがより好ましい。テレフタル酸およびイソフタル酸の割合は、好ましくはジカルボン酸構成単位の30モル%以下であり、より好ましくは1~30モル%、さらに好ましくは5~20モル%の範囲である。これらの詳細は、特開2005-002327号公報の記載を参酌できる。
 さらに、ジアミン成分、ジカルボン酸成分以外にも、ポリアミド樹脂を構成する成分として、本発明の効果を損なわない範囲でε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類も共重合成分として使用できる。
 本発明で用いる好ましいポリアミド樹脂としては、メタキシリレンジアミン、アジピン酸およびイソフタル酸から構成されるポリアミド樹脂(MXD6I)、メタキシリレンジアミンおよびアジピン酸から構成されるポリアミド樹脂(MXD6)、メタキシリレンジアミン、パラキシリレンジアミンおよびアジピン酸から構成されるポリアミド樹脂(MP6)、メタキシリレンジアミンおよびセバシン酸から構成されるポリアミド樹脂(MXD10)、メタキシリレンジアミン、パラキシリレンジアミンおよびセバシン酸から構成されるポリアミド樹脂(MP10)が例示される。
 本発明で用いるポリアミド樹脂は、数平均分子量(Mn)が6,000~30,000であることが好ましく、より好ましくは8,000~28,000であり、さらに好ましくは9,000~26,000であり、一層好ましくは10,000~24,000であり、より一層好ましくは11,000~22,000である。このような範囲であると、耐熱性、弾性率、寸法安定性、成形加工性がより良好となる。
 なお、ここでいう数平均分子量(Mn)とは、ポリアミド樹脂の末端アミノ基濃度[NH2](μ当量/g)と末端カルボキシル基濃度[COOH](μ当量/g)から、次式で算出される。
数平均分子量(Mn)=2,000,000/([COOH]+[NH2])
 本発明で用いるポリアミド樹脂は、分子量分布(重量平均分子量/数平均分子量(Mw/Mn))が、好ましくは1.8~3.1である。分子量分布は、より好ましくは1.9~3.0、さらに好ましくは2.0~2.9である。分子量分布をこのような範囲とすることにより、機械的物性に優れた立体構造物が得られやすい傾向にある。
 ポリアミド樹脂の分子量分布は、例えば、重合時に使用する開始剤や触媒の種類、量および反応温度、圧力、時間等の重合反応条件などを適宜選択することにより調整できる。また、異なる重合条件によって得られた平均分子量の異なる複数種のポリアミド樹脂を混合したり、重合後のポリアミド樹脂を分別沈殿させることにより調整することもできる。
 分子量分布は、GPC測定により求めることができ、具体的には、装置として東ソー社製「HLC-8320GPC」、カラムとして、東ソー社製「TSK gel Super HM-H」2本を使用し、溶離液トリフルオロ酢酸ナトリウム濃度10mmol/Lのヘキサフルオロイソプロパノール(HFIP)、樹脂濃度0.02質量%、カラム温度40℃、流速0.3mL/分、屈折率検出器(RI)の条件で測定し、標準ポリメチルメタクリレート(PMMA)換算の値として求めることができる。また、検量線は6水準のPMMAをHFIPに溶解させて測定し作成する。
 本発明で用いるポリアミド樹脂は、1mmの厚さに成形し、40℃、相対湿度90%の条件下に40時間静置した後の水分透過係数が3.0g・mm/day・m2以下であることが好ましい。上記水分透過係数の下限値は0g・mm/day・m2であることが好ましいが、0.1g・mm/day・m2以上、さらには、1.0g・mm/day・m2以上でも十分に実用レベルである。上記水分透過係数は、実施例に記載の方法で測定した値とする。
 尚、ポリアミド樹脂の吸水率が低くても、水分透過係数が小さいとは言えない。これは、ポリアミド樹脂では、吸水速度と拡散速度が異なるためである。
 本発明で用いる樹脂組成物は、上記ポリアミド樹脂を25質量%以上含むことが好ましく、30質量%以上含むことがより好ましい。上限としては、100質量%未満であり、90質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がさらに好ましい。
 本発明で用いる樹脂組成物は、上記ポリアミド樹脂と後述するフィラーの合計が全体の90質量%以上を占めることが好ましい。
<<他のポリアミド樹脂>>
 本発明で用いる樹脂組成物は、上記以外のポリアミド樹脂を1種類または2種類以上含んでいてもよい。このようなポリアミド樹脂としては、ポリアミド4、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリアミド66/6T、ポリアミド9MT、ポリアミド6I/6T等があげられる。しかしながら、本発明では、これらのポリアミド樹脂は実質的に含まない方が好ましい。実質的に含まないとは、本発明で用いる樹脂組成物において、上記所定の結晶化速度および融点を満たすポリアミド樹脂の含有量の2質量%以下であることをいい、1質量%以下が好ましく、0.1質量%以下がより好ましい。
<<フィラー>>
 本発明で用いる樹脂組成物は、フィラーを含んでいてもよい。フィラーは有機フィラーであっても、無機フィラーであってもよいが、無機フィラーが好ましい。
 無機フィラーは、ガラスフィラー、炭素繊維、シリカ、アルミナおよびレーザーを吸収する材料をコートした無機粉末等のレーザー光を吸収しうるフィラーが例示され、ガラスフィラーが好ましく、ガラス繊維がより好ましい。
 ガラスフィラーは、Aガラス、Cガラス、Eガラス、Sガラスなどのガラス組成からなり、特に、Eガラス(無アルカリガラス)が好ましい。
 本発明で用いるガラス繊維は、単繊維または単繊維を複数本撚り合わせたものであってもよい。
 ガラス繊維の形態は、単繊維や複数本撚り合わせたものを連続的に巻き取った「ガラスロービング」、長さ1~10mmに切りそろえた「チョップドストランド」、長さ10~500μm程度に粉砕した「ミルドファイバー」などのいずれであってもよい。かかるガラス繊維としては、旭ファイバーグラス社より、「グラスロンチョップドストランド」や「グラスロンミルドファイバー」の商品名で市販されており、容易に入手可能である。
 また、本発明ではガラス繊維として、異形断面形状を有するものも好ましい。この異形断面形状とは、繊維の長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が、例えば、1.5~10であり、中でも2.5~10、さらには2.5~8、特に2.5~5であることが好ましい。かかる扁平ガラスについては、特開2011-195820号公報の段落番号0065~0072の記載を参酌でき、この内容は本明細書に組み込まれる。
 本発明で用いるガラス繊維は、特に、重量平均繊維径が1~20μm、カット長が1~10mmのガラス繊維が好ましい。ここで、ガラス繊維の断面が扁平の場合、重量平均繊維径は、同じ面積の円における重量平均繊維径として算出する。
 本発明で用いるガラス繊維は、集束剤で集束されていてもよい。この場合の集束剤としては、酸系集束剤が好ましい。
 本発明におけるガラスフィラーは、ガラスビーズであってもよい。ガラスビーズとは、外径10~100μmの球状のものであり、例えば、ポッターズ・バロティーニ社より、商品名「EGB731」として市販されており、容易に入手可能である。また、ガラスフレークとは、厚さ1~20μm、一辺の長さが0.05~1mmの燐片状のものであり、例えば、日本板硝子社より、「フレカ」の商品名で市販されており、容易に入手可能である。
 本発明で用いる樹脂組成物におけるフィラーの含有量は、樹脂組成物の25質量%以上であることが好ましく、30質量%以上であることがより好ましい。上限値については、70質量%以下が好ましく、65質量%以下がより好ましく、60質量%以下がさらに好ましく、55質量%以下が一層好ましく、50質量%以下がより一層好ましく、45質量%以下がさらに一層好ましい。
 本発明で用いる樹脂組成物は、フィラーを1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となることが好ましい。
<<光透過性色素および光吸収性色素>>
 本発明で用いる樹脂組成物は、一方が光吸収性色素を含むことが好ましい。このような構成とすることにより、レーザー溶着が可能になる。本発明で用いる樹脂組成物の他方は、光透過性色素を含んでいてもよい。光透過性色素を含むことにより、第1の筐体と第2の筐体をより強固にレーザー溶着することができる。
 光吸収性色素としては、照射するレーザー光波長の範囲、例えば、波長800nm~1100nmの範囲に吸収波長を持つものが例示される。具体的には、無機顔料(カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックなど)などの黒色顔料、酸化鉄赤などの赤色顔料、モリブデートオレンジなどの橙色顔料、酸化チタンなどの白色顔料、有機顔料(黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料など)などが挙げられる。なかでも、無機顔料は一般に隠ぺい力が強く好ましく、黒色顔料がさらに好ましい。これらの光吸収性色素は2種類以上組み合わせて使用してもよい。
 光吸収性色素の配合量は、配合する場合、樹脂組成物に含まれる樹脂成分100質量部に対し0.01~1質量部であることが好ましい。
 光透過性色素としては、照射するレーザー光波長の範囲、例えば、波長800nm~1100nmの範囲において透過率の高い色素である。具体的には、ニグロシン、ペリノン、ナフタロシアニン、アニリンブラック、フタロシアニン、ポルフィリン、ペリレン、クオテリレン、アゾ染料、アントラキノン、スクエア酸誘導体、およびインモニウム染料等が挙げられる。
 市販品としては、オリエント化学工業社製の着色剤であるe-BIND LTW-8731H、e-BIND LTW-8701H等が例示される。また、有彩色色素を2種類以上混ぜて黒系色素としたものを用いてもよい。
 光透過性色素の含有量は、配合する場合、樹脂組成物の0.001質量%以上であることが好ましく、0.006質量%以上であることがより好ましく、さらには、0.018質量%以上、0.024質量%以上、0.030質量%以上、0.050質量%以上であってもよい。上限値としては、5.0質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましく、0.2質量%以下、0.1質量%以下、0.06質量%以下であってもよい。光透過性色素は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となることが好ましい。
<<他の樹脂成分>>
 本発明で用いる樹脂組成物は、ポリアミド樹脂以外の他の樹脂成分を1種類または2種類以上含んでいてもよい。他の樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の熱可塑性樹脂を用いることができる。
 本発明で用いる樹脂組成物は、ポリアミド樹脂以外の樹脂成分を実質的に配合しない構成としてもよく、例えば、樹脂組成物に含まれる樹脂成分全量の5質量%以下、さらには、1質量%以下、特には、0.4質量%以下とすることもできる。
<<タルク>>
 本発明で用いる樹脂組成物はタルクを含んでいてもよい。本発明では、タルクを配合することにより、結晶化を促進することができる。
 本発明で用いる樹脂組成物における、タルクの配合量は、樹脂組成物に対し、0.05~20質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.15~5質量%であることがさらに好ましく、0.2~1.0質量%であることが一層好ましい。タルクは、1種類のみを用いてもよいし、2種類以上を併用してもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<離型剤>>
 本発明で用いる樹脂組成物は、離型剤を含んでいてもよい。離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸の塩、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
 脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は炭素数6~36の一価または二価カルボン酸であり、炭素数6~36の脂肪族飽和一価カルボン酸がより好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラトリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。また、脂肪族カルボン酸の塩としては、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩が例示される。
 脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族または脂環式飽和一価アルコールまたは脂肪族飽和多価アルコールがより好ましい。
 かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、トリメチロールプロパン、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
 脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
 数平均分子量200~15,000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ-トロプシュワックス、炭素数3~12のα-オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、脂肪族炭化水素の数平均分子量は好ましくは5,000以下である。
 これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがより好ましい。
 本発明で用いる樹脂組成物が離型剤を含む場合、離型剤の含有量は、樹脂組成物に対し、0.001~2質量%であることが好ましく、0.01~1質量%であることがより好ましい。離型剤は、1種類のみでもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となることが好ましい。離型剤の含有量が前記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
 本発明で用いる樹脂組成物は、上記の他、本発明の趣旨を逸脱しない範囲で他の成分を含んでいてもよい。このような添加剤としては、光安定剤、酸化防止剤、難燃剤、紫外線吸収剤、蛍光増白剤、滴下防止剤、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。これらの成分は、1種類のみを用いてもよいし、2種類以上を併用してもよい。
<透明部材>
 本発明の成形品は、鉛筆硬度8H以上、かつ、線膨張係数が1×10-6~9×10-6/℃である透明部材を含む。このような透明部材は、例えば、カメラ部品のレンズ部を構成する。
 透明部材の鉛筆硬度は、8H~9Hが好ましい。鉛筆硬度は、JIS K 5600に従って測定された値である。
 透明部材の線膨張係数は、5×10-6~9×10-6/℃が好ましい。線膨張係数はJIS K 7197に従って測定された値である。
 透明部材の材質としては、ガラスや樹脂が例示され、ガラスが好ましい。
 本発明における透明部材は、第2の筐体に保持されている。保持されている例としては、透明部材が第2の筐体に直接または間接的に嵌合している状態が挙げられる。間接的に嵌合しているとは、パッキン等の部材を介して嵌合している状態をいう。
 次に、本発明の成形品の製造方法について説明する。
 本発明の成形品の製造方法は、第1の筐体と、第2の筐体を溶着することを含み、前記第2の筐体は、透明部材を保持する第1の筐体と、第2の筐体を熱溶着することを含み、前記第2の筐体は、透明部材を保持しており、前記第1の筐体および第2の筐体は、それぞれ独立にポリアミド樹脂の半結晶化時間が10~60秒であり、かつ、融点が200~280℃であるポリアミド樹脂を含む樹脂組成物から形成され、融点の差が50℃以下であり、前記透明部材が鉛筆硬度8H以上、かつ、線膨張係数が1×10-6~9×10-6/℃であることを含む。半結晶化時間とは、ポリアミド樹脂の融点+20℃、ポリアミド樹脂の溶融時間5分、結晶化浴温度150℃の条件下において脱偏光光度法により測定した時間をいう。
 第1の筐体、第2の筐体、透明部材および樹脂組成物は、それぞれ、上記成形品における記載を参酌でき、好ましい範囲も同様である。
 本発明の製造方法では、第1の筐体と、第2の筐体を熱溶着することを含む。熱溶着の方法は、第1の筐体および第2の筐体の、接合部位を熱により溶融して接合する方法であれば、特に、定めるものではないが、レーザー溶着が好ましい。
 熱溶着の温度は、ポリアミド樹脂の融点を基準に定められ、ポリアミド樹脂の融点+50~300℃に加熱されることが好ましい。ここでのポリアミド樹脂の融点は、第1の筐体および第2の筐体に含まれる、所定の結晶化速度および融点を満たすポリアミド樹脂のうち、最も融点の低いポリアミド樹脂を基準に設定される。
<レーザー溶着方法>
 次に、レーザー溶着方法について説明する。本発明では、第1の筐体と第2の筐体をレーザー溶着させて成形品とすることができる。この場合、第1の筐体と第2の筐体の一方は、透過樹脂部材であり、他方は吸収樹脂部材となる。レーザー溶着することによって透過樹脂部材と吸収樹脂部材を、接着剤を用いずに、強固に溶着することができる。
 第1の筐体と第2の筐体の接合部位の形状は特に制限されないが、部材同士をレーザー溶着により接合して用いるため、通常、少なくとも面接触箇所(平面、曲面)を有する形状である。レーザー溶着では、透過樹脂部材を透過したレーザー光が、吸収樹脂部材に吸収されて、溶融し、両部材が溶着される。本発明では、第1の筐体および第2の筐体がゆっくり接合するため、良好な接合を達成することができる。ここで、レーザー光が透過する部材の厚み(レーザー光が透過する部分におけるレーザー透過方向の厚み)は、用途、樹脂組成物の組成その他を勘案して、適宜定めることができるが、例えば5mm以下であり、好ましくは4mm以下である。
 レーザー溶着に用いるレーザー光源としては、ファイバーレーザー(波長1070nm)やYAG(イットリウム・アルミニウム・ガーネット結晶)レーザー(波長1064nm)や、LD(レーザーダイオード)(波長808、840、940nm)などがある。一般的にはビーム品質(熱源)、パワー安定性、コストなどを総合的に判断し、最適なレーザーを選定する。
 より具体的には、例えば、透過樹脂部材と吸収樹脂部材を溶着する場合、まず、両者の溶着する箇所同士を相互に接触させる。この時、両者の溶着箇所は面接触が望ましく、平面同士、曲面同士、または平面と曲面の組み合わせであってもよい。次いで、透過樹脂部材側からレーザー光を照射(好ましくは溶着面に85~95°の角度から照射)する。この時、必要によりレンズ系を利用して両者の界面にレーザー光を集光させてもよい。その集光ビームは、透過樹脂部材中を透過し、吸収樹脂部材の表面近傍で吸収されて発熱し溶融する。次にその熱は熱伝導によって透過樹脂部材にも伝わって溶融し、両者の界面に溶融プールを形成し、冷却後、両者が接合する。
 このようにして透過樹脂部材と吸収樹脂部材を溶着された成形品は、高い接合強度を有する。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
<ポリアミド樹脂>
(ポリアミド(MXD6)の合成)
 特開2011-140620号公報の段落0038の記載に従って、ポリアミド樹脂を得た。得られたポリアミド樹脂を、「MXD6」という。
(ポリアミド(MP10)の合成)
 攪拌機、分縮器、全縮器、温度計、滴下ロートおよび窒素導入管、ストランドダイを備えた反応容器に、精秤したセバシン酸12,135g(60mol)、次亜リン酸ナトリウム一水和物(NaH2PO2・H2O)3.105g(ポリアミド樹脂中のリン原子濃度として50質量ppm)、酢酸ナトリウム1.61gを入れ、十分に窒素置換した後、さらに少量の窒素気流下で系内を攪拌しながら170℃まで加熱した。酢酸ナトリウム/次亜リン酸ナトリウム一水和物のモル比は、0.67とした。
 これにメタキシリレンジアミンとパラキシリレンジアミンの7:3の混合ジアミン8,172g(60mol)を攪拌下に滴下し、生成する縮合水を系内へ除きながら系内を連続的に昇温した。混合メタキシリレンジアミンの滴下終了後、内温を260℃として40分間溶融重合反応を連続した。
 その後、系内を窒素で加圧し、ストランドダイからポリマーを取り出して、これをペレット化し、約18kgのポリアミド樹脂を得た。得られたポリアミドの融点は215℃、ガラス転移点は、64.4℃、数平均分子量は14,286、相対粘度(96%硫酸中、樹脂濃度1g/100cc、温度25℃で測定)は2.09、末端アミノ基濃度は60.0μ当量/g、末端カルボキシル基濃度は80.0μ当量/gであった。
(ポリアミド(9T)の合成)
 特開2010-286544号公報の段落0052の記載に従い、テレフタル酸と1,9-ノナンジアミンを主成分とする、ポリアミド樹脂を合成した。得られたポリアミド樹脂を、「9T」という。
PA66:ポリアミド66、東レ製、商品名「CM3001-N」
<水分透過係数の測定>
 100mm×100mm×1mm厚のキャビティを持った金型を用いて日精樹脂工業社製、NEX80III-9Eを用いてシリンダ温度280℃、金型表面温度135℃で成形した。次に、図2に示すように、内径67mm、内部の高さ80mmのアルミ製の円筒状のカップ11の内部に25gの塩化カルシウム粒子12を入れた。カップの内部底面から50mmの位置において、上記1mmの厚みのフィルム13を用いて封止し、40℃、相対湿度90%の雰囲気下に40時間静置した。塩化カルシウム粒子の質量を計測し、静置前との差分(増加分)を透過した水分量とし、水分透過係数を算出した。
 水分透過係数の単位は、g・mm/day・m2である。
<半結晶化時間の測定方法>
 半結晶化時間とは、ポリアミド樹脂の融点+20℃、ポリアミド樹脂の溶融時間5分、結晶化浴温度150℃の条件下において脱偏光光度法により測定した。半結晶化時間測定装置は、(株)コタキ製作所製、型式:MK701を用いた。
 具体的には、ポリアミド樹脂を、単軸押出機等を用いて融点+20℃にて溶融しガラス転移温度-5℃のチルロール温度にて100μmの厚さに成形したフィルムを5枚重ねたものをポリアミド樹脂の融点+20℃の熱風環境で3分間溶融した後、150℃のオイルバスにて結晶化させたときの結晶化が1/2進行するまでの時間を、上記脱偏光光度法により測定した。
 半結晶化時間の単位は、秒である。
<融点の測定>
 融点は、DSC(示差走査熱量測定)法により観測される昇温時の吸熱ピークのピークトップの温度として測定した。
 測定には、DSC測定器を用い、試料量は約1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、昇温速度は10℃/分の条件で室温から予想される融点以上の温度まで加熱し溶融させた際に観測される吸熱ピークのピークトップの温度から融点を求めた。
 DSC測定器としては、島津製作所(SHIMADZU CORPORATION)社製、DSC-60を用いた。
 融点の単位は、℃である。
Figure JPOXMLDOC01-appb-T000001
<フィラー>
T756H:ガラス繊維、日本電気ガラス社製、ECS03T-756H(商品名)、重量平均繊維径10.5μm、カット長3~4mm、
<光透過性色素>
8731H:オリエント化学工業社製、e-BIND LTW-8731H(商品名)、ポリアミド66と光透過性色素のマスターバッチ
<光吸収性色素>
カーボンブラック(三菱化学社製、MA600B)
<タルク>
ミクロンホワイト#5000S:林化成社製
<離型剤>
ライトアマイドWH255:共栄社化学社製
実施例1
<光透過性筐体の作製>
<<樹脂組成物の製造>>
 表2に示すポリアミド樹脂とタルクと離型剤と光透過性色素をそれぞれ秤量し、ドライブレンドした後、二軸押出機(東芝機械社製、TEM26SS)のスクリュー根元から2軸スクリュー式カセットウェイングフィーダ(クボタ社製、CE-W-1-MP)を用いて投入した。また、表2に示すガラス繊維については振動式カセットウェイングフィーダ(クボタ社製、CE-V-1B-MP)を用いて押出機のサイドから上述の二軸押出機に投入し、樹脂成分等と溶融混練し、ペレットを得た。押出機の温度設定は280℃とした。
Figure JPOXMLDOC01-appb-T000002
<<光透過性筐体の成形>>
 上記で得られたペレットを射出成形機(住友重機械工業社製、SE50D)でシリンダ温度280℃、金型表面温度110℃で成形した。
<光吸収性筐体の作製>
<<樹脂組成物の製造>>
 表3に示すポリアミド樹脂とタルクと離型剤と光吸収性色素をそれぞれ秤量し、ドライブレンドした後、二軸押出機(東芝機械社製、TEM26SS)のスクリュー根元から2軸スクリュー式カセットウェイングフィーダ(クボタ社製、CE-W-1-MP)を用いて投入した。表3に示す光吸収性色素については、表3に示す分量の範囲内のポリアミド樹脂の一部を用いてマスターバッチ化してから投入した。また、表3に示すガラス繊維については振動式カセットウェイングフィーダ(クボタ社製、CE-V-1B-MP)を用いて押出機のサイドから上述の二軸押出機に投入し、樹脂成分等と溶融混練し、ペレットを得た。押出機の温度設定は、280℃とした。
Figure JPOXMLDOC01-appb-T000003
<<光吸収性筐体の成形>>
 上記で得られたペレットを射出成形機(住友重機械工業社製、SE50D)でシリンダ温度280℃、金型表面温度110℃で成形した。
<レーザー溶着>
 上記で得られた光透過性筐体に透明部材としてガラスレンズを嵌め込み、光吸収性筐体とレーザー溶着した。光透過性筐体と光吸収性筐体を重ね、光透過性筐体側からレーザー照射した。ガラスレンズは、鉛筆硬度が8Hであり、線膨張係数が約8.5×10-6である。レーザー光波長は940nm(半導体レーザー)、溶着スポット径は2.0mm、溶着長さは20mmでレーザーを照射した。レーザー光のスキャン速度は5mm/秒、レーザー出力は13W、クランプ圧力は0.5MPaとした。
 レーザー溶着装置は、スキャンタイプのパーカーコーポレーション社製、PARK  LASER SYSTEMを用いた。
<曇りまたは結露>
 得られた成形品を、40℃、相対湿度90%の環境下に40時間静置した後、曇りおよび結露を目視にて評価した。
A:結露および曇りが認められなかった。
B:結露および曇りの少なくとも一方が認められた。
<外観>
 得られた成形品の光吸収性筐体と光透過性筐体の界面を目視で確認した。
A:界面がきれいであった。
B:上記A以外であった。
実施例2、比較例1および比較例2
 実施例1において、光吸収性筐体と光透過性筐体に用いるポリアミド樹脂をそれぞれ下記表4に示すポリアミド樹脂に変更し、他は同様に行った。
実施例3
<光吸収性筐体の作製>
<<樹脂組成物の製造>>
 表3に示すポリアミド樹脂とタルクと離型剤と光吸収性色素をそれぞれ秤量し、ドライブレンドした後、二軸押出機(東芝機械社製、TEM26SS)のスクリュー根元から2軸スクリュー式カセットウェイングフィーダ(クボタ社製、CE-W-1-MP)を用いて投入した。表3に示す光吸収性色素については、表3に示す分量の範囲内のポリアミド樹脂の一部を用いてマスターバッチ化してから投入した。また、表3に示すガラス繊維については振動式カセットウェイングフィーダ(クボタ社製、CE-V-1B-MP)を用いて押出機のサイドから上述の二軸押出機に投入し、樹脂成分等と溶融混練し、ペレットを得た。押出機の温度設定は、280℃とした。
<<光吸収性筐体の成形>>
 上記で得られたペレットを射出成形機(住友重機械工業社製、SE50D)でシリンダ温度280℃、金型表面温度110℃で成形した。
<光透過性筐体の作製>
<<樹脂組成物の製造>>
 表2に示すポリアミド樹脂とタルクと離型剤と光透過性色素をそれぞれ秤量し、ドライブレンドした後、二軸押出機(東芝機械社製、TEM26SS)のスクリュー根元から2軸スクリュー式カセットウェイングフィーダ(クボタ社製、CE-W-1-MP)を用いて投入した。また、表2に示すガラス繊維については振動式カセットウェイングフィーダ(クボタ社製、CE-V-1B-MP)を用いて押出機のサイドから上述の二軸押出機に投入し、樹脂成分等と溶融混練し、ペレットを得た。押出機の温度設定は、280℃とした。
<<光透過性筐体の成形>>
 上記で得られたペレットを射出成形機(住友重機械工業社製、SE50D)でシリンダ温度280℃、金型表面温度110℃で成形した。
<レーザー溶着>
 上記で得られた光吸収性筐体に透明部材としてガラスレンズを嵌め込み、光透過性筐体とレーザー溶着した。光吸収性筐体と光透過性筐体を重ね、光透過性筐体側からレーザー照射した。ガラスレンズは、鉛筆硬度が8Hであり、線膨張係数が約8.5×10-6である。レーザー光波長は940nm(半導体レーザー)、溶着スポット径は2.0mm、溶着長さは20mmでレーザーを照射した。レーザー光のスキャン速度は5mm/秒、レーザー出力は13W、クランプ圧力は0.5MPaとした。
 レーザー溶着装置は、スキャンタイプのパーカーコーポレーション社製、PARK  LASER SYSTEMを用いた。
 得られた成形品について、実施例1と同様に<曇りまたは結露>および<外観>を評価した。
実施例4
 実施例3において、光吸収性筐体と光透過性筐体に用いるポリアミド樹脂をそれぞれ表4に示すポリアミド樹脂に変更し、他は同様に行った。
Figure JPOXMLDOC01-appb-T000004
 上記結果から明らかなとおり、所定の融点および結晶化速度を満たすポリアミド樹脂を用いた場合(実施例1、2、3、4)、成形品に曇りや結露が認められず、外観も良好であった。一方、融点および半結晶化時間が本発明の範囲外である場合(比較例1、2)、曇りや結露が認められたり、外観が劣る結果となった。
1  レンズ部
2  樹脂製のレンズホルダ
3  コネクタ
4  コネクタを保持する樹脂製のケース
5  カメラ部品
11 カップ
12 塩化カルシウム粒子
13 1mmの厚みのフィルム

Claims (11)

  1. 第1の筐体と、前記第1の筐体と接合している第2の筐体と、前記第2の筐体に保持されている透明部材を有し、前記第1の筐体および第2の筐体は、それぞれ独立に、ポリアミド樹脂の半結晶化時間が10~60秒であり、かつ、融点が200~280℃であるポリアミド樹脂を含む樹脂組成物から形成され、前記透明部材が鉛筆硬度8H以上、かつ、線膨張係数が1×10-6~9×10-6/℃である成形品;但し、半結晶化時間とは、ポリアミド樹脂の融点+20℃、ポリアミド樹脂の溶融時間5分、結晶化浴温度150℃の条件下において脱偏光光度法により測定した時間をいう。
  2. 前記ポリアミド樹脂が、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の70モル%以上が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来する、請求項1に記載の成形品。
  3. 前記第1の筐体に含まれるポリアミド樹脂と、前記第2の筐体に含まれるポリアミド樹脂の融点の差が50℃以下である、請求項1または2に記載の成形品。
  4. 前記第1の筐体および第2の筐体は、それぞれ独立に、フィラーを含む、請求項1~3のいずれか1項に記載の成形品。
  5. 前記第1の筐体および第2の筐体の一方は、光吸収性色素を含み、残りの一方には、光透過性色素を含む請求項1~4のいずれか1項に記載の成形品。
  6. 前記透明部材がガラスから構成される、請求項1~5のいずれか1項に記載の成形品。
  7. カメラ部品である、請求項1~6のいずれか1項に記載の成形品。
  8. 第1の筐体と、第2の筐体を熱溶着することを含み、
    前記第2の筐体は、透明部材を保持しており、
    前記第1の筐体および第2の筐体は、それぞれ独立にポリアミド樹脂の半結晶化時間が10~50秒であり、かつ、融点が200~280℃であるポリアミド樹脂を含む樹脂組成物から形成され、前記透明部材が鉛筆硬度8H以上、かつ、線膨張係数が1×10-6~9×10-6/℃である成形品の製造方法;但し、半結晶化時間とは、ポリアミド樹脂の融点+20℃、ポリアミド樹脂の溶融時間5分、結晶化浴温度150℃の条件下において脱偏光光度法により測定した時間をいう。
  9. 前記熱溶着がレーザー溶着である、請求項8に記載の成形品の製造方法。
  10. 前記第1の筐体および第2の筐体の一方は、光吸収性色素を含み、残りの一方には光透過性色素を含む請求項8または9に記載の成形品の製造方法。
  11. 前記第1の筐体に含まれるポリアミド樹脂と、前記第2の筐体に含まれるポリアミド樹脂の融点の差が50℃以下である、請求項8~10のいずれか1項に記載の成形品の製造方法。
PCT/JP2017/034700 2016-12-27 2017-09-26 成形品および成形品の製造方法 WO2018123171A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217041532A KR102546859B1 (ko) 2016-12-27 2017-09-26 성형품 및 성형품의 제조 방법
EP17889333.5A EP3564723B1 (en) 2016-12-27 2017-09-26 Molded article and method for manufacturing a molded article
KR1020197019438A KR102546858B1 (ko) 2016-12-27 2017-09-26 성형품 및 성형품의 제조 방법
CN201780080756.3A CN110140075B (zh) 2016-12-27 2017-09-26 成型品和成型品的制造方法
CN202110895470.9A CN113608314B (zh) 2016-12-27 2017-09-26 成型品和成型品的制造方法
US16/473,575 US11397372B2 (en) 2016-12-27 2017-09-26 Molded article and method for manufacturing molded article
JP2018558818A JP6998889B2 (ja) 2016-12-27 2017-09-26 成形品および成形品の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016252601 2016-12-27
JP2016-252601 2016-12-27
JP2017-119509 2017-06-19
JP2017119509 2017-06-19

Publications (1)

Publication Number Publication Date
WO2018123171A1 true WO2018123171A1 (ja) 2018-07-05

Family

ID=62710506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034700 WO2018123171A1 (ja) 2016-12-27 2017-09-26 成形品および成形品の製造方法

Country Status (6)

Country Link
US (1) US11397372B2 (ja)
EP (1) EP3564723B1 (ja)
JP (1) JP6998889B2 (ja)
KR (2) KR102546858B1 (ja)
CN (2) CN110140075B (ja)
WO (1) WO2018123171A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070419A (ja) * 2018-10-31 2020-05-07 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、成形品、キットおよび成形品の製造方法
WO2021241382A1 (ja) * 2020-05-25 2021-12-02 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用光透過性樹脂組成物、成形品、キット、および、成形品の製造方法
WO2022118621A1 (ja) * 2020-12-04 2022-06-09 ソニーセミコンダクタソリューションズ株式会社 センサモジュール

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442584B1 (ja) * 1965-12-21 1969-02-03
JPS4854176A (ja) * 1971-11-08 1973-07-30
JP2005002327A (ja) 2003-05-20 2005-01-06 Mitsubishi Gas Chem Co Inc ポリアミドの製造方法
JP2005139369A (ja) * 2003-11-10 2005-06-02 Olympus Corp 光学材料用樹脂組成物およびこれを用いた光学素子
JP2008308526A (ja) 2007-06-12 2008-12-25 Mitsubishi Engineering Plastics Corp レーザー溶着用ポリアミド樹脂組成物、成形品および成形品の製造方法
JP2010281962A (ja) * 2009-06-03 2010-12-16 Tamron Co Ltd 光学装置および撮像装置
JP2010286544A (ja) 2009-06-09 2010-12-24 Kuraray Co Ltd カメラモジュールのバレルまたはホルダ
JP2011057237A (ja) * 2009-09-07 2011-03-24 Mitsubishi Gas Chemical Co Inc シール性及びフレーバー保持性に優れる容器及び多層成形体
JP2011140620A (ja) 2009-12-11 2011-07-21 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂組成物
JP2011195820A (ja) 2010-02-26 2011-10-06 Mitsubishi Engineering Plastics Corp ポリアルキレンテレフタレート系樹脂組成物および成形体
JP2014058604A (ja) * 2012-09-14 2014-04-03 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物、樹脂成形品、及びメッキ層付樹脂成形品の製造方法
JP2014074150A (ja) 2012-10-02 2014-04-24 Ems-Patent Ag ポリアミド成形コンパウンド及び成形品の製造におけるその使用
JP2016218139A (ja) * 2015-05-15 2016-12-22 日立マクセル株式会社 カメラ用レンズユニットおよび車載カメラ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146319B2 (ja) * 1972-09-18 1976-12-08
JPH05117334A (ja) * 1991-10-24 1993-05-14 Tosoh Corp マレイミド系共重合体及びそれからなる光学材料
JP4202728B2 (ja) * 2001-11-19 2008-12-24 三井化学ファブロ株式会社 ポリオレフィン系ストレッチフィルム及びその製造方法
JP2005003772A (ja) * 2003-06-10 2005-01-06 Olympus Corp 光学材料用組成物および光学素子
DE102004051246A1 (de) * 2004-10-20 2006-05-04 Merck Patent Gmbh Laserschweißbare Polymere
JP4786387B2 (ja) * 2006-03-29 2011-10-05 オリンパス株式会社 複合光学素子の製造方法及びその成形用金型
CN101516794A (zh) * 2006-09-14 2009-08-26 旭硝子株式会社 光学玻璃和使用该光学玻璃的透镜
JP4878537B2 (ja) * 2006-10-13 2012-02-15 オリンパス株式会社 光学素子の製造方法、成形型ユニット、成形装置
WO2008056534A1 (fr) * 2006-11-09 2008-05-15 Konica Minolta Opto, Inc. Cône de caméra à objectif
JP5384801B2 (ja) * 2007-04-19 2014-01-08 三菱エンジニアリングプラスチックス株式会社 黒色のレーザー溶着用ポリアミド樹脂組成物およびこれを用いた成形品
CN101301788A (zh) 2008-05-23 2008-11-12 江苏大学 一种基于液晶空间光调制器的激光塑料微焊接方法及装置
WO2010050309A1 (ja) * 2008-10-29 2010-05-06 コニカミノルタオプト株式会社 光学素子の製造方法及び光学素子
US20110215492A1 (en) * 2008-11-19 2011-09-08 Toshiya Tomisaka Manufacturing method of aspheric surface lens
CN102223994A (zh) * 2008-11-27 2011-10-19 柯尼卡美能达精密光学株式会社 光学元件制造方法及成型模具
WO2010095627A1 (ja) * 2009-02-23 2010-08-26 京セラ株式会社 撮像モジュール
WO2012161064A1 (ja) * 2011-05-20 2012-11-29 東洋紡株式会社 光学部材用ポリアミド樹脂組成物
KR101821868B1 (ko) * 2012-11-19 2018-01-24 미쯔이가가꾸가부시끼가이샤 폴리에스테르 수지 조성물과 그 제조 방법, 그것을 포함하는 카메라 모듈
US10619031B2 (en) * 2013-06-21 2020-04-14 Mitsubishi Engineering-Plastics Corporation Crystallizable thermoplastic resin composition and molded article
JP2015209521A (ja) 2014-04-30 2015-11-24 ユニチカ株式会社 車載カメラ用部品
CN104211953A (zh) * 2014-08-05 2014-12-17 金发科技股份有限公司 一种聚酰胺树脂和由其组成的聚酰胺组合物

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442584B1 (ja) * 1965-12-21 1969-02-03
JPS4854176A (ja) * 1971-11-08 1973-07-30
JP2005002327A (ja) 2003-05-20 2005-01-06 Mitsubishi Gas Chem Co Inc ポリアミドの製造方法
JP2005139369A (ja) * 2003-11-10 2005-06-02 Olympus Corp 光学材料用樹脂組成物およびこれを用いた光学素子
JP2008308526A (ja) 2007-06-12 2008-12-25 Mitsubishi Engineering Plastics Corp レーザー溶着用ポリアミド樹脂組成物、成形品および成形品の製造方法
JP2010281962A (ja) * 2009-06-03 2010-12-16 Tamron Co Ltd 光学装置および撮像装置
JP2010286544A (ja) 2009-06-09 2010-12-24 Kuraray Co Ltd カメラモジュールのバレルまたはホルダ
JP2011057237A (ja) * 2009-09-07 2011-03-24 Mitsubishi Gas Chemical Co Inc シール性及びフレーバー保持性に優れる容器及び多層成形体
JP2011140620A (ja) 2009-12-11 2011-07-21 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂組成物
JP2011195820A (ja) 2010-02-26 2011-10-06 Mitsubishi Engineering Plastics Corp ポリアルキレンテレフタレート系樹脂組成物および成形体
JP2014058604A (ja) * 2012-09-14 2014-04-03 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物、樹脂成形品、及びメッキ層付樹脂成形品の製造方法
JP2014074150A (ja) 2012-10-02 2014-04-24 Ems-Patent Ag ポリアミド成形コンパウンド及び成形品の製造におけるその使用
JP2016218139A (ja) * 2015-05-15 2016-12-22 日立マクセル株式会社 カメラ用レンズユニットおよび車載カメラ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070419A (ja) * 2018-10-31 2020-05-07 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、成形品、キットおよび成形品の製造方法
JP7300571B2 (ja) 2018-10-31 2023-06-30 グローバルポリアセタール株式会社 ポリアミド樹脂組成物、成形品、キットおよび成形品の製造方法
WO2021241382A1 (ja) * 2020-05-25 2021-12-02 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用光透過性樹脂組成物、成形品、キット、および、成形品の製造方法
WO2022118621A1 (ja) * 2020-12-04 2022-06-09 ソニーセミコンダクタソリューションズ株式会社 センサモジュール

Also Published As

Publication number Publication date
KR20210156881A (ko) 2021-12-27
CN113608314B (zh) 2023-09-15
JPWO2018123171A1 (ja) 2019-10-31
KR20190099446A (ko) 2019-08-27
EP3564723A1 (en) 2019-11-06
EP3564723B1 (en) 2024-03-27
KR102546859B1 (ko) 2023-06-22
JP6998889B2 (ja) 2022-02-10
EP3564723A4 (en) 2020-09-30
CN110140075A (zh) 2019-08-16
CN113608314A (zh) 2021-11-05
CN110140075B (zh) 2024-03-22
KR102546858B1 (ko) 2023-06-22
US20190331984A1 (en) 2019-10-31
US11397372B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
JP7100447B2 (ja) 高破断点引張ひずみを有する透明ポリアミド成形組成物
JP6803855B2 (ja) ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
JP6691771B2 (ja) ポリアミド樹脂組成物、キット、成形品の製造方法、成形品およびポリアミド樹脂組成物の製造方法
WO2018123171A1 (ja) 成形品および成形品の製造方法
JP6650288B2 (ja) 成形品
JP6872986B2 (ja) 成形品、キットおよび成形品の製造方法
JP6941488B2 (ja) 樹脂組成物、キット、成形品の製造方法および成形品
JP7194789B2 (ja) 成形品および成形品の製造方法
WO2019194099A1 (ja) ポリアミド樹脂組成物および成形品
KR20230016166A (ko) 레이저 용착용 광 투과성 수지 조성물, 성형품, 키트, 및, 성형품의 제조 방법
JP2019006840A (ja) 樹脂組成物、キット、成形品の製造方法および成形品
JP2021123643A (ja) 樹脂組成物、キット、成形品の製造方法および成形品
CN115667415B (zh) 激光熔敷用透光性树脂组合物、组合物组合、成型品、以及成型品的制造方法
JP7310089B2 (ja) 成形品および成形品の製造方法
JP7310088B2 (ja) 成形品および成形品の製造方法
CN115698184A (zh) 激光熔敷用透射性树脂组合物、组合物组合、成型品及成型品的制造方法
CN113717519A (zh) 激光熔敷用透光性树脂组合物、成型品、组合物组合及成型品的制造方法
KR20230058004A (ko) 수지 조성물, 키트, 성형품, 및, 성형품의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197019438

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017889333

Country of ref document: EP

Effective date: 20190729