WO2018123029A1 - 揺動直線運動機構を備えた駆動装置 - Google Patents

揺動直線運動機構を備えた駆動装置 Download PDF

Info

Publication number
WO2018123029A1
WO2018123029A1 PCT/JP2016/089127 JP2016089127W WO2018123029A1 WO 2018123029 A1 WO2018123029 A1 WO 2018123029A1 JP 2016089127 W JP2016089127 W JP 2016089127W WO 2018123029 A1 WO2018123029 A1 WO 2018123029A1
Authority
WO
WIPO (PCT)
Prior art keywords
central axis
drive device
pivot
cylinder
piston
Prior art date
Application number
PCT/JP2016/089127
Other languages
English (en)
French (fr)
Inventor
穣 吉澤
淳 南後
保夫 吉澤
匠 吉澤
慧 吉澤
Original Assignee
Zメカニズム技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zメカニズム技研株式会社 filed Critical Zメカニズム技研株式会社
Priority to PCT/JP2016/089127 priority Critical patent/WO2018123029A1/ja
Priority to JP2018508779A priority patent/JP6376634B1/ja
Priority to EP16925480.2A priority patent/EP3495609B1/en
Publication of WO2018123029A1 publication Critical patent/WO2018123029A1/ja
Priority to US16/297,407 priority patent/US10519853B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/02Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/10Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with more than one main shaft, e.g. coupled to common output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • F01B9/023Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft of Bourke-type or Scotch yoke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/053Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/045Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/22Cranks; Eccentrics
    • F16C3/30Cranks; Eccentrics with arrangements for overcoming dead-centres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/16Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
    • F16H21/18Crank gearings; Eccentric gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/16Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
    • F16H21/18Crank gearings; Eccentric gearings
    • F16H21/22Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/16Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
    • F16H21/18Crank gearings; Eccentric gearings
    • F16H21/36Crank gearings; Eccentric gearings without swinging connecting-rod, e.g. with epicyclic parallel motion, slot-and-crank motion

Definitions

  • Embodiments of the present invention relate to a drive device including an oscillating linear motion mechanism that converts rotation and oscillating motion of a rotating body that rotates based on a double eccentric arc into linear motion.
  • a double eccentric arc swing mechanism is known as a mechanism for converting rotational motion into linear motion.
  • the radius of the eccentric mechanism of the double circle is determined at a specific ratio, so that the eccentric shaft on one side moves linearly.
  • this double eccentric arc swing mechanism when used as a drive mechanism, it becomes an unstable mechanism that does not know which direction the rotating body rotates at the thought point (vertical dead center) of the moving body. This instability does not necessarily generate a linear motion, and a moving body that moves linearly may stop at the top and bottom dead center. A method for solving such instability has not been found.
  • An object of an embodiment of the present invention is to provide a drive device that can stably convert power from rotational motion to linear motion and has high operation efficiency.
  • the drive device includes a housing, a first drive body rotatably supported around the first central axis in the housing, and a second central axis parallel to the first central axis.
  • An eccentric drive body provided in the first drive body and rotatable around the first drive body, and provided at one axial end of the eccentric drive body in an eccentric manner with respect to the second central axis and parallel to the second central axis
  • a first pivot that extends in parallel to the second central axis at the other axial end of the eccentric drive body, and extends parallel to the second central axis;
  • a first movable body that is rotatably connected to the first pivot and moves linearly along a third central axis that is orthogonal to the first central axis as the first pivot moves, and the third central axis
  • a first guide body that guides the movement of the first moving body along the first direction, and the second pivot axis is orthogonal to the first central axis.
  • FIG. 1 is a perspective view showing a driving apparatus according to the first embodiment.
  • FIG. 2 is a perspective view of the drive device shown with a part broken away.
  • FIG. 3 is a cross-sectional view of the driving device.
  • FIG. 4 is an exploded perspective view showing an oscillating linear motion mechanism of the drive device.
  • FIG. 5 is a conceptual diagram showing a plane and constituent points constituting the oscillating linear motion mechanism.
  • FIG. 6 is a diagram schematically showing the positional relationship between the central axis and the inner axis of the outer axis of the oscillating linear motion mechanism.
  • FIG. 7 is a diagram showing movement trajectories of the swing action point, swing support point, and virtual swing force point of the swing linear motion mechanism.
  • FIG. 1 is a perspective view showing a driving apparatus according to the first embodiment.
  • FIG. 2 is a perspective view of the drive device shown with a part broken away.
  • FIG. 3 is a cross-sectional view of the driving device.
  • FIG. 8A is a diagram illustrating a positional relationship between a projection plane, an outer shaft, and an inner shaft of the oscillating linear motion mechanism.
  • FIG. 8B is a diagram showing each virtual point and line segment in the projection plane.
  • FIG. 9 is a perspective view showing a driving apparatus according to the second embodiment.
  • FIG. 10 is a conceptual diagram schematically showing a oscillating linear motion mechanism of the drive device according to the second embodiment.
  • FIG. 11 is an exploded perspective view of the oscillating linear motion mechanism of the drive device according to the second embodiment.
  • FIG. 12 is a cross-sectional view of the drive device according to the second embodiment.
  • FIG. 13 is a perspective view showing a driving apparatus according to the third embodiment.
  • FIG. 14 is an exploded perspective view of the oscillating linear motion mechanism of the drive device according to the third embodiment.
  • FIG. 15 is a cross-sectional view of the drive device according to the third embodiment.
  • FIG. 16 is a cross-sectional view of a drive device according to a fourth embodiment.
  • FIG. 17 is a perspective view showing a driving apparatus according to a fifth embodiment.
  • FIG. 18 is a perspective view showing a part of the drive device according to the fifth embodiment in a cutaway manner.
  • FIG. 19 is a perspective view showing a driving apparatus according to the sixth embodiment.
  • FIG. 20 is a perspective view showing a part of the drive device according to the sixth embodiment in a cutaway manner.
  • FIG. 21 is a perspective view showing a part of the drive device according to the seventh embodiment in a cutaway manner.
  • FIG. 1 is a perspective view of a driving device according to the first embodiment
  • FIG. 2 is a perspective view showing a part of the driving device in a cutaway state
  • FIG. 3 is a sectional view of the driving device
  • FIG. 4 is a driving device. It is a disassembled perspective view of this double eccentric rocking
  • the drive device 10 is configured as, for example, a compressor or a generator. As shown in FIGS.
  • the drive device 10 includes a substantially rectangular tube-shaped housing (crankcase) 12, a first cylinder 14 a and a second cylinder 14 b attached to the housing 12, A double eccentric oscillating linear motion mechanism (hereinafter referred to as oscillating linear motion mechanism) 20 provided in the housing 12 and in the first and second cylinders 14a and 14b, and an outer shaft (first shaft) of the oscillating linear motion mechanism 20 1 drive body) 22 and a motor 50 for rotationally driving.
  • oscillating linear motion mechanism hereinafter referred to as oscillating linear motion mechanism
  • the housing 12 includes a rectangular tube-shaped main body 12a and a plate-shaped end plate 12b that closes one end opening of the main body 12a.
  • the inner surface of the main body 12a is formed in a cylindrical shape.
  • the end plate 12b is formed with a linear guide groove 12c for guiding a linear movement of a swing fulcrum described later.
  • the first and second cylinders 14 a and 14 b are provided at the other end of the housing 12 and are provided on both sides of the central axis C ⁇ b> 1 of the housing 12.
  • the first and second cylinders 14 a and 14 b are arranged coaxially with each other, and further, the center axis C ⁇ b> 3 of the cylinders 14 a and 14 b is arranged so as to be orthogonal to the center axis C ⁇ b> 1 of the housing 12.
  • the cylinder heads 15a and 15b closing the upper end openings of the first and second cylinders 14a and 14b are respectively provided with a discharge port P1, an intake port P2, and a reed valve 17 for opening and closing them.
  • the first and second pistons 28a and 28b may be provided with an intake port or the like.
  • FIG. 4 is an exploded perspective view of the oscillating linear motion mechanism 20.
  • the oscillating linear motion mechanism 20 includes a substantially cylindrical outer shaft (first driving body) 22 and an inner shaft (eccentric driving body) provided eccentrically in the outer shaft 22. 24, a first support pin (first pivot) 26a and a second support pin (second pivot) 26b provided at both axial ends of the inner shaft 24, and a movable body connected to the first support pin 26a.
  • the first piston 28a and the second piston 28b are provided.
  • the outer shaft 22 is disposed coaxially with the main body 12 a in the main body 12 a of the housing 12. Both ends in the axial direction of the outer shaft 22 are supported by the first bearing (for example, ball bearing) B1 so as to be rotatable with respect to the housing 12. That is, the inner ring of each first bearing B ⁇ b> 1 is fitted to the outer circumference of the outer shaft 22, and the outer ring is fitted to the inner circumferential surface of the housing 12. Thereby, the central axis C1 of the outer shaft 22 is positioned coaxially with the central axis of the housing 12, and the outer shaft 22 is supported rotatably around the central axis C1.
  • the first bearing for example, ball bearing
  • an annular driven pulley 41 is fixed to the outer periphery of the outer shaft 22 and is provided coaxially with the outer shaft 22.
  • the driven pulley 41 may be formed integrally with the outer shaft 22, or a separate pulley may be fixed to the outer shaft 22.
  • a circular through hole 30 is formed in the outer shaft 22.
  • the through hole 30 has a central axis parallel to the central axis C ⁇ b> 1 of the outer shaft 22, and extends from one axial end to the other end of the outer shaft 22. Further, the through hole 30 is formed at a position eccentric with respect to the central axis C1 of the outer shaft 22.
  • a notch 32 may be provided on a part of the outer periphery of the outer shaft 22. Here, the notch 32 is provided on the opposite side of the through hole 30 with respect to the central axis C ⁇ b> 1 of the outer shaft 22.
  • the inner shaft 24 is formed in a substantially cylindrical shape, and has an outer diameter slightly smaller than the inner diameter of the through hole 30.
  • the inner shaft 24 is formed with an axial length substantially equal to the outer shaft 22.
  • the inner shaft 24 is inserted into the through hole 30.
  • Both ends in the axial direction of the inner shaft 24 are rotatably supported by the second bearing (for example, ball bearing) B2 with respect to the inner surface of the through hole 30, that is, the outer shaft 22.
  • the inner ring of each second bearing B ⁇ b> 2 is fitted to the outer circumferential surface of the inner shaft 24, and the outer ring is fitted to the inner circumferential surface of the through hole 30.
  • the central axis C2 of the inner shaft 24 is positioned coaxially with the central axis of the through hole 30, and is supported rotatably around the central axis C2.
  • the central axis C2 of the inner shaft 24 is parallel to the central axis C1 of the outer shaft 22 and is eccentric with respect to the central axis C1.
  • One end surface in the axial direction of the inner shaft 24 is substantially flush with one end surface of the outer shaft 22.
  • the other axial end surface of the inner shaft 24 is substantially flush with the other end surface of the outer shaft 22.
  • a columnar first support pin 26 a protrudes from one end surface of the inner shaft 24, and a columnar second support pin 26 b protrudes from the other end surface of the outer shaft 22.
  • the first support pin 26 a and the second support pin 26 b each extend in parallel with the central axis of the inner shaft 24. Further, the first support pin 26 a and the second support pin 26 b are provided at positions eccentric from the central axis of the inner shaft 24.
  • first support pin 26 a and the second support pin 26 b are provided at positions separated from each other by 180 degrees around the central axis of the inner shaft 24.
  • the first support pin 26a functions as a swing action point described later
  • the second support pin 26b functions as a swing support point described later.
  • the first and second support pins 26 a and 26 b may be formed integrally with the inner shaft 24, or separate support pins may be rotatably attached to the inner shaft 24.
  • the inner shaft 24 has a counterweight formed by the inner shaft 24 itself. That is, a part of one end side of the inner shaft 24 is cut into a substantially U shape, and the remaining part constitutes the first counterweight part W1.
  • the first counterweight portion W1 is provided on the opposite side of the first support pin 26a across the central axis C2 of the inner shaft 24.
  • the other end portion of the inner shaft 24 is cut into a substantially U shape, and the remaining portion constitutes the second counterweight portion W2.
  • the second counterweight portion W2 is provided on the opposite side of the second support pin 26b across the central axis C2 of the inner shaft 24.
  • the oscillating linear motion mechanism 20 includes a first piston 28a and a second piston 28b as moving bodies that linearly move.
  • the first piston 28a is disposed in the first cylinder 14a.
  • the first piston 28a is guided by a first cylinder 14a as a guide body so as to be movable up and down along the central axis C3 of the first cylinder 14a.
  • the second piston 28b is disposed in the second cylinder 14b.
  • the second piston 28b is guided by a second cylinder 14b as a guide body so as to be movable up and down along the central axis C3 of the second cylinder 14b.
  • the first piston 28 a and the second piston 28 b are connected to each other via a piston rod 34.
  • the piston rod 34 extends coaxially with the central axis C3 of the first and second cylinders 14a, 14b.
  • the axial center of the piston rod 34 is rotatably connected to the first support pin 16a via a third bearing (for example, a ball bearing, a cam follower, a slider, etc.) B3.
  • a fourth bearing eg, ball bearing, slider, etc.
  • the fourth bearing B4 is engaged with a guide groove 12c formed in the end plate 12b.
  • the second support pin 26b and the fourth bearing B4 are guided by the guide groove 12c of the end plate 12b as a guide body so as to be linearly movable along the axial direction (X-axis direction) of the guide groove 12c. Yes.
  • the extending direction of the central axis C1 of the outer shaft 22 is the Z-axis direction
  • the direction orthogonal to the Z-axis direction is the Y-axis direction
  • the direction orthogonal to the Z-axis direction and the Y-axis direction is the X-axis direction
  • a central axis C2 of the first and second cylinders 14a and 14b extends in the Y-axis direction
  • a central axis of the guide groove 12c extends in the X-axis direction.
  • the motor 50 is provided adjacent to the housing 12.
  • the rotation shaft 51 of the motor 50 extends in parallel with the central axis C1 of the outer shaft 22.
  • a driving pulley 52 is attached to the rotating shaft 51.
  • a drive belt 54 is stretched between the drive pulley 52 and the driven pulley 41 of the outer shaft 22.
  • the motor 50 can rotate the outer shaft 22 around the central axis C ⁇ b> 1 via the driving pulley 52, the driving belt 54, and the driven pulley 41.
  • the transmission of the driving force is not limited to the combination of the pulley and the driving belt, and a plurality of gears may be used.
  • the outer shaft 22 is driven to rotate around the central axis C1 by driving the motor 50.
  • the inner shaft 24 revolves around the central axis C1 together with the outer shaft 22, and rotates around the central axis C2 relative to the outer shaft 22.
  • the rotation directions of the outer shaft 22 and the inner shaft 24 are opposite to each other.
  • the first support pin 26a of the inner shaft 24 linearly moves along the Y-axis direction.
  • the piston rod 34 and the first and second pistons 28a and 28b connected to the first support pin 26a via the third bearing B3 reciprocate in the Y-axis direction in conjunction with the linear motion of the first support pin 26a. .
  • the first piston 28a and the second piston 28b move up and down in the first cylinder 14a and the second cylinder 14b, respectively, to compress and pressurize the gas in the cylinder.
  • the drive device 10 having the above configuration can function as a compressor by exhausting the gas compressed in the first and second cylinders 14a and 14b from the discharge port P1.
  • FIG. 5 is a diagram schematically showing a plane and constituent points of the double eccentric oscillating linear motion mechanism 20, and FIG. 6 shows a central axis C1 and a rotation central axis of the outer shaft (first driving body).
  • FIG. 7 is a diagram schematically showing the positional relationship of the shaft (eccentric drive body), and FIG. 7 is a diagram showing the movement locus of the swing action point, swing support point, and virtual swing force point.
  • a central axis C1 of the outer shaft (first driving body) 22 and a central axis C2 of the inner shaft 24 are orthogonal to the first to third planes S1, S2, and S3.
  • a new mechanism is configured by newly providing a reference plane in a parallel plane and virtually defining an extension axis.
  • the inner shaft 24 rotatably supported by the outer shaft 22 has a central axis C2 that is eccentric with respect to the central axis C1 of the outer shaft 22.
  • the inner shaft 24 is a rotating body having a first support pin 26a as a swing action point and a second support pin 26b as a swing support point on the outer peripheral side.
  • the swing action point 26a and the swing support point 26b are constrained in the Y-axis direction and the X-axis direction, respectively, and linearly move.
  • first support pin (swinging action point) 26a that linearly moves in the Y-axis direction.
  • second support pin (swinging fulcrum) 26b that linearly moves in the X-axis direction.
  • the third plane S3 is a virtual projection plane, and on this third plane S3, a virtual swing action point M1 and a virtual swing support point M2 that project the swing action point 26a and the swing support point 26b, respectively, There is a virtual rocking force point M3 where a straight line connecting the virtual rocking action point M1 and the virtual rocking fulcrum M2 and the central axis C2 of the inner shaft (eccentric drive body) 24 intersect.
  • the virtual rocking force point M3 is considered to be connected to the rotation axis C1 of the outer shaft 22 by a straight line.
  • the Y axis direction is the linear motion locus of the swing action point 26a and the first and second pistons 28a, 28b
  • the X axis direction is the linear motion locus of the swing support point 26b.
  • the movement locus of the small circle centered on the central axis C1 is the movement locus of the virtual swinging force point M3 of the inner shaft 24.
  • the swing lever 26a, the swing fulcrum 26b, and the virtual swing force point M3 are connected to a virtual lever, and are actually included in the inner shaft 24 that is rotatably inserted into the outer shaft 22. Each point is separated in the Y-axis direction and the X-axis direction to perform a swinging motion.
  • the oscillating fulcrum 26b and the virtual oscillating fulcrum shaft Z1 are removed, it will appear to rotate and reciprocate at first glance, but it will become unstable when a thought point problem occurs and it does not move. The direction is not fixed.
  • the oscillating linear motion mechanism 20 configured as described above, when the outer shaft 22 rotates and a force is applied to the virtual oscillating force point, the oscillating fulcrum 26b is restrained from moving in the X-axis direction. Therefore, it overcomes the thought point and swings in the X-axis direction. Therefore, the outer shaft 22 and the inner shaft 24 can be rotated in a certain direction.
  • a virtual swing action point axis Z2 and a virtual swing support point axis Z1 extending from the swing action point 26a and the swing support point 26b, respectively, are inserted to solve the problem of the thought point, and a reliable one-way rotation is transmitted. It is designed to transmit power. At the same time, it is possible to perform mutual conversion between the rotational motion of the outer shaft 22 and the inner shaft 24 and the linear reciprocation of the first and second support pins 26a and 26b without any fluctuation.
  • FIG. 8A is a diagram schematically showing the positional relationship between the outer axis and the inner axis on the projection plane S3, and FIG. 8B is a diagram showing the relationship between each point on the projection plane S3 and a line segment.
  • the origin C1 In order to obtain the displacement when the virtual swing action point M1 and the virtual swing support point M2 that are projected virtual points linearly move in the Y-axis direction and the Y-axis direction on the projection plane S3, the origin C1, The relationship between the virtual swing action point M1, the virtual swing support point M2, and the virtual swing force point M3 is defined as follows.
  • the line segment connecting each point is determined as follows.
  • the displacement YM is determined as follows by the equations (1) and (5).
  • YM 2 ⁇ r ⁇ cos ⁇ (6)
  • the displacement XM of the virtual oscillating fulcrum M2 is expressed as X1 and X2 from the relationship with the virtual oscillating force point M3 as follows.
  • XM X1 + X2 (7)
  • X1 r ⁇ sin ⁇ (8)
  • X2 L2 ⁇ sin ⁇ (9)
  • the displacement XM is determined as follows by the equations (1) and (10).
  • XM 2 ⁇ r ⁇ sin ⁇ (11)
  • these virtual points M1 and M2 exist on virtual axes Z2 and Z1, respectively.
  • the virtual axes Z2 and Z1 exist on the normal line in the Z-axis direction of the swing action point 26a and the swing support point 26b. Therefore, the actual displacement of the swing action point 26a and the swing support point 26b is equal to the displacement YM of the virtual swing action point M1 and the displacement XM of the virtual swing support point M2.
  • the double eccentric oscillating linear motion mechanism 20 guides the oscillating fulcrum 26b and the oscillating fulcrum 26b so as to be linearly movable.
  • the outer shaft 22 and the inner shaft 24 can reliably rotate in one direction, and the first support pin 26a and the second support pin 26b can perform linear motion in the Y-axis direction and the X-axis direction, respectively. .
  • the gas in the first cylinder 14a and the second cylinder 14b is compressed by the first piston 28a and the second piston 28b, and functions as a compressor. be able to. If the upper and lower first pistons 28a and the second pistons 28b have different diameters to form a two-stage compression mechanism, for example, if a motor capable of handling high-pressure compression (for example, near 12 MPa) is used for the motor 50, CO2 A refrigerant refrigerator can be formed.
  • a motor capable of handling high-pressure compression for example, near 12 MPa
  • each cylinder head by providing each cylinder head with a combustion mechanism 60 having a valve mechanism, fuel supply means and ignition means, fuel is supplied and ignited in the first and second cylinders 14a, 14b.
  • the first and second pistons 28a and 28b can be driven in the Y-axis direction.
  • the drive device 10 can be functioned as an engine.
  • the motor 50 can be used as a starter.
  • the inner shaft 24 and the outer shaft 22 are driven to rotate by the first and second pistons 28a and 28b, and the motor 50 is further driven by the outer shaft 22, so that the motor 50 can function as a generator.
  • the vibration of the oscillating linear motion mechanism 20 can be canceled by providing the counterweight portions W1 and W2 on the inner shaft 24.
  • the entire apparatus can be made compact.
  • the position to be balanced is not limited to the embodiment, and can be arbitrarily set according to the capacity of the motor 50, the piston diameter, the mounting method of the counterweight, etc., and is excellent in convenience.
  • the outer shaft 22, the inner shaft 24, and the first and second support pins 26a and 26b of the oscillating linear motion mechanism 20 can be pivotally supported by bearings or the like, respectively, and can be operated with a long life.
  • the driving device 10 has two cylinders.
  • the driving apparatus 10 is not limited to this and may have one cylinder. Even a single cylinder can be balanced, and the drive device can be easily downsized.
  • the support of the second support pin (swinging fulcrum) 26b is not limited to a ball bearing, and a cam follower or a rectangular block-shaped slider may be used. it can.
  • the slider has a through-hole into which the second support pin is rotatably inserted, and is divided into two at a dividing surface across the through-hole, and the second support is provided on the dividing surface. An uneven surface arranged in the axial direction of the pin may be formed.
  • FIG. 9 is a perspective view showing a driving apparatus according to the second embodiment
  • FIG. 10 is a perspective view schematically showing components of the driving apparatus according to the second embodiment
  • FIG. 11 is a second embodiment.
  • FIG. 12 is an exploded perspective view of the oscillating linear motion mechanism of the drive device according to the embodiment
  • FIG. 12 is a cross-sectional view of the drive device according to the second embodiment.
  • the driving device 10 is configured as a one-cylinder compressor with a built-in motor or a generator with a motor.
  • a plurality of magnets 40 are fixed to the outer peripheral surface of the outer shaft 22.
  • the magnets 40 extend in parallel with the central axis C1 of the outer shaft 22 and are arranged at a predetermined interval in the circumferential direction of the outer shaft 22.
  • the magnet 40 may be a cylindrical magnet having a plurality of poles.
  • the main body 12 a of the casing 12, which is a stator, is formed in a cylindrical shape, and is disposed coaxially with the outer shaft 22 outside the outer shaft 22.
  • Both ends in the axial direction of the outer shaft 22 are rotatably supported with respect to the housing 12 by bearings B1.
  • the outer shaft 22 and the magnet 40 constitute a rotor of the motor.
  • An exciting coil 42 is provided on the inner peripheral surface side of the main body 12 a and faces the magnet 40.
  • the main body 12 a and the excitation coil 42 constitute a stator that applies a magnetic field to the magnet 40.
  • the outer shaft 22, the magnet 40, the main body 12a, and the exciting coil 42 constitute a motor.
  • the outer shaft 22 can be rotationally driven by energizing the exciting coil 42 to generate a driving magnetic field.
  • the crankshaft is divided into 26a, 44a, 45a, and 46a for explanation.
  • the inner shaft 24 is disposed in the through hole 30 of the outer shaft 22, and both end portions in the axial direction are rotatably supported with respect to the outer shaft 22 by a pair of bearings B ⁇ b> 2.
  • the inner shaft 24 is formed with a circular through hole 24a.
  • the through hole 24 a is provided coaxially with the central axis C ⁇ b> 2 of the inner shaft 24.
  • a first crank pin 45 a including a first support pin 26 a is provided on one axial end side of the inner shaft 24.
  • the first crank pin 45a integrally includes a fitting pin 44a, a crank plate 46a orthogonal to the fitting pin 44a, and a first support pin 26a protruding from the crank plate 46a.
  • the first support pin 26a is provided in parallel to the fitting pin 44a and eccentric with respect to the fitting pin 44a.
  • the first crank pin 45a is fixed to the inner shaft 24 with the fitting pin 44a fitted in the through hole 24a.
  • the first support pin 26 a extends in the Z-axis direction while being eccentric with respect to the inner shaft 24.
  • a second crank pin 45b including a second support pin 26b is provided on the other axial end side of the inner shaft 24.
  • the second crank pin 45b integrally includes a fitting pin 44b, a crank plate 46b orthogonal to the fitting pin 44b, and a second support pin 26b protruding from the crank plate 46b.
  • the second support pin 26b is provided in parallel to the fitting pin 44b and eccentric with respect to the fitting pin 44b.
  • the second crank pin 45b is fixed to the inner shaft 24 with the fitting pin 44b fitted into the through hole 24a, and the second support pin 26b is eccentric with respect to the inner shaft 24, and is Z-axis. It extends in the direction.
  • a piston rod 34 is connected to the first support pin 26a via a bearing B3.
  • the piston rod 34 is connected to the first piston 28a, and the first piston 28a is guided by the first cylinder 14a so as to reciprocate in the Y-axis direction.
  • the other second support pin 26b is fitted with a bearing B4, and this bearing B4 is guided by a guide groove 12c formed in the end plate 12b of the housing 12 so as to be linearly movable along the X-axis direction.
  • the inner shaft 24 has counterweight portions W1 and W2.
  • the support of 26b is not limited to a ball bearing, and a cam follower or a rectangular block slider may be used. In the following embodiments, the description is omitted as well.
  • the first piston 28a is driven up and down in the Y-axis direction by rotating the outer shaft 22 by a built-in motor, and the first cylinder The gas in 14a is compressed and pressurized.
  • an integrated compressor can be comprised by the drive device 10.
  • the drive device 10 can be functioned as an engine.
  • the inner shaft 24 and the outer shaft 22 are rotationally driven by the first piston 28a, thereby functioning as a generator that generates electric power from the motor.
  • crank plates 46a and 46b of the first crank pin 45a and the second crank pin 45b can function as flywheels, and stable rotation and linear motion can be generated mutually.
  • FIG. 13 is a perspective view showing a drive device according to the third embodiment
  • FIG. 14 is an exploded perspective view of a rocking linear motion mechanism of the drive device according to the third embodiment
  • FIG. 15 is a second embodiment. It is sectional drawing of the drive device which concerns on a form.
  • the counterweight is not formed on the inner shaft 24, but is provided independently at both axial ends of the inner shaft 24. That is, the inner shaft 24 is formed in a cylindrical shape having a coaxial through hole.
  • the crank plate of the first crank pin 45a constitutes a counterweight W1. Further, the crank plate of the second crank pin 45b constitutes a counterweight W2.
  • the counterweight W1 is provided between the bearing B2 and the bearing B3 on one end side of the inner shaft 24. Yes.
  • the counterweight W2 is located between the bearing B2 and the bearing B4 on the other end side of the inner shaft 24. Is provided.
  • the other configuration of the driving device 10 is the same as that of the driving device according to the second embodiment described above.
  • FIG. 16 is a cross-sectional view of the drive device according to the third embodiment.
  • the mounting position of the counterweight is not limited to the above-described embodiment, and can be arbitrarily set depending on the motor capacity, the piston diameter, and the mounting method.
  • the driving device 10 includes one independent counterweight W1.
  • the counter weight W1 is attached to the first support pin 26a and is located outside the bearing B3. That is, the bearing B3 and the piston rod 34 are disposed between the crank plate 46a of the first crank pin 45a and the counterweight W1.
  • the other configuration of the driving device 10 is the same as that of the driving device according to the second embodiment described above.
  • FIG. 17 is a perspective view showing a drive device according to the fifth embodiment
  • FIG. 18 is a perspective view showing a drive device according to the fifth embodiment with a part thereof broken.
  • the drive device 10 is configured as a cross 4-cylinder drive device.
  • the driving device 10 includes a first cylinder 14 a and a second cylinder 14 b attached to the housing 12, a third cylinder 14 c attached to one end of the housing 12, and A fourth cylinder 14d is provided.
  • the first and second cylinders 14 a and 14 b are provided at one end of the housing 12 and are provided on both sides of the central axis C ⁇ b> 1 of the housing 12.
  • the first and second cylinders 14a and 14b are arranged coaxially with each other, and the center axis C3 of the cylinders 14a and 14b is arranged along the Y-axis direction orthogonal to the center axis C1 of the housing 12. Yes.
  • the cylinder heads 15a and 15b closing the upper end openings of the first and second cylinders 14a and 14b are provided with an unillustrated air supply / exhaust mechanism, fuel supply mechanism, ignition means, and the like.
  • the third cylinder 14c and the fourth cylinder 14d are provided at the other end of the casing 12, and are provided on both sides of the central axis C1 of the casing 12.
  • the third and fourth cylinders 14c and 14d are arranged coaxially with each other, and the center axis C4 of the cylinders 14c and 14d is arranged along the X-axis direction orthogonal to the center axis C1 of the housing 12. Yes. That is, the central axis C4 of the cylinders 14c and 14d extends in a direction that is half-turned 90 degrees with respect to the central axis C3 of the first and second cylinders 14a and 14b.
  • the cylinder heads 15c and 15d closing the upper end openings of the third and fourth cylinders 14c and 14d are provided with an unillustrated air supply / exhaust mechanism, fuel supply mechanism, ignition means, and the like.
  • the oscillating linear motion mechanism 20 has a first piston 28a provided in the first cylinder 14a and a second piston 28b provided in the second cylinder 14b.
  • the first piston 28a and the second piston 28b are connected to each other by a piston rod 34 extending in the Y-axis direction.
  • the central portion of the piston rod 34 is rotatably connected to the first support pin 26a of the inner shaft 24 via a bearing B3.
  • the first and second pistons 28a and 28b are guided by the first cylinder 14a and the second cylinder 14b and linearly move in the Y-axis direction.
  • the swing linear motion mechanism 20 has a third piston 28c provided in the third cylinder 14c and a fourth piston 28d provided in the fourth cylinder 14d.
  • the third piston 28c and the fourth piston 28d are connected to each other by a piston rod 34 extending in the X-axis direction.
  • the central portion of the piston rod 34 is rotatably connected to the second support pin 26b of the inner shaft 24 via a bearing B4.
  • the third and fourth pistons 28c and 28d are guided by the third cylinder 14c and the fourth cylinder 14d and linearly move in the X-axis direction.
  • Other configurations of the oscillating linear motion mechanism 20 are the same as those of the oscillating linear motion mechanism 20 in the first embodiment described above.
  • the same operational effects as those of the drive device according to the first embodiment described above can be obtained.
  • the inner shaft 24 and the outer shaft 22 can be rotationally driven via the second support pin 26b.
  • a Stirling engine can be constructed by providing third and fourth pistons that linearly move in the X-axis direction that is 90 degrees away from the Y-axis direction, which is the direction of movement of the first and second pistons 28a, 28b. .
  • FIG. 19 is a perspective view showing a drive device according to the sixth embodiment
  • FIG. 20 is a perspective view showing a drive device according to the sixth embodiment with a part thereof broken.
  • the drive device 10 is configured as a parallel 4-cylinder drive device in a mirror arrangement.
  • the driving device 10 includes a first driving device 10a and a second driving device 10b having the same structure as the driving device according to the first embodiment described above.
  • the first drive device 10a and the second drive device 10b are arranged and configured symmetrically with respect to the center plane SC.
  • the housing 12 has a rectangular main body 12a common to the first drive device 10a and the second drive device 10b, and a common end plate 12b that closes one end opening of the main body 12a.
  • the first drive device 10a has a first cylinder 14a and a second cylinder 14b provided in the housing 12, and the first cylinder 14a and the second cylinder 14b are coaxial with each other and in the Y-axis direction. It is provided along.
  • the second drive device 10b has a third cylinder 14c and a fourth cylinder 14d provided in the housing 12, and the third cylinder 14c and the fourth cylinder 14d are coaxial with each other and Y It is provided along the axial direction. That is, the third cylinder 14c and the fourth cylinder 14d are provided in parallel with the first cylinder 14a and the second cylinder 14b.
  • a ring gear 70 is fixed to the outer periphery of the outer shaft 22 of the first drive device 10 a and is arranged coaxially with the outer shaft 22.
  • a ring gear 70 is fixed to the outer periphery of the outer shaft 22 of the second drive device 10 b and is arranged coaxially with the outer shaft 22.
  • These ring gears 70 are formed with the same diameter and the same number of teeth and mesh with each other.
  • the outer shaft 22 of the first drive device 10a and the outer shaft 22 of the second drive device 10b rotate in directions opposite to each other synchronously.
  • the two ring gears 70 constitute a connection synchronization mechanism that synchronizes the two outer shafts 22 in the opposite directions.
  • the oscillating linear motion mechanism 20 including the first piston 28a and the second piston 28b can rotate and linearly move while maintaining a symmetrical state with the oscillating linear motion mechanism 20 including the third piston 28c and the fourth piston 28d.
  • the drive device 10 having the above-described configuration, it is possible to obtain the same operational effects as those of the first embodiment described above. Further, by driving the first to fourth pistons 28a to 28b, it is possible to take out rotational outputs that are synchronously reversed from the two outer shafts 22. Alternatively, synchronized output can be output from the first to fourth cylinders 24a to 28d by rotating at least one outer shaft 22 by a motor or the like. Furthermore, by providing the first driving device 10a and the second driving device 10b with a mirror arrangement and configuration, basic vibration and operation loss can be eliminated, and a more quiet rotating body can be obtained. In particular, when the cylinder has a U-shaped configuration, high-pressure and low-pressure pistons are installed on the left and right, and gas can be easily moved. Thereby, size reduction of a drive device can be achieved.
  • FIG. 21 is a perspective view illustrating a drive device according to the seventh embodiment with a part broken away.
  • the drive device 10 is configured as a parallel two-cylinder drive device having a mirror arrangement.
  • the drive device 10 is not limited to the above-described four cylinders, and may be two cylinders.
  • the drive device 10 includes a first drive device 10a having a first piston 28a disposed in the first cylinder 14a and the first cylinder 14a, and a second cylinder 14b and a second cylinder 14b.
  • a second driving device 10b having a second piston 28b arranged.
  • the first drive device 10a and the second drive device 10b are arranged and configured symmetrically with respect to the center plane SC.
  • the housing 12 has a rectangular main body 12a common to the first drive device 10a and the second drive device 10b, and a common end plate 12b that closes one end opening of the main body 12a.
  • a ring gear 70 is fixed to the outer periphery of the outer shaft 22 of the first drive device 10 a and is arranged coaxially with the outer shaft 22.
  • a ring gear 70 is fixed to the outer periphery of the outer shaft 22 of the second drive device 10 b and is arranged coaxially with the outer shaft 22.
  • These ring gears 70 are formed with the same diameter and the same number of teeth and mesh with each other.
  • the outer shaft 22 of the first drive device 10a and the outer shaft 22 of the second drive device 10b rotate in directions opposite to each other synchronously.
  • the oscillating linear motion mechanism 20 including the first piston 28a has the second piston.
  • the oscillating linear motion mechanism 20 including 28b can be rotated and linearly moved while maintaining a symmetrical state.
  • the other configuration of the driving device is the same as that of the sixth embodiment described above. In the above-described two-cylinder driving device 10 as well, it is possible to obtain the same effects as those of the first embodiment and the sixth embodiment described above.
  • synchronized output can be output from the first and second cylinders 24a and 28b by rotating at least one outer shaft 22 by a motor or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

実施形態によれば、駆動装置は、筐体12と、筐体内に第1中心軸の周りで回転自在に支持された第1駆動体と、第1中心軸と平行な第2中心軸の周りで回転自在に、第1駆動体内に設けられた偏心駆動体と、偏心駆動体の軸方向一端部に前記第2中心軸に対して偏心して設けられ、第2中心軸と平行に延出した第1枢軸と、偏心駆動体の軸方向他端部に前記第2中心軸に対して偏心して設けられ、第2中心軸と平行に延出した第2枢軸と、第1枢軸に回転自在に連結され、第1中心軸と直交する第3中心軸に沿って直線運動する第1移動体と、第1移動体の移動をガイドする第1ガイド体と、第2枢軸を第1中心軸と直交する第1方向に沿って直線移動可能にガイドする第2ガイド体と、を備えている。

Description

揺動直線運動機構を備えた駆動装置
 この発明の実施形態は、2重偏心円弧に基づいて回転する回転体の回転、揺動運動を直線運動に変換する揺動直線運動機構を備えた駆動装置に関する。
 回転運動を直線運動に動力変換する機構として、2重偏心円弧揺動機構が知られている。2重偏心円弧揺動機構では、2重円の偏心機構を特定の割合で半径を定めることにより、片側の偏心軸が直線運動をする。 
 しかし、この2重偏心円弧揺動機構を駆動機構として使用する場合、移動体の思案点(上下死点)で、回転体がいずれの方向の回転となるかわからない不安定な機構となる。この不安定さは、必ずしも直線運動を生成せず、直線運動する移動体が上下死点で停止してしまう場合がある。このような不安定性を解決する方法が見つかっていない。
特開2002-285972号公報 特開平7-305601号公報 特開平9-119301号公報 特開2001-59475号公報
 この発明の実施形態の課題は、安定して回転運動を直線運動に動力変換することができ、動作効率の高い駆動装置を提供することにある。
 実施形態によれば、駆動装置は、筐体と、前記筐体内に第1中心軸の周りで回転自在に支持された第1駆動体と、前記第1中心軸と平行な第2中心軸の周りで回転自在に、前記第1駆動体内に設けられた偏心駆動体と、前記偏心駆動体の軸方向一端部に前記第2中心軸に対して偏心して設けられ、前記第2中心軸と平行に延出した第1枢軸と、前記偏心駆動体の軸方向他端部に前記第2中心軸に対して偏心して設けられ、前記第2中心軸と平行に延出した第2枢軸と、前記第1枢軸に回転自在に連結され、前記第1枢軸の移動に伴って、前記第1中心軸と直交する第3中心軸に沿って直線運動する第1移動体と、前記第3中心軸に沿った前記第1移動体の移動をガイドする第1ガイド体と、前記第2枢軸を前記第1中心軸と直交する第1方向に沿って直線移動可能にガイドする第2ガイド体と、を備えている。
図1は、第1の実施形態に係る駆動装置を示す斜視図。 図2は、一部を破断して示す前記駆動装置の斜視図。 図3は、前記駆動装置の断面図。 図4は、前記駆動装置の揺動直線運動機構を示す分解斜視図。 図5は、前記揺動直線運動機構を構成する平面と構成点とを示す概念図。 図6は、前記揺動直線運動機構の外軸の中心軸、内軸との位置関係を概略的に示す図。 図7は、前記揺動直線運動機構の揺動作用点、揺動支点、仮想揺動力点の移動軌跡を示す図。 図8Aは、前記揺動直線運動機構の投影平面および外軸、内軸の位置関係を示す図。 図8Bは、前記投影平面における各仮想点と線分とを示す図。 図9は、第2の実施形態に係る駆動装置を示す斜視図。 図10は、第2の実施形態に係る駆動装置の揺動直線運動機構を概略的に示す概念図。 図11は、第2の実施形態に係る駆動装置の揺動直線運動機構の分解斜視図。 図12は、第2の実施形態に係る駆動装置の断面図。 図13は、第3の実施形態に係る駆動装置を示す斜視図。 図14は、第3の実施形態に係る駆動装置の揺動直線運動機構の分解斜視図。 図15は、第3の実施形態に係る駆動装置の断面図。 図16は、第4の実施形態に係る駆動装置の断面図。 図17は、第5の実施形態に係る駆動装置を示す斜視図。 図18は、第5の実施形態に係る駆動装置の一部を破断して示す斜視図。 図19は、第6の実施形態に係る駆動装置を示す斜視図。 図20は、第6の実施形態に係る駆動装置の一部を破断して示す斜視図。 図21は、第7の実施形態に係る駆動装置の一部を破断して示す斜視図。
 以下、図面を参照しながら、実施形態に係る2重偏心揺動直線運動機構を備える種々の駆動装置について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
(第1の実施形態) 
 図1は、第1の実施形態に係る駆動装置の斜視図、図2は、駆動装置の一部を破断して示す斜視図、図3は、駆動装置の断面図、図4は、駆動装置の2重偏心揺動直線運動機構の分解斜視図である。 
 本実施形態において、駆動装置10は、例えば、コンプレッサあるいは発電機として構成されている。図1、図2、図3に示すように、駆動装置10は、ほぼ角筒形状の筐体(クランクケース)12と、筐体12に取付けられた第1シリンダ14aおよび第2シリンダ14bと、筐体12内および第1、第2シリンダ14a、14b内に設けられた2重偏心揺動直線運動機構(以下、揺動直線運動機構)20と、揺動直線運動機構20の外軸(第1駆動体)22を回転駆動するためのモータ50と、を備えている。
 筐体12は、角筒状の本体12aと、本体12aの一端開口を閉塞した板状の端板12bと、を有している。本体12aの内面は、円筒状に形成されている。また、端板12bには、後述する揺動支点の直線運動をガイドする直線状のガイド溝12cが形成されている。第1および第2シリンダ14a、14bは、筐体12の他端部に設けられ、筐体12の中心軸C1の両側に設けられている。第1および第2シリンダ14a、14bは、互いに同軸的に配置されて、更に、シリンダ14a、14bの中心軸C3が、筐体12の中心軸C1と直交するように配置されている。第1および第2シリンダ14a、14bの上端開口を閉塞しているシリンダヘッド15a、15bには、それぞれ吐出口P1、吸気口P2、およびこれらを開閉するリードバルブ17が設けられている。なお、第1および第2ピストン28a、28bに吸気口などを具備することも可能である。
 図4は、揺動直線運動機構20の分解斜視図である。図2ないし図4に示すように、揺動直線運動機構20は、ほぼ円柱形状の外軸(第1駆動体)22と、外軸22内に偏心して設けられた内軸(偏心駆動体)24と、内軸24の軸方向両端に設けられた第1支持ピン(第1枢軸)26aおよび第2支持ピン(第2枢軸)26bと、第1支持ピン26aに連結された移動体としての第1ピストン28aおよび第2ピストン28bと、を備えている。
 外軸22は、筐体12の本体12a内に、この本体12aと同軸的に配置されている。外軸22の軸方向両端部は、それぞれ第1べアリング(例えば、ボールベアリング)B1により、筐体12に対して回転自在に支持されている。すなわち、各第1ベアリングB1の内輪は外軸22の外周に嵌合し、外輪は筐体12の内周面に嵌合している。これにより、外軸22の中心軸C1は、筐体12の中心軸と同軸的に位置し、かつ、外軸22は、中心軸C1の周りで回転自在に支持されている。
 本実施形態において、外軸22の外周に環状の従動プーリ41が固定され、外軸22と同軸的に設けられている。従動プーリ41は、外軸22と一体に形成されていてもよいし、あるいは、別体のプーリを外軸22に固定するようにしてもよい。
 外軸22には、円形の貫通孔30が形成されている。貫通孔30は、外軸22の中心軸C1と平行な中心軸を有し、外軸22の軸方向一端から他端まで延びている。更に、貫通孔30は、外軸22の中心軸C1に対して偏心した位置に形成されている。外軸22の回転バランスを取る目的で、外軸22の外周の一部に、切欠き32を設けてもよい。ここでは、切欠き32は、外軸22の中心軸C1に対して、貫通孔30の反対側に設けている。
 内軸24は、ほぼ円柱形状に形成され、貫通孔30の内径よりも僅かに小さい外径を有している。内軸24は、外軸22とほぼ等しい軸方向長さに形成されている。内軸24は、貫通孔30内に挿通されている。内軸24の軸方向両端部は、それぞれ第2べアリング(例えば、ボールベアリング)B2により、貫通孔30の内面に対して、すなわち、外軸22に対して、回転自在に支持されている。各第2ベアリングB2の内輪は内軸24の外周面に嵌合し、外輪は貫通孔30の内周面に嵌合している。これにより、内軸24の中心軸C2は、貫通孔30の中心軸と同軸的に位置し、かつ、中心軸C2の周りで回転自在に支持されている。内軸24の中心軸C2は、外軸22の中心軸C1と平行で、かつ、中心軸C1に対して偏心している。
 内軸24の軸方向一端面は、外軸22の一端面とほぼ面一に位置し、同様に、内軸24の軸方向他端面は、外軸22の他端面とほぼ面一に位置している。内軸24の一端面に円柱形状の第1支持ピン26aが突設され、外軸22の他端面に円柱形状の第2支持ピン26bが突設されている。第1支持ピン26aおよび第2支持ピン26bは、それぞれ内軸24の中心軸と平行に延出している。また、第1支持ピン26aおよび第2支持ピン26bは、内軸24の中心軸に対して偏心した位置に設けられている。第1支持ピン26aおよび第2支持ピン26bは、例えば、内軸24の中心軸の周りで、180度互いに離間した位置に設けられている。第1支持ピン26aは後述する揺動作用点として機能し、第2支持ピン26bは、後述する揺動支点として機能する。なお、第1および第2支持ピン26a、26bは、内軸24と一体に形成されていてもよく、あるいは、別体の支持ピンを内軸24に回転自在に取り付けるようにしてもよい。
 本実施形態において、内軸24は、この内軸24自体により形成されたカウンタウェイトを有している。すなわち、内軸24の一端側の一部がほぼU字形に切りかかれ、残りの部分により第1カウンタウェイト部W1を構成している。第1カウンタウェイト部W1は、内軸24の中心軸C2を挟んで、第1支持ピン26aと反対側に設けられている。内軸24の他端側部分がほぼU字形に切りかかれ、残りの部分により第2カウンタウェイト部W2を構成している。第2カウンタウェイト部W2は、内軸24の中心軸C2を挟んで、第2支持ピン26bと反対側に設けられている。
 揺動直線運動機構20は、直線運動する移動体として、第1ピストン28aおよび第2ピストン28bを備えている。第1ピストン28aは、第1シリンダ14a内に配置されている。第1ピストン28aはガイド体としての第1シリンダ14aにより、第1シリンダ14aの中心軸C3に沿って昇降自在にガイドされている。第2ピストン28bは、第2シリンダ14b内に配置されている。第2ピストン28bはガイド体としての第2シリンダ14bにより、第2シリンダ14bの中心軸C3に沿って昇降自在にガイドされている。第1ピストン28aおよび第2ピストン28bは、ピストンロッド34を介して互いに連結されている。ピストンロッド34は、第1および第2シリンダ14a、14bの中心軸C3と同軸的に延在している。
 ピストンロッド34の軸方向中央部は、第3ベアリング(例えば、ボールベアリング、カムフォロア、スライダ等)B3を介して、第1支持ピン16aに回転自在に連結されている。一方、内軸24の第2支持ピン26bに、第4ベアリング(例えば、ボールベアリング、スライダ等)B4が嵌合されている。この第4ベアリングB4は、端板12bに形成されたガイド溝12cに係合している。これにより、第2支持ピン26bおよび第4ベアリングB4は、ガイド体としての端板12bのガイド溝12cにより、このガイド溝12cの軸方向(X軸方向)に沿って直線運動自在にガイドされている。なお、外軸22の中心軸C1の延出方向をZ軸方向、このZ軸方向と直交する方向をY軸方向、Z軸方向およびY軸方向と直交する方向をX軸方向としている。第1および第2シリンダ14a、14bの中心軸C2は、Y軸方向に延在し、ガイド溝12cの中心軸はX軸方向に延在している。
 図2および図3に示すように、モータ50は筐体12に隣接して設けられている。モータ50の回転軸51は、外軸22の中心軸C1と平行に延びている。この回転軸51に駆動プーリ52が取り付けられている。駆動プーリ52と外軸22の従動プーリ41とに駆動ベルト54が掛け渡されている。モータ50により、駆動プーリ52、駆動ベルト54、従動プーリ41を介して、外軸22を中心軸C1の回りで回転させることできる。なお、駆動力の伝達は、プーリと駆動ベルトとの組合せに限らず、複数の歯車を用いてもよい。
 上記のように構成された駆動装置10によれば、モータ50を駆動することにより、外軸22を中心軸C1の回りで回転駆動する。内軸24は、外軸22と共に中心軸C1の回りで公転するとともに、外軸22に対して、中心軸C2の回りで、自転する。この場合、外軸22と内軸24の回転方向は互いに逆方向となる。これにより、内軸24の第1支持ピン26aは、Y軸方向に沿って直線運動する。第3ベアリングB3を介して第1支持ピン26aに連結されたピストンロッド34および第1、第2ピストン28a、28bは、第1支持ピン26aの直線運動に連動してY軸方向に往復動する。第1ピストン28aおよび第2ピストン28bは、それぞれ第1シリンダ14aおよび第2シリンダ14b内を昇降することにより、シリンダ内の気体を圧縮、加圧する。
 一方、内軸24の第2支持ピン26bは、第4ベアリングB4を介して、端板12bのガイド溝12cにガイドされ、X軸方向に沿って直線的に往復動する。上記構成の駆動装置10は、第1および第2シリンダ14a、14b内で圧縮された気体を、吐出口P1から排気することにより、コンプレッサとして機能することができる。
 次に、駆動装置10の動作原理について説明する。 
 図5は、二重偏心揺動直線運動機構20を構成する平面と構成点とを模式的に示す図、図6は、外軸(第1駆動体)の中心軸C1と回転中心軸、内軸(偏心駆動体)の位置関係を概略的に示す図、図7は、揺動作用点、揺動支点、仮想揺動力点の移動軌跡を示す図である。
 図5では、互いに平行である第1平面(Y軸拘束平面)S1および第2平面(X軸拘束平面)S2、並びに、第1および第2平面間にこれらと平行に位置する仮想の第3平面S3を想定して説明する。外軸(第1駆動体)22の中心軸C1および内軸24の中心軸C2は、第1ないし第3平面S1、S2、S3と直交している。この概念図に示す通り平行平面の中に基準平面を新たに設け伸展軸を仮想的に定めることにより新機構を構成している。
 図5および図6に示すように、外軸22に回転自在に支持された内軸24は、外軸22の中心軸C1に対して偏心した中心軸C2を有している。また、内軸24は、外周側に揺動作用点としての第1支持ピン26aおよび揺動支点としての第2支持ピン26bを有する回転体である。揺動作用点26a、揺動支点26bは、それぞれY軸方向、X軸方向に拘束され直線運動する。
 第1平面(Y軸拘束平面)S1上には、Y軸方向に直線運動する第1支持ピン(揺動作用点)26aが存在している。第2平面(X軸拘束平面)S2上には、X軸方向に直動運動する第2支持ピン(揺動支点)26bが存在している。第3平面S3は、仮想の投影平面であり、この第3平面S3には、揺動作用点26aおよび揺動支点26bをそれぞれ投影した仮想揺動作用点M1および仮想揺動支点M2、並びに、これら仮想揺動作用点M1および仮想揺動支点M2を結ぶ直線と内軸(偏心駆動体)24の中心軸C2とが交差する仮想揺動力点M3が存在している。仮想揺動力点M3は、外軸22の回転軸C1と直線によって結ばれているものと見なす。
 図5ないし図7に示すように、外軸22の回転により、外軸22の中心軸C1から仮想揺動力点M3に力が与えられると、仮想揺動力点M3は中心軸C1の周りで回転する。これにより、仮想揺動支点M2から揺動支点軸(仮想軸)Z1を通して揺動支点26bに力が伝達され、揺動支点26bをX軸方向に移動させる。また、仮想揺動作用点M1から揺動作用点軸(仮想軸)Z2を通して揺動作用点26aに力が伝達される。これにより、揺動作用点26aはY軸方向に上下運動し、揺動作用点26aに軸支されているピストンロッド34および第1、第2ピストン28a、28bの移動体を上下動させる。
 図7において、Y軸方向が揺動作用点26aおよび第1、第2ピストン28a、28bの直線運動軌跡であり、X軸方向が揺動支点26bの直線運動軌跡である。中心軸C1を中心とする小円の移動軌跡は、内軸24の仮想揺動力点M3の移動軌跡である。これらの揺動作用点26a、揺動支点26b、仮想揺動力点M3を繋ぐのが仮想のてこであり、実際は、外軸22に回転自在に挿通された内軸24に内包されている。それぞれの点がY軸方向、X軸方向に分離され、揺動運動を行っている。 
 仮に、揺動支点26bおよび仮想揺動支点軸Z1を取り除いた場合、一見、回転運動と往復運動をするように見えるが、思案点問題が発生し動いたり動かなかったりと不安定になり、回転方向も定まらない。これに対して、上記構成の揺動直線運動機構20によれば、外軸22が回転して仮想揺動力点に力が与えられると、揺動支点26bはX軸方向に移動が拘束されているため、思案点を乗り越えX軸方向に揺動する。そのため、一定の方向に外軸22および内軸24を回転せしめることが可能になる。揺動作用点26a、揺動支点26bをそれぞれ延伸した仮想揺動作用点軸Z2、仮想揺動支点軸Z1を挿入して思案点の問題を解決し、確実な一方向回転を伝達し、大きな力を伝達できるようにしたものである。同時に、外軸22、内軸24の回転運動と第1、第2支持ピン26a、26bの直線往復運動とのぶれの無い相互変換を可能としたものである。
 図8Aは、投影平面S3における外軸および内軸の位置関係を概略的に示す図、図8Bは、投影平面S3上の各点と線分との関係を示す図である。 
 投影平面S3上には投影された仮想点である仮想揺動作用点M1および仮想揺動支点M2が、Y軸方向とY軸方向とにそれぞれ直線運動する際の変位を求めるため、原点C1、仮想揺動作用点M1、仮想揺動支点M2、仮想揺動力点M3の関係を以下のよう定義する。各点を結ぶ線分を以下のように定める。 
 線分C1M3=r、線分C1M1=YM、線分C1M2=XM、線分M1M3=L1、 
 線分M3M2=L2 
 この時、L1、L2、rの間には、以下の関係がある。 
 L1=L2=r   …(1)
 これらの条件において、仮想揺動作用点M1および仮想揺動支点M2の変位を求めると以下のように表される。 
 仮想揺動作用点M1の変位YMは、仮想揺動力点M3との関係より、Y1とY2で表すと以下のようになる。 
 YM=Y1+Y2  …(2) 
 Y1=r・cosθ …(3) 
 Y2=L1・cosθ …(4) 
 式(2)~(4)より、仮想揺動作用点M1の変位YMは、 
 YM=r・cosθ + L1・cosθ  …(5) 
 となる。
 また、r=L1であるため、変位YMは式(1)、(5)によって以下のように定められる。 YM=2・r・cosθ  …(6) 
 同様に、仮想揺動支点M2の変位XMは、仮想揺動力点M3との関係より、X1およびX2で表すと以下のようになる。 
 XM=X1+X2  …(7) 
 X1=r・sinθ …(8) 
 X2=L2・sinθ …(9) 
 式(7)~(9)より、仮想揺動支点M2の変位YMは、 
 XM=r・sinθ + L2・sinθ  …(10) 
 となる。 
 また、r=L2であるため、変位XMは式(1)、(10)によって以下のように定められる。 XM=2・r・sinθ  …(11) 
 図6に示したように、これらの仮想点M1、M2は、それぞれ仮想軸Z2、Z1上に存在している。この仮想軸Z2、Z1は、揺動作用点26aと揺動支点26bのZ軸方向の法線上に存在している。そのため、実際の揺動作用点26aと揺動支点26bの変位は、仮想揺動作用点M1の変位YMと仮想揺動支点M2の変位XMと等しい。
 上記のように構成された第1の実施形態に係る駆動装置10によれば、2重偏心揺動直線運動機構20に揺動支点26bおよびこの揺動支点26bを直線移動可能にガイドするガイド体を付することにより、思案点を乗り越え駆動体の確実な一方向の回転運動、および揺動作用点26aの確実な直線運動を生成することができる。すなわち、外軸22および内軸24は、確実に一方向に回転運動を行い、第1支持ピン26aおよび第2支持ピン26bは、それぞれY軸方向およびX軸方向に直線運動を行うことができる。
 本実施形態のように、モータ50で外軸22を回転駆動することにより、第1ピストン28aおよび第2ピストン28bで第1シリンダ14aおよび第2シリンダ14b内の気体を圧縮し、コンプレッサとして機能することができる。上下の第1ピストン28a、第2ピストン28bを異径として、2段圧縮機構とすると、例えば、冷媒を高圧での圧縮(例えば12MPaの近傍)に対応できるモータをモータ50に使用すれば、CO2冷媒冷凍機を形成できる。
 あるいは、図3に示すように、各シリンダヘッドに、バルブ機構、燃料供給手段および点火手段を有する燃焼機構60を設けることにより、第1および第2シリンダ14a、14b内に燃料を供給および点火し、第1および第2ピストン28a、28bをY軸方向に駆動することができる。これにより、駆動装置10をエンジンとして機能させることができる。この場合、モータ50をスターターとして利用することができる。あるいは、第1および第2ピストン28a、28bにより内軸24および外軸22を回転駆動し、更に、外軸22によりモータ50を駆動することにより、モータ50を発電機として機能させることができる。
 本実施形態によれば、内軸24にカウンタウェイト部W1、W2を設けることにより、揺動直線運動機構20の振動を打ち消すことができる。また、内軸24自体でカウンタウェイトを構成することにより、装置全体のコンパクト化を図ることができる。バランスを取る位置は、実施形態に限らず、モータ50の容量や、ピストン径、カウンタウェイトの取付け方法等に応じて、任意に設定可能であり、利便性に優れている。揺動直線運動機構20の外軸22、内軸24、第1および第2支持ピン26a、26bは、それぞれベアリング等で軸支でき、長寿命の運転が可能となる。
 なお、第1の実施形態において、駆動装置10は2気筒としているが、これに限らず、1気筒としてもよい。1気筒でもバランスを取ることができ、駆動装置の小型化も容易となる。第2支持ピン(揺動支点)26bの支持は、ボールベアリングに限らず、カムフォロアあるいは矩形ブロック状のスライダを用いてもよく、揺動支点による思案点乗り越えが可能な形状を任意にとることができる。矩形ブロック状のスライダを用いる場合、スライダは、第2支持ピンが回転自在に挿入される貫通孔を有し、かつ、貫通孔を横切る分割面で2つに分割され、分割面に第2支持ピンの軸方向に並んだ凹凸面を形成してもよい。
 次に、他の実施形態あるいは変形例に係る駆動装置について説明する。以下に説明する変形例および他の実施形態において、前述した第1の実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略あるいは簡略化し、第1の実施形態と異なる部分を中心に詳しく説明する。
(第2の実施形態) 
 図9は、第2の実施形態に係る駆動装置を示す斜視図、図10は、第2の実施形態に係る駆動装置の構成要素を模式的に示す斜視図、図11は、第2の実施形態に係る駆動装置の揺動直線運動機構の分解斜視図、図12は、第2の実施形態に係る駆動装置の断面図である。
 本実施形態によれば、駆動装置10は、モータを内蔵した1気筒のコンプレッサあるいは発動機付き発電機として構成されている。図9ないし図12に示すように、外軸22の外周面に、複数の磁石40が固定されている。磁石40は、それぞれ外軸22の中心軸C1と平行に延在しているとともに、外軸22の円周方向に所定の間隔を置いて並んでいる。この磁石40は複数の極を持たせた円筒形磁石を用いることもできる。ステータである筐体12の本体12aは、円筒形状に形成され、外軸22の外側に外軸22と同軸的に配置されている。外軸22の軸方向両端部は、ベアリングB1により、筐体12に対して回転自在に支持されている。これにより、外軸22および磁石40は、モータのローターを構成している。本体12aの内周面側に励磁コイル42が設けられ、磁石40と対向している。本体12aおよび励磁コイル42は、磁石40に磁界を印加するステータを構成している。
 このように、外軸22、磁石40、本体12a、および励磁コイル42は、モータを構成している。励磁コイル42に通電して駆動磁界を発生することにより、外軸22を回転駆動することができる。
 クランク軸は、説明のため26a、44a、45a、46aに分割して説明する。内軸24は、外軸22の貫通孔30内に配置され、一対のベアリングB2により、軸方向両端部が外軸22に対して回転自在に支持されている。本実施形態によれば、内軸24には円形の貫通孔24aが形成されている。貫通孔24aは、内軸24の中心軸C2と同軸的に設けられている。内軸24の軸方向一端側に第1支持ピン26aを含む第1クランクピン45aが設けられている。第1クランクピン45aは、嵌合ピン44aと、嵌合ピン44aと直交するクランク板46aと、クランク板46aから突出した第1支持ピン26aとを一体に有している。第1支持ピン26aは、嵌合ピン44aと平行に、かつ、嵌合ピン44aに対し偏心して設けられている。そして、第1クランクピン45aは、嵌合ピン44aを貫通孔24aに嵌合した状態で内軸24に固定されている。第1支持ピン26aは、内軸24に対して偏心した状態で、Z軸方向に延出している。
 内軸24の軸方向他端側に第2支持ピン26bを含む第2クランクピン45bが設けられている。第2クランクピン45bは、嵌合ピン44bと、嵌合ピン44bに直交するクランク板46bと、クランク板46bから突出した第2支持ピン26bとを一体に有している。第2支持ピン26bは、嵌合ピン44bと平行に、かつ、嵌合ピン44bに対し偏心して設けられている。そして、第2クランクピン45bは、嵌合ピン44bを貫通孔24aに嵌合した状態で内軸24に固定され、第2支持ピン26bは、内軸24に対して偏心した状態で、Z軸方向に延出している。
 第1支持ピン26aには、ベアリングB3を介して、ピストンロッド34が連結されている。ピストンロッド34は第1ピストン28aに連結され、更に、第1ピストン28aは、第1シリンダ14aによりY軸方向に往復移動可能にガイドされている。他方の第2支持ピン26bにはベアリングB4が嵌合され、このベアリングB4は、筐体12の端板12bに形成されたガイド溝12cにより、X軸方向に沿って直線運動可能にガイドされている。なお、本実施形態において、内軸24は、カウンタウェイト部W1、W2を有している。また、先述の第一の実施形態のごとく26bの支持はボールベアリングに限らずカムフォロアあるいは矩形ブロックのスライダなどを用いてもよい。これ以降実施形態でも同様として記述を省略する。
 以上のように構成された第2の実施形態に係る駆動装置10によれば、内臓のモータにより外軸22を回転させることにより、第1ピストン28aをY軸方向に昇降駆動し、第1シリンダ14a内の気体を圧縮、加圧する。これにより、駆動装置10により一体型のコンプレッサを構成することができる。また、シリンダヘッドに、バルブ機構、燃料供給手段および点火手段を有する燃焼機構を設けることにより、第1シリンダ14a内に燃料を供給および点火し、第1ピストン28aをY軸方向に駆動することができる。これにより、駆動装置10をエンジンとして機能させることができる。あるいは、第1ピストン28aにより内軸24および外軸22を回転駆動することにより、モータから発電する発電機として機能させることができる。
 本実施形態によれば、モータを内蔵することにより、装置全体の小型化を図ることができ、更に、消費電力の低減を図ることが可能となる。また、第1クランクピン45aおよび第2クランクピン45bのクランク板46a、46bをフライホイールとして機能させることができ、安定した回転と直線運動を相互に生成すことができる。
(第3の実施形態) 
 図13は、第3の実施形態に係る駆動装置を示す斜視図、図14は、第3の実施形態に係る駆動装置の揺動直線運動機構の分解斜視図、図15は、第2の実施形態に係る駆動装置の断面図である。 
 図13ないし図15に示すように、本実施形態によれば、カウンタウェイトは、内軸24に形成するのではなく、内軸24の軸方向両端側に独立して設けられている。すなわち、内軸24は、同軸の貫通孔を有する円筒形状に形成されている。第1クランクピン45aのクランク板は、カウンタウェイトW1を構成している。また、第2クランクピン45bのクランク板は、カウンタウェイトW2を構成している。第1クランクピン45aの嵌合ピン44aを内軸24の貫通孔24aに嵌合することにより、カウンタウェイトW1は、内軸24の一端側で、ベアリングB2とベアリングB3との間に設けられている。同様に、第2クランクピン45bの嵌合ピン44bを内軸24の貫通孔24aに嵌合することにより、カウンタウェイトW2は、内軸24の他端側で、ベアリングB2とベアリングB4との間に設けられている。 
 第3の実施形態において、駆動装置10の他の構成は、前述した第2の実施形態に係る駆動装置と同一である。
(第4の実施形態) 
 図16は、第3の実施形態に係る駆動装置の断面図である。 
 カウンタウェイトの取付け位置は、前述した実施形態に限らず、モータ容量や、ピストン径と、取り付け方法により、任意に設定可能である。図16に示すように、第3の実施形態によれば、駆動装置10は、独立した1つのカウンタウェイトW1を備えている。このカウンタウェイトW1は、第1支持ピン26aに取付けられ、ベアリングB3の外側に位置している。すなわち、第1クランクピン45aのクランク板46aとカウンタウェイトW1との間に、ベアリングB3およびピストンロッド34が配置されている。 
 上記構成によれば、ピストン側の1箇所にカウンタウェイトW1を配置するだけで良く、組み立てた後にバランスを取る必要がある場合などに有効である。第3の実施形態において、駆動装置10の他の構成は、前述した第2の実施形態に係る駆動装置と同一である。
(第5の実施形態) 
 図17は、第5の実施形態に係る駆動装置を示す斜視図、図18は、第5の実施形態に係る駆動装置を一部破断して示す斜視図である。 
 本実施形態によれば、駆動装置10は、十字4気筒の駆動装置として構成されている。図17および図18に示すように、駆動装置10は、筐体12に取付けられた第1シリンダ14a、第2シリンダ14bに加えて、筐体12の一端部に取付けられた第3シリンダ14cおよび第4シリンダ14dを備えている。第1および第2シリンダ14a、14bは、筐体12の一端部に設けられ、筐体12の中心軸C1の両側に設けられている。第1および第2シリンダ14a、14bは、互いに同軸的に配置されて、更に、シリンダ14a、14bの中心軸C3が、筐体12の中心軸C1と直交するY軸方向に沿って配置されている。第1および第2シリンダ14a、14bの上端開口を閉塞しているシリンダヘッド15a、15bには、図示しない給気排気機構、燃料供給機構、点火手段等が設けられている。
 第3シリンダ14cおよび第4シリンダ14dは、筐体12の他端部に設けられ、筐体12の中心軸C1の両側に設けられている。第3および第4シリンダ14c、14dは、互いに同軸的に配置されて、更に、シリンダ14c、14dの中心軸C4が、筐体12の中心軸C1と直交するX軸方向に沿って配置されている。すなわち、シリンダ14c、14dの中心軸C4は、第1および第2シリンダ14a、14bの中心軸C3に対して90度半転した方向に延びている。第3および第4シリンダ14c、14dの上端開口を閉塞しているシリンダヘッド15c、15dには、図示しない給気排気機構、燃料供給機構、点火手段等が設けられている。
 揺動直線運動機構20は、第1シリンダ14a内に設けられた第1ピストン28a、および第2シリンダ14b内に設けられた第2ピストン28bを有している。第1ピストン28aおよび第2ピストン28bは、Y軸方向に延びるピストンロッド34により互いに連結されている。ピストンロッド34の中央部は、ベアリングB3を介して、内軸24の第1支持ピン26aに回転自在に連結されている。第1および第2ピストン28a、28bは、外軸22および内軸24の回転に伴い、第1シリンダ14aおよび第2シリンダ14bにガイドされてY軸方向に直線運動する。
 揺動直線運動機構20は、第3シリンダ14c内に設けられた第3ピストン28c、および第4シリンダ14d内に設けられた第4ピストン28dを有している。第3ピストン28cおよび第4ピストン28dは、X軸方向に延びるピストンロッド34により互いに連結されている。ピストンロッド34の中央部は、ベアリングB4を介して、内軸24の第2支持ピン26bに回転自在に連結されている。第3および第4ピストン28c、28dは、外軸22および内軸24の回転に伴い、第3シリンダ14cおよび第4シリンダ14dにガイドされてX軸方向に直線運動する。 
 揺動直線運動機構20の他の構成は、前述した第1の実施形態における揺動直線運動機構20と同一である。
 以上のように構成された駆動装置10によれば、前述した第1の実施形態に係る駆動装置と同様の作用効果を得ることができる。また、X軸方向に直線運動する第3および第4ピストン28c、28dを設けることにより、第2支持ピン26bを介して内軸24および外軸22を回転駆動することが可能となる。同時に、第1および第2ピストン28a、28bの運動方向であるY軸方向と90度ずれたX軸方向に直線運動する第3および第4ピストンを設けることにより、スターリングエンジンを構築することができる。
(第6の実施形態) 
 図19は、第6の実施形態に係る駆動装置を示す斜視図、図20は、第6の実施形態に係る駆動装置を一部破断して示す斜視図である。 
 本実施形態によれば、駆動装置10は、ミラー配置の並列4気筒の駆動装置として構成されている。図19および図20に示すように、駆動装置10は、それぞれ前述した第1の実施形態に係る駆動装置と同一構造を有する第1駆動装置10aおよび第2駆動装置10bを備えている。第1駆動装置10aおよび第2駆動装置10bは、中心平面SCに対して、互いに対称に配置、構成されている。筐体12は、第1駆動装置10aおよび第2駆動装置10bに共通の矩形状の本体12aと、本体12aの一端開口を閉塞した共通の端板12bと、を有している。
 第1駆動装置10aは、筐体12に設けられた第1シリンダ14aおよび第2シリンダ14bを有し、これら第1シリンダ14aおよび第2シリンダ14bは、互いに同軸的に、かつ、Y軸方向に沿って設けられている。 
 同様に、第2駆動装置10bは、筐体12に設けられた第3シリンダ14cおよび第4シリンダ14dを有し、これら第3シリンダ14cおよび第4シリンダ14dは、互いに同軸的に、かつ、Y軸方向に沿って設けられている。すなわち、第3シリンダ14cおよび第4シリンダ14dは、第1シリンダ14aおよび第2シリンダ14bと平行に並んで設けられている。
 筐体12内および第1および第2シリンダ14a、14b内に揺動直線運動機構20、および、筐体12内および第3および第4シリンダ14c、14d内に設けられた揺動直線運動機構20の構成も、互いに共通であるとともに、前述した第1の実施形態に係る駆動装置の揺動直線運動機構20と同一である。
 第1駆動装置10aの外軸22の外周にリングギア70が固定され、外軸22と同軸的に配置されている。同様に、第2駆動装置10bの外軸22の外周にリングギア70が固定され、外軸22と同軸的に配置されている。これらのリングギア70は、同一径、および同一歯数に形成され、互いに歯合している。これにより、第1駆動装置10aの外軸22と第2駆動装置10bの外軸22は、リングギア70を介して互いに連結されている。一方の外軸22が回転すると、この回転に同期して、他方の外軸22が逆方向に回転する。これにより、第1駆動装置10aの外軸22と第2駆動装置10bの外軸22とは、同期して互いに相反する方向に回転する。このように2つのリングギア70は、2本の外軸22を同期して互いに反対方向に回転させる連結同期機構を構成している。 
 また、第1駆動装置10aおよび第2駆動装置10bは、中心平面SCに対して互いに対称に配置、構成されていることから、第1ピストン28aおよび第2ピストン28bを含む揺動直線運動機構20は、第3ピストン28cおよび第4ピストン28dを含む揺動直線運動機構20と、対称な状態を保ちながら回転運動および直線運動することができる。
 上記構成の駆動装置10によれば、前述した第1の実施形態と同様の作用効果を得ることができる。また、第1ないし第4ピストン28a~28bを駆動することにより、2本の外軸22から同期反転した回転出力を取り出すことができる。あるいは、モータ等により、少なくとも一方の外軸22を回転させることにより、第1ないし第4シリンダ24a~28dから同期した出力を出力することができる。更に、第1駆動装置10aおよび第2駆動装置10bをミラー配置、構成とすることにより、基本的な振動、動作ロスを取り除き、より静粛な回転体とすることができる。特に、シリンダをU型構成にすると、高圧低圧のピストンを左右に設置することになり、ガスを容易に移動することが可能となる。これにより、駆動装置の小型化を図ることができる。
(第7の実施形態) 
 図21は、第7の実施形態に係る駆動装置を一部破断して示す斜視図である。 
 本実施形態によれば、駆動装置10は、ミラー配置の並列2気筒の駆動装置として構成されている。駆動装置10は、前述した4気筒に限らず、2気筒としてもよい。図21に示すように、駆動装置10は、第1シリンダ14aおよび第1シリンダ14a内に配置された第1ピストン28aを有する第1駆動装置10aと、第2シリンダ14bおよび第2シリンダ14b内に配置された第2ピストン28bを有する第2駆動装置10bとを備えている。第1駆動装置10aおよび第2駆動装置10bは、中心平面SCに対して、互いに対称に配置、構成されている。筐体12は、第1駆動装置10aおよび第2駆動装置10bに共通の矩形状の本体12aと、本体12aの一端開口を閉塞した共通の端板12bと、を有している。
 第1駆動装置10aの外軸22の外周にリングギア70が固定され、外軸22と同軸的に配置されている。同様に、第2駆動装置10bの外軸22の外周にリングギア70が固定され、外軸22と同軸的に配置されている。これらのリングギア70は、同一径、および同一歯数に形成され、互いに歯合している。これにより、第1駆動装置10aの外軸22と第2駆動装置10bの外軸22は、リングギア70を介して互いに連結されている。一方の外軸22が回転すると、この回転に同期して、他方の外軸22が逆方向に回転する。これにより、第1駆動装置10aの外軸22と第2駆動装置10bの外軸22とは、同期して互いに相反する方向に回転する。また、第1駆動装置10aおよび第2駆動装置10bは、中心平面SCに対して互いに対称に配置、構成されていることから、第1ピストン28aを含む揺動直線運動機構20は、第2ピストン28bを含む揺動直線運動機構20と、対称な状態を保ちながら回転運動および直線運動することができる。 
 第7の実施形態において、駆動装置の他の構成は、前述した第6の実施形態と同一である。 
 上記2気筒の駆動装置10においても、前述した第1の実施形態および第6の実施形態と同様の作用効果を得ることができる。また、第1および第2ピストン28a、28bを駆動することにより、2本の外軸22から同期反転した回転出力を取り出すことができる。あるいは、モータ等により、少なくとも一方の外軸22を回転させることにより、第1および第2シリンダ24a、28bから同期した出力を出力することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (14)

  1.  筐体と、
     前記筐体内に第1中心軸の周りで回転自在に支持された第1駆動体と、
     前記第1中心軸と平行な第2中心軸の周りで回転自在に、かつ、前記第1中心軸の周りで公転自在に、前記第1駆動体内に設けられた偏心駆動体と、
     前記偏心駆動体の軸方向一端部に前記第2中心軸に対して偏心して設けられ、前記第2中心軸と平行に延出した第1枢軸と、
     前記偏心駆動体の軸方向他端部に前記第2中心軸に対して偏心して設けられ、前記第2中心軸と平行に延出した第2枢軸と、
     前記第1枢軸に回転自在に連結され、前記第1枢軸の移動に伴って、前記第1中心軸と直交する第3中心軸に沿って直線運動する第1移動体と、
     前記第3中心軸に沿った前記第1移動体の移動をガイドする第1ガイド体と、
     前記第2枢軸を前記第1中心軸と直交する第1方向に沿って直線移動可能にガイドする第2ガイド体と、
     を備える駆動装置。
  2.  前記第1ガイド体は、前記第3中心軸と同軸的に設けられた第1シリンダを備え、
     前記第1移動体は、前記第1シリンダ内に設けられた第1ピストンと、前記第1ピストンに連結され前記第3中心軸に沿って延在しているとともに、前記第1枢軸に軸受を介して回転自在に連結されたピストンロッドと、を有している請求項1に記載の駆動装置。
  3.  前記第1ガイド体は、前記第1中心軸の両側に前記第3中心軸と同軸的に設けられた第1シリンダおよび第2シリンダを備え、
     前記第1移動体は、前記第1シリンダ内に設けられた第1ピストンと、前記第2シリンダ内に設けられた第2ピストンと、前記第1ピストンおよび第2ピストンに連結され前記第3中心軸に沿って延在するピストンロッドと、を備え、前記ピストンロッドは、前記第1枢軸に軸受を介して回転自在に連結されている請求項1に記載の駆動装置。
  4.  前記第1駆動体は、円柱形状の外軸で構成され、前記外軸の軸方向両端部は、軸受により前記筐体に回転自在に支持され、前記外軸は、前記第2中心軸と同軸的に形成された貫通孔を有し、前記偏心駆動体は、円柱形状の内軸で構成され、前記内軸は、前記外軸の貫通孔内に配置され、軸受により前記外軸に対して回転自在に支持されている請求項1から3のいずれか1項に記載の駆動装置。
  5.  前記第1枢軸および第2枢軸は、前記内軸の第2中心軸に対して偏心した位置で前記内軸に設けられている請求項4に記載の駆動装置。
  6.  前記第2枢軸に回転自在に嵌合されたベアリング、カムフォロア、あるいはスライダを更に備え、前記第2ガイド体は、前記第1方向に沿って延在するガイド溝を有し、前記ベアリング、カムフォロア、あるいはスライダは、前記第1方向に沿って移動可能に前記ガイド溝に係合している請求項1から5のいずれか1項に記載の駆動装置。
  7.  前記第2枢軸に回転自在に連結され、前記第2枢軸の移動に伴って、前記第1方向に沿って直線運動する第2移動体を更に備えている請求項1から5のいずれか1項に記載の駆動装置。
  8.  前記第2ガイド体は、前記第1中心軸の両側に前記第1方向と同軸的に設けられた第3シリンダおよび第4シリンダを備え、
     前記第2移動体は、前記第3シリンダ内に設けられた第3ピストンと、前記第4シリンダ内に設けられた第4ピストンと、前記第3ピストンおよび第4ピストンに連結され前記第1方向に沿って延在するピストンロッドと、を備え、前記ピストンロッドは、前記第2枢軸に軸受を介して回転自在に連結されている請求項7に記載の駆動装置。
  9.  前記内軸は、カウンタウェイト部を一体に有している請求項4又は5に記載の駆動装置。
  10.  前記第1駆動体を回転させるモータを更に備えている請求項1から9のいずれか1項に記載の駆動装置。
  11.  前記第1駆動体に設けられた磁石と、前記第1駆動体の周囲に設けられ前記磁石に対向するステータと、を更に備えている請求項1から9のいずれか1項に記載の駆動装置。
  12.  前記第1枢軸に設けられた第1カウンタウェイトと、前記第2枢軸に設けられた第2カウンタウェイトと、を更に備えている請求項1から8のいずれか1項に記載の駆動装置。
  13.  前記第1シリンダに燃料を供給、点火する燃焼機構を更に備えている請求項2に記載の駆動装置。
  14.  第1駆動装置と、
     前記第1駆動装置と同一に構成され、中心平面に対して、前記第1駆動装置と対称に配置された第2駆動装置と、を備え、
     前記第1駆動装置および第2駆動装置の各々は、
     筐体と、
     前記筐体内に第1中心軸の周りで回転自在に支持された第1駆動体と、
     前記第1中心軸と平行な第2中心軸の周りで回転自在に、前記第1駆動体内に設けられた偏心駆動体と、
     前記偏心駆動体の軸方向一端部に前記第2中心軸に対して偏心して設けられ、前記第2中心軸と平行に延出した第1枢軸と、
     前記偏心駆動体の軸方向他端部に前記第2中心軸に対して偏心して設けられ、前記第2中心軸と平行に延出した第2枢軸と、
     前記第1枢軸に回転自在に連結され、前記第1枢軸の移動に伴って、前記第1中心軸と直交する第3中心軸に沿って直線運動する第1移動体と、
     前記第3中心軸に沿った前記第1移動体の移動をガイドする第1ガイド体と、
     前記第2枢軸を前記第1中心軸と直交する第1方向に沿って直線移動可能にガイドする第2ガイド体と、を備え、
     前記第1駆動装置および第2駆動装置は、前記第1駆動装置の前記第1駆動体および前記第2駆動装置の前記第1駆動体を同期して互いに反対方向に回転させる連結同期機構を備えている駆動装置。
PCT/JP2016/089127 2016-12-28 2016-12-28 揺動直線運動機構を備えた駆動装置 WO2018123029A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/089127 WO2018123029A1 (ja) 2016-12-28 2016-12-28 揺動直線運動機構を備えた駆動装置
JP2018508779A JP6376634B1 (ja) 2016-12-28 2016-12-28 揺動直線運動機構を備えた駆動装置
EP16925480.2A EP3495609B1 (en) 2016-12-28 2016-12-28 Driving apparatus provided with swinging linear motion mechanism
US16/297,407 US10519853B2 (en) 2016-12-28 2019-03-08 Driving apparatus with swinging linear motion mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/089127 WO2018123029A1 (ja) 2016-12-28 2016-12-28 揺動直線運動機構を備えた駆動装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/297,407 Continuation US10519853B2 (en) 2016-12-28 2019-03-08 Driving apparatus with swinging linear motion mechanism

Publications (1)

Publication Number Publication Date
WO2018123029A1 true WO2018123029A1 (ja) 2018-07-05

Family

ID=62707108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089127 WO2018123029A1 (ja) 2016-12-28 2016-12-28 揺動直線運動機構を備えた駆動装置

Country Status (4)

Country Link
US (1) US10519853B2 (ja)
EP (1) EP3495609B1 (ja)
JP (1) JP6376634B1 (ja)
WO (1) WO2018123029A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112932105A (zh) * 2021-02-10 2021-06-11 贵州电网有限责任公司 一种蓄电池存放货架

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829913A (ja) * 1971-08-24 1973-04-20
US4270395A (en) * 1977-06-30 1981-06-02 Grundy Reed H Motion translating mechanism
JPH07305601A (ja) * 1994-05-10 1995-11-21 Rongu Ueru Japan Kk クランク装置および機械装置
US5782213A (en) * 1997-04-07 1998-07-21 Pedersen; Laust Internal combustion engine
JP2001510263A (ja) * 1997-07-15 2001-07-31 ニュー・パワー・コンセプツ・エルエルシー スターリングサイクル機の改良
JP2006513359A (ja) * 2003-01-23 2006-04-20 アルトラ,ジョージ 2サイクル内燃機関
WO2008010490A1 (fr) * 2006-07-18 2008-01-24 Univ Shizuoka Nat Univ Corp MOTEUR ALTERNATIF cycloïdAL ET POMPE EMPLOYANT CE MÉCANISME DE VILEBREQUIN
US20090272259A1 (en) * 2007-01-05 2009-11-05 Efficient-V, Inc. Motion translation mechanism
JP2011017329A (ja) * 2009-07-07 2011-01-27 Takashi Matsuda 遊星歯車複偏心盤を用いた2気筒1クランクピン型多気筒サイクロイド往復動機関
JP2014111921A (ja) * 2012-11-09 2014-06-19 Takku Research:Kk Xy分離クランク機構およびこれを備えた駆動装置
JP2016166598A (ja) * 2015-03-03 2016-09-15 Zメカニズム技研株式会社 Xy分離クランク機構を備えた駆動装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1056746A (en) * 1911-03-01 1913-03-18 Pitts Royalty Company Mechanical movement.
US2166975A (en) * 1936-10-10 1939-07-25 Sologaistoa Manuel Humbe Perez Mechanical movement
US2223100A (en) * 1938-04-01 1940-11-26 Edwin E Foster Internal combustion engine
US3258992A (en) * 1963-02-15 1966-07-05 John L Hittell Reciprocating piston engines
US4485768A (en) * 1983-09-09 1984-12-04 Heniges William B Scotch yoke engine with variable stroke and compression ratio
JP3425736B2 (ja) 1996-10-28 2003-07-14 Lwj株式会社 クランク装置
JP4226160B2 (ja) 1999-08-20 2009-02-18 Lwj株式会社 コンプレッサ
JP2002285972A (ja) 2001-03-26 2002-10-03 Okinawa Kaihatsuchiyou Okinawa Sogo Jimukiyokuchiyou コンプレッサユニット
US6742482B2 (en) 2001-08-22 2004-06-01 Jorge Artola Two-cycle internal combustion engine
US7185557B2 (en) * 2004-06-29 2007-03-06 Thomas Mark Venettozzi Epitrochoidal crankshaft mechanism and method
US7654802B2 (en) * 2005-12-22 2010-02-02 Newport Medical Instruments, Inc. Reciprocating drive apparatus and method
JP4553977B1 (ja) * 2009-10-26 2010-09-29 有限会社ケイ・アールアンドデイ ロータリ式シリンダ装置
US20110146601A1 (en) * 2009-12-22 2011-06-23 Fisher Patrick T Self-Aspirated Reciprocating Internal Combustion Engine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829913A (ja) * 1971-08-24 1973-04-20
US4270395A (en) * 1977-06-30 1981-06-02 Grundy Reed H Motion translating mechanism
JPH07305601A (ja) * 1994-05-10 1995-11-21 Rongu Ueru Japan Kk クランク装置および機械装置
US5782213A (en) * 1997-04-07 1998-07-21 Pedersen; Laust Internal combustion engine
JP2001510263A (ja) * 1997-07-15 2001-07-31 ニュー・パワー・コンセプツ・エルエルシー スターリングサイクル機の改良
JP2006513359A (ja) * 2003-01-23 2006-04-20 アルトラ,ジョージ 2サイクル内燃機関
WO2008010490A1 (fr) * 2006-07-18 2008-01-24 Univ Shizuoka Nat Univ Corp MOTEUR ALTERNATIF cycloïdAL ET POMPE EMPLOYANT CE MÉCANISME DE VILEBREQUIN
US20090272259A1 (en) * 2007-01-05 2009-11-05 Efficient-V, Inc. Motion translation mechanism
JP2011017329A (ja) * 2009-07-07 2011-01-27 Takashi Matsuda 遊星歯車複偏心盤を用いた2気筒1クランクピン型多気筒サイクロイド往復動機関
JP2014111921A (ja) * 2012-11-09 2014-06-19 Takku Research:Kk Xy分離クランク機構およびこれを備えた駆動装置
JP2016166598A (ja) * 2015-03-03 2016-09-15 Zメカニズム技研株式会社 Xy分離クランク機構を備えた駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3495609A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112932105A (zh) * 2021-02-10 2021-06-11 贵州电网有限责任公司 一种蓄电池存放货架
CN112932105B (zh) * 2021-02-10 2022-09-16 贵州电网有限责任公司 一种蓄电池存放货架

Also Published As

Publication number Publication date
JP6376634B1 (ja) 2018-08-22
JPWO2018123029A1 (ja) 2018-12-27
US10519853B2 (en) 2019-12-31
EP3495609B1 (en) 2023-12-27
US20190203639A1 (en) 2019-07-04
EP3495609A4 (en) 2020-01-08
EP3495609A1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
KR101205110B1 (ko) 로터리식 실린더 장치
US6321693B1 (en) Reciprocating rotary piston system and pressure pump and internal combustion engine using the same
US7827901B2 (en) Free swinging piston heat machine
US8443713B2 (en) Rotary cylinder device
WO2008010490A1 (fr) MOTEUR ALTERNATIF cycloïdAL ET POMPE EMPLOYANT CE MÉCANISME DE VILEBREQUIN
US7140343B2 (en) Overload protection mechanism
JP2016533447A (ja) 遊星回転機構を有するスピン・ポンプ
KR20000029539A (ko) 회전운동기구및엔진
JP6376634B1 (ja) 揺動直線運動機構を備えた駆動装置
JP4947793B2 (ja) クランク装置
JP2018087575A (ja) 多角形振動ピストンエンジン
JP3626018B2 (ja) 直線往復2移動体の直結型クランク装置
US8757126B2 (en) Non-reciprocating piston engine
JP4041173B2 (ja) 低振動容積型機械
JP5571358B2 (ja) 内燃機関におけるバランス装置
JP6177566B2 (ja) 往復動圧縮機
JP2005214076A (ja) 往復動圧縮機
US20040216540A1 (en) Torus crank mechanism
WO2016084137A1 (ja) 圧縮機
WO2011044743A1 (zh) 往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备
JP2016118152A (ja) 往復動型流体機械
KR20010059772A (ko) 엔진의 가변 토크형 크랭크 축
JP2016056737A (ja) 往復動型ポンプ
WO2001071188A1 (fr) Machine a deplacement alternatif
JP2000310126A (ja) 円弧状ピストン機関

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508779

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016925480

Country of ref document: EP

Effective date: 20190308

NENP Non-entry into the national phase

Ref country code: DE