WO2011044743A1 - 往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备 - Google Patents

往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备 Download PDF

Info

Publication number
WO2011044743A1
WO2011044743A1 PCT/CN2010/000380 CN2010000380W WO2011044743A1 WO 2011044743 A1 WO2011044743 A1 WO 2011044743A1 CN 2010000380 W CN2010000380 W CN 2010000380W WO 2011044743 A1 WO2011044743 A1 WO 2011044743A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving
shaft
moving shaft
reciprocating
pin
Prior art date
Application number
PCT/CN2010/000380
Other languages
English (en)
French (fr)
Inventor
黎明
黎正中
Original Assignee
北京中清能发动机技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中清能发动机技术有限公司 filed Critical 北京中清能发动机技术有限公司
Publication of WO2011044743A1 publication Critical patent/WO2011044743A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/10Crankshafts assembled of several parts, e.g. by welding by crimping

Definitions

  • the present invention relates to a motion conversion mechanism, and more particularly to a mechanism for converting a reciprocating motion and a rotational motion.
  • the invention also relates to the components that make up the mechanism described above, as well as the equipment obtained using the mechanisms described above.
  • a reciprocating internal combustion engine needs to convert a reciprocating linear motion generated by a piston under the explosion pressure of a combustible mixed gas into a rotational motion of a crankshaft; in contrast, the compressor needs to convert a crankshaft rotation driven by an external motor into a reciprocating linear motion of the piston.
  • the above two kinds of conversions have the same kinematics requirements for the mechanism. Therefore, the mechanism for converting the reciprocating linear motion into the rotary motion can be realized, and generally, the rotary motion can be converted into the reciprocating linear motion.
  • crank-and-rod mechanism A number of mechanisms for reciprocating linear and rotational motions have been provided in the prior art. Under normal technology, the above-mentioned conversion is realized by a crank-and-rod mechanism. At present, most internal combustion engines and compressors use a crank-and-rod mechanism.
  • the mechanism is characterized in that a reciprocating linear moving member and a rotating moving member need to be connected by a swinging connecting rod. Since the movement of the connecting rod is swinging back and forth, the movement is a complicated motion, and it is difficult to balance the inertial force, and The swing of the connecting rod increases the side pressure of the piston on the side wall of the moving rail, resulting in an increase in friction. In addition, the presence of the connecting rod also requires the mechanism to have a certain length in the reciprocating direction, making it difficult to further reduce the size.
  • a Chinese patent document CN85100358B discloses a "cranked circular slider reciprocating piston type internal combustion engine”
  • a Chinese patent document CN1067741C discloses a “crank double circular slider reciprocating piston type internal combustion engine”
  • Chinese Patent Document CN1144880A discloses a "Crank multi-circular slider reciprocating piston internal combustion engine”.
  • the circular slider of the common internal eccentric hole of the above internal combustion engine replaces the connecting rod.
  • the eccentric circular slider has a cylindrical shape and is opened An eccentric circular hole parallel to the axis of the cylinder for passing through the crank pin of the crankshaft.
  • the piston of the internal combustion engine includes a crown portion at both ends and a guiding portion connecting the two crown portions, wherein the guiding portion is provided with a circular hole, and an inner diameter surface of the circular hole is matched with an outer diameter surface of the circular slider, which is called a circular slider receiving hole.
  • the circular slider is disposed in the circular slider receiving hole of the piston guiding portion and the outer circumference thereof.
  • the above-mentioned motion mechanism still has some significant drawbacks, which limits the use of the crank-sliding block mechanism.
  • the circular slider of the mechanism is arranged in the circular slider accommodating hole of the piston, and the crank pin needs to pass through the eccentric hole on the circular slider, so that the intersection of the parts at the position is too concentrated, the size of the crank pin is limited, and the heavy load cannot be performed. Passing power.
  • the linear speed of the bearing of the circular slider and the crank pin is high, and it is deep in the mechanism, which is not easy to dissipate heat.
  • the present invention provides a mechanism for mutually converting a reciprocating motion and a rotary motion, which eliminates the need for a circular slider, thereby solving various problems caused by the existence of a circular slider in the crank circular slider mechanism, and at the same time, It is possible to continue to retain the various advantages of canceling the connecting rod in the crank circular slider mechanism.
  • the present invention also provides a component for a mechanism for converting the above-described reciprocating motion and rotational motion, and an internal combustion engine and a compressor using the above-described mechanism for mutual conversion of reciprocating motion and rotational motion.
  • the invention provides a mechanism for mutually converting a reciprocating motion and a rotating motion, including: a reciprocating member, a rotating moving member, and a frame supporting the mechanism, the rotating moving member comprising two end shafts and a moving shaft connected between the two end shafts, wherein
  • the end shaft is rotatably supported on the frame, and the rotating shafts of the two end shafts are located on the same straight line, and the end shaft is provided with a moving shaft neck receiving hole, and the axis of the moving shaft neck receiving hole is The axis of rotation of the end shaft is parallel, and the distance from the axis of rotation is e;
  • the moving shaft comprises a moving journal, a moving shaft pin and a moving shaft arm, wherein the moving shaft neck is a shaft section at the end of the moving shaft, and the moving shaft has a moving journal at each end thereof, and the moving shaft at both ends
  • the axis of the neck is on the same straight line;
  • the moving shaft pin is a segment of the shaft, the moving shaft has three moving shaft pins, the axes of the moving shaft pins are parallel to the axis of the moving journal, and the moving shaft pin
  • the giant axis of the axis is also e, and the adjacent moving pin has a phase difference of 180 degrees in space; the passing between the moving journal and the moving pin and the adjacent moving pin
  • the moving shaft arm is connected; when the rotating shaft is formed with the end shaft, the moving journals at both ends of the moving shaft are respectively inserted into the moving shaft neck receiving holes of the corresponding end shafts, and the moving shaft neck receiving holes are rotatable
  • Each of the moving shaft pins is provided with at least one reciprocating
  • the reciprocating member corresponding to each of the moving shaft pins is one; wherein, the reciprocating member corresponding to the moving shaft pins of the left and right sections is a piston, and the reciprocating member corresponding to the moving shaft pin of the middle section is a piston and a dynamic balance a slider or any other reciprocating member; the piston is a single acting piston or a Han acting piston.
  • the mass of the reciprocating member corresponding to the moving shaft pin of the middle section is equal to the sum of the masses of the pistons corresponding to the left and right moving shaft pins.
  • the present invention also provides a component for a mechanism for converting each of the reciprocating and rotational motions described above, the component being an end shaft, wherein the end shaft has a rotating shaft, and the end shaft is provided with a moving shaft a neck receiving hole, the axis of the moving neck receiving hole is parallel to the rotating shaft of the end shaft, and has a distance e from the rotating shaft of the end shaft; the distance e and the moving shaft pin of the moving shaft matched with the end shaft
  • the axis is equal to the major deviation of the axis of the moving journal.
  • the end shaft has an end journal and an end shaft arm; the end journal can be supported on the frame, the axis of which is the rotation axis of the end shaft; the end shaft arm is disposed at the end journal a convex disk at one end, wherein the movable journal receiving hole is opened.
  • the present invention also provides a reciprocating motion and a rotary motion for each of the above
  • the component of the changing mechanism the component is a moving shaft, and is characterized in that it comprises a moving journal, a moving shaft pin and a moving shaft arm; wherein the moving journal is a shaft segment located at the end of the moving shaft, and two of the moving shaft Each end has a moving journal, the axes of the moving journals at both ends are on the same straight line; the moving shaft pin is a section of the shaft, the moving shaft has three moving shaft pins, and the axes of the moving shaft pins are parallel to The axis of the moving journal has a distance e from the axis of the moving journal, and the distance e is equal to the distance between the axis of the moving shaft neck and the axis of rotation of the end shaft used for mating the moving shaft
  • the adjacent moving shaft pins have a phase difference of 180 degrees in space; and between the moving journal and the moving shaft pin, and between the adjacent moving shaft pins are connected by the moving
  • the present invention also provides a rotary moving member for a mechanism for converting each of the reciprocating motion and the rotary motion described above, comprising two end shafts and a moving shaft connected between the two end shafts, wherein
  • the rotating shafts of the two end shafts are located on the same straight line, and each of the end shafts is provided with a moving shaft neck receiving hole, and the axis of the moving shaft neck receiving hole is parallel to the rotating shaft of the end shaft, and the rotation is from the rotation
  • the large separation of the axis is e;
  • the moving shaft comprises a moving journal, a moving shaft pin and a moving shaft arm, wherein the moving shaft neck is a shaft section at the end of the moving shaft, and the moving shaft has a moving journal at each end thereof, and the moving shaft at both ends
  • the axis of the neck is on the same straight line
  • the moving shaft pin is a segment of the shaft
  • the moving shaft has three moving shaft pins
  • the axes of the moving shaft pins are parallel to the axis of the moving journal
  • the moving shaft pin The distance between the axis and the axis of the moving journal is also e , and the adjacent moving pin has a space of 180 degrees;
  • the movable journals at both ends of the movable shaft are respectively inserted into the movable journal receiving holes of the corresponding end shafts, and are rotatably connected with the movable journal receiving holes.
  • the present invention also provides a component for the mechanism of the present invention which also provides a mechanism for mutual conversion of reciprocating motion and rotational motion, the component being a reciprocating member, wherein the reciprocating member has a motion for being fitted over a corresponding moving shaft pin a pin hole, the moving pin pin and the moving pin are rotatably connected; the reciprocating member has an outer shape capable of linearly moving in the reciprocating track.
  • the reciprocating member is a piston, and one or both ends thereof are cylindrical piston heads, and an outer peripheral surface of the piston head is matched with an inner diameter surface of a cylinder as a reciprocating rail; the piston There is also a section of piston arm on which the pin hole is disposed.
  • the present invention also provides an apparatus which is an internal combustion engine in which a mechanism for mutually converting the reciprocating motion and the rotational motion described in any of the above is used.
  • the present invention also provides an apparatus which is a compressor, wherein the mechanism for mutually converting the reciprocating motion and the rotational motion described in any of the above items.
  • the mechanism for reciprocating the reciprocating motion and the rotating motion of the present invention has a rotating moving member which is a shaft system including an end shaft and a moving shaft, and the end shaft is provided with an offset on the rotating shaft thereof.
  • a moving shaft neck receiving hole on one side, the axis of the moving shaft neck receiving hole and the rotating shaft of the end shaft are e, for accommodating the moving journal of the moving shaft;
  • the moving shaft neck receiving hole on the end shaft is rotatably matched with the moving shaft neck, and has three-stage moving shaft pins, the axes of the moving shaft pins each having a distance e from the axis of the moving journal, and adjacent
  • the moving shaft pin has a phase difference of 180 degrees;
  • the reciprocating member of the reciprocating and rotating motion mutual conversion mechanism is disposed corresponding to the moving shaft pin, and each of the moving shaft pins is provided with at least one reciprocating member, and the reciprocating member
  • the rotary motion is output so that other external components can be driven: Rotate.
  • the input of the rotational motion driving force at the end shaft can be converted into two reciprocating forces in mutually perpendicular directions; when moving, assuming that the end shaft rotates at a speed of + ⁇ , the moving shaft is centered on the axis of the moving journal Rotating at a speed of - ⁇ , at this time, the moving shaft can move the reciprocating member on the linear orbit through the moving shaft pin, and vice versa; in the mechanism in which the reciprocating motion and the rotating motion are mutually converted, the reciprocating in the mutually perpendicular direction
  • the moving parts can convert the reciprocating inertial force into a centrifugal inertial force, which is easy to balance.
  • the moving shaft of the mechanism has three moving shaft pins, wherein the two moving shaft pins at the both ends are opposite to the phase of the moving shaft pin in the middle, thereby It is possible to overcome the live point with each other so that it can solve the problem of the live point;
  • the so-called live point means that when the moving pin pin moves to a phase of 90 degrees, that is, when the axis of the moving pin coincides with the axis of the end shaft, the end shaft and the moving shaft may no longer be The position point that continues to move according to the original direction of motion; since the direction of motion of the moving shaft is uncertain, it is called a moving point; and in the technical solution of the present invention, the moving shaft has a moving shaft pin of opposite phase, due to the phase The opposite moving pin corresponding to the reciprocating member passes through the live point at different times, so that one (or two of the same phase) moves When the axle pin is at the active point, the moving shaft pin opposite to the phase continues to
  • the reciprocating and rotating motion converting mechanism of the present invention has three moving shaft pins, which are a first moving shaft pin and a third moving shaft pin at the left and right ends, and a second moving shaft pin in the middle, and
  • the reciprocating movement direction of the reciprocating member corresponding to the first moving pin and the third moving pin is the same, and is perpendicular to the reciprocating direction of the reciprocating member corresponding to the second moving pin; and, the first moving pin
  • the reciprocating members on the three-acting shaft pin are respectively disposed on both sides of the reciprocating member on the second movable shaft pin; thereby enabling the mechanism to convert not only the mutually perpendicular reciprocating inertial force into the centrifugal inertial force, but also the mechanism It is also possible to obtain a balance of the reciprocating moment of inertia, and even if the appropriate structural parameters are selected, the reciprocating moment of inertia can be made zero.
  • selecting a center axis of reciprocation of the reciprocating member of the second moving shaft pin is disposed at a reciprocating motion center axis of the reciprocating member from the first moving shaft pin and a reciprocating motion of the reciprocating member remotely from the third moving shaft pin
  • the center axis is equal in position, and the mass of the reciprocating member corresponding to the second moving shaft pin is the sum of the masses of the reciprocating members corresponding to the first moving shaft pin and the third moving shaft pin.
  • any reciprocating member can be used as a mastering member, and at the same time as a balancing member of other reciprocating members, the reciprocating moment of inertia can be balanced by the moving member itself, which requires an additional
  • additional balancing mechanisms such as positive and negative balancing gear trains
  • the mechanism for reciprocating motion and rotary motion conversion provided by the present invention has the following advantages: Since the connecting rod is not provided, the moving member of the moving member is not included in the mechanism, and the movement of all the moving members is a harmonic motion. Convenient dynamic balancing; Secondly, since the circular slider is no longer arranged in the mechanism, the design size of the reciprocating motion of the reciprocating member is not limited by the size of the circular slider, and can be set relatively large to overcome the stroke ratio being too small.
  • the problem of insufficient release of the combustible mixture gas burst pressure may be caused; in addition, since the mechanism does not have a complicated structure in which the circular slider is disposed in the piston and the crank pin needs to pass through the eccentric hole of the circular slider, the assembly of the mechanism is simplified. Complexity, the lubricating oil circuit of the mechanism is also easy to design, easy to dissipate heat; Moreover, in this mechanism, the moving shaft pin that acts as a force transmission is directly worn. The reciprocating member does not need to pass through the circular slider first, and then the circular slider is connected with the reciprocating member such as the piston. Therefore, the size can be made thicker than the crank pin in the crank slider mechanism, which is favorable for heavy load. Passing power.
  • the above mechanism can be used in a device for converting reciprocating motion into rotational motion, such as an internal combustion engine; it can also be used to convert rotational motion into a reciprocating device, such as a compressor; an internal combustion engine or a conventional crank-link mechanism or Compressor, the engine of the motion conversion mechanism of the invention has many advantages: good balance performance, large stroke stroke ratio selection range, no crankcase, compact structure, small volume and the like; moreover, the function is flexible, for example, as a movement
  • the reciprocating member of the balance slider can also be modified into a piston for a generator, a compressor, a vacuum pump, etc., to constitute a multi-function machine.
  • Figure 1 is a schematic view showing a first embodiment of a mechanism for converting a reciprocating motion and a rotary motion of the present invention
  • Figure 2 is a simplified diagram of the left side view of Figure 1;
  • Figure 3 is a schematic view showing the structure of an end shaft in the first embodiment of the mechanism for converting the reciprocating motion and the rotary motion of the present invention
  • Figure 4 is a schematic view showing the structure of a moving shaft in the first embodiment of the mechanism for converting the reciprocating motion and the rotational motion of the present invention
  • Figure 5 is a schematic view of a reciprocating member in a first embodiment of the mechanism for mutually converting the reciprocating motion and the rotational motion of the present invention
  • Fig. 6 is a schematic view showing a second embodiment of the mechanism for mutually converting the reciprocating motion and the rotational motion of the present invention. detailed description
  • Embodiment 1 The mechanism for converting the reciprocating motion and the rotational motion of the present invention will be described in detail below with reference to the embodiments and the accompanying drawings.
  • Fig. 1 is a schematic view showing a first embodiment of a mechanism for mutual conversion of reciprocating motion and rotational motion of the present invention.
  • Fig. 2 is a schematic view of the left side view of Fig. 1, for explaining the positional relationship of the reciprocating moving members of the embodiment, and some of the elements shown in Fig. 1 are not shown.
  • 3, 4 and 5 are structural views of the respective components in the first embodiment of the mechanism for mutually converting the reciprocating motion and the rotational motion shown in Fig. 1.
  • the moving shaft pins are three, and each of them has a reciprocating member as an example for description.
  • the mechanism for converting the reciprocating motion and the rotational motion includes the first reciprocating member 14a, the second reciprocating member 14b, and the third reciprocating member 14c, and the rotating moving member and the frame supporting the mechanism (in the figure) Not shown).
  • the rotary moving member is a shaft system including a first end shaft 10a and a second end shaft 10b at both ends, and a moving shaft connected between the first end shaft 10a and the second end shaft 10b by a rotating pair 15.
  • the reciprocating members 14a, 14b and 14c are respectively sleeved on the three moving shaft pins of the moving shaft 15, and constitute a rotating pair with the corresponding moving shaft pins.
  • the first end shaft 10a and the second end shaft 10b have a common axis m.
  • the first reciprocating member 14a and the third reciprocating member 14c are reciprocally movable in the direction of the arrow 13 in FIG. a linear motion, and the second reciprocating member 14b can reciprocate linearly in a direction perpendicular to the movement of the first reciprocating member 14a and the third reciprocating member 14c (as shown in FIG. 2, wherein The moving member 14a and the third reciprocating member 14c reciprocate in the same direction, and only the first reciprocating member 14a) is shown in FIG.
  • FIG. 2 With the structure shown in Fig.
  • Fig. 3 is a view showing the structure of an end shaft in the first embodiment of the mechanism for reciprocating the reciprocating motion and the rotational motion of the present invention.
  • the first end shaft 10a and the second end shaft 10b shown in Fig. 1 may be identical, and only the one end shaft 10a therein is shown in Fig. 3.
  • the first end shaft 10a includes an end journal 1 and an end shaft arm 2.
  • the end journal 1 is rotatably fixed to the frame, and the specific fixing manner can be rolled Dynamic or plain bearings, and other possible rotationally fixed means.
  • the axes of the end journals of the first end shaft 10a and the second end shaft 10b shown in Fig. 1 lie on the same straight line, that is, they can rotate about a common axis, which is the axis m of the end shaft. .
  • the end shaft arm 2 is a convex disc disposed at an inner end of the end journal 1 (ie, toward the end of the moving shaft 15 shown in FIG. 1), and the end shaft arm 2 is provided with a receiving shaft
  • the moving journal neck of the 15 (refer to FIG. 4) accommodates the hole 3 of the moving journal.
  • the axis of the movable journal receiving hole 3 is parallel to the axis of the end journal 1, and the distance from the axis of the end journal 1 is e, as shown in FIG.
  • end shaft arm 2 can also be directly fixed to the frame by bearings (in this case, the end shaft arm 2 needs to be a cylinder, and the central axis of the cylindrical body coincides with the axis of the end journal 1 ), and the end journal 1 can be used to transmit torque and output power outward.
  • the first end shaft 10a may not be provided with the end journal 1 , and only the cylindrical end arm 2 is formed, and the moving journal is disposed on the end arm. Hole 3.
  • the first end shaft 10a may have other structures, but it includes at least a rotating shaft for rotating the first end shaft 10a about the rotating shaft, and includes being disposed on the end shaft and offset from the rotation A moving shaft neck of the shaft accommodates a hole.
  • the structure of the one end shaft 10a and the second end shaft 10b shown in FIG. 1 of the present embodiment may not necessarily be the same, as long as the two have a common rotating shaft after being fixed on the frame, and the moving journal is accommodated.
  • the center axis of the hole may be the same distance from the axis of rotation.
  • Fig. 4 is a view showing the structure of the movable shaft 15 in the first embodiment of the mechanism for converting the reciprocating motion and the rotational motion of the present invention.
  • the moving shaft 15 includes a first moving journal 4a and a second moving journal 4b, a first moving shaft pin 6a, a second moving shaft pin 6b and a third moving shaft pin 6c, and a first moving shaft arm. 5a, a second moving shaft arm 5b, a third moving shaft arm 5c, and a fourth moving shaft arm 5d.
  • the first movable journal 4a and the second movable journal 4b are shaft segments respectively located at both ends of the movable shaft 15, and the axes of the first movable journal 4a and the second movable journal 4b are on the same straight line.
  • the number of the moving shaft pins is three, which are the first moving shaft pin 6a, the second moving shaft pin 6b and the third moving shaft pin 6c shown in Fig. 4, respectively.
  • the first movable shaft pin 6a, the second movable shaft pin 6b and the third movable shaft pin 6c are also the shaft segments, and the length thereof may be different from the first movable journal 4a and the second movable journal 4b.
  • the axes of the first movable shaft pin 6a, the second movable shaft pin 6b and the third movable shaft pin 6c are parallel to the axes of the first movable journal 4a and the second movable journal 4b, and the first movable shaft pin 6a
  • the axis of the second moving shaft pin 6b and the third moving shaft pin 6c is away from the first moving journal 4a
  • the distance from the axis of the second movable journal 4b is e, that is, the distance from the axis of the movable journal receiving hole 3 shown in Fig. 3 is the same as the end journal 1 thereof.
  • first moving shaft pin 6a and the second moving shaft pin 6b, the second moving shaft pin 6b and the third moving shaft pin 6c have a phase difference of 180 degrees in space, that is, the first moving shaft pin 6a and the The third movable shaft pin 6c is located on the same side of the first movable journal 4a and the second movable journal 4b, and the second movable shaft pin 6b is located on the same side with the first movable shaft pin 6a and the third movable shaft.
  • the opposite side of the pin 6c, and the axes of the first moving shaft pin 6a and the third moving shaft pin 6b are collinear, the distance of the axis from the common axis of the first moving journal 4a and the second moving journal 4b and The axis of the second moving shaft pin 6b is equal to the distance of the common axis.
  • the shaft pins 6c are respectively connected by the first to fourth moving shaft arms 5a, 5b, 5d and 5c, wherein the moving journal, the moving shaft arm and the moving shaft pin may be integrally formed or separately formed, and then The connection is fixed by the connector, and will not be described here.
  • the first movable journal 4a and the second movable journal 4b of the movable shaft 15 are respectively inserted into the movable journal receiving holes of the both end shafts shown in Fig. 3 to constitute a rotating pair.
  • Fig. 5 is a schematic view showing the reciprocating member in the first embodiment of the mechanism for mutually converting the reciprocating motion and the rotational motion of the present invention.
  • the reciprocating member has a moving shaft pin hole 7 which is sleeved on the moving shaft pin of the moving shaft 15 shown in FIG. 4, and is formed when the reciprocating member is sleeved on the moving shaft pin of the moving shaft. Turn the vice. Further, the reciprocating member also has an outer shape capable of causing it to perform a linear motion in the reciprocating orbit.
  • the reciprocating members are three, respectively, a reciprocating member 14a, a second reciprocating member 14b, and a reciprocating member 14c (as shown in FIGS. 1 and 2), and respectively
  • the first movable shaft pin 6a, the second movable shaft pin 6b and the third movable shaft pin 6c of the movable shaft 15 shown in Fig. 4 are sleeved.
  • the three reciprocating members can be respectively placed in the reciprocating guide rail, and the outer contour thereof is matched with the reciprocating guide rail.
  • the reciprocating guide rail direction of the second reciprocating member 14b and the reciprocating guide rails of the first reciprocating member 14a and the third reciprocating member 14c each have a phase difference of 90 degrees in space, and the first reciprocating member 14a
  • the reciprocating guide rails of the reciprocating member 14c are disposed in parallel.
  • the reciprocating guide rails of the first reciprocating member 14a and the third reciprocating member 14c may be arranged in the direction of the arrow 13 shown in FIG. 1, and the reciprocating guide rail direction of the second reciprocating member 14b may be along the arrow 13b of FIG. Directional arrangement.
  • the sum of the masses of the first reciprocating member 14a and the third reciprocating member 14c may be set to be the same as the mass of the second reciprocating member 14b.
  • two or more reciprocating members may be arranged side by side on the moving shaft pin of each moving shaft 15, which will not be discussed in detail herein.
  • the mechanism for converting the reciprocating motion and the rotational motion is provided, wherein the rotating moving member is a shaft system including an end shaft and a moving shaft, and the end shaft is provided with a biasing on a side of the rotating shaft thereof.
  • a moving shaft neck receiving hole the axis of the moving shaft neck receiving hole is at a distance e from the end shaft rotating shaft, and is used for accommodating the moving journal of the moving shaft;
  • the upper moving shaft neck receiving hole is rotatably matched with the moving shaft neck, and has three-stage moving shaft pins.
  • the axes of the moving shaft pins each have a distance e from the axis of the moving journal, and the adjacent moving shaft
  • the pin has a phase difference of 180 degrees.
  • the reciprocating member of the reciprocating and rotating motion mutual conversion mechanism is disposed corresponding to the movable shaft pin, each of the movable shaft pins is provided with a reciprocating member, and the reciprocating member has a moving shaft pin hole sleeved on the movable shaft pin And the rotatably connected between the two, the reciprocating member is restricted by the reciprocating guide rail, can only move in a straight line, and the reciprocating guide rail of the corresponding reciprocating member of the adjacent moving shaft pin has a space 90 degree phase difference.
  • the driving force is input in the moving direction of the two or any one of the reciprocating members, and can be converted into a rotating motion, and the rotational motion is output through any one of the end shafts, thereby It can drive other external parts to rotate.
  • the input of the rotational motion driving force at the end shaft can be converted into two reciprocating forces in mutually perpendicular directions.
  • the mutually reciprocating members in the vertical direction can balance the reciprocating inertial force, convert the reciprocating inertial force into the centrifugal inertial force, and facilitate the balance, thereby achieving a good balance of the mechanism. performance.
  • the moving shaft of the mechanism since the moving shaft of the mechanism has three moving shaft pins, two of which are opposite in phase to the other one, so that the problem of the moving point can be overcome with each other, so that It can easily overcome the problem of live points.
  • the so-called live point refers to when the moving pin pin moves to a phase of 90 degrees, that is, when the axis of the moving pin coincides with the axis of the end shaft, the end The axis and the moving axis may no longer move according to the above motion law to continue the position of the moving point; because of this, the moving direction of the moving axis is uncertain, which is called a moving point.
  • the moving shaft has the opposite phase of the moving shaft pin (two of which are opposite to the other one), and the reciprocating member corresponding to the opposite phase of the moving shaft pin passes the moving point at different times, so that one ( When the two moving shaft pins of the same phase are at the active point, the moving shaft pin opposite to the phase continues to move along with the moving shaft according to the original motion law, so that the moving shaft pin at the active point can also follow the original
  • the motion is regular, and ultimately the motion axis does not change the motion law as a whole.
  • each of the moving shaft pins of the moving shaft having the opposite phase of the moving shaft pin can help the other moving shaft pins to overcome the moving point.
  • the rotating moving member can continuously rotate in a rotating direction, and the entire converting mechanism Normal exercise is maintained. The above motion mechanism ensures the stability of the mechanism.
  • the mechanism can also convert mutually perpendicular reciprocating inertial forces into The centrifugal inertial force causes the reciprocating inertial force to be converted and easily balanced, but the reciprocating inertia moment of the entire mechanism is not balanced, and if necessary, an additional balancing mechanism is needed to balance or reduce the reciprocating moment of inertia.
  • the mechanism can not only convert the mutually reciprocating inertial forces into centrifugal inertial forces, but also the reciprocating moment of inertia generated by the mechanism is balanced, and the overall reciprocating moment of inertia is zero.
  • the first reciprocating member 14a, the second reciprocating member 14b and the third reciprocating member 14c can be used as work-making members, and any reciprocating member can be used as a balance of other reciprocating members.
  • the components, through the motion mechanism itself, can balance the reciprocating moment of inertia. This is in contrast to traditional techniques that require additional balancing mechanisms (such as positive and negative balancing gear trains).
  • the mechanism provided in the present application has the following significant advantages: Since the link is not provided, the mechanism does not contain moving parts that swing back and forth, and the movement of all moving parts is Simple harmonic movement, easy to carry out dynamic balance; Secondly, because the circular slider is no longer set in the mechanism, the design size of the reciprocating motion of the reciprocating member is not limited by the size of the circular slider, and can be set relatively large, in grams The problem that the combustible mixture gas burst pressure is insufficient due to the too small cylinder bore ratio of the month I stroke; in addition, since the mechanism does not have a complicated structure in which the circular slider is disposed in the piston and the crank pin needs to pass through the eccentric hole of the circular slider It simplifies the assembly complexity of the mechanism, and the lubricating oil circuit of the mechanism is also easy to design and easy to dissipate heat.
  • the moving shaft pin acting as a force transmitting force directly passes through the reciprocating member without first passing through the circular slider, and then through the circular slider to communicate with the reciprocating member such as the piston, so the size thereof can be made It is thicker than the crank pin in the crank slider mechanism, which is good for large load transmission.
  • the mechanism for reciprocating motion and rotational motion conversion of the present embodiment is simple and compact, has a small number of parts, and is easy to maintain.
  • the shifting mechanism of the embodiment of the present invention can be applied to an internal combustion engine and a compressor instead of the conventional motion converting mechanism of the crank connecting rod.
  • a reciprocating member on the left and right sides can function as a piston
  • an intermediate reciprocating member can serve as a dynamic balance slider, piston or other form of reciprocating member.
  • the intermediate reciprocating member may be a piston
  • the reciprocating members on the left and right sides may be a dynamic balance slider.
  • the structure thereof when the reciprocating member is a piston, the structure thereof may be as follows: a cylindrical piston head is formed in the outer shape thereof, and the cylindrical outer peripheral surface is provided with a cylinder inner diameter surface as a reciprocating rail; the piston also has An extended piston arm, the moving shaft pin hole being disposed on the piston arm.
  • the engine of the motion conversion mechanism of the present invention has many advantages, for example, good balance performance, large stroke-to-bore ratio selection range, no crankcase, compact structure, and volumetric weight. Small.
  • the function is flexible, for example, the reciprocating member as the dynamic balance slider can also be modified into a piston, which is used for a generator, a compressor, a vacuum machine, etc., to constitute a multi-function machine.
  • the components of the motion converting mechanism of the present invention are substantially the same as those of the conventional cranking mechanism, and thus have a good inheritance with the conventional mechanism and are easy to implement.
  • Embodiment 2 Embodiment 2
  • Figure 6 is a schematic illustration of a second embodiment of the mechanism for converting the reciprocating motion and the rotational motion of the present invention.
  • the reciprocating members corresponding to the first crank pin 6a and the third crank pin 6c located at the left and right ends are double acting pistons, and the second crank pin 6b located in the middle
  • the corresponding reciprocating member is a dynamic balance slider, and the mechanism for mutually converting the reciprocating motion and the rotational motion of the present embodiment can also constitute an H-type four-cylinder internal combustion engine and a compressor.
  • Other aspects of this embodiment are the same as those of the first embodiment described above, and have the same beneficial effects, and are not described herein.
  • an H- ⁇ type five-cylinder machine can be constructed. It can be seen that a single-acting piston, a double-acting piston and a dynamic balance slider can be assembled on each of the moving shaft pins, and different pistons can realize different functions such as compressed air, pumping and piston of the internal combustion engine, and the combination thereof can be Various forms of internal combustion engine and multi-function machines are produced, and those skilled in the art can make corresponding changes in accordance with the teachings of the present invention. These modified forms are all included in the scope of the present invention.
  • the moving shaft pins of the moving shaft can also be in three groups to form a mechanism of six, nine, or the like.
  • At least one reciprocating member is mounted on each of the moving shaft pins, and two or more reciprocating members of the reciprocating orbits in the same linear direction may be mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transmission Devices (AREA)

Description

往复运动和旋转运动相互转换的机构、 其部件以及由其得到的设备 本申请要求申请人于 2009 年 10 月 16 日提交的申请号为 200910236026.5的中国专利申 "ifr的优先权。 技术领域
本发明涉及一种运动转换机构, 具体是涉及一种往复运动和旋转 运动相互转换的机构。 本发明同时涉及组成上述机构的部件, 以及使 用上述机构获得的设备。
'
背景技术 ·
在机械设备中, 在艮多场合下需要实现往复运动和旋转运动之间 的相互转换。 例如, 往复式内燃机需要将活塞在可燃混合气体的爆发 压力推动下产生的往复直线运动转换为曲轴的旋转运动; 与之相反, 压缩机需要将外接电动机带动的曲轴旋转转换为活塞的往复直线运 动。 上述两种转换除了主动件不同外, 对机构的运动学要求是一致的, 因此, 可以实现往复直线运动转换为旋转运动的机构 , 一般也可以用 于实现旋转运动转换为往复直线运动。
现有技术下已经提供了若干往复直线运动和旋转运动相互转换的 机构。 通常技术下, 釆用曲柄连杆机构实现上述转换。 目前大多数内 燃机、 压缩机均使用曲柄连杆机构。 该机构的特点是, 往复直线运动 件与旋转运动件之间需要通过来回摆动的连杆连接, 由于连杆的运动 是来回摆动, 该运动是一种复杂运动, 难以进行惯性力的平衡, 并且 连杆的摆动会增加活塞对运动导轨侧壁的侧压力, 造成摩擦力的增加, 另外, 连杆的存在还使该机构在往复运动方向上需要具备一定的长度, 使其尺寸难以进一步缩小。
为了解决上述问题, 中国专利文献 CN85100358B公开了一种 "曲 柄圓滑块往复活塞式内燃机", 中国专利文献 CN1067741C公开了一种 "曲柄双圆滑块往复活塞式内燃机" , 中国专利文献 CN1144880A 公 开了一种 "曲柄多圆滑块往复活塞式内燃机" 。 上述内燃机的共同特 有偏心圆孔的圆滑块代替连杆。 所述偏心圆滑块呈圓柱形, 并且开有 平行于圓柱体轴线的偏心圆孔, 该偏心圓孔用于穿过曲轴的曲柄销。 该内燃机的活塞包括两端的冠部和连接两冠部的导向部, 其中导向部 上开有圆孔, 该圆孔的内径面和上述圆滑块的外径面相配合, 称为圆 滑块容置孔; 所述圆滑块即安置在活塞导向部上与其外周相配合的圆 滑块容置孔中。 当所述活塞受到气缸中燃烧气体的推动而在气缸中往 复运动时, 所述偏心圆滑块绕其自身的圓心转动, 并进而带动曲轴反 向转动, 从而将活塞的往复运动转化为曲轴的旋转运动, 再通过与曲 轴连接的旋转部件向外传递功率。 上述专利的思想也可以方便的转用 到压缩机或者抽真空机中, 获得曲柄圆滑块压缩机或者曲柄圆滑块抽 真空机。
由于取消了连杆, 其复杂的往复摆动也就被取消, 使上述曲柄圆 滑块机构能够方便地实现惯性力的完全平衡; 同样, 由于连杆的摆动 而形成的对活塞往复运动的导轨侧壁的侧压力也会消失, 使活塞往复 运动时的摩擦力显著降低; 另外, 取消连杆后, 可以显著缩小往复运 动方向的尺寸, 整个机构的尺寸得以显著缩小。
但是, 上述运动机构仍然存在一些显著的缺点, 限制了曲柄圆滑 块机构的运用。 首先, 该机构中圆滑块设置在活塞的圆滑块容置孔中, 曲柄销又需要穿过圆滑块上的偏心孔, 使该位置各个零件交汇过于集 中, 曲柄销尺寸受到限制, 不能进行大负荷传力。 其次, 运动时, 圆 滑块和曲柄销的轴承线速度高, 而且处于机构深处, 不易散热; 另一 个问题是, 该机构的行程缸径比受到圆滑块尺寸的影响, 不能 4艮高, 有可能使可燃混合气体每次点燃后产生的爆发压力无法充分释放, 造 成燃油经济性下降。 发明内容
针对上述问题, 本发明提供一种往复运动和旋转运动相互转换的 机构, 该机构无需使用圆滑块, 从而解决了曲柄圓滑块机构中由于圆 滑块的存在而带来的种种问题, 同时, 还可以继续保留曲柄圓滑块机 构中取消连杆带来的各种优点。 本发明同时提供使用于上述往复运动 和旋转运动相互转换的机构的部件, 以及使用上述往复运动和旋转运 动相互转换的机构的内燃机和压缩机。
本发明提供的一种往复运动和旋转运动相互转换的机构, 包括: 往复运动件、 旋转运动件以及支撑该机构的机架, 所述旋转运动件包 括两个端轴和连接在两个端轴之间的动轴, 其中,
所述端轴可旋转地支撑在机架上, 并且两个端轴的旋转轴位于同 一直线上, 所述端轴上开设有动轴颈容置孔, 该动轴颈容置孔的轴线 与端轴的旋转轴平行, 并且距离该旋转轴的距离为 e;
所述动轴包括动轴颈、 动轴销以及动轴臂, 其中所述动轴颈为位 于动轴端头的轴段, 该动轴的两端各有一个动轴颈, 两端的动轴颈的 轴线位于同一条直线上; 所述动轴销为一段轴段, 该动轴共有三个动 轴销, 各个动轴销的轴线均平行于所述动轴颈的轴线, 并且动轴销轴 线 巨离动轴颈轴线的 巨离也为 e, 并且相邻的动轴销在空间上具有 180 度相位差; 动轴颈和动轴销之间以及相邻的动轴销之间通过所述动轴 臂连接; 与所述端轴组成所述旋转运动件时, 动轴两端的动轴颈分别 插入相应的端轴的动轴颈容置孔, 并与动轴颈容置孔可旋转地连接; 每个动轴销至少对应设置一个往复运动件, 往复运动件上具有套 在动轴销上的动轴销孔, 动轴销孔与动轴销可旋转连接; 所述往复运 动件具有能够使其在往复运动轨道中进行直线运动的轮廓, 其中相邻 动轴销对应的往复运动件的往复运动导轨在空间上具有 90度相位差。
可选的, 对应每段动轴销的往复运动件为一个; 其中, 左右两段 的动轴销对应的往复运动件为活塞, 中间段的动轴销对应的往复运动 件为活塞、 动平衡滑块或者其它任意一种往复运动件; 所述活塞为单 作用活塞或者汉作用活塞。
可选的, 所述中间段的动轴销对应的往复运动件的质量等于左、 右动轴销对应的活塞的质量之和。
本发明还提供一种用于上述的任一种往复运动和旋转运动相互转 换的机构的部件, 该部件为端轴, 其中, 该端轴具有一个旋转轴, 并 且该端轴上开设有动轴颈容置孔, 该动轴颈容置孔的轴线与端轴的旋 转轴平行, 并且与端轴的旋转轴具有距离 e; 该距离 e和与该端轴配对 使用的动轴的动轴销轴线与动轴颈轴线的 巨离相等。
可选的, 该端轴具有端轴颈和端轴臂; 所述端轴颈能够被支撑在 机架上, 其轴线就是该端轴的旋转轴; 所述端轴臂为设置在端轴颈一 端的凸盘, 其上开设所述动轴颈容置孔。
本发明还提供一种用于上述的任一种往复运动和旋转运动相互转 换的机构的部件, 该部件为动轴, 其特征在于, 包括动轴颈、 动轴销 以及动轴臂; 其中所述动轴颈为位于动轴端头的轴段, 该动轴的两端 各有一个动轴颈, 两端的动轴颈的轴线位于同一条直线上; 所述动轴 销为一段轴段, 该动轴共有三个动轴销, 各个动轴销的轴线均平行于 所述动轴颈的轴线, 并与动轴颈轴线具有距离 e, 该距离 e和与该动轴 配对使用的端轴的动轴颈容置孔轴线与端轴的旋转轴之间的距离相 等; 相邻的动轴销在空间上具有 180度相位差; 动轴颈和动轴销之间、 以及相邻的动轴销之间通过所述动轴臂连接。
本发明还提供一种用于上述的任一种往复运动和旋转运动相互转 换的机构的旋转运动件, 包括两个端轴和连接在两个端轴之间的动轴, 其特征在于,
所述两个端轴的旋转轴位于同一直线上, 在每一端轴上均开设有 动轴颈容置孔, 该动轴颈容置孔的轴线与端轴的旋转轴平行, 并且距 离该旋转轴的 巨离为 e;
所述动轴包括动轴颈、 动轴销以及动轴臂, 其中所述动轴颈为位 于动轴端头的轴段, 该动轴的两端各有一个动轴颈, 两端的动轴颈的 轴线位于同一条直线上; 所述动轴销为一段轴段, 该动轴共有三个动 轴销, 各个动轴销的轴线均平行于所述动轴颈的轴线, 并且动轴销轴 线距离动轴颈轴线的距离也为 e,相邻的动轴销在空间上具有 180度相 接;
组成所述旋转运动件时, 所述动轴两端的动轴颈分别插入相应的 端轴的动轴颈容置孔, 并与动轴颈容置孔可旋转地连接。
本发明还提供一种用于本发明还提供往复运动和旋转运动相互转 换的机构的部件, 该部件为往复运动件, 其中, 该往复运动件具有用 于套在对应的动轴销上的动轴销孔, 所述动轴销孔与动轴销可旋转连 接; 该往复运动件具有能够使其在往复运动轨道中进行直线运动的外 廓形状。
可选的, 所述往复运动件为活塞, 其外廓形状中, 其一端或者两 端为圆柱形的活塞头, 该活塞头的外周面与作为往复运动轨道的气缸 的内径面配合; 该活塞还具有一段活塞臂, 所述动轴销孔设置在该活 塞臂上。 本发明还提供一种设备, 该设备为内燃机, 其中, 使用上述任一 项所述的往复运动和旋转运动相互转换的机构。
本发明还提供一种设备, 该设备为压缩机, 其中, 使用上述任一 项所述的往复运动和旋转运动相互转换的机构。
与现有技术相比, 本发明提供的往复运动和旋转运动相互转换的 机构, 其旋转运动件为一个轴系, 包括端轴和动轴, 所述端轴上设置 有偏置在其旋转轴一侧的动轴颈容置孔, 该动轴颈容置孔的轴线与端 轴旋转轴的距离为 e , 用于容置所述动轴的动轴颈; 所述动轴上除了与 所述端轴上的动轴颈容置孔以可旋转方式相配的动轴颈外, 还具有三 段动轴销, 这些动轴销的轴线均与动轴颈的轴线具有距离 e, 并且相邻 的动轴销空间上具有 180度相位差; 该往复运动和旋转运动相互转换 机构的往复运动件对应所述动轴销设置, 每段动轴销设置至少一个往 复运动件, 所述往复运动件上具有套在动轴销上的动轴销孔, 且两者 之间为可旋转连接, 所述往复运动件受到往复运动导轨的限制, 只能 在直线上运动, 并且相邻的动轴销对应的往复运动件的往复运动导轨 在空间上呈 90度; 利用该往复运动与旋转运动相互转换的机构, 在两 个或任意一个往复运动件的运动方向输入驱动力, 可转换为旋转运动, 并通过任意的一个端轴输出旋转运动, 从而可带动其它的外部部件 : 转动。 反之, 在端轴输入旋动运动驱动力, 可转换为两个相互垂直方 向的往复运动力; 运动时, 假设端轴以 + ω的速度旋转, 则所述动轴 以动轴颈轴线为中心, 以 - ω的速度旋转, 此时, 动轴通过动轴销可 拉着往复运动件在直线轨道上运动, 反之亦然; 该往复运动和旋转运 动相互转换的机构中, 相互垂直方向的往复运动件可将往复惯性力转 化为离心惯性力, 便于对其进行平衡。
此外, 本发明的往复运动和旋转运动转换的机构中, 由于该机构 的动轴具有三个动轴销, 其中位于两端的两个动轴销与位于中间的动 轴销的相位相反, 从而还可以相互克服活点, 使其可以解决活点问题; 所谓活点, 是指动轴销运动到 90度相位时, 即动轴销轴线与端轴轴线 重合时, 端轴和动轴可能不再按照原来的运动方向继续运动的位置点; 由于这一点上, 动轴运动方向不确定, 故称为活点; 而在本发明的技 术方案中, 动轴具有相位相反的动轴销, 由于相位相反的动轴销对应 的往复运动件在不同时刻通过活点, 使一个 (或相位相同的两个) 动 轴销处于活点时, 与之相位相反的动轴销则继续带着该动轴按照原来 的运动方向运动, 使处于活点的动轴销也能够按照原来的运动方向运 动, 最终该动轴整体上不会改变运动方向; 通过上述相互作用, 可形 服活点的机制, 旋转运动件可以持续向一个旋转方向旋转运动, 整个 转换机构的正常运动得以维持; 上述运动机理保证了机构的稳定性。
此外, 本发明的往复运动和旋转运动转换的机构中, 具有三个动 轴销, 分别为位于左右两端的笫一动轴销和第三动轴销, 以及位于中 间的第二动轴销, 且笫一动轴销和第三动轴销所对应的往复运动件的 往复运动方向相同, 并与所述第二动轴销所对应的往复运动件的往复 运动方向垂直; 而且, 第一动轴销和笫三动轴销上的往复运动件分别 设置于笫二动轴销上的往复运动件的两侧; 从而使得该机构不但可以 将相互垂直的往复惯性力转化为离心惯性力, 而且该机构产生的往复 惯性力矩也有可能获得平衡, 在选择合适的结构参数的情况下, 甚至 可以使往复惯性力矩为零。 例如, 选择将第二动轴销的往复运动件的 往复运动中心轴线布置在距离第一动轴销的往复运动件的往复运动中 心轴线和 巨离第三动轴销的往复运动件的往复运动中心轴线相等的位 置, 并且第二动轴销对应的往复运动件的质量是第一动轴销和第三动 轴销对应的往复运动件的质量之和。
而且, 本机构中, 任一往复运动件均可以作为 丈功部件, 而有同 时作为其它往复运动件的平衡部件, 通过运动构件本身便可以将往复 惯性力矩平衡, 这与传统的技术中需要另外设置额外的平衡机构的方 式 (例如正反转平衡轮系) 截然不同。
此外, 本发明提供的往复运动和旋转运动转换的机构还具有如下 的优点: 由于不设置连杆, 使该机构中不含有来回摆动的运动件, 所 有运动件的运动均为筒谐运动, 可方便的进行动平衡; 其次, 由于该 机构中不再设置圆滑块, 使其往复运动件往复运动行程的设计尺寸不 受圆滑块尺寸的限制, 可以设置得比较大, 以克服行程缸径比过小可 能造成的可燃混合气体爆发压力释放不充分的问题; 另外, 由于该机 构中不存在圆滑块设置在活塞中、 曲柄销又需要穿过圓滑块偏心孔这 样的复杂结构, 简化了机构的装配复杂度, 机构的润滑油路等也易于 设计, 便于散热; 而且, 在该机构中, 起到传力作用的动轴销直接穿 过往复运动件, 而不需要先穿过圓滑块, 再通过圆滑块与活塞等往复 运动件联系, 因此, 其尺寸可以做得比曲柄圆滑块机构中的曲柄销粗, 有利于进行大负荷传力。
上述机构可以用于将往复运动转换为旋转运动的设备中 , 例如内 燃机; 也可以用于将旋转运动转换到往复运动的设备中, 例如压缩机; 相对于传统的曲柄连杆机构的内燃机机或压缩机, 本发明的运动转换 机构构成的发动机具有诸多优点: 平衡性能好, 行程缸径比选择范围 大, 无曲轴箱, 结构紧凑, 体积重量小等; 而且, 功能灵活多变, 例 如, 作为动平衡滑块的往复运动件也可以改造为活塞, 用于发电机, 压缩机, 抽真空机等, 构成多功能机。 附图说明
图 1 为本发明的往复运动和旋转运动相互转换的机构的第一实施 例的示意图;
图 2为图 1的左视图的简图;
图 3 为本发明的往复运动和旋转运动相互转换的机构的第一实施 例中的端轴的结构示意图;
图 4 为本发明的往复运动和旋转运动相互转换的机构的第一实施 例中的动轴的结构示意图;
图 5 为本发明的往复运动和旋转运动相互转换的机构的第一实施 例中的往复运动件的示意图;
图 6 为本发明的往复运动和旋转运动相互转换的机构的第二实施 例的示意图。 具体实施方式
在下面的描述中阐述了 ί艮多具体细节以便于充分理解本发明。 但 是本发明能够以 艮多不同于在此描述的其它方式来实施, 本领域技术 人员可以在不违背本发明内涵的情况下做类似推广, 因此本发明不受 下面公开的具体实施的限制。
下面结合实施例以及附图对本发明的往复运动和旋转运动相互转 换的机构进行详纟田 ^述。 实施例一
图 1 为本发明的往复运动和旋转运动相互转换的机构的第一实施 例的示意图。 图 2为图 1左视图的简图, 该图用于说明该实施例的往 复运动件的位置关系, 图 1中表示的一些元件没有示出。 图 3、 图 4和 图 5分别为图 1所示的往复运动和旋转运动相互转换的机构的第一实 施例中各个组件的结构示意图。
请参考图 1 , 本实施例中, 以所述动轴销为三个, 对应每一个均有 一个往复运动件为例进行说明。
本实施例中, 往复运动和旋转运动相互转换的机构包括第一往复 运动件 14a、 第二往复运动件 14b和第三往复运动件 14c, 以及旋转运 动件和支撑该机构的机架 (图中未示出) 。
所述旋转运动件为一个轴系, 包括位于两端的第一端轴 10a和第 二端轴 10b以及以转动副连接在所述的第一端轴 10a和第二端轴 10b 之间的动轴 15。 所述往复运动件 14a、 14b和 14c分别套接于所述的动 轴 15的三个动轴销上, 并与相应的动轴销构成转动副。
请继续参考图 1 ,所述的第一端轴 10a和第二端轴 10b具有共同的 轴线 m。当所述的两个端轴沿图 1中箭头 11所示的方向沿其轴线 m转 动时, 第一往复运动件 14a和笫三往复运动件 14c可沿图 1 中箭头 13 的方向 #文往复直线运动, 而第二往复运动件 14b可沿垂直于所述笫一 往复运动件 14a和第三往复运动件 14c运动方向做往复直线运动(如图 2所示, 其中, 图 2中笫一往复运动件 14a和第三往复运动件 14c往复 运动的方向相同, 图 2中仅示出第一往复运动件 14a )。 利用图 1所示 的结构, 可实现沿箭头 11 所示的旋转运动与图 1 中的箭头 13和图 2 中的箭头 13b 所示的往复运动之间的相互转换。 当然, 所述端轴 10a 和 10b的旋转方向还可以是与箭头 1 1所示的方向相反的方向。
下面结合图 3、图 4以及图 5分别对图 1中示出的机构的各个组件 进行详细描述。
图 3 为本发明的往复运动和旋转运动相互转换的机构的第一实施 例中的端轴的结构示意图。图 1中示出的第一端轴 10a和第二端轴 10b 可以完全相同, 图 3中仅示出其中的笫一端轴 10a。
请参考图 3 ,本实施例中,第一端轴 10a包括端轴颈 1和端轴臂 2。 其中, 所述端轴颈 1 可转动的固定于机架上, 具体固定方式可通过滚 动轴承或者滑动轴承, 以及其它可能的可转动固定方式。 固定时, 图 1 中示出的第一端轴 10a和第二端轴 10b的端轴颈的轴线位于同一直线 上, 也即二者可以绕共同的轴线旋转, 该轴线就是端轴的轴线 m。
所述的端轴臂 2为设置于端轴颈 1 的内侧端 (即朝向图 1 中所示 的动轴 15的端部) 的凸盘, 在所述端轴臂 2上开设有容纳动轴 15的 动轴颈 (请参考图 4所示) 的动轴颈容置孔 3。 所述的动轴颈容置孔 3 的轴线与所述端轴颈 1 的轴线平行, 且偏离所述端轴颈 1 的轴线的距 离为 e, 如图 3所示。
此外, 也可以将所述端轴臂 2通过轴承直接固定于机架之上 (此 时, 所述端轴臂 2需要为圆柱体, 且该圆柱形体的中心轴线与端轴颈 1 的轴线重合) , 而端轴颈 1 可用于传递扭矩, 向外输出动力。 当然, 所述第一端轴 10a也可以不设置所述的端轴颈 1 ,仅有圆柱体形状的端 轴臂 2构成, 并在所述端轴臂上设置所述的动轴颈容置孔 3。
所述的第一端轴 10a还可以具有其它结构, 但其至少包括一旋转 轴使该第一端轴 10a可以绕所述的旋转轴转动, 以及包括设置于该端 轴上并偏离所述旋转轴的一个动轴颈容置孔。
此外, 本实施例的图 1 中所示出的笫一端轴 10a和笫二端轴 10b 结构也可以不必相同, 只要二者在机架上固定后具有共同的旋转轴, 且动轴颈容置孔中心轴线与该旋转轴的距离相同即可。
图 4 为本发明的往复运动和旋转运动相互转换的机构的笫一实施 例中的动轴 15的结构示意图。
请参考图 4 , 动轴 15 包括第一动轴颈 4a和第二动轴颈 4b , 第一 动轴销 6a、 第二动轴销 6b和第三动轴销 6c, 以及第一动轴臂 5a、 第 二动轴臂 5b、 第三动轴臂 5c和第四动轴臂 5d。
其中, 第一动轴颈 4a和第二动轴颈 4b为轴段, 分别位于动轴 15 的两端, 且第一动轴颈 4a和第二动轴颈 4b的轴线位于同一直线上。
本实施例中, 动轴销为三个, 分别为图 4所示的第一动轴销 6a、 第二动轴销 6b和第三动轴销 6c。 所述的第一动轴销 6a、 第二动轴销 6b和第三动轴销 6c也同样为轴段, 其长度可以与第一动轴颈 4a和笫 二动轴颈 4b不同。 所述笫一动轴销 6a、 第二动轴销 6b和笫三动轴销 6c的轴线均平行于所述第一动轴颈 4a和第二动轴颈 4b的轴线, 且笫 一动轴销 6a、 第二动轴销 6b和第三动轴销 6c的轴线距第一动轴颈 4a 和笫二动轴颈 4b的轴线的距离均为 e, 也即与图 3中所示的动轴颈容 置孔 3的轴线偏离其端轴颈 1的距离相同。 而且, 第一动轴销 6a和第 二动轴销 6b、 第二动轴销 6b和第三动轴销 6c在空间上具有 180度的 相位差, 即所述第一动轴销 6a和第三动轴销 6c位于所述笫一动轴颈 4a和笫二动轴颈 4b的同侧, 而所述的第二动轴销 6b则位于与所述第 一动轴销 6a和笫三动轴销 6c相对的一侧, 且第一动轴销 6a和笫三动 轴销 6b的轴线共线, 其轴线距离所述第一动轴颈 4a和第二动轴颈 4b 的共同轴线的距离和第二动轴销 6b的轴线与该共同轴线的距离相等。
第一动轴颈 4a和笫一动轴销 6a、笫一动轴销 6a和第二动轴销 6b、 笫二动轴销 6b和第三动轴销 6c以及第二动轴颈 4b和第三动轴销 6c 之间分别通过第一至笫四动轴臂 5a、 5b、 5d和 5c连接, 其中, 上述的 动轴颈、 动轴臂以及动轴销可以一体成形 , 也可以分别制成, 再通过 连接件固定连接, 这里不再赘述。
该机构安装完成后, 所述的动轴 15的第一动轴颈 4a和第二动轴 颈 4b分别插入图 3中所示的两端轴的动轴颈容置孔中, 构成转动副。
图 5 为本发明的往复运动和旋转运动相互转换的机构的第一实施 例中的往复运动件的示意图。
参考图 5 , 往复运动件具有套在图 4中所示的动轴 15的动轴销上 的动轴销孔 7 , 在往复运动件套接于所述动轴的动轴销上时 , 构成转动 副。 此外, 所述往复运动件还具有能够使其在往复运动轨道中进行直 线运动的外廓形状。
本实施例中, 所述的往复运动件为三个, 分别为笫一往复运动件 14a、第二往复运动件 14b和笫三往复运动件 14c (如图 1和图 2所示), 且分别套接于图 4所示的动轴 15的第一动轴销 6a、 笫二动轴销 6b和 第三动轴销 6c上。 上述三个往复运动件可分别置于往复运动导轨中, 其外廓与往复运动导轨相配合。
上述第二往复运动件 14b 的往复运动导轨方向与所述第一往复运 动件 14a和第三往复运动件 14c的往复运动导轨在空间上均具有 90度 的相位差,而第一往复运动件 14a和笫二往复运动件 14c的往复运动导 轨平行设置。例如, 笫一往复运动件 14a和第三往复运动件 14c的往复 运动导轨可沿图 1所示的箭头 13方向布置, 而笫二往复运动件 14b的 往复运动导轨方向可沿图 2箭头 13b的方向布置。 另外, 为了获得最佳的往复惯性力和往复惯性力矩平衡效果, 可 设置第一往复运动件 14a和第三往复运动件 14c的质量之和与第二往复 运动件 14b 的质量相同。 相应的, 还需要设置第二往复运动轨道轴线 与第一往复运动轨道轴线和与第三往复运动轨道轴线的距离相等。
此外, 在每一动轴 15的动轴销上也可以并列设置两个或两个以上 的往复运动件, 这里不再详细论述。
上述的实施例中, 提供的往复运动和旋转运动相互转换的机构, 其旋转运动件为一个轴系, 包括端轴和动轴, 所述端轴上设置有偏置 在其旋转轴一侧的动轴颈容置孔, 该动轴颈容置孔的轴线与端轴旋转 轴的距离为 e , 用于容置所述动轴的动轴颈; 所述动轴上除了与所述端 轴上的动轴颈容置孔以可旋转方式相配的动轴颈外, 还具有三段动轴 销, 这些动轴销的轴线均与动轴颈的轴线具有距离 e , 并且相邻的动轴 销空间上具有 180度相位差。 该往复运动和旋转运动相互转换机构的 往复运动件对应所述动轴销设置, 每段动轴销设置一个往复运动件, 所述往复运动件上具有套在动轴销上的动轴销孔 , 且两者之间为可旋 转连接, 所述往复运动件受到往复运动导轨的限制, 只能在直线上运 动, 并且相邻的动轴销对应的往复运动件的往复运动导轨在空间上具 有 90度相位差。
利用上述的实施例的往复运动与旋转运动相互转换的机构, 在两 个或任意一个往复运动件的运动方向输入驱动力, 可转换为旋转运动, 并通过任意的一个端轴输出旋转运动, 从而可带动其它的外部部件做 转动。 反之,.在端轴输入旋动运动驱动力, 可转换为两个相互垂直方 向的往复运动力。 运动时, 假设端轴以 + ω的速度旋转, 则所述动轴 以动轴颈轴线为中心, 以 - ω的速度旋转, 此时, 动轴通过动轴销可 拉着往复运动件在直线轨道上运动, 反之亦然。
本实施例的往复运动和旋转运动相互转换的机构中, 相互垂直方 向的往复运动件可相互平衡往复惯性力, 将往复惯性力转化为离心惯 性力, 便于进行平衡, 从而使机构获得良好的平衡性能。
此外, 本实施例的往复运动和旋转运动转换的机构中, 由于该机 构的动轴具有三个动轴销, 其中两个与另外的一个相位相反, 从而还 可以相互克服活点的问题, 使其可以方便的克服活点问题。 所谓活点, 是指动轴销运动到 90度相位时, 即动轴销轴线与端轴轴线重合时, 端 轴和动轴可能不再按照上述运动规律运动继续运动的位置点; 由于这 一点上, 动轴运动方向不确定, 称为活点。 而在本实施例中, 动轴具 有相位相反的动轴销 (其中两个与另外的一个相位相反) , 由于相位 相反的动轴销对应的往复运动件在不同时刻通过活点, 使一个 (或相 位相同的两个)动轴销处于活点时, 与之相位相反的动轴销则继续带 着该动轴按照原来的运动规律 动, 使处于活点的动轴销也能够按照 原来的运动规律运动, 最终该动轴整体上不会改变运动规律。 通过上 述相互作用 , 可形成具有相位相反的动轴销的动轴的各个动轴销相互 帮助其它动轴销克服活点的机制, 旋转运动件可以持续向一个旋转方 向旋转运动, 整个转换机构的正常运动得以维持。 上述运动机理保证 了机构的稳定性。
此外,对于仅有两个动轴销的往复运动和旋转运动转换的机构 (该 动轴销上具有往复运动方向相互垂直的往复运动件 , 虽然该机构也能 够将相互垂直的往复惯性力转换为离心惯性力, 使得往复惯性力得以 转化并易于平衡, 但是其整个机构的往复惯性力矩并未得到平衡, 必 要时, 还需要额外的平衡机构来对往复惯性力矩进行平衡或减小。
而本申请中的上述的往复运动和旋转运动转换的机构中, 具有三 个动轴销, 分别为笫一动轴销 6a、 第二动轴销 6b和第三动轴销 6c , 且 第一动轴销 6a和第三动轴销 6c所对应的往复运动件 14a和 14c的往复 运动方向相同, 并与所述笫二动轴销 6c所对应的往复运动件 14b的往 复运动方向垂直; 而且, 第一往复运动件 14a 和第三往复运动件 14c 设置于第二往复运动件 14b 两侧。 从而使得该机构不但可以将相互垂 直的往复惯性力转化为离心惯性力, 而且该机构产生的往复惯性力矩 也得以平衡, 整体的往复惯性力矩为零。 总之, 本机构中, 第一往复 运动件 14a、 第二往复运动件 14b和第三往复运动件 14c , 均可以作为 做功部件, 而任一往复运动件 居需要又可以作为其它往复运动件的 平衡部件, 通过运动机构本身便可以将往复惯性力矩平衡。 这与传统 的技术中需要另外设置额外的平衡机构的方式(例如正反转平衡轮系) 截然不同。
此外, 本申请中提供的机构还具有如下显著的优点: 由于不设置 连杆, 使该机构中不含有来回摆动的运动件, 所有运动件的运动均为 简谐运动, 可方便的进行动平衡; 其次, 由于该机构中不再设置圆滑 块, 使其往复运动件往复运动行程的设计尺寸不受圆滑块尺寸的限制, 可以设置得比较大, 以克月 I行程缸径比过小可能造成的可燃混合气体 爆发压力释放不充分的问题; 另外, 由于该机构中不存在圆滑块设置 在活塞中、 曲柄销又需要穿过圆滑块偏心孔这样的复杂结构, 简化了 机构的装配复杂度, 机构的润滑油路等也易于设计, 便于散热。
而且, 在该机构中, 起到传力作用的动轴销直接穿过往复运动件, 而不需要先穿过圆滑块, 再通过圆滑块与活塞等往复运动件联系, 因 此, 其尺寸可以做得比曲柄圆滑块机构中的曲柄销粗, 有利于进行大 负荷传力。
此外, 本实施例的往复运动和旋转运动转换的机构结构简单紧凑, 零件数目少, 易于维护。 因而, 本发明的实施例的转换机构可应用于 内燃机和压缩机中, 替代传统的曲柄连杆的运动转换机构。 例如, 位 于左右两边的往复运动件可作为活塞, 中间的往复运动件可以作为动 平衡滑块、 活塞或其它形式的往复运动件。 此外, 也可以中间的往复 运动件为活塞, 而位于左右两边的往复运动件为动平衡滑块。 其中, 所述往复运动件为活塞时, 其结构可以如下: 其外廓形状中具有一段 圆柱形的活塞头, 该圆柱形的外周面配合作为往复运动轨道的气缸内 径面设置; 该活塞还具有一段伸出的活塞臂, 所述动轴销孔设置在该 活塞臂上。
相对于传统的曲柄连杆机构的内燃机机或压缩机, 本发明的运动 转换机构构成的发动机具有诸多优点, 例如, 平衡性能好, 行程缸径 比选择范围大, 无曲轴箱, 结构紧凑, 体积重量小等。 而且, 功能灵 活多变, 例如, 作为动平衡滑块的往复运动件也可以改造为活塞, 用 于发电机, 压缩机, 抽真空机等, 构成多功能机。 本发明的运动转换 机构的组件与传统的曲柄连 4干机构中的组件结构大致相同, 因而与传 统的机构具有 艮好继承性, 容易实现。 实施例二
图 6 为本发明的往复运动与旋转运动相互转换的机构的第二实施 例的示意图。 本实施例中, 位于左右两端的第一曲柄销 6a和第三曲柄 销 6c 对应的往复运动件为双作用活塞, 而位于中间的第二曲柄销 6b 对应的往复运动件为动平衡滑块, 利用本实施例的往复运动和旋转运 动相互转换的机构也可以构成 H型四缸内燃机和压缩机。 本实施例的 其它方面与上述的实施例一相同, 并具有相同的有益效果, 这里不赘 述。
此外; 如果笫二动轴销 6b上的往复运动件换为单作用活塞, 则可 构成 H—丄型五缸机。 可见, 在各个动轴销上均可装配单作用活塞、 双作用活塞以及动平衡滑块, 而不同的活塞又可实现诸如压缩空气, 抽气以及内燃机活塞等不同的功能, 它们之间組合可产生多种形式的 内燃机以及多功能机器, 本领域技术人员根据本发明的教导可以做出 相应的改变, 这些改变后的形式均应包含在本发明的保护范围之内。
上述的实施例仅以动轴具有三个动轴销的情形对本发明进行了说 明, 当然, 动轴的动轴销还可以是以三个一组, 形成六个、 九个等形 式的机构, 每一个动轴销上至少安装有一个往复运动件, 也可以安装 两个或者多个往复运动轨道在同一个直线方向上的往复运动件。 其变 化非常多样, 这里不再——进行描述, 本领域技术人员可以根据本发 明的教导做出相应的改变。 这些改变后的形式均应包含在本发明的保 护范围之内。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领 域的普通技术人员来说, 在不脱离本发明基本原理的前提下, 还可以 #文出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种往复运动和旋转运动相互转换的机构, 包括: 往复运动件、 旋转运动件以及支撑该机构的机架, 其特征在于,
所述旋转运动件包括两个端轴和连接在两个端轴之间的动轴, 其 中,
所述端轴可旋转地支撑在机架上, 并且两个端轴的旋转轴位于同 一直线上, 所述端轴上开设有动轴颈容置孔, 该动轴颈容置孔的轴线 与端轴的旋转轴平行, 并且距离该旋转轴的距离为 e;
所述动轴包括动轴颈、 动轴销以及动轴臂, 其中所述动轴颈为位 于动轴端头的轴段, 该动轴的两端各有一个动轴颈, 两端的动轴颈的 轴线位于同一条直线上; 所述动轴销为一段轴段, 该动轴共有三个动 轴销, 各个动轴销的轴线均平行于所述动轴颈的轴线, 并且动轴销轴 线距离动轴颈轴线的距离也为 e, 并且相邻的动轴销在空间上具有 180 度相位差; 动轴颈和动轴销之间以及相邻的动轴销之间通过所述动轴 臂连接; 与所述端轴组成所述旋转运动件时, 动轴两端的动轴颈分别 插入相应的端轴的动轴颈容置孔, 并与动轴颈容置孔可旋转地连接; 每个动轴销至少对应设置一个往复运动件, 往复运动件上具有套 在动轴销上的动轴销孔, 动轴销孔与动轴销可旋转连接; 所述往复运 动件具有能够使其在往复运动轨道中进行直线运动的轮廓, 其中相邻 动轴销对应的往复运动件的往复运动导轨在空间上具有 90度相位差。
2、 才艮据权利要求 1所述的往复运动和旋转运动相互转换的机构, 其特征在于, 对应每段动轴销的往复运动件为一个; 其中, 左右两段 的动轴销对应的往复运动件为活塞, 中间段的动轴销对应的往复运动 件为活塞、 动平衡滑块或者其它任意一种往复运动件; 所述活塞为单 作用活塞或者默作用活塞。
3、 艮据权利要求 2所述的往复运动和旋转运动相互转换的机构, 其特征在于, 所述中间段的动轴销对应的往复运动件的质量等于左、 右动轴销对应的活塞的质量之和。
4、 一种用于权利要求 1或 2或 3所述的往复运动和旋转运动相互 转换的机构的部件, 该部件为端轴, 其特征在于, 该端轴具有一个旋 转轴, 并且该端轴上开设有动轴颈容置孔, 该动轴颈容置孔的轴线与 端轴的旋转轴平行, 并且与端轴的旋转轴具有距离 e; 该距离 e和与该 端轴配对使用的动轴的动轴销轴线与动轴颈轴线的距离相等。
5、 根据权利要求 4所述的往复运动和旋转运动相互转换的机构的 部件, 其特征在于, 该端轴具有端轴颈和端轴臂; 所述端轴颈能够被 支撑在机架上, 其轴线就是该端轴的旋转轴; 所述端轴臂为设置在端 轴颈一端的凸盘, 其上开设所述动轴颈容置孔。
6、 一种用于权利要求 1或 2或 3所述的往复运动和旋转运动相互 转换的机构的部件, 该部件为动轴, 其特征在于, 包括动轴颈、 动轴 销以及动轴臂; 其中所述动轴颈为位于动轴端头的轴段, 该动轴的两 端各有一个动轴颈, 两端的动轴颈的轴线位于同一条直线上; 所述动 轴销为一段轴段, 该动轴共有三个动轴销, 各个动轴销的轴线均平行 于所述动轴颈的轴线, 并与动轴颈轴线具有 巨离 e, 该距离 e和与该动 轴配对使用的端轴的动轴颈容置孔轴线与端轴的旋转轴之间的距离相 等; 相邻的动轴销在空间上具有 180度相位差; 动轴颈和动轴销之间、 以及相邻的动轴销之间通过所述动轴臂连接。
7、 一种用于权利要求 1或 2或 3所述的往复运动和旋转运动相互 转换的机构的旋转运动件, 包括两个端轴和连接在两个端轴之间的动 轴, 其特征在于,
所述两个端轴的旋转轴位于同一直线上, 在每一端轴上均开设有 动轴颈容置孔, 该动轴颈容置孔的轴线与端轴的旋转轴平行, 并且距 离该旋转轴的 巨离为 e;
所述动轴包括动轴颈、 动轴销以及动轴臂, 其中所述动轴颈为位 于动轴端头的轴段, 该动轴的两端各有一个动轴颈, 两端的动轴颈的 轴线位于同一条直线上; 所述动轴销为一段轴段, 该动轴共有三个动 轴销, 各个动轴销的轴线均平行于所述动轴颈的轴线, 并且动轴销轴 线距离动轴颈轴线的距离也为 e ,相邻的动轴销在空间上具有 180度相 位差; 动轴颈和动轴销之间以及相邻的动轴销之间通过所述动轴臂连 接;
組成所述旋转运动件时, 所述动轴两端的动轴颈分别插入相应的 端轴的动轴颈容置孔, 并与动轴颈容置孔可旋转地连接。
8、 一种用于权利要求 1或 2或 3所述的往复运动和旋转运动相互 转换的机构的部件, 该部件为往复运动件, 其特征在于, 该往复运动 件具有用于套在对应的动轴销上的动轴销孔, 所述动轴销孔与动轴销 可旋转连接; 该往复运动件具有能够使其在往复运动轨道中进行直线 运动的外廓形状。
9、 根据权利要求 8所述的往复运动和旋转运动相互转换的机构的 部件, 其特征在于, 所述往复运动件为活塞, 其外廓形状中, 其一端 或者两端为圆柱形的活塞头, 该活塞头的外周面与作为往复运动轨道 的气缸的内径面配合; 该活塞还具有一段活塞臂, 所述动轴销孔设置 在该活塞臂上。
10、 一种设备, 该设备为内燃机, 其特征在于, 使用权利要求 1 至 3任一项所述的往复运动和旋转运动相互转换的机构。
11、 一种设备, 该设备为压缩机, 其特征在于, 使用权利要求 1 至 3任一项所述的往复运动和旋转运动相互转换的机构。
PCT/CN2010/000380 2009-10-16 2010-03-26 往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备 WO2011044743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910236026.5 2009-10-16
CN200910236026 2009-10-16

Publications (1)

Publication Number Publication Date
WO2011044743A1 true WO2011044743A1 (zh) 2011-04-21

Family

ID=43102365

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2010/000380 WO2011044743A1 (zh) 2009-10-16 2010-03-26 往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备
PCT/CN2010/000381 WO2011044744A1 (zh) 2009-10-16 2010-03-26 旋转运动和往复运动相互转换的机构及其部件、设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000381 WO2011044744A1 (zh) 2009-10-16 2010-03-26 旋转运动和往复运动相互转换的机构及其部件、设备

Country Status (2)

Country Link
CN (1) CN101893075A (zh)
WO (2) WO2011044743A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2818541A1 (es) * 2021-01-15 2021-04-13 Ramon Jose Manuel Oliver Mecanismo para transformar un movimiento rectilineo alternativo en un movimiento circular continuo

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105387166A (zh) * 2015-08-19 2016-03-09 王全忠 一种动力传输轴与齿轮组合体同步运动机械机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128557A (zh) * 1994-05-10 1996-08-07 日本朗韦尔株式会社 曲柄装置及机械装置
CN2381792Y (zh) * 1999-08-23 2000-06-07 冀祥富 连杆作直线运动的发动机
CN1598270A (zh) * 2004-08-18 2005-03-23 何观龙 一种高热效内燃机活塞零侧压技术及装置
US20070215093A1 (en) * 2006-03-16 2007-09-20 Achates Power, Llc Opposed piston internal-combustion engine with hypocycloidal drive and generator apparatus
CN101324202A (zh) * 2007-08-09 2008-12-17 孙德全 活塞式倍行程连杆无摆动发动机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685342A (en) * 1985-05-15 1987-08-11 Brackett Douglas C Device for converting linear motion to rotary motion or vice versa
CN1008296B (zh) * 1985-10-18 1990-06-06 江宁平 内摆曲柄连杆机构
CN2081891U (zh) * 1990-11-10 1991-07-31 湖南长沙汽车发动机研究所 四缸强化型汽油机
CN1075774A (zh) * 1992-02-28 1993-09-01 左学禹 无曲轴连杆发动机和压缩机
RU2011073C1 (ru) * 1992-09-04 1994-04-15 Константин Владимирович Староверов Эксцентриковый привод
CN1067741C (zh) * 1995-06-13 2001-06-27 辽宁大安发动机研究所 曲柄双圆滑块往复活塞式内燃机
RU2094679C1 (ru) * 1995-07-26 1997-10-27 Николай Иванович Павлов Бесшатунный механизм
JPH0960700A (ja) * 1995-08-29 1997-03-04 Oyo Koden Kenkiyuushitsu:Kk 往復運動装置
WO1998022730A1 (en) * 1996-11-18 1998-05-28 Enviro Motor (1996) Limited Rotary to reciprocating motion conversion linkage
ES2187357B1 (es) * 2001-07-05 2004-09-16 Carles Simon Moya Dispositivo de conversion de movimiento rotativo en rectilineo alternativo.
CN1555465A (zh) * 2001-08-24 2004-12-15 肯德尔・利・斯潘格勒 带有连续主轴颈和对应的连接结构的曲轴
JP2004138229A (ja) * 2002-08-23 2004-05-13 Toyota Motor Corp 内燃機関の運動方向変換構造
CN101761618B (zh) * 2009-10-16 2012-07-04 北京中清能发动机技术有限公司 往复运动和旋转运动相互转换的机构及其部件、设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128557A (zh) * 1994-05-10 1996-08-07 日本朗韦尔株式会社 曲柄装置及机械装置
CN2381792Y (zh) * 1999-08-23 2000-06-07 冀祥富 连杆作直线运动的发动机
CN1598270A (zh) * 2004-08-18 2005-03-23 何观龙 一种高热效内燃机活塞零侧压技术及装置
US20070215093A1 (en) * 2006-03-16 2007-09-20 Achates Power, Llc Opposed piston internal-combustion engine with hypocycloidal drive and generator apparatus
CN101324202A (zh) * 2007-08-09 2008-12-17 孙德全 活塞式倍行程连杆无摆动发动机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2818541A1 (es) * 2021-01-15 2021-04-13 Ramon Jose Manuel Oliver Mecanismo para transformar un movimiento rectilineo alternativo en un movimiento circular continuo

Also Published As

Publication number Publication date
WO2011044744A1 (zh) 2011-04-21
CN101893075A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
US8789455B2 (en) Drive mechanism for an oscillating piston rotor
WO1998026165A1 (fr) Ensemble entraine par une machine destine a une connexion directe dans un moteur a combustion interne
JP2010535978A (ja) 回転抑止機構を有するアキシャルピストン機械
JPH08507353A (ja) 揺動ヨーク装置
JP5161306B2 (ja) 往復回転動力変換装置
JPH0623521B2 (ja) エンジン等における運動変換装置
JPH10220547A (ja) 振動の少ない運動変換機構、内燃機関及びレシプロ型圧縮機
US7926462B2 (en) Kinetic energy generation device
US1904892A (en) Rotary engine compressor and the like
WO2011044743A1 (zh) 往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备
JP3626018B2 (ja) 直線往復2移動体の直結型クランク装置
CN101813170B (zh) 往复运动和旋转运动相互转换的机构及其部件、设备
US6334423B1 (en) Reciprocating piston engine and its link mechanism
CN101761618B (zh) 往复运动和旋转运动相互转换的机构及其部件、设备
JP2003510528A (ja) 直線往復運動から回転運動への変換
CN108591009A (zh) 一种活塞式空压机、运动转换机构及车用空压机
RU2287071C1 (ru) Двигатель внутреннего сгорания
JP3426113B2 (ja) 往復動ピストン機構
JP2010144857A (ja) 内燃機関におけるバランス装置
JP2009121540A (ja) クランク装置
KR100880916B1 (ko) 왕복회전 동력변환장치
JPH11343801A (ja) 往復動ピストン機関及びリンク機構
JP5552198B1 (ja) 内燃機関
SU1740769A1 (ru) Качающий узел аксиально-поршневой гидро-или пневмомашины
JP2000073778A (ja) 円弧状円形ピストンによる内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822975

Country of ref document: EP

Kind code of ref document: A1