WO2011044744A1 - 旋转运动和往复运动相互转换的机构及其部件、设备 - Google Patents

旋转运动和往复运动相互转换的机构及其部件、设备 Download PDF

Info

Publication number
WO2011044744A1
WO2011044744A1 PCT/CN2010/000381 CN2010000381W WO2011044744A1 WO 2011044744 A1 WO2011044744 A1 WO 2011044744A1 CN 2010000381 W CN2010000381 W CN 2010000381W WO 2011044744 A1 WO2011044744 A1 WO 2011044744A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving
shaft
moving shaft
reciprocating
pin
Prior art date
Application number
PCT/CN2010/000381
Other languages
English (en)
French (fr)
Inventor
黎明
黎正中
Original Assignee
北京中清能发动机技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中清能发动机技术有限公司 filed Critical 北京中清能发动机技术有限公司
Publication of WO2011044744A1 publication Critical patent/WO2011044744A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/10Crankshafts assembled of several parts, e.g. by welding by crimping

Definitions

  • the present invention relates to a motion conversion mechanism, and more particularly to a mechanism for converting a rotary motion and a reciprocating motion.
  • the present invention also relates to the components constituting the above mechanism, and the apparatus obtained by the above mechanism. Background technique
  • a reciprocating internal combustion engine needs to convert a reciprocating linear motion generated by a piston under the explosion pressure of a combustible mixed gas into a rotational motion of a crankshaft; in contrast, the compressor needs to convert a crankshaft rotation driven by an external motor into a reciprocating linear motion of the piston.
  • the above two kinds of conversions have the same kinematics requirements for the mechanism except for the active parts. Therefore, the mechanism for converting the reciprocating linear motion into the rotary motion can be realized, and generally, the rotary motion can be converted into the reciprocating linear motion.
  • crank-and-rod mechanism A number of mechanisms for reciprocating linear and rotational motions have been provided in the prior art. In general, the above-described conversion is achieved using a crank-and-rod mechanism. At present, most internal combustion engines and compressors use a crank-and-rod mechanism.
  • the mechanism is characterized in that a reciprocating linear moving member and a rotating moving member need to be connected by a swinging connecting rod. Since the movement of the connecting rod is swinging back and forth, the movement is a complicated motion, and it is difficult to balance the inertial force, and The swing of the connecting rod increases the side pressure of the piston on the side wall of the moving rail, resulting in an increase in friction. In addition, the presence of the connecting rod also requires the mechanism to have a certain length in the reciprocating direction, making it difficult to further reduce the size.
  • a Chinese patent document CN85100358B discloses a "cranked circular slider reciprocating piston type internal combustion engine”
  • a Chinese patent document CN1067741C discloses a “crank double circular slider reciprocating piston type internal combustion engine”
  • Chinese patent document CN1144880A discloses a kind.
  • the circular slider of the common internal eccentric hole of the above-mentioned internal combustion engine replaces the flail.
  • the eccentric circular slider has a cylindrical shape and is opened An eccentric circular hole parallel to the axis of the cylinder for passing through the crank pin of the crankshaft.
  • the piston of the internal combustion engine includes a crown portion at both ends and a guiding portion connecting the two crown portions, wherein the guiding portion is provided with a circular hole, and an inner diameter surface of the circular hole is matched with an outer diameter surface of the circular slider, which is called a circular slider receiving hole.
  • the circular slider is disposed in the circular slider receiving hole of the piston guiding portion and the outer circumference thereof.
  • the above-mentioned motion mechanism still has some significant drawbacks, which limits the use of the crank-sliding block mechanism.
  • the circular slider of the mechanism is arranged in the circular slider accommodating hole of the piston, and the crank pin needs to pass through the eccentric hole on the circular slider, so that the intersection of the parts at the position is too concentrated, the size of the crank pin is limited, and the heavy load cannot be performed. Passing power.
  • the linear speed of the bearing of the circular slider and the crank pin is high, and it is deep in the mechanism, which is not easy to dissipate heat.
  • the present invention provides a mechanism for converting a rotary motion and a reciprocating motion, which does not require the use of a circular slider, thereby solving various problems caused by the existence of a circular slider in the crank circular slider mechanism, and at the same time, Continue to retain the various advantages of canceling the connecting rod in the crank circular slider mechanism.
  • the present invention simultaneously provides a member for a mechanism for converting the above-described rotational motion and reciprocating motion, and an internal combustion engine and a compressor which use the above-described mechanism for mutually converting the rotational motion and the reciprocating motion.
  • the invention provides a mechanism for mutually converting a rotary motion and a reciprocating motion, comprising: a reciprocating member, a rotary moving member and a frame supporting the mechanism, the rotary moving member comprising two end shafts and connecting the two end shafts Moving axis, among them,
  • the end shaft is rotatably supported on the frame, and the rotating shafts of the two end shafts are located on the same straight line, and the end shaft is provided with a moving shaft neck receiving hole, and the axis of the moving shaft neck receiving hole is The axis of rotation of the end shaft is parallel, and the distance from the axis of rotation is e;
  • the moving shaft comprises a moving journal, a moving shaft pin and a moving shaft arm, wherein the moving shaft neck is a shaft section at the end of the moving shaft, and the moving shaft has a moving journal at each end thereof, and the moving shaft at both ends
  • the axis of the neck is on the same straight line;
  • the moving shaft pin is a section of the shaft, the moving shaft has two or more even number of moving shaft pins, and the axes of the moving shaft pins are parallel to the moving journal
  • the axis, and the axis of the moving pin pin is also e from the axis of the moving journal, and the adjacent moving pin has a phase difference of 180 degrees in space; between the moving journal and the moving pin and adjacent movement
  • the shaft pins are connected by the moving shaft arm; when the rotating shaft is formed by the end shaft, the moving journals at both ends of the moving shaft are respectively inserted into the moving shaft neck receiving holes of the corresponding end shafts, and the moving shaft
  • the neck receiving hole is rotatably connected;
  • Each of the moving shaft pins is correspondingly provided with at least one reciprocating member, and the reciprocating member has a moving shaft pin hole sleeved on the moving shaft pin, and the moving shaft pin hole and the moving shaft pin are rotatably connected; the reciprocating member has a The contour of the linear motion in the reciprocating orbit, wherein the reciprocating guide of the reciprocating member corresponding to the adjacent moving shaft pin has a phase difference of 90 degrees in space.
  • the moving shaft pin has two; each of the moving shaft pins has a reciprocating member, one of which is a piston, and the other is a piston, a dynamic balance slider or any other reciprocating member.
  • the piston is a single acting piston or a double acting piston.
  • the two reciprocating members are of the same quality.
  • the present invention also provides a component for a mechanism for mutually converting a rotational motion and a reciprocating motion according to any of the above, the component being an end shaft, characterized in that the end shaft has a rotation axis, and the end shaft a moving shaft neck receiving hole is provided, the axis of the moving shaft neck receiving hole is parallel to the rotating shaft of the end shaft, and has a distance e from the rotating shaft of the end shaft; the distance e and the moving shaft used for pairing with the end shaft
  • the axis of the moving pin is equal to the axis of the moving journal.
  • the end shaft has an end journal and an end shaft arm, and the end journal can be supported on the frame, the axis of which is the rotation axis of the end shaft; the end shaft arm is disposed at the end journal a convex disk at one end, the movable glaze neck receiving hole is opened on the convex disk.
  • the present invention also provides a rotary motion and a reciprocating phase for use in any of the above a component of a mutual conversion mechanism, the component being a moving shaft, comprising: a moving journal, a moving shaft pin, and a moving shaft arm; wherein the moving journal is a shaft segment at a moving shaft end, the moving shaft There is a moving journal at each end, and the axes of the moving journals at both ends are on the same straight line; the moving shaft pin is a segment of the shaft, and the moving shaft has two or more even-numbered moving shaft pins, each The axis of the moving pin is parallel to the axis of the moving journal and has a distance e from the axis of the moving journal, the major axis e and the axis of the moving shaft neck of the end shaft used in conjunction with the moving shaft The distance between the axes of rotation of the shafts is equal; the adjacent moving shaft pins have a phase difference of 180 degrees in space; between the moving journal and the moving shaft pins, and between the adjacent moving shaft
  • the present invention also provides a rotary motion member of a mechanism for mutually rotating a rotary motion and a reciprocating motion according to any of the above, comprising: two end shafts and a movable shaft coupled between the two end shafts, wherein
  • the two end shafts are rotatably supported on the frame, and the rotating shafts of the two end shafts are located on the same straight line, and the end shaft is provided with a moving shaft neck receiving hole, and the moving shaft neck is accommodated
  • the axis of the hole is parallel to the axis of rotation of the end shaft, and the distance from the axis of rotation is e;
  • the moving shaft comprises a moving journal, a moving shaft pin and a moving shaft arm, wherein the moving shaft neck is a shaft section at the end of the moving shaft, and the moving shaft has a moving journal at each end thereof, and the moving shaft at both ends
  • the axis of the neck is on the same straight line;
  • the moving shaft pin is a segment of the shaft, the moving shaft has two or more even number of moving shaft pins, and the axes of the moving shaft pins are parallel to the moving journal
  • the axis, and the distance of the moving pin axis from the axis of the moving journal is also e, the adjacent moving pin has a phase difference of 180 degrees in space; between the moving journal and the moving pin and the adjacent moving pin Connected by the moving shaft arm;
  • the movable journals at both ends of the movable shaft are respectively inserted into the movable journal receiving holes of the corresponding end shafts, and are rotatably connected with the movable journal receiving holes.
  • the present invention also provides a component for a mechanism for mutual conversion of a rotary motion and a reciprocating motion according to any of the above, the component being a reciprocating member, wherein the reciprocating member has a corresponding movement for the sleeve a moving shaft pin hole on the shaft pin, the moving shaft pin hole and the moving shaft pin are rotatably connected; the reciprocating member has an outer shape capable of linearly moving in the reciprocating track.
  • the reciprocating member is a piston having a cylindrical piston head in an outer shape, and an outer circumferential surface of the piston head cooperates with an inner diameter surface of a cylinder as a reciprocating rail; the piston further has a protruding portion Piston arm, the moving shaft pin hole is disposed on the piston arm On.
  • the present invention also provides an apparatus which is an internal combustion engine in which a mechanism for mutually converting a rotary motion and a reciprocating motion as described in any of the above items is used.
  • the present invention also provides an apparatus which is a compressor, wherein the mechanism for converting the rotational motion and the reciprocating motion described in any of the above items is used.
  • the rotating and reciprocating motion conversion mechanism has a rotating moving member which is a shafting system including an end shaft and a moving shaft, and the end shaft is provided with an offset on the rotating shaft thereof.
  • a moving shaft neck receiving hole on one side, the axis of the moving shaft neck receiving hole and the rotating shaft of the end shaft are e, for accommodating the moving journal of the moving shaft;
  • the moving shaft neck receiving hole on the end shaft is rotatably matched with the moving shaft neck, and has two or more even number of moving shaft pins, the axes of the moving shaft pins and the axis of the moving journal Having a distance e, and the adjacent moving shaft pin has a phase difference of 180 degrees in space;
  • the reciprocating member of the rotating motion and reciprocating mutual conversion mechanism is disposed corresponding to the moving shaft pin, and each of the moving shaft pins is provided with at least one reciprocating motion
  • the reciprocating member has a moving shaft pin hole sleeved on the moving shaft pin, and the two are rotatably
  • the reciprocating guide rail of the reciprocating member is spatially 90 degrees; by means of the mechanism that converts the reciprocating motion and the rotational motion, the driving force is input in the moving direction of the two or any one of the reciprocating members, and can be converted into a rotating motion and passed through Any one of the end shafts outputs a rotary motion, which can drive other external components to rotate.
  • the input of the rotational motion driving force on the end shaft can be converted into two reciprocating forces in mutually perpendicular directions; when moving, the end shaft is rotated at a speed of + ⁇ , and the moving shaft is oriented on the axis of the moving journal Center, rotating at a speed of - ⁇ , at this time, the moving shaft can move the reciprocating member on the linear orbit through the moving shaft pin, and vice versa; in the mechanism in which the rotating motion and the reciprocating motion are mutually converted, mutually perpendicular
  • the reciprocating member converts the reciprocating inertial force into a centrifugal inertial force for easy balancing.
  • the moving shaft of the mechanism has at least two moving shaft pins having opposite phases, it is also possible to mutually obtain a good working point, so that the living point problem can be solved;
  • Point when the moving shaft pin moves to the 90 degree phase, that is, when the axis of the moving shaft pin coincides with the axis of the end shaft, the end shaft and the moving shaft may no longer move according to the original moving direction; because of this, The direction of motion of the moving shaft is uncertain, so it is called a moving point.
  • the moving shaft has a moving shaft pin with an opposite phase, and the reciprocating member corresponding to the opposite phase of the moving shaft pin passes through the moving point at different times.
  • the moving shaft pin opposite to the phase continues to move along the original moving direction with the moving shaft, so that the moving shaft pin at the working point can also move according to the original moving direction, and finally
  • the moving shaft does not change the direction of motion as a whole; through the above interaction, each of the moving shaft pins of the moving shaft having the opposite phase of the moving shaft pin can help each other, so that the whole mechanism can obtain a mechanism for overcoming the moving point, and finally, the rotating moving member
  • the rotation can be continuously rotated in one direction of rotation, and the normal movement of the entire conversion mechanism is maintained.
  • the mechanism for the rotary motion and the reciprocating motion provided by the present invention has the following advantages: Since the link is not provided, the mechanism does not include the moving member that swings back and forth, and the movement of all the moving members is a harmonic motion. Convenient dynamic balancing; Secondly, since the circular slider is no longer arranged in the mechanism, the design size of the reciprocating motion of the reciprocating member is not limited by the size of the circular slider, and can be set relatively large to overcome the stroke ratio being too small. The problem of insufficient release of the burst pressure of the combustible mixture may be caused; in addition, since there is no complicated structure in which the circular slider is disposed in the piston and the crank pin needs to pass through the eccentric hole of the circular slider, the assembly of the mechanism is completed.
  • the lubricating oil path of the mechanism is also easy to design, and it is easy to dissipate heat.
  • the moving shaft pin that transmits the force directly passes through the reciprocating member without first passing through the circular slider and then passing
  • the circular slider is associated with a reciprocating member such as a piston, and therefore, the size can be made larger than that of the crank slider mechanism
  • the crude crank pin is conducive to a large load force transmission.
  • the above mechanism can be used in a device for converting reciprocating motion into rotational motion, such as an internal combustion engine; it can also be used to convert rotational motion into a reciprocating device, such as a compressor; an internal combustion engine or a conventional crank-link mechanism or Compressor, the engine of the motion conversion mechanism of the invention has many advantages: good balance performance, large stroke stroke ratio selection range, no crankcase, compact structure, small volume and the like; moreover, the function is flexible, for example, as a movement
  • the reciprocating member of the balance slider can also be modified into a piston for a generator, a compressor, a vacuum pump, etc., to constitute a multi-function machine.
  • Figure 1 is a schematic view showing an embodiment of a mechanism for converting a rotary motion and a reciprocating motion of the present invention
  • Figure 2 is a perspective view of the left side view of Figure 1;
  • FIG. 3 is a schematic structural view of an end shaft in an embodiment of a mechanism for mutually converting a rotary motion and a reciprocating motion according to the present invention
  • 4 is a schematic structural view of a moving shaft in an embodiment of a mechanism for mutually converting a rotary motion and a reciprocating motion according to the present invention
  • Figure 5 is a schematic view of a reciprocating member in an embodiment of a mechanism for mutually converting a rotary motion and a reciprocating motion of the present invention
  • Fig. 1 is a schematic view showing the structure of an embodiment of a mechanism for mutually converting rotary motion and reciprocating motion of the present invention.
  • Fig. 2 is a schematic view of the left side view of Fig. 1, for explaining the positional relationship of the two reciprocating members of the embodiment, and some of the elements shown in Fig. 1 are not shown.
  • 3, 4, and 5 are structural views of respective components in the embodiment of the mechanism for converting the rotational motion and the reciprocating motion shown in Fig. 1, respectively.
  • the moving shaft pins are two, and each of them has a reciprocating member as an example for description.
  • the mechanism for mutually converting the rotational motion and the reciprocating motion includes the reciprocating members 14a and 14b, the rotational moving member, and the frame (not shown) supporting the mechanism.
  • the rotary moving member is a shaft system including two first end shafts 10a and 10b at both ends and a moving shaft 12 connected between the two first end shafts 10a and 10b by a rotary pair.
  • the reciprocating members 14a and 14b are respectively sleeved on the two adjacent moving shaft pins of the moving shaft 12, and constitute a rotating pair with the corresponding moving shaft pins.
  • the two first end shafts 10a and 10b have a common axis m.
  • the reciprocating member 14a can be moved in the direction of the arrow 13 in Fig. 1 (so reciprocating linear motion)
  • the reciprocating member 14b can reciprocate linearly in a direction perpendicular to the moving direction of the reciprocating member 14a (as shown in Fig. 2).
  • the rotational motion and the arrow shown by the arrow 11 can be realized.
  • the rotation of the first end shafts 10a and 10b The direction may also be the direction opposite to the direction indicated by the arrow 11.
  • Fig. 3 is a schematic cross-sectional view showing an end shaft in the embodiment of the mechanism for converting the rotational motion and the reciprocating motion of the present invention.
  • the two end shafts (the first end shaft 10a and the second end shaft 10b) shown in Fig. 1 may be the same, and only the one end shaft 10a therein is shown in Fig. 3.
  • the first end shaft 10a includes an end journal 1 and an end shaft arm 2.
  • the end journal 1 is rotatably fixed to the frame, and the specific fixing manner can be through a rolling bearing or a sliding bearing, and other possible rotationally fixed manners.
  • the axes of the end journals of the first end shaft 10a and the second end shaft 10b shown in Fig. 1 lie on the same straight line, that is, they can rotate about a common axis, which is the axis m of the end shaft. .
  • the end shaft arm 2 is a convex disc disposed at an inner end of the end journal 1 (ie, toward the end of the moving shaft 12 shown in FIG. 1), and the end shaft arm 2 is provided with a receiving shaft
  • the moving journal neck of the 12 (refer to FIG. 4) accommodates the hole 3 of the moving journal.
  • the axis of the movable journal receiving hole 3 is parallel to the axis of the end journal 1, and the distance from the axis of the end journal 1 is e, as shown in FIG.
  • end shaft arm 2 can also be directly fixed to the frame by bearings (in this case, the end shaft arm 2 needs to be a cylinder, and the central axis of the cylindrical body coincides with the axis of the end journal 1 ), and the end journal 1 can be used to transmit torque and output power outward.
  • the first end shaft 10a may not be provided with the end journal 1 , and only the cylindrical end arm 2 is formed, and the moving journal is disposed on the end arm. Hole 3.
  • the first end shaft 10a may have other structures, but it includes at least a rotating shaft for rotating the first end shaft 10a about the rotating shaft, and includes being disposed on the end shaft and offset from the rotation A moving shaft neck of the shaft accommodates a hole.
  • first end shafts 10a and 10b shown in FIG. 1 of the present embodiment may not necessarily be the same, as long as the two have a common rotating shaft after being fixed on the frame, and the moving shaft neck accommodates the center axis of the hole. The distance from the rotating shaft is the same.
  • Fig. 4 is a view showing the structure of the movable shaft 12 in the embodiment of the mechanism for mutually converting the rotary motion and the reciprocating motion of the present invention.
  • the moving shaft 12 includes a first movable journal 4a and a second movable journal 4b, a first movable shaft pin 6a and a second movable shaft pin 6b, and a first movable shaft arm 5a, a second movable shaft arm 5b and a first Three-moving arm 5c.
  • the first movable journal 4a and the second movable journal 4b are shaft segments respectively located at two ends of the movable shaft 12, and the axes of the first movable journal 4a and the second movable journal 4b are on the same straight line.
  • the moving shaft pins are two adjacent ones, which are the first moving shaft pin 6a and the second moving shaft pin 6b shown in Fig. 4, respectively.
  • the first moving shaft pin 6a and the second moving shaft pin 6b are also the shaft segments, but the length thereof may be different from the first movable journal 4a and the second movable journal 4b.
  • the axes of the first moving shaft pin 6a and the second moving shaft pin 6b are parallel to the common axis of the first moving journal 4a and the second moving journal 4b, and the first moving shaft pin 6a and the second moving
  • the distance of the axis of the shaft pin 6b from the axis is e, that is, the distance from the axis of the moving journal neck receiving hole 3 shown in Fig.
  • first moving shaft pin 6a and the second moving shaft pin 6b have a phase difference of 180 degrees in space, that is, the first moving shaft pin 6a and the second moving shaft pin 6b are located at the first moving journal Both sides of the common axis of the 4a and the second moving journal 4b, and the axes of the first moving shaft pin 6a and the second moving shaft pin 6b are symmetrical with respect to the common axis.
  • the first movable journal 4a and the first movable shaft pin 6a, the second movable journal 4b and the second movable shaft pin 6b, and the first movable shaft pin 6a and the second movable shaft pin 6b respectively pass through the first movable shaft arm 5a, the second moving shaft arm 5c and the third moving shaft arm 5b are connected, wherein the moving journal, the moving shaft arm and the moving shaft pin may be integrally formed, or may be separately formed and fixedly connected by a connecting member.
  • the first movable journal 4a and the second movable journal 4b of the movable shaft 12 are respectively inserted into the movable journal receiving holes of the both end shafts shown in Fig. 3 to constitute a rotating pair.
  • Fig. 5 is a schematic view of the reciprocating member in the embodiment of the mechanism for mutually converting the rotary motion and the reciprocating motion of the present invention.
  • the reciprocating member has a moving shaft pin hole 7 which is sleeved on the moving shaft pin of the moving shaft 12 shown in FIG. 4, and is formed when the reciprocating member is sleeved on the moving shaft pin of the moving shaft. Turn the vice. Further, the reciprocating member also has an outer shape capable of causing it to perform a linear motion in the reciprocating orbit.
  • the two reciprocating members are respectively a reciprocating member 14a and a second reciprocating member 14b (as shown in FIGS. 1 and 2), and are respectively sleeved as shown in FIG.
  • the first moving shaft pin 6a and the second moving shaft pin 6b of the moving shaft 12 are.
  • the two reciprocating members are respectively placed in the reciprocating guide rail, the outer contour of which cooperates with the reciprocating guide rail.
  • the reciprocating guide rails of the above two reciprocating members have a phase difference of 90 degrees in space.
  • the reciprocating guide rails may be arranged in the direction of the arrow 13 shown in Fig. 1 and the arrow 13b in Fig. 2.
  • the above two reciprocating members have the same mass.
  • the rotary motion and the reciprocating motion are mutually converted, and the rotary moving member is a shaft system including an end shaft and a moving shaft, and the end shaft is provided with a bias on one side of the rotating shaft.
  • a moving shaft neck receiving hole the axis of the moving shaft neck receiving hole is at a distance e from the end shaft rotating shaft, and is used for accommodating the moving journal of the moving shaft;
  • the upper moving shaft neck receiving hole is rotatably matched with the moving shaft neck, and has two moving shaft pins.
  • the axes of the moving shaft pins have a distance e from the axis of the moving journal, and the adjacent moving shaft
  • the pin has a phase difference of 180 degrees.
  • the reciprocating member of the rotary motion and reciprocating mutual conversion mechanism is disposed corresponding to the movable shaft pin, and each of the movable shaft pins is provided with at least one reciprocating member, and the reciprocating member has a movable shaft pin that is sleeved on the movable shaft pin. a hole, and a rotatable connection therebetween, the reciprocating member is restricted by the reciprocating guide rail, can only move in a straight line, and the reciprocating guide rail of the corresponding reciprocating member corresponding to the movable shaft pin is spatially Has a 90 degree phase difference.
  • the driving force is input in the moving direction of the two or any one of the reciprocating members, and can be converted into a rotating motion and passed through an end shaft of any one end (the first end)
  • the shaft 10a or the second end shaft 10b) outputs a rotational motion so that other external components can be rotated.
  • the input of the rotational motion driving force from the first end shaft 10a or the second end 10b can be converted into two reciprocating motion forces in mutually perpendicular directions.
  • the reciprocating inertial forces of the mutually perpendicular moving members are converted into centrifugal inertial forces, which are easily balanced by providing a balance weight on the rotating shaft.
  • the moving shaft of the mechanism since the moving shaft of the mechanism has two moving shaft pins, the two reciprocating members that are balanced on the two moving shaft pins can also overcome each other.
  • the problem of living points makes it easy to overcome the problem of living points.
  • the so-called live point refers to the position where the moving shaft pin moves to the 90-degree phase, that is, when the axis of the moving shaft pin coincides with the axis of the end shaft, the end shaft and the moving shaft may no longer move according to the above-mentioned motion law. Because of this, the direction of motion of the moving axis is uncertain, called the live point.
  • the moving shaft has two moving shaft pins.
  • the reciprocating member corresponding to the different moving shaft pins passes the moving point at different times, so that one moving shaft pin is at the active point, the other moving shaft pin continues.
  • the moving shaft pin at the working point can also follow the original
  • the movement of the motion is regular, and ultimately the motion axis does not change the motion law as a whole.
  • the rotating moving member can continuously rotate in a rotating direction, and the normal movement of the entire converting mechanism is maintained. The stability of the mechanism is good.
  • the mechanism provided in the above embodiment further has the following advantages: Since no flail is provided, the mechanism does not include a moving member that swings back and forth, and the movement of all the moving parts is a harmonic motion, which can be conveniently balanced; Since the circular slider is no longer arranged in the mechanism, the design size of the reciprocating motion of the reciprocating member is not limited by the size of the circular slider, and can be set relatively large to overcome the bursting pressure of the combustible mixed gas which may be caused by the stroke ratio being too small. Insufficient release; in addition, because there is no complicated structure in which the circular slider is disposed in the piston and the crank pin needs to pass through the eccentric hole of the circular slider, the assembly complexity of the mechanism, the lubricating oil path of the mechanism, etc. are simplified. It is also easy to design and easy to dissipate.
  • the moving shaft pin acting as a force transmitting force directly passes through the reciprocating member without first passing through the circular slider, and then through the circular slider to communicate with the reciprocating member such as the piston, so that the size can be made
  • the crank pin in the crank-slider mechanism is thick, which is good for large-load transmission. .
  • the mechanism structure of the rotary motion and the reciprocating motion of the present embodiment is compact, the number of parts is small, and the maintenance is easy. Therefore, the conversion mechanism of the embodiment of the present invention can be applied to an internal combustion engine and a compressor instead of the conventional crank.
  • the motion conversion mechanism of the connecting rod For example, two reciprocating members may act as pistons, or one of them may be a piston, and the other may be a dynamic balance slider or other form of reciprocating member.
  • the structure thereof when the reciprocating member is a piston, the structure thereof may be as follows: a cylindrical piston head is formed in the outer shape thereof, and the cylindrical outer peripheral surface is provided with a cylinder inner diameter surface as a reciprocating rail; the piston also has An extended piston arm, the moving shaft pin hole being disposed on the piston arm.
  • the engine of the mechanism of the present invention has many advantages, such as good balance performance, large stroke-to-bore ratio selection range, no crankcase, compact structure, small volume and the like. .
  • the function is flexible, for example, the reciprocating member as the dynamic balance slider can also be transformed into a piston for a generator, a compressor, a vacuum machine, etc., to constitute a multi-function machine.
  • the assembly of the motion conversion mechanism of the present invention is substantially the same as that of the conventional crank linkage mechanism, and thus has a good inheritance with the conventional mechanism and is easy to implement.
  • the double-acting piston constitutes a three-cylinder machine or a four-cylinder machine and the like.
  • the moving shaft has two moving shaft pins.
  • the moving shaft may be two or more even-numbered moving shaft pins.
  • each of the moving pin pins is provided with at least one reciprocating member, and two or more reciprocating members of the reciprocating motion track in the same linear direction may be mounted.
  • the changes in the organization are very diverse and are not described here - and those skilled in the art can make corresponding changes in accordance with the teachings of the present invention. These altered forms are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transmission Devices (AREA)

Description

旋转运动和往复运动相互转换的机构及其部件、 设备 本申请要求申请人于 2009 年 10 月 16 日提交的申请号为 200910236026.5的中国专利申请的优先权。 技术领域
本发明涉及一种运动转换机构, 具体是涉及一种旋转运动和往复 运动相互转换的机构。.本发明同时涉及组成上述机构的部件, 以及使 用上述机构获得的设备。 背景技术
在机械设备中, 在艮多场合下需要实现旋转运动和往复运动之间 的相互转换。 例如, 往复式内燃机需要将活塞在可燃混合气体的爆发 压力推动下产生的往复直线运动转换为曲轴的旋转运动; 与之相反, 压缩机需要将外接电动机带动的曲轴旋转转换为活塞的往复直线运 动。 上述两种转换除了主动件不同外, 对机构的运动学要求是一致的, 因此, 可以实现往复直线运动转换为旋转运动的机构, 一般也可以用 于实现旋转运动转换为往复直线运动。
现有技术下已经提供了若干往复直线运动和旋转运动相互转换的 机构。 通常技术下, 采用曲柄连杆机构实现上述转换。 目前大多数内 燃机、 压缩机均使用曲柄连杆机构。 该机构的特点是, 往复直线运动 件与旋转运动件之间需要通过来回摆动的连杆连接, 由于连杆的运动 是来回摆动, 该运动是一种复杂运动, 难以进行惯性力的平衡, 并且 连杆的摆动会增加活塞对运动导轨侧壁的侧压力, 造成摩擦力的增加, 另外, 连杆的存在还使该机构在往复运动方向上需要具备一定的长度, 使其尺寸难以进一步缩小。
为了解决上述问题, 中国专利文献 CN85100358B公开了一种 "曲 柄圆滑块往复活塞式内燃机", 中国专利文献 CN1067741C公开了一种 "曲柄双圆滑块往复活塞式内燃机" , 中国专利文献 CN1144880A 公 开了一种 "曲柄多圓滑块往复活塞式内燃机" 。 上述内燃机的共同特 有偏心圆孔的圆滑块代替连扞。 所述偏心圆滑块呈圆柱形, 并且开有 平行于圆柱体轴线的偏心圆孔, 该偏心圆孔用于穿过曲轴的曲柄销。 该内燃机的活塞包括两端的冠部和连接两冠部的导向部, 其中导向部 上开有圆孔, 该圆孔的内径面和上述圆滑块的外径面相配合, 称为圆 滑块容置孔; 所述圆滑块即安置在活塞导向部上与其外周相配合的圆 滑块容置孔中。 当所述活塞受到气缸中燃烧气体的推动而在气缸中往 复运动时, 所述偏心圆滑块绕其自身的圆心转动, 并进而带动曲轴反 向转动, 从而将活塞的往复运动转化为曲轴的旋转运动, 再通过与曲 轴连接的旋转部件向外传递功率。 上述专利的思想也可以方便的转用 到压缩机或者抽真空机中, 获得曲柄圆滑块压缩机或者曲柄圆滑块抽 真空机。
由于取消了连杆, 其复杂的往复摆动也就被取消, 使上述曲柄圆 滑块机构能够方便地实现惯性力的完全平衡; 同样, 由于连杆的摆动 而形成的对活塞往复运动的导轨侧壁的侧压力也会消失, 使活塞往复 运动时的摩擦力显著降低; 另外, 取消连杆后, 可以显著缩小往复运 动方向的尺寸, 整个机构的尺寸得以显著缩小。
但是, 上述运动机构仍然存在一些显著的缺点, 限制了曲柄圆滑 块机构的运用。 首先, 该机构中圆滑块设置在活塞的圆滑块容置孔中, 曲柄销又需要穿过圆滑块上的偏心孔, 使该位置各个零件交汇过于集 中, 曲柄销尺寸受到限制, 不能进行大负荷传力。 其次, 运动时, 圆 滑块和曲柄销的轴承线速度高, 而且处于机构深处, 不易散热; 另一 个问题是, 该机构的行程缸径比受到圆滑块尺寸的影响, 不能 ί艮高, 有可能使可燃混合气体每次点燃后产生的爆发压力无法充分释放, 造 成燃油经济性下降。 发明内容
针对上述问题, 本发明提供一种旋转运动和往复运动相互转换的 机构, 该机构无需使用圆滑块, 从而解决了曲柄圆滑块机构中由于圆 滑块的存在而带来的种种问题, 同时, 还可以继续保留曲柄圆滑块机 构中取消连杆带来的各种优点。
本发明同时提供使用于上述旋转运动和往复运动相互转换的机构 的部件, 以及使用上述旋转运动和往复运动相互转换的机构的内燃机 和压缩机。 本发明提供一种旋转运动和往复运动相互转换的机构, 包括: 往 复运动件、 旋转运动件以及支撑该机构的机架, 所述旋转运动件包括 两个端轴和连接在两个端轴之间的动轴, 其中,
所述端轴可旋转地支撑在机架上, 并且两个端轴的旋转轴位于同 一直线上, 所述端轴上开设有动轴颈容置孔, 该动轴颈容置孔的轴线 与端轴的旋转轴平行, 并且距离该旋转轴的距离为 e;
所述动轴包括动轴颈、 动轴销以及动轴臂, 其中所述动轴颈为位 于动轴端头的轴段, 该动轴的两端各有一个动轴颈, 两端的动轴颈的 轴线位于同一条直线上; 所述动轴销为一段轴段, 该动轴共有两个或 两个以上的偶数个动轴销, 各个动轴销的轴线均平行于所述动轴颈的 轴线, 并且动轴销轴线距离动轴颈轴线的 巨离也为 e , 并且相邻的动轴 销在空间上具有 180度相位差; 动轴颈和动轴销之间以及相邻的动轴 销之间通过所述动轴臂连接; 与所述端轴组成所述旋转运动件时, 动 轴两端的动轴颈分别插入相应的端轴的动轴颈容置孔, 并与动轴颈容 置孔可旋转地连接;
每个动轴销至少对应设置一个往复运动件, 往复运动件上具有套 在动轴销上的动轴销孔, 动轴销孔与动轴销可旋转连接; 所述往复运 动件具有能够使其在往复运动轨道中进行直线运动的轮廓, 其中相邻 动轴销对应的往复运动件的往复运动导轨在空间上具有 90度相位差。
可选的, 所述动轴销共有两个; 对应每个动轴销均有一个往复运 动件, 其中一个是活塞, 另一个是活塞、 动平衡滑块或者其它任意一 种往复运动件, 所述活塞是单作用活塞或者双作用活塞。
可选的, 所述的两个往复运动件质量相同。
本发明还提供一种用于上述任一项所述的旋转运动和往复运动相 互转换的机构的部件, 该部件为端轴, 其特征在于, 该端轴具有一个 旋转轴, 并且该端轴上开设有动轴颈容置孔, 该动轴颈容置孔的轴线 与端轴的旋转轴平行, 并且与端轴的旋转轴具有距离 e; 该距离 e和与 该端轴配对使用的动轴的动轴销轴线与动轴颈轴线的距离相等。
可选的, 该端轴具有端轴颈和端轴臂, 所述端轴颈能够被支撑在 机架上, 其轴线就是该端轴的旋转轴; 所述端轴臂为设置在端轴颈一 端的凸盘, 其上开设所述动釉颈容置孔。
本发明还提供一种用于上述任一项所述的旋转运动和往复运动相 互转换的机构的部件, 该部件为动轴, 其特征在于, 包括动轴颈、 动 轴销以及动轴臂; 其中所述动轴颈为位于动轴端头的轴段, 该动轴的 两端各有一个动轴颈, 两端的动轴颈的轴线位于同一条直线上; 所述 动轴销为一段轴段, 该动轴共有两个或者两个以上的偶数个动轴销, 各个动轴销的轴线均平行于所述动轴颈的轴线, 并与动轴颈轴线具有 距离 e, 该 巨离 e和与该动轴配对使用的端轴的动轴颈容置孔轴线与端 轴的旋转轴之间的距离相等; 相邻的动轴销在空间上具有 180度相位 差; 动轴颈和动轴销之间、 以及相邻的动轴销之间通过所述动轴臂连 接。
本发明还提供一种上述任一项所述的旋转运动和往复运动相互转 换的机构的旋转运动件, 包括两个端轴和连接在两个端轴之间的动轴, 其特征在于,
所述两个端轴可旋转地支撑在机架上, 并且所述两个端轴的旋转 轴位于同一直线上, 所述端轴上开设有动轴颈容置孔, 该动轴颈容置 孔的轴线与端轴的旋转轴平行, 并且距离该旋转轴的距离为 e;
所述动轴包括动轴颈、 动轴销以及动轴臂, 其中所述动轴颈为位 于动轴端头的轴段, 该动轴的两端各有一个动轴颈, 两端的动轴颈的 轴线位于同一条直线上; 所述动轴销为一段轴段, 该动轴共有两个或 者两个以上的偶数个动轴销, 各个动轴销的轴线均平行于所述动轴颈 的轴线, 并且动轴销轴线距离动轴颈轴线的距离也为 e , 相邻的动轴销 在空间上具有 180度相位差; 动轴颈和动轴销之间以及相邻的动轴销 之间通过所述动轴臂连接;
组成所述旋转运动件时, 所述动轴两端的动轴颈分别插入相应的 端轴的动轴颈容置孔, 并与动轴颈容置孔可旋转地连接。
本发明还提供一种用于上述任一项所述的旋转运动和往复运动相 互转换的机构的部件, 该部件为往复运动件, 其特征在于, 该往复运 动件具有用于套在对应的动轴销上的动轴销孔, 所述动轴销孔与动轴 销可旋转连接; 该往复运动件具有能够使其在往复运动轨道中进行直 线运动的外廓形状。
可选的, 所述往复运动件为活塞, 其外廓形状中具有一段圆柱形 的活塞头, 该活塞头的外周面与作为往复运动轨道的气缸的内径面配 合; 该活塞还具有一段伸出的活塞臂, 所述动轴销孔设置在该活塞臂 上。
本发明还提供一种设备, 该设备为内燃机, 其中, 使用上述任一 项所述的旋转运动和往复运动相互转换的机构。
本发明还提供一种设备, 该设备为压缩机, 其中, 使用上述任一 项所述的旋转运动和往复运动相互转换的机构。
与现有技术相比, 本发明提供的旋转运动和往复运动相互转换的 机构, 其旋转运动件为一个轴系, 包括端轴和动轴, 所述端轴上设置 有偏置在其旋转轴一侧的动轴颈容置孔, 该动轴颈容置孔的轴线与端 轴旋转轴的距离为 e , 用于容置所述动轴的动轴颈; 所述动轴上除了与 所述端轴上的动轴颈容置孔以可旋转方式相配的动轴颈外, 还具有两 个或两个以上的偶数个动轴销, 这些动轴销的轴线均与动轴颈的轴线 具有距离 e , 并且相邻的动轴销空间上具有 180度相位差; 该旋转运动 和往复运动相互转换机构的往复运动件对应所述动轴销设置, 每段动 轴销设置至少一个往复运动件, 所述往复运动件上具有套在动轴销上 的动轴销孔, 且两者之间为可旋转连接, 所述往复运动件受到往复运 动导轨的限制, 只能在直线上运动, 并且相邻的动轴销对应的往复运 动件的往复运动导轨在空间上呈 90度; 利用该往复运动与旋转运动相 互转换的机构, 在两个或任意一个往复运动件的运动方向输入驱动力, 可转换为旋转运动, 并通过任意的一个端轴输出旋转运动, 从而可带 动其它的外部部件做转动。 反之, 在端轴输入旋动运动驱动力, 可转 换为两个相互垂直方向的往复运动力; 运动时, £设端轴以 + ω的速 度旋转, 则所述动轴以动轴颈轴线为中心, 以 - ω的速度旋转, 此时, 动轴通过动轴销可拉着往复运动件在直线轨道上运动, 反之亦然; 该 旋转运动和往复运动相互转换的机构中, 相互垂直方向的往复运动件 可将往复惯性力转化为离心惯性力, 便于对其进行平衡。
此外, 本发明的旋转运动和往复运动转换的机构中, 由于该机构 的动轴具有至少两个相位相反的动轴销, 从而还可以相互克良活点 , 使其可以解决活点问题; 所谓活点, 是指动轴销运动到 90度相位时, 即动轴销轴线与端轴轴线重合时, 端轴和动轴可能不再按照原来的运 动方向继续运动的位置点; 由于这一点上, 动轴运动方向不确定, 故 称为活点; 而在本发明的技术方案中, 动轴具有相位相反的动轴销, 由于相位相反的动轴销对应的往复运动件在不同时刻通过活点, 使一 个动轴销处于活点时, 与之相位相反的动轴销则继续带着该动轴按照 原来的运动方向运动, 使处于活点的动轴销也能够按照原来的运动方 向运动, 最终该动轴整体上不会改变运动方向; 通过上述相互作用, 可形成具有相位相反的动轴销的动轴的各个动轴销相互帮助, 使整个 机构获得克服活点的机制, 最终, 旋转运动件可以持续向一个旋转方 向旋转运动, 整个转换机构的正常运动得以维持。
此外, 本发明提供的旋转运动和往复运动转换的机构还具有如下 的优点: 由于不设置连杆, 使该机构中不含有来回摆动的运动件, 所 有运动件的运动均为筒谐运动, 可方便的进行动平衡; 其次, 由于该 机构中不再设置圆滑块, 使其往复运动件往复运动行程的设计尺寸不 受圆滑块尺寸的限制, 可以设置得比较大, 以克服行程缸径比过小可 能造成的可燃混合气体爆发压力释放不充分的问题; 另外, 由于该机 构中不存在圆滑块设置在活塞中、 曲柄销又需要穿过圆滑块偏心孔这 样的复杂结构, 筒化了机构的装配复杂度, 机构的润滑油路等也易于 设计, 便于散热; 而且, 在该机构中, 起到传力作用的动轴销直接穿 过往复运动件, 而不需要先穿过圆滑块, 再通过圆滑块与活塞等往复 运动件联系, 因此, 其尺寸可以做得比曲柄圆滑块机构中的曲柄销粗, 有利于进行大负荷传力。
上述机构可以用于将往复运动转换为旋转运动的设备中, 例如内 燃机; 也可以用于将旋转运动转换到往复运动的设备中, 例如压缩机; 相对于传统的曲柄连杆机构的内燃机机或压缩机, 本发明的运动转换 机构构成的发动机具有诸多优点: 平衡性能好, 行程缸径比选择范围 大, 无曲轴箱, 结构紧凑, 体积重量小等; 而且, 功能灵活多变, 例 如, 作为动平衡滑块的往复运动件也可以改造为活塞, 用于发电机, 压缩机, 抽真空机等, 构成多功能机。 附图说明 '
图 1 为本发明的旋转运动和往复运动相互转换的机构的实施例的 示意图;
图 2为图 1的左视图的筒图;
图 3 为本发明的旋转运动和往复运动相互转换的机构的实施例中 的端轴的结构示意图; 图 4 为本发明的旋转运动和往复运动相互转换的机构的实施例中 的动轴的结构示意图;
图 5 为本发明的旋转运动和往复运动相互转换的机构的实施例中 的往复运动件的示意图; 具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明。 但 是本发明能够以很多不同于在此描述的其它方式来实施, 本领域技术 人员可以在不违背本发明内涵的情况下做类似推广, 因此本发明不受 下面公开的具体实施的限制。
下面结合实施例以及附图对本发明的旋转运动和桎复运动相互转 换的机构进行"^细描述。
图 1 为本发明的旋转运动和往复运动相互转换的机构的实施例的 结构示意图。 图 2为图 1左视图的简图, 该图用于说明该实施例的两 个往复运动件的位置关系, 图 1 中表示的一些元件没有示出。 图 3、 图 4和图 5分别为图 1所示的旋转运动和往复运动相互转换的机构的实施 例中各个组件的结构示意图。
请参考图 1 , 本实施例中, 以所述动轴销为两个, 对应每一个均有 一个往复运动件为例进行说明。
本实施例中 , 旋转运动和往复运动相互转换的机构包括往复运动 件 14a和 14b、 旋转运动件以及支撑该机构的机架 (图中未示出) 。
所述旋转运动件为一个轴系, 包括位于两端的两个第一端轴 10a 和 10b 以及以转动副连接在所述的两个第一端轴 10a和 10b之间的动 轴 12。所述往复运动件 14a和 14b分别套接于所述的动轴 12的两个相 邻的动轴销上, 并与相应的动轴销构成转动副。
请继续参考图 1 ,所述的两个第一端轴 10a和 10b具有共同的轴线 m。 当所述的两个第一端轴 10a和 10b沿图 1 中箭头 1 1所示的方向沿 其轴线 m转动时,往复运动件 14a可沿图 1中箭头 13的方向 ^(故往复直 线运动, 而往复运动件 14b可沿垂直于所述往复运动件 14a运动方向 做往复直线运动 (如图 2所示) 。 利用图 1所示的结构, 可实现沿箭 头 11所示的旋转运动与图 1 中的箭头 13和图 2中的箭头 13b所示的 往复运动之间的相互转换。 当然, 所述第一端轴 10a和 10b的旋转方 向还可以是与箭头 11所示的方向相反的方向。
下面结合图 3、图 4以及图 5分别对图 1中示出的机构的各个组件 进行详细描述。
图 3 为本发明的旋转运动和往复运动相互转换的机构的实施例中 的端轴的剖面示意图。 图 1 中示出的两个端轴 (第一端轴 10a和第二 端轴 10b ) 可以相同, 图 3中仅示出其中的笫一端轴 10a。
请参考图 3 ,本实施例中,第一端轴 10a包括端轴颈 1和端轴臂 2。 其中, 所述端轴颈 1 可转动的固定于机架上, 具体固定方式可通过滚 动轴承或者滑动轴承, 以及其它可能的可转动固定方式。 固定时, 图 1 中示出的第一端轴 10a和第二端轴 10b的端轴颈的轴线位于同一直线 上, 也即二者可以绕共同的轴线旋转, 该轴线就是端轴的轴线 m。
所述的端轴臂 2为设置于端轴颈 1 的内侧端 (即朝向图 1 中所示 的动轴 12的端部) 的凸盘, 在所述端轴臂 2上开设有容纳动轴 12的 动轴颈 (请参考图 4所示) 的动轴颈容置孔 3。 所述的动轴颈容置孔 3 的轴线与所述端轴颈 1 的轴线平行, 且偏离所述端轴颈 1 的轴线的距 离为 e, 如图 3所示。
此外, 也可以将所述端轴臂 2 通过轴承直接固定于机架之上 (此 时, 所述端轴臂 2需要为圆柱体, 且该圆柱形体的中心轴线与端轴颈 1 的轴线重合) , 而端轴颈 1 可用于传递扭矩, 向外输出动力。 当然, 所述第一端轴 10a也可以不设置所述的端轴颈 1,仅有圆柱体形状的端 轴臂 2构成, 并在所述端轴臂上设置所述的动轴颈容置孔 3。
所述的第一端轴 10a还可以具有其它结构, 但其至少包括一旋转 轴使该第一端轴 10a可以绕所述的旋转轴转动, 以及包括设置于该端 轴上并偏离所述旋转轴的一个动轴颈容置孔。
此外, 本实施例的图 1 中所示出的第一端轴 10a和 10b结构也可 以不必相同, 只要二者在机架上固定后具有共同的旋转轴, 且动轴颈 容置孔中心轴线与该旋转轴的距离相同即可。
图 4 为本发明的旋转运动和往复运动相互转换的机构的实施例中 的动轴 12的结构示意图。
请参考图 4 , 动轴 12 包括笫一动轴颈 4a和第二动轴颈 4b , 笫一 动轴销 6a和笫二动轴销 6b , 以及笫一动轴臂 5a、 第二动轴臂 5b和第 三动抽臂 5c。 其中, 第一动轴颈 4a和笫二动轴颈 4b为轴段, 分别位于动轴 12 的两端, 且第一动轴颈 4a和第二动轴颈 4b的轴线位于同一直线上。
本实施例中, 动轴销为相邻的两个, 分别为图 4 所示的第一动轴 销 6a和第二动轴销 6b。所述的第一动轴销 6a和第二动轴销 6b也同样 为轴段, 但其长度可以与笫一动轴颈 4a和第二动轴颈 4b不同。 所述 第一动轴销 6a和笫二动轴销 6b的轴线平行于所述第一动轴颈 4a和第 二动轴颈 4b的共同的轴线, 且第一动轴销 6a和第二动轴销 6b的轴线 距该轴线的距离均为 e,也即与图 3中所示的动轴颈容置孔 3的轴线偏 离其端轴颈 1 的距离相同。 而且, 第一动轴销 6a和第二动轴销 6b在 空间上具有 180度的相位差, 即所述的第一动轴销 6a和笫二动轴销 6b 位于所述第一动轴颈 4a和第二动轴颈 4b的共同轴线的两侧, 且笫一 动轴销 6a和第二动轴销 6b的轴线相对该共同轴线对称。
第一动轴颈 4a和第一动轴销 6a、 笫二动轴颈 4b和笫二动轴销 6b 以及第一动轴销 6a和第二动轴销 6b之间分别通过第一动轴臂 5a、 第 二动轴臂 5c和第三动轴臂 5b连接, 其中, 上述的动轴颈、 动轴臂以 及动轴销可以一体成形, 也可以分别制成, 再通过连接件固定连接。
该机构安装完成后, 所述的动轴 12的第一动轴颈 4a和第二动轴 颈 4b分别插入图 3中所示的两端轴的动轴颈容置孔中, 构成转动副。
图 5 为本发明的旋转运动和往复运动相互转换的机构的实施例中 的往复运动件的示意图。
参考图 5 , 往复运动件具有套在图 4中所示的动轴 12的动轴销上 的动轴销孔 7 , 在往复运动件套接于所述动轴的动轴销上时, 构成转动 副。 此外, 所述往复运动件还具有能够使其在往复运动轨道中进行直 线运动的外廓形状。
本实施例中, 所述的往复运动件为两个, 分别为笫一往复运动件 14a和第二往复运动件 14b (如图 1和图 2所示) , 且分别套接于图 4 所示的动轴 12的第一动轴销 6a和第二动轴销 6b上。 两个往复运动件 可分别置于往复运动导轨中, 其外廓与往复运动导轨相配合。 上述两 个往复运动件的往复运动导轨在空间上具有 90度的相位差。 例如, 所 述的往复运动导轨可沿图 1所示的箭头 13以及图 2箭头 13b的方向布 置。 另外, 为了获得最佳的动平衡效果, 优选的, 上述两个往复运动 件的质量相同。 上述的实施例中, 提供的旋转运动和往复运动相互转换的机构, 其旋转运动件为一个轴系, 包括端轴和动轴, 所述端轴上设置有偏置 在其旋转轴一侧的动轴颈容置孔, 该动轴颈容置孔的轴线与端轴旋转 轴的距离为 e, 用于容置所述动轴的动轴颈; 所述动轴上除了与所述端 轴上的动轴颈容置孔以可旋转方式相配的动轴颈外, 还具有两段动轴 销, 这些动轴销的轴线均与动轴颈的轴线具有距离 e, 并且相邻的动轴 销空间上具有 180度相位差。 该旋转运动和往复运动相互转换机构的 往复运动件对应所述动轴销设置, 每段动轴销至少设置一个往复运动 件, 所述往复运动件上具有套在动轴销上的动轴销孔, 且两者之间为 可旋转连接, 所述往复运动件受到往复运动导轨的限制, 只能在直线 上运动, 并且相邻的动轴销对应的往复运动件的往复运动导轨在空间 上具有 90度相位差。
利用上述的实施例的往复运动与旋转运动相互转换的机构, 在两 个或任意一个往复运动件的运动方向输入驱动力, 可转换为旋转运动, 并通过任意的一端的端轴(第一端轴 10a或第二端轴 10b )输出旋转运 动, 从而可带动其它的外部部件做转动。 反之, 从第一端轴 10a或第. 二 10b输入旋动运动驱动力, 可转换为两个相互垂直方向的往复运动 力。 运动时, 假设端轴以 + ω的速度旋转, 则所述动轴以动轴颈轴线 为中心, 以 - ω的速度旋转, 此时, 动轴通过动轴销可拉着往复运动 件在直线轨道上运动, 反之亦然。
本实施例的旋转运动和往复运动相互转换的机构中, 相互垂直方 向的拄复运动件的往复惯性力组合后转化为离心惯性力, 便于通过在 旋转轴上设置平衡重等方式进行平衡。
此外, 本实施例的旋转运动和往复运动转换的机构中, 由于该机 构的动轴具有两个动轴销, 位于两个动轴销上的相互平衡的两个往复 运动件也还可以相互克服活点的问题, 使其可以方便的克服活点问题。 所谓活点, 是指动轴销运动到 90度相位时, 即动轴销轴线与端轴轴线 重合时, 端轴和动轴可能不再按照上述运动规律运动继续运动的位置 点。 由于这一点上, 动轴运动方向不确定, 称为活点。 而在本实施例 中, 动轴具有两个动轴销, 由于不同动轴销对应的往复运动件在不同 时刻通过活点, 使一个动轴销处于活点时, 另一个动轴销则继续带着 该动轴按照原来的运动规律运动, 使处于活点的动轴销也能够按照原 来的运动规律运动, 最终该动轴整体上不会改变运动规律。 通过上述 动轴销克^ E活点的机制, 旋转运动件可以持续向一个旋转方向旋转运 动, 整个转换机构的正常运动得以维持。 机构稳定性好。
上述实施例中提供的机构还具有如下优点: 由于不设置连杵, 使 该机构中不含有来回摆动的运动件, 所有运动件的运动均为筒谐运动, 可方便的进行动平衡; 其次, 由于该机构中不再设置圆滑块, 使其往 复运动件往复运动行程的设计尺寸不受圆滑块尺寸的限制, 可以设置 得比较大, 以克服行程缸径比过小可能造成的可燃混合气体爆发压力 释放不充分的问题; 另外, 由于该机构中不存在圆滑块设置在活塞中、 曲柄销又需要穿过圆滑块偏心孔这样的复杂结构, 简化了机构的装配 复杂度, 机构的润滑油路等也易于设计, 便于散热。
在该机构中, 起到传力作用的动轴销直接穿过往复运动件, 而不 需要先穿过圆滑块, 再通过圆滑块与活塞等往复运动件联系, 因此, 其尺寸可以做得比曲柄圆滑块机构中的曲柄销粗, 有利于进行大负荷 传力。.
此外, 本实施例的旋转运动和往复运动相互转换的机构结构筒单 紧凑, 零件数目少, 易于维护, 因而, 本发明的实施例的转换机构可 应用于内燃机和压缩机中, 替代传统的曲柄连杆的运动转换机构。 例 如, 两个往复运动件可作为活塞, 或其中一个作为活塞, 另一个为动 平衡滑块或者其它形式的往复运动件。 其中, 所述往复运动件为活塞 时, 其结构可以如下: 其外廓形状中具有一段圆柱形的活塞头, 该圆 柱形的外周面配合作为往复运动轨道的气缸内径面设置; 该活塞还具 有一段伸出的活塞臂, 所述动轴销孔设置在该活塞臂上。
相对于传统的曲柄连杆机构的内燃机机或压缩机, 本发明的机构 构成的发动机具有诸多优点, 例如, 平衡性能好, 行程缸径比选择范 围大, 无曲轴箱, 结构紧凑, 体积重量小等。 而且, 功能灵活多变, 例如, 作为动平衡滑块的往复运动件也可以改造为活塞, 用于发电机, 压缩机, 抽真空机等, 构成多功能机。 本发明的运动转换机构的組件 与传统的曲柄连杆机构中的组件结构大致相同, 因而与传统的机构具 有很好继承性, 容易实现。
而且, 还可以在往复运动件的往复运动方向两端均设置活塞, 即 双作用活塞, 构成三缸机或四缸机等等。
上述的实施例仅以动轴具有两个动轴销的情形对本发明进行了说 明, 当然, 动轴还可以是两个以上的偶数个动轴销。 此外, 每一个动 轴销上至少安装有一个往复运动件, 也可以安装两个或者多个往复运 动轨道在同一个直线方向上的往复运动件。 总之, 该机构的变化非常 多样, 这里不再——进行描述, 本领域技术人员可以根据本发明的教 导做出相应的改变。 这些改变后的形式均应包含在本发明的保护范围 之内。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领 域的普通技术人员来说, 在不脱离本发明基本原理的前提下, 还可以 ^^出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、一种旋转运动和往复运动相互转换的机构, 包括: 往复运动件、 旋转运动件以及支撑该机构的机架, 其特征在于,
所述旋转运动件包括两个端轴和连接在两个端轴之间的动轴, 其 中,
所述端轴可旋转地支撑在机架上, 并且两个端轴的旋转轴位于同 一直线上, 所述端轴上开设有动轴颈容置孔, 该动轴颈容置孔的轴线 与端轴的旋转轴平行, 并且距离该旋转轴的距离为 e;
所述动轴包括动轴颈、 动轴销以及动轴臂, 其中所述动轴颈为位 于动轴端头的轴段, 该动轴的两端各有一个动轴颈, 两端的动轴颈的 轴线位于同一条直线上; 所述动轴销为一段轴段, 该动轴共有两个或 两个以上的偶数个动轴销, 各个动轴销的轴线均平行于所述动轴颈的 轴线, 并且动轴销轴线 巨离动轴颈轴线的距离也为 e, 并且相邻的动轴 销在空间上具有 180度相位差; 动轴颈和动轴销之间以及相邻的动轴 销之间通过所述动轴臂连接; 与所述端轴组成所述旋转运动件时, 动 轴两端的动轴颈分别插入相应的端轴的动轴颈容置孔, 并与动轴颈容 置孔可旋转地连接;
每个动轴销至少对应设置一个往复运动件, 往复运动件上具有套 在动轴销上的动轴销孔, 动轴销孔与动轴销可旋转连接; 所述往复运 动件具有能够使其在往复运动轨道中进行直线运动的轮廓, 其中相邻 动轴销对应的往复运动件的往复运动导轨在空间上具有 90度相位差。
2、 根据权利要求 1所述的旋转运动和往复运动相互转换的机构, 其特征在于, 所述动轴销共有两个; 对应每个动轴销均有一个往复运 动件, 其中一个是活塞, 另一个是活塞、 动平衡滑块或者其它任意一 种往复运动件, 所述活塞是单作用活塞或者双作用活塞。
3、 根据权利要求 2所述的旋转运动和往复运动相互转换的机构, 其特征在于, 所述的两个往复运动件质量相同。
4、 一种用于权利要求 1至 3任一项所述的旋转运动和往复运动相 互转换的机构的部件, 该部件为端轴, 其特征在于, 该端轴具有一个 旋转轴, 并且该端轴上开设有动轴颈容置孔, 该动轴颈容置孔的轴线 与端轴的旋转轴平行, 并且与端轴的旋转轴具有距离 e; 该距离 e和与 该端轴配对使用的动轴的动轴销轴线与动轴颈轴线的距离相等。
5、 根据权利要求 4所述的旋转运动和往复运动相互转换的机构的 部件, 其特征在于, 该端轴具有端轴颈和端轴臂, 所述端轴颈能够被 支撑在机架上, 其轴线就是该端轴的旋转轴; 所述端轴臂为设置在端 轴颈一端的凸盘, 其上开设所述动轴颈容置孔。
6、 一种用于权利要求 1至 3任一项所述的旋转运动和往复运动相 互转换的机构的部件, 该部件为动轴, 其特征在于, 包括动轴颈、 动 轴销以及动轴臂; 其中所述动轴颈为位于动轴端头的轴段, 该动轴的 两端各有一个动轴颈, 两端的动轴颈的轴线位于同一条直线上; 所述 动轴销为一段轴段, 该动轴共有两个或者两个以上的偶数个动轴销, 各个动轴销的轴线均平行于所述动轴颈的轴线, 并与动轴颈轴线具有 距离 e, 该距离 e和与该动轴配对使用的端轴的动轴颈容置孔轴线与端 轴的旋转轴之间的 巨离相等; 相邻的动轴销在空间上具有 180度相位 差; 动轴颈和动轴销之间、 以及相邻的动轴销之间通过所述动轴臂连 接。
7、 一种用于权利要求 1至 3任一项所述的旋转运动和往复运动相 互转换的机构的旋转运动件, 包括两个端轴和连接在两个端轴之间的 动轴, 其特征在于,
所述两个端轴可旋 φ地支撑在机架上, 并且所述两个端轴的旋转 轴位于同一直线上, 所述端轴上开设有动轴颈容置孔, 该动轴颈容置 孔的轴线与端轴的旋转轴平行, 并且距离该旋转轴的距离为 e;
所述动轴包括动轴颈、 动轴销以及动轴臂, 其中所述动轴颈为位 于动轴端头的轴段, 该动轴的两端各有一个动轴颈, 两端的动轴颈的 轴线位于同一条直线上; 所述动轴销为一段轴段, 该动轴共有两个或 者两个以上的偶数个动轴销, 各个动轴销的轴线均平行于所述动轴颈 的轴线, 并且动轴销轴线距离动轴颈轴线的距离也为 e , 相邻的动轴销 在空间上具有 180度相位差; 动轴颈和动轴销之间以及相邻的动轴销 之间通过所述动轴臂连接;
组成所述旋转运动件时, 所述动轴两端的动轴颈分别插入相应的 端轴的动轴颈容置孔, 并与动轴颈容置孔可旋转地连接。
8、 一种用于权利要求 1至 3任一项所述的旋转运动和往复运动相 互转换的机构的部件, 该部件为往复运动件, 其特征在于, 该往复运 动件具有用于套在对应的动轴销上的动轴销孔, 所述动轴销孔与动轴 销可旋转连接; 该往复运动件具有能够使其在往复运动轨道中进行直 线运动的外廓形状。
9、 根据权利要求 8所述的旋转运动和往复运动相互转换的机构的 部件, 其特征在于, 所述往复运动件为活塞, 其外廓形状中具有一段 圆柱形的活塞头, 该活塞头的外周面与作为往复运动轨道的气缸的内 径面配合; 该活塞还具有一段伸出的活塞臂, 所述动轴销孔设置在该 活塞臂上。
10、 一种设备, 该设备为内燃机, 其特征在于, 使用权利要求 1 至 3任一项所述的旋转运动和往复运动相互转换的机构。
11、 一种设备, 该设备为压缩机, 其特征在于, 使用权利要求 1 至 3任一项所述的旋转运动和往复运动相互转换的机构。
PCT/CN2010/000381 2009-10-16 2010-03-26 旋转运动和往复运动相互转换的机构及其部件、设备 WO2011044744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910236026 2009-10-16
CN200910236026.5 2009-10-16

Publications (1)

Publication Number Publication Date
WO2011044744A1 true WO2011044744A1 (zh) 2011-04-21

Family

ID=43102365

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2010/000381 WO2011044744A1 (zh) 2009-10-16 2010-03-26 旋转运动和往复运动相互转换的机构及其部件、设备
PCT/CN2010/000380 WO2011044743A1 (zh) 2009-10-16 2010-03-26 往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000380 WO2011044743A1 (zh) 2009-10-16 2010-03-26 往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备

Country Status (2)

Country Link
CN (1) CN101893075A (zh)
WO (2) WO2011044744A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2820580C1 (ru) * 2023-07-21 2024-06-05 Абдурахман Багаудинович Абдурахманов Оппозитный кривошипно-шатунный механизм

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105387166A (zh) * 2015-08-19 2016-03-09 王全忠 一种动力传输轴与齿轮组合体同步运动机械机构
ES2818541B2 (es) * 2021-01-15 2022-12-22 Ramon Jose Manuel Oliver Mecanismo para transformar un movimiento rectilineo alternativo en un movimiento circular continuo

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85108079A (zh) * 1985-10-18 1986-10-15 江宁平 内摆曲柄连杆机构及其增压器
CN86103387A (zh) * 1985-05-15 1986-11-19 道格拉斯·C·布雷克特 直线运动和旋转运动转换器
CN1075774A (zh) * 1992-02-28 1993-09-01 左学禹 无曲轴连杆发动机和压缩机
CN1144879A (zh) * 1995-06-13 1997-03-12 黎正中 曲柄双圆滑块往复活塞式内燃机
WO1998022730A1 (en) * 1996-11-18 1998-05-28 Enviro Motor (1996) Limited Rotary to reciprocating motion conversion linkage
ES2187357A1 (es) * 2001-07-05 2003-06-01 Moya Carles Simon Dispositivo de conversion de movimiento rotativo en rectilineo alternativo.
JP2004138229A (ja) * 2002-08-23 2004-05-13 Toyota Motor Corp 内燃機関の運動方向変換構造

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2081891U (zh) * 1990-11-10 1991-07-31 湖南长沙汽车发动机研究所 四缸强化型汽油机
RU2011073C1 (ru) * 1992-09-04 1994-04-15 Константин Владимирович Староверов Эксцентриковый привод
JP2683218B2 (ja) * 1994-05-10 1997-11-26 ロングウェルジャパン株式会社 クランク装置
RU2094679C1 (ru) * 1995-07-26 1997-10-27 Николай Иванович Павлов Бесшатунный механизм
JPH0960700A (ja) * 1995-08-29 1997-03-04 Oyo Koden Kenkiyuushitsu:Kk 往復運動装置
CN2381792Y (zh) * 1999-08-23 2000-06-07 冀祥富 连杆作直线运动的发动机
US7077097B2 (en) * 2001-08-24 2006-07-18 Kendall Lee Spangler Crankshaft with continuous main journal and corresponding connecting structure
CN100436779C (zh) * 2004-08-18 2008-11-26 何观龙 一种内燃机活塞零侧压技术及装置
US7640910B2 (en) * 2006-03-16 2010-01-05 Achates Power, Inc Opposed piston internal-combustion engine with hypocycloidal drive and generator apparatus
CN101324202A (zh) * 2007-08-09 2008-12-17 孙德全 活塞式倍行程连杆无摆动发动机
CN101761618B (zh) * 2009-10-16 2012-07-04 北京中清能发动机技术有限公司 往复运动和旋转运动相互转换的机构及其部件、设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86103387A (zh) * 1985-05-15 1986-11-19 道格拉斯·C·布雷克特 直线运动和旋转运动转换器
CN85108079A (zh) * 1985-10-18 1986-10-15 江宁平 内摆曲柄连杆机构及其增压器
CN1075774A (zh) * 1992-02-28 1993-09-01 左学禹 无曲轴连杆发动机和压缩机
CN1144879A (zh) * 1995-06-13 1997-03-12 黎正中 曲柄双圆滑块往复活塞式内燃机
WO1998022730A1 (en) * 1996-11-18 1998-05-28 Enviro Motor (1996) Limited Rotary to reciprocating motion conversion linkage
ES2187357A1 (es) * 2001-07-05 2003-06-01 Moya Carles Simon Dispositivo de conversion de movimiento rotativo en rectilineo alternativo.
JP2004138229A (ja) * 2002-08-23 2004-05-13 Toyota Motor Corp 内燃機関の運動方向変換構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2820580C1 (ru) * 2023-07-21 2024-06-05 Абдурахман Багаудинович Абдурахманов Оппозитный кривошипно-шатунный механизм

Also Published As

Publication number Publication date
CN101893075A (zh) 2010-11-24
WO2011044743A1 (zh) 2011-04-21

Similar Documents

Publication Publication Date Title
CN107143484B (zh) 一种活塞式空压机及车用空压机
US6024067A (en) Assembly for direct connection of internal combustion engine and machine driven
JP5615934B2 (ja) 駆動システム
CN101454539B (zh) 内燃机
US8789455B2 (en) Drive mechanism for an oscillating piston rotor
JP2010535978A (ja) 回転抑止機構を有するアキシャルピストン機械
JP2013532800A (ja) デュアルクランク軸内燃機関
JPH0623521B2 (ja) エンジン等における運動変換装置
JP5161306B2 (ja) 往復回転動力変換装置
US1904892A (en) Rotary engine compressor and the like
WO2011044744A1 (zh) 旋转运动和往复运动相互转换的机构及其部件、设备
JP3626018B2 (ja) 直線往復2移動体の直結型クランク装置
CN101813170B (zh) 往复运动和旋转运动相互转换的机构及其部件、设备
CS216913B2 (en) Multicylinder piston motor
JP2003510528A (ja) 直線往復運動から回転運動への変換
JP2703355B2 (ja) 内燃機関のバランサ装置
JP3426113B2 (ja) 往復動ピストン機構
JP2895431B2 (ja) 内燃機関と被駆動機械の直結型組立体
JP2009121540A (ja) クランク装置
JP5030859B2 (ja) リンク式ストローク可変エンジン
JP5552198B1 (ja) 内燃機関
JPH0539731A (ja) オルダム駆動エンジン
SU1740769A1 (ru) Качающий узел аксиально-поршневой гидро-или пневмомашины
RU2035607C1 (ru) Привод для двигателя с внешним подводом теплоты
CZ323796A3 (cs) Mechanismus s oběžnými věnci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822976

Country of ref document: EP

Kind code of ref document: A1