WO2018120948A1 - 路径规划的方法、装置和系统 - Google Patents

路径规划的方法、装置和系统 Download PDF

Info

Publication number
WO2018120948A1
WO2018120948A1 PCT/CN2017/103892 CN2017103892W WO2018120948A1 WO 2018120948 A1 WO2018120948 A1 WO 2018120948A1 CN 2017103892 W CN2017103892 W CN 2017103892W WO 2018120948 A1 WO2018120948 A1 WO 2018120948A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
vehicle
target vehicle
road
speed set
Prior art date
Application number
PCT/CN2017/103892
Other languages
English (en)
French (fr)
Inventor
李力
李菁伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/012,091 priority Critical patent/US20180297596A1/en
Publication of WO2018120948A1 publication Critical patent/WO2018120948A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096811Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard
    • G08G1/096822Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard where the segments of the route are transmitted to the vehicle at different locations and times
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3658Lane guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/803Relative lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Definitions

  • the embodiments of the present application relate to the field of navigation, and in particular, to a method, an apparatus, and a system for path planning.
  • the existing path plan is to guide the command information by providing the driver with the best exercise route and the intersection turn.
  • the driver drives according to the route guidance instruction information
  • the correspondence between the route guidance command and the lane to be traveled is determined according to the actual traffic sign and the marking, and then the appropriate lane and the appropriate speed are selected for driving.
  • the path guiding function of the prior art is not a thorough path guiding, and there is a certain difference between the guiding instruction and the actual traveling demand. Such a difference is likely to cause the driver to shift attention and induce a traffic accident.
  • the embodiments of the present application provide a method, a device, and a system for path planning, which can implement lane-level path planning, and improve the overall traffic efficiency and reduce the possibility of traffic accidents by planning the speed of the vehicle in advance.
  • the segmentation planning can alleviate the excessive pressure of the control center.
  • a method of path planning comprising: determining a first set of speeds of the target vehicle based on a first set of speeds of a reference vehicle of the target vehicle, the first set of speeds of the target vehicle being used to guide The target vehicle travels on the first segment, wherein the first speed set includes speed information corresponding to at least one time one-to-one, the first segment is a next segment of the current vehicle segment of the target vehicle, segmentation A section of road of a fixed length on the lane, the reference vehicle being the preceding vehicle of the target vehicle; the first set of speeds of the target vehicle is transmitted to the target vehicle.
  • a speed set refers to a set of multiple speed information associated with a time, or may be associated with a displacement.
  • control center can monitor all the vehicles on the entire road segment, and the speed of all the vehicles on each segment can depend on the technical solution of the present application. Specifically, the control center can plan the vehicle according to the safety distance. The speed on each segment.
  • the target vehicle travels on a certain lane in the straight road section, and the preceding vehicle that is closest to the target vehicle may be determined as the reference vehicle.
  • the preceding vehicle that is closest to the target vehicle may be determined as the reference vehicle.
  • the front of the target vehicle in all lanes The vehicle can, for example, consider a vehicle that is driving in front of the current vehicle in the current lane of the target vehicle, and can also consider a vehicle in front of the target vehicle in other lanes, which can further reduce the collision rate.
  • the road segment is the largest traffic model under traffic conditions, and each road in the road segment is called a lane.
  • the planned first segment belongs to a certain lane under the ramp model, and the preceding vehicle closest to the target vehicle can be determined as the reference vehicle.
  • the target vehicle on all lanes on the road intersecting the ramp and the preceding vehicle of the target vehicle on all lanes on the ramp for example, considering the current vehicle in the lane in which the target vehicle is currently traveling.
  • the car can also consider the vehicles in the other lanes before the target vehicle, which can further reduce the collision rate.
  • the ramp model includes the entry segment, the exit segment, the ramp segment, and the center region.
  • the driving segment and the exit segment are respectively segments on the lane in the road segment that intersects the ramp.
  • the other lanes in the ramp or the road section are in front of the target vehicle at the time of planning, but then accelerate the vehicle into the first section by speeding up the target vehicle, or may consider the other lanes in the ramp or the road section.
  • planning after the target vehicle, but after the deceleration, the vehicle is driven into the first segment later than the target vehicle.
  • the first segment is a first lane of a cross traffic intersection
  • the cross traffic intersection further includes a second lane
  • the first lane has an intersection with the second lane
  • the method further includes Determining that the preceding vehicle having the smallest distance from the intersection is the reference vehicle, the preceding vehicle including at least one vehicle having a distance from the intersection that is less than a distance of the target vehicle from the intersection.
  • the lane in the intersection area under the cross traffic intersection and the ramp model refers to a fixed driving track, that is, the lane in the interaction area and the crossroad intersection cannot be changed, and the lane in the straight road section Than, the degree of freedom is lower.
  • the method further includes: determining, according to the first speed set of the reference vehicle and the traffic condition of the second road segment, a second speed set of the target vehicle, the second speed set including at least one moment a one-to-one corresponding speed information, the second speed set is used to provide a reference for speed planning of the target vehicle in the second segment when the target vehicle travels in the first segment, the second segment is the target The next segment into which the vehicle enters the first segment; the second set of speeds is transmitted to the target vehicle.
  • the method of rolling planning can avoid collision problems between multiple segments.
  • the current driving segment and the first segment belong to different lanes in the road segment, and after determining the first speed set of the target vehicle according to the first speed set of the reference vehicle of the target vehicle The method further includes determining an angular velocity required for the target vehicle to enter the first segment from the current driving segment based on a first speed set of the target vehicle and a normal distance of a radial centerline of the first lane Sending the angular velocity to the target vehicle.
  • a method of path planning comprising: receiving a first set of speeds of a target vehicle transmitted by a control center, the first set of speeds of the target vehicle being a first speed of the reference vehicle according to the target vehicle Determining, determining, according to the first speed set of the target vehicle, driving the target vehicle to travel within the first segment; wherein the first speed set includes speed information corresponding to at least one time one-to-one, the first segment is The next segment of the current segment of the target vehicle is segmented into a section of road of a fixed length on the lane, the reference vehicle being the preceding vehicle of the target vehicle.
  • the method further includes: receiving a second of the target vehicle sent by the control center a speed set, the second speed set including speed information corresponding to at least one time one-to-one, the second speed set being used to drive the target vehicle in the second segment when the target vehicle travels in the first segment
  • the speed plan provides a reference for the next segment into which the target vehicle enters from the first segment.
  • the current driving segment and the first segment are respectively a fixed length of a road in different lanes of the road segment, the road segment includes a plurality of parallel lanes, and the method further includes: receiving the The angular velocity sent by the control center for the target vehicle to enter the first segment from the current driving segment.
  • an apparatus for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • an apparatus for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a system comprising the apparatus of any of the possible implementations of the third aspect or the third aspect and the apparatus of any of the possible implementations of the fourth aspect or the fourth aspect.
  • an apparatus comprising: a memory, a processor, and a transceiver.
  • the memory, the processor and the transceiver communicate with each other via an internal connection path, the control and/or data signals are transmitted, the memory is for storing instructions, the processor is configured to execute the instructions stored by the memory, when the instructions are executed, The processor controls the transceiver to receive input data and information, and output data such as operation results.
  • an apparatus comprising: a memory, a processor, and a bus system.
  • the memory, the processor and the transceiver communicate with each other via an internal connection path, the control and/or data signals are transmitted, the memory is for storing instructions, the processor is configured to execute the instructions stored by the memory, when the instructions are executed, The processor controls the transceiver to receive input data and information, and output data such as operation results.
  • a computer storage medium for storing computer software instructions for use in the above method, comprising a program for performing the first aspect described above.
  • a computer storage medium for storing computer software instructions for use in the above method, comprising a program for performing the second aspect described above.
  • Figure 1 shows a schematic diagram of a traffic model for a straight local section.
  • Figure 2 shows a schematic diagram of the ramp model.
  • Figure 3 shows a schematic diagram of a traffic intersection model.
  • FIG. 4 is a schematic block diagram showing a method of path planning in the embodiment of the present application.
  • FIG. 5 is a flow chart showing a method of path planning in an embodiment of the present application.
  • Figure 6 shows a schematic diagram of the simulation of a straight road plan.
  • FIG. 7 is another schematic block diagram of a method for path planning in an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for path planning of an embodiment of the present application.
  • FIG. 9 is another schematic block diagram of an apparatus for path planning of an embodiment of the present application.
  • FIG. 10 shows a schematic block diagram of a system of an embodiment of the present application.
  • FIG. 11 is still another schematic block diagram of an apparatus for path planning in the embodiment of the present application.
  • FIG. 12 is still another schematic block diagram of an apparatus for path planning according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a traffic model of a straight local road section, wherein the road section herein refers to the largest traffic model under the traffic situation.
  • Each road inside the road section is called a lane, and the vehicle is randomly generated from the beginning of each lane, and the exit lane number of the exit section is randomly generated.
  • the basic unit for planning vehicle speed is called segmentation.
  • the segment is a section of road of fixed length on the lane, and when the vehicle enters the beginning of the segment, a planning algorithm for the vehicle is executed.
  • FIG 2 is a schematic diagram of a ramp model.
  • the ramp model is divided into an upper ramp model and a lower ramp model.
  • the upper ramp model is consistent with the lower ramp model, and only the direction of travel of the vehicle is different.
  • the ramp model includes a driving segment, an exit segment, a ramp segment, and a junction region.
  • the driving segment and the exit segment are respectively segments on the lane in the road segment that intersects the ramp.
  • Figure 3 is a schematic diagram of a traffic intersection model.
  • each lane at the intersection corresponds to a straight line or curve contained in the intersection (left turn and right turn as a curve, straight line straight line), which forms the track of the twenty vehicles in the intersection ( It can be stipulated that there is no change at the intersection).
  • FIGS. 1 to 3 describe three traffic models applied in the embodiments of the present application, but the embodiments of the present application are not limited thereto.
  • the embodiment of the present application can not only plan for the vehicle, but also has guiding significance for flight planning and maritime navigation planning.
  • Path planning technology is a technology for guiding driving routes for vehicles on the road. It is based on modern technologies such as electronics, computers, networks, and communications to provide directions to the driver.
  • the more mature path planning techniques are mainly road-level path planning.
  • our commonly used Baidu map, Gaode map, etc. can calculate the road-level planning with the shortest path and the shortest time according to the starting point and the destination.
  • a polynomial of five or six undetermined coefficients is generally used as the path to be solved, and then the known plan is utilized.
  • the path is solved in tandem with the equations, and the coefficients are finally obtained.
  • the technical solution of the embodiment of the present application is implemented based on the simulation solution.
  • FIG. 4 shows a schematic block diagram of a method 100 of path planning in accordance with an embodiment of the present application. As shown in FIG. 2, the method 100 can be performed by a control center, the method 100 comprising:
  • S110 Determine a first speed set of the target vehicle according to a first speed set of the reference vehicle of the target vehicle, where the first speed set of the target vehicle is used to guide the target vehicle to travel on the first segment, where the first speed
  • the set includes speed information corresponding to at least one time one-to-one, the first segment is a next segment of the current traveling segment of the target vehicle, and the segment is a segment of a fixed length of the road, and the reference vehicle is the target vehicle Front car
  • control center determines, by the following algorithm, a first speed set that the target vehicle can travel in the next segment of the current driving segment, and the target vehicle can receive the speed set of the target vehicle according to the target vehicle.
  • the first set of speeds travels in the next segment.
  • the technical solution of the present application is based on segmentation planning, which is determined according to the processing capability of the control center.
  • the length of the segment may be 1000m, 2000m, or the like.
  • the length of the segment is not specifically limited in the embodiment of the present application.
  • a speed set refers to a set of multiple speed information that is associated with a time or may also be associated with a displacement.
  • the speed set may include a speed 1 (5 m/s) corresponding to 0 seconds, a speed 2 (6 m/s) corresponding to 5 seconds, and the like.
  • the length of the segment is 100 m
  • the speed set includes a speed of 5 m/s corresponding to 0 to 20 m
  • the speed corresponding to 20 to 40 m is 6 m/s, etc., and how many speed information in the speed set are related to each other. This embodiment of the present application does not limit this.
  • the first set of speeds of the reference vehicle may be all of the speed sets of the reference vehicle over the entire road segment, or may be a partial speed set of the reference vehicle associated with the first segment to be planned, and reference to the first of the vehicles
  • the speed set can also be obtained by the technical solution given in the embodiment of the present application.
  • the preceding vehicle includes a vehicle that enters the second segment in front of the target vehicle in each lane of the entire road segment.
  • the target vehicle is the vehicle 1
  • it may include a vehicle that is in front of the vehicle 1 at the planning time and also enters the vehicle on the segment 2 of the lane 2 before the vehicle 1 , and may also include the vehicle 1 after the planned time but before the vehicle 1 On the segment of the lane 2, it is also possible to consider a vehicle that is in front of the vehicle 1 at the planning moment but enters the segment of the lane 2 one night later than the vehicle.
  • the preceding vehicle in the embodiment of the present application is not limited.
  • control center can monitor all the vehicles on the entire road segment, and the speed of all the vehicles on each segment can depend on the technical solution of the present application. Specifically, the control center can also plan the vehicle according to the safety distance. The speed on each segment. In addition, the determination of the preceding vehicle can also be based on the speed information, acceleration information, etc. of all vehicles monitored by the control center in the entire road section.
  • the preceding vehicle that is closest to the target vehicle may be used as the reference vehicle, or the preceding vehicle with the second closest distance may be used as the reference vehicle, which is not limited in this embodiment of the present application.
  • first segment may be a certain segment of a certain lane, or may be a intersection of a certain road segment and a ramp, or may be a cross traffic intersection region, and the first segment of the three models will be described below.
  • the segments are described in detail one by one.
  • the first segment is a section of the fixed length of the first road segment
  • the first road segment includes a plurality of parallel lanes
  • the method further includes: determining that the front vehicle closest to the target vehicle is The reference vehicle includes at least one vehicle in each lane of the first road segment that enters the first segment before the target vehicle.
  • all preceding vehicles of the target vehicle can be considered during the planning process.
  • the vehicle 1 in FIG. 1 is taken as the target vehicle, and the reference vehicle of the vehicle 1 may be the preceding vehicle in the direction of travel of the vehicle 1 on the lane 1, for example, the closest to the vehicle 1 in the direction of travel of the vehicle 1 on the lane 1 Vehicles. It can also be lane 2, lane 3, even the front vehicle of the vehicle 1 projected onto lane 1 on lane 4 or lane 5, and for example, the lane 2 is projected onto the lane 1 from the vehicle closest to the vehicle 1.
  • the first segment is any one of the intersections of the third road segment and the ramp
  • the third road segment includes a plurality of parallel lanes
  • the ramp includes a plurality of parallel lanes
  • the method further includes: determining The preceding vehicle closest to the target vehicle is the reference vehicle, and the preceding vehicle includes the third road segment and each of the lanes in front of the target vehicle At least one vehicle entering the first segment.
  • the vehicle 1 in Fig. 2 is taken as a reference vehicle.
  • the reference vehicle of the vehicle 1 may be the preceding vehicle closest to the vehicle 1 in the lane in which the vehicle 1 is located, or may be the preceding vehicle projected onto the lane of the vehicle from the vehicle 1 closest to the vehicle 1. If the vehicle 1 is driven into the junction area by the ramp, the reference vehicle of the vehicle 1 may be the preceding vehicle closest to the vehicle 1 on the ramp, or may be the preceding vehicle projected onto the ramp from the lane closest to the vehicle 1.
  • the first segment is a first lane of a cross traffic intersection
  • the cross traffic intersection further includes a second lane
  • the first lane has an intersection with the second lane
  • the method further includes: determining the intersection with the second lane
  • the preceding vehicle having the smallest point distance is the reference vehicle, and the preceding vehicle includes at least one vehicle having a distance from the intersection that is less than a distance of the target vehicle from the intersection.
  • the lane in the intersection area under the cross traffic intersection and the ramp model refers to a fixed driving track, that is, the lane in the interaction area and the cross traffic intersection cannot be changed, and in the straight road section Compared to the lane, the degree of freedom is lower.
  • the vehicle 1 in FIG. 3 is taken as a target vehicle.
  • the reference vehicle of the vehicle 1 may be the vehicle 2.
  • the vehicle 2 can be used as a reference vehicle for the vehicle 1; if the distance between the vehicle 1 and the intersection is smaller than the distance between the vehicle 2 and the intersection, the vehicle 1 can serve as a reference vehicle for the vehicle 2.
  • the front vehicle of the vehicle 1 in FIG. 1 to FIG. 3 may be one vehicle or multiple vehicles, and the reference vehicle may be the front vehicle closest to the target vehicle or the front vehicle closest to the target vehicle.
  • the application embodiment is not limited to this.
  • the intersection area in FIG. 2 may refer to an area where the entire road section intersects the ramp, or may refer to an area where a lane intersects the ramp. Specifically, if the intersection area refers to an area where the entire road section intersects the ramp, the intersection area may be divided into two parts. Taking FIG. 2 as an example, it may be specified that two lanes that do not intersect the ramp can only go straight, and The lane intersecting the ramp can go down the road. By thus defining the trajectory of the vehicle travel, although a certain area utilization ratio is reduced, the speed set of the vehicle can also be adjusted by the idea of the following to ensure that the vehicle does not have a rear-end problem in the intersection area.
  • the current driving segment and the first segment belong to different lanes in the road segment
  • the first speed of the target vehicle is determined according to the first speed set of the reference vehicle of the target vehicle.
  • the method further comprises: determining, according to the first speed set of the target vehicle and the normal distance of the radial center line of the first lane, that the target vehicle needs to enter the first segment from the current driving segment An angular velocity; the angular velocity is sent to the target vehicle.
  • the angular velocity of the lane change behavior may be planned after the natural lane change point, where the angular velocity is obtained depending on the speed of the front and the distance of the vehicle.
  • the normal distance of the radial centerline of the lane to be driven it can be specified that the target vehicle is in a certain section of the road in the middle of the segment. For the natural lane change area.
  • the method further includes: determining, according to the first speed set of the reference vehicle and the traffic condition of the second road segment, a second speed set of the target vehicle, the second speed set including and at least a speed information corresponding to a time-to-one, the second speed set is used to provide a reference for speed planning of the target vehicle in the second segment when the target vehicle travels in the first segment, the second segment is The next segment into which the target vehicle enters; the second set of speeds is transmitted to the target vehicle.
  • the second set of speeds on the forward segment may be continued to be planned, taking steps similar to planning the first set of speeds on the first segment.
  • the second set of speeds can be determined in conjunction with traffic conditions on the forward segment.
  • the forward segment refers to the first segment in the downstream direction of the first segment, that is, the next segment in the direction of travel of the vehicle, and the collision planning problem can avoid the collision problem between the multiple segments.
  • the control center can also plan a plurality of forward segments, which is not limited by the embodiment of the present application.
  • the method 200 for path planning in the embodiment of the present application will be described in detail below with reference to FIG. 5, assuming that the target vehicle is traveling on the lane 1 as shown in FIG. 1, the method 200 mainly has the following processes:
  • the control center determines whether the vehicle is to be changed when the target vehicle is traveling in the segment 1 of the lane 1. when the target vehicle has a lane change demand, the process proceeds to step S202; when the vehicle has no lane change demand, the control unit switches to the step. S203;
  • step S204 Add the first speed set determined in step S203 to the state sequence of the target vehicle.
  • step S205 determining whether the vehicle is in the natural lane change zone, if not, adding the first speed set planned in step S202 or the angular speed determined in the following step S206 to the state sequence of the to-be-planned vehicle; if yes, performing the step S206;
  • step S207 After the step S204 or the step S206 is performed, determine whether the segment is planned. If the planning is completed, continue to plan the state sequence of the forward segment. The planning step is the same as steps S201 to S206.
  • the embodiment of the present application performs simulation using OpenAlpha of the WPF framework based on C# programming.
  • the simulation software can describe the traffic model by setting a parameter file in the text document format, including static parameters such as the number, length, width and direction of the lane (not necessarily from left to right), as well as the speed limit, acceleration limit, angular velocity of the vehicle.
  • the dynamic parameters such as the limit and the distance between the heel, the traffic flow file are used to describe the arrival time of the vehicle, the starting lane number and the exit lane label (the function of randomly generating the traffic flow in the program, and also outside the program) Personalize traffic flow files with a text editor).
  • there are visual functions such as load display, vehicle information display, historical track display, collision detection, etc.
  • the simulation results can be shown in the example of the straight path planning in Figure 6.
  • the interface of Figure 6 includes some vehicle information.
  • the vehicle's logo is the 55th car planned on the road section.
  • the birth time is 24.3s. It enters from lane 3 and will exit from lane 3.
  • the assigned rotational speed is minus 0.02 rad/s, and the assigned speed sequence is 12.43, 12.94, 12.95, 13.46, 13.96, and the like.
  • FIG. 6 As an example, as for the example diagram of the highway intersection planning and the traffic road. Port planning example diagrams, etc., are not described here for the sake of brevity, and the same method as the straight path planning is adopted.
  • the path planning method provided by the embodiment of the present application greatly improves the possibility of realizing large-scale road path planning through the concept of following and rolling planning.
  • each segment realizes the vehicle road coordination for the processing of the vehicle information in the segment and the sharing of the different segmented vehicle information.
  • the embodiments of the present application have important significance in improving overall traffic efficiency and precise travel time management.
  • FIG. 7 shows a schematic block diagram of a method 300 of path planning in accordance with an embodiment of the present application. As shown in FIG. 7, the method 300 can be performed by an in-vehicle terminal, and the method 300 includes:
  • S310 Receive a first speed set of the target vehicle sent by the control center, where the first speed set of the target vehicle is determined according to the first speed set of the reference vehicle of the target vehicle;
  • S320 controlling the target vehicle to travel in the first segment according to the first speed set of the target vehicle
  • the first speed set includes speed information corresponding to at least one time, the first segment is a next segment of the current traveling segment of the target vehicle, and the segment is a segment of a fixed length of the road, the reference The vehicle is the front vehicle of the target vehicle.
  • the first segment may be a certain segment of a certain lane, or may be a intersection of a certain road segment and a ramp, or may be a cross traffic intersection region, which is not limited by the embodiment of the present application.
  • the method further includes: receiving a second speed set of the target vehicle sent by the control center, where the second speed set includes speed information corresponding to at least one time one-to-one, the second speed The set is used to provide a reference for the speed planning of the target vehicle to travel in the second segment when the target vehicle is traveling at the first segment, where the second segment is the target vehicle entering from the first segment One segment.
  • the current driving segment and the first segment are respectively a fixed length of a road in different lanes of the road segment, the road segment includes a plurality of parallel lanes, and the method further includes: receiving the The angular velocity sent by the control center for the target vehicle to enter the first segment from the current driving segment.
  • FIG. 8 shows a schematic block diagram of an apparatus 400 for path planning in accordance with an embodiment of the present application.
  • the apparatus 400 includes:
  • a first determining unit 410 configured to determine a first speed set of the target vehicle according to a first speed set of the reference vehicle of the target vehicle, where the first speed set of the target vehicle is used to guide the target vehicle to travel on the first segment
  • the first speed set includes speed information corresponding to at least one time, the first segment is a next segment of the current traveling segment of the target vehicle, and the segment is a segment of a fixed length of the road.
  • the reference vehicle is the preceding vehicle of the target vehicle;
  • the sending unit 420 is configured to send the first speed set of the target vehicle to the target vehicle.
  • the first segment is a section of the road of a fixed length in any of the first road segments, the first road segment package Including a plurality of parallel lanes, the apparatus 400 further includes: a second determining unit 430, configured to determine that a preceding vehicle closest to the target vehicle is the reference vehicle, and the preceding vehicle includes the lane in the first road segment The target vehicle previously enters at least one vehicle of the first segment.
  • a second determining unit 430 configured to determine that a preceding vehicle closest to the target vehicle is the reference vehicle, and the preceding vehicle includes the lane in the first road segment The target vehicle previously enters at least one vehicle of the first segment.
  • the first segment is a section of the road of a fixed length in any one of the second road segments
  • the second road segment includes a plurality of parallel lanes
  • the apparatus 400 further includes: a third determining unit 440, configured to determine The preceding vehicle closest to the target vehicle is the reference vehicle, and the preceding vehicle includes at least one vehicle traveling in front of the target vehicle in each lane of the second road segment.
  • the first segment is any one of the intersections of the third road segment and the ramp
  • the third road segment includes a plurality of parallel lanes
  • the ramp includes a plurality of parallel lanes
  • the apparatus 400 further includes: a fourth determining unit 450, configured to determine that a preceding vehicle that is closest to the target vehicle is the reference vehicle, and the preceding vehicle includes the first minute in the second road segment and each of the lanes before the target vehicle At least one vehicle of the segment.
  • the first segment is a first lane of a cross traffic intersection
  • the cross traffic intersection further includes a second lane
  • the first lane has an intersection with the second lane
  • the apparatus 400 further includes: a fifth determination
  • the unit 460 is configured to determine that the preceding vehicle having the smallest distance from the intersection is the reference vehicle, and the preceding vehicle includes at least one vehicle having a distance from the intersection that is less than a distance of the target vehicle from the intersection.
  • the first determining unit 410 is further configured to: determine, according to the first speed set of the reference vehicle and the traffic condition of the second road segment, the second speed set of the target vehicle, where the second speed set includes at least one moment a one-to-one corresponding speed information, the second speed set is used to provide a reference for speed planning of the target vehicle in the second segment when the target vehicle travels in the first segment, the second segment is the target The next segment that the vehicle enters from the first segment; the sending unit 420 is further configured to: send the second speed set determined by the first determining unit to the target vehicle.
  • the current driving segment and the first segment belong to different lanes in the road segment
  • the first determining unit 410 is further configured to: according to the first speed set of the target vehicle and the radial direction of the first lane The normal distance of the center line determines the angular velocity required for the target vehicle to enter the first segment from the current driving segment;
  • the transmitting unit 420 is further configured to: send the angular velocity determined by the first determining unit to the target vehicle.
  • the apparatus 400 for path planning may correspond to the method 100 of the path planning and the control center of the method 200 of the embodiment of the present application, and the above and other operations and/or functions of the respective modules in the apparatus 400.
  • the corresponding processes of the methods in FIG. 1 to FIG. 6 are respectively omitted.
  • the apparatus for path planning provided by the embodiments of the present application greatly improves the possibility of realizing large-scale road path planning through the concept of following and rolling planning.
  • each segment realizes the vehicle road coordination for the processing of the vehicle information in the segment and the sharing of the different segmented vehicle information.
  • the embodiments of the present application have important significance in improving overall traffic efficiency and precise travel time management.
  • FIG. 9 shows a schematic block diagram of an apparatus 500 for path planning in accordance with an embodiment of the present application.
  • the apparatus 500 includes:
  • the receiving unit 510 is configured to receive a first speed set of the target vehicle sent by the control center, where the first speed set of the target vehicle is determined according to the first speed set of the reference vehicle of the target vehicle;
  • the control unit 520 is configured to control the target vehicle to travel in the first segment according to the first speed set of the target vehicle;
  • the first speed set includes speed information corresponding to at least one time, the first segment is a next segment of the current traveling segment of the target vehicle, and the segment is a segment of a fixed length of the road, the reference Vehicle is the target The front of the vehicle.
  • the receiving 510 unit is further configured to: receive a second speed set of the target vehicle sent by the control center, where the second speed set includes speed information corresponding to at least one time one-to-one, The second set of speeds is used to provide a reference for the speed planning of the target vehicle in the second segment when the target vehicle is traveling at the first segment, the second segment is the target vehicle driving from the first segment Enter the next segment.
  • the current driving segment and the first segment are respectively a fixed length of a road in different lanes of the road segment, the road segment includes a plurality of parallel lanes, and the receiving unit 510 is further used for : receiving an angular velocity sent by the control center for the target vehicle to enter the first segment from the current driving segment.
  • the apparatus 500 for path planning may correspond to the target vehicle of the method 300 of the path planning of the embodiment of the present application, and the above and other operations and/or functions of the respective modules in the apparatus 500 are respectively implemented.
  • the corresponding flow of the method in FIG. 7 will not be repeated here for brevity.
  • the embodiment of the present application further provides a system 10 including a control center and a vehicle.
  • the control center corresponds to the control center of the method embodiment and the device 400, which corresponds to the target vehicle and the device 500 in the method embodiment.
  • the embodiment of the present application further provides a path planning apparatus 600.
  • the apparatus 600 includes: a processor 610, a memory 620, and a transceiver 640, wherein the processor 610, the memory 620, and the transceiver The 640 is used to communicate with each other through an internal connection path, the memory 620 is configured to store instructions, and the processor 610 is configured to execute instructions stored in the memory 620 to control the transceiver 640 to send signals; wherein the processor 610 is configured to: A first set of speeds of the reference vehicle of the target vehicle determines a first set of speeds of the target vehicle, the first set of speeds of the target vehicle for guiding the target vehicle to travel on the first segment, wherein the first set of speeds includes Speed information corresponding to at least one time-to-one, the first segment is a next segment of the current traveling segment of the target vehicle, and is segmented into a section of the road of a fixed length of the lane, the reference vehicle being the preceding vehicle of the target vehicle Sending
  • the processor 610 may be a central processing unit ("CPU"), and the processor 610 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 620 can include read only memory and random access memory and provides instructions and data to the processor 610. A portion of the memory 620 can also include a non-volatile random access memory. For example, the memory 620 can also store information of the device type.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 620, and the processor 610 reads the information in the memory 620 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the apparatus for path planning provided by the embodiments of the present application greatly improves the possibility of realizing large-scale road path planning through the concept of following and rolling planning.
  • each segment is processed and divided into different segments of vehicle information.
  • the sharing of segment vehicle information also realizes the road coordination.
  • the embodiments of the present application have important significance in improving overall traffic efficiency and precise travel time management.
  • the apparatus 600 for path planning may correspond to the control center and the apparatus 400 in the embodiments of the present application, and may correspond to the control center in the methods 100 and 200 according to the embodiments of the present application, and The above and other operations and/or functions of the various units in the device 600 are respectively omitted in order to implement the corresponding processes of the methods in FIGS. 1 to 6 for brevity.
  • the embodiment of the present application further provides a path planning apparatus 700.
  • the apparatus 700 includes: a processor 710, a memory 720, and a transceiver 740, wherein the processor 710, the memory 720, and the transceiver The 740 is in communication with each other through an internal connection path, the memory 720 is configured to store instructions, and the processor 710 is configured to execute instructions stored in the memory 720 to control the transceiver 740 to transmit signals; wherein the processor 710 is configured to: receive a first set of speeds of the target vehicle transmitted by the control center, the first set of speeds of the target vehicle being determined according to the first set of speeds of the reference vehicle of the target vehicle; controlling the target vehicle according to the first set of speeds of the target vehicle Driving in the first segment; wherein the first speed set includes speed information corresponding to at least one time one-to-one, the first segment is a next segment of the current traveling segment of the target vehicle, and the segment is on the lane A section of a fixed length road, the reference vehicle
  • the processor 710 may be a central processing unit (“CPU"), and the processor 710 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 720 can include read only memory and random access memory and provides instructions and data to the processor 710. A portion of the memory 720 can also include a non-volatile random access memory. For example, the memory 720 can also store information of the device type.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 720, and processor 710 reads the information in memory 720 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the apparatus 700 for path planning may correspond to the target vehicle and the apparatus 500 in the embodiment of the present application, and may correspond to performing the target vehicle in the method 300 according to the embodiment of the present application, and the apparatus 700
  • the above and other operations and/or functions of the respective units in order to implement the corresponding processes of the method in FIG. 7 are omitted for brevity.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present application may be in essence or part of the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

一种路径规划的方法和装置,该方法包括:根据目标车辆的参考车辆的第一速度集合确定该目标车辆的第一速度集合,该目标车辆的第一速度集合用于引导该目标车辆在第一分段上行驶,其中,第一速度集合包括与至少一个时刻一一对应的速度信息,该第一分段为该目标车辆当前行驶分段的下一分段,分段为车道上固定长度的一段道路,该参考车辆为该目标车辆的前车(S110);向该目标车辆发送该目标车辆的第一速度集合(S120)。该方法和装置,能实现直行车道、匝道处、交通路口处的车道级路径规划,并通过提前规划好车辆行驶的速度,可以提高整体交通效率以及降低交通事故的可能性。

Description

路径规划的方法、装置和系统
本申请要求于2016年12月28日提交中国专利局、申请号为201611232806.9、申请名称为“路径规划的方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及导航领域,尤其涉及一种路径规划的方法、装置和系统。
背景技术
现如今汽车已经是人们必不可缺的交通工具,随着人们希望对时间掌控程度越来越大,路径规划已经逐渐走入人们的生活。
现有路径规划是通过向驾驶员提供最佳行使路线和交叉口转弯等路径引导指令信息。驾驶员根据路径引导指令信息驾车时,需根据实际交通标志和标线判断路径引导指令和待行驶车道间的对应关系,然后选择合适的车道以及合适的速度进行行驶。换句话说现有技术的路径引导功能不是彻底的路径引导,其引导指令与实际出行需求存在一定差异,这种差异容易造成驾驶员注意力转移,诱发交通事故的可能性较大。
发明内容
有鉴于此,本申请实施例提供了一种路径规划的方法、装置和系统,能实现车道级路径规划,通过提前规划好车辆行驶的速度,可以提高整体交通效率以及降低交通事故的可能性,另外,通过分段规划可以减轻控制中心计算量过大的压力。
第一方面,提供了一种路径规划的方法,该方法可以包括:根据目标车辆的参考车辆的第一速度集合确定该目标车辆的第一速度集合,该目标车辆的第一速度集合用于引导该目标车辆在第一分段上行驶,其中,第一速度集合包括与至少一个时刻一一对应的速度信息,该第一分段为该目标车辆当前行驶分段的下一分段,分段为车道上固定长度的一段道路,该参考车辆为该目标车辆的前车;向该目标车辆发送该目标车辆的第一速度集合。
速度集合是指多个速度信息组成的集合,该多个速度信息与时刻关联,或者也可以跟位移关联。
可选地,控制中心可以监控整个路段上的所有车辆,并且所有车辆在每个分段上的速度都可以依赖于本申请的技术方案,具体地,控制中心可以依据安全车距,规划车辆在每个分段上的速度。
通过提前规划好目标车辆在当前行驶分段的下一分段的速度,可以提高整体交通效率以及降低交通事故的可能性。
在一种可能的实现方式中,目标车辆行驶在直行路段中的某一车道上,可以将距离该目标车辆最近的前车确定为该参考车辆。在规划时,可以考虑所有车道上该目标车辆的前 车,例如可以考虑目标车辆当前所在车道上行驶在目前车辆之前的车,还可以考虑其他车道上在目标车辆之前的车辆,能够进一步降低碰撞率。
另外,还可以考虑其他车道上在规划时虽然在目标车辆前面,但之后通过加速比目标车辆先驶入第一分段的车辆,或者也可以考虑其他车道上在规划时虽然在目标车辆之后,但之后减速又比目标车辆晚驶入第一分段的车辆。
路段为交通情景下最大的交通模型,路段里的每条道路被称为车道。
在一种可能的实现方式中,规划的第一分段属于匝道模型下的某一车道,可以将距离该目标车辆最近的前车确定为参考车辆。
类似地,在规划时,可以考虑与匝道相交的路段上所有车道上该目标车辆和该匝道上所有车道上该目标车辆的前车,例如可以考虑目标车辆当前所在车道上行驶在目前车辆之前的车,还可以考虑其他车道上在目标车辆之前的车辆,能够进一步降低碰撞率。
匝道模型包括驶入分段、驶出分段、匝道分段和中心区域。其中,这里的驶入分段和驶出分段分别为与匝道交汇的路段中的车道上的分段。
另外,还可以考虑匝道或路段中其他车道上在规划时虽然在目标车辆前面,但之后通过加速比目标车辆先驶入第一分段的车辆,或者也可以考虑匝道或路段中其他车道上在规划时虽然在目标车辆之后,但之后减速又比目标车辆晚驶入第一分段的车辆。
在一种可能的实现方式中,该第一分段为十字交通路口的第一车道,该十字交通路口还包括第二车道,该第一车道与该第二车道有交叉点,该方法还包括:确定与该交叉点距离最小的前车为该参考车辆,该前车包括与该交叉点的距离小于该目标车辆与该交叉点的距离的至少一个车辆。
十字交通路口和匝道模型下交汇区域内的车道是指固定的一条行驶轨迹,也就是说,在该交互区域内和该十字交通路口内的车道是不能换道的,与直行路段中的车道相比,自由度较低。
在一种可能的实现方式中,该方法还包括:根据该参考车辆的第一速度集合以及第二路段的交通状况确定该目标车辆的第二速度集合,该第二速度集合包括与至少一个时刻一一对应的速度信息,该第二速度集合用于为该目标车辆行驶在该第一分段时对该目标车辆在第二分段行驶的速度规划提供参考,该第二分段为该目标车辆从该第一分段驶入的下一分段;向该目标车辆发送该第二速度集合。
通过滚动规划的方法能够避免多路段之间衔接出现的碰撞问题。
在一种可能的实现方式中,该当前行驶分段和该第一分段属于该路段中的不同车道,该根据目标车辆的参考车辆的第一速度集合确定该目标车辆的第一速度集合之后,该方法还包括:根据该目标车辆的第一速度集合和该第一车道的径向中心线的法向距离确定该目标车辆从该当前行驶分段驶入该第一分段所需的角速度;向该目标车辆发送该角速度。
第二方面,提供了一种路径规划的方法,该方法包括:接收控制中心发送的目标车辆的第一速度集合,该目标车辆的第一速度集合是根据该目标车辆的参考车辆的第一速度集合确定的;根据该目标车辆的第一速度集合,控制该目标车辆在第一分段内行驶;其中,第一速度集合包括与至少一个时刻一一对应的速度信息,该第一分段为该目标车辆当前行驶分段的下一分段,分段为车道上固定长度的一段道路,该参考车辆为该目标车辆的前车。
在一种可能的实现方式中,该方法还包括:接收该控制中心发送的该目标车辆的第二 速度集合,该第二速度集合包括与至少一个时刻一一对应的速度信息,该第二速度集合用于为该目标车辆行驶在该第一分段时对该目标车辆在第二分段行驶的速度规划提供参考,该第二分段为该目标车辆从该第一分段驶入的下一分段。
在一种可能的实现方式中,该当前驶入分段和该第一分段分别为路段中不同车道上固定长度的一段道路,该路段包括多条平行的车道,该方法还包括:接收该控制中心发送的用于该目标车辆从该当前驶入分段驶入到第一分段所需的角速度。
第三方面,提供了一种装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种装置,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种系统,该系统包括第三方面或第三方面任一可能的实现方式中的装置和第四方面或第四方面任一可能的实现方式中的装置。
第六方面,提供了一种装置,该装置包括:存储器、处理器和收发器。其中,存储器、处理器和收发器通过内部连接通路互相通信,传递控制和/或数据信号,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器控制收发器接收输入的数据和信息,输出操作结果等数据。
第七方面,提供了一种装置,该装置包括:存储器、处理器和总线系统。其中,存储器、处理器和收发器通过内部连接通路互相通信,传递控制和/或数据信号,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器控制收发器接收输入的数据和信息,输出操作结果等数据。
第八方面,提供了一种计算机存储介质,用于储存为上述方法所用的计算机软件指令,其包含用于执行上述第一方面所设计的程序。
第九方面,提供了一种计算机存储介质,用于储存为上述方法所用的计算机软件指令,其包含用于执行上述第二方面所设计的程序。
本申请实施例的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1示出了直行局部路段交通模型示意图。
图2示出了匝道模型示意图。
图3示出了交通路口模型示意图。
图4示出了本申请实施例的路径规划的方法的示意性框图。
图5示出了本申请实施例的路径规划的方法的流程图。
图6示出了直行道路规划的仿真示意图。
图7示出了本申请实施例的路径规划的方法的另一示意性框图。
图8示出了本申请实施例的路径规划的装置的示意性框图。
图9示出了本申请实施例的路径规划的装置的另一示意性框图。
图10示出了本申请实施例的系统的示意性框图。
图11示出了本申请实施例的路径规划的装置的再一示意性框图。
图12示出了本申请实施例的路径规划的装置的再一示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1至图3示出了本申请实施例涉及的三种主要交通模型的示意图。具体地,图1是直行局部路段交通模型示意图,其中,这里的路段是指交通情景下最大的交通模型。路段里面的每条道路都被称为车道,车辆从每条车道的起始端随机生成,同时随机生成驶出路段的驶出车道标号。在车道上,规划车辆速度的基本单位被称为分段。分段为车道上固定长度的一段道路,当车辆进入分段的起始端时,执行对该车的规划算法。例如,车辆在规划时刻行驶在分段1上,控制中心可以根据本申请实施例中的技术方案确定车辆行驶在分段2上的速度。图2是匝道模型示意图。匝道模型分为上道匝道模型和下道匝道模型,上道匝道模型和下道匝道模型一致,仅车辆行驶方向不同。以图2中的上道匝道为例,匝道模型包括驶入分段、驶出分段、匝道分段和交汇区域。其中,驶入分段和驶出分段分别为与匝道交汇的路段中的车道上的分段。图3是交通路口模型示意图。例如,每一条车道在路口处都对应着一个包含在路口中的直线或曲线(左转与右转为曲线,直行为直线),这也就形成了路口内二十条车辆应有的轨道(可以规定在路口不换道)。
上述图1至图3描述了本申请实施例所应用的三种交通模型,但本申请实施例并不限于此。本申请实施例可以不仅仅针对车辆进行规划,对航班规划、海上航行规划也具有指导性意义。
路径规划技术是为道路上的车辆指引行驶路线的技术,是基于电子、计算机、网络和通信等现代技术,向驾驶员提供路径引导指令。较为成熟的路径规划技术主要为道路级路径规划,例如我们常用的百度地图、高德地图等就可以依据出发点与目的地计算得出路径最短、时间最短等的道路级规划。对于车道级路径规划也有不少研究,通常是利用函数解析式求解的。按照道路横向和纵向建立二维坐标轴,并规定欲求解车辆轨迹为高次多项式,对于换道车辆,一般利用五次或者六次待定系数的多项式设为其待求解路径,然后利用已知规划的路径与其进行方程组联立求解,最终求得各项系数。而本申请实施例的技术方案是基于仿真解实现的。
图4示出了根据本申请实施例的路径规划的方法100的示意性框图。如图2所示,该方法100可以由控制中心执行,该方法100包括:
S110,根据目标车辆的参考车辆的第一速度集合确定该目标车辆的第一速度集合,该目标车辆的第一速度集合用于引导该目标车辆在第一分段上行驶,其中,第一速度集合包括与至少一个时刻一一对应的速度信息,该第一分段为该目标车辆当前行驶分段的下一分段,分段为车道上固定长度的一段道路,该参考车辆为该目标车辆的前车;
S120,向该目标车辆发送该目标车辆的第一速度集合。
具体地,控制中心通过跟驰算法确定出目标车辆在当前行驶分段的下一分段能够行驶的第一速度集合,目标车辆在接收到该目标车辆的速度集合时,即可根据该目标车辆的第一速度集合在下一分段进行行驶。通过提前规划车辆的速度集合,目标车辆上的驾驶员无需主观地根据交通状况来确定车辆行驶速度,进而可以避免由于驾驶员的主观因素造成的 车辆碰撞问题。
本申请技术方案是基于分段规划的,该分段是根据控制中心的处理能力确定的。该分段的长度可以是1000m、2000m等。本申请实施例对分段的长度不作具体限定。
应理解,速度集合是指多个速度信息组成的集合,该多个速度信息与时刻关联,或者也可以跟位移关联。例如,速度集合可以包括0秒对应的速度1(5m/s),5秒对应的速度2(6m/s)等。又例如,分段的长度为100m,速度集合包括0~20m对应的速度为5m/s,20~40m对应的速度为6m/s等,速度集合中的多个速度信息具体是跟什么相关的,本申请实施例对此不作限定。
还应理解,参考车辆的第一速度集合可以是该参考车辆在整个路段的所有速度集合,也可以是该参考车辆与待规划的第一分段相关的部分速度集合,并且参考车辆的第一速度集合也可以通过本申请实施例给出的技术方案获得。
还应理解,前车包括整个路段中每条车道上在该目标车辆之前驶入第二分段的车辆。例如,在图1所示的直行路段中,假设目标车辆为车辆1,那么在规划车辆1在车道2的分段2上的第一速度集合,可以考虑整个路段中车道1至车道5中每个车道上所有比车辆1先驶入车道2的分段2的所有车辆。具体地,可以包括在规划时刻处于该车辆1之前的车辆并且也比车辆1先驶入车道2的分段2上的车辆,也可以包括在规划时刻处于该车辆1之后但比车辆1先驶入车道2的分段上的,还可以考虑在规划时刻处于该车辆1之前但比车辆1晚驶入车道2的分段上的车辆。总之,对本申请实施例中的前车不作限定。
可选地,控制中心可以监控整个路段上的所有车辆,并且所有车辆在每个分段上的速度都可以依赖于本申请的技术方案,具体地,控制中心还可以依据安全车距,规划车辆在每个分段上的速度。另外,前车的确定还可以依据整个路段中控制中心所监控的所有车辆的速度信息、加速度信息等。
可选地,可以将距离该目标车辆最近的前车作为参考车辆,也可以将距离次近的前车作为参考车辆,本申请实施例对此不够成限定。
进一步,该第一分段可以是某一车道的某一分段,也可以是某一路段与匝道的交汇区域,还可以是十字交通路口区域,下面将对该三种模型下的第一分段进行逐一详细描述。
可选地,该第一分段为第一路段中任一车道上固定长度的一段道路,该第一路段包括多条平行的车道,该方法还包括:确定距离该目标车辆最近的前车为该参考车辆,该前车包括该第一路段中每条车道上在该目标车辆之前驶入该第一分段的至少一个车辆。
具体地,在规划过程中,可以考虑目标车辆的所有前车。举例来说,将图1中的车辆1作为目标车辆,车辆1的参考车辆可以是车道1上该车辆1行驶方向的前车,例如,为车道1上车辆1行驶方向上距离该车辆1最近的车辆。也可以是车道2、车道3,甚至是车道4或车道5上投影到车道1上该车辆1的前车,又例如,车道2上投影到车道1上距离该车辆1最近的车辆。在车辆1即将驶入的下一分段仍然属于车道1时,需要考虑车道1上该车辆1的前车、车道2至车道5上投影到车道1上该车辆1的前车,取所有前车中距离该车辆1最近的车辆为参考车辆。
可选地,该第一分段为第三路段与匝道的交汇区域中的任一车道,该第三路段包括多条平行的车道,该匝道包括多条平行的车道,该方法还包括:确定距离该目标车辆最近的前车为该参考车辆,该前车包括该第三路段中和该匝道中每条车道上在该目标车辆之前驶 入该第一分段的至少一个车辆。
例如,将图2中的车辆1作为参考车辆。车辆1的参考车辆可以是该车辆1所在车道上距离该车辆1最近的前车,也可以是匝道上投影到该车辆所在车道上距离该车辆1最近的前车。若车辆1是由匝道驶入到交汇区域的,那么车辆1的参考车辆可以是匝道上距离该车辆1最近的前车,也可以是车道上投影到匝道上距离该车辆1最近的前车。
可选地,该第一分段为十字交通路口的第一车道,该十字交通路口还包括第二车道,该第一车道与该第二车道有交叉点,该方法还包括:确定与该交叉点距离最小的前车为该参考车辆,该前车包括与该交叉点的距离小于该目标车辆与该交叉点的距离的至少一个车辆。
其中,十字交通路口和匝道模型下交汇区域内的车道是指固定的一条行驶轨迹,也就是说,在该交互区域内和该十字交通路口内的车道是不能换道的,与直行路段中的车道相比,自由度较低。
例如,将图3中的车辆1作为目标车辆。该车辆1的参考车辆可以是车辆2。具体地,可以通过判断车辆1与图3中交叉点的距离与车辆2与图3中交叉点的距离的大小关系,若车辆1与交叉点的距离大于车辆2与交叉点的距离,则车辆2可以作为车辆1的参考车辆;若车辆1与交叉点的距离小于车辆2与交叉点的距离,则车辆1可以作为车辆2的参考车辆。
应理解,图1至图3中车辆1的前车可以是一辆,也可以是多辆,参考车辆可以是距离目标车辆最近的前车,也可以是距离目标车辆次近的前车,本申请实施例对此不够成限定。
应理解,上述仅仅是对目标车辆的参考车辆的确定方式进行示意性地举例,本申请实施例并不作为限定。例如,在上道时,还可以考虑车辆进入交汇区域的优先级,优先级高的,先驶入交汇区域,优先级低的,后驶入交汇区域。
示例性地,图2中的交汇区域可以是指整个路段与匝道相交的区域,也可以是指一条车道与匝道相交的区域。具体地,若该交汇区域是指整个路段与匝道相交的区域,那么可以将该交汇区域划分为两部分,以图2为例,可以规定没有与匝道相交的两条车道只能进行直行,而与匝道相交的车道可以进行下道。通过这样限定车辆行驶的轨迹,虽然降低了一定的区域利用率,同样可以通过跟驰的思想来调整车辆的速度集合以保证车辆在交汇区域内不存在追尾问题。
应理解,上道确定参考车辆与下道确定参考车辆更复杂,具体体现在规划上道问题时,还需要考虑主干道车辆以及匝道车辆间的视野问题,即需要考虑二者间可能存在的必需的跟驰关系,换句话说,在下道规划时,可以不考虑主干道以及匝道车辆间的视野问题。
可选地,在本申请实施例中,该当前行驶分段和该第一分段属于该路段中的不同车道,该根据目标车辆的参考车辆的第一速度集合确定该目标车辆的第一速度集合之后,该方法还包括:根据该目标车辆的第一速度集合和该第一车道的径向中心线的法向距离确定该目标车辆从该当前行驶分段驶入该第一分段所需的角速度;向该目标车辆发送该角速度。
具体地,如果目标车辆在本分段上有换道需求,则可以在自然换道点之后再进行换道行为的角速度的规划,这里的角速度的获取取决于车头的速度与车辆距离本分段上待驶向的车道的径向中心线的法向距离。其中,可以规定目标车辆在本分段中间的某一段道路作 为自然换道区域。
可选地,在本申请实施例中,该方法还包括:根据该参考车辆的第一速度集合以及第二路段的交通状况确定该目标车辆的第二速度集合,该第二速度集合包括与至少一个时刻一一对应的速度信息,该第二速度集合用于为该目标车辆行驶在该第一分段时对该目标车辆在第二分段行驶的速度规划提供参考,该第二分段为该目标车辆从该第一分段驶入的下一分段;向该目标车辆发送该第二速度集合。
具体地,当规划完第一分段上的第一速度集合后,可继续规划前向分段上的第二速度集合,采取的是跟规划第一分段上的第一速度集合相似的步骤,与可以结合前向分段上的交通状况来确定该第二速度集合。该前向分段指的是第一分段下游方向的第一个分段,也就是车辆行驶方向的下一个分段,通过滚动规划的方法能够避免多路段之间衔接出现的碰撞问题。控制中心还可以规划前向的多个分段,本申请实施例对此不够成限定。
下面将结合图5详细描述本申请实施例的路径规划的方法200的具体流程。如图5所示,假设目标车辆行驶在如图1所示的车道1上,该方法200主要有以下流程:
S201,控制中心在目标车辆行驶在车道1的分段1时,判断车辆是否要进行换道,在目标车辆有换道需求时,切换到步骤S202;在车辆没有换道需求时,切换到步骤S203;
S202,考虑整个路段上目标车辆的所有前车,在一段时间内驶入车辆换道的下一分段的所有车辆中确定参考车辆,并根据参考车辆的速度集合规划出目标车辆的第一速度集合,其中,该一段时间可以是与在规划时刻之后的一段时间,例如,在规划时刻之后的10s内;
S203,考虑整个路段上目标车辆的所有前车,在即将驶入第一分段的下一分段的所有车辆中确定参考车辆,并根据参考车辆的速度集合规划出目标车辆的第一速度集合;
S204,将步骤S203中确定的第一速度集合添加到该目标车辆的状态序列中;
S205,确定车辆是否行使到自然换道区,若没有,则将步骤S202中规划的第一速度集合或以下步骤S206中确定的角速度添加到该待规划车辆的状态序列中;若是,则执行步骤S206;
S206,根据法向距离算出侧向距离,并合成角速度;
S207,在步骤S204或步骤S206执行完毕之后,确定本分段是否规划完毕,若规划完毕则继续规划前向分段的状态序列,规划步骤同步骤S201至S206。
本申请实施例采用基于C#编程的WPF框架的OpenAlpha进行仿真。仿真软件可以通过设置文本文档格式的参数文件来描述交通模型,包括车道的数量、长度、宽度和方向(不一定是自左向右行驶)等静态参数,以及车辆的速度限制、加速度限制、角速度限制以及跟驰保持距离等动态参数,通过交通流文件来描述车辆的到达起始点时刻,起始车道标号和驶出车道标号(在程序中存在随机生成交通流的函数,同时也可以在程序外部通过文本编辑器对交通流文件进行个性化设定)。同时存在负载显示、车辆信息显示、历史轨迹显示、碰撞侦测等可视化功能以方便检测路面性能指标。其仿真结果可以如图6中直道路径规划示例图所示。其中,图6的界面上包括了一些车辆信息,例如车辆的标识是该路段上被规划的第55辆车,其诞生时刻在24.3s,从车道3上驶入,将从车道3上驶出,被分配的转速为负0.02rad/s,被分配的速度序列为12.43、12.94、12.95、13.46、13.96等。
应理解,本申请实施例仅以图6为例进行描述,至于高速路口规划示例图以及交通路 口规划示例图等,为了简洁,这里就不一一描述了,其采用的是与直行路径规划相同的方法。
因此,本申请实施例提供的路径规划的方法,通过跟驰及滚动规划的思想极大地提高了大规模道路路径规划实现的可能性。同时,各分段针对分段内车辆信息的处理及不同分段车辆信息的共享也实现了车路协同。在改善未来交通规划方面有十分巨大的研究潜力。同时本申请实施例在提高整体交通效率,精确旅行时间管理方面也有着重要的意义。
图7示出了根据本申请实施例的路径规划的方法300的示意性框图。如图7所示,该方法300可以由车载终端执行,该方法300包括:
S310,接收控制中心发送的目标车辆的第一速度集合,该目标车辆的第一速度集合是根据该目标车辆的参考车辆的第一速度集合确定的;
S320,根据该目标车辆的第一速度集合,控制该目标车辆在第一分段内行驶;
其中,第一速度集合包括与至少一个时刻一一对应的速度信息,该第一分段为该目标车辆当前行驶分段的下一分段,分段为车道上固定长度的一段道路,该参考车辆为该目标车辆的前车。
进一步,该第一分段可以是某一车道的某一分段,也可以是某一路段与匝道的交汇区域,还可以是十字交通路口区域,本申请实施例对此不够成限定。
在一种可能的实现方式中,该方法还包括:接收该控制中心发送的该目标车辆的第二速度集合,该第二速度集合包括与至少一个时刻一一对应的速度信息,该第二速度集合用于为该目标车辆行驶在该第一分段时对该目标车辆在第二分段行驶的速度规划提供参考,该第二分段为该目标车辆从该第一分段驶入的下一分段。
在一种可能的实现方式中,该当前驶入分段和该第一分段分别为路段中不同车道上固定长度的一段道路,该路段包括多条平行的车道,该方法还包括:接收该控制中心发送的用于该目标车辆从该当前驶入分段驶入到第一分段所需的角速度。
应理解,车辆侧描述的目标车辆与控制中心的交互及相关特性、功能等与控制中心侧的相关特性、功能相应,为了简洁,在此不再赘述。
还应理解,在本申请实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图7,详细描述了根据本申请实施例的路径规划的方法,下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图8示出了根据本申请实施例的路径规划的装置400的示意性框图。如图8所示,该装置400包括:
第一确定单元410,用于根据目标车辆的参考车辆的第一速度集合确定该目标车辆的第一速度集合,该目标车辆的第一速度集合用于引导该目标车辆在第一分段上行驶,其中,第一速度集合包括与至少一个时刻一一对应的速度信息,该第一分段为该目标车辆当前行驶分段的下一分段,分段为车道上固定长度的一段道路,该参考车辆为该目标车辆的前车;
发送单元420,用于向该目标车辆发送该目标车辆的第一速度集合。
示例性地,该第一分段为第一路段中任一车道上固定长度的一段道路,该第一路段包 括多条平行的车道,该装置400还包括:第二确定单元430,用于确定距离该目标车辆最近的前车为该参考车辆,该前车包括该第一路段中每条车道上在该目标车辆之前驶入该第一分段的至少一个车辆。
示例性地,该第一分段为第二路段中任一车道上固定长度的一段道路,该第二路段包括多条平行的车道,该装置400还包括:第三确定单元440,用于确定距离该目标车辆最近的前车为该参考车辆,该前车包括该第二路段中每条车道上在该目标车辆之前行驶的至少一个车辆。
示例性地,该第一分段为第三路段与匝道的交汇区域中的任一车道,该第三路段包括多条平行的车道,该匝道包括多条平行的车道,该装置400还包括:第四确定单元450,用于确定距离该目标车辆最近的前车为该参考车辆,该前车包括该第二路段中和该匝道中每条车道上在该目标车辆之前驶入该第一分段的至少一个车辆。
示例性地,该第一分段为十字交通路口的第一车道,该十字交通路口还包括第二车道,该第一车道与该第二车道有交叉点,该装置400还包括:第五确定单元460,用于确定与该交叉点距离最小的前车为该参考车辆,该前车包括与该交叉点的距离小于该目标车辆与该交叉点的距离的至少一个车辆。
示例性地,该第一确定单元410还用于:根据该参考车辆的第一速度集合以及第二路段的交通状况确定该目标车辆的第二速度集合,该第二速度集合包括与至少一个时刻一一对应的速度信息,该第二速度集合用于为该目标车辆行驶在该第一分段时对该目标车辆在第二分段行驶的速度规划提供参考,该第二分段为该目标车辆从该第一分段驶入的下一分段;该发送单元420还用于:向该目标车辆发送该第一确定单元确定的该第二速度集合。
示例性地,该当前行驶分段和该第一分段属于该路段中的不同车道,该第一确定单元410还用于:根据该目标车辆的第一速度集合和该第一车道的径向中心线的法向距离确定该目标车辆从当前行驶分段驶入该第一分段所需的角速度;该发送单元420还用于:向该目标车辆发送该第一确定单元确定的该角速度。
应理解,根据本申请实施例的路径规划的装置400可对应于本申请实施例的路径规划的方法100和方法200的控制中心,并且装置400中的各个模块的上述和其它操作和/或功能分别为了实现图1至图6中的方法的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例提供的路径规划的装置,通过跟驰及滚动规划的思想极大地提高了大规模道路路径规划实现的可能性。同时,各分段针对分段内车辆信息的处理及不同分段车辆信息的共享也实现了车路协同。在改善未来交通规划方面有十分巨大的研究潜力。同时本申请实施例在提高整体交通效率,精确旅行时间管理方面也有着重要的意义。
图9示出了根据本申请实施例的路径规划的装置500的示意性框图。如图9所示,该装置500包括:
接收单元510,用于接收控制中心发送的目标车辆的第一速度集合,该目标车辆的第一速度集合是根据该目标车辆的参考车辆的第一速度集合确定的;
控制单元520,用于根据该目标车辆的第一速度集合,控制该目标车辆在第一分段内行驶;
其中,第一速度集合包括与至少一个时刻一一对应的速度信息,该第一分段为该目标车辆当前行驶分段的下一分段,分段为车道上固定长度的一段道路,该参考车辆为该目标 车辆的前车。
在一种可能的实现方式中,该接收510单元还用于:接收该控制中心发送的该目标车辆的第二速度集合,该第二速度集合包括与至少一个时刻一一对应的速度信息,该第二速度集合用于为该目标车辆行驶在该第一分段时对该目标车辆在第二分段行驶的速度规划提供参考,该第二分段为该目标车辆从该第一分段驶入的下一分段。
在一种可能的实现方式中,该当前驶入分段和该第一分段分别为路段中不同车道上固定长度的一段道路,该路段包括多条平行的车道,该接收单元510还用于:接收该控制中心发送的用于该目标车辆从该当前行驶分段驶入到该第一分段所需的角速度。
应理解,根据本申请实施例的路径规划的装置500可对应于本申请实施例的路径规划的方法300的目标车辆,并且装置500中的各个模块的上述和其它操作和/或功能分别为了实现图7中的方法的相应流程,为了简洁,在此不再赘述。
如图10所示,本申请实施例还提供了一种系统10,包括控制中心和车辆。具体地,该控制中心对应于方法实施例的控制中心以及装置400,该车辆对应于方法实施例中的目标车辆以及装置500。
如图11所示,本申请实施例还提供了一种路径规划的装置600,该装置600包括:处理器610、存储器620和收发器640,其中,该处理器610、该存储器620和该收发器640通过内部连接通路互相通信,该存储器620用于存储指令,该处理器610用于执行该存储器620存储的指令,以控制该收发器640发送信号;其中,该处理器610用于:根据目标车辆的参考车辆的第一速度集合确定该目标车辆的第一速度集合,该目标车辆的第一速度集合用于引导该目标车辆在第一分段上行驶,其中,第一速度集合包括与至少一个时刻一一对应的速度信息,该第一分段为该目标车辆当前行驶分段的下一分段,分段为车道上固定长度的一段道路,该参考车辆为该目标车辆的前车;向该目标车辆发送该目标车辆的第一速度集合。
应理解,在本申请实施例中,该处理器610可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器610还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器620可以包括只读存储器和随机存取存储器,并向处理器610提供指令和数据。存储器620的一部分还可以包括非易失性随机存取存储器。例如,存储器620还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器620,处理器610读取存储器620中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
因此,本申请实施例提供的路径规划的装置,通过跟驰及滚动规划的思想极大地提高了大规模道路路径规划实现的可能性。同时,各分段针对分段内车辆信息的处理及不同分 段车辆信息的共享也实现了车路协同。在改善未来交通规划方面有十分巨大的研究潜力。同时本申请实施例在提高整体交通效率,精确旅行时间管理方面也有着重要的意义。
应理解,根据本申请实施例的路径规划的装置600可对应于本申请实施例中的控制中心以及装置400,并可以对应于执行根据本申请实施例的方法100和200中的控制中心,并且装置600中的各个单元的上述和其它操作和/或功能分别为了实现图1至图6中的方法的相应流程,为了简洁,在此不再赘述。
如图12所示,本申请实施例还提供了一种路径规划的装置700,该装置700包括:处理器710、存储器720和收发器740,其中,该处理器710、该存储器720和该收发器740通过内部连接通路互相通信,该存储器720用于存储指令,该处理器710用于执行该存储器720存储的指令,以控制该收发器740发送信号;其中,该处理器710用于:接收控制中心发送的目标车辆的第一速度集合,该目标车辆的第一速度集合是根据该目标车辆的参考车辆的第一速度集合确定的;根据该目标车辆的第一速度集合,控制该目标车辆在第一分段内行驶;其中,第一速度集合包括与至少一个时刻一一对应的速度信息,该第一分段为该目标车辆当前行驶分段的下一分段,分段为车道上固定长度的一段道路,该参考车辆为该目标车辆的前车。
应理解,在本申请实施例中,该处理器710可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器710还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器720可以包括只读存储器和随机存取存储器,并向处理器710提供指令和数据。存储器720的一部分还可以包括非易失性随机存取存储器。例如,存储器720还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器720,处理器710读取存储器720中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,根据本申请实施例的路径规划的装置700可对应于本申请实施例中的目标车辆以及装置500,并可以对应于执行根据本申请实施例的方法300中的目标车辆,并且装置700中的各个单元的上述和其它操作和/或功能分别为了实现图7中的方法的相应流程,为了简洁,在此不再赘述。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些 功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换。

Claims (21)

  1. 一种路径规划的方法,其特征在于,包括:
    根据目标车辆的参考车辆的第一速度集合确定所述目标车辆的第一速度集合,所述目标车辆的第一速度集合用于引导所述目标车辆在第一分段上行驶,其中,第一速度集合包括与至少一个时刻一一对应的速度信息,所述第一分段为所述目标车辆当前行驶分段的下一分段,所述分段为车道上固定长度的一段道路,所述参考车辆为所述目标车辆的前车;
    向所述目标车辆发送所述目标车辆的第一速度集合。
  2. 根据权利要求1所述的方法,其特征在于,所述第一分段为第一路段中任一车道上固定长度的一段道路,所述第一路段包括多条平行的车道,所述方法还包括:
    确定距离所述目标车辆最近的前车为所述参考车辆,所述前车包括所述第一路段中每条车道上在所述目标车辆之前驶入所述第一分段的至少一个车辆。
  3. 根据权利要求1所述的方法,其特征在于,所述第一分段为第二路段中任一车道上固定长度的一段道路,所述第二路段包括多条平行的车道,所述方法还包括:
    确定距离所述目标车辆最近的前车为所述参考车辆,所述前车包括所述第二路段中每条车道上在所述目标车辆前面行驶的至少一个车辆。
  4. 根据权利要求1所述的方法,其特征在于,所述第一分段为第三路段与匝道的交汇区域中的任一车道,所述第三路段包括多条平行的车道,所述匝道包括多条平行的车道,所述方法还包括:
    确定距离所述目标车辆最近的前车为所述参考车辆,所述前车包括所述第三路段中和所述匝道中每条车道上在所述目标车辆之前驶入所述第一分段的至少一个车辆。
  5. 根据权利要求1所述的方法,其特征在于,所述第一分段为十字交通路口的第一车道,所述十字交通路口还包括第二车道,所述第一车道与所述第二车道有交叉点,所述方法还包括:
    确定与所述交叉点距离最小的前车为所述参考车辆,所述前车包括与所述交叉点的距离小于所述目标车辆与所述交叉点的距离的至少一个车辆。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述参考车辆的第一速度集合以及第二分段的交通状况确定所述目标车辆的第二速度集合,所述第二速度集合包括与至少一个时刻一一对应的速度信息,所述第二速度集合用于为所述目标车辆行驶在所述第一分段时对所述目标车辆在所述第二分段行驶的速度规划提供参考,所述第二分段为所述目标车辆从所述第一分段驶入的下一分段;
    向所述目标车辆发送所述第二速度集合。
  7. 根据权利要求2或3所述的方法,其特征在于,所述当前行驶分段和所述第一分段属于所述路段中的不同车道,所述根据目标车辆的参考车辆的第一速度集合确定所述目标车辆的第一速度集合之后,所述方法还包括:
    根据所述目标车辆的第一速度集合和所述第一分段的径向中心线的法向距离确定所述目标车辆从所述当前行驶分段驶入所述第一分段所需的角速度;
    向所述目标车辆发送所述角速度。
  8. 一种路径规划的装置,其特征在于,所述装置包括:
    第一确定单元,用于根据目标车辆的参考车辆的第一速度集合确定所述目标车辆的第一速度集合,所述目标车辆的第一速度集合用于引导所述目标车辆在第一分段上行驶,其中,第一速度集合包括与至少一个时刻一一对应的速度信息,所述第一分段为所述目标车辆当前行驶分段的下一分段,所述分段为车道上固定长度的一段道路,所述参考车辆为在所述目标车辆的前车;
    发送单元,用于向所述目标车辆发送所述第一确定单元确定的所述目标车辆的第一速度集合。
  9. 根据权利要求8所述的装置,其特征在于,所述第一分段为第一路段中任一车道上固定长度的一段道路,所述第一路段包括多条平行的车道,所述装置还包括:
    第二确定单元,用于确定距离所述目标车辆最近的前车为所述参考车辆,所述前车包括所述第一路段中每条车道上在所述目标车辆之前驶入所述第一分段的至少一个车辆。
  10. 根据权利要求8所述的装置,其特征在于,所述第一分段为第二路段中任一车道上固定长度的一段道路,所述第二路段包括多条平行的车道,所述装置还包括:
    第三确定单元,用于确定距离所述目标车辆最近的前车为所述参考车辆,所述前车包括所述第二路段中每条车道上在所述目标车辆前面行驶的至少一个车辆。
  11. 根据权利要求8所述的装置,其特征在于,所述第一分段为第三路段与匝道的交汇区域中的任一车道,所述第三路段包括多条平行的车道,所述匝道包括多条平行的车道,所述装置还包括:
    第四确定单元,用于确定距离所述目标车辆最近的前车为所述参考车辆,所述前车包括所述第二路段中和所述匝道中每条车道上在所述目标车辆之前驶入所述第一分段的至少一个车辆。
  12. 根据权利要求8所述的装置,其特征在于,所述第一分段为十字交通路口的第一车道,所述十字交通路口还包括第二车道,所述第一车道与所述第二车道有交叉点,所述装置还包括:
    第五确定单元,用于确定与所述交叉点距离最小的前车为所述参考车辆,所述前车包括与所述交叉点的距离小于所述目标车辆与所述交叉点的距离的至少一个车辆。
  13. 根据权利要求8至12中任一项所述的装置,其特征在于,所述第一确定单元还用于:
    根据所述参考车辆的第一速度集合以及第二分段的交通状况确定所述目标车辆的第二速度集合,所述第二速度集合包括与至少一个时刻一一对应的速度信息,所述第二速度集合用于为所述目标车辆行驶在所述第一分段时对所述目标车辆在所述第二分段行驶的速度规划提供参考,所述第二分段为所述目标车辆从所述第一分段驶入的下一分段;
    所述发送单元还用于:
    向所述目标车辆发送所述第一确定单元确定的所述第二速度集合。
  14. 根据权利要求9或10所述的装置,其特征在于,所述当前行驶分段和所述第一分段属于所述路段中的不同车道,所述第一确定单元还用于:
    根据所述目标车辆的第一速度集合和所述第一分段的径向中心线的法向距离确定所述目标车辆从当前行驶分段驶入所述第一分段所需的角速度;
    所述发送单元还用于:
    向所述目标车辆发送所述第一确定单元确定的所述角速度。
  15. 一种路径规划的方法,其特征在于,包括:
    接收控制中心发送的目标车辆的第一速度集合,所述目标车辆的第一速度集合是根据所述目标车辆的参考车辆的第一速度集合确定的;
    根据所述目标车辆的第一速度集合,控制所述目标车辆在第一分段内行驶;
    其中,第一速度集合包括与至少一个时刻一一对应的速度信息,所述第一分段为所述目标车辆当前行驶分段的下一分段,所述分段为车道上固定长度的一段道路,所述参考车辆为所述目标车辆的前车。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收所述控制中心发送的所述目标车辆的第二速度集合,所述第二速度集合包括与至少一个时刻一一对应的速度信息,所述第二速度集合用于为所述目标车辆行驶在所述第一分段时对所述目标车辆在第二分段行驶的速度规划提供参考,所述第二分段为所述目标车辆从所述第一分段驶入的下一分段。
  17. 根据权利要求15或16所述的方法,其特征在于,所述当前驶入分段和所述第一分段分别为路段中不同车道上固定长度的一段道路,所述路段包括多条平行的车道,所述方法还包括:
    接收所述控制中心发送的用于所述目标车辆从所述当前驶入分段驶入到所述第一分段所需的角速度。
  18. 一种路径规划的装置,其特征在于,所述装置包括:
    接收单元,用于接收控制中心发送的目标车辆的第一速度集合,所述目标车辆的第一速度集合是根据所述目标车辆的参考车辆的第一速度集合确定的;
    控制单元,用于根据所述接收单元接收的所述目标车辆的第一速度集合,控制所述目标车辆在第一分段内行驶;
    其中,第一速度集合包括与至少一个时刻一一对应的速度信息,所述第一分段为所述目标车辆当前行驶分段的下一分段,所述分段为车道上固定长度的一段道路,所述参考车辆为所述目标车辆的前车。
  19. 根据权利要求18所述的装置,其特征在于,所述接收单元还用于:
    接收所述控制中心发送的所述目标车辆的第二速度集合,所述第二速度集合包括与至少一个时刻一一对应的速度信息,所述第二速度集合用于为所述目标车辆行驶在所述第一分段时对所述目标车辆在第二分段行驶的速度规划提供参考,所述第二分段为所述目标车辆从所述第一分段驶入的下一分段。
  20. 根据权利18或19所述的装置,其特征在于,所述当前驶入分段和所述第一分段分别为路段中不同车道上固定长度的一段道路,所述路段包括多条平行的车道,所述接收单元还用于:
    接收所述控制中心发送的用于所述目标车辆从所述当前行驶分段驶入到所述第一分段所需的角速度。
  21. 一种路径规划的系统,其特征在于,包括如权利要求8至14中任一项所述的装置和如权利要求18至20中任一项所述的装置。
PCT/CN2017/103892 2016-12-28 2017-09-28 路径规划的方法、装置和系统 WO2018120948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/012,091 US20180297596A1 (en) 2016-12-28 2018-06-19 Path Planning Method, Apparatus, And System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611232806.9 2016-12-28
CN201611232806.9A CN108257416B (zh) 2016-12-28 2016-12-28 路径规划的方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/012,091 Continuation US20180297596A1 (en) 2016-12-28 2018-06-19 Path Planning Method, Apparatus, And System

Publications (1)

Publication Number Publication Date
WO2018120948A1 true WO2018120948A1 (zh) 2018-07-05

Family

ID=62706978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103892 WO2018120948A1 (zh) 2016-12-28 2017-09-28 路径规划的方法、装置和系统

Country Status (3)

Country Link
US (1) US20180297596A1 (zh)
CN (1) CN108257416B (zh)
WO (1) WO2018120948A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111768649A (zh) * 2019-03-15 2020-10-13 北京京东尚科信息技术有限公司 车辆的控制方法、装置和计算机可读存储介质

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895468B2 (en) * 2018-04-10 2021-01-19 Toyota Jidosha Kabushiki Kaisha Dynamic lane-level vehicle navigation with lane group identification
US11348453B2 (en) * 2018-12-21 2022-05-31 Here Global B.V. Method and apparatus for dynamic speed aggregation of probe data for high-occupancy vehicle lanes
CN110069887B (zh) * 2019-05-05 2022-04-15 腾讯科技(深圳)有限公司 一种驾驶仿真方法、装置、设备及存储介质
CN112185168A (zh) * 2019-06-14 2021-01-05 华为技术有限公司 一种车辆变道方法及装置
CN110597247B (zh) * 2019-08-22 2022-12-06 广州智湾科技有限公司 一种多车辆避障路径规划方法
CN111026122B (zh) * 2019-12-24 2022-09-06 江苏徐工工程机械研究院有限公司 一种无人驾驶车辆的速度规划方法、装置及系统
CN111369819B (zh) * 2020-03-02 2021-12-14 腾讯科技(深圳)有限公司 一种行驶对象的选择方法及装置
US11847919B2 (en) * 2020-05-19 2023-12-19 Toyota Motor North America, Inc. Control of transport en route
CN112414420B (zh) * 2020-08-13 2023-05-02 腾讯科技(深圳)有限公司 一种基于交通流量的导航方法以及相关装置
CN114494504A (zh) * 2020-10-27 2022-05-13 华为技术有限公司 掉头车道线自动标注方法、装置、计算机可读存储介质及地图
CN112396228A (zh) * 2020-11-16 2021-02-23 西安宇视信息科技有限公司 目标路径确定方法、装置、电子设备及介质
CN113026457B (zh) * 2021-03-23 2022-08-12 广联达科技股份有限公司 道路施工的标段确定方法及确定装置
CN113074747B (zh) * 2021-03-25 2024-01-05 驭势科技(北京)有限公司 一种路径规划方法、装置、设备及存储介质
CN113879304B (zh) * 2021-10-21 2023-06-20 中寰卫星导航通信有限公司 一种车辆控制方法、装置、设备及存储介质
CN114724377B (zh) * 2022-06-01 2022-10-18 华砺智行(武汉)科技有限公司 基于车路协同技术的无人驾驶车辆引导方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942971A (zh) * 2013-01-21 2014-07-23 沃尔沃汽车公司 车辆驾驶员辅助设备
CN104880193A (zh) * 2015-05-06 2015-09-02 石立公 一种车道级导航系统及其车道级导航方法
JP2015161966A (ja) * 2014-02-26 2015-09-07 株式会社デンソーアイティーラボラトリ 車線変更計画装置及び車線変更計画方法
CN106114507A (zh) * 2016-06-21 2016-11-16 百度在线网络技术(北京)有限公司 用于智能车辆的局部轨迹规划方法和装置
WO2016194134A1 (ja) * 2015-06-02 2016-12-08 日産自動車株式会社 車両制御装置及び車両制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9952057B2 (en) * 2007-10-26 2018-04-24 Tomtom Traffic B.V. Method of processing positioning data
JP5152244B2 (ja) * 2010-04-06 2013-02-27 トヨタ自動車株式会社 追従対象車特定装置
KR101154638B1 (ko) * 2010-06-30 2012-06-08 현대자동차주식회사 교차로 회전정보를 반영한 교통 정보 제공 시스템 및 그 방법
US8894413B2 (en) * 2010-09-22 2014-11-25 Telcordia Technologies, Inc. Architecture, method, and program for generating realistic vehicular mobility patterns
KR20130133265A (ko) * 2010-12-31 2013-12-06 톰톰 벨지엄 엔브이 내비게이션 방법 및 시스템
JP5652364B2 (ja) * 2011-09-24 2015-01-14 株式会社デンソー 車両用挙動制御装置
CN102842241A (zh) * 2012-09-04 2012-12-26 杨华龙 一种汽车前方有限区域实时交通信息的采集和传输方法
CN104183128B (zh) * 2013-05-22 2018-03-30 高德软件有限公司 交通状态确定方法及装置
US10081357B2 (en) * 2016-06-23 2018-09-25 Honda Motor Co., Ltd. Vehicular communications network and methods of use and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942971A (zh) * 2013-01-21 2014-07-23 沃尔沃汽车公司 车辆驾驶员辅助设备
JP2015161966A (ja) * 2014-02-26 2015-09-07 株式会社デンソーアイティーラボラトリ 車線変更計画装置及び車線変更計画方法
CN104880193A (zh) * 2015-05-06 2015-09-02 石立公 一种车道级导航系统及其车道级导航方法
WO2016194134A1 (ja) * 2015-06-02 2016-12-08 日産自動車株式会社 車両制御装置及び車両制御方法
CN106114507A (zh) * 2016-06-21 2016-11-16 百度在线网络技术(北京)有限公司 用于智能车辆的局部轨迹规划方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111768649A (zh) * 2019-03-15 2020-10-13 北京京东尚科信息技术有限公司 车辆的控制方法、装置和计算机可读存储介质
CN111768649B (zh) * 2019-03-15 2023-09-26 北京京东乾石科技有限公司 车辆的控制方法、装置和计算机可读存储介质

Also Published As

Publication number Publication date
US20180297596A1 (en) 2018-10-18
CN108257416B (zh) 2021-03-23
CN108257416A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2018120948A1 (zh) 路径规划的方法、装置和系统
CN110427021B (zh) 用于生成自动驾驶车辆交叉路口导航指令的系统和方法
JP7322201B2 (ja) 車両走行の制御方法及び装置
CN110160552B (zh) 导航信息确定方法、装置、设备和存储介质
US20200193814A1 (en) Remote Vehicle Control at Intersections
US10937312B2 (en) Transportation vehicle traffic management
WO2017022201A1 (ja) 自動運転支援装置、自動運転支援方法及び自動運転支援プログラム
JP6052424B2 (ja) 走行制御装置及び走行制御方法
CN108216220A (zh) 基于边界的车辆碰撞控制的设备和方法
JP2017130198A (ja) 拡張された前方衝突警告を提供する装置及び方法
EP3627110B1 (en) Method for planning trajectory of vehicle
EP3249625B1 (en) Determining speed information
CN113470430B (zh) 一种基于转向意图预测的无信号交叉口车辆冲突预警方法
JP5972781B2 (ja) 時隔曲線図作成装置
CN115657684B (zh) 车辆路径信息生成方法、装置、设备和计算机可读介质
US20230339513A1 (en) Method for testing autonomous-driving algorithm, and related device
WO2023213200A1 (zh) 一种会车方法及相关装置
CN113505446B (zh) 交通仿真方法、装置、电子设备及计算机存储介质
US20230256999A1 (en) Simulation of imminent crash to minimize damage involving an autonomous vehicle
CN114877912A (zh) 一种车辆导航信息生成方法、装置及设备
US20230192144A1 (en) Uncertainty prediction for a predicted path of an object that avoids infeasible paths
CN112904843B (zh) 一种自动驾驶场景确定方法、装置、电子设备及存储介质
WO2023248544A1 (ja) 経路生成装置、車両制御装置、および車両経路配信システム
US20230256993A1 (en) Secondary autonomous vehicle interceptor in difficult map areas to provide additional sensor data
WO2024058270A1 (ja) 移動体制御装置、移動体制御方法及び移動体制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886506

Country of ref document: EP

Kind code of ref document: A1