WO2023213200A1 - 一种会车方法及相关装置 - Google Patents

一种会车方法及相关装置 Download PDF

Info

Publication number
WO2023213200A1
WO2023213200A1 PCT/CN2023/089918 CN2023089918W WO2023213200A1 WO 2023213200 A1 WO2023213200 A1 WO 2023213200A1 CN 2023089918 W CN2023089918 W CN 2023089918W WO 2023213200 A1 WO2023213200 A1 WO 2023213200A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
meeting
mode
vehicles
roadside
Prior art date
Application number
PCT/CN2023/089918
Other languages
English (en)
French (fr)
Inventor
钱莉
程思源
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023213200A1 publication Critical patent/WO2023213200A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route

Definitions

  • the present application relates to the field of intelligent driving, and in particular to a method of meeting cars and related devices.
  • Meeting cars is a situation that vehicles often encounter while driving.
  • the current smart driving system mainly achieves real-time acquisition of current road traffic participants and road condition information through roadside equipment, and combines relevant sensory information (such as possible obstacles ahead). Collision warning, etc.) are sent to relevant vehicles, and the vehicle uses its own vehicle decision-making algorithm to make corresponding meeting decisions based on the received sensory information.
  • relevant sensory information such as possible obstacles ahead.
  • Collision warning, etc. are sent to relevant vehicles, and the vehicle uses its own vehicle decision-making algorithm to make corresponding meeting decisions based on the received sensory information.
  • the efficiency of meeting vehicles is relatively low.
  • This application provides a method of meeting cars and related devices to improve the efficiency of meeting cars.
  • this application provides a vehicle meeting method.
  • the method can be executed by the first vehicle, or by components configured inside the first vehicle, such as chips, chip systems, etc., or by a component having Or all the first vehicle functions can be realized by logic modules or software. This application does not limit this.
  • the method includes: switching from a first mode to a second mode, where the first mode is a mode in which the vehicle makes autonomous decisions to control the vehicle, and the second mode is a mode in which the roadside device makes decisions to remotely control the vehicle; receiving from The vehicle meeting plan for roadside equipment is used to schedule multiple vehicles for meeting during vehicle meeting; the vehicle meeting is performed based on the vehicle meeting plan.
  • the first vehicle in complex road conditions, can switch from the first mode to the second mode, and the vehicle in the second mode can perform meeting based on the meeting plan after receiving the meeting plan.
  • the vehicle in the second mode is remotely controlled by the decision-making of the roadside equipment instead of the vehicle's independent decision-making. Therefore, there is no need for games between vehicles during the vehicle meeting process, and only the received vehicle meeting plan is carried out. Just meet the cars, which can save the time of game calculation between the vehicles and improve the efficiency of meeting the cars.
  • the vehicle meeting plan is used to indicate the passing sequence of multiple vehicles when meeting vehicles.
  • the meeting plan is also used to indicate one or more of the following: the driving direction recommended to the first vehicle, the route driving speed and acceleration.
  • the meeting plan is also used to indicate one or more of the following: the driving direction, driving speed and acceleration recommended for each vehicle among the plurality of vehicles except the first vehicle.
  • the vehicle does not need to calculate its own driving direction, driving speed or acceleration when meeting. It only needs to perform the meeting according to the driving direction, driving speed or acceleration indicated in the received meeting plan. , which can save the time of game calculation between vehicles and improve the efficiency of meeting vehicles.
  • the method further includes: determining that the complexity of the current road condition is greater than a first preset threshold based on the road condition information, and the road condition information is obtained based on data collected by the sensing device.
  • the sensing device includes a sensing device deployed on the roadside and/or a sensing device deployed on the first vehicle; sending a request message to the roadside device, where the request message is used to request to obtain the meeting plan.
  • the first vehicle can determine whether it is currently in a complex road condition scenario that the vehicle itself cannot control based on the road condition information. When the first vehicle determines that it is in a complex road condition scenario, it can send a request message to the roadside device to obtain the information from the roadside device. Get meeting instructions.
  • the first vehicle may actively switch from the first mode to the second mode before sending the request message to the roadside device, or may actively switch from the first mode to the second mode after sending the request message to the roadside device. It can avoid games with other vehicles and improve the efficiency of meeting vehicles.
  • the request message carries the traveling information of the first vehicle, and the traveling information includes: planned path, current traveling direction and traveling speed.
  • the roadside device can determine the passing sequence of the multiple vehicles indicated in the meeting plan based on the driving information of the first vehicle, as well as the recommended driving direction, driving speed or acceleration to the first vehicle.
  • the method further includes: determining a second vehicle, where the second vehicle is one or more vehicles other than the first vehicle among the plurality of vehicles; The two vehicles send a notification message, and the notification message is used to instruct the second vehicle to switch from the first mode to the second mode.
  • the first vehicle switches from the first mode to The second mode allows the second vehicle to also accept the remote control of the roadside device, so that after receiving the meeting plan from the roadside device, the first vehicle and the second vehicle can meet according to the meeting plan, avoiding the need for the second vehicle to meet.
  • the game between the first vehicle and the second vehicle can improve the efficiency of meeting vehicles.
  • the request message carries indication information, and the indication information is used to indicate multiple vehicles on which a meeting may occur.
  • the first vehicle needs to identify the second vehicle before sending a notification message to the second vehicle. After identifying the second vehicle, the first vehicle can carry the indication information in the request message and send it to the roadside device.
  • the indication information It may be indicated that a plurality of vehicles in which a meeting may occur include a first vehicle and a second vehicle.
  • sending a request message to a roadside device may include: determining a first roadside device closest to the first vehicle; sending a request to the first roadside device information.
  • Sending the request message to the roadside device closest to the first vehicle can shorten the communication time between the first vehicle and the roadside device as much as possible to improve the efficiency of meeting vehicles.
  • the method further includes: receiving a takeover message from the roadside device, where the takeover message is used to instruct the first vehicle to switch from the first mode to the second mode.
  • the first vehicle After receiving the takeover message from the roadside device, the first vehicle can switch from the first mode to the second mode. It can be understood that the first vehicle can passively switch from the first mode to the second mode to wait for the roadside device. send it to The scheme of meeting cars can avoid the game between the first vehicle and other vehicles and improve the efficiency of meeting cars.
  • the method further includes: receiving a notification message from a third vehicle, the notification message being used to instruct the first vehicle to switch from the first mode to the second mode.
  • the third vehicle is any vehicle among the plurality of vehicles except the first vehicle; the driving information of the first vehicle is sent to the roadside device, and the driving information includes: planned path, current driving direction and driving speed.
  • the first vehicle After receiving the notification message from the third vehicle, the first vehicle can switch from the first mode to the second mode. It can be understood that the first vehicle can passively switch from the first mode to the second mode and move toward the roadside.
  • the device sends the driving information of the first vehicle and waits for the roadside device to send the meeting plan to it. It only needs to perform the meeting according to the received meeting plan. This can avoid the game between the first vehicle and other vehicles and improve the efficiency of the meeting. The efficiency of meeting cars.
  • the method further includes: switching from the second mode to the first mode.
  • the first vehicle can autonomously switch from the first mode to the second mode and control the driving of the vehicle with independent decision-making to avoid excessive occupation of the resources of the roadside equipment and affecting the roadside equipment's impact on other vehicles.
  • Remote control of vehicles After completing the meeting based on the meeting plan, the first vehicle can autonomously switch from the first mode to the second mode and control the driving of the vehicle with independent decision-making to avoid excessive occupation of the resources of the roadside equipment and affecting the roadside equipment's impact on other vehicles. Remote control of vehicles.
  • this application provides a method for meeting vehicles.
  • This method can be executed by roadside equipment, or by components configured inside the roadside equipment, such as chips, chip systems, etc., or by components that have Or all roadside equipment functions can be realized by logic modules or software. This application does not limit this.
  • the method includes: receiving respective driving information from each vehicle in a plurality of vehicles.
  • the driving information includes: planned path, current driving direction and driving speed, and the plurality of vehicles are vehicles where a meeting occurs; based on road conditions information and the driving information of each of the multiple vehicles to determine the meeting plan.
  • the road condition information is used to indicate the current traffic conditions on the road.
  • the meeting plan is used to schedule the multiple vehicles when meeting; to these multiple vehicles Send a meeting plan to each vehicle.
  • multiple vehicles meeting each other can be remotely controlled through roadside equipment decision-making, and meeting solutions can be provided for multiple vehicles meeting each other.
  • Multiple vehicles meeting each other only need to follow the received
  • the vehicle meeting plan can be used to meet vehicles, which can save the time of game calculation between vehicles and improve the efficiency of vehicle meeting.
  • the method before determining the meeting plan, further includes: when it is determined based on the road condition information that the complexity of the current road condition is greater than the second preset threshold, Enter the command mode, which is a mode for remote control of vehicles; determine multiple vehicles that may meet; send a takeover message to these multiple vehicles.
  • the takeover message is used to instruct the vehicle to switch from the first mode to the second mode.
  • the first mode is a mode in which the vehicle makes autonomous decisions to control the vehicle
  • the second mode is a mode in which the roadside equipment makes decisions to remotely control the vehicle.
  • the roadside device can determine whether the current road condition is a complex scene based on the road condition information, and when it is determined that the current road condition is a complex scene, it can independently enter the command mode and remotely control multiple vehicles to conduct meeting, without the need for the vehicle to make a meeting decision on its own. This avoids games between multiple meeting vehicles, thereby improving the efficiency of meeting vehicles.
  • the method before determining the meeting plan, further includes: upon receiving a request message from the first vehicle among the multiple vehicles, enter Command mode.
  • the command mode is a mode for remotely controlling the vehicle.
  • the request message is used to request the vehicle meeting plan.
  • the roadside device can passively enter the command mode after receiving the request message from the first vehicle, and remotely control multiple vehicles to meet, without the need for the vehicle to make the decision to meet on its own, which can avoid gaming among multiple meeting vehicles. This can improve the efficiency of meeting cars.
  • the request message carries at least one of the following: traveling information of the first vehicle; and indication information, where the indication information is used to indicate vehicles on which a meeting may occur.
  • the meeting plan is a meeting plan sent to the first vehicle, and the meeting plan is used to indicate the passing sequence of multiple vehicles when meeting, and One or more of the following: the driving direction, driving speed and acceleration recommended for the first vehicle.
  • the meeting plan is also used to indicate one or more of the following: the driving direction, driving speed and acceleration recommended for each vehicle among the plurality of vehicles except the first vehicle.
  • the vehicle does not need to calculate the passing sequence of the meeting, as well as the driving direction, driving speed or acceleration of each vehicle, etc.
  • the vehicle only needs to follow the passing instructions in the meeting plan received from the roadside device.
  • the order, driving direction, driving speed or acceleration of each vehicle can be used to perform the meeting, which can save the time of game calculation between vehicles and improve the efficiency of meeting.
  • this application provides a vehicle meeting device, which can be used to implement the above first and second aspects as well as any possible implementation of the first aspect and any possible implementation of the second aspect.
  • method of meeting cars The vehicle meeting device includes corresponding modules for executing the above method.
  • the modules included in the vehicle meeting device can be implemented by software and/or hardware.
  • the present application provides a vehicle meeting device.
  • the vehicle meeting device includes a processor.
  • the processor is coupled to a memory and can be used to execute a computer program in the memory to implement the above first and second aspects and Any possible implementation of the first aspect and the meeting method in any possible implementation of the second aspect.
  • the vehicle meeting device further includes a memory.
  • the vehicle meeting device further includes a communication interface, and the processor is coupled to the communication interface.
  • this application provides a vehicle that can be used to implement the method in the above first aspect and any possible implementation manner of the first aspect.
  • the vehicle includes corresponding modules for performing the above method.
  • the vehicle includes modules that may be implemented in software and/or hardware.
  • the present application provides a vehicle.
  • the vehicle includes a processor, which is coupled to a memory and can be used to execute a computer program in the memory to implement the first aspect and any possible implementation of the first aspect.
  • the method of meeting cars is not limited to a processor, which is coupled to a memory and can be used to execute a computer program in the memory to implement the first aspect and any possible implementation of the first aspect. The method of meeting cars.
  • the vehicle also includes memory.
  • the vehicle further includes a communication interface, and the processor is coupled to the communication interface.
  • the present application provides a roadside device, which can be used to implement the above second aspect and the method in any possible implementation manner of the second aspect.
  • the roadside device includes corresponding modules for performing the above method.
  • the modules included in the roadside equipment can be implemented in software and/or hardware.
  • the present application provides a roadside device.
  • the roadside device includes a processor.
  • the processor is coupled to a memory and can be used to execute a computer program in the memory to implement the second aspect and any of the second aspects. A possible way to implement the meeting method.
  • the roadside device further includes a memory.
  • the roadside device further includes a communication interface, and the processor is coupled to the communication interface.
  • the present application provides a chip system, which includes at least one processor for supporting the implementation of the functions involved in the above first aspect and any possible implementation of the first aspect, or for Support the implementation of the above second aspect and the functions involved in any possible implementation of the second aspect, for example, receiving or processing data involved in the above method, etc.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located within the processor or outside the processor.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the present application provides a computer-readable storage medium.
  • a computer program (which may also be called a code, or an instruction) is stored on the computer storage medium.
  • the computer program When the computer program is run by a processor, it causes The method in the above first aspect and any possible implementation of the first aspect is executed, or the method in the above second aspect and any possible implementation of the second aspect is executed.
  • the present application provides a computer program product.
  • the computer program product includes: a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • Figure 1 is a schematic diagram of a scene applicable to the car meeting method provided by the embodiment of the present application.
  • Figure 2 is a schematic diagram of the system architecture applicable to the car meeting method provided by the embodiment of the present application.
  • Figure 3 is a schematic flow chart of a car meeting method provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of another car meeting method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the vehicle meeting method provided by the embodiment of the present application from the perspective of interaction between the vehicle and the roadside equipment;
  • Figure 6 is another schematic diagram of the vehicle meeting method provided by the embodiment of the present application from the perspective of interaction between the vehicle and the roadside equipment;
  • Figure 7 is a schematic block diagram of a vehicle meeting device provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of another vehicle meeting device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of yet another vehicle meeting device provided by an embodiment of the present application.
  • words such as “first”, “second” and “third” are used to distinguish the same or similar items with basically the same functions and effects.
  • the first vehicle, the second vehicle and the third vehicle are used to distinguish different vehicles, and their order is not limited.
  • the words “first”, “second” and “third” do not limit the quantity and execution order, and the words “first”, “second” and “third” do not limit the number or order of execution. It’s not necessarily different.
  • "at least one type” refers to one type or multiple types.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B. To express: A alone exists, A and B exist simultaneously, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship, but it does not exclude the situation that the related objects are in an “and” relationship. The specific meaning can be understood based on the context.
  • SAE Society of Automotive Engineers
  • L0 level is the lowest automation level
  • L5 level represents fully automated driving (that is, no driver intervention is required under all conditions).
  • SAE’s naming for levels L0 to L2 is “driver support features”, and its naming for levels L3 to L5 is “automated driving features”.
  • the driver is the sole driver of the vehicle and needs to control all controls such as steering wheel, accelerator and brake. But it can have active safety features such as automatic emergency braking (AEB).
  • AEB automatic emergency braking
  • the driver is still the sole driver of the vehicle and needs to control all control devices such as the steering wheel, accelerator, and brakes. But there can be more auxiliary/supportive functions, such as adaptive cruise or lane keeping.
  • the vehicle's autonomous driving system can drive the vehicle in certain situations. For example, when there is a traffic jam, the vehicle can use the traffic jam assist (traffic jam chauffeur) function to drive automatically. At this time, the driver does not need to drive the vehicle; when needed time, the driver must take over the vehicle.
  • traffic jam assist traffic jam chauffeur
  • the L5 level represents fully autonomous driving under any conditions and is the ultimate ideal level of autonomous driving. Currently, only some vehicles can achieve L2 level autonomous driving technology, and it is still being improved.
  • the meeting method described below can be applied to autonomous vehicles of L2 level and below, and can also be applied to future autonomous driving vehicles of L3 level and above, which is not limited in the embodiments of this application. It should also be understood that in future self-driving vehicles at L3 level and above, the vehicle can realize most of the driving functions.
  • a reminder can be sent to the driver, allowing the driver to take over the vehicle.
  • the driver taking over the vehicle means that the driver manually drives the vehicle without vehicle assistance. This mode in which the driver manually drives the vehicle can also be called manual mode.
  • Crossing vehicles is a situation that vehicles often encounter while driving.
  • the current smart driving system mainly uses roadside sensing equipment combined with roadside computing equipment to achieve real-time acquisition of current road traffic participants and road condition information, and combine relevant Perceptual information (such as possible collision warnings ahead, etc.) is sent to relevant vehicles, and the vehicle uses its own vehicle decision-making algorithm to make corresponding meeting decisions based on the received perceptual information.
  • relevant Perceptual information such as possible collision warnings ahead, etc.
  • the vehicle uses its own vehicle decision-making algorithm to make corresponding meeting decisions based on the received perceptual information.
  • complex vehicle meeting scenarios such as complex narrow lanes, unprotected left-turn intersections, or dense traffic lane changes
  • there is a multi-vehicle game and the vehicles compete with each other.
  • the inability to accurately predict the possible behaviors of other meeting vehicles results in multiple trials and repeated iterations in the self-vehicle decision-making algorithm, resulting in relatively low efficiency of meeting vehicles.
  • this application provides a vehicle meeting method and related devices, so that in complex road conditions, the vehicle can switch from the first mode of autonomous decision-making to the second mode of remote control of the vehicle by roadside equipment, and based on the roadside
  • the vehicle meeting plan issued by the device is used for vehicle meeting to avoid gaming among multiple meeting vehicles, thus improving the vehicle meeting efficiency.
  • Figure 1 is a schematic diagram of a scene applicable to the car meeting method provided by the embodiment of the present application.
  • the figure shows an unprotected left-turn intersection scene.
  • An unprotected left-turn intersection means that the intersection does not have a special left-turn green light, and left-turning vehicles and straight-going vehicles drive at the same time.
  • vehicle 1 and vehicle 2 are about to turn left
  • vehicle 3 and vehicle 4 are about to go straight
  • vehicle 5 is about to turn right.
  • vehicle 1 and vehicle 2 are driving at the same time as vehicle 3 and vehicle 4, they may Meeting at an intersection (as shown by the dotted arrows in the figure, the intersection between the dotted arrows can indicate the meeting of vehicles), vehicle 5 may also meet at the intersection when traveling at the same time as vehicle 3 and vehicle 4.
  • This scene can be an example of a complex traffic scene.
  • Figure 1 is only exemplary. In actual application scenarios, it may include more or fewer meeting vehicles, which is not limited in this application.
  • FIG. 2 is a schematic diagram of the system architecture applicable to the car meeting method provided by the embodiment of the present application. As shown in Figure 2, communication can be carried out between vehicles and roadside equipment.
  • the roadside device may include a roadside sensing device and a roadside computing device.
  • roadside sensing equipment can be a high-resolution multi-sensor fusion system composed of multiple types of sensing equipment to jointly realize comprehensive perception of surrounding traffic conditions and be distributed on the roadside.
  • Common types of sensor equipment can include: cameras, lidar, millimeter wave radar, etc.
  • cameras are relatively low-cost and can recognize pedestrians and traffic signs, but they are highly dependent on light.
  • Millimeter wave radar is not affected by weather, has long detection range and high accuracy, but it is difficult to identify pedestrians.
  • LiDAR has extremely high accuracy and has three-dimensional modeling capabilities, but it is costly and greatly affected by weather.
  • roadside sensing devices can sense traffic conditions and the surrounding environment more comprehensively and accurately.
  • the roadside sensing device is connected to the roadside computing device and sends relevant information about the perceived traffic conditions to the roadside computing device.
  • Roadside computing equipment can be composed of high-performance artificial intelligence computing and processing equipment such as central processing unit (CPU), graphics processing unit (GPU), field programmable gate array (FPGA), etc. , distributed and placed on the roadside to implement edge computing functions. It is used to schedule and calculate the current appropriate meeting plan based on the relevant information about the traffic conditions near the meeting point sent by the roadside sensing device and the respective driving information sent by the meeting vehicles.
  • Roadside computing devices can communicate with roadside sensing devices, smart traffic clouds, and surrounding autonomous vehicles through wireless communications.
  • Figure 3 is a schematic flow chart of a vehicle meeting method provided by an embodiment of the present application.
  • the method may be executed by the first vehicle, or may be executed by components configured inside the first vehicle, such as chips, chip systems, etc., or may be implemented by logic modules or software having part or all of the functions of the first vehicle. . This application does not limit this.
  • the first vehicle is one of the multiple vehicles meeting each other.
  • the first vehicle may be any one of the vehicles 1 to 5 shown in FIG. 1 , which is not the case in this embodiment of the present application. limited.
  • the method 300 may include steps 310 to 330 . Each step in the method 300 is described in detail below.
  • step 310 the first vehicle switches from the first mode to the second mode.
  • the first mode may be a mode in which the vehicle makes autonomous decisions to control the vehicle
  • the second mode may be a mode in which the roadside device makes decisions to remotely control the vehicle.
  • the first vehicle can interrupt autonomous decision-making (that is, self-vehicle decision-making), actively switch from the first mode to the second mode, or passively switch from the first mode to the second mode.
  • autonomous decision-making that is, self-vehicle decision-making
  • actively switch from the first mode to the second mode or passively switch from the first mode to the second mode.
  • passively switch from the first mode to the second mode The following describes in detail the active and passive switching of the first vehicle from the first mode to the second mode.
  • the first vehicle actively switches from the first mode to the second mode when it is determined based on the road condition information that the complexity of the current road condition is greater than the first preset threshold.
  • the method 300 may also include:
  • Step 1 The first vehicle determines based on the road condition information that the complexity of the current road condition is greater than the first preset threshold;
  • Step 2 The first vehicle sends a request message to the roadside device.
  • the request message is used to request the vehicle meeting plan.
  • the road condition information is obtained based on data collected by sensing devices, and the sensing devices include sensing devices deployed on the roadside and/or sensing devices deployed on the first vehicle.
  • the meeting plan is used to schedule multiple meeting vehicles during the meeting.
  • the data collected by the sensing device can be understood as the most original data collected by the sensing device of the first vehicle and/or the sensing device on the roadside.
  • the road condition information can be obtained.
  • the road condition information may include the width and slope of the lane, whether there is water on the road, whether there is ice or snow on the road, traffic volume, traffic light indication information, lane lines and landmark indication information, and whether there is a traffic accident on the road ahead, etc.
  • the embodiments of this application do not limit this in any way.
  • the first vehicle performs the above-mentioned step 1, step 310 and step 2 in sequence.
  • the first vehicle may determine whether the complexity of the current road condition is greater than the first preset threshold based on the road condition information. If it is determined that the complexity of the current road condition is greater than the first preset threshold, the first vehicle may determine whether the complexity of the current road condition is greater than the first preset threshold. If a vehicle can determine that the current road condition scene is a complex road condition scene that it cannot control, the first vehicle executes step 310, that is, the first vehicle actively switches from the first mode to the second mode and waits for the roadside device to remotely control it. . After performing step 310, the first vehicle may send a request message to the roadside device to request the roadside device to send the meeting plan to the first vehicle and remotely control it.
  • the first vehicle performs the above-mentioned step 1, step 2 and step 310 in sequence.
  • the first vehicle may determine whether the complexity of the current road condition is greater than the first preset threshold based on the road condition information. If it is determined that the complexity of the current road condition is greater than the first preset threshold, the first vehicle may determine whether the complexity of the current road condition is greater than the first preset threshold.
  • a vehicle can determine that the current road condition scene is a complex road condition scene that it cannot control, and then send a request message to the roadside device to request the roadside device to send it a meeting plan, remotely control it, and then send the vehicle to the roadside device.
  • the first vehicle executes step 310, that is, the first vehicle actively switches from the first mode to the second mode and waits for the roadside device to remotely control it.
  • the first vehicle may first perform the above step one, and then perform the above step two and step 310 at the same time.
  • the first vehicle may determine whether the complexity of the current road condition is greater than the first preset threshold based on the road condition information. If it is determined that the complexity of the current road condition is greater than the first preset threshold, the first vehicle may determine whether the complexity of the current road condition is greater than the first preset threshold. If a vehicle can determine that the current road condition scene is a complex road condition scene that it cannot control, the first vehicle can actively switch from the first mode to the second mode while sending a request message to the roadside device.
  • the first vehicle sending a request message to the roadside device may include: the first vehicle determines the first roadside device closest to the first vehicle; and the first vehicle sends the request message to the first roadside device.
  • the first vehicle determines that the complexity of the current road condition is greater than the first preset threshold, it can first calculate the nearest roadside device, that is, the first roadside device, and then proceed to the first roadside device.
  • the device sends a request message.
  • the communication time between the first vehicle and the roadside equipment can be shortened as much as possible to improve the efficiency of meeting vehicles.
  • the request message carries the traveling information of the first vehicle, and the traveling information includes: planned path, current traveling direction and traveling speed.
  • the first vehicle When the first vehicle sends a request message to the roadside device, the first vehicle may carry the first vehicle's planned path, current driving direction, driving speed and other driving information in the request message and send it to the roadside device together, so that the roadside device can The meeting plan can be determined based on the driving information of the first vehicle.
  • the method 300 may also include:
  • Step 3 The first vehicle determines the second vehicle, and the second vehicle is one or more vehicles among the plurality of vehicles except the first vehicle;
  • Step 4 The first vehicle sends a notification message to the second vehicle.
  • the notification message is used to instruct the second vehicle to switch from the first mode to the second mode.
  • the first vehicle can determine one or more vehicles with which it will meet. As shown in Figure 1, if vehicle 1 is the first vehicle, for vehicle 1, during the process of vehicle 1 turning left, It may encounter vehicle 3 and vehicle 4 that are going straight. Vehicle 1 can determine vehicle 3 and vehicle 4 as the second vehicle, and send notification messages to vehicle 3 and vehicle 4, so that vehicle 3 and vehicle 4 also start from the second vehicle. Switch from the first mode to the second mode and accept remote control from roadside equipment.
  • step 310 and step three may be executed after step one, and step four may be executed after step three, but there is no limit to the specific execution order of step 310, step two, step three, and step four.
  • the request message may carry indication information, and the indication information is used to indicate multiple vehicles in which a meeting may occur.
  • vehicle 1 if vehicle 1 is the first vehicle, then for vehicle 1 , multiple vehicles that may meet include vehicle 1 , vehicle 3 and vehicle 4 . After vehicle 1 determines that vehicle 3 and vehicle 4 are the second vehicles, it may carry the indication information indicating that vehicle 1, vehicle 3 and vehicle 4 may meet in the request message and send it to the roadside device.
  • step 2 is performed after the above-mentioned step 3. That is, step 310 and step three can be executed after step one, step four can be executed after step three, and step two can be executed after step three, but the specific execution order of step 310, step two, step three, and step four is Without any qualification.
  • the first vehicle may passively switch from the first mode to the second mode upon receiving a takeover message from the roadside device.
  • the method 300 may further include: the first vehicle receiving a takeover message from the roadside device.
  • the takeover message may be used to instruct the first vehicle to switch from the first mode to the second mode.
  • vehicle 1 if vehicle 1 is the first vehicle, after receiving a takeover message from the roadside device, vehicle 1 can passively switch from the first mode to the second mode to wait for the roadside device. Send the car meeting plan to them. As a result, the game between vehicle 1, vehicle 3, and vehicle 4 can be avoided, and the efficiency of meeting vehicles can be improved.
  • the first vehicle may passively switch from the first mode to the second mode upon receiving a notification message from the third vehicle.
  • the method 300 may also include:
  • Step 5 The first vehicle receives the notification message from the third vehicle
  • Step 6 The first vehicle sends the driving information of the first vehicle to the roadside device.
  • the notification message is used to instruct the first vehicle to switch from the first mode to the second mode.
  • the driving information of the first vehicle may include the first vehicle's planned path, current driving direction, driving speed, etc.
  • the third vehicle is any vehicle among the plurality of vehicles except the first vehicle. As shown in Figure 1, if vehicle 1 is the first vehicle, vehicle 3 or vehicle 4 may be the third vehicle, and vehicle 1 may receive a notification message from vehicle 3 or vehicle 4. After receiving the notification message from vehicle 3 or vehicle 4, vehicle 1 can passively switch from the first mode to the second mode, and can send the driving information of vehicle 1 to the roadside device to calculate and make decisions for the roadside device.
  • the car plan provides the data basis and waits for the roadside equipment to send the car meeting plan to it.
  • step five can be executed before step 310, but there is no restriction on the specific execution order of step 310 and step six. That is, step 310 can be executed before step six, and step 310 It may also be executed after step six, and step 310 and step six may also be executed at the same time, which is not limited in the embodiment of the present application.
  • step 320 the first vehicle receives the meeting plan from the roadside device.
  • the meeting plan is used to schedule multiple meeting vehicles during meeting. That is, the roadside equipment can realize remote control of the first vehicle through the meeting plan.
  • the first vehicle The vehicle can control the body movement based on the meeting plan to complete the meeting with other vehicles.
  • vehicle 1 can receive the meeting plan from the roadside device.
  • the vehicle meeting plan can be used to indicate the passing sequence of multiple vehicles when meeting vehicles.
  • Example 1 In the case where the first vehicle actively switches from the first mode to the second mode, as shown in Figure 1, if vehicle 1 is the first vehicle, then vehicle 3 and vehicle 4 are second vehicles. For vehicle 1 In other words, vehicle 1, vehicle 3 and vehicle 4 are multiple vehicles when meeting, and the passing sequence of vehicle 1, vehicle 3 and vehicle 4 when meeting at the intersection can be indicated in the meeting plan.
  • Example 2 In the case where the first vehicle passively switches from the first mode to the second mode after receiving the notification message from the third vehicle, as shown in Figure 1, if vehicle 1 is the first vehicle, then vehicle 3 or Vehicle 4 is the third vehicle. Taking vehicle 3 as the third vehicle as an example, vehicle 1 receives the notification message from vehicle 3. For vehicle 1, vehicle 1 and vehicle 3 are multiple vehicles when meeting. The vehicle plan can indicate the traffic sequence of vehicle 1 and vehicle 3 when they meet at the intersection.
  • Example 3 In the case where the first vehicle passively switches from the first mode to the second mode after receiving the takeover message from the roadside device, as shown in Figure 1, vehicles 1 to 5 may all be the first vehicles.
  • vehicles 1 to 5 are multiple vehicles when meeting.
  • the meeting plan can instruct vehicles 1 to 5 to be on the road. Passing order when meeting vehicles at the entrance.
  • the meeting plan is also used to indicate one or more of the following: the driving direction, driving speed and acceleration recommended for the first vehicle.
  • the contents indicated by the meeting plans sent to different vehicles may be different except for the passing order of multiple vehicles.
  • Detailed description will be given below in conjunction with the above Example 1 to the above Example 3.
  • vehicle 1 is the first vehicle.
  • the meeting plan sent to vehicle 1 by the roadside device not only indicates the passing sequence of multiple vehicles when meeting, but also indicates the recommended driving direction and driving direction for vehicle 1.
  • the meeting plan sent by the roadside device to vehicle 3 can not only indicate the passing sequence of vehicle 1, vehicle 3 and vehicle 4, but also indicate one of the recommended driving direction, driving speed and acceleration for vehicle 3. item or multiple items.
  • the meeting plan sent by the roadside device to vehicle 4 may also indicate one of the recommended driving direction, driving speed and acceleration for vehicle 4, or Multiple items.
  • the meeting plan sent by the roadside device to vehicle 3 can not only indicate the passing sequence of vehicle 1 and vehicle 3, but also indicate one or more of the recommended driving direction, driving speed and acceleration for vehicle 3. item.
  • the meeting plan sent by the roadside equipment to vehicle 2 can not only indicate the passing sequence of vehicles 1 to 5, but also indicate one or more of the recommended driving direction, driving speed and acceleration for vehicle 2. item.
  • the meeting plans sent by the roadside equipment to vehicles 3 to 5 can also indicate the recommended driving direction, driving speed, acceleration, etc. for each vehicle. item or multiple items.
  • the meeting plan is also used to indicate one or more of the following: the driving direction, driving speed and acceleration recommended for each vehicle among the multiple vehicles. That is, the meeting plan sent to the first vehicle may also indicate, in addition to the passing sequence of multiple vehicles when meeting, one or more of the driving direction, driving speed and acceleration recommended to the first vehicle. The driving direction, driving speed and acceleration recommended for each of the plurality of vehicles except the first vehicle.
  • the meeting plan sent to vehicle 1, vehicle 3 and vehicle 4 is the same. It can not only indicate the passing sequence of vehicle 1, vehicle 3 and vehicle 4, but also indicate the recommendation to vehicle 1, vehicle 3 and vehicle 4. The driving direction, driving speed and acceleration of each vehicle in 4.
  • the meeting plan sent to vehicle 1 and vehicle 3 is the same. It can not only indicate the passing sequence of vehicle 1 and vehicle 3, but also indicate the driving direction recommended for each vehicle in vehicle 1 and vehicle 3. Driving speed and acceleration.
  • the meeting plans sent to vehicles 1 to 5 are the same. They can not only indicate the passing sequence of vehicles 1 to 5, but also indicate the driving direction recommended for each vehicle among vehicles 1 to 5. Driving speed and acceleration.
  • step 330 the first vehicle performs meeting based on the meeting plan.
  • the first vehicle can analyze the meeting plan and analyze the passing sequence of multiple vehicles including the first vehicle during the meeting, or in other words, determine In which order the first vehicle is passing, the driving direction, driving speed and acceleration recommended for the first vehicle can also be analyzed.
  • the first vehicle can control the body of the first vehicle based on the analyzed traffic sequence corresponding to the first vehicle and the meeting indication information such as the driving direction, driving speed and acceleration recommended to the first vehicle. , and perform meeting based on the parsed meeting instruction information, etc.
  • the method 300 may further include: switching the first vehicle from the second mode to the first mode.
  • the first vehicle can actively switch from the second mode to the first mode and continue to make autonomous decisions (that is, self-vehicle decision-making).
  • vehicle 1 can actively switch from the second mode to the first mode, and continue to make independent decisions in the first mode to control the driving of the vehicle body.
  • the roadside device may also determine whether the first vehicle has completed the meeting based on the meeting plan. When the roadside device determines that the first vehicle has completed the meeting based on the meeting plan, the roadside device may notify the first vehicle A switching instruction is sent, the switching instruction is used to instruct the first vehicle to switch from the second mode to the first mode.
  • This implementation can be understood as the first vehicle passively switching from the second mode to the first mode, which is not limited in this application.
  • the first vehicle in complex road conditions, can switch from the first mode to the second mode, and the vehicle in the second mode can perform meeting based on the meeting plan after receiving the meeting plan.
  • the vehicle in the second mode is remotely controlled by the decision-making of the roadside equipment instead of the vehicle's independent decision-making. Therefore, there is no need for games between vehicles during the vehicle meeting process, and only the received vehicle meeting plan is carried out. Just meet the cars, which can save the time of game calculation between the vehicles and improve the efficiency of meeting the cars.
  • Figure 4 is a schematic flow chart of another car meeting method provided by an embodiment of the present application.
  • the method can be executed by the roadside device, or by components configured inside the roadside device, such as chips, chip systems, etc., or by logic modules or software that have part or all of the functions of the roadside device. . This application does not limit this.
  • the method 400 may include steps 410 to 430 . Each step in the method 400 is described in detail below.
  • step 410 the roadside device receives respective travel information from each of the plurality of vehicles.
  • the above-mentioned plurality of vehicles are vehicles where a meeting occurs.
  • the vehicle's driving information may include the vehicle's planned path, current driving direction and driving speed, etc.
  • the roadside device may receive respective driving information from each vehicle in a plurality of meeting vehicles.
  • vehicles 1 to 5 may be multiple vehicles meeting each other, and the roadside equipment may receive respective driving information from each of vehicles 1 to 5 .
  • step 420 the roadside device determines a meeting plan based on the road condition information and the driving information of each vehicle in the plurality of vehicles.
  • the roadside device can determine the meeting plan based on the road condition information and the driving information of each vehicle among the multiple vehicles that are meeting.
  • Roadside equipment can also be based on road condition information and the driving information of each vehicle in the meeting. etc., and then combine the high-precision map to determine the meeting plan.
  • the high-precision map can come from the cloud, such as the smart traffic cloud. The embodiments of this application do not limit this in any way.
  • the roadside device may use a multi-vehicle collaborative control algorithm to determine the vehicle meeting plan based on the road condition information and the driving information of each vehicle among the multiple vehicles meeting the vehicle.
  • the multi-vehicle collaborative control algorithm is based on the distributed model predictive control (DMPC) algorithm and kinematic model.
  • DMPC distributed model predictive control
  • the multi-vehicle collaborative control algorithm is designed to minimize the travel time of each vehicle meeting each other while ensuring the driving safety of the vehicles.
  • the steps of the multi-vehicle collaborative control algorithm are roughly as follows:
  • Step A Determine the number of meeting vehicles based on the driving information of each vehicle among the multiple meeting vehicles, such as the vehicle's planned path, current location, current driving speed, current acceleration, and current driving direction, etc.
  • the passing sequence of each vehicle and the driving direction of each vehicle recommended to the meeting vehicle In the process of determining the passing order of multiple vehicles and the driving direction recommended for each vehicle, a high-precision map can also be combined, which is not limited in the embodiments of the present application.
  • Step B Determine the driving speed and speed of each vehicle among the multiple vehicles recommended to the meeting based on the driving information of each vehicle in the meeting, such as the vehicle's current location, current driving speed and acceleration, etc. acceleration etc.
  • the DMPC algorithm and kinematic model need to be used, where the kinematic model can be as follows:
  • p can represent the position of the vehicle along the respective planned path;
  • v can represent the speed recommended to the vehicle;
  • a can represent the speed recommended to the vehicle.
  • Acceleration, k can represent a discrete time point, such as the kth step;
  • t can represent a discrete time interval.
  • the DMPC algorithm is used to constrain the physical quantities such as p, v, and a in the kinematic model of each vehicle in multiple vehicles, and the p, v, a, and other physical quantities of each vehicle are constrained to ensure that the p, v, and a of each vehicle are and other physical quantities, and ensure that the distance between any two vehicles at any time is greater than a certain threshold to avoid vehicle collisions and ensure safe driving of vehicles.
  • the speed of the vehicle's last k steps in the time domain of remote control of the vehicle can also be used to ensure that the vehicle's driving safety is ensured and the vehicle reaches the next target location as soon as possible.
  • the ride comfort of vehicle occupants can also be constrained by the size of a for each vehicle in each time interval.
  • the roadside equipment can determine the meeting plan.
  • step 430 the roadside device sends the meeting plan to multiple vehicles.
  • the roadside device After the roadside device determines the meeting plan, it can send the meeting plan to multiple vehicles.
  • the meeting plan is a meeting plan sent to the first vehicle.
  • the meeting plan is used to indicate the passing sequence of multiple vehicles when meeting, and one or more of the following: recommended travel for the first vehicle. direction, travel speed and acceleration.
  • the meeting plan sent to vehicle 1 can indicate the passing sequence of vehicle 1, vehicle 3 and vehicle 4, as well as the driving direction, driving speed and acceleration recommended to vehicle 1;
  • the meeting plan sent to vehicle 3 can indicate the vehicle 1.
  • the meeting plan sent to vehicle 4 can indicate the passing sequence of vehicle 1, vehicle 3 and vehicle 4, as well as recommendations Give the driving direction, driving speed and acceleration of vehicle 4 speed etc.
  • the relevant description in method 300 please refer to the relevant description in method 300. For the sake of brevity, details will not be repeated here.
  • the meeting plan is also used to indicate one or more of the following: the driving direction, driving speed and acceleration recommended for each vehicle among the plurality of vehicles except the first vehicle.
  • the contents indicated by the meeting plans sent by the roadside equipment to different vehicles may also be the same.
  • the meeting plans sent to vehicle 1, vehicle 3 and vehicle 4 can all indicate the passing sequence of vehicle 1, vehicle 3 and vehicle 4, as well as the recommended driving direction, driving speed and driving speed of vehicle 1, vehicle 3 and vehicle 4 respectively. acceleration etc.
  • the relevant description in method 300 please refer to the relevant description in method 300. For the sake of brevity, details will not be repeated here.
  • the method 400 may further include:
  • Step 7 The roadside equipment enters the command mode when it is determined based on the road condition information that the complexity of the current road condition is greater than the second preset threshold;
  • Step 8 The roadside equipment determines multiple vehicles that may meet
  • Step 9 The roadside device sends takeover messages to the multiple vehicles.
  • the command mode can be understood as a mode that can remotely control the vehicle.
  • the first mode is a mode in which the vehicle makes autonomous decisions to control the vehicle
  • the second mode is a mode in which the roadside equipment makes decisions to remotely control the vehicle.
  • the takeover message can be used to instruct the vehicle to switch from the first mode to the third mode. Two modes.
  • the roadside device determines that the complexity of the current road condition is greater than the second preset threshold based on the road condition information, it can determine that the current road condition scene is a complex road condition scene, and the roadside device can actively enter the command mode, and Multiple vehicles that may meet may be identified, and takeover messages are sent to the multiple vehicles, so that the roadside equipment makes decisions to remotely control the multiple vehicles that may meet.
  • the roadside device determines that the complexity of the current road condition is greater than the second preset threshold based on the road condition information, it actively enters the command mode and determines that multiple vehicles that may meet may be vehicles 1 to 5.
  • the side device then sends a takeover message to vehicles 1 to 5, so that the roadside device decides to remotely control vehicles 1 to 5.
  • step seven to the above-mentioned step nine may be executed before step 410.
  • the method 400 may further include: upon receiving a request message from the first vehicle among the plurality of vehicles, the roadside device enters the command mode.
  • the request message can be used to request to obtain the car meeting plan.
  • the roadside device may passively enter the command mode when receiving a request message from the first vehicle among the plurality of vehicles.
  • the request message carries at least one of the following: traveling information of the first vehicle; and indication information, where the indication information is used to indicate vehicles on which a meeting may occur.
  • the roadside device can receive a request message from vehicle 1, and the request message can carry the driving information of vehicle 1, and/or be used to indicate For vehicle 1, the vehicles that may meet may include vehicle 1, vehicle 3 and vehicle 4. After receiving the request message from vehicle 1, the roadside device can passively enter the command mode, so that the roadside device makes decisions to remotely control vehicle 1, vehicle 3 and vehicle 4.
  • Vehicles provide meeting plans for multiple vehicles that are meeting. Multiple vehicles that are meeting only need to meet according to the received meeting plan. This can save the time for game calculations between vehicles and improve meeting times. s efficiency.
  • FIG. 5 is a schematic diagram of a vehicle meeting method provided by an embodiment of the present application from the perspective of interaction between a vehicle and a roadside device.
  • Figure 5 shows the interaction process between vehicle 1, vehicle 3, vehicle 4 and roadside equipment.
  • Figure 5 shows the situation where vehicle 1 actively switches from the first mode to the second mode.
  • ground that is, the roadside equipment passively enters the command mode.
  • the method 500 shown in Figure 5 includes steps 501 to 513. Each step is briefly described below.
  • step 501 the vehicle 1 determines that the current complexity is greater than the first preset threshold based on the road condition information.
  • Vehicle 1 can actively judge the complexity of the current road condition based on the road condition information and determine whether vehicle 1 is in a complex road condition scene.
  • step 502 vehicle 1 determines the roadside device closest to vehicle 1.
  • step 503 vehicle 1 determines multiple meeting vehicles.
  • vehicle 1 can determine that vehicle 3 and vehicle 4 are second vehicles. That is, vehicle 1 can determine that vehicle 1 , vehicle 3 and vehicle 4 are multiple vehicles meeting each other.
  • step 502 may perform step 502 first, and then perform step 503; vehicle 1 may also perform step 503 first, and then perform step 502; vehicle 1 may also perform step 502 and step 503 at the same time.
  • step 504 vehicle 1 may send a request message to the roadside device. Accordingly, the roadside device receives the request message from vehicle 1 .
  • the request message may carry the driving information of vehicle 1, and may also carry instruction information for instructing multiple vehicles to meet.
  • the request information may not carry the driving information and instruction information of the vehicle 1, and the vehicle 1 may separately send the driving information and/or instruction information of the vehicle 1 to the roadside device. This application does not limit this.
  • step 505 vehicle 1 switches from the first mode to the second mode.
  • the vehicle 1 can actively switch from the first mode to the second mode.
  • step 504 vehicle 1 can execute step 504 first, and then step 505; vehicle 1 can also execute step 505 first, and then execute step 505. Execute step 504; vehicle 1 may also execute step 504 and step 505 at the same time.
  • step 506 the roadside device enters command mode.
  • the roadside device can passively enter the command mode after receiving the request message from vehicle 1.
  • step 507 vehicle 1 sends notification messages to vehicle 3 and vehicle 4. Accordingly, Vehicle 3 and Vehicle 4 receive the notification message from Vehicle 1 .
  • step 508 vehicle 3 and vehicle 4 switch from the first mode to the second mode.
  • vehicle 3 and vehicle 4 After receiving the notification message from vehicle 1, vehicle 3 and vehicle 4 passively switch from the first mode to the second mode.
  • step 509 vehicle 3 and vehicle 4 send respective travel information. Accordingly, the roadside device receives travel information from vehicle 3 and receives travel information from vehicle 4 .
  • step 508 can be performed first, and then step 509 can be performed; or step 509 can be performed first, and then step 509 can be performed. Then execute step 508; you may also execute step 508 and step 509 at the same time.
  • step 510 the roadside device determines the meeting plan.
  • step 511 the roadside device sends the meeting plan to vehicle 1, vehicle 3 and vehicle 4.
  • vehicle 1, vehicle 3 and vehicle 4 receive the meeting plan from the roadside equipment.
  • step 512 vehicle 1, vehicle 3 and vehicle 4 respectively perform meeting based on the meeting plan.
  • step 513 vehicle 1, vehicle 3 and vehicle 4 respectively switch from the second mode to the first mode.
  • vehicle 1, vehicle 3 and vehicle 4 may or may not execute step 513, which is not limited in this application.
  • Figure 6 is another schematic diagram of a vehicle meeting method provided by an embodiment of the present application from the perspective of interaction between a vehicle and a roadside device.
  • Figure 6 shows the interaction process between vehicles 1 to 5 and roadside equipment.
  • Figure 6 shows the situation where vehicles 1 to 5 passively switch from the first mode to the second mode.
  • Correspondingly ground that is, the road vehicle equipment actively enters the command mode.
  • the method 600 shown in Figure 6 includes steps 601 to 610. Each step is briefly described below.
  • step 601 the roadside device determines based on the road condition information that the complexity of the current road condition is greater than a second preset threshold.
  • Roadside equipment can actively judge the complexity of the current road condition based on the road condition information and determine whether the current road condition is a complex road condition scenario.
  • step 602 the roadside device determines multiple meeting vehicles.
  • the roadside equipment can analyze and determine that vehicles 1 to 5 are multiple vehicles meeting each other.
  • step 603 the roadside device enters the command mode.
  • step 604 the roadside device sends takeover messages to vehicles 1 to 5.
  • vehicles 1 to 5 respectively receive takeover messages from the roadside equipment.
  • step 604 is executed after step 602, but the embodiment of the present application does not limit the specific execution order of step 602, step 603 and step 604.
  • the roadside device can perform step 602, step 603 and step 604 in sequence, or can perform step 602, step 604 and step 603 in sequence, or can perform step 603, step 602 and step 604 in sequence;
  • the roadside equipment may also execute step 602 first, and then execute step 603 and step 604 at the same time.
  • the roadside equipment may also execute step 602 and step 603 at the same time, and then execute step 604.
  • the embodiments of the present application do not limit this.
  • step 605 vehicles 1 to 5 respectively switch from the first mode to the second mode.
  • step 606 vehicles 1 to 5 respectively send their respective driving information to the roadside device.
  • the roadside equipment receives respective driving information from vehicles 1 to 5 respectively.
  • step 605 may be executed first, and then step 606 may be executed; step 606 may be executed first, and then step 605 may be executed; or step 605 and step 606 may be executed simultaneously.
  • step 607 the roadside equipment determines the meeting plan.
  • step 608 the roadside equipment sends the meeting plan to vehicles 1 to 5.
  • vehicles 1 to 5 receive the meeting plan from the roadside equipment.
  • step 609 vehicles 1 to 5 perform meeting based on the meeting plan respectively.
  • step 610 vehicles 1 to 5 respectively switch from the second mode to the first mode.
  • vehicles 1 to 5 may or may not execute step 610, which is not limited in this application.
  • FIG. 5 and FIG. 6 are only exemplary and should not limit the embodiments of the present application in any way.
  • Figure 7 is a schematic block diagram of a vehicle meeting device provided by an embodiment of the present application.
  • the vehicle meeting device 700 may include: a switching module 710 , a transceiver module 720 and an execution module 730 .
  • the vehicle meeting device 700 can be used to perform the vehicle steps in any of the method embodiments shown in Figures 3, 5 and 6.
  • the switching module 710 can be used to switch from the first mode to the second mode.
  • the first mode is configured by the vehicle.
  • the second mode is a mode in which the roadside device makes decisions to remotely control the vehicle; the transceiver module 720 can be used to receive a meeting plan from the roadside device, and the meeting plan is used to control the vehicle when meeting the vehicle. Multiple vehicles meeting each other are scheduled; the execution module 730 can be used to perform vehicle meeting based on the vehicle meeting plan.
  • the meeting plan is used to indicate the passing sequence of multiple vehicles when meeting.
  • the meeting plan is also used to indicate one or more of the following: the driving direction, driving speed and acceleration recommended for the first vehicle.
  • the meeting plan is also used to indicate one or more of the following: the driving direction, driving speed and acceleration recommended for each vehicle among the plurality of vehicles except the first vehicle.
  • the vehicle meeting device 700 may also include a determination module 740.
  • the determination module 740 may be used to determine that the complexity of the current road condition is greater than the first preset threshold based on the road condition information.
  • the road condition information is obtained based on the data collected by the sensing device.
  • the sensing device includes a sensing device deployed on the roadside and/or a sensing device deployed on the first vehicle; the transceiver module 720 may also be used to send a request message to the roadside device, where the request message is used to request to obtain the meeting plan.
  • the request message carries the traveling information of the first vehicle, and the traveling information includes: planned path, current traveling direction and traveling speed.
  • the determining module 740 can also be used to determine a second vehicle, which is one or more vehicles among the plurality of vehicles except the first vehicle; the transceiving module 720 can also be used to send a notification to the second vehicle. message, the notification message is used to instruct the second vehicle to switch from the first mode to the second mode.
  • the request message carries indication information, and the indication information is used to indicate multiple vehicles on which a meeting may occur.
  • the determining module 740 may be further configured to determine the first roadside device closest to the first vehicle; the transceiving module 720 may also be configured to send a request message to the first roadside device.
  • the transceiver module 720 may also be used to receive a takeover message from the roadside device, where the takeover message is used to instruct the first vehicle to switch from the first mode to the second mode.
  • the transceiver module 720 may also be used to receive a notification message from a third vehicle.
  • the notification message is used to instruct the first vehicle to switch from the first mode to the second mode.
  • the third vehicle is the third vehicle among the plurality of vehicles. Any vehicle other than one vehicle; the transceiver module 720 can also be used to send the driving information of the first vehicle to the roadside device.
  • the driving information includes: planned path, current driving direction and driving speed.
  • the switching module 710 can also be used to switch from the second mode to the first mode.
  • FIG. 8 is a schematic block diagram of another vehicle meeting device provided by an embodiment of the present application.
  • the vehicle meeting device 800 may include: a transceiver module 810 and a determination module 820 .
  • the vehicle meeting device 800 can be used to perform the steps of the roadside equipment in any of the method embodiments shown in Figures 4, 5 and 6.
  • the transceiver module 810 can be used to receive respective driving information from each vehicle in the plurality of vehicles.
  • the driving information Including: planned path, current driving direction and driving speed, multiple vehicles are vehicles where the meeting occurs;
  • the determination module 820 can be used to determine the meeting plan based on the road condition information and the driving information of each vehicle in the multiple vehicles,
  • the road condition information is used to indicate the current traffic conditions on the road, and the meeting plan is used to schedule the multiple vehicles when meeting.
  • the transceiver module 810 can also be used to send the meeting plan to the multiple vehicles.
  • the determination module 820 can also be used to enter the command mode when it is determined based on the road condition information that the complexity of the current road condition is greater than the second preset threshold.
  • the command mode is a mode of remotely controlling the vehicle; the determination module 820 can also use To determine multiple vehicles that may meet; the transceiver module 810 can also be used to send a takeover message to these multiple vehicles.
  • the takeover message is used to instruct the vehicle to switch from the first mode to the second mode.
  • the first mode is autonomously controlled by the vehicle.
  • the second mode is a mode in which the roadside device makes decisions to control the vehicle remotely.
  • the vehicle meeting device 800 may also include an entry module 830.
  • the entry module 830 may be configured to enter the command mode upon receiving a request message from the first vehicle among the plurality of vehicles.
  • the command mode is remote control.
  • the mode of the vehicle, the request message is used to request to obtain the meeting plan.
  • the request message carries at least one of the following: traveling information of the first vehicle; and indication information, where the indication information is used to indicate vehicles on which a meeting may occur.
  • the meeting plan is a meeting plan sent to the first vehicle.
  • the meeting plan is used to indicate the passing sequence of multiple vehicles when meeting, and one or more of the following: recommended travel for the first vehicle. direction, travel speed and acceleration.
  • the meeting plan is also used to indicate one or more of the following: the driving direction, driving speed and acceleration recommended for each vehicle among the plurality of vehicles except the first vehicle.
  • FIG 9 is a schematic block diagram of yet another vehicle meeting device provided by an embodiment of the present application.
  • the vehicle meeting device can be used to implement the method performed by any vehicle in the embodiment corresponding to any one of the above-mentioned Figures 3, 5 and 6, or can be used to implement any one of the above-mentioned Figures 4 to 6
  • the vehicle meeting device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the processor 910 can be used to switch from the first mode to the second mode.
  • the first mode is to control the vehicle by autonomous decision-making of the vehicle.
  • the second mode is a mode in which the roadside equipment makes decisions to remotely control the vehicle; it receives the meeting plan from the roadside equipment, and the meeting plan is used to schedule multiple meeting vehicles during the meeting; based on the meeting The car plan will be met.
  • the roadside equipment makes decisions to remotely control the vehicle; it receives the meeting plan from the roadside equipment, and the meeting plan is used to schedule multiple meeting vehicles during the meeting; based on the meeting The car plan will be met.
  • the processor 910 can be used to receive respective driving information from each vehicle in the plurality of vehicles.
  • the driving information includes: planned road Path, current driving direction and driving speed, multiple vehicles are vehicles where a meeting occurs; based on the road condition information and the driving information of each vehicle among the multiple vehicles, the meeting plan is determined, and the road condition information is used to indicate the current traffic on the road. status, the meeting plan is used to schedule multiple vehicles when meeting; send the meeting plan to these multiple vehicles.
  • the driving information includes: planned road Path, current driving direction and driving speed, multiple vehicles are vehicles where a meeting occurs; based on the road condition information and the driving information of each vehicle among the multiple vehicles, the meeting plan is determined, and the road condition information is used to indicate the current traffic on the road. status, the meeting plan is used to schedule multiple vehicles when meeting; send the meeting plan to these multiple vehicles.
  • the processor 910 can be used to perform steps 501 to 505, step 507, and steps 511 to 507. Step 513;
  • the processor 910 can be used to perform steps 507 to 509, and steps 511 to 513. 513;
  • the processor 910 can be used to perform steps 504, 506, and steps 509 to 511.
  • the processor 910 can be used to perform steps 604 to 606, And steps 608 to 610; when the vehicle meeting device 900 is used to implement the method performed by the roadside device in the method 600 provided in the embodiment of the present application, the processor 910 can be used to execute steps 601 to 604, and steps 606 to 610. Step 608.
  • the vehicle meeting device 900 may also include at least one memory 920, which may be used to store program instructions and data.
  • Memory 920 and processor 910 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • Processor 910 may cooperate with memory 920.
  • Processor 910 may execute program instructions stored in memory 920 . At least one of the at least one memory may be included in the processor.
  • the vehicle meeting device 900 may also include a communication interface 930 for communicating with other devices through a transmission medium, so that the vehicle meeting device 900 can communicate with other devices.
  • the other equipment may be a second vehicle, a third vehicle or a roadside equipment; when the vehicle meeting device 900 is a roadside equipment, the other equipment may be a vehicle.
  • the communication interface 930 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing transceiver functions.
  • the processor 910 can use the communication interface 930 to send and receive data and/or information, and be used to implement the method 300 performed by the vehicle in any one of the corresponding embodiments in Figures 3, 5 and 6, or to implement the method 300 in Figures 4 to 6.
  • the embodiment of the present application does not limit the specific connection medium between the above-mentioned processor 910, memory 920 and communication interface 930.
  • the processor 910, the memory 920 and the communication interface 930 are connected through a bus 940.
  • the bus 940 is represented by a thick line in FIG. 9 , and the connection methods between other components are only schematically illustrated and not limited thereto.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the present application provides a vehicle.
  • the vehicle includes a processor, which is coupled to a memory and can be used to execute a computer program in the memory to implement the implementation as shown in any one of Figures 3, 5 and 6. The method executed by the vehicle in the example.
  • the vehicle also includes memory.
  • the vehicle further includes a communication interface, and the processor is coupled to the communication interface.
  • the application also provides a roadside device.
  • the roadside device includes a processor.
  • the processor is coupled to a memory and can be used to execute a computer program in the memory to implement any one of Figures 4 to 6. A method performed by a roadside device in an embodiment.
  • the roadside device further includes a memory.
  • the roadside device further includes a communication interface, and the processor is coupled to the communication interface.
  • This application also provides a chip system, which includes at least one processor for implementing the functions involved in the method performed by the vehicle in any of the embodiments shown in FIG. 3, FIG. 5, and FIG. 6. , or, used to implement the functions involved in the method performed by the roadside device in any of the embodiments shown in FIGS. 4 to 6 .
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located within the processor or outside the processor.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the computer program product includes: a computer program (which can also be called a code or an instruction).
  • a computer program which can also be called a code or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute any one of Figures 3 to 6. The method of the embodiment shown in the item.
  • the present application also provides a computer-readable storage medium that stores a computer program (which may also be referred to as code or instructions).
  • a computer program which may also be referred to as code or instructions.
  • the computer program When the computer program is run, the computer is caused to perform the method of the embodiment shown in any one of FIGS. 3 to 6 .
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA), or other available processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programmd logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory. Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchronously connect dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • unit may be used to refer to computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated into one processing module, or each module can exist physically alone, or two or more units can be integrated into one module.
  • each functional module can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

一种会车方法及相关装置,涉及智能驾驶领域,该方法包括:车辆从第一模式切换至第二模式(步骤310),第一模式是由车辆自主决策来控制车辆的模式,第二模式是由路侧设备决策来远程控制车辆的模式;车辆接收来自路侧设备的会车方案(步骤320),会车方案用于在会车时对会车的多个车辆进行调度;车辆基于会车方案进行会车(步骤330)。车辆可以自主判断是否从第一模式切换至第二模式,也可以在接收到来自路侧设备或其他车辆的消息后,被动地从第一切换模式切换至第二模式,在接收到会车方案后基于会车方案进行会车。处于第二模式的车辆在会车过程中不需要与其他车辆进行博弈,只需按照接收到的会车方案进行会车即可,可以提高会车的效率。

Description

一种会车方法及相关装置
本申请要求于2022年05月05日提交中国国家知识产权局、申请号为202210482974.2、申请名称为“一种会车方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能驾驶领域,尤其涉及一种会车方法及相关装置。
背景技术
随着智能驾驶技术的不断发展,自动驾驶车辆的商业化成为大势所趋。会车是车辆行驶过程中经常会遇到的情况,目前的智慧驾驶系统主要是通过路侧设备实现对当前道路交通参与者和路况信息的实时获取,并将相关的感知信息(如前方可能的碰撞预警等)发送给相关车辆,车辆根据接收到的这些感知信息,采用自车决策算法进行相应的会车决策。但是,在复杂的路况场景中,例如在复杂窄道、无保护左转路口或密集车流换道等场景中,会车的效率比较低。
因此,亟待提供一种会车方法,以提高会车的效率。
发明内容
本申请提供了一种会车方法及相关装置,以提高会车的效率。
第一方面,本申请提供了一种会车方法,该方法可以由第一车辆来执行,也可以由配置在第一车辆内部的部件,如芯片、芯片系统等来执行,还可以由具有部分或全部第一车辆功能的逻辑模块或软件等来实现。本申请对此不作限定。
示例性地,该方法包括:从第一模式切换至第二模式,第一模式是由车辆自主决策来控制车辆的模式,第二模式是由路侧设备决策来远程控制车辆的模式;接收来自路侧设备的会车方案,会车方案用于在会车时对会车的多个车辆进行调度;基于会车方案进行会车。
基于上述方案,在复杂的路况场景中,第一车辆可以从第一模式切换至第二模式,处于第二模式的车辆可以在接收到会车方案后基于会车方案进行会车。处于第二模式的车辆由路侧设备决策来远程控制,而不必车辆自主决策来控制,因此,在车辆的会车过程中不需要车辆之间进行博弈,只需按照接收到的会车方案进行会车即可,由此可以省去车辆之间进行博弈计算的时间,提高会车的效率。
结合第一方面,在第一方面的某些可能的实现方式中,会车方案用于指示会车时多个车辆的通行顺序。
在车辆的会车过程中不需要车辆之间博弈计算出会车时的通行顺序,只需按照接收到的会车方案中指示的通行顺序进行会车即可,可以省去车辆之间进行博弈计算的时间,提高会车的效率。
可选地,会车方案还用于指示如下一项或多项:推荐给第一车辆的行驶方向、行 驶速度和加速度。
可选地,会车方案还用于指示如下一项或多项:推荐给多个车辆中除第一车辆以外的每个车辆的行驶方向、行驶速度和加速度。
在车辆的会车过程中不需要车辆自行计算会车时的行驶方向、行驶速度或加速度等,只需按照接收到的会车方案中指示的行驶方向、行驶速度或加速度等进行会车即可,可以省去车辆之间进行博弈计算的时间,提高会车的效率。
结合第一方面,在第一方面的某些可能的实现方式中,该方法还包括:基于路况信息确定当前路况的复杂度大于第一预设阈值,路况信息是基于感知设备采集到的数据得到的,感知设备包括部署在路侧的感知设备和/或部署在第一车辆的感知设备;向路侧设备发送请求消息,该请求消息用于请求获取会车方案。
第一车辆可以基于路况信息判断当前是否处于车辆自身无法驾驭的复杂的路况场景中,第一车辆在确定自身处于复杂的路况场景中时,可以向路侧设备发送请求消息,以从路侧设备获取会车指示信息。第一车辆可以在向路侧设备发送请求消息之前,主动从第一模式切换至第二模式,也可以在向路侧设备发送请求消息之后,主动从第一模式切换至第二模式。可以避免与其他车辆之间的博弈,能够提高会车的效率。
可选地,请求消息携带第一车辆的行驶信息,该行驶信息包括:规划路径、当前的行驶方向和行驶速度。
以便于路侧设备可以基于第一车辆的行驶信息确定出会车方案中指示的多个车辆的通行顺序,以及向第一车辆推荐的行驶方向、行驶速度或加速度等。
结合第一方面,在第一方面的某些可能的实现方式中,该方法还包括:确定第二车辆,第二车辆为多个车辆中除第一车辆以外的一个或多个车辆;向第二车辆发送知会消息,该知会消息用于指示第二车辆从第一模式切换至第二模式。
第一车辆在向路侧设备发送请求消息之前,或,在向路侧设备发送请求消息的同时,或,在向路侧设备发送请求消息之后,通过知会第二车辆从第一模式切换至第二模式,以使得第二车辆也接受路侧设备的远程控制,从而在接收来自路侧设备的会车方案后,第一车辆和第二车辆可以按照会车方案进行会车,避免了第一车辆与第二车辆之间的博弈,能够提高会车效率。
可选地,请求消息携带指示信息,该指示信息用于指示可能发生会车的多个车辆。
第一车辆在向第二车辆发送知会消息之前需要先确定出第二车辆,在确定出第二车辆后,第一车辆可以将指示信息携带在请求消息中发送给路侧设备,该指示信息可以指示出可能发生会车的多个车辆包括第一车辆和第二车辆。
结合第一方面,在第一方面的某些可能的实现方式中,向路侧设备发送请求消息,可以包括:确定距离第一车辆最近的第一路侧设备;向第一路侧设备发送请求消息。
向距离第一车辆最近的路侧设备发送请求消息,可以尽量缩短第一车辆与路侧设备之间的通信耗时,以提高会车效率。
结合第一方面,在第一方面的某些可能的实现方式中,该方法还包括:接收来自路侧设备的接管消息,接管消息用于指示第一车辆从第一模式切换至第二模式。
第一车辆在接收到来自路侧设备的接管消息后,可以从第一模式切换至第二模式,可以理解为第一车辆可以被动地从第一模式切换至第二模式,以等待路侧设备向其发 送会车方案,可以避免第一车辆与其他车辆之间的博弈,能够提高会车的效率。
结合第一方面,在第一方面的某些可能的实现方式中,该方法还包括:接收来自第三车辆的知会消息,知会消息用于指示第一车辆从第一模式切换至第二模式,第三车辆为多个车辆中除第一车辆以外的任一车辆;向路侧设备发送第一车辆的行驶信息,该行驶信息包括:规划路径、当前的行驶方向和行驶速度。
第一车辆在接收到来自第三车辆的知会消息后,可以从第一模式切换至第二模式,可以理解为第一车辆可以被动地从第一模式切换至第二模式,并向路侧设备发送第一车辆的行驶信息,等待路侧设备向其发送会车方案,只需按照接收到的会车方案进行会车即可,可以避免第一车辆与其他车辆之间的博弈,能够提高会车的效率。
结合第一方面,在第一方面的某些可能的实现方式中,基于会车方案进行会车之后,该方法还包括:从第二模式切换至第一模式。
在基于会车方案完成会车后,第一车辆可以自主从第一模式切换至第二模式,以自主决策控制车辆的行驶,以避免因过度占用路侧设备的资源而影响路侧设备对其他车辆的远程控制。
第二方面,本申请提供了一种会车方法,该方法可以由路侧设备来执行,也可以由配置在路侧设备内部的部件,如芯片、芯片系统等来执行,还可以由具有部分或全部路侧设备功能的逻辑模块或软件等来实现。本申请对此不作限定。
示例性地,该方法包括:从多个车辆中的每个车辆接收各自的行驶信息,行驶信息包括:规划路径、当前的行驶方向和行驶速度,多个车辆为发生会车的车辆;基于路况信息以及这多个车辆中每个车辆的行驶信息,确定会车方案,路况信息用于指示路面当前的交通状况,会车方案用于在会车时对这多个车辆进行调度;向这多个车辆发送会车方案。
基于上述方案,在复杂的路况场景中,通过路侧设备决策来远程控制会车的多个车辆,为会车的多个车辆提供会车方案,会车的多个车辆只需按照接收到的会车方案进行会车即可,可以省去车辆之间进行博弈计算的时间,提高会车的效率。
结合第二方面,在第二方面的某些可能的实现方式中,在确定会车方案之前,该方法还包括:在基于路况信息确定当前路况的复杂度大于第二预设阈值的情况下,进入指挥模式,指挥模式为远程控制车辆的模式;确定可能发生会车的多个车辆;向这多个车辆发送接管消息,接管消息用于指示车辆从第一模式切换至第二模式,第一模式是由车辆自主决策来控制车辆的模式,第二模式是由路侧设备决策来远程控制车辆的模式。
路侧设备可以基于路况信息判断当前是否是复杂的路况场景,并在确定当前是复杂的路况场景时自主进入指挥模式,以远控制多个车辆进行会车,无需车辆自行进行会车决策,可以避免多个会车的车辆之间进行博弈,从而可以提高会车效率。
结合第二方面,在第二方面的某些可能的实现方式中,在确定会车方案之前,该方法还包括:在接收到来自多个车辆中的第一车辆的请求消息的情况下,进入指挥模式,指挥模式为远程控制车辆的模式,请求消息用于请求获取会车方案。
路侧设备可以在接收到第一车辆的请求消息后被动进入指挥模式,以远控制多个车辆进行会车,无需车辆自行进行会车决策,可以避免多个会车的车辆之间进行博弈, 从而可以提高会车效率。
可选地,请求消息中携带如下至少一项:第一车辆的行驶信息;和,指示信息,指示信息用于指示可能发生会车的车辆。
结合第二方面,在第二方面的某些可能的实现方式中,会车方案为发送给第一车辆的会车方案,该会车方案用于指示会车时多个车辆的通行顺序,以及如下一项或多项:推荐给第一车辆的行驶方向、行驶速度和加速度。
可选地,会车方案还用于指示如下一项或多项:推荐给多个车辆中除第一车辆以外的每个车辆的行驶方向、行驶速度和加速度。
在车辆的会车过程中不需要车辆自行计算会车时通行顺序,以及每个车辆的行驶方向、行驶速度或加速度等,车辆只需按照从路侧设备接收到的会车方案中指示的通行顺序、每个车辆的行驶方向、行驶速度或加速度等进行会车即可,可以省去车辆之间进行博弈计算的时间,提高会车的效率。
第三方面,本申请提供了一种会车装置,该会车装置可用于实现上述第一方面和第二方面以及第一方面任意一种可能实现方式和第二方面任意一种可能实现方式中的会车方法。该会车装置包括用于执行上述方法的相应的模块。该会车装置包括的模块可以通过软件和/或硬件方式实现。
第四方面,本申请提供了一种会车装置,该会车装置包括处理器,该处理器与存储器耦合,可以用于执行存储器中的计算机程序,以实现上述第一方面和第二方面以及第一方面任意一种可能实现方式和第二方面任意一种可能实现方式中的会车方法。
可选地,该会车装置还包括存储器。
可选地,该会车装置还包括通信接口,处理器与通信接口耦合。
第五方面,本申请提供了一种车辆,该车辆可用于实现上述第一方面及第一方面任意一种可能实现方式中的方法。该车辆包括用于执行上述方法的相应的模块。该车辆包括的模块可以通过软件和/或硬件方式实现。
第六方面,本申请提供了一种车辆,该车辆包括处理器,该处理器与存储器耦合,可以用于执行存储器中的计算机程序,以实现第一方面和第一方面中任一种可能实现方式的会车方法。
可选地,该车辆还包括存储器。
可选地,该车辆还包括通信接口,处理器与通信接口耦合。
第七方面,本申请提供了一种路侧设备,该路侧设备可用于实现上述第二方面及第二方面任意一种可能实现方式中的方法。该路侧设备包括用于执行上述方法的相应的模块。该路侧设备包括的模块可以通过软件和/或硬件方式实现。
第八方面,本申请提供了一种路侧设备,该路侧设备包括处理器,该处理器与存储器耦合,可以用于执行存储器中的计算机程序,以实现第二方面和第二方面中任一种可能实现方式的会车方法。
可选地,该路侧设备还包括存储器。
可选地,该路侧设备还包括通信接口,处理器与通信接口耦合。
第九方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持实现上述第一方面和第一方面任一种可能实现方式中所涉及的功能,或者,用于 支持实现上述第二方面和第二方面任一种可能实现方式中所涉及的功能例如,接收或处理上述方法中所涉及的数据等。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请提供了一种计算机可读存储介质,所述计算机存储介质上存储有计算机程序(也可以称为代码,或指令),当所述计算机程序在被处理器运行时,使得上述第一方面和第一方面任一种可能实现方式中的方法被执行,或者,使得上述第二方面和第二方面任一种可能实现方式中的方法被执行。
第十一方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得上述第一方面和第一方面任一种可能实现方式中的方法被执行,或者,使得上述第二方面和第二方面任一种可能实现方式中的方法被执行。
应当理解的是,本申请的第三方面至第十一方面与本申请的第一方面和第二方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是适用于本申请实施例提供的会车方法的场景示意图;
图2是适用于本申请实施例提供的会车方法的系统架构示意图;
图3是本申请实施例提供的一种会车方法的示意性流程图;
图4是本申请实施例提供的另一种会车方法的示意性流程图;
图5是本申请实施例提供的从车辆与路侧设备交互的角度示出的会车方法的示意图;
图6是本申请实施例提供的从车辆与路侧设备交互的角度示出的会车方法的另一示意图;
图7为本申请实施例提供的一种会车装置的示意性框图;
图8为本申请实施例提供的另一种会车装置的示意性框图;
图9为本申请实施例提供的又一种会车装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于清楚描述本申请实施例的技术方案,首先做出如下说明。
第一,在本申请实施例中,采用了“第一”、“第二”和“第三”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一车辆、第二车辆和第三车辆是为了区分不同的车辆,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”和“第三”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”和“第三”等字样也并不限定一定不同。
第二,在本申请实施例中,“至少一种(个)”是指一种(个)或者多种(个)。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可 以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系,但并不排除表示前后关联对象是一种“和”的关系的情况,具体表示的含义可以结合上下文进行理解。
第三,在本申请实施例中,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于理解本申请提供的方法,下面将对自动驾驶技术等级的划分进行详细描述。
目前,在智能驾驶领域,对自动驾驶的分级,所广泛采用的是由国际车辆工程师协会(society of automotive engineers,SAE)的标准SAE J3016所给出的分类标准。按照SAE的分级,将自动驾驶技术由低至高分为L0至L5共六个等级,L0等级的自动化等级最低,而L5等级则代表全自动驾驶(即在所有条件下均无需驾驶员介入)。SAE对于L0等级至L2等级的命名是“驾驶员支持功能(driver support features)”,对于L3等级至L5等级的命名是“自动驾驶功能(automated driving features)”。
对于L0等级,驾驶员是车辆的唯一驾驶者,需要控制方向盘,油门和制动等所有的控制装置。但可以拥有自动紧急刹车(autonomous emergency breaking,AEB)等主动安全功能。
对于L1等级和L2等级,驾驶员仍然是驾驶员是车辆的唯一驾驶者,需要控制方向盘,油门和制动等所有的控制装置。但是可以有更多的辅助性/支持性功能,例如自适应巡航或者车道保持等功能。
对于L3等级,车辆的自动驾驶系统可以在某些情况下驾驶车辆,例如当交通拥堵时,车辆可以使用交通拥堵辅助(traffic jam chauffeur)功能自动驾驶,此时驾驶员无需驾驶车辆;当需要的时候,驾驶员必须接管车辆。
对于L4等级,一般情况下不需要驾驶员接管,区域无人驾驶出租车(driverless taxi)是典型的L4等级自动驾驶的场景。
L5等级代表任何条件下的全自动驾驶,是自动驾驶的终极理想水平。目前,只有部分车辆可以实现L2等级的自动驾驶技术,且仍在不断完善当中。
应理解,下文中所述的会车方法既可以适用于L2等级及以下的自动驾驶车辆,也可以适用于未来的L3等级及以上的自动驾驶车辆,本申请实施例对此不作限定。还应理解,在未来的L3等级及以上的自动驾驶车辆中,车辆可以实现大部分驾驶功能,当发现驾驶员即将处于疲劳状态时,可以向驾驶员发出提醒,进而使得驾驶员接管车辆。驾驶员接管车辆是指无需车辆辅助,驾驶员手动驾驶车辆,驾驶员手动驾驶车辆的这种模式也可以称为手动模式。
随着自动驾驶技术的不断发展,自动驾驶车辆的商业化成为大势所趋。会车是车辆行驶过程中经常会遇到的情况,目前的智慧驾驶系统主要是通过路侧感知设备结合路侧计算设备,实现对当前道路交通参与者和路况信息的实时获取,并将相关的感知信息(如前方可能的碰撞预警等)发送给相关车辆,车辆根据接收到的这些感知信息采用自车决策算法进行相应的会车决策。但是,在复杂的会车场景中,例如在复杂窄道、无保护左转路口或密集车流换道等场景中,存在多车博弈的情况,车辆彼此之间 无法准确预测其他会车车辆可能采取的行为,导致自车决策算法存在多种试探和反复的迭代,从而导致会车的效率比较低。
因此,本申请提供一种会车方法及相关装置,以期在复杂的路况场景中,车辆可以从自主决策的第一模式切换至由路侧设备来远程控制车辆的第二模式,并基于路侧设备下发的会车方案进行会车,以避免多个会车的车辆进行博弈,从而提高会车效率。
图1是适用于本申请实施例提供的会车方法的场景示意图。
如图1所示,图中示出了一个无保护左转路口场景,无保护左转路口指的是该路口没有专门设置左转绿灯,左转车辆与直行车辆同时行驶。例如在图1示出的场景中,车辆1和车辆2将要左转,车辆3和车辆4将要直行,车辆5将要右转,车辆1和车辆2与车辆3和车辆4同时行驶时可能会在路口相遇(如图中的虚线箭头所示,虚线箭头之间存在交叉可以表示车辆的相遇),车辆5与车辆3和车辆4同时行驶时也可能在路口相遇。该场景可以为复杂的路况场景中的一例。
需要说明的是,图1只是示例性的,在实际应用场景中,可以包括更多或更少个会车的车辆,本申请对此不作限定。
图2是适用于本申请实施例提供的会车方法的系统架构示意图。如图2所示,车辆与路侧设备之间可以进行通信。
需要说明的是,路侧设备可以包括路侧感知设备和路侧计算设备。其中,路侧感知设备可以由多类传感设备协同组成的高分辨率的多传感器融合系统,共同实现对周边交通状况的全面感知,分布式放置在路侧。常见的多类传感器设备可以包括:摄像头、激光雷达、毫米波雷达等。其中,摄像头成本较低,可以识别行人和交通标志,但是对光线的依赖性比较大。毫米波雷达不受天气影响,探测距离远,精度高,但是难以识别行人。激光雷达精度极高,具备三维建模功能,但是成本较高,且受天气影响较大。通过综合运用多种智能传感设备,能够使得路侧感知设备更全面和准确的感知交通状况及周边环境。路侧感知设备连接于路侧计算设备,并将感知到的交通路况的相关信息发送给路侧计算设备。
路侧计算设备可以由中央处理器(central processing unit,CPU)、图形处理器(graphics processing unit,GPU)、现场可编程门阵列(field programmable gate array,FPGA)等高性能人工智能计算处理设备组成,分布式放置在路侧,实现边缘计算功能。用于根据路侧感知设备发送的会车点附近的交通路况的相关信息,以及会车的车辆发送的各自的行驶信息等,调度计算得到当前合适的会车方案。路侧计算设备可以通过无线通信与路侧感知设备、智慧交通云及周边的自动驾驶车辆进行通信连接。
下面将结合附图,对本申请实施例提供的会车方法进行描述。
图3是本申请实施例提供的一种会车方法的示意性流程图。该方法可以由第一车辆来执行,也可以由配置在第一车辆内部的部件,如芯片、芯片系统等来执行,还可以由具有部分或全部第一车辆功能的逻辑模块或软件等来实现。本申请对此不作限定。
需要说明的是,第一车辆为会车的多个车辆中的一个车辆,例如,第一车辆可以是图1示出的车辆1至车辆5中的任意一个车辆,本申请实施例对此不作限定。
如图3所示,该方法300可以包括步骤310至步骤330。下面详细说明该方法300中的各个步骤。
在步骤310中,第一车辆从第一模式切换至第二模式。
其中,第一模式可以是由车辆自主决策来控制该车辆的模式,第二模式可以是由路侧设备决策来远程控制车辆的模式。
第一车辆可以中断自主决策(也即自车决策),主动地从第一模式切换至第二模式,也可以被动地从第一模式切换至第二模式。以下对第一车辆主动和被动从第一模式切换至第二模式进行详细说明。
主动地从第一模式切换至第二模式:
在一种可能的实现方式中,第一车辆在基于路况信息确定当前路况的复杂度大于第一预设阈值的情况下,主动地从第一模式切换至第二模式。
在这种实现方式中,该方法300还可以包括:
步骤一,第一车辆基于路况信息确定当前路况的复杂度大于第一预设阈值;
步骤二,第一车辆向路侧设备发送请求消息,请求消息用于请求获取会车方案。
其中,路况信息是基于感知设备采集到的数据得到的,感知设备包括部署在路侧的感知设备和/或部署在第一车辆的感知设备。会车方案用于在会车时对会车的多个车辆进行调度。
感知设备采集到的数据可以理解为第一车辆的感知设备和/或路侧的感知设备采集到的最原始的数据,对这些原始数据进行分析和处理,可以得到路况信息。路况信息例如可以包括车道的宽度及坡度、路面是否有积水、路面是否有冰雪、车流量、交通信号灯的指示信息、车道线和地标指示信息,以及前行道路上是否出现交通事故等等。本申请实施例对此不作任何限定。
一示例,第一车辆依次执行上述步骤一、步骤310和步骤二。更为详细地,第一车辆可以在执行步骤310之前,基于路况信息确定当前路况的复杂度是否大于第一预设阈值,在确定当前路况的复杂程度大于第一预设阈值的情况下,第一车辆可以确定当前路况场景为自身无法驾驭的复杂的路况场景,则第一车辆执行步骤310,即,第一车辆主动从第一模式切换至第二模式,等待路侧设备远程对其进行控制。在执行步骤310之后,第一车辆可以向路侧设备发送请求消息,以请求路侧设备向其发送会车方案,对其进行远程控制。
另一示例,第一车辆依次执行上述步骤一、步骤二和步骤310。更为详细地,第一车辆可以在执行步骤310之前,基于路况信息确定当前路况的复杂度是否大于第一预设阈值,在确定当前路况的复杂程度大于第一预设阈值的情况下,第一车辆可以确定当前路况场景为自身无法驾驭的复杂的路况场景,随即向路侧设备发送请求消息,以请求路侧设备向其发送会车方案,对其进行远程控制,在向路侧设备发送请求消息后,第一车辆执行步骤310,即,第一车辆主动从第一模式切换至第二模式,等待路侧设备远程对其进行控制。
又一示例,第一车辆可以先执行上述步骤一,再同时执行上述步骤二和步骤310。更为详细地,第一车辆可以在执行步骤310之前,基于路况信息确定当前路况的复杂度是否大于第一预设阈值,在确定当前路况的复杂程度大于第一预设阈值的情况下,第一车辆可以确定当前路况场景为自身无法驾驭的复杂的路况场景,则第一车辆可以在向路侧设备发送请求消息的同时,主动从第一模式切换至第二模式。
可选地,第一车辆向路侧设备发送请求消息,可以包括:第一车辆确定距离第一车辆最近的第一路侧设备;第一车辆向第一路侧设备发送请求消息。
示例性地,第一车辆在确定当前路况的复杂程度大于第一预设阈值之后,可以先计算出距离其最近的一个路侧设备,也即第一路侧设备,随即再向第一路侧设备发送请求消息。由此一来,可以尽量缩短第一车辆与路侧设备之间的通信耗时,以提高会车效率。
可选地,请求消息携带第一车辆的行驶信息,行驶信息包括:规划路径、当前的行驶方向和行驶速度。
第一车辆在向路侧设备发送请求消息时,可以将第一车辆的规划路径、当前的行驶方向和行驶速度等行驶信息携带在请求消息中一并发送给路侧设备,以便于路侧设备可以基于第一车辆的行驶信息确定出会车方案。
可选地,在上述步骤一之后,该方法300还可以包括:
步骤三,第一车辆确定第二车辆,第二车辆为多个车辆中除第一车辆以外的一个或多个车辆;
步骤四,第一车辆向第二车辆发送知会消息,知会消息用于指示第二车辆从第一模式切换至第二模式。
示例性地,第一车辆可以确定与其进行会车的一个或多个车辆,如图1所示,如果车辆1为第一车辆,对于车辆1来说,在车辆1进行左转的过程中,可能会与正在直行的车辆3和车辆4相遇,车辆1可以将车辆3和车辆4确定为第二车辆,并向车辆3和车辆4发送知会消息,以使得车辆3和车辆4也从第一模式切换至第二模式,接受路侧设备的远程控制。
需要说明的是,步骤310和步骤三可以在步骤一之后执行,步骤四可以在步骤三之后执行,但对步骤310、步骤二、步骤三和步骤四的具体执行顺序不作任何限定。
可选地,在上述步骤三的基础上,请求消息可以携带指示信息,指示信息用于指示可能发生会车的多个车辆。
示例性地,如图1所示,如果车辆1为第一车辆,则对于车辆1来说,可能发生会车的多个车辆包括车辆1、车辆3和车辆4。车辆1在确定车辆3和车辆4为第二车辆后,可以将指示车辆1、车辆3和车辆4可能发生会车的指示信息携带在请求消息中一并发送给路侧设备。
应理解,在这种实现方式中,上述步骤二是在上述步骤三之后执行的。也即,步骤310和步骤三可以在步骤一之后执行,步骤四可以在步骤三之后执行,步骤二可以在步骤三之后执行,但对步骤310、步骤二、步骤三和步骤四的具体执行顺序不作任何限定。
被动地从第一模式切换至第二模式:
在一种可能的实现方式中,第一车辆可以在接收到来自路侧设备的接管消息的情况下,被动地从第一模式切换至第二模式。
在这种实现方式中,该方法300还可以包括:第一车辆接收来自路侧设备的接管消息。
其中,接管消息可以用于指示第一车辆从第一模式切换至第二模式。
示例性地,如图1所示,如果车辆1为第一车辆,车辆1在接收到来自路侧设备的接管消息后,可以被动地从第一模式切换至第二模式,以等待路侧设备向其发送会车方案。由此一来,可以避免车辆1与车辆3和车辆4之间的博弈,能够提高会车的效率。
在另一种可能的实现方式中,第一车辆可以在接收到来自第三车辆的知会消息的情况下,被动地从第一模式切换至第二模式。
在这种实现方式中,该方法300还可以包括:
步骤五,第一车辆接收来自第三车辆的知会消息;
步骤六,第一车辆向路侧设备发送第一车辆的行驶信息。
其中,知会消息用于指示第一车辆从第一模式切换至第二模式。上文已述及,第一车辆的行驶信息可以包括第一车辆的规划路径、当前的行驶方向和行驶速度等。
第三车辆为多个车辆中除第一车辆以外的任一车辆。如图1所示,如果车辆1为第一车辆,则车辆3或车辆4可以为第三车辆,车辆1可以接收来自车辆3或车辆4的知会消息。车辆1在接收来自车辆3或车辆4的知会消息后,可以被动地从第一模式切换至第二模式,并可以向路侧设备发送车辆1的行驶信息,为路侧设备计算决策出会车方案提供数据基础,等待路侧设备向其发送会车方案。
需要说明的是,在这种实现方式中,步骤五可以在步骤310之前执行,但对步骤310和步骤六的具体执行顺序不作任何限定,也即,步骤310可以在步骤六之前执行,步骤310也可以在步骤六之后执行,步骤310和步骤六也可以同时执行,本申请实施例对此不作限定。
在步骤320中,第一车辆接收来自路侧设备的会车方案。
上文已述及,会车方案用于在会车时对会车的多个车辆进行调度,也即,路侧设备可以通过会车方案实现对第一车辆的远程控制,相应地,第一车辆可以基于会车方案控制车身行驶,以完成与其他车辆的会车。
示例性地,如图1所示,如果车辆1为第一车辆,车辆1可以接收来自路侧设备的会车方案。
在一种可能的实现方式中,会车方案可以用于指示会车时多个车辆的通行顺序。
示例一,在第一车辆主动地从第一模式切换至第二模式的情况下,如图1所示,如果车辆1为第一车辆,则车辆3和车辆4为第二车辆,对于车辆1来说,车辆1、车辆3和车辆4为会车时的多个车辆,会车方案中可以指示车辆1、车辆3和车辆4在路口进行会车时的通行顺序。
示例二,在第一车辆接收到第三车辆的知会消息之后被动地从第一模式切换至第二模式的情况下,如图1所示,如果车辆1为第一车辆,则车辆3或车辆4为第三车辆,以车辆3为第三车辆为例,车辆1接收到来自车辆3的知会消息,对于车辆1来说,车辆1和车辆3为会车时的多个车辆,会车方案中可以指示车辆1和车辆3在路口进行会车时的通行顺序。
示例三,在第一车辆接收到路侧设备的接管消息之后被动地从第一模式切换至第二模式的情况下,如图1所示,车辆1至车辆5均可以为第一车辆,对于路侧设备来说,车辆1至车辆5为会车时的多个车辆,会车方案中可以指示车辆1至车辆5在路 口进行会车时的通行顺序。
可选地,会车方案还用于指示如下一项或多项:推荐给第一车辆的行驶方向、行驶速度和加速度。
在这种实现方式中,发送给不同的车辆的会车方案所指示的内容除多个车辆的通行顺序以外,其他的内容可以是不同的。以下结合上述示例一至上述示例三进行详细说明。
结合上述示例一至示例三,车辆1为第一车辆,路侧设备发送给车辆1的会车方案除了指示会车时多个车辆的通行顺序以外,还可以指示推荐给车辆1的行驶方向、行驶速度和加速度等中的一项或多项。
结合上述示例一,路侧设备发送给车辆3的会车方案除了指示车辆1、车辆3和车辆4的通行顺序以外,还可以指示推荐给车辆3的行驶方向、行驶速度和加速度等中的一项或多项。同样地,路侧设备发送给车辆4的会车方案除了指示车辆1、车辆3和车辆4的通行顺序以外,还可以指示推荐给车辆4的行驶方向、行驶速度和加速度等中的一项或多项。
结合上述示例二,路侧设备发送给车辆3的会车方案除了指示车辆1和车辆3的通行顺序以外,还可以指示推荐给车辆3的行驶方向、行驶速度和加速度等中的一项或多项。
结合上述示例三,路侧设备发送给车辆2的会车方案除了指示车辆1至车辆5的通行顺序以外,还可以指示推荐给车辆2的行驶方向、行驶速度和加速度等中的一项或多项。同样地,路侧设备发送给车辆3至车辆5的会车方案除了指示车辆1至车辆5的通行顺序以外,还可以指示推荐给每个车辆各自的行驶方向、行驶速度和加速度等中的一项或多项。
可选地,会车方案还用于指示如下一项或多项:推荐给多个车辆中除每个车辆的行驶方向、行驶速度和加速度。也即,发送给第一车辆的会车方案除了指示会车时多个车辆的通行顺序以及推荐给第一车辆的行驶方向、行驶速度和加速度等中的一项或多项以外,还可以指示推荐给多个车辆中除第一车辆以外的每个车辆的行驶方向、行驶速度和加速度。
在这种实现方式中,发送给不同的车辆的会车方案所指示的内容可以是相同的。以下结合上述示例一至上述示例三进行详细说明。
结合上述示例一,发送给车辆1、车辆3和车辆4的会车方案是相同的,不仅可以指示车辆1、车辆3和车辆4的通行顺序,还可以指示推荐给车辆1、车辆3和车辆4中每个车辆的行驶方向、行驶速度和加速度。
结合上述示例二,发送给车辆1和车辆3的会车方案是相同的,不仅可以指示车辆1和车辆3的通行顺序,还可以指示推荐给车辆1和车辆3中每个车辆的行驶方向、行驶速度和加速度。
结合上述示例三,发送给车辆1至车辆5的会车方案是相同的,不仅可以指示车辆1至车辆5的通行顺序,还可以指示推荐给车辆1至车辆5中每个车辆的行驶方向、行驶速度和加速度。
在步骤330中,第一车辆基于会车方案进行会车。
示例性地,第一车辆接收来自路侧设备的会车方案之后,可以对会车方案进行解析,解析出会车时包括第一车辆在内的多个车辆的通行顺序,或者说,确定出第一车辆排在第几位通行,还可以解析出推荐给第一车辆的行驶方向、行驶速度和加速度等。由此一来,第一车辆便可以基于解析出的第一车辆对应的通行顺序,以及推荐给第一车辆的行驶方向、行驶速度和加速度等会车指示信息对第一车辆得的车身进行控制,以基于解析出的会车指示信息等进行会车。
可选地,基于会车方案进行会车之后,方法300还可以包括:第一车辆从第二模式切换至第一模式。
第一车辆可以主动地从第二模式切换至第一模式,继续进行自主决策(也即自车决策)。
示例性地,如图1所示,如果车辆1为第一车辆,车辆1在基于会车方案进行会车之后,也即,车辆1基于会车方案与车辆3和车辆4完成会车,通过路口之后,车辆1可以主动地从第二模式切换至第一模式,继续在第一模式下自主决策来控制车身行驶。
另外,也可以由路侧设备确定第一车辆是否基于会车方案完成了会车,在路侧设备确定第一车辆基于会车方案完成了会车的情况下,路侧设备可以向第一车辆发送切换指令,切换指令用于指示第一车辆从第二模式切换至第一模式。这种实现方式可以理解为第一车辆被动地从第二模式切换至第一模式,本申请对此不作限定。
基于上述方案,在复杂的路况场景中,第一车辆可以从第一模式切换至第二模式,处于第二模式的车辆可以在接收到会车方案后基于会车方案进行会车。处于第二模式的车辆由路侧设备决策来远程控制,而不必车辆自主决策来控制,因此,在车辆的会车过程中不需要车辆之间进行博弈,只需按照接收到的会车方案进行会车即可,由此可以省去车辆之间进行博弈计算的时间,提高会车的效率。
图4是本申请实施例提供的另一种会车方法的示意性流程图。该方法可以由路侧设备来执行,也可以由配置在路侧设备内部的部件,如芯片、芯片系统等来执行,还可以由具有部分或全部路侧设备功能的逻辑模块或软件等来实现。本申请对此不作限定。
如图4所示,该方法400可以包括步骤410至步骤430。下面详细说明该方法400中的各个步骤。
在步骤410中,路侧设备从多个车辆中的每个车辆接收各自的行驶信息。
其中,上述多个车辆为发生会车的车辆。车辆的行驶信息可以包括车辆的规划路径、当前的行驶方向和行驶速度等。
示例性地,路侧设备可以接收来自会车的多个车辆中的每个车辆各自的行驶信息。如图1所示,对于路侧设备来说,车辆1至车辆5可以是会车的多个车辆,路侧设备可以接收来自车辆1至车辆5中的每个车辆各自的行驶信息。
在步骤420中,路侧设备基于路况信息以及多个车辆中每个车辆的行驶信息,确定会车方案。
路侧设备可以基于路况信息以及会车的多个车辆中每个车辆的行驶信息等来确定会车方案。路侧设备还可以基于路况信息以及会车的多个车辆中每个车辆的行驶信息 等,再结合高精度地图来确定会车方案,该高精度地图可以来自于云端,例如智慧交通云,本申请实施例对此不作任何限定。
作为示例而非限定,路侧设备可以基于路况信息以及会车的多个车辆中每个车辆的行驶信息等,利用多车协同控制算法,确定会车方案。该多车协同控制算法是基于分布式模型预测控制(distributed model predictive control,DMPC)算法和运动学模型得到的。该多车协同控制算法是为了在保证车辆的行驶安全的情况下,使得进行会车的各个车辆的通行时间最短。
例如,该多车协同控制算法的步骤大致如下:
步骤A,根据会车的多个车辆中每个车辆的行驶信息,例如车辆的规划路径、当前的位置、当前的行驶速度、当前的加速度和当前的行驶方向等,来确定出会车的多个车辆的通行顺序以及推荐给会车的多个车辆中每个车辆的行驶方向。在确定多个车辆的通行顺序和推荐给每个车辆的行驶方向的过程中还可以结合高精度地图,本申请实施例对此不作限定。
步骤B,根据会车的多个车辆中每个车辆的行驶信息,例如车辆当前的位置、当前的行驶速度和加速度等,来确定推荐给会车的多个车辆中每个车辆的行驶速度和加速度等。
在这个过程中,需要利用DMPC算法和运动学模型,其中,运动学模型可以如下:
和v(k+1)=v(k)+a(k)×t,其中,p可以表示车辆沿各自的规划路径的位置;v可以表示推荐给车辆的速度;a可以表示推荐给车辆的加速度,k可以表示离散的时间点,例如第k步;t可以表示离散的时间间隔。
利用DMPC算法对多个车辆中的每个车辆的运动学模型中的p、v、a等物理量进行约束,通过约束各个车辆的p、v、a等物理量来确保各个车辆的p、v、a等物理量的可执行性,并确保在任意时刻上任两个车辆间之间的间隔大于一定阈值,以避免车辆发生碰撞,保证车辆的安全行驶。另外,还可以通过在对车辆进行远程控制的时域内车辆的最后的k步的速度,来使得在保证车辆的行驶安全的情况,使得车辆尽快到达下一个目标位置,与此同时,为了保证乘车人员的乘车舒服度,还可以约束每个车辆的在每个时间间隔内的a的大小。
基于上述步骤A和步骤B,路侧设备可以确定出会车方案。
在步骤430中,路侧设备向多个车辆发送会车方案。
路侧设备在确定出会车方案后,可以向多个车辆发送会车方案。
可选地,会车方案为发送给第一车辆的会车方案,该会车方案用于指示会车时多个车辆的通行顺序,以及如下一项或多项:推荐给第一车辆的行驶方向、行驶速度和加速度。
也就是说,路侧设备发送给不同的车辆的会车方案所指示的内容除多个车辆的通行顺序以外,其他的内容可以是不同的。例如,发送给车辆1的会车方案可以指示车辆1、车辆3和车辆4的通行顺序,以及推荐给车辆1的行驶方向、行驶速度和加速度等;发送给车辆3的会车方案可以指示车辆1、车辆3和车辆4的通行顺序,以及推荐给车辆3的行驶方向、行驶速度和加速度等;发送给车辆4的会车方案可以指示车辆1、车辆3和车辆4的通行顺序,以及推荐给车辆4的行驶方向、行驶速度和加 速度等。详细描述可以参看方法300中的相关描述,为了简洁,此处不再赘述。
可选地,会车方案还用于指示如下一项或多项:推荐给多个车辆中除第一车辆以外的每个车辆的行驶方向、行驶速度和加速度。
也就是说,路侧设备发送给不同的车辆的会车方案所指示的内容除多个车辆的通行顺序以外,其他的内容也可以是相同的。例如,发送给车辆1、车辆3和车辆4的会车方案均可以指示车辆1、车辆3和车辆4的通行顺序,以及推荐给车辆1、车辆3和车辆4各自的行驶方向、行驶速度和加速度等。详细描述可以参看方法300中的相关描述,为了简洁,此处不再赘述。
在一种可能的实现方式中,在步骤420之前,该方法400还可以包括:
步骤七,路侧设备在基于路况信息确定当前路况的复杂度大于第二预设阈值的情况下,进入指挥模式;
步骤八,路侧设备确定可能发生会车的多个车辆;
步骤九,路侧设备向这多个车辆发送接管消息。
其中,指挥模式可以理解为能够远程控制车辆的模式。
上文已述及,第一模式是由车辆自主决策来控制车辆的模式,第二模式是由路侧设备决策来远程控制车辆的模式,接管消息可以用于指示车辆从第一模式切换至第二模式。
也就是说,路侧设备在基于路况信息确定当前路况的复杂度大于第二预设阈值的情况下,可以确定当前的路况场景为复杂的路况场景,路侧设备可以主动地进入指挥模式,并确定出可能发生会车的多个车辆,向这多个车辆发送接管消息,从而由路侧设备决策来远程控制会车的多个车辆。例如,路侧设备在基于路况信息确定当前路况的复杂度大于第二预设阈值的情况下,主动地进入指挥模式,并确定出可能发生会车的多个车辆为车辆1至车辆5,路侧设备随即向车辆1至车辆5发送接管消息,从而由路侧设备决策来远程控制车辆1至车辆5。
需要说明的是,在这种实现方式中,上述步骤七至上述步骤九均可以在步骤410之前执行。
在另一种可能的实现方式中,在步骤420之前,该方法400还可以包括:路侧设备在接收到来自多个车辆中的第一车辆的请求消息的情况下,进入指挥模式。
上文已述及,请求消息可以用于请求获取会车方案。
也就是说,路侧设备在接收到来自多个车辆中的第一车辆的请求消息的情况下,可以被动地进入指挥模式。
可选地,请求消息中携带如下至少一项:第一车辆的行驶信息;和,指示信息,指示信息用于指示可能发生会车的车辆。
示例性地,如图1所示,如果车辆1为第一车辆,路侧设备可以接收到来自车辆1的请求消息,该请求消息中可以携带车辆1的行驶信息,和/或,用于指示可能发生会车的车辆,对于车辆1来说,可能发生会车的车辆包括车辆1、车辆3和车辆4。路侧设备在接收到车辆1的请求消息后,可以被动地进入指挥模式,从而由路侧设备决策来远程控制车辆1、车辆3和车辆4。
基于上述方案,在复杂的路况场景中,通过路侧设备决策来远程控制会车的多个 车辆,为会车的多个车辆提供会车方案,会车的多个车辆只需按照接收到的会车方案进行会车即可,可以省去车辆之间进行博弈计算的时间,提高会车的效率。
以下结合图1、图5和图6再次对上述方法300和方法400进行简单说明。
图5是本申请实施例提供的从车辆与路侧设备交互的角度示出的会车方法的示意图。如图5所示,图5示出了车辆1、车辆3、车辆4与路侧设备的交互过程,图5示出的是车辆1主动地从第一模式切换至第二模式的情况,相应地,也即,路侧设备被动地进入指挥模式的情况。图5所示的方法500包括步骤501至步骤513,以下对各个步骤进行简单说明。
在步骤501中,车辆1基于路况信息确定当前的复杂度大于第一预设阈值。
车辆1可以主动基于路况信息对当前路况的复杂度进行判断,确定车辆1是否处于复杂的路况场景中。
在步骤502中,车辆1确定距离车辆1最近的路侧设备。
在步骤503中,车辆1确定会车的多个车辆。
结合图1所示的场景,车辆1可以确定出车辆3和车辆4为第二车辆,也即,车辆1可以确定出车辆1、车辆3和车辆4为会车的多个车辆。
需要说明的是,本申请实施例对步骤502和步骤503的先后顺序不作限定。例如,在实际应用场景中,车辆1可以先执行步骤502,再执行步骤503;车辆1也可以先执行步骤503,再执行步骤502;车辆1也可以同时执行步骤502和步骤503。
在步骤504中,车辆1可以向路侧设备发送请求消息。相应地,路侧设备接收来自车辆1的请求消息。
该请求消息中可以携带车辆1的行驶信息,还可以携带用于指示会车的多个车辆的指示信息。该请求信息中也可以不携带车辆1的行驶信息和指示信息,车辆1可以将车辆1的行驶信息和/或指示信息单独发送给路侧设备。本申请对此不作限定。
在步骤505中,车辆1从第一模式切换至第二模式。
车辆1可以主动地从第一模式切换至第二模式。
需要说明的是,本申请实施例对步骤504和步骤505的先后顺序不作限定,在实际应用场景中,车辆1可以先执行步骤504,再执行步骤505;车辆1也可以先执行步骤505,再执行步骤504;车辆1也可以同时执行步骤504和步骤505。
在步骤506中,路侧设备进入指挥模式。
路侧设备可以在接收到车辆1的请求消息后,被动地进入指挥模式。
在步骤507中,车辆1向车辆3和车辆4发送知会消息。相应地,车辆3和车辆4接收来自车辆1的知会消息。
在步骤508中,车辆3和车辆4从第一模式切换至第二模式。
车辆3和车辆4在接收到车辆1的知会消息后,被动地从第一模式切换至第二模式。
在步骤509中,车辆3和车辆4发送各自的行驶信息。相应地,路侧设备接收来自车辆3的行驶信息,以及接收来自车辆4的行驶信息。
需要说明的是,本申请实施例对步骤508和步骤509的先后顺序不作限定。例如,在实际应用场景中,可以先执行步骤508,再执行步骤509;也可以先执行步骤509, 再执行步骤508;也可以同时执行步骤508和步骤509。
在步骤510中,路侧设备确定会车方案。
在步骤511中,路侧设备向车辆1、车辆3和车辆4发送会车方案。相应地,车辆1、车辆3和车辆4接收来自路侧设备的会车方案。
在步骤512中,车辆1、车辆3和车辆4分别基于会车方案进行会车。
在步骤513中,车辆1、车辆3和车辆4分别从第二模式切换至第一模式。
需要说明的是,在实际应用场景中,车辆1、车辆3和车辆4可以执行步骤513,也可以不执行步骤513,本申请对此不作限定。
图6是本申请实施例提供的从车辆与路侧设备交互的角度示出的会车方法的另一示意图。如图6所示,图6示出了车辆1至车辆5与路侧设备的交互过程,图6示出的是车辆1至车辆5被动地从第一模式切换至第二模式的情况,相应地,也即,路车设备主动地进入指挥模式的情况。图6所示的方法600包括步骤601至步骤610,以下对各个步骤进行简单说明。
在步骤601中,路侧设备基于路况信息确定当前路况的复杂度大于第二预设阈值。
路侧设备可以主动基于路况信息对当前路况的复杂度进行判断,确定当前路况是否为复杂的路况场景。
在步骤602中,路侧设备确定会车的多个车辆。
结合图1所示的场景,路侧设备可以分析判断出车辆1至车辆5为会车的多个车辆。
在步骤603中,路侧设备进入指挥模式。
在步骤604中,路侧设备向车辆1至车辆5发送接管消息。相应地,车辆1至车辆5分别接收来自路侧设备的接管消息。
需要说明的是,步骤604在步骤602之后执行,但是本申请实施例对步骤602、步骤603和步骤604的具体执行顺序不作限定。例如,在实际应用场景中,路侧设备可以依次执行步骤602、步骤603和步骤604,也可以依次执行步骤602、步骤604和步骤603,也可以依次执行步骤603、步骤602和步骤604;路侧设备也可以先执行步骤602,再同时执行步骤603和步骤604,路侧设备也可以先同时执行步骤602和步骤603,再执行步骤604。本申请实施例对此不作限定。
在步骤605中,车辆1至车辆5分别从第一模式切换至第二模式。
在步骤606中,车辆1至车辆5分别向路侧设备发送各自的行驶信息。相应地,路侧设备分别接收来自车辆1至车辆5的各自的行驶信息。
需要说明的是,本申请实施例对步骤605和步骤606的先后顺序不作限定。例如,在实际应用场景中,可以先执行步骤605,再执行步骤606;也可以先执行步骤606,再执行步骤605;也可以同时执行步骤605和步骤606。
在步骤607中,路侧设备确定会车方案。
在步骤608中,路侧设备向车辆1至车辆5发送会车方案。相应地,车辆1至车辆5接收来自路侧设备的会车方案。
在步骤609中,车辆1至车辆5分别基于会车方案进行会车。
在步骤610中,车辆1至车辆5分别从第二模式切换至第一模式。
需要说明的是,在实际应用场景中,车辆1至车辆5可以执行步骤610,也可以不执行步骤610,本申请对此不作限定。
应理解,图5和图6只是示例性的,不应对本申请实施例产生任何限定。
以上,结合图3至图6详细说明了本申请实施例提供的会车方法。以下,结合图7至图9详细说明本申请实施例提供的相关装置。
图7是本申请实施例提供的一种会车装置的示意性框图。
如图7所示,该会车装置700可以包括:切换模块710、收发模块720和执行模块730。该会车装置700可以用于执行图3、图5和图6示出的任一方法实施例中车辆的步骤。
示例性地,当该会车装置700用于执行图3示出的方法300中第一车辆的步骤时,切换模块710可以用于从第一模式切换至第二模式,第一模式是由车辆自主决策来控制车辆的模式,第二模式是由路侧设备决策来远程控制车辆的模式;收发模块720可以用于接收来自路侧设备的会车方案,会车方案用于在会车时对会车的多个车辆进行调度;执行模块730可以用于基于会车方案进行会车。
可选地,会车方案用于指示会车时多个车辆的通行顺序。
可选地,会车方案还用于指示如下一项或多项:推荐给第一车辆的行驶方向、行驶速度和加速度。
可选地,会车方案还用于指示如下一项或多项:推荐给多个车辆中除第一车辆以外的每个车辆的行驶方向、行驶速度和加速度。
可选地,会车装置700还可以包括确定模块740,确定模块740可以用于基于路况信息确定当前路况的复杂度大于第一预设阈值,路况信息是基于感知设备采集到的数据得到的,感知设备包括部署在路侧的感知设备和/或部署在第一车辆的感知设备;收发模块720还可以用于向路侧设备发送请求消息,该请求消息用于请求获取会车方案。
可选地,请求消息携带第一车辆的行驶信息,该行驶信息包括:规划路径、当前的行驶方向和行驶速度。
可选地,确定模块740还可以用于确定第二车辆,第二车辆为多个车辆中除第一车辆以外的一个或多个车辆;收发模块720还可以用于向第二车辆发送知会消息,该知会消息用于指示第二车辆从第一模式切换至第二模式。
可选地,请求消息携带指示信息,该指示信息用于指示可能发生会车的多个车辆。
可选地,确定模块740还具体可以用于确定距离第一车辆最近的第一路侧设备;收发模块720还可以用于向第一路侧设备发送请求消息。
可选地,收发模块720还可以用于接收来自路侧设备的接管消息,接管消息用于指示第一车辆从第一模式切换至第二模式。
可选地,收发模块720还可以用于接收来自第三车辆的知会消息,知会消息用于指示第一车辆从第一模式切换至第二模式,第三车辆为多个车辆中除第一车辆以外的任一车辆;收发模块720还可以用于向路侧设备发送第一车辆的行驶信息,该行驶信息包括:规划路径、当前的行驶方向和行驶速度。
可选地,切换模块710还可以用于从第二模式切换至第一模式。
图8是本申请实施例提供的另一种会车装置的示意性框图。如图8所示,该会车装置800可以包括:收发模块810和确定模块820。该会车装置800可以用于执行图4、图5和图6示出的任一方法实施例中路侧设备的步骤。
示例性地,当该会车装置800用于执行图4示出的方法400中路侧设备的步骤时,收发模块810可以用于从多个车辆中的每个车辆接收各自的行驶信息,行驶信息包括:规划路径、当前的行驶方向和行驶速度,多个车辆为发生会车的车辆;确定模块820可以用于基于路况信息以及这多个车辆中每个车辆的行驶信息,确定会车方案,路况信息用于指示路面当前的交通状况,会车方案用于在会车时对这多个车辆进行调度;收发模块810还可以用于向这多个车辆发送会车方案。
可选地,确定模块820还可以用于在基于路况信息确定当前路况的复杂度大于第二预设阈值的情况下,进入指挥模式,指挥模式为远程控制车辆的模式;确定模块820还可以用于确定可能发生会车的多个车辆;收发模块810还可以用于向这多个车辆发送接管消息,接管消息用于指示车辆从第一模式切换至第二模式,第一模式是由车辆自主决策来控制车辆的模式,第二模式是由路侧设备决策来远程控制车辆的模式。
可选地,该会车装置800还可以包括进入模块830,进入模块830可以用于在接收到来自多个车辆中的第一车辆的请求消息的情况下,进入指挥模式,指挥模式为远程控制车辆的模式,请求消息用于请求获取会车方案。
可选地,请求消息中携带如下至少一项:第一车辆的行驶信息;和,指示信息,指示信息用于指示可能发生会车的车辆。
可选地,会车方案为发送给第一车辆的会车方案,该会车方案用于指示会车时多个车辆的通行顺序,以及如下一项或多项:推荐给第一车辆的行驶方向、行驶速度和加速度。
可选地,会车方案还用于指示如下一项或多项:推荐给多个车辆中除第一车辆以外的每个车辆的行驶方向、行驶速度和加速度。
应理解,图7和图8中的会车装置的模块划分只是示例性的,在实际应用中可以根据不同的功能需求,划分出不同的功能模块,本申请对实际应用中的功能模块的划分形式和数量不作任何限定,并且图7和图8不能对本申请产生任何限定。
图9是本申请实施例提供的又一种会车装置的示意性框图。该会车装置可以用于实现上述图3、图5和图6中任一项所对应的实施例中任意一个车辆所执行的方法,或者,可以用于实现上述图4至图6中任一项所对应的实施例中路侧设备所执行的方法。该会车装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
示例性地,当该会车装置900用于实现本申请实施例提供的方法300时,处理器910可以用于从第一模式切换至第二模式,第一模式是由车辆自主决策来控制车辆的模式,第二模式是由路侧设备决策来远程控制车辆的模式;接收来自路侧设备的会车方案,会车方案用于在会车时对会车的多个车辆进行调度;基于会车方案进行会车。具体参见方法示例中的详细描述,此处不做赘述。
示例性地,当该会车装置900用于实现本申请实施例提供的方法400时,处理器910可以用于从多个车辆中的每个车辆接收各自的行驶信息,行驶信息包括:规划路 径、当前的行驶方向和行驶速度,多个车辆为发生会车的车辆;基于路况信息以及这多个车辆中每个车辆的行驶信息,确定会车方案,路况信息用于指示路面当前的交通状况,会车方案用于在会车时对这多个车辆进行调度;向这多个车辆发送会车方案。具体参见方法示例中的详细描述,此处不做赘述。
示例性地,当该会车装置900用于实现本申请实施例提供的方法500中车辆1所执行的方法时,处理器910可以用于执行步骤501至步骤505、步骤507,以及步骤511至步骤513;当该会车装置900用于实现本申请实施例提供的方法500中车辆3或车辆4所执行的方法时,处理器910可以用于执行步骤507至步骤509,以及步骤511至步骤513;当该会车装置900用于实现本申请实施例提供的方法500中路侧设备所执行的方法时,处理器910可以用于执行步骤504、步骤506,以及步骤509至步骤511。
示例性地,当该会车装置900用于实现本申请实施例提供的方法600中车辆1至车辆5中任意一个车辆所执行的方法时,处理器910可以用于执行步骤604至步骤606,以及步骤608至步骤610;当该会车装置900用于实现本申请实施例提供的方法600中路侧设备所执行的方法时,处理器910可以用于执行步骤601至步骤604,以及步骤606至步骤608。
该会车装置900还可以包括至少一个存储器920,可以用于保存程序指令和数据等。存储器920和处理器910耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器910可能和存储器920协同操作。处理器910可能执行存储器920中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
该会车装置900还可以包括通信接口930,用于通过传输介质和其它设备进行通信,从而使得会车装置900可以和其它设备进行通信,例如,当该会车装置900为第一车辆时,其他设备可以是第二车辆、第三车辆或路侧设备;当该会车装置900为路侧设备时,其他设备可以是车辆。所述通信接口930例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器910可利用通信接口930收发数据和/或信息,并用于实现图3、图5和图6中任一项对应的实施例中车辆所执行的方法300,或,用于实现图4至图6中任一项对应的实施例中路侧设备所执行的方法。
本申请实施例中不限定上述处理器910、存储器920以及通信接口930之间的具体连接介质。本申请实施例在图9中以处理器910、存储器920以及通信接口930之间通过总线940连接。总线940在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请提供了一种车辆,该车辆包括处理器,该处理器与存储器耦合,可以用于执行存储器中的计算机程序,以实现如图3、图5和图6中任一项所示的实施例中车辆执行的方法。
可选地,该车辆还包括存储器。
可选地,该车辆还包括通信接口,处理器与通信接口耦合。
本申请还提供了一种路侧设备,该路侧设备包括处理器,该处理器与存储器耦合,可以用于执行存储器中的计算机程序,以实现如图4至图6中任一项所示的实施例中路侧设备执行的方法。
可选地,该路侧设备还包括存储器。
可选地,该路侧设备还包括通信接口,处理器与通信接口耦合。
本申请还提供了一种芯片系统,所述芯片系统包括至少一个处理器,用于实现上述图3、图5和图6中任一项所示实施例中车辆执行的方法中所涉及的功能,或,用于实现图4至图6中任一项所示实施例中路侧设备执行的方法中所涉及的功能。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请还提供一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码或指令),当所述计算机程序被运行时,使得计算机执行如图3至图6中任一项所示实施例的方法。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码或指令)。当所述计算机程序被运行时,使得计算机执行如图3至图6中任一项所示实施例的方法。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、 同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本说明书中使用的术语“单元”、“模块”等,可用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上单元集成在一个模块中。
在上述实施例中,各功能模块的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出 来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种会车方法,其特征在于,应用于第一车辆,所述方法包括:
    从第一模式切换至第二模式,所述第一模式是由车辆自主决策来控制所述车辆的模式,所述第二模式是由路侧设备决策来远程控制所述车辆的模式;
    接收来自所述路侧设备的会车方案,所述会车方案用于在会车时对会车的多个车辆进行调度;
    基于所述会车方案进行会车。
  2. 如权利要求1所述的方法,其特征在于,所述会车方案用于指示会车时所述多个车辆的通行顺序。
  3. 如权利要求2所述的方法,其特征在于,所述会车方案还用于指示如下一项或多项:推荐给所述第一车辆的行驶方向、行驶速度和加速度。
  4. 如权利要求3所述的方法,其特征在于,所述会车方案还用于指示如下一项或多项:推荐给所述多个车辆中除所述第一车辆以外的每个车辆的行驶方向、行驶速度和加速度。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    基于路况信息确定当前路况的复杂度大于第一预设阈值,所述路况信息是基于感知设备采集到的数据得到的,所述感知设备包括部署在路侧的感知设备和/或部署在所述第一车辆的感知设备;
    向所述路侧设备发送请求消息,所述请求消息用于请求获取所述会车方案。
  6. 如权利要求5所述的方法,其特征在于,所述请求消息携带所述第一车辆的行驶信息,所述行驶信息包括:规划路径、当前的行驶方向和行驶速度。
  7. 如权利要求5或6所述的方法,其特征在于,所述方法还包括:
    确定第二车辆,所述第二车辆为所述多个车辆中除所述第一车辆以外的一个或多个车辆;
    向所述第二车辆发送知会消息,所述知会消息用于指示所述第二车辆从所述第一模式切换至所述第二模式。
  8. 如权利要求7所述的方法,其特征在于,所述请求消息携带指示信息,所述指示信息用于指示可能发生会车的所述多个车辆。
  9. 如权利要求5至8中任一项所述的方法,其特征在于,所述向所述路侧设备发送请求消息,包括:
    确定距离所述第一车辆最近的第一路侧设备;
    向所述第一路侧设备发送所述请求消息。
  10. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述路侧设备的接管消息,所述接管消息用于指示所述第一车辆从所述第一模式切换至所述第二模式。
  11. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自第三车辆的知会消息,所述知会消息用于指示所述第一车辆从所述第一模式切换至所述第二模式,所述第三车辆为所述多个车辆中除所述第一车辆以外的任一车辆;
    向所述路侧设备发送所述第一车辆的行驶信息,所述行驶信息包括:规划路径、当前的行驶方向和行驶速度。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,所述基于所述会车方案进行会车之后,所述方法还包括:
    从所述第二模式切换至所述第一模式。
  13. 一种会车方法,其特征在于,应用于路侧设备,所述方法包括:
    从多个车辆中的每个车辆接收各自的行驶信息,所述行驶信息包括:规划路径、当前的行驶方向和行驶速度,所述多个车辆为发生会车的车辆;
    基于路况信息以及所述多个车辆中每个车辆的行驶信息,确定会车方案,所述路况信息用于指示路面当前的交通状况,所述会车方案用于在会车时对所述多个车辆进行调度;
    向所述多个车辆发送所述会车方案。
  14. 如权利要求13所述的方法,其特征在于,在所述确定会车方案之前,所述方法还包括:
    在基于所述路况信息确定当前路况的复杂度大于第二预设阈值的情况下,进入指挥模式,所述指挥模式为远程控制车辆的模式;
    确定可能发生会车的所述多个车辆;
    向所述多个车辆发送接管消息,所述接管消息用于指示车辆从第一模式切换至第二模式,所述第一模式是由所述车辆自主决策来控制所述车辆的模式,所述第二模式是由所述路侧设备决策来远程控制所述车辆的模式。
  15. 如权利要求13所述的方法,其特征在于,在所述确定会车方案之前,所述方法还包括:
    在接收到来自所述多个车辆中的第一车辆的请求消息的情况下,进入指挥模式,所述指挥模式为远程控制车辆的模式,所述请求消息用于请求获取所述会车方案。
  16. 如权利要求15所述的方法,其特征在于,所述请求消息中携带如下至少一项:
    所述第一车辆的行驶信息;和,
    指示信息,所述指示信息用于指示可能发生会车的车辆。
  17. 如权利要求15或16所述的方法,其特征在于,所述会车方案为发送给所述第一车辆的会车方案,所述会车方案用于指示会车时所述多个车辆的通行顺序,以及如下一项或多项:推荐给所述第一车辆的行驶方向、行驶速度和加速度。
  18. 如权利要求17所述的方法,其特征在于,所述会车方案还用于指示如下一项或多项:推荐给所述多个车辆中除所述第一车辆以外的每个车辆的行驶方向、行驶速度和加速度。
  19. 一种会车装置,其特征在于,包括用于实现如权利要求1至12中任一项所述的方法的模块,或者,包括用于实现如权利要求13至18中任一项所述的方法的模块。
  20. 一种会车装置,其特征在于,包括存储器和处理器;其中,
    所述存储器用于存储计算机程序;
    所述处理器用于调用并执行所述计算机程序,以使得所述装置执行权利要求1至12中任一项所述的方法,或者,以使得所述装置执行权利要求13至18中任一项所述 的方法。
  21. 一种车辆,其特征在于,用于实现如权利要求1至12中任一项所述的方法。
  22. 一种路侧设备,其特征在于,用于实现如权利要求13至18中任一项所述的方法。
  23. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,使得计算机执行如权利要求1至18中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2023/089918 2022-05-05 2023-04-21 一种会车方法及相关装置 WO2023213200A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210482974.2A CN117058867A (zh) 2022-05-05 2022-05-05 一种会车方法及相关装置
CN202210482974.2 2022-05-05

Publications (1)

Publication Number Publication Date
WO2023213200A1 true WO2023213200A1 (zh) 2023-11-09

Family

ID=88646241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089918 WO2023213200A1 (zh) 2022-05-05 2023-04-21 一种会车方法及相关装置

Country Status (2)

Country Link
CN (1) CN117058867A (zh)
WO (1) WO2023213200A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105788328A (zh) * 2016-04-25 2016-07-20 华为技术有限公司 一种用于智能交通的路侧设备或方法
CN106340197A (zh) * 2016-08-31 2017-01-18 北京万集科技股份有限公司 一种车路协同辅助驾驶系统及方法
CN108109415A (zh) * 2017-12-20 2018-06-01 东风汽车集团有限公司 一种具有防拥堵功能的网联自动驾驶控制系统及方法
TW201915970A (zh) * 2017-10-11 2019-04-16 趙文煌 太陽能供電的車輛交會遠端預警系統
CN110164157A (zh) * 2019-07-16 2019-08-23 华人运通(上海)新能源驱动技术有限公司 路侧设备、用于路侧设备的方法和车路协同系统
CN110335488A (zh) * 2019-07-24 2019-10-15 深圳成谷科技有限公司 一种基于车路协同的车辆自动驾驶方法和装置
GB2578916A (en) * 2018-11-14 2020-06-03 Jaguar Land Rover Ltd Vehicle control system and method
CN111583690A (zh) * 2020-04-15 2020-08-25 北京踏歌智行科技有限公司 一种基于5g的矿区无人运输系统的弯道协同感知方法
CN111899562A (zh) * 2019-05-05 2020-11-06 湖南大学深圳研究院 一种用于弯道盲区的会车提示方法
CN112289057A (zh) * 2020-09-30 2021-01-29 深圳市金溢科技股份有限公司 车路协同自动驾驶辅助方法、系统、处理设备及车载设备
CN112614366A (zh) * 2020-12-11 2021-04-06 国汽(北京)智能网联汽车研究院有限公司 汽车协同决策方法、装置、电子设备及计算机存储介质
CN112634632A (zh) * 2020-12-15 2021-04-09 北京百度网讯科技有限公司 车辆调度的方法、装置、电子设备及存储介质
CN113282090A (zh) * 2021-05-31 2021-08-20 三一专用汽车有限责任公司 工程车辆无人驾驶控制方法、装置、工程车辆及电子设备
CN113470350A (zh) * 2021-06-16 2021-10-01 中铁大桥局集团有限公司 一种便道行车调度方法
CN114330984A (zh) * 2021-11-12 2022-04-12 中智行(上海)交通科技有限公司 一种基于车路协同的多车协作式车辆汇入方法及系统

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105788328A (zh) * 2016-04-25 2016-07-20 华为技术有限公司 一种用于智能交通的路侧设备或方法
CN106340197A (zh) * 2016-08-31 2017-01-18 北京万集科技股份有限公司 一种车路协同辅助驾驶系统及方法
TW201915970A (zh) * 2017-10-11 2019-04-16 趙文煌 太陽能供電的車輛交會遠端預警系統
CN108109415A (zh) * 2017-12-20 2018-06-01 东风汽车集团有限公司 一种具有防拥堵功能的网联自动驾驶控制系统及方法
GB2578916A (en) * 2018-11-14 2020-06-03 Jaguar Land Rover Ltd Vehicle control system and method
CN111899562A (zh) * 2019-05-05 2020-11-06 湖南大学深圳研究院 一种用于弯道盲区的会车提示方法
CN110164157A (zh) * 2019-07-16 2019-08-23 华人运通(上海)新能源驱动技术有限公司 路侧设备、用于路侧设备的方法和车路协同系统
CN110335488A (zh) * 2019-07-24 2019-10-15 深圳成谷科技有限公司 一种基于车路协同的车辆自动驾驶方法和装置
CN111583690A (zh) * 2020-04-15 2020-08-25 北京踏歌智行科技有限公司 一种基于5g的矿区无人运输系统的弯道协同感知方法
CN112289057A (zh) * 2020-09-30 2021-01-29 深圳市金溢科技股份有限公司 车路协同自动驾驶辅助方法、系统、处理设备及车载设备
CN112614366A (zh) * 2020-12-11 2021-04-06 国汽(北京)智能网联汽车研究院有限公司 汽车协同决策方法、装置、电子设备及计算机存储介质
CN112634632A (zh) * 2020-12-15 2021-04-09 北京百度网讯科技有限公司 车辆调度的方法、装置、电子设备及存储介质
CN113282090A (zh) * 2021-05-31 2021-08-20 三一专用汽车有限责任公司 工程车辆无人驾驶控制方法、装置、工程车辆及电子设备
CN113470350A (zh) * 2021-06-16 2021-10-01 中铁大桥局集团有限公司 一种便道行车调度方法
CN114330984A (zh) * 2021-11-12 2022-04-12 中智行(上海)交通科技有限公司 一种基于车路协同的多车协作式车辆汇入方法及系统

Also Published As

Publication number Publication date
CN117058867A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
US10503172B2 (en) Controlling an autonomous vehicle based on independent driving decisions
US10618519B2 (en) Systems and methods for autonomous vehicle lane change control
CN111123933B (zh) 车辆轨迹规划的方法、装置、智能驾驶域控制器和智能车
JP6308233B2 (ja) 車両制御装置及び車両制御方法
US11130492B2 (en) Vehicle control device, vehicle control method, and storage medium
JP7030573B2 (ja) 車両制御装置、車両制御方法、およびプログラム
US20190061765A1 (en) Systems and Methods for Performing Lane Changes Around Obstacles
CN114222691A (zh) 基于成本的路径确定
US11945440B2 (en) Data driven rule books
KR20190030199A (ko) 차량들의 감독 제어
CN113160547B (zh) 一种自动驾驶方法及相关设备
JP2019185211A (ja) 車両制御装置、車両制御方法、及びプログラム
US11801864B1 (en) Cost-based action determination
US20230134068A1 (en) Autonomous Vehicle Navigation in Response to a Stopped Vehicle at a Railroad Crossing
WO2021051959A1 (zh) 车辆控制的方法、装置、控制器和智能汽车
US20230256999A1 (en) Simulation of imminent crash to minimize damage involving an autonomous vehicle
WO2023213200A1 (zh) 一种会车方法及相关装置
WO2023076343A1 (en) Autonomous vehicle trajectory determination based on state transition model
JP2019214320A (ja) 認識処理装置、車両制御装置、認識制御方法、およびプログラム
WO2021229671A1 (ja) 走行支援装置および走行支援方法
EP4074562A1 (en) Control system and control method for intelligent connected vehicle
CN114269618A (zh) 转弯前用于并入的车道处理
JP7467323B2 (ja) 走行支援方法及び走行支援装置
US20230256993A1 (en) Secondary autonomous vehicle interceptor in difficult map areas to provide additional sensor data
US20230106666A1 (en) Remote support server, remote support method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799187

Country of ref document: EP

Kind code of ref document: A1