WO2018117642A1 - 방향성 전기강판 및 이의 제조방법 - Google Patents

방향성 전기강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2018117642A1
WO2018117642A1 PCT/KR2017/015129 KR2017015129W WO2018117642A1 WO 2018117642 A1 WO2018117642 A1 WO 2018117642A1 KR 2017015129 W KR2017015129 W KR 2017015129W WO 2018117642 A1 WO2018117642 A1 WO 2018117642A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
steel sheet
grain
oriented electrical
electrical steel
Prior art date
Application number
PCT/KR2017/015129
Other languages
English (en)
French (fr)
Inventor
주형돈
한민수
박형기
이상우
서진욱
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP17884744.8A priority Critical patent/EP3561105A4/en
Priority to CN201780080222.0A priority patent/CN110100025B/zh
Priority to JP2019534128A priority patent/JP6842549B2/ja
Priority to US16/472,480 priority patent/US11667984B2/en
Publication of WO2018117642A1 publication Critical patent/WO2018117642A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and a method of manufacturing the same. Specifically, the present invention relates to a grain-oriented electrical steel sheet including a mirror element and a manufacturing method thereof.
  • a grain-oriented electrical steel sheet contains a Si component and has an aggregate structure in which the grain orientation is aligned in the (110) [001] direction. It is mainly used as iron core materials for transformers, electric motors, generators and other electronic devices, and uses extremely excellent magnetic properties in the rolling direction.
  • the above-mentioned method iv) is a method of improving the magnetic properties of the material by actively improving the properties of the surface of the grain-oriented electrical steel sheet.
  • a method of removing a base coating layer formed through chemical reaction and components in the oxide layer and annealing separator which are inevitably generated during the decarburization annealing process there may be mentioned a method of removing a base coating layer formed through chemical reaction and components in the oxide layer and annealing separator which are inevitably generated during the decarburization annealing process.
  • Techniques for removing the base coating layer include a method of forcibly removing a conventional product having a base coating layer with sulfuric acid or hydrochloric acid and a technique for removing or suppressing the base coating layer in the process of being produced (hereinafter, also referred to as glassless technology). Proposed.
  • the main research direction of the glassless technology is the addition of chloride to the annealing separator .
  • the surface etching effect was applied, and A1 2 0 3 powder was applied with annealing separator and then the base coating layer itself was not formed in the high temperature annealing process.
  • the ultimate direction of this technology is to intentionally prevent the base coating layer in the production of electrical steel, thus resulting in surface pinning sites that lead to magnetic degradation.
  • the two glassless methods proposed above namely, the method of suppressing the production of the base coating layer and the technology of separating the base coating layer from the base material in the high temperature annealing process, are characterized by oxidation in the furnace through hydrogen, nitrogen gas, and dew point change during the decarbonation annealing process.
  • PH 2 0 / PH 2 must be controlled very low.
  • the reason for the low oxidizing ability is to minimize the base coating layer formation by minimizing the oxide layer formed on the surface of the base material during decarburization.
  • most of the oxide layer produced is silica (Si0 2 ) oxide to suppress the iron oxide generation.
  • the method of suppressing the base coating layer formation by minimizing the formation of an oxide layer by controlling the existing oxidation ability to the minimum is different in the case of heat treatment on the coil during high temperature annealing, depending on the position of the plate in the coil during the high annealing.
  • the present invention to provide a method for producing a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet thereby produced. More specifically, it relates to a grain-oriented electrical steel sheet including a mirror element and a method for manufacturing the same.
  • Mn 0.0. 0% to 0.9% by weight, A1 ⁇ .01 to 0.1% by weight, N: 0.015% to 0.05% by weight and S: 0.03% by weight or less (not including 0%)
  • Sb 0.005% by weight to 0.1% by weight and Sn: 0.005% to 0.2% by weight of one or more may be further included.
  • It may further include at least one of P: 0.005% by weight to 0.075% by weight and Cr: 0.005% by weight to 0.35% by weight.
  • the ratio of the area of grains having a grain size of 1 mm or less may be 10% or less. have.
  • Surface roughness Ra may be 0.8 or less.
  • Slab is ⁇ : 0.005% to 0.9% by weight, Al: 0.01 to 0.1% by weight,
  • N 0.02% by weight or less (does not include 0%) and S: 0.03% by weight or less (does not include 0%).
  • the slab may further comprise at least one of Sb: 0.005% by weight to 0.15% by weight and Sn: 0.005% by weight to 0.2% by weight.
  • Slavic. P 0.005 weight percent to 0.075 weight percent and. Cr: may further include one or more of 0.005% by weight to 0.35% by weight.
  • an annealing separator may be applied to the steel sheet on which the primary recrystallization annealing is completed, and the second recrystallization annealing may be performed.
  • the annealing separator may include only MgO or A1 2 0 3 in solids.
  • the method may further include removing the base coating worm formed on the surface of the steel sheet.
  • the steel sheet after the first recrystallization annealing is completed may include 0.015% to 0.05% by weight of N.
  • Secondary recrystallization annealing includes a heating step and a cracking step, and the cracking step may be performed with a silver of 900 to 125C C.
  • the magnetic properties can be improved by controlling the type or characteristic of a specific annealing separator or by making the surface smooth as a mirror surface without including a specific additive in the annealing separator to facilitate magnetic migration.
  • the oriented electrical steel sheet with the base coating layer removed can The main element can be removed to improve the iron loss of the grain-oriented electrical steel sheet, and to prevent workability deterioration by the base coating layer.
  • first, second and third are used to describe various parts, components, regions, layers and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the present invention.
  • % means weight% and lppm is 0.0001 weight%.
  • goss grains means grains whose orientation is within 15 degrees from ⁇ 110 ⁇ ⁇ 001>.
  • the meaning of further including additional elements is additional It means to include the remaining iron (Fe) by the additional amount of the element.
  • Fe iron
  • embodiments of the present invention will be described in detail so that those skilled in the art can easily practice. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
  • the present invention provides a method of adding a specific component in a grain-oriented electrical steel sheet so that this component segregates at the interface between the metal base layer and the base coating layer and causes peeling of the base coating by the segregated metal material to achieve mirror hardening.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention in weight%, Si: 1.0% to 7.0%, C: 0.005% or less (does not include 0%), In: 0.001% to 0.5% and the balance is Fe And other unavoidable impurities.
  • the reason for limiting the composition is as follows.
  • Silicon (Si) is the basic composition of electrical steel sheet to increase the specific resistance of the material to reduce the core loss (core loss), namely iron loss.
  • core loss core loss
  • the Si content is not limited only to the slab. After the powder coating or surface deposition, it is manufactured by diffusion method to produce Si. Even if it contains as much as the above-mentioned range does not deviate from the scope of the present invention. Therefore, Si 1.0 wt% to 7.0 wt% is included. More specifically, the content may include 2.0 wt% to 4.5 wt%.
  • Carbon (C) is necessary for the manufacturing process but plays a detrimental role in the final product.
  • phase transformation occurs in silver above 900 ° C with austenite stabilizing elements, which minimizes the coarse columnar tissues generated during the process, and suppresses Sulfur's central segregation.
  • austenite stabilizing elements which minimizes the coarse columnar tissues generated during the process, and suppresses Sulfur's central segregation.
  • it promotes work hardening of the steel sheet during hot rolling to promote the secondary recrystallization nucleation of the ⁇ 1 10 ⁇ ⁇ 001> orientation in the steel sheet. Therefore, there is no big restriction on the amount of addition, but less than 0.005% by weight in the slab. If contained, phase transformation and work hardening effect cannot be obtained. If it is added in excess of 0.10% by weight, there are problems in working due to hot and edge edge-cracking. Since loading occurs, the amount of addition in the slab is preferably 0.005 to 0.10% by weight.
  • Carbon decarburization occurs during the first recrystallization annealing process, and the content is reduced to less than 50 ppm in the final electrical steel sheet. More preferably, it is reduced to 30 ppm or less.
  • carbon is limited to 0.005% or less by weight.
  • the carbon is included in the slab 0.005 to 0.10% by weight.
  • Indium (In) is an important element as a mirroring element in one embodiment of the present invention.
  • a difference occurs between the base coating layer and the metal base material. Since this is a phenomenon occurring in the whole steel pipe, even if the annealing in the form of a coil, the same segregation and separation occurs in the entire coil, it is possible to uniform mirroring.
  • In is a hardening element, and has a high segregation tendency, a low uneven point, a large difference in the coefficient of linear expansion with Fe, and a large shrinkage amount.
  • Ba, Y, Sn, Sb and the like are also segregated elements, but do not meet other requirements, so the mirroring effect is not exhibited.
  • In When In is contained in less than 0.001 weight%, it is hard to exhibit the mirroring effect. If In is included in an amount exceeding 0.5% by weight, the rolling property may be impaired and the rolling crack may increase. More specifically, In may include 0.005 to 0.3% by weight. More specifically, it may include 0.01% by weight to 0.1% by weight.
  • Manganese (Mn) is a resistivity element, but has an effect of improving magnetism, but if it contains too much, the phase transformation after secondary recrystallization adversely affects the magnetism, and thus Mn is further limited to 0.005 to 0.9% by weight.
  • Aluminum (A1) is finally a nitride in the form of A1N, (Al.SON, (Al, Si, Mn) N, etc.) and acts as an inhibitor.
  • A1N Al.SON, (Al, Si, Mn) N, etc.
  • its content is set at 0.01 to 0.1% by weight.
  • Tfl may comprise A1 in an amount of 0.01 to 0.05% by weight.
  • N in the slab is set at 0.02% by weight or less. More specifically, N in the slab may be included 0.06% by weight or less.
  • the precipitation occurs during the first recrystallization annealing process, and after the first recrystallization annealing, the content of N may be 0.015% by weight to 0.05% by weight. That is, the content of N in the final grain-oriented electrical steel sheet may be 0.015% by weight ⁇ 3 ⁇ 4 to 05% by weight.
  • Antimony (Sb) and tin (Sn) are low-temperature segregation elements that serve to assist the existing precipitates and have a good effect on improving the density.
  • Sb: 0.005% to 0.15% by weight and Sn: 0.005% to 0.2% by weight may further include one or more.
  • Sb: 0.01% to 0.06% by weight and Sn: 0.02% to 0.1% by weight may further include one or more.
  • Phosphorus (P) promotes the growth of primary recrystallized grains in low-heat-oriented oriented electrical steel, thus increasing secondary recrystallization and increasing the integration of ⁇ 110 ⁇ ⁇ 001> orientation in the final product.
  • P not only lowers the iron loss of the final product by increasing the number of grains with the ⁇ 110 ⁇ ⁇ 001> orientation in the primary recrystallization plate but also strongly develops the ⁇ 111 ⁇ ⁇ 112> texture in the primary recrystallization plate.
  • the magnetic flux density is also increased. Also P
  • the second i segregation at grain boundaries to a temperature of about loocrc during recrystallization annealing also has the action to delay decomposition of the precipitate to enhance the restraining force. At least 0.005% by weight is required for this to work properly. However, when P exceeds 0.075% by weight, the size of the primary recrystallized grains is rather reduced. Secondary recrystallization not only becomes unstable, but also increases the brittleness and impairs cold rolling. Therefore, when P is further included, it may include 0.005 wt% to 0.075 wt%. More specifically, P may contain 0.0015% by weight to 0.05% by weight.
  • [Sb] ⁇ 0.0630 where [P] and [Sb] mean content (% by weight) of P and Sb elements, respectively). If the above relation is satisfied, iron loss and magnetic flux density of the grain-oriented electrical steel sheet may be further improved. When the content of [P] + 0.5 * [Sb] is controlled in the above-described range, the iron loss improving effect may be more excellent. The reason is that the elements can be added together to have a synergistic effect, and when the synergistic effect satisfies the formula range, it is discontinuously maximized compared to other numerical ranges. Therefore, each component range can be controlled, and [P] + 0.5 * [Sb] can be controlled to the above-mentioned range.
  • Chromium has a function of growing primary recrystallized grains as ferrite expansion elements, and increases grains of ⁇ 11 sub ⁇ 001> orientation in the primary recrystallized sheet.
  • Cr Cr
  • the content is set to 0.005 to 0.35% by weight. More specifically, Cr may include 0.03 to 0.2% by weight.
  • composition means the content in the steel sheet except for a separate coating layer such as an insulating coating.
  • the grain ratio of grain size of less than lmm may be 10% or less. Due to such a tissue characteristic, the grain-oriented electrical steel sheet according to an embodiment of the present invention further improves magnetic properties.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention has a surface roughness (Ra) ⁇ . ⁇ ⁇ or less.
  • Ra surface roughness
  • a hardening element In can be segregated at the interface, causing a difference between the base coating layer and the metal base material, thereby smoothly removing the base coating layer.
  • the surface roughness Ra is small. You lose. As surface roughness Ra becomes small, magnetic domain movement becomes easy and magnetism improves further.
  • each step will be described in detail.
  • Method for producing a grain-oriented electrical steel sheet first, in weight%, Si: 1.0% to 7.0%, C: 0.005% to 0.10%, In: 0.001% to 0.5% and the balance is Fe and Provided are slabs comprising other unavoidably shaken impurities.
  • the slab does not contain Mn: 0.005 weight ⁇ 3 ⁇ 4 to 0.9 weight%, A 0.01 to 0.1 weight N: 0.02 weight ⁇ 3 ⁇ 4 (not including 0%) and S: 0.03 weight% or less (0% ) May further include.
  • the slab may further include at least one of Sb: 0.005% by weight to 0.15% by weight 9 & Sn: 0.005% by weight to 0.2% by weight.
  • the slab may further include at least one of P: 0.005% by weight to 0.075% by weight and Cr: 0.005% by weight to 0.35% by weight.
  • the slab heating temperature can be 1000 ° C to 128 C C. Higher slab heating temperature increases steel plate manufacturing cost, and repairs the furnace by melting the surface of the slab and increases the lifetime of the furnace. Can be shortened. In addition, heating the slab to a temperature below 1,28 (C prevents the growth of the slab columnar tissues in a coarse manner and prevents cracks in the width direction of the plate during the subsequent hot rolling process, improving the error rate. You can.
  • Hot rolling can be produced by hot rolling to a thickness of 1.5 ⁇ 4.0mm by hot rolling to be manufactured to the final product thickness by applying the appropriate rolling rate in the final hot rolling step.
  • the hot-rolling end temperature can be 950 ° C. or less, and the angle can be quenched with water to be wound up at 60 ° C. or less.
  • the hot rolled sheet is cold rolled to produce a hot rolled sheet.
  • Roll rolling is carried out by using a reverse rolling mill or a tandem rolling mill to produce a cold rolled sheet having a final product thickness by a plurality of rolling mills including one or a plurality of rolling mills including annealing.
  • the hot rolling may be made to a final thickness of 0.1 to 0.5 mm, more specifically 0.15 to 0.35 mm through a single cold rolling.
  • the primary recrystallization annealing can reduce the carbon content of the steel sheet to less than 0.005 weight ⁇ 3 ⁇ 4 or more specifically 0.0030 weight% by maintaining at least 30 seconds at a temperature of 750 ° C or more so that decarburization occurs well.
  • an appropriate amount of oxide layer is formed on the surface of the steel sheet.
  • the deformed cold rolled structure is recrystallized and crystals grow to an appropriate size.
  • the annealing temperature and the cracking time may be adjusted to allow recrystallization to grow.
  • Sedimentation may occur during the first recrystallization annealing process. If the nitrogen content is too small, secondary recrystallization is difficult, so if the nitrogen content in the slab component is less than 150ppm, nitriding the nitrogen content to 150ppm or more through the immersion, and if the nitrogen content is too large, the nitrogen outlet defect is formed, so that the maximum 500ppm or less. That is, the steel sheet on which the first recrystallization annealing is completed contains N to 0.015% by weight to 0.05% by weight. Next, secondary recrystallization annealing is performed on the steel sheet on which primary recrystallization annealing is completed.
  • Secondary recrystallization annealing includes a heating step and a cracking step that cause the secondary recrystallization of the ⁇ 110 ⁇ ⁇ 001> Goss orientation by raising to an appropriate temperature increase rate.
  • the temperature at the cracking step can be between 900 and 125 C C.
  • the secondary recrystallization annealing is in the form of a batch
  • the annealing separator may be applied to the steel sheet on which the primary recrystallization annealing is completed, and the secondary recrystallization annealing may be performed.
  • an additive such as chloride is added to an annealing separator mainly composed of MgO or A1 2 0 3 , but in one embodiment of the present invention, by including a mirror element in the steel sheet itself, Without the use of additives, a smooth separation of the base coating layer is possible. That is, the annealing separator may include only MgO or A1 2 0 3 in solid content.
  • the surface oxide and the annealing separator react to form a base coating layer.
  • an annealing separator containing MgO as a main component an oxide coating layer containing Mg as a main component, such as Mg 2 Si0 4 , is formed, and when applying an annealing separator containing A1 2 0 3 as a main component, An oxide coating layer is formed.
  • An oxide coating layer is formed.
  • the present invention may further include the step of removing the base coating layer.
  • the base coating layer can be smoothly removed, and after removal, the surface roughness of the steel sheet can be lowered.
  • the removal method may be a physical method or a chemical method.
  • a steel slab containing Si: 3.2%, C: 0.052 ⁇ 3 ⁇ 4 with a weight of 1 3 ⁇ 4, and additionally added in as shown in Table 1 below and a balance of F e and other unavoidable steel slabs was prepared.
  • the steel slab was hot rolled to make a hot rolled sheet of 2.6 mm, and then hot rolled to a final thickness of a3 mm after annealing and pickling.
  • the carbon dioxide 30ppm was maintained at 120 ° C for 120 seconds at a dew point temperature of 63 to 67 ° C, which was formed by simultaneously adding 50% by volume hydrogen and 50% by volume nitrogen. Below, nitrogen was 300 ppm.
  • MgO an annealing separator
  • MgO was mixed with water and applied as a slurry, and no additive was added.
  • Secondary recrystallization annealing was performed in a mixed atmosphere of 25% nitrogen + 75% hydrogen in the temperature range up to 120C C, heated to 15 ° C per hour, and cracked and exposed for 15 hours in 100% hydrogen atmosphere at 120C C.
  • the forsterite layer formed on the surface of the steel sheet was removed by pickling.
  • the glossiness of the surface measured for each condition is shown in Table 1. Glossiness measurement was performed by measuring the amount of light reflected on the surface at a reflection angle of 60 ° using a Horiba measuring instrument. If the glossiness is less than 20, black, 20 to 200, excellent, more than 200, it was marked as very good. In addition, the surface roughness (Ra) was measured and summarized in Table 1 below.
  • Example 2 Fe by weight and balance of Si: 3.0%, CO.051%, Mn: 0.09%, Al: 0.029, NO.0040% and S: 0.005%, indium (In) and Sb as shown in Table 2
  • Other inevitable slabs of oriented electrical steel sheets were prepared. The slab was heated at a temperature of 1 15 C C for 90 minutes, hot rolled and then fed to 58 C, annealed at 580 ° C. for 1 hour, hot rolled to prepare a 2.3 mm thick hot rolled plate.
  • the hot rolled sheet was heated to a temperature of l, 05 (rc or higher, held at 9 KC for 80 seconds, pickled with boiling water and pickled. Then rolled to 0.30 mm thick. After heating the cold rolled sheet, 50 volume% hydrogen The dew point formed by simultaneously adding 50 vol% and nitrogen was maintained at 85 ° C. for 120 seconds in a mixed atmosphere of 63 to 67 ° C. to simultaneously denitrify the carbon to 30 ppm or less, and 300 ppm to nitrogen.
  • MgO an annealing separator
  • MgO was applied to the steel sheet to perform secondary recrystallization annealing.
  • MgO was mixed with water and applied as a slurry, and no additive was added.
  • Secondary recrystallization annealing was performed in a mixed atmosphere of 25% nitrogen + 75% hydrogen in the temperature range up to 120C C, heated to 15 ° C per hour, and cracked and exposed for 15 hours in 100% hydrogen atmosphere at 12CX C.
  • a layer of forsterite formed on the surface of the steel sheet . Removed by pickling. Iron loss (W 17/50 ) until the magnetized to 1.7Tesla at 50Hz using a single sheet measurement method is summarized in Table 2 below.
  • Comparative material 5 0.54 0.030 Rolling defect As shown in Table 2, in the case of the invention materials 13 to 16 containing In in an appropriate range, the glossiness of the invention materials 7 to 12 is very excellent, and further includes Sb with In. , It can be seen that the magnetism is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명의 일 실시예에 의한 방향성 전기강판은, 중량 %로, Si: 1.0% 내지 7.0%, C:0.005% 이하 (0%를 포함하지 않는다), Ιn: 0.001% 내지 0.5% 및 잔부는 Fe 및 기타 불가피하게 혼입되는 불순물을 포함한다.

Description

【명세서】
【발명의 명칭】
방향성 전기강판 및 이의 제조방법
【기술분야】
방향성 전기강판 및 이의 제조방법에 관한 것이다. 구체적으로 경면화 원소를 포함하는 방향성 전기강판 및 이의 제조방법에 관한 것이다.
【발명의 배경이 되는 기술】
방향성 전기강판이란 Si성분을 함유한 것으로서, 결정립의 방위가 (110) [001 ]방향으로 정열된 집합조직을 가지고 있다. 이는 변압기, 전동기, 발전기 및 기타 전자 기기 등의 철심 재료로 주로 사용되며, 압연방향으로 극히 우수한 자기적 특성을 이용한 것이다.
최근에는 고 자속밀도급의 방향성 전기강판이 상용화되면서, 철손이 적은.재료가 요구되고 있다. 이는 주로 네 가지의 기술적 방법으로 접근할 수 있는데, 0 방향성 전기강판의 자화용이 축을 포함하고 있는 {110} <001> 결정립 방위를 압연방향으로 정확하게 배향하는 방법 , ii) 재료의 박물화 방법, Hi) 화학적, 물리적 방법을 통해 마그네틱 도메인을 미세화하는 자구미세화 방법, iv) 표면처리등과 같은 화학적 방법에 의한 표면 물성 개선 또는 표면장력 부여 방법 등이 있다.
전술한 iv) 방법은 방향성 전기강판 표면의 성질을 적극적으로 개선함으로써 소재의 자성을 개선하는 방법이다. 그 대표적인 예로서 , 탈탄 소둔 과정에서 필연적으로 생성되는 산화층 및 소둔 분리제 내의 성분과 화학적 반웅을 통해 생성되는 베이스 코팅층을 제거하는 방법을 들 수 있다. 베이스 코팅층을 제거하는 기술은 이미 베이스 코팅층이 형성된 통상의 제품을 황산 또는 염산으로 강제적으로 제거하는 방법 및 상기 베이스 코팅층이 생성되는 과정에서 이를 제거 또는 억제하는 기술 (이하, 글라스리스 기술이라고도 함)이 제안되었다.
현재까지 상기 글라스리스 기술의 주요 연구 방향은 소둔 분리제에 염화물을 첨가한 후 . 고온 소둔공정에서 표면에칭 효과를 이용하는 기술, 그리고 소둔분리제로 A1203 분말을 도포한 뒤 고온 소둔공정에서 베이스 코팅층 자체를 형성시키지 않는 기술의 두 가지 방향으로 진행되었다. 이러한 기술의 궁극적인 방향은, 결국 전기강판 제조에 있어서 베이스 코팅층을 의도적으로 방지함으로써, 자성열화를 초래하는 표면 피닝 사이트
(Pinning Site)를 제거하고, 궁극적으로는 방향성 전기강판의 자성을 개선하는 것이다.
이상과 같이 위에서 제안된 두 가지 글라스리스 방법, 즉 베이스 코팅층 생성을 억제하는 방법과 고온소둔 공정에서 베이스 코팅층을 모재로부터 분리하는 기술 모두 탈탄소둔 공정시 수소, 질소 가스와 이슬점 변화를 통해 로내 산화능 (PH20/PH2)을 매우 낮게 제어해야 한다는 공정상의 문제점을 가지고 있다. 산화능을 낮게 제어하는 이유는 탈탄시 모재 표면에 형성되는 산화층을 최소한으로 하여 베이스코팅층 형성을 최대한 억제하는데 있으며 또한 로내 산화능이 낮을 경우 생성되는 산화층이 대부분 실리카 (Si02) 산화물로 철계 산화물 생성을 억제할 수 있어 고온소둔 후 표면에 철계 산화물을 잔류시키지 않는 장점이 있다. 그러나 이러한 경우 탈탄 불량에 의한 적정 1차 재결정립 크기를 확보하기 어렵고 또한 고온 소둔시 2차 재결정립 성장에도 문제를 발생시킬 수 있기 때문에 탈탄성을 적절히 확보하면서 산화층을 얇게 하기 위해서는 탈탄 공정이 통상재 처리공정 보다 시간이 길어져야 하고 이로 인해 생산성이 저하된다. 종래의 글라스리스 기술을 통한 저철손 방향성 전기강판 제조시 얇은 산화층으로 인해 고온소둔시 강중에 존재하는 인히비터 (inhibitor)가 표면쪽으로 급격하게 확산 및 소실되어 2차 재결정이 불안해지는 문제를 가지고 있으며, 이러한 문제를 해결하는 방법으로 고온소둔시 분위기 제어 및 승온구간에서의 승온율을 늦추는 서열패턴을 적용함으로써 강중 인히비터가 표면쪽으로 확산되는 것을 억제하는 기술이 제안되었다.
또한 기존의 산화능을 낮게 제어하여 산화층을 최소한으로 형성하여 베이스코팅층 형성을 최대한 억제하는 방법은 고온소둔시 코일 상으로 열처리하는 경우에 있어서는 고은소둔시 코일내의 판의 위치에 따라 다른 이슬점과 온도 거동을 가지며 이때 베이스코팅층 형성에 차이가 있고 이에 따른 글라스리스 정도의 차이가 생겨 판 부분별 편차발생으로 양산화에 큰 문제점이 될 수 있다.
따라서 글라스리스 방법을 통하여 저철손 방향성 전기강판을 제조하기 위해서는 탈탄 공정 및 고온소둔에서의 생산성 저하를 피할 수 없으며 또한 고온소둔공정이 batch 소둔형태로 이루어져 판 폭방향 및 길이방향 편차를 피하기가 어려워 실수율 저하를 피하기가 어렵다.
또한, 소둔 분리제 내에 염화물 등의 첨가물을 첨가하여, 고온 소둔 시, 방출되는 염산에 의해 표면 산화층과 인접하는 지철이 FeCl2 증기가 되어, 박리하는 방법이 제시된다. 그러나, 고온열처리 필요에 의해 코일소둔이 필요하고 승은시 코일에는 온도편차가 발생하게 된다. 이때 소둔분리제에 포함된 수분이 고은으로 갈 때 코일 각 위치별로 다르게 영향을 주어 위치별 표면산화층이 다른 영향을 받게되고 베이스 코팅층 형성 또는 베이스 코팅층의 박리가 다르게 영향을 받아 소둔분리제에 첨가제에 의한 경면형성은 좋은 조건을 찾더라도 코일 모든 위치를 동일한 조건을 만들기 어려워 코일 전체에 균일한 경면화가 원리적으로 구조적으로 어려운 문제가 있다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명의 일 실시예에서는 방향성 전기강판의 제조방법 및 이에 의하여 제조된 방향성 전기강판을 제공하고자 한다. 더욱 구체적으로 경면화 원소를 포함하는 방향성 전기강판 및 이의 제조방법에 관한 것이다.
【과제의 해결 수단】 .
본 발명의 일 실시예에 의한 방향성 전기강판은, 중량 <¾로, Si: 1.0% 내지 7.0%, C:0.005% 이하 (0%를 포함하지 않는다), In:0.001% 내지 0.5% 및 잔부는 Fe 및. 기타 불가피하게 흔입되는 불순물을 포함한다.
Mn:ᄋ.0ᄋ5중량% 내지 0.9중량 %, Α1Ό.01 내지 0.1 중량 %, N:0.015중량 % 내지 0.05중량 % 및 S:0.03 중량 % 이하 (0%를 포함하지 않는다) 더 포함할 수 있다ᅳ
Sb: 0.005 증량 % 내지 0. 15중량 % 및 Sn: 0.005 중량 % 내지 0.2 중량 % 중 1종 이상올 더 포함할 수 있다.
P: 0.005중량 % 내지 0.075 증량 % 및 Cr: 0.005 중량 % 내지 0.35 중량 % 중 1종 이상을 더 포함할 수 있다.
결정립 입경이 1mm이하인 결정립의 면적 비율이 10% 이하일 수 있다.
표면 조도 (Ra)는 0.8 이하일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법은 중량 %로, Si: 1.0% 내지 그ᄋ%, C:0.005% 내지 0.109 , In:0.001% 내지 0.5% 및 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 슬라브를 제공하는 단계; 슬라브를 가열하는 단계; 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 넁간 압연하여 넁연판을 제조하는 단계; 넁연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔이 완료된 강판을 2차 재결정 소둔하는 단계;를 포함한다.
슬라브는 Μη:0·005중량 % 내지 0.9중량%, Al:0.01 내지 0.1중량 %,
Ν:0.02중량 % 이하 (0%를 포함하지 않는다) 및 S:0.03 중량 % 이하 (0%를 포함하지 않는다) 더 포함할 수 있다.
슬라브는 Sb: 0.005 중량 % 내지 0.15중량 % 및 Sn: 0.005 중량 % 내지 0.2 중량 % 중 1종 이상을 더 포함할 수 있다.
슬라브는. P: 0.005중.량% 내지 0.075 중량 % 및 . Cr: 0.005 중량 % 내지 0.35 중량 % 중 1종 이상을 더 포함할 수 있다.
2차 재결정 소둔하는 단계에서, 1차 재결정 소둔이 완료된 강판에 소둔 분리제를 도포하고, 2차 재결정 소둔할 수 있다.
소둔 분리제는 고형분으로 MgO 또는 A1203만을 포함할 수 있다.
2차 재결정 소둔하는 단계 후, 강판 표면에 형성된 베이스 코팅충을 제거하는 단계를 더 포함할 수 있다.
1차 재결정 소둔이 완료된 강판은 N을 0.015중량 % 내지 0.05중량 % 포함할 수 있다.
2차 재결정 소둔하는 단계는 가열 단계 및 균열 단계를 포함하고, 균열 단계는 900 내지 125C C의 은도로 수행될 수 있다.
【발명의 효과】
본 발명의 일 실시예에 의하면, 특정 소둔분리제의 종류나 특성을 제어하거나 소둔분리제에 특정 첨가제를 함유시키지 않고 표면을 경면과 같이 미려하게 만들어 자구이동을 쉽게 하여 자성을 개선시킬 수 있다.
베이스 코팅층이 제거된 방향성 전기강판은 자구이동의 제한하는 주된 요소가 제거 될수 있어 방향성 전기강판의 철손을 향상 시킬 수 있으며, 베이스 코팅층에 의한 가공성 열화를 방지할 수 있다.
【발명을 실시하기 위한 구체적인 내용】
제 1 , 제 2 및 제 3 등의 용어들은 다양한 부분, 성분, 영역, 층 및 /또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에 " 또는 "상에 " 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량 %를 의미하며, lppm 은 0.0001중량%이다. 또한 고스 (goss) 결정립이란 결정방위가 { 110}<001〉로부터 15도 이내의 방위를 갖는 결정립을 의미한다.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철 (Fe)을 대체하여 포함하는 것을 의미한다. 이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명은 방향성 전기강판 내에 특정 성분을 첨가하여 이 성분이 금속기지층과 베이스 코팅층 계면에 편석하고 이러한 편석된 금속 물질에 의해 베이스 코팅 박리를 일으켜 경면화를 이루는 방법을 제공한다.
본 발명의 일 실시예에 의한 방향성 전기강판은, 중량 %로, Si: 1.0% 내지 7.0%, C:0.005% 이하 (0%를 포함하지 않는다), In:0.001% 내지 0.5% 및 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함한다. 조성을 한정한 이유는 하기와 같다.
실리콘 (Si)은 전기강판의 기본 조성으로 소재의 비저항을 증가시켜 철심손실 (core loss) 즉, 철손을 낮추는 역할을 한다. Si함량이 너무 적은 경우 비저항이 감소하여 철손특성이 열화되고, 과잉 함유시에는 강의 취성이 커져 넁간압연이 어려워 진다. 본 발명에서 Si함량을 슬라브에 함유하는 것 만으로 제한하지는 않는다. 분말 도포나 표면 증착후 확산 방법으로 제조 하여 최종 강판 내에서 Si를. 전술한 범위만큼 함유하더라도 본 발명의 범위를 벗어나는 것은 아니다. 따라서, Si를 1.0 중량 % 내지 7.0 중량 % 포함한다. 더욱 구체적으로 2.0 중량 % 내지 4.5 중량 % 포함할 수 있다. 탄소 (C)는 제조 공정에는 필요하나 최종 제품에서는 해로운 역할을 한다. 제조시에 오스테나이트 안정화 원소로세 900 °C 이상의 은도에서 상변태를 일으켜 연주과정에 발생하는 조대한 주상정 조직을 미세화하는 효과와 더불어 Sulfur의 슬라브 중심편석을 억제한다. 또한 넁간압연 중에 강판의 가공경화를 촉진하여 강판내에 { 1 10} <001〉방위의 2차재결정 핵 생성을 촉진하기도 한다. 따라서 첨가량에 큰 제약은 없으나 슬라브에 0.005 중량 % 미만으로. 함유되면 상변태 및 가공경화 효과를 얻을 수 없고, 0.10 중량 %를 초과하여 첨가하게 되면 열.연 엣지 -크랙 (edge-crack) 발생으로 작업상에 문제점과 아을러 넁간압연 후 탈탄소둔시 탈탄공정의 부하가 발생하므로 슬라브내의 첨가량은 0.005 내지 0.10 중량%가 바람직하다.
탄소는 1차 재결정 소둔 과정에서 탈탄이 일어나며, 최종 제조되는 전기강판 내에는 50ppm이하로 그 함량이 줄어든다. 보다 바람직하게는 30ppm이하로 줄인다.
그러므로 본 발명의 일 실시예에 의한 방향성 전기강판에서 탄소는 중량 %로 0.005%이하로 한정한다. 본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법에 있어서는 탄소는 슬라브에서 0.005 내지 0.10 중량 %로 포함한다.
인듐 (In)은 본 발명의 일 실시예에서 경면화 원소로서 중요한 원소이다. In은 베이스 코팅층을 형성해가는 온도에서 금속 모재와 베이스 코팅층의 계면에 편석한다. In이 계면에 편석함으로써, 베이스 코팅층과 금속 모재간의 차이를 일으키게 된다. 이는 강관 전체에서 발생하는 현상이므로, 코일 형태로 고은소둔하더라도 코일 전체에 동일한 편석과 분리를 일으켜 균일한 경면화가 가능하다. In은 경면화 원소로서 , 편석 경향이 강하고, 웅고점이 낮으며, Fe와 선팽창계수가 차이가 크고, 웅고시 수축량이 크기 때문에 경면화 원소로서 적절히 활용될 수 있다. Ba, Y, Sn, Sb 등도 편석을 잘하는 원소이기는 하나, 다른 요건을 갖추지 못하여 경면화 효과는 발휘되지 아니한다.
In이 0.001 중량 % 미만으로 포함되면, 경면화 효과가 발휘되기 어렵다. In이 0.5 증량 % 초과하여 포함하면, 압연성을 해치고, 압연 크랙이 증가할 수 있다. 더욱 구체적으로 In은 0.005 내지 0.3 중량 % 포함할 수 있다. 더욱 구체적으로 0.01 중량 % 내지 0.1 중량 % 포함할 수 있다.
망간 (Mn)은 비저항 원소로서 자성을 개선하는 효과가 있으나 너무 많이 함유하면 2차재결정 후 상변태를 일으켜 자성에 나쁜 영향을 주므로 Mn을 더 포함하는 경우, 0.005 내지 0.9 중량 %로 제한한다.
알루미늄 (A1)은 최종적으로 A1N, (Al.SON, (Al,Si,Mn)N 등의 형태의 질화물로 되어 억제제로 작용하는 성분으로서, 그 함량이 0.01 중량 <¾ 미만인 경우에는 억제제로의 충분한 효과를 기대할 수 없고, 너무 높은 경우에는 A1계통의 질화물이 너무 조대하게 석출, 성장하므로 억제제로의 효과가 부족해진다. 그러므로 A1더 포함하는 경우, 그 함량을 0.01 내지 0.1 중량 %로 정한다. 더욱 바람직하 Tfl는 A1의 함량을 0.01 내지 0.05 중량 %로 포함할 수 있다.
질소 (N)은 슬라브 내에 0.02 중량 % 초과로 함유 되면 1차 재결정립의 크기가 작아져 2차 재결정 개시온도를 낮추고 이는 {110}<001> 방위가 아닌 결정립들도 2차 재결정을 일으키므로 자성을 열화시키고, 최종소둔공정의 2차균열구간에서 N을 제거하는데 많은 시간이 소요되므로 생산성이 높은 방향성 전기강판을 제조하는데 어려움이 있다. 그러므로 슬라브 내의 N은 0.02 중량 % 이하로 정한다. 더욱 구체적으로 슬라브 내에 N은 0.06 중량 % 이하 포함될 수 있다. 본 발명의 일 실시예에서 1차 재결정 소둔 과정에서 침질이 일어나, 1차 재결정 소둔 후, N의 함량이 0.015중량% 내지 0.05증량%이 될 수 있다. 즉, 최종 방향성 전기강판 내의 N의 함량은 0.015중량 <¾ 내지 으05중량 %가 될 수 있다.
황 (S)은 너무 많이 첨가되면 열간압연시 크랙이 발생 되므로 S를 더 포함하는 경우, 0.03 중량 %이하로 함유하는 것이 바람직하다.
안티몬 (Sb)와 주석 (Sn)은 저온 편석원소로서 기존 석출물의 보조하는 역할로서 집적도 개선에 좋은 영향을 준다. Sb: 0.005 중량 % 내지 0.15중량 % 및 Sn: 0.005 중량 % 내지 0.2 중량 % 중 1종 이상을 더 포함할 수 있다. 구체적으로 Sb: 0.01 중량 % 내지 0.06중량 % 및 Sn: 0.02 중량 % 내지 0.1 중량 % 중 1종 이상을 더 포함할 수 있다.
인 (P)는 저은가열 방식의 방향성 전기강판에서 1차 재결정립의 성장을 촉진시키므로 2차 재결정은도를 높여 최종 제품에서 {110}<001〉 방위의 집적도를 높인다. 한편 P는 1차 재결정판에서 {110}<001> 방위를 갖는 결정립의 수를 증가시켜 최종제품의 철손을 낮출 뿐만 아니라, 1차 재결정판에서 {111}< 112> 집합조직을 강하게 발달시켜 최종제품의 { 110}<001> 집적도를 향상시키므로 자속밀도도 높아지게 된다. 또한 P는
2차 재결정소둔시 약 loocrc의 높은 온도까지 결정립계에 편석하여 석출물의 분해를 지체시켜 억제력을 보강하는 작용도 가지고 있다. P의 이러한 작용이 제대로 발휘되려면 0.005 중량 % 이상이 필요하다. 그러나 P가 0.075 중량 % 초과하게 되면 1차 재결정립의 크기가 오히려 감소되어 2차 재결정이 불안정해질 뿐만 아니라 취성을 증가시켜 냉간압연성을 저해한다. 그러므로 P를 더 포함하는 경우, 0.005 증량 % 내지 0.075중량 % 포함할 수 있다. 더욱 구체적으로 P를 0.0015 중량 % 내지 0.05 중량 %를 함유할 수 있다.
방향성 전기강판이 Sb 및 P를 포함하는 경우, 0.0370 < [P] + 0.5 *
[Sb] < 0.0630 (여기서 [P]와 [Sb]는 각각 P 및 Sb 원소의 함량 (중량%)을 의미한다)를 만족할 수 있다. 전술한 관계식을 만족하는 경우 방향성 전기강판의 철손 및 자속밀도가 더욱 향상될 수 있다. [P] + 0.5 * [Sb]의 함량을 전술한 범위로 제어할 경우에 더욱 철손 향상 효과가 우수할 수 있다. 그 이유는 원소들이 함께 첨가되어 상승효과를 거둘 수 있으며, 또한, 상승효과가 수식 범위를 충족할 때 다른 수치범위에 비하여 불연속적으로 최대화 되기 때문이다. 따라서, 각각의 성분범위를 제어하고, 아을러 [P] + 0.5 * [Sb]를 전술한 범위로 제어할 수 있다.
크롬 (Cr)은 페라이트 확장원소로 1차 재결정립을 성장시키는 작용이 있으며, 1차 재결정판에서 { 11아<001> 방위의 결정립을 증가시킨다. Cr의 이러한 작용이 유효해지기 위해서는 0.005 중량 % 이상이 필요하지만 너무 많이 첨가되면 동시 탈탄, 질화공정에서 강판의 표면 부에 치밀한 산화층을 형성하여 침질을 방해하게 된다. 그러므로 Cr을 더 포함하는 경우, 그 함량은 0.005 내지 0.35 중량 %로 정한다. 더욱 구체적으로 Cr은 0.03 내지 0.2 중량 %를 포함할 수 있다.
기타 Ti, Ca 같은 성분들은 강중에서 산소와 반응하여 산화물을 형성하게 되므로 강력 억제하는 것이 필요함에 따라서 각각의 성분별로 0.005% 이하로 관리하는 것이 바람직하다.
전술한 조성은 절연 피막 등 별도의 코팅층을 제외한 소지 강판 내에서의 함량을 의미한다.
본 발명의 일 실시예에 의한 방향성 전기강판은 결정립 입경이 lmm이하인 결정립의 면적 비율이 10% 아하가 될 수 있다. 이러한 조직 특성에 의해 본 발명의 일 실시예에 의한 방향성 전기강판은 자성이 더욱 향상된다.
본 발명의 일 실시예에 의한 방향성 전기강판은 표면 조도 (Ra)가 Ο.δ ηι 이하일 수 있다. 전술하였듯이, 경면화 원소인 In을 적정량 첨가함으로써, In이 계면에 편석함으로써, 베이스 코팅층과 금속 모재간의 차이를 일으켜, 베이스 코팅층을 원활하게 제거할 수 있고, 그 결과, 표면 조도 (Ra)가 작아지게 된다. 표면 조도 (Ra)가 작아짐으로써, 자구이동을 쉽게 하여 자성이 더욱 향상된다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법은 중량 %로, Si: 1.0% 내지 .그 0%, C:0.005% 내지 0.10%, In:0.001% 내지 0.5% 및 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 슬라브를 제공하는 단계; 슬라브를 가열하는 단계; 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 넁간 압연하여 넁연판을 제조하는 단계; 냉연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔이 완료된 강판을 2차 재결정 소둔하는 단계;를 포함한다. 이하에서는 각 단계별로ᅳ 상세하게 설명한다.
본 발명의 일 실시예에 따른 방향성 전기강판의 제조방법은, 먼저, 중량 %로, Si: 1.0% 내지 7.0%, C:0.005% 내지 0.10%, In:0.001% 내지 0.5% 및 잔부는 Fe 및 기타 블가피하게 흔입되는 블순물을 포함하는 슬라브를 제공한다. 또한, 슬라브는 Mn:0.005중량 <¾ 내지 0.9중량 %, Α1 .01 내지 0.1중량 N:0.02중량 <¾ 이하 (0%를 포함하지 않는다) 및 S:0.03 중량 % 이하 (0%를 포함하지 않는다) 더 포함할 수 있다. 또한, 슬라브는 Sb: 0.005 중량 % 내지 0.15중량 9 & 및 Sn: 0.005 중량 % 내지 0.2 중량 % 중 1종 이상을 더 포함할 수 있다. 또한, 슬라브는 P: 0.005중량 % 내지 0.075 중량 % 및 Cr: 0.005 중량 % 내지 0.35 중량 % 중 1종 이상을 더 포함할 수 있다.
슬라브의 조성에 대해서는 전술한 방향성 전기강판의 조성 한정 이유에 대해 구체적으로 설명하였으므로, 중복되는 설명을 생략한다. 방향성 전기강판의 제조 과정에서 C, N을 제외한 나머지 성분들은 실질적으로 변동되지 않는다.
다음으로 전술한 슬라브를 가열 한다. 슬라브 가열 온도는 1000°C 내지 128C C일 수 있다. 슬라브 가열온도가 높아지면 강판 제조비용이 상승되며, 슬라브의 표면부 용융으로 가열로를 보수하고 가열로 수명이 단축될 수 있다. 아울러, 슬라브를 1 ,28( C이하의 온도로 가열하게 되면 슬라브의 주상정조직이 조대하게 성장되는 것이 방지되어 후속 열간압연 공정에서 판의 폭 방향으로 크랙이 발생되는 것을 막을 수 있어 실수율을 향상시킬 수 있다.
다음으로 가열이 완료된 슬라브를 열간 압연하여 열연판을 제조한다. 열간압연은 최종 넁간압연단계에서 적정한 압연율을 적용하여 최종 제품두께로 제조할 수 있도록 열간압연에 의하여 1.5~4.0mm 두께의 열연판으로 제조할 수 있다. 열연 종료 온도를 950 °C 이하로 하고 넁각을 물에 의해 급랭하여 60C C 이하에서 권취할 수 있다.
다음으로 필요에 따라 열연판을 열연판 소둔한다. loocrc 내지
1200 °C 온도에서 소둔할 수 있다.
다음으로 열연판을 냉간 압연을 실시하여 넁연판을 제조한다. 넁간압연은 리버스 (Reverse) 압연기 혹은 텐덤 (Tandom) 압연기를 이용하여 1회 또는 다수의 넁간압연 흑은 중간소둔을 포함하는 다수의 넁간압연법으로 하여 최종제품 두께의 냉연판이 제조되도록 실시한다. 넁간압연은 1회 강압연을 통하여 최종 두께 0.1 내지 0.5mm, 보다 구체적으로는 0.15 내지 0.35mm로 제조될 수 있다.
다음으로 넁연강판을 1차 재결정 소둔한다. 이 때, 탈탄이 동시에 일어나게 된다. 1차 재결정 소둔은 탈탄이 잘 일어나도록 750 °C 이상의 온도에서 30초 이상 유지함으로서 강판의 탄소함량을 0.005 중량 <¾ 이하 보다 구체적으로는 0.0030 중량 %이하로 감소시킬 수 있다. 이와 동시에 강판 표면에 적정량의 산화층을 형성시키게 된다. 탈탄과 더불어 변형된 냉간압연 조직은 재결정하게 되고 적정크기까지 결정성장하게 되는데, 이때 재결정립이 성장할 수 있도록 소둔 온도과 균열시간을 조정하면 된다.
1차 재결정 소둔 과정에서 침질이 이루어질 수 있다. 질소량이 너무 적으면 2차 재결정이 어려우므로 슬라브 성분내 질소량이 150ppm이하일 경우 침질을 통해 질소함량을 150ppm이상으로 질화하고 질화량이 너무 많으면 질소 방출구 결함이형성되므로 최대 500ppm 이하로 침질 한다. 즉, 1차 재결정 소둔이 완료된 강판은 N을 0.015중량 % 내지 0.05중량 % 포함한다. 다음으로, 1차 재결정 소둔이 완료된 강판을 2차 재결정 소둔을 실시한다. 2차 재결정 소둔은 적정한 승온율로 승온하여 {110}<001> Goss 방위의 2차재결정을 일으키는 가열 단계 및 균열 단계를 포함한다. 균열 단계에서의 온도는 900 내지 125C C가 될 수 있다.
본 발명의 일 실시예에서 2차 재결정 소둔이 배치 (Batch) 형태로 이루어져, 1차 재결정 소둔이 완료된 강판에 소둔 분리제를 도포하고, 2차 재결정 소둔할 수 있다. 기존에 글라스리스 공정의 경우, MgO 또는 A1203를 주성분으로 하는 소둔 분리제에 염화물 등의 첨가제를 첨가하였으나, 본 발명의 일 실시예에서는 강판 자체에 경면화 원소를 포함시킴으로써, 염화물 등의 첨가제를 사용하지 않고도, 원활한 베이스 코팅층의 분리가 가능하다. 즉, 소둔 분리제는 고형분으로 MgO 또는 A1203만을 포함할 수 있다.
이렇게 소둔 분리제를 도포하고, 2차 재결정 소둔을 하는 경우, 표면 산화물과 소둔분리제가 반응하여, 베이스 코팅층이 형성된다. MgO를 주성분으로 하는 소둔 분리제를 도포할 경우, Mg2Si04등 Mg를 주성분으로하는 산화물 코팅층이 형성되고, A1203를 주성분으로 하는 소둔 분리제를 도포할 경우, A1을 주성분으로 하는 산화물 코팅층이 형성된다. 본 발명의 일 실시예에서는 이러한 베이스 코팅층을 제거하는 단계를 더 포함할 수 있다. 전술하였듯이, 본 발명의 일 실시예에서 강판 내에 경면화 원소인 In을 적정량 첨가함으로써, 베이스 코팅층을 원활하게 제거할 수 있고, 제거 후, 강판의 표면 조도를 낮출 수 있다. 제거하는 방법으로는 물리적 방법 또는 화학적 방법을 사용할 수 있다.
이하, 실시예를 통해 상세히 설명한다. 단 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한'정되는 것은 아니다.
실시예 1
중량1 ¾로 Si:3.2%, C:0.052<¾을 포함하고 하기 표 1에 정리된 것과 같이 in을 추가로 첨가하고 잔부를 이루는 Fe와 기타 불가피하게 함유되는 강 슬라브를 제조하였다. 강 슬라브를 열간압연하여 2.6 mm의 열연판을 만든 다음, 열연판 소둔 및 산세 후 최종두께인 a3mm 두께로 넁간압연을 하였다. 냉연판을 승온한 후, 50부피 % 수소와 50 부피 % 질소를 동시 투입하여 형성한 노점온도 63 내지 67 °C의 흔합분위기에서 850 °C온도로 120초간 유지하여 동시 탈탄 질화 처리하여 탄소를 30ppm이하로, 질소를 300ppm으로 하였다.
이 강판에 소둔분리제인 MgO를 도포하여 2차 재결정 소둔하였다.
MgO는 물과 흔합하여 슬러리 상태로 도포하였으며 별도의 첨가제를 첨가하지 않았다. 2차 재결정 소둔은 120C C까지의 온도구간에서는 25%질소 + 75%수소의 흔합분위기로, 시간당 15 °C로 승온하고, 120C C에서 100%수소분위기에서 15시간 동안 균열 처리하고 노넁하였다. 강판 표면에 형성된 포스테라이트 층을 산세로 제거하였다.
각각의 조건에 대하여 측정한 표면의 광택도는 표 1과 같다. 광택도 측정은 Horiba 사의 측정기를 이용하여 반사각 60°에서 표면에 반사된 빛의 양을 측정였다. 광택도가 20 미만인 경우, 블량, 20 내지 200인 경우, 우수, 200 초과인 경우, 매우 우수로 표시하였다. 또한, 표면 조도 (Ra)를 측정하여 하기 표 1에 정리하였다.
【표 1】
Figure imgf000014_0001
표 1에서 나타나듯이, In을 적정 범위로 함유한 발명재 1 내지 발명재 6의 광택도가 매우 우수하며, 표면 조도 또한 0.1 이하 값으로 매우 우수하였다. 사람 얼굴을 비추면 비출정도로 매우 우수한 경면이 얻어졌다. 실시예 2 중량 %로 Si:3.0%, CO.051%, Mn:0.09%, Al:0.029 , NO.0040% 및 S: 0.005%, 인듐 (In) 및 Sb를 표 2와 같이 변화시키고 그리고 잔부를 이루는 Fe와 기타 불가피하게 함유되는 방향성 전기강판의 슬라브를 준비하였다. 이 슬라브를 1 15C C 온도에서 90분간 가열한 후, 열간압연을 하고 58 C까지 급탱하여 580 °C에서 1시간 동안 소둔하여 로넁하여 열간압연하여 2.3mm 두께의 열연판을 제조하였다.
이 열연판을 l ,05(rc이상의 온도로 가열한 후 9 K C에서 80초간 유지하고 끓는 물에 급넁하여 산세하였다. 이어서 0.30mm 두께로 넁간 압연하였다. 냉연판을 승온한 후, 50부피 % 수소와 50 부피 % 질소를 동시 투입하여 형성한 노점은도 63 내지 67 °C의 흔합분위기에서 85C C온도로 120초간 유지하여 동시 탈탄 질화 처리하여여 탄소를 30ppm이하로, 질소를 300ppm으로 하였다.
이 강판에 소둔분리제인 MgO를 도포하여 2차 재결정 소둔하였다. MgO는 물과 흔합하여 슬러리 상태로 도포하였으며 별도의 첨가제를 첨가하지 않았다. 2차 재결정 소둔은 120C C까지의 온도구간에서는 25%질소 + 75%수소의 흔합분위기로, 시간당 15 °C로 승온하고, 12CX C에서 100%수소분위기에서 15시간 동안 균열 처리하고 노넁하였다. 강판 표면에 형성된 포스테라이트 층을.산세로 제거하였다. 제조된 강판을 single sheet 측정법을 이용하여 50Hz에서 1.7Tesla로 자화될 때까지의 철손 (W17/50)을 측정하여 하기 표 2에 정리하였다.
【표 2】
구 분 In 함량 (중량 %) Sb 함량 (중량 %) 철손 (w17/50) 비교재 3 0 0 1.05
발명재 7 0.005 0 0.98
발명재 8 0.01 0 0.96
발명재 9 0.02 0 0.93
발명재 10 0.038 0 0.93
발명재 11 0.05 0 0.98
발명재 12 0.1 0 0.99
비교재 4 0.55 0 2.2 발명재 13 0.01 0.031 0.96
발명재 14 0.02 0.028 0.92
발명재 15 0.04 0.030 0.93
발명재 16 0.09 0.029 0.97
비교재 5 0.54 0.030 압연불량 표 2에서 나타나듯이, In을 적정 범위로 함유한 발명재 7 내지 발명재 12의 광택도가 매우 우수하며, In과 함께 Sb를 더 포함하는 발명재 13 내지 16의 경우, 자성이 더욱 향상되는 것을 확인할 수 있다.
이상 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본. 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든. 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims

【청구범위】
【청구항 1】
중량 %로, Si: 1.0% 내지 7.0%, 0:0.005% 이하 (0%를 포함하지 않는다) In:0.001 내지 0.5% 및 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물올 포함하는 방향성 전기강판.
【청구항 2】
제 1항에 있어서,
Mn:0.005중량 % 내지 0.9증량%, ΑΙΌ.ΟΙ 내지 0.1 증량 %, Ν:0.015중량 <¾ 내지 0.05중량 % 및 S:0.03 중량 % 이하 (0%를 포함하지 않는다) 더 포함하는 방향성 전기강판.
【청구항 3】
제 1항에 있어서,
Sb: 0.005 중량 % 내지 0.15중량 % 및 Sn: 0.005 중량 % 내지 0.2 중량 % 중 1종 이상을 더 포함하는 방향성 전기강판.
【청구항 4
제 1항에 있어서,
P: 0.005중량 % 내지 0.075 중량 % 및 Cr: 0.005 중량 % 내지 0.35 증량 % 중 1종 이상을 더 포함하는 방향성 전기강판.
【청구항 5】
제 1항에 있어서,
결정립 입경이 1mm이하인 결정립의 면적 비율이 10% 이하인 방향성 전기강판.
【청구항 6】
제 1항에 있어서,
표면 조도 (Ra)는 0.8 ΛΙΙ 이하인 방향성 전기강판.
【청구항 7】
중량 <¾로, Si: 1.0% 내지 7.0%, C:0.005% 내지 0.10%, In:0.001 내지 0.5% 및 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 슬라브를 제공하는 단계;
상기 슬라브를 가열하는 단계; 상기 슬라브를 열간 압연하여 열연판을 제조하는 단계;
상기 열연판을 넁간 압연하여 넁연판을 제조하는 단계;
상기 넁연판을 1차 재결정 소둔하는 단계; 및
상기 1차 재결정 소둔이 완료된 강판을 2차 재결정 소둔하는 단계; 를 포함하는 방향성 전기강판의 제조방법 .
【청구항 8】
제 7항에 있어서,
상기 슬라브는 Mn:0.005중량 % 내지 0.9중량 %, Al:0.01 내지 0.1중량%, N:0.02중량 % 이하 (0%를 포함하지 않는다) 및 S:0.03 중량 <¾ 이하 (0%를 포함하지 않는다).더 포함하는 방향성 전기강판의 제조방법.
【청구항 9】
제 7항에 있어서,
상기 슬라브는 Sb: 0.005 중량 % 내지 0.15중량" ¾ 및 Sn: 0.005 중량 % 내지 0.2 중량 % 중 1종 이상을 더 포함하는 방향성 전기강판의 제조방법.
【청구항 10】
제 7항에 있어서,
상기 슬라브는 P: 0.005중량 % 내지 0.075 중량 % 및 Cr: 0.005 중량 % 내지 . 0.35 중량 <¾ 중 1종 이상을 더 포함하는 방향성 전기강판의 제조방법.
【청구항 11】
제 7항에 있어서,
상기 2차 재결정 소둔하는 단계에서, 1차 재결정 소둔이 완료된 강판에 소둔 분리제를 도포하고, 2차 재결정 소둔하는 방향성 전기강판의 제조방법.
【청구항 12】
제 11항에 있어서,
상기 소둔 분리제는 고형분으로 MgO 또는 A1203만을 포함하는 방향성 전기강판의 제조방법.
【청구항 13】 제 11항에 있어서,
상기 2차 재결정 소둔하는 단계 후, 강판 표면에 형성된 베이스 코팅층을 제거하는 단계를 더 포함하는 방향성 전기강판의 제조방법.
【청구항 14】
제 7항에 있어서,
상기 1차 재결정 소둔이 완료된 강판은 N을 0.015중량 % 내지 0.05중량 % 포함하는 방향성 전기강판의 제조방법.
【청구항 15】
제 7항에 있어서,
상기 2차 재결정 소둔하는 단계는 가열 단계 및 균열 단계를 포함하고, 상기 균열 단계는 900 내지 125C C의 온도로 수행되는 방향성 전기강판의 제조방법.
PCT/KR2017/015129 2016-12-22 2017-12-20 방향성 전기강판 및 이의 제조방법 WO2018117642A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17884744.8A EP3561105A4 (en) 2016-12-22 2017-12-20 CORNORATED ELECTRIC STEEL PLATE AND METHOD OF MANUFACTURING THEREOF
CN201780080222.0A CN110100025B (zh) 2016-12-22 2017-12-20 取向电工钢板及其制造方法
JP2019534128A JP6842549B2 (ja) 2016-12-22 2017-12-20 方向性電磁鋼板およびその製造方法
US16/472,480 US11667984B2 (en) 2016-12-22 2017-12-20 Grain-oriented electrical steel sheet and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160177014A KR101919528B1 (ko) 2016-12-22 2016-12-22 방향성 전기강판 및 이의 제조방법
KR10-2016-0177014 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018117642A1 true WO2018117642A1 (ko) 2018-06-28

Family

ID=62627569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015129 WO2018117642A1 (ko) 2016-12-22 2017-12-20 방향성 전기강판 및 이의 제조방법

Country Status (6)

Country Link
US (1) US11667984B2 (ko)
EP (1) EP3561105A4 (ko)
JP (1) JP6842549B2 (ko)
KR (1) KR101919528B1 (ko)
CN (1) CN110100025B (ko)
WO (1) WO2018117642A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396231B (zh) * 2019-02-08 2023-06-02 日本制铁株式会社 方向性电磁钢板、方向性电磁钢板的绝缘被膜形成方法及方向性电磁钢板的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240704A (ja) * 1985-08-16 1987-02-21 Kawasaki Steel Corp 密着性に優れた超低鉄損一方向性けい素鋼板の製造方法
JPH1143746A (ja) * 1997-07-25 1999-02-16 Kawasaki Steel Corp 極めて鉄損の低い方向性電磁鋼板及びその製造方法
JPH11335794A (ja) * 1998-05-26 1999-12-07 Kawasaki Steel Corp 低履歴損失の方向性珪素鋼板およびその製造方法
JP2000104143A (ja) * 1998-09-29 2000-04-11 Kawasaki Steel Corp 保持力の低い低鉄損一方向性珪素鋼板およびその製造方法
JP2003247024A (ja) * 2002-02-25 2003-09-05 Nippon Steel Corp 磁気特性の良好な鏡面方向性電磁鋼板の製造方法
JP2003268450A (ja) * 2002-01-08 2003-09-25 Nippon Steel Corp 鏡面方向性珪素鋼板の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145382A (ja) 1984-01-09 1985-07-31 Nippon Steel Corp 磁気特性、皮膜特性とも優れた方向性電磁鋼板の製造方法
JPH0663036B2 (ja) 1987-08-31 1994-08-17 新日本製鐵株式会社 金属光沢を有する方向性電磁鋼板の製造方法
JPH0717954B2 (ja) * 1989-02-10 1995-03-01 新日本製鐵株式会社 一段冷延法による製品磁気特性の優れた薄手高磁束密度一方向性電磁鋼板の製造方法
JPH06212264A (ja) * 1993-01-13 1994-08-02 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JP2679931B2 (ja) 1993-03-04 1997-11-19 新日本製鐵株式会社 鉄損の極めて低い鏡面方向性電磁鋼板の製造方法
JPH0727867A (ja) 1993-07-14 1995-01-31 Hijikata Denki:Kk 磁気センサー
JP2667110B2 (ja) 1993-12-21 1997-10-27 新日本製鐵株式会社 鏡面方向性珪素鋼板の製造方法
JPH07233418A (ja) * 1994-02-22 1995-09-05 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
CN1054885C (zh) * 1995-07-26 2000-07-26 新日本制铁株式会社 生产一种具有镜面和改进了铁损的晶粒取向电工钢板的方法
JP4123662B2 (ja) 1999-12-03 2008-07-23 Jfeスチール株式会社 小型電気機器用電磁鋼板およびその製造方法
JP5037796B2 (ja) 2005-04-15 2012-10-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP4943175B2 (ja) * 2007-02-14 2012-05-30 新日本製鐵株式会社 磁束密度の高い方向性電磁鋼板の製造方法
WO2014104393A1 (ja) * 2012-12-28 2014-07-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR20150073551A (ko) 2013-12-23 2015-07-01 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101633255B1 (ko) 2014-12-18 2016-07-08 주식회사 포스코 방향성 전기강판 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240704A (ja) * 1985-08-16 1987-02-21 Kawasaki Steel Corp 密着性に優れた超低鉄損一方向性けい素鋼板の製造方法
JPH1143746A (ja) * 1997-07-25 1999-02-16 Kawasaki Steel Corp 極めて鉄損の低い方向性電磁鋼板及びその製造方法
JPH11335794A (ja) * 1998-05-26 1999-12-07 Kawasaki Steel Corp 低履歴損失の方向性珪素鋼板およびその製造方法
JP2000104143A (ja) * 1998-09-29 2000-04-11 Kawasaki Steel Corp 保持力の低い低鉄損一方向性珪素鋼板およびその製造方法
JP2003268450A (ja) * 2002-01-08 2003-09-25 Nippon Steel Corp 鏡面方向性珪素鋼板の製造方法
JP2003247024A (ja) * 2002-02-25 2003-09-05 Nippon Steel Corp 磁気特性の良好な鏡面方向性電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561105A4 *

Also Published As

Publication number Publication date
US20210130918A1 (en) 2021-05-06
JP6842549B2 (ja) 2021-03-17
CN110100025A (zh) 2019-08-06
JP2020509209A (ja) 2020-03-26
KR20180073309A (ko) 2018-07-02
EP3561105A1 (en) 2019-10-30
KR101919528B1 (ko) 2018-11-16
EP3561105A4 (en) 2019-10-30
US11667984B2 (en) 2023-06-06
CN110100025B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
JP4840518B2 (ja) 方向性電磁鋼板の製造方法
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
WO2017111548A1 (ko) 무방향성 전기강판 및 그 제조방법
KR101947026B1 (ko) 방향성 전기강판 및 이의 제조방법
WO2016098917A1 (ko) 방향성 전기강판 및 그 제조방법
JP6663999B2 (ja) 方向性電磁鋼板及びその製造方法
KR101707451B1 (ko) 방향성 전기강판 및 그 제조방법
KR101919521B1 (ko) 방향성 전기강판 및 이의 제조방법
KR101506679B1 (ko) 방향성 전기강판 및 그 제조방법
KR20190077890A (ko) 방향성 전기강판 및 그의 제조방법
KR20180045504A (ko) 방향성 전기강판 및 이의 제조방법
KR102079771B1 (ko) 방향성 전기강판 및 그의 제조방법
WO2018117642A1 (ko) 방향성 전기강판 및 이의 제조방법
KR101919527B1 (ko) 방향성 전기강판 및 이의 제조방법
CN111566250B (zh) 取向电工钢板及其制造方法
JP6056675B2 (ja) 方向性電磁鋼板の製造方法
JP3928275B2 (ja) 電磁鋼板
JP2009155731A (ja) 高磁場鉄損の優れた高磁束密度一方向性電磁鋼板
WO2019131853A1 (ja) 低鉄損方向性電磁鋼板とその製造方法
KR102106998B1 (ko) 방향성 전기강판 및 그 제조방법
JP4377477B2 (ja) 高磁束密度一方向性電磁鋼板の製造方法
KR102120277B1 (ko) 방향성 전기강판 및 그 제조방법
KR20200066043A (ko) 방향성 전기강판 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017884744

Country of ref document: EP

Effective date: 20190722