WO2018117606A1 - 가공성이 우수한 용융도금강재 및 그 제조방법 - Google Patents

가공성이 우수한 용융도금강재 및 그 제조방법 Download PDF

Info

Publication number
WO2018117606A1
WO2018117606A1 PCT/KR2017/015033 KR2017015033W WO2018117606A1 WO 2018117606 A1 WO2018117606 A1 WO 2018117606A1 KR 2017015033 W KR2017015033 W KR 2017015033W WO 2018117606 A1 WO2018117606 A1 WO 2018117606A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
steel
less
dip galvanized
temperature
Prior art date
Application number
PCT/KR2017/015033
Other languages
English (en)
French (fr)
Inventor
김진유
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to ES17884148T priority Critical patent/ES2882338T3/es
Priority to CN201780077822.1A priority patent/CN110088330B/zh
Priority to US16/466,459 priority patent/US11059269B2/en
Priority to JP2019532942A priority patent/JP6838160B2/ja
Priority to EP17884148.2A priority patent/EP3561114B1/en
Publication of WO2018117606A1 publication Critical patent/WO2018117606A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12729Group IIA metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a hot-dip galvanized steel and a method of manufacturing the same, and more particularly to a hot-dip galvanized steel and a method of manufacturing the same, which can be preferably used as a rock bolt for tunnel and slope support.
  • the rock bolt is a device used for tunnel and slope support (see Patent Documents 1 to 3), and it is required to be excellent in strength of the material because it must support a very large load. Therefore, conventionally, as such a material for rock bolts, a large amount of solid solution-enhanced elements such as C, Si, Mn, Cr, or the like is added to high-purity steels in which impurities in the steel are minimized, or precipitation strengthening such as Ti, Nb, V, Mo, etc. Hot rolled steels which have been strengthened by adding a large amount of form elements have been mainly used.
  • the rock bolt is subjected to a process of expanding the volume by hydraulic pressure after the insertion into the support surface in the form of a horseshoe in the actual use process, such as solid solution elements such as C, Si, Mn, Cr, Ti, Nb, V,
  • solid solution elements such as C, Si, Mn, Cr, Ti, Nb, V
  • precipitation-reinforcing elements such as Mo
  • the rock bolt is subjected to a tube welding process in the manufacturing process, a hot-rolled steel material containing a large amount of solid solution strengthening elements such as C, Si, Mn, Cr, or precipitation hardening elements such as Ti, Nb, V, Mo In the case of high carbon equivalents, there was a problem of poor weldability.
  • Patent Document 1 Korean Patent Publication No. 10-0972357
  • Patent Document 2 Korean Patent Publication No. 10-1038472
  • Patent Document 3 Korean Patent Publication No. 10-1196889
  • One of several objects of the present invention is to provide a hot-dip galvanized steel having excellent workability and a method of manufacturing the same.
  • One aspect of the present invention includes a hot-rolled steel and a hot-dip plated layer formed on the hot-rolled steel surface, wherein the hot-rolled steel is in weight%, C: 0.05 to 0.15%, Si: 0.5% or less (excluding 0%), Mn: 0.5 to 1.5%, Nb: 0.01 to 0.05%, V: 0.005 to 0.05%, P: 0.03% or less (excluding 0%), S: 0.015% (excluding 0%), Al: 0.05% or less (excluding 0%) , N: 0.01% or less (excluding 0%), remainder Fe and inevitable impurities, containing 90% or more of ferrite as a microstructure, and hot-dip steel containing 5,000-15,000 pieces / ⁇ m 2 of V-based precipitates To provide.
  • C 0.05-0.15%, Si: 0.5% or less (excluding 0%), Mn: 0.5-1.5%, Nb: 0.01-0.05%, V: 0.005-0.05%, P: 0.03% or less (except 0%), S: 0.015% (except 0%), Al: 0.05% or less (except 0%), N: 0.01% or less (except 0%), balance Fe and inevitable impurities
  • Reheating the slab at 1100 ⁇ 1300 °C step after rough re-rolling the reheated slab to finish rolling at austenite single phase temperature to obtain a hot rolled steel, the hot rolled steel at a rate of 40 ⁇ 60 °C / sec 650 After cooling to a temperature of 750 °C, air-cooling for 1 to 5 seconds, winding the air-cooled hot rolled steel at a temperature of 600 ⁇ 650 °C, and the wound hot rolled steel at a temperature of 500 ⁇ 650 °C 1 It provides a method for
  • the hot-dip galvanized steel according to the present invention has an excellent balance of strength and ductility.
  • the hot-dip steel of the present invention includes a hot-rolled steel and a hot-dip plated layer formed on the surface of the hot-rolled steel.
  • the composition of the hot-dip plating layer is not particularly limited, and as an example, the hot-dip plating layer (eg, Zn, Zn-Al, Zn-Al-Mg) containing at least one of Zn, Al, and Mg is not limited. Can be.
  • alloy component and the preferred content range of the base hot rolled steel will be described in detail. It is noted that the content of each component described below is based on weight unless otherwise specified.
  • C is the most economical and effective element for securing strength. If the carbon content is too low, it may be difficult to secure the target strength even if a precipitation strengthening element such as Nb is added. On the other hand, if the content is excessively excessive, ductility may be deteriorated due to excessive strength increase.
  • Si contributes to the increase in strength due to deoxidation and solid solution strengthening of molten steel, but is not intentionally added in the present invention, and there is no major problem in securing physical properties even if silicon is not added.
  • the content is excessively excessive, red scales are formed on the surface of the hot rolled steel by Si, thereby deteriorating surface quality and degrading weldability.
  • Mn is an effective element to solidify the steel solution, it is necessary to add 0.5% or more to secure the appropriate strength. However, if the content is excessively excessive, there is a risk of occurrence of central segregation in the playing field.
  • Nb is a precipitation strengthening element that is effective in securing strength while minimizing ductility deterioration by generating NbC-based precipitates.
  • the yield strength strengthening effect is large.
  • the upper limit is preferably limited to 0.05%.
  • V 0.005 to 0.05%
  • V is also a precipitation strengthening element, and is an effective element for securing the strength of steel.
  • it is preferable to add 0.005% or more.
  • the upper limit is preferably limited to 0.05%.
  • P is an inevitable impurity contained in steel, and it is preferable to control its content as low as possible.
  • the content is managed to 0.03% or less.
  • S is an inevitable impurity contained in steel, and it is preferable to control its content as low as possible.
  • the content when the content is excessive, it can form a non-metallic inclusion by combining with Mn and the like, the risk of brittleness of the steel increases, in the present invention, the content is managed to 0.015% or less.
  • Al contributes to the deoxidation of molten steel, but is not intentionally added in the present invention, and there is no major problem in terms of securing physical properties even if aluminum is not added. On the other hand, if the content is excessive bar clogging phenomenon may occur when playing, etc. In the present invention, the content is managed to 0.05% or less.
  • N contributes to the strength improvement of the steel, but is not intentionally added in the present invention, and even if aluminum is not added, there is no major problem in terms of securing physical properties.
  • the content is managed to 0.01% or less.
  • the rest is Fe.
  • unavoidable impurities that are not intended from the raw materials or the surrounding environment may be inevitably mixed, and thus, this cannot be excluded. Since these impurities are known to those skilled in the art, not all of them are specifically mentioned in the present specification. However, referring to representative impurities, the following are mentioned.
  • Cr helps strengthen the steel and delays the bainite phase transformation during cooling, which helps in the formation of ferrite in equiaxed crystals.
  • Cr does not have a major problem in securing physical properties even if Cr is not added.
  • the content is controlled to 0.05% or less.
  • Ni serves to improve the strength and toughness of the steel at the same time, but in the present invention, even if Ni is not added, there is no major problem in terms of securing physical properties. On the other hand, when the content is excessive, not only economic efficiency is lowered but also weldability is deteriorated. In the present invention, the content is controlled to 0.05% or less.
  • Mo improves the yield strength by strengthening the solid solution and improves the impact toughness by strengthening the grain boundary.
  • Mo does not have a major obstacle in securing physical properties even if Mo is not added.
  • the content is controlled to 0.01% or less.
  • Cu plays a role of increasing the strength by forming a fine precipitate, in the present invention, even if Cu is not added, there is no major problem in terms of securing physical properties. On the other hand, if the content is excessive, the hot workability and room temperature processability deteriorate, in the present invention, the content is controlled to 0.01% or less.
  • Hot-rolled steel which is the material of the hot-dip galvanized steel of the present invention, includes 5,000 to 15,000 pieces / ⁇ m 2 of V-based precipitate as one technical feature. If the number of V-based precipitates per unit area is less than 5,000 / ⁇ m 2 may not be sufficient strength, on the other hand, if more than 15,000 / ⁇ m 2 It may be difficult to secure sufficient ductility.
  • the specific type of the V-based precipitate is not particularly limited, but may be, for example, VC, VN, V (C, N).
  • the average diameter of the V-based precipitates may be 5 ⁇ 10nm, the maximum diameter may be 20nm or less. If the average diameter is less than 5 nm, it may be difficult to secure a sufficient number per unit area because it is produced at a relatively low temperature. On the other hand, if the average diameter exceeds 10 nm or the maximum diameter exceeds 20 nm, precipitation occurs due to coarse precipitates. The reinforcing effect may not be sufficient, and thus sufficient strength may be difficult to secure.
  • the average diameter means the equivalent circular diameter of the V-based precipitates detected by observing the cross section in the thickness direction of the hot rolled steel, and the maximum diameter is the V detected by observing the cross section in the thickness direction of the hot rolled steel. It means the maximum equivalent circular diameter of the system precipitates.
  • the microstructure of the hot rolled steel is not particularly limited.
  • the hot rolled steel is a microstructure and may include ferrite, pearlite, and bainite.
  • the area fraction of the ferrite is 90% or more. Can be. If the area fraction of the ferrite is less than 90%, there is a high possibility of cracking during pipe expansion due to workability deterioration.
  • the aspect ratio of the ferrite may be 0.8 to 1.4.
  • material anisotropy may be reduced, which may be advantageous for workability during rock bolting and expansion.
  • the aspect ratio is less than 0.8 or more than 1.4, cracks may occur during piping and expansion due to deterioration of workability.
  • the aspect ratio of ferrite can be calculated
  • Hot-dip galvanized steel of the present invention has an advantage of excellent strength and ductility, according to one example, not limited, the hot-dip galvanized steel of the present invention is 450 ⁇ 650MPa tensile strength, 400 ⁇ 600MPa yield strength, 25 elongation May be ⁇ 35%.
  • the hot-dip galvanized steel of the present invention has an excellent workability, and according to an example, which is not limited, the product of yield strength and elongation may be 12,000 to 15,000 MPa ⁇ %.
  • the hot-dip plated steel of the present invention described above can be produced by various methods, the production method is not particularly limited. However, as a preferred example, it may be prepared by the following method.
  • the slab having the above-described component system is reheated at a temperature of 1100 to 1300 ° C. If the reheating temperature is less than 1100 ° C., the rolling load may be too large in a subsequent hot rolling process, whereas if the reheating temperature is higher than 1300 ° C., the final microstructure may be partially coarsened due to abnormal growth of some austenite grains. The grain size may not be homogeneous. In addition, in this invention, it does not specifically limit about slab reheating time, If it is normal conditions, it is good. In one non-limiting example, the slab reheating time may be 100-400 minutes.
  • rough rolling means the series of intermediate rolling processes performed before finishing rolling, and in this invention, it does not specifically limit about the specific conditions of rough rolling, If it is normal conditions, it is good.
  • the thickness of the roughly rolled slab relative to the thickness of the reheated slab may be 10-25%, and the rough rolling temperature may be set to a sufficiently high temperature at which the finish rolling temperature can be ensured.
  • Finish rolling is carried out at austenite single phase temperatures, to increase the uniformity of the tissue.
  • the finish rolling temperature may be 800 ⁇ 900 °C.
  • the austenitic structure of the finished rolled hot rolled steel has an average grain size of 10 to 40 ⁇ m.
  • the finish rolling temperature is less than 800 °C hot rolling load may increase the productivity may be reduced, whereas, if it exceeds 900 °C austenitic grains of the slab is coarse it may be difficult to secure the target workability.
  • the hot rolled steel is cooled.
  • the hot rolled steel is cooled by two-stage cooling in which the hot rolled steel is cooled to a temperature of 650 to 750 ° C at a rate of 40 to 60 ° C / sec, followed by air cooling for 1 to 5 seconds.
  • the temperature of 650 ⁇ 750 ° C is the temperature at which the ferrite is the fastest transformation corresponds to the temperature that can grow the equiaxed ferrite most efficiently, hereinafter referred to as the intermediate temperature. More preferable intermediate temperature range is 680-720 degreeC.
  • the intermediate temperature exceeds 750 ° C. or the air cooling time exceeds 5 seconds
  • the isotropic ferrite is formed but the ferrite grows excessively and the yield strength may deteriorate, whereas the intermediate temperature is less than 650 ° C. or air-cooled. If the time is less than 1 second, isotropic ferrite is difficult to form and the ductility may be degraded.
  • the air cooling time exceeds 5 seconds, NbC precipitates are coarsened, so that the effect of fine NbC precipitates generated during winding may be lowered, thereby making it difficult to secure the desired workability.
  • the cooling rate is less than 40 °C / sec during water cooling, there is a fear that sufficient air cooling time in the ROT cooling section may not be secured, while if the cooling rate exceeds 60 °C / sec, it is difficult to obtain the desired intermediate temperature due to the too fast cooling rate have.
  • the water is cooled to a target winding temperature of the air-cooled hot rolled steel at a rate of 40 ⁇ 60 °C / sec before the winding of the air-cooled hot rolled steel
  • the reason for limiting the cooling rate is to ensure an appropriate winding temperature after the intermediate temperature.
  • the cooled hot rolled steel is wound at a temperature of 550 to 650 ° C. More preferable winding temperature range is 600-650 degreeC.
  • the temperature range is a temperature range in which NbC precipitates are most rapidly generated.
  • NbC precipitates are finely precipitated to compensate for the yield strength lowered by the formation of equiaxed ferrite. If the coiling temperature exceeds 650 ° C, coarse pearlite may be formed to lower yield strength, and coarsening of NbC precipitates may make it difficult to secure desired workability.
  • the coiling temperature is less than 550 °C crystal grains are finer yield strength increases but ductility may be deteriorated, it may be difficult to secure the desired workability by reducing the content of fine NbC precipitates.
  • the wound hot rolled steel is heat-treated for 1 to 5 minutes at a temperature of 500 ⁇ 650 °C.
  • the more preferable heat processing temperature range is 550-600 degreeC
  • the more preferable heat processing temperature range is 550-590 degreeC
  • a more preferable heat processing time range is 2-4 minutes.
  • the hot-rolled hot rolled steel is hot-plated to prepare a hot-dip steel.
  • the slabs having the compositions of Tables 1 and 2 were reheated to 1150 ° C. for 200 minutes, and then rough-rolled and finish-rolled under the conditions of Table 3 to obtain hot-rolled steels.
  • the thickness of the roughly rolled slab to the thickness of the reheated slab was made constant to 20%.
  • the hot rolled steel was water-cooled at a rate of 50 ° C./sec to an intermediate temperature of Table 3, air-cooled for 5 seconds, and then wound at a winding temperature of Table 3 below.
  • the intermediate temperature of Table 3 as continuous cooling, it is an example of continuous cooling to the coiling temperature without air cooling.
  • the microstructure of the manufactured hot-rolled steel material was analyzed and mechanical properties were evaluated, and the results are shown in Table 4 below.
  • the non-ferrite residual structure was pearlite and / or bainite.
  • inventive examples 1 and 2 satisfying all of the alloy composition and manufacturing conditions proposed by the present invention the product of strength and elongation is more than 12,000MPa ⁇ % showed a very good balance of strength and ductility .
  • Comparative Examples 1 to 11 at least one of the alloy composition and the manufacturing conditions was out of the conditions proposed by the present invention, and the balance between strength and elongation was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

열연 강재 및 상기 열연 강재 표면에 형성된 용융 도금층을 포함하고, 상기 열연 강재는 중량%로, C: 0.05~0.15%, Si: 0.5% 이하(0% 제외), Mn: 0.5~1.5%, Nb: 0.01~0.05%, V: 0.005~0.05%, P: 0.03% 이하(0% 제외), S: 0.015%(0% 제외), Al: 0.05% 이하(0% 제외), N: 0.01% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 90면적% 이상의 페라이트를 포함하며, 5,000~15,000개/μm2의 V계 석출물을 포함하는 용융도금강재와 이를 제조하는 방법이 개시된다.

Description

가공성이 우수한 용융도금강재 및 그 제조방법
본 발명은 가공성이 우수한 용융도금강재 및 그 제조방법에 관한 것으로, 보다 상세하게는 터널 및 사면 지지용 락볼트로 바람직하게 이용될 수 있는 가공성이 우수한 용융도금강재 및 그 제조방법에 관한 것이다.
락볼트는 터널 및 사면 지지용으로 사용되는 장치로(특허문헌 1 내지 3 참조), 매우 큰 하중을 지탱하여야 하기 때문에 소재의 강도가 우수할 것이 요구된다. 따라서, 종래에는 이러한 락볼트용 소재로서, 강중의 불순물을 최소화 시킨 고순도 강에, C, Si, Mn, Cr 등의 고용강화형 원소를 다량 첨가하거나, Ti, Nb, V, Mo 등의 석출강화형 원소를 다량 첨가하여 강도를 강화한 열연 강재가 주로 이용되어 왔다.
그런데, 락볼트는 실제 사용 과정에서 말굽 형태로 가공 후 지지면에 삽입 후 수압에 의해 부피 팽창되는 과정을 거치게 되는데, C, Si, Mn, Cr 등의 고용강화형 원소나 Ti, Nb, V, Mo 등의 석출강화형 원소를 다량 첨가한 열연 강재의 경우 가공성이 열위하여 가공 부위에서 크랙이 왕왕 발생하는 문제가 있었다. 또한, 락볼트는 제조 과정에서 조관 용접하는 과정을 거치게 되는데, C, Si, Mn, Cr 등의 고용강화형 원소나 Ti, Nb, V, Mo 등의 석출강화형 원소를 다량 첨가한 열연 강재의 경우 탄소 당량이 높아 용접성이 열위한 문제가 있었다.
[특허문헌]
(특허문헌 1) 한국 등록특허공보 제10-0972357호
(특허문헌 2) 한국 등록특허공보 제10-1038472호
(특허문헌 3) 한국 등록특허공보 제10-1196889호
본 발명의 여러 목적 중 하나는, 가공성이 우수한 용융도금강재와 이를 제조하는 방법을 제공하는 것이다.
본 발명의 일 측면은, 열연 강재 및 상기 열연 강재 표면에 형성된 용융 도금층을 포함하고, 상기 열연 강재는 중량%로, C: 0.05~0.15%, Si: 0.5% 이하(0% 제외), Mn: 0.5~1.5%, Nb: 0.01~0.05%, V: 0.005~0.05%, P: 0.03% 이하(0% 제외), S: 0.015%(0% 제외), Al: 0.05% 이하(0% 제외), N: 0.01% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 90면적% 이상의 페라이트를 포함하며, 5,000~15,000개/μm2의 V계 석출물을 포함하는 용융도금강재를 제공한다.
본 발명의 다른 측면은, 중량%로, C: 0.05~0.15%, Si: 0.5% 이하(0% 제외), Mn: 0.5~1.5%, Nb: 0.01~0.05%, V: 0.005~0.05%, P: 0.03% 이하(0% 제외), S: 0.015%(0% 제외), Al: 0.05% 이하(0% 제외), N: 0.01% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 1100~1300℃에서 재가열하는 단계, 상기 재가열된 슬라브를 조압연 후, 오스테나이트 단상역 온도에서 마무리 압연하여 열연 강재를 얻는 단계, 상기 열연 강재를 40~60℃/sec의 속도로 650~750℃의 온도까지 수냉 후, 1~5초 간 공냉하는 단계, 상기 공냉된 열연 강재를 600~650℃의 온도에서 권취하는 단계, 및 상기 권취된 열연 강재를 500~650℃의 온도에서 1~5분 동안 열처리 후 용융 도금하는 단계를 포함하는 용융도금강재의 제조방법을 제공한다.
본 발명의 여러 효과 중 하나로서, 본 발명에 따른 용융도금강재는 강도 및 연성의 밸런스가 우수한 장점이 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 이다.
이하, 본 발명의 일 측면인 가공성이 우수한 용융도금강재에 대하여 상세히 설명한다.
본 발명의 용융도금강재는, 열연 강재 및 상기 열연 강재의 표면에 형성된 용융 도금층을 포함한다. 본 발명에서는 용융 도금층의 조성에 대해서는 특별히 한정하지 않으며, 제한되지 않는 일 예로써, Zn, Al 및 Mg 중 1종 이상을 포함하는 용융 도금층(예컨대, Zn, Zn-Al, Zn-Al-Mg)일 수 있다.
이하, 소지인 열연 강재의 합금 성분 및 바람직한 함량 범위에 대해 상세히 설명한다. 후술하는 각 성분의 함량은 특별히 언급하지 않는 한 모두 중량 기준임을 미리 밝혀둔다.
C: 0.05~0.15%
C는 강도 확보하는데 가장 경제적이며 효과적인 원소이다. 만약, 탄소 함량이 지나치게 낮을 경우 Nb 등의 석출 강화 원소를 첨가하더라도 목표하는 강도 확보가 어려울 수 있다. 반면, 그 함량이 지나치게 과도할 경우 과도한 강도 상승으로 연성이 열화될 수 있다.
Si: 0.5% 이하(0% 제외)
Si는 용강의 탈산 및 고용 강화에 의한 강도 상승에 기여하나, 본 발명에서는 의도적으로 첨가하지는 않으며, 실리콘을 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, 그 함량이 지나치게 과도할 경우 열연 강재 표면에 Si에 의한 적스케일이 형성되어 표면 품질이 저하되고, 용접성이 저하될 수 있다.
Mn: 0.5~1.5%
Mn은 강을 고용 강화시키는데 효과적인 원소로서, 적정 강도 확보를 위해서는 0.5% 이상 첨가될 필요가 있다. 다만, 그 함량이 지나치게 과도할 경우 연주 공저에서 중심 편석부가 발생할 위험이 있다.
Nb: 0.01~0.05%
Nb은 석출강화형 원소로서 NbC 계열의 석출물을 생성시켜 연성의 저하를 최소화하면서도 강도를 확보하는데 효과적인 원소이다. 특히, 적정량의 Nb 첨가시 항복 강도 강화 효과가 크다. 본 발명에서 이러한 효과를 얻기 위해서는 0.01% 이상 첨가되는 것이 바람직하다. 다만, 그 함량이 과도할 경우 제조 비용 상승으로 경제성이 열화될 수 있다. 이를 고려할 때, 그 상한은 0.05%로 한정함이 바람직하다.
V: 0.005~0.05%
V 또한 석출강화형 원소로서, 강의 강도를 확보하는데 효과적인 원소이다. 본 발명에서 이러한 효과를 얻기 위해서는 0.005% 이상 첨가되는 것이 바람직하다. 다만, 그 함량이 과도할 경우 인성이 저하될 수 있다. 이를 고려할 때, 그 상한은 0.05%로 한정함이 바람직하다.
P: 0.03% 이하(0% 제외)
P는 강 중 불가피하게 포함되는 불순물로써, 가능한 한 그 함량을 낮게 관리함이 바람직하다. 특히, 그 함량이 과도할 경우 용접성 열화 및 강의 취성이 발생할 위험이 커지며, 본 발명에서는 그 함량을 0.03% 이하로 관리한다.
S: 0.015%(0% 제외)
S는 강 중 불가피하게 포함되는 불순물로써, 가능한 한 그 함량을 낮게 관리함이 바람직하다. 특히, 그 함량이 과도할 경우 Mn 등과 결합하여 비금속 개재물을 형성할 수 있고, 강의 취성이 발생할 위험이 커지는 바, 본 발명에서는 그 함량을 0.015% 이하로 관리한다.
Al: 0.05% 이하(0% 제외)
Al은 용강의 탈산에 기여하나, 본 발명에서는 의도적으로 첨가하지는 않으며, 알루미늄을 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, 그 함량이 과도할 경우 연주시 노즐 막힘 현상 등이 발생할 수 있는 바, 본 발명에서는 그 함량을 0.05% 이하로 관리한다.
N: 0.01% 이하(0% 제외)
N은 강의 강도 향상에 기여하나, 본 발명에서는 의도적으로 첨가하지는 않으며, 알루미늄을 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, 그 함량이 과도할 경우 강의 취성이 발생할 위험이 커지는 바, 본 발명에서는 그 함량을 0.01% 이하로 관리한다.
상기 조성 이외에 나머지는 Fe이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불가피한 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않으나, 대표적인 불순물에 대해 언급하면 다음과 같다.
Cr: 0.05% 이하
Cr은 강을 고용 강화시키며 냉각시 베이나이트 상변태를 지연시켜 등축정의 페라이트 형성에 도움을 주나, 본 발명에서는 Cr을 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, 그 함량이 과도할 경우 용접성이 열화되는 바, 본 발명에서는 그 함량을 0.05% 이하로 제어한다.
Ni: 0.05% 이하
Ni는 강의 강도와 인성을 동시에 향상시키는 역할을 하나, 본 발명에서는 Ni을 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, 그 함량이 과도할 경우, 경제성이 저하될 뿐 아니라 용접성이 열화되는 바, 본 발명에서는 그 함량을 0.05% 이하로 제어한다.
Mo: 0.01% 이하
Mo는 고용 강화에 의해 항복강도를 향상시키고, 결정립계 강화에 의해 충격인성을 개선하는 역할을 하나, 본 발명에서는 Mo를 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, 그 함량이 과도할 경우, 경제성이 저하될 뿐 아니라 용접성이 열화되는 바, 본 발명에서는 그 함량을 0.01% 이하로 제어한다.
Cu: 0.01% 이하
Cu는 미세 석출물을 형성시켜 강도를 상승시키는 역할을 하나, 본 발명에서는 Cu를 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, 그 함량이 과도할 경우 열간 가공성 및 상온 가공성이 열화되는 바, 본 발명에서는 그 함량을 0.01% 이하로 제어한다.
한편, 상기와 같은 성분범위를 갖는 강재의 합금설계시, 하기 식 1로 정의되는 탄소 당량(Ceq)을 0.43 이하로 제어하는 것이 바람직하다. 이는 적정 수준의 용접성 확보를 위함이다.
[식 1] Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5
(여기서, [C], [Mn], [Cu], [Ni], [Cr], [Mo] 및 [V] 각각은 해당 원소의 함량(중량%)을 의미함)
이하, 소지인 열연 강재의 미세조직 등에 대하여 상세히 설명한다.
본 발명의 용융도금강재의 소지인 열연 강재는 5,000~15,000개/μm2의 V계 석출물을 포함하는 것을 하나의 기술적 특징으로 한다. 만약, V계 석출물의 단위 면적당 개수가 5,000개/μm2 미만일 경우 충분한 강도가 확보되지 않을 수 있으며, 반면, 15,000 개/μm2를 초과하는 경우 충분한 연성 확보가 어려울 수 있다. 본 발명에서는 V계 석출물의 구체적인 종류에 대해서는 특별히 한정하지 않으나, 예를 들어, VC, VN, V(C,N)일 수 있다.
일 예에 따르면, 상기 V계 석출물의 평균 직경은 5~10nm일 수 있으며, 최대 직경은 20nm 이하일 수 있다. 만약, 평균 직경이 5nm 미만일 경우 상대적으로 저온에서 생성되기 때문에 단위 면적당 개수를 충분히 확보하기 어려울 수 있으며, 반면, 평균 직경이 10nm를 초과하거나, 최대 직경이 20nm를 초과할 경우 조대한 석출물로 인해 석출 강화 효과가 충분치 못할 수 있고, 이에 따라, 충분한 강도 확보가 어려울 수 있다. 여기서, 평균 직경이란 열연 강재의 두께 방향을 단면을 관찰하여 검출한 V계 석출물들의 평균 원 상당 직경(equivalent circular diameter)을 의미하며, 최대 직경이란 열연 강재의 두께 방향을 단면을 관찰하여 검출한 V계 석출물들의 최대 원 상당 직경(equivalent circular diameter)을 의미한다.
본 발명에서는 소지인 열연 강재의 미세조직에 대해서는 특별히 한정하지 않으나, 예를 들어, 소지인 열연 강재는 미세조직으로 페라이트, 펄라이트 및 베이나이트를 포함할 수 있으며, 이 경우, 페라이트의 면적분율은 90% 이상일 수 있다. 만약, 페라이트의 면적분율이 90% 미만일 경우 가공성 열화로 인해 조관 후 확관 시 크랙 발생의 가능성이 높아질 수 있다.
일 예에 따르면, 페라이트의 종횡비(aspect ratio)는 0.8 내지 1.4일 수 있다. 페라이트의 종횡비가 상기와 같은 수준으로 관리될 경우 재질 이방성이 저감되어 락볼트 조관 및 확관시 가공성에 유리할 수 있다. 만약, 그 종횡비가 0.8 미만이거나 1.4를 초과할 경우 가공성 열화로 인해 조관 및 확관시 크랙이 발생할 수 있다. 한편, 페라이트의 종횡비는 전자 회절 후방 굴절(EBSD, Electron Backscatter Diffraction)에 의해 구할 수 있다. 보다 구체적으로는, 500배의 배율로 랜덤한 위치에서 10회에 걸쳐 EBSD를 측정하고, 이를 통해 수득한 데이터를 TSL OIM Analysis 6.0 software가 기본적으로 제공하는 Grain Shape Aspect Ratio 프로그램을 이용하여 평균값을 취하여 구할 수 있다.
본 발명의 용융도금강재는 강도 및 연성이 우수한 장점이 있으며, 제한되지 않는 일 예에 따르면, 본 발명의 용융도금강재는 인장강도가 450~650MPa이고, 항복강도가 400~600MPa이며, 연신율이 25~35%일 수 있다.
본 발명의 용융도금강재는 가공성이 우수한 장점이 있으며, 제한되지 않는 일 예에 따르면, 항복강도와 연신율의 곱이 12,000~15,000MPa·%일 수 있다.
이상에서 설명한 본 발명의 용융도금강재는 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 바람직한 일 예로써, 다음과 같은 방법에 의해 제조될 수 있다.
이하, 본 발명의 다른 측면인 가공성이 우수한 용융도금강재의 제조방법에 대하여 상세히 설명한다.
먼저, 전술한 성분계를 갖는 슬라브를 1100~1300℃의 온도로 재가열한다. 만약, 재가열 온도가 1100℃ 미만인 경우 후속 공정인 열간 압연 공정에서 압연 부하가 지나치게 커질 수 있으며, 반면, 1300℃를 초과할 경우 일부 오스테나이트 결정립의 비정상 성장에 의한 부분적으로 조대화로 인해 최종 미세조직의 결정립 크기가 균질하지 못할 우려가 있다. 한편, 본 발명에서는 슬라브 재가열 시간에 대해서는 특별히 한정하지 않으며 통상의 조건이면 무방하다. 제한되지 않는 일 예로써, 슬라브 재가열 시간은 100~400분일 수 있다.
다음으로, 재가열된 슬라브를 조압연 후, 오스테나이트 단상역 온도에서 마무리 압연하여 열연 강재를 얻는다.
여기서, 조압연이란 마무리 압연 전에 행해지는 일련의 중간 압연 과정을 의미하는 것으로, 본 발명에서는 조압연의 구체적인 조건에 대해서는 특별히 한정하지 않으며, 통상의 조건이면 무방하다. 제한되지 않는 일 예로써, 재가열된 슬라브 두께 대비 조압연된 슬라브의 두께는 10~25%일 수 있으며, 조압연 온도는 마무리 압연 온도가 확보될 수 있는 충분히 높은 온도로 설정될 수 있다.
마무리 압연은 오스테나이트 단상역 온도에서 실시되며, 이는 조직의 균일성을 증가시키기 위함이다.
일 예에 따르면, 열간 압연시, 마무리 압연 온도는 800~900℃일 수 있다. 상기의 온도 범위에서 마무리 열간 압연시, 마무리 압연된 열연 강재의 오스테나이트 조직은 10~40μm의 평균 결정립 크기를 갖게 된다. 한편, 마무리 압연 온도가 800℃ 미만일 경우 열간 압연 하중이 증가하여 생산성이 저하될 수 있으며, 반면, 900℃를 초과할 경우 슬라브의 오스테나이트 결정립이 조대화되어 목표하는 가공성을 확보가 어려울 수 있다.
다음으로, 열연 강재를 냉각한다. 이때, 통상적인 연속 냉각을 통해 열연 강재를 냉각할 경우 등축 페라이트의 충분한 확보가 어렵고, 침상형 페라이트가 과도하게 형성되어 연성이 열화될 수 있다. 이에, 본 발명에서는 열연 강재를 40~60℃/sec의 속도로 650~750℃의 온도까지 수냉 후, 1~5초 간 공냉하는 2단 냉각에 의해 열연 강재를 냉각한다.
여기서, 650~750℃의 온도는 페라이트가 가장 빠르게 변태하는 온도로써 등축 페라이트를 가장 효율적으로 성장시킬 수 있는 온도에 해당하며, 이하에서는 이를 중간 온도로 칭한다. 보다 바람직한 중간 온도 범위는 680~720℃이다.
만약, 중간 온도가 750℃를 초과하거나, 공냉 시간이 5초를 초과할 경우 등축 페라이트는 형성되지만 페라이트가 과도하게 성장하여 항복강도가 열화될 수 있으며, 반면, 중간 온도가 650℃ 미만이거나, 공냉 시간이 1초 미만인 경우 등축 페라이트 형성이 어려워 연성이 열화될 수 있다. 또한, 공냉 시간이 5초를 초과할 경우 NbC 석출물이 조대화되어 권취시 생성되는 미세 NbC 석출물 효과가 저하되어 목적하는 가공성 확보가 어려울 수 있다.
수냉시 냉각 속도가 40℃/sec 미만인 경우 ROT 냉각 구간에서 충분한 공냉 시간을 확보하지 못할 우려가 있으며, 반면, 60℃/sec를 초과할 경우 지나치게 빠른 냉각 속도로 인해 목적하는 중간 온도 확보가 어려울 수 있다.
한편, 공냉 후 열연 강재의 온도가 목표하는 권취 온도를 초과하는 경우, 상기 공냉된 열연 강재의 권취 전, 상기 공냉된 열연 강재를 목표하는 권취 온도까지 40~60℃/sec의 속도로 수냉하게 되며, 여기서, 냉각 속도를 한정하는 이유는 중간 온도 후 적정한 권취 온도를 확보하기 위함이다.
다음으로, 냉각된 열연 강재를 550~650℃의 온도에서 권취한다. 보다 바람직한 권취 온도 범위는 600~650℃이다. 상기의 온도 범위는 NbC 석출물이 가장 빠르게 생성되는 온도 범위로써, 상기의 온도 범위에서 권취할 경우 NbC 석출물이 미세하게 석출되어 등축 페라이트 형성에 의해 저하된 항복 강도를 보상할 수 있다. 만약, 권취 온도가 650℃를 초과할 경우 조대한 펄라이트가 형성되어 항복 강도가 저하될 수 있으며, 또한 NbC 석출물이 조대화되어 목적하는 가공성 확보가 곤란할 수 있다. 반면, 권취 온도가 550℃ 미만일 경우 결정립이 미세화되어 항복강도는 증가하지만 연성이 열화될 수 있으며, 미세 NbC 석출물의 함량이 줄어 목적하는 가공성 확보가 어려울 수 있다.
다음으로, 권취된 열연 강재를 500~650℃의 온도에서 1~5분 동안 열처리한다. 이때, 보다 바람직한 열처리 온도 범위는 550~600℃이고, 보다 더 바람직한 열처리 온도 범위는 550~590℃이며, 보다 바람직한 열처리 시간 범위는 2~4분이다.
이러한 열처리 과정에서 잔류 NbC 석출물이 석출되며, V(C,N) 석출물이 미세하게 석출되어, 석출 강화 효과로 인해 강의 강도가 향상된다. 만약, 열처리 온도가 500℃ 미만이거나, 열처리 시간이 1분 미만인 경우 도금 밀착성이 열화되고, V계 석출물이 충분히 석출되지 못할 우려가 있으며, 반면, 열처리 온도가 650℃를 초과하거나 열처리 시간이 5분을 초과하는 경우 생산성이 열화될 수 있다.
다음으로, 열처리된 열연 강재를 용융 도금하여 용융도금강재를 제조한다.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
하기 표 1 및 2의 조성을 갖는 슬라브를 1150℃로 200분 동안 재가열한 후, 하기 표 3의 조건으로 조압연 및 마무리 압연하여 열연 강재를 얻었다. 이때, 모든 예에 있어서, 재가열된 슬라브 두께 대비 조압연된 슬라브의 두께는 20%로 일정하게 하였다. 이후, 열연 강재를 하기 표 3의 중간 온도까지 50℃/sec의 속도로 수냉하고, 5초 간 공냉한 후, 하기 표 3의 권취 온도에서 권취하였다. 표 3의 중간 온도에 연속냉각이라고 기재한 예의 경우, 공냉 없이 권취온도까지 연속냉각을 실시한 경우의 예이다. 한편, 공냉된 열연 강재의 온도가 하기 표 3의 권취 온도에 이르지 못한 예의 경우 권취 온도까지 50℃/sec의 속도로 추가 수냉을 실시하였다. 이후, 권취된 열연 강재를 하기 표 3의 열처리 온도에서 2분 동안 열처리한 후, 용융 아연 도금을 실시하였다.
이후, 제조된 열연도금강재의 미세조직을 분석하고, 기계적 물성을 평가하였으며, 그 결과를 하기 표 4에 나타내었다. 참고로, 모든 예에 있어서, 페라이트 외 잔부 조직은 펄라이트 및/또는 베이나이트였다.
강종 합금 조성 (중량%)
C Si Mn Nb V P S
발명강1 0.08 0.01 1.4 0.03 0.008 0.01 0.004
발명강2 0.07 0.01 1.2 0.03 0.008 0.01 0.004
비교강1 0.04 0.01 1.2 0.03 0.003 0.01 0.004
비교강2 0.16 0.01 1.2 0.025 0.003 0.01 0.004
비교강3 0.23 0.01 0.8 0.005 0.001 0.01 0.004
강종 합금 조성 (중량%) Ceq
Al N Cr Ni Mo Cu
발명강1 0.025 0.005 0.015 0.01 0.001 0.001 0.33
발명강2 0.025 0.005 0.015 0.01 0.001 0.001 0.27
비교강1 0.025 0.005 0.015 0.01 0.001 0.001 0.24
비교강2 0.025 0.005 0.015 0.01 0.001 0.001 0.36
비교강3 0.025 0.005 0.015 0.01 0.001 0.001 0.37
강종 마무리 압연 온도(℃) 중간 온도(℃) 권취 온도(℃) 열처리 온도(℃) 비고
발명강1 840 680 630 550 발명예1
830 620 630 550 비교예1
840 680 630 450 비교예2
840 연속냉각 630 550 비교예3
발명강2 830 680 640 550 발명예2
830 610 630 550 비교예4
840 680 580 550 비교예5
840 680 630 700 비교예6
830 연속냉각 640 550 비교예7
비교강1 840 680 630 550 비교예8
비교강2 840 680 630 550 비교예9
비교강3 830 680 640 550 비교예10
강종 페라이트 V계 석출물 기계적 물성 비고
면적율(%) 종횡비 개수(개/μm2) 평균 직경(nm) 최대 직경(nm) YS(MPa) TS(MPa) El(%) YS×El(MPa·%)
발명강1 93 1.19 12,000 7 9 463 523 27 12501 발명예1
89 1 14,000 5 8 468 532 24 11232 비교예1
92 1.15 4,000 3 7 443 512 27 11961 비교예2
88 0.74 12,000 6 9 463 523 24 11112 비교예3
발명강2 95 1.3 12,000 6 10 458 513 28 12824 발명예2
90 1.1 13,000 5 7 458 531 25 11450 비교예4
93 1.3 14,000 6 8 453 521 25 11325 비교예5
93 1.21 4,000 14 23 432 510 27 11664 비교예6
89 0.75 12,000 6 9 463 523 24 11112 비교예7
비교강1 95 1.32 3,500 7 9 384 463 29 11136 비교예8
비교강2 80 0.7 4,500 7 10 453 523 23 10419 비교예9
비교강3 73 0.62 1,600 8 12 389 532 22 8558 비교예10
표 4에서 알 수 있듯이, 본 발명에서 제안하는 합금 조성 및 제조 조건을 모두 만족하는 발명예 1 및 2의 경우, 강도와 연신율의 곱이 12,000MPa·% 이상으로 강도 및 연성의 밸런스가 매우 우수하게 나타났다.
이에 반해, 비교예 1 내지 11의 경우, 합금 조성 및 제조 조건 중 1 이상이 본 발명에서 제안하는 조건에서 벗어나, 강도와 연신율의 밸런스가 열위하게 나타났다.

Claims (14)

  1. 열연 강재 및 상기 열연 강재 표면에 형성된 용융 도금층을 포함하고, 상기 열연 강재는 중량%로, C: 0.05~0.15%, Si: 0.5% 이하(0% 제외), Mn: 0.5~1.5%, Nb: 0.01~0.05%, V: 0.005~0.05%, P: 0.03% 이하(0% 제외), S: 0.015%(0% 제외), Al: 0.05% 이하(0% 제외), N: 0.01% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 90면적% 이상의 페라이트를 포함하며, 5,000~15,000개/μm2의 V계 석출물을 포함하는 용융도금강재.
  2. 제1항에 있어서,
    상기 V계 석출물의 평균 직경은 5~10nm인 용융도금강재.
  3. 제1항에 있어서,
    상기 V계 석출물의 최대 직경은 20nm 이하인 용융도금강재.
  4. 제1항에 있어서,
    상기 페라이트의 종횡비(aspect ratio)는 0.8 내지 1.4인 용융도금강재.
  5. 제1항에 있어서,
    상기 페라이트 외 잔부는, 펄라이트 및 베이나이트 중 1종 이상인 용융도금강재.
  6. 제1항에 있어서,
    상기 불가피한 불순물은 Cr, Ni, Mo 및 Cu를 포함하고, 중량%로, Cr: 0.05% 이하, Ni: 0.05% 이하, Mo: 0.01% 이하, Cu: 0.01% 이하로 억제된 용융도금강재.
  7. 제6항에 있어서,
    상기 열연 강재는 하기 식 1로 정의되는 탄소 당량(Ceq)이 0.43 이하인 용융도금강재.
    [식 1] Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5
    (여기서, [C], [Mn], [Cu], [Ni], [Cr], [Mo] 및 [V] 각각은 해당 원소의 함량(중량%)을 의미함)
  8. 제1항에 있어서,
    상기 용융 도금층은 Zn, Al 및 Mg 중 1종 이상을 포함하는 용융도금강재.
  9. 제1항에 있어서,
    항복강도와 연신율의 곱이 12,000~15,000MPa·%인 용융도금강재.
  10. 중량%로, C: 0.05~0.15%, Si: 0.5% 이하(0% 제외), Mn: 0.5~1.5%, Nb: 0.01~0.05%, V: 0.005~0.05%, P: 0.03% 이하(0% 제외), S: 0.015%(0% 제외), Al: 0.05% 이하(0% 제외), N: 0.01% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 1100~1300℃에서 재가열하는 단계;
    상기 재가열된 슬라브를 조압연 후, 오스테나이트 단상역 온도에서 마무리 압연하여 열연 강재를 얻는 단계;
    상기 열연 강재를 40~60℃/sec의 속도로 650~750℃의 온도까지 수냉 후, 1~5초 간 공냉하는 단계;
    상기 공냉된 열연 강재를 550~650℃의 온도에서 권취하는 단계; 및
    상기 권취된 열연 강재를 500~650℃의 온도에서 1~5분 동안 열처리 후 용융 도금하는 단계;
    를 포함하는 용융도금강재의 제조방법.
  11. 제10항에 있어서,
    상기 슬라브 재가열시간은 100~400분인 용융도금강재의 제조방법.
  12. 제10항에 있어서,
    상기 재가열된 슬라브 두께 대비 조압연된 슬라브의 두께는 10~25%인 용융도금강재의 제조방법.
  13. 제10항에 있어서,
    상기 마무리 압연 온도는 800~900℃인 용융도금강재의 제조방법.
  14. 제10항에 있어서,
    상기 공냉된 열연 강재의 온도가 650℃를 초과하는 경우, 상기 공냉된 열연 강재의 권취 전, 상기 공냉된 열연 강재를 550~650℃의 온도까지 40~60℃/sec의 속도로 수냉하는 단계를 더 포함하는 용융도금강재의 제조방법.
PCT/KR2017/015033 2016-12-20 2017-12-19 가공성이 우수한 용융도금강재 및 그 제조방법 WO2018117606A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES17884148T ES2882338T3 (es) 2016-12-20 2017-12-19 Acero recubierto por inmersión en caliente que tiene excelente capacidad de procesamiento y procedimiento de fabricación del mismo
CN201780077822.1A CN110088330B (zh) 2016-12-20 2017-12-19 加工性优异的热浸镀钢材及其制造方法
US16/466,459 US11059269B2 (en) 2016-12-20 2017-12-19 Hot dip coated steel having excellent processability
JP2019532942A JP6838160B2 (ja) 2016-12-20 2017-12-19 加工性に優れた溶融めっき鋼材及びその製造方法
EP17884148.2A EP3561114B1 (en) 2016-12-20 2017-12-19 Hot dip coated steel having excellent processability and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0174584 2016-12-20
KR1020160174584A KR101899677B1 (ko) 2016-12-20 2016-12-20 가공성이 우수한 용융도금강재 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2018117606A1 true WO2018117606A1 (ko) 2018-06-28

Family

ID=62626673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015033 WO2018117606A1 (ko) 2016-12-20 2017-12-19 가공성이 우수한 용융도금강재 및 그 제조방법

Country Status (7)

Country Link
US (1) US11059269B2 (ko)
EP (1) EP3561114B1 (ko)
JP (1) JP6838160B2 (ko)
KR (1) KR101899677B1 (ko)
CN (1) CN110088330B (ko)
ES (1) ES2882338T3 (ko)
WO (1) WO2018117606A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10982542B2 (en) * 2017-09-15 2021-04-20 Rand York Castings (Pty) Limited Rock bolt
CN112342350B (zh) * 2020-09-14 2023-04-18 唐山中厚板材有限公司 一种高强韧性厚规格钢板的生产方法
CN113215486B (zh) * 2021-04-16 2022-05-20 首钢集团有限公司 一种热基镀锌高扩孔双相钢及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264181A (ja) * 1993-03-10 1994-09-20 Sumitomo Metal Ind Ltd 高加工性熱延高張力鋼板とその製造方法
JP2005344167A (ja) * 2004-06-03 2005-12-15 Sumitomo Metal Ind Ltd 浸炭部品又は浸炭窒化部品用の鋼材、浸炭部品又は浸炭窒化部品の製造方法
KR100548864B1 (ko) * 2001-08-24 2006-02-02 신닛뽄세이테쯔 카부시키카이샤 딥 드로잉성이 우수한 강판, 강관 및 그 제조 방법
JP2009057620A (ja) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd ハイドロフォーム用電縫管及びその素材鋼板と、これらの製造方法
KR100972357B1 (ko) 2009-02-09 2010-07-26 주식회사 상신산업 확장가능한 튜브형 락 볼트
KR101038472B1 (ko) 2010-10-29 2011-06-02 주식회사 티에스테크노 락볼트 및 이를 이용한 지보공법
KR101196889B1 (ko) 2011-06-07 2012-11-01 주식회사 티에스테크노 락볼트 및 그 시공방법
KR20160104028A (ko) * 2014-05-28 2016-09-02 히타치 긴조쿠 가부시키가이샤 열간 공구 재료 및 열간 공구의 제조 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221179B1 (en) 1997-09-11 2001-04-24 Kawasaki Steel Corporation Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
JP3473480B2 (ja) 1999-03-18 2003-12-02 住友金属工業株式会社 強度と延性に優れる溶融亜鉛めっき鋼板およびその製造方法
JP3680262B2 (ja) * 2000-06-28 2005-08-10 Jfeスチール株式会社 伸びフランジ性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP4853082B2 (ja) 2006-03-30 2012-01-11 住友金属工業株式会社 ハイドロフォーム加工用鋼板およびハイドロフォーム加工用鋼管と、これらの製造方法
JP5142141B2 (ja) 2008-01-24 2013-02-13 新日鐵住金株式会社 ハイドロフォーム加工用鋼管素材熱延鋼板およびハイドロフォーム加工用鋼管ならびにそれらの製造方法
JP5041083B2 (ja) 2010-03-31 2012-10-03 Jfeスチール株式会社 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
JP5609223B2 (ja) * 2010-04-09 2014-10-22 Jfeスチール株式会社 温間加工性に優れた高強度鋼板およびその製造方法
KR101185356B1 (ko) * 2010-09-29 2012-09-21 현대제철 주식회사 방향성에 따른 재질 편차를 최소화한 고강도 열연강판 및 그 제조 방법
EP2746417B1 (en) * 2011-08-17 2016-07-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel plate
WO2013121963A1 (ja) 2012-02-17 2013-08-22 新日鐵住金株式会社 鋼板、めっき鋼板、及びそれらの製造方法
WO2013167572A1 (en) 2012-05-08 2013-11-14 Tata Steel Ijmuiden Bv Automotive chassis part made from high strength formable hot rolled steel sheet
JP5817671B2 (ja) 2012-08-02 2015-11-18 新日鐵住金株式会社 熱延鋼板およびその製造方法
KR20150076994A (ko) * 2013-12-27 2015-07-07 현대제철 주식회사 건축용 강 부품 및 제조 방법
JP6048423B2 (ja) 2014-02-05 2016-12-21 Jfeスチール株式会社 靭性に優れた高強度薄鋼板およびその製造方法
JP6468001B2 (ja) 2014-03-12 2019-02-13 新日鐵住金株式会社 鋼板および鋼板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264181A (ja) * 1993-03-10 1994-09-20 Sumitomo Metal Ind Ltd 高加工性熱延高張力鋼板とその製造方法
KR100548864B1 (ko) * 2001-08-24 2006-02-02 신닛뽄세이테쯔 카부시키카이샤 딥 드로잉성이 우수한 강판, 강관 및 그 제조 방법
JP2005344167A (ja) * 2004-06-03 2005-12-15 Sumitomo Metal Ind Ltd 浸炭部品又は浸炭窒化部品用の鋼材、浸炭部品又は浸炭窒化部品の製造方法
JP2009057620A (ja) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd ハイドロフォーム用電縫管及びその素材鋼板と、これらの製造方法
KR100972357B1 (ko) 2009-02-09 2010-07-26 주식회사 상신산업 확장가능한 튜브형 락 볼트
KR101038472B1 (ko) 2010-10-29 2011-06-02 주식회사 티에스테크노 락볼트 및 이를 이용한 지보공법
KR101196889B1 (ko) 2011-06-07 2012-11-01 주식회사 티에스테크노 락볼트 및 그 시공방법
KR20160104028A (ko) * 2014-05-28 2016-09-02 히타치 긴조쿠 가부시키가이샤 열간 공구 재료 및 열간 공구의 제조 방법

Also Published As

Publication number Publication date
EP3561114B1 (en) 2021-05-05
EP3561114A4 (en) 2019-10-30
KR101899677B1 (ko) 2018-09-17
CN110088330B (zh) 2021-10-22
ES2882338T3 (es) 2021-12-01
JP6838160B2 (ja) 2021-03-03
JP2020509191A (ja) 2020-03-26
EP3561114A1 (en) 2019-10-30
KR20180071682A (ko) 2018-06-28
US11059269B2 (en) 2021-07-13
US20200070476A1 (en) 2020-03-05
CN110088330A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2018074887A1 (ko) 고강도 철근 및 이의 제조 방법
WO2012002638A2 (ko) 초고강도 철근 및 그 제조방법
WO2021091138A1 (ko) 저온 충격인성이 우수한 고강도 강재 및 그 제조방법
WO2012064129A2 (ko) 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 냉연/열연 TRIP강의 제조방법
WO2018110853A1 (ko) 저온역 버링성이 우수한 고강도 복합조직강 및 그 제조방법
WO2019125083A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2017082687A1 (ko) 냉간가공성이 우수한 비조질 선재 및 그 제조방법
WO2018117646A1 (ko) 극저온 충격인성이 우수한 후강판 및 이의 제조방법
WO2018117497A1 (ko) 길이방향 균일 연신율이 우수한 용접강관용 강재, 이의 제조방법 및 이를 이용한 강관
WO2018117614A1 (ko) 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법
WO2018117450A1 (ko) 저온인성 및 후열처리 특성이 우수한 내sour 후판 강재 및 그 제조방법
WO2018117700A1 (ko) 고강도 고인성 후강판 및 이의 제조방법
WO2018117606A1 (ko) 가공성이 우수한 용융도금강재 및 그 제조방법
WO2017105109A1 (ko) 저온 변형시효 충격특성이 우수한 고강도 강재 및 이의 제조방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2019132310A1 (ko) 재질 균일성이 우수한 내마모 강판 및 그 제조방법
WO2021010599A2 (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
WO2018117650A1 (ko) 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2023121179A1 (ko) 강도 및 저온 충격인성이 우수한 플랜지용 극후물 강재 및 그 제조방법
WO2016093513A2 (ko) 성형성이 우수한 복합조직강판 및 이의 제조방법
WO2019132179A1 (ko) 고강도 고인성 열연강판 및 그 제조방법
WO2018110850A1 (ko) 충격인성이 우수한 고강도 선재 및 그 제조방법
WO2017111303A1 (ko) 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017884148

Country of ref document: EP

Effective date: 20190722