WO2017082687A1 - 냉간가공성이 우수한 비조질 선재 및 그 제조방법 - Google Patents

냉간가공성이 우수한 비조질 선재 및 그 제조방법 Download PDF

Info

Publication number
WO2017082687A1
WO2017082687A1 PCT/KR2016/013028 KR2016013028W WO2017082687A1 WO 2017082687 A1 WO2017082687 A1 WO 2017082687A1 KR 2016013028 W KR2016013028 W KR 2016013028W WO 2017082687 A1 WO2017082687 A1 WO 2017082687A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rod
wire
less
relationship
manufacturing
Prior art date
Application number
PCT/KR2016/013028
Other languages
English (en)
French (fr)
Other versions
WO2017082687A8 (ko
Inventor
문동준
이상윤
허용관
김하늬
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201680066249.XA priority Critical patent/CN108350549B/zh
Priority to MX2018005059A priority patent/MX2018005059A/es
Priority to DE112016005223.5T priority patent/DE112016005223T5/de
Priority to JP2018523799A priority patent/JP6605141B2/ja
Priority to US15/767,345 priority patent/US10889876B2/en
Publication of WO2017082687A1 publication Critical patent/WO2017082687A1/ko
Publication of WO2017082687A8 publication Critical patent/WO2017082687A8/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a non-coarse wire rod having excellent cold workability and a method for manufacturing the same, and more particularly, to a non-coarse wire rod having excellent cold workability suitable for use as a material for automobiles or mechanical parts and a method for producing the same. .
  • the cold working method is widely used in the manufacture of machine parts such as bolts and nuts because not only the productivity is excellent but also the effect of reducing the heat treatment cost is large compared with the hot working method and the mechanical cutting method.
  • the cold workability of steel is essentially required to be excellent, and more specifically, the cold deformation is required to have low deformation resistance and excellent ductility. . This is because, if the deformation resistance of the steel is high, the life of the tool used in cold work is reduced, and if the ductility of the steel is low, breakage is likely to occur during cold work, which causes defects.
  • the conventional cold working steel is subjected to spheroidizing annealing heat treatment before cold working.
  • the steel material is softened during the spheroidizing annealing heat treatment, so that the deformation resistance is reduced, the ductility is improved, and the cold workability is improved.
  • additional costs are incurred and manufacturing efficiency is lowered, development of an unstructured wire rod that can secure excellent cold workability without additional heat treatment is required.
  • One of the various objects of the present invention is to provide an unstructured wire rod and a method of manufacturing the same that can secure excellent strength and cold workability without additional heat treatment.
  • one aspect of the present invention in weight%, C: 0.15 ⁇ 0.30%, Si: 0.05 ⁇ 0.3%, Mn: 1.0 ⁇ 2.0%, Cr: 0.5% or less (excluding 0%) ), P: 0.02% or less, S: 0.02% or less, sol.Al: 0.01 to 0.05%, Nb: 0.005 to 0.02%, V: 0.05 to 0.2%, N: 0.01% or less, balance Fe and inevitable impurities And the hardness of the wire rod measured at the 1 / 2d position in the radial direction of the wire rod (where d denotes the diameter of the wire rod, which is the same below) and the 1 / 4d position, respectively, Hv, 1 / 2d (Hv), and Hv.
  • 1 / 4d (Hv) to provide an unstructured wire rod that satisfies the following equations (1) and (2).
  • C 0.15-0.30%, Si: 0.05-0.3%, Mn: 1.0-2.0%, Cr: 0.5% or less (excluding 0%), P: 0.02% Or less, S: 0.02% or less, sol.Al: 0.01 to 0.05%, Nb: 0.005 to 0.02%, V: 0.05 to 0.2%, N: 0.01% or less, residual Fe and unavoidable impurities, and carbon equivalents (Ceq ) Is 0.5 or more and 0.6 or less, and a bloom satisfying the following relations 3 and 4 is heated to a heating temperature of 1200 to 1300 ° C, followed by rolling a steel sheet to obtain a billet, wherein the billet is 1050 to 1250 ° C.
  • the present inventors examined from various angles in order to provide a wire rod which can secure excellent cold workability while having a predetermined strength after drawing, and as a result, the average hardness of the wire rod and the hardness ratio of the center segregation portion and the non-segregation portion of the wire rod. By controlling appropriately, the inventors have found that a wire rod having a predetermined strength after drawing and not deteriorating in cold workability can be provided, thus completing the present invention.
  • Wire rod of the present invention the hardness of the wire rod measured in the 1 / 2d position (where d means the diameter of the wire rod, the same below) and 1 / 4d position in the radial direction of the wire rod, respectively, Hv, 1 / 2d ( When Hv), Hv, and 1 / 4d (Hv) are satisfied, the following relations 1 and 2 are satisfied. If the following relation 1 is not satisfied, the strength may be excessively increased after drawing, and thus cold workability may be deteriorated. If the relation 2 is not satisfied, cracking may occur inside the wire rod during cold forging after the drawing process. Cold workability may deteriorate.
  • the wire rod of the present invention may have the following alloy composition and component range.
  • Carbon serves to improve the strength of the wire rod.
  • the upper limit of the carbon content is preferably 0.3%, more preferably 0.29%.
  • Silicone is a useful element as a deoxidizer. In order to exhibit such an effect in the present invention, it is preferable to include 0.05% or more, and more preferably 0.06% or more. However, when the content is excessive, the deformation resistance of the steel is rapidly increased by the solid solution strengthening, which causes a problem that the cold workability is deteriorated. Therefore, the upper limit of the silicon content is preferably 0.3%, more preferably 0.25%.
  • Manganese is an element useful as a deoxidizer and a desulfurizer. In order to exhibit such an effect in the present invention, it is preferable to include 1.0% or more, and more preferably 1.1% or more. However, when the content thereof is excessive, the strength of the steel itself is excessively high, so that deformation resistance of the steel is rapidly increased, thereby deteriorating cold workability. Therefore, the upper limit of the manganese content is preferably 2.0%, more preferably 1.8%.
  • Chromium plays a role in promoting ferrite and pearlite transformation during hot rolling.
  • carbides in the steel are precipitated to reduce the amount of solid solution carbon without increasing the strength of the steel itself more than necessary, thereby contributing to the reduction of the dynamic strain aging by the solid solution carbon.
  • the chromium content is preferably 0.5% or less (except 0%), and more preferably 0.05 to 0.45%.
  • Phosphorus is an unavoidable impurity, and is an element which is segregated at grain boundaries to lower the toughness of steel and decreases delayed fracture resistance. Therefore, it is preferable to control the content as low as possible.
  • the phosphorus content is advantageously controlled to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the phosphorus content is controlled to 0.02%.
  • Sulfur is an inevitable impurity, which is segregated at grain boundaries and greatly reduces the ductility of steel and forms an emulsion (MnS inclusion) in steel, which is a major cause of deterioration of cold forging, delayed fracture resistance and stress relaxation characteristics. It is desirable to control the content as low as possible.
  • the sulfur content is advantageously controlled to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, in the present invention, the upper limit of the sulfur content is controlled at 0.02%, more preferably at 0.01%, even more preferably at 0.009%, most preferably It is controlled at 0.008%.
  • Soluble aluminum is an element that functions usefully as a deoxidizer. In order to exhibit such an effect in the present invention, it is preferable to include 0.01% or more, more preferably 0.015% or more, and even more preferably 0.02% or more. However, when the content exceeds 0.05%, the austenite grain size miniaturization effect due to AlN formation becomes large and the cold workability is lowered. Therefore, in the present invention, the upper limit of the soluble aluminum content is controlled to 0.05%.
  • Niobium forms carbonitrides and contains 0.005% or more as an element that serves to limit grain boundary migration of austenite and ferrite.
  • the carbonitride acts as a starting point of destruction and can lower impact toughness, in particular, low temperature impact toughness, it is preferable to add the carbonitride in keeping with the solubility limit.
  • the content is preferably limited to 0.02% or less, and more preferably 0.018% or less.
  • Vanadium like niobium, forms carbonitrides and restricts grain boundary movement of austenite and ferrite and contains 0.05% or more.
  • the carbonitride acts as a starting point of destruction and may lower impact toughness, in particular, low temperature impact toughness, it is preferable to keep the solubility limit. Therefore, the content is preferably limited to 0.2% or less, more preferably 0.18% or less.
  • Nitrogen is inevitably an impurity to be contained. If the content is excessive, the amount of solid solution nitrogen increases, so that deformation resistance of the steel rapidly increases, which causes a problem that the cold workability is deteriorated.
  • the nitrogen content is advantageously controlled to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, it is preferable to manage the upper limit of the nitrogen content at 0.01%, more preferably at 0.008%, and even more preferably at 0.007%.
  • the remainder of the alloy composition is iron (Fe).
  • the crude wire rod of the present invention may contain other impurities that may be included in the industrial production of steels in general. These impurities are known to those of ordinary skill in the art to which the present invention belongs, so the present invention does not particularly limit the type and content thereof.
  • Ti corresponds to a representative impurity that should be suppressed as much as possible in order to obtain the effect of the present invention.
  • Titanium is a carbonitride forming element and forms carbonitrides at temperatures higher than Nb and V. Therefore, although titanium may be included in steel, it may be advantageous to fix C and N. However, Nb and / or V may be precipitated using Ti carbon nitride as a nucleus to deteriorate cold workability by forming a large amount of coarse carbonitride in the matrix. have. Therefore, it is important to manage the upper limit, and in the present invention, it is preferable to manage the upper limit of the content of titanium to 0.005%, more preferably to 0.004%.
  • the carbon equivalent (Ceq) of the wire rod of the present invention may be 0.5 or more and 0.6 or less.
  • the carbon equivalent (Ceq) may be defined by the following formula (1). If the carbon equivalent (Ceq) is less than 0.5 or more than 0.6, it may be difficult to secure the target strength.
  • the contents of C, Mn, Cr, Nb, and V may satisfy the following Equation 3. If the following relation 3 is not satisfied, due to segregation of the core, the hardness difference between the center segregation part and the non segregation part of the wire rod increases rapidly. Accordingly, the possibility of internal cracking during cold forging increases significantly, which may deteriorate the cold workability. have.
  • the contents of Nb and V may satisfy the following relational formula (4).
  • the present inventors confirmed that formation of coarse Nb and V composite carbonitrides is suppressed when the relation 4 is satisfied. If the content of Nb and V does not satisfy the following Equation 4, when the billet reheats, Nb and V carbonitrides are not sufficiently dissolved and coarse precipitates in the base during the wire rod manufacturing process, thereby deteriorating cold workability.
  • the minimum with more preferable value of 10 [Nb] / [V] is 0.6, The more preferable minimum is 0.7, The more preferable upper limit of 10 [Nb] / [V] value is 1.5, and even more preferable upper limit is 1.2.
  • the crude wire rod includes carbonitrides including Nb and / or V, and the average equivalent circular diameter of the carbonitrides may be 70 nm or less. If the average circular equivalent diameter of carbonitrides exceeds 70 nm, these carbonitrides may act as a starting point of destruction in the central segregation portion.
  • carbonitride means a precipitate containing carbon and / or nitrogen.
  • the number per unit area of carbon nitride having an average circular equivalent diameter of 80 nm or more among carbon nitrides including Nb and / or V may be 5 / ⁇ m 2 or less. If, when the average circle equivalent diameter is greater than the number per unit area of not less than 80nm carbonitride 5 gae / ⁇ m 2, it may be difficult to secure cold workability targets.
  • the method of measuring the average circular equivalent diameter of carbonitride containing Nb and / or V, etc. is not specifically limited,
  • the following method can be used. That is, after cutting the non-coated wire in the direction perpendicular to the longitudinal direction, 1 / 4d position using a scanning electron microscope (FE-SEM) (where d denotes the diameter of the non-coated wire) Take a cross-sectional picture at 1,000x magnification, analyze the composition of each precipitate by using the Electron Probe Micro-Analyzer (EPMA), and classify the types and then analyze Nb and / or V The average circular equivalent diameter of the carbonitrides included and the number of coarse carbonitrides having an average circular equivalent diameter of 80 nm or more can be calculated.
  • FE-SEM scanning electron microscope
  • the wire rod of the present invention may include ferrite and pearlite as its microstructure, and more preferably, ferrite of 30% or more (except 100%) as an area fraction. And up to 70% (excluding 0%) pearlite.
  • ferrite and pearlite as its microstructure, and more preferably, ferrite of 30% or more (except 100%) as an area fraction.
  • up to 70% (excluding 0%) pearlite up to 70% (excluding 0%) pearlite.
  • the average particle diameter of the ferrite may be 5 ⁇ 25 ⁇ m, more preferably may be 10 ⁇ 20 ⁇ m. If the average particle diameter of the ferrite is less than 5 ⁇ m there is a fear that the cold workability is reduced by increasing the strength by grain size refinement, while if the average particle diameter exceeds 25 ⁇ m there is a fear that the strength decreases.
  • the standard deviation of the particle diameter of the ferrite may be 5 ⁇ m or less (including 0 ⁇ m), more preferably 3 ⁇ m or less (including 0 ⁇ m). If the standard deviation of the grain size of the ferrite is more than 5 ⁇ m, coarse ferrite may be a starting point of brittle fracture and the toughness and workability of the steel may be deteriorated.
  • the standard deviation of the average particle diameter and the particle diameter of the pearlite formed together is not particularly limited because it is affected by the standard deviation of the average particle diameter and the particle diameter of the ferrite.
  • the particle diameter means the equivalent circular diameter of the particles detected by observing one longitudinal section of the wire rod.
  • the wire rod of the present invention has a very excellent ductility in the cross-sectional reduction rate (RA) of 70% or more in the wire state.
  • the hardness of the wire rod after the wire processing may satisfy the following equation 5. If the wire hardness after wire drawing does not satisfy the relation 5, the strength increase due to work hardening may be very large, and thus cold workability may be sharply lowered.
  • Equation 5 Hv, 1 -10 ⁇ (Hv, D, 1 / 2d + Hv, D, 1 / 4d ) / 2 ⁇ Hv, 1 + 10
  • Hv, 1 means “(Hv, 1 / 2D + Hv, 1 / 4D ) /2+85.45 x ⁇ 1-exp (-D / 11.41) ⁇ "
  • Hv, D, 1 / 2d , Hv, D, and 1 / 4d each refer to the hardness of wire rod measured at 1 / 2d position and 1 / 4d position in the diameter direction of wire rod after drawing.
  • the wire rod for drawing of the present invention described above can be produced by various methods, the manufacturing method is not particularly limited. However, it may be prepared by the following method as an embodiment.
  • a bloom satisfying the above component system is heated and then rolled into steel sheets to obtain a billet.
  • the heating temperature of a bloom it is more preferable that it is 1220-1280 degreeC. If the heating temperature of the bloom is less than 1200 ° C., there is a concern that the hot deformation resistance may increase. On the other hand, if the heating temperature is higher than 1300 ° C., the ductility may deteriorate due to coarsening of austenite.
  • the holding time at the heating temperature may be 4 hours or more. If the holding time is less than 4 hours, the homogenization treatment may not be sufficient. On the other hand, the longer the holding time at the heating temperature, the more favorable for homogenization and the lower the segregation.
  • the upper limit of the holding time is not particularly limited.
  • the wire rod is rolled to obtain a crude wire rod.
  • the reheating temperature of a billet it is more preferable that it is 1100-1200 degreeC. If the reheating temperature of the billet is less than 1050 ° C., there is a concern that the heat deformation resistance may increase, leading to a decrease in productivity. On the other hand, if the heating temperature exceeds 1250 ° C., the ferrite grains may be excessively coarse to reduce ductility. There is concern.
  • the holding time at the reheating temperature may be at least 80 minutes. If the holding time is less than 80 minutes, the homogenization treatment may not be sufficient. On the other hand, the longer the holding time at the reheating temperature, the more favorable the homogenization of the segregation promoting elements.
  • the upper limit of the holding time is not particularly limited.
  • finish rolling temperature is Ae3-(Ae3 + 50) degreeC. If the finish rolling temperature is less than Ae3 °C, there is a fear that the particle size deviation of the ferrite grains occurs due to the temperature deviation of the center portion and the surface portion of the wire rod, and the deformation resistance may increase due to the strength increase due to the refinement of the ferrite grains, whereas Ae3 + When it exceeds 50 degreeC, ferrite crystal grains may coarsen too much and toughness may fall.
  • Ae3 can be calculated from Equation 2 below.
  • the finish rolling temperature here means the surface temperature of the slab at the start of finish rolling, and after the start of finish rolling, the surface temperature of the slab may be increased even further due to the recuperation effect. It does not specifically limit about the surface temperature of a slab after starting.
  • the uncoated wire rod is wound up and then cooled.
  • the winding temperature of the non-coated wire may be 750 ⁇ 900 °C, more preferably 800 ⁇ 850 °C. If the coiling temperature is less than 750 ° C., the martensite generated during the cooling may not be recovered by reheating, and some martensite may be formed to form a hard and soft steel, which may reduce cold workability. On the other hand, when the coiling temperature exceeds 900 °C thick scale is formed on the surface of the problem is not only easy to occur troubles during de-scaling, there is a fear that the cooling time is prolonged, productivity is lowered.
  • the cooling rate of the non-coated wire rod may be 0.1 ⁇ 1 °C / sec, preferably 0.3 ⁇ 0.8 °C / sec or less. This is to stably form a ferrite and pearlite composite structure, if the cooling rate is less than 0.1 °C / sec lamellar spacing of the pearlite tissue is widened, there is a fear that the ductility is insufficient, if the ferrite fraction exceeds 1 °C / sec There exists a possibility that cold workability may deteriorate because of this lack.
  • the microstructure of the cooled wire rod was observed using a scanning electron microscope, the equivalent diameter of carbonitride was calculated, and the hardness was measured at the 1 / 2d position and the 1 / 4d position in the radial direction. It is shown in Table 2 below.
  • steel wires were manufactured by applying the amount of drawing of 10%, 20%, and 30% to the respective wire rods, and the hardness was measured at the 1 / 2d position and the 1 / 4d position in the radial direction for the prepared steel wire. And, cold workability was evaluated, and the results are shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

중량%로, C: 0.15~0.30%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Cr: 0.5% 이하(0% 제외), P: 0.02% 이하, S: 0.02% 이하, sol.Al: 0.01~0.05%, Nb: 0.005~0.02%, V: 0.05~0.2%, N: 0.01% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 선재의 직경 방향으로 1/2d 위치(여기서, d는 선재의 직경을 의미하며, 이하 동일함) 및 1/4d 위치에서 측정한 선재의 경도를 각각 Hv,1/2d(Hv), Hv,1/4d(Hv)라고 할 때, 하기 관계식 1 및 2를 만족하는 비조질 선재와 이를 제조하는 방법이 개시된다. [관계식 1] (Hv,1/2d+Hv,1/4d)/2 ≤ 240 [관계식 2] Hv,1/2d/Hv,1/4d ≤ 1.2

Description

냉간가공성이 우수한 비조질 선재 및 그 제조방법
본 발명은 냉간가공성이 우수한 비조질 선재 및 그 제조방법에 관한 것으로, 보다 상세하게는, 자동차용 소재 또는 기계 부품용 소재로서 사용하기에 적합한 냉간가공성이 우수한 비조질 선재 및 그 제조방법에 관한 것이다.
냉간 가공 방법은 열간 가공 방법이나 기계 절삭 가공 방법과 비교할 때, 생산성이 우수할 뿐만 아니라, 열처리 비용 절감의 효과가 크기 때문에, 볼트, 너트 등의 기계 부품 제조에 널리 사용되고 있다.
다만, 상기와 같이 냉간 가공 방법을 이용하여 기계 부품을 제조하기 위해서는 본질적으로 강재의 냉간 가공성이 우수할 것이 요구되며, 보다 구체적으로는 냉간 가공시 변형 저항이 낮으며, 연성이 우수할 것이 요구된다. 왜냐하면 강의 변형 저항이 높을 경우 냉간 가공시 사용하는 공구의 수명이 저하되며, 강의 연성이 낮을 경우 냉간 가공시 분열이 발생하기 쉬워 불량품 발생의 원인이 되기 때문이다.
이에 따라, 통상적인 냉간 가공용 강재는 냉간 가공 전 구상화 소둔 열처리를 거치게 된다. 구상화 소둔 열처리시 강재가 연화되어 변형 저항이 감소하고, 연성이 향상되어 냉간 가공성이 향상되기 때문이다. 그런데, 이 경우 추가 비용이 발생하고, 제조 효율이 저하되기 때문에, 추가 열처리 없이도 우수한 냉간 가공성을 확보할 수 있는 비조질 선재의 개발이 요구되고 있다.
본 발명의 여러 목적 중 하나는, 추가 열처리 없이도 우수한 강도 및 냉간가공성을 확보할 수 있는 비조질 선재와 이를 제조하는 방법을 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 측면은, 중량%로, C: 0.15~0.30%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Cr: 0.5% 이하(0% 제외), P: 0.02% 이하, S: 0.02% 이하, sol.Al: 0.01~0.05%, Nb: 0.005~0.02%, V: 0.05~0.2%, N: 0.01% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 선재의 직경 방향으로 1/2d 위치(여기서, d는 선재의 직경을 의미하며, 이하 동일함) 및 1/4d 위치에서 측정한 선재의 경도를 각각 Hv,1/2d(Hv), Hv,1/4d(Hv)라고 할 때, 하기 관계식 1 및 2를 만족하는 비조질 선재를 제공한다.
[관계식 1] (Hv,1/2d+Hv,1/4d)/2 ≤ 240
[관계식 2] Hv,1/2d/Hv,1/4d ≤ 1.2
또한, 본 발명의 다른 일 측면은, 중량%로, C: 0.15~0.30%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Cr: 0.5% 이하(0% 제외), P: 0.02% 이하, S: 0.02% 이하, sol.Al: 0.01~0.05%, Nb: 0.005~0.02%, V: 0.05~0.2%, N: 0.01% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 탄소당량(Ceq)이 0.5 이상 0.6 이하이며, 하기 관계식 3 및 4를 만족하는 블룸(bloom)을 1200~1300℃의 가열 온도로 가열 후, 강편 압연하여 빌렛(billet)을 얻는 단계, 상기 빌렛을 1050~1250℃의 재가열 온도로 재가열 후, 마무리 압연온도 Ae3~(Ae3+50)℃의 조건 하 선재 압연하여 선재를 얻는 단계, 및 상기 선재를 권취 후, 냉각하는 단계를 포함하는 비조질 선재의 제조방법을 제공한다.
[관계식 3] 7.35[C] + 1.88[Mn] + 0.34[Cr] + 0.25[Nb] + 0.47[V] ≤ 4.5
[관계식 4] 0.5 ≤ 10[Nb]/[V] ≤ 2.0
(여기서, [C], [Mn], [Cr], [Nb] 및 [V] 각각은 해당 원소의 함량(%)을 의미함)
덧붙여, 상기한 과제의 해결 수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점 및 효과는 하기의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.
본 발명에 따르면, 구상화 소둔 열처리를 생략하더라도 냉간 가공시 변형 저항을 충분히 억제할 수 있는 비조질 선재를 제공할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
이하, 본 발명의 일 측면인 냉간가공성이 우수한 비조질 선재에 대하여 상세히 설명한다.
본 발명자들은 신선 가공 후 소정의 강도를 가지면서도 우수한 냉간가공성을 확보할 수 있는 선재를 제공하기 위하여 다양한 각도에서 검토하였으며, 그 결과, 선재의 평균 경도와 선재의 중심편석부 및 비편석부의 경도비를 적절히 제어함으로써, 신선가공 후 소정의 강도를 가지면서도 냉간가공성이 열화되지 않는 선재를 제공할 수 있음을 알아내고 본 발명을 완성하기에 이르렀다.
본 발명의 선재는, 선재의 직경 방향으로 1/2d 위치(여기서, d는 선재의 직경을 의미하며, 이하 동일함) 및 1/4d 위치에서 측정한 선재의 경도를 각각 Hv,1/2d(Hv), Hv,1/4d(Hv)라고 할 때, 하기 관계식 1 및 2를 만족한다. 하기 관계식 1을 만족하지 않을 경우, 신선 가공 후 강도가 지나치게 커져 냉간가공성이 열화될 수 있으며, 하기 관계식 2를 만족하지 않을 경우, 신선 가공 후 냉간 단조시 선재 내부에 균열이 발생할 수 있으며, 이에 따라 냉간가공성이 열화될 수 있다.
[관계식 1] (Hv,1/2d+Hv,1/4d)/2 ≤ 240
[관계식 2] Hv,1/2d/Hv,1/4d ≤ 1.2
상기 관계식 1 및 2를 만족시키기 위하여, 본 발명의 선재는 아래와 같은 합금조성 및 성분범위를 가질 수 있다. 후술하는 각 성분의 함량은 특별히 언급하지 않는 한, 모두 중량 기준임을 미리 밝혀둔다.
먼저, 비조질 선재의 합금조성 및 성분범위에 대하여 상세히 설명한다.
C: 0.15~0.30%
탄소는 선재의 강도를 향상시키는 역할을 한다. 본 발명에서 이러한 효과를 나타내기 위해서는 0.15% 이상 포함되는 것이 바람직하며, 0.16% 이상 포함되는 것이 보다 바람직하다. 다만, 그 함량이 과다할 경우, 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 따라서, 상기 탄소 함량의 상한은 0.3%인 것이 바람직하고, 0.29%인 것이 보다 바람직하다.
Si: 0.05~0.3%
실리콘은 탈산제로서 유용한 원소이다. 본 발명에서 이러한 효과를 나타내기 위해서는 0.05% 이상 포함되는 것이 바람직하고, 0.06% 이상 포함되는 것이 보다 바람직하다. 다만, 그 함량이 과다할 경우, 고용강화에 의해 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 따라서, 상기 실리콘 함량의 상한은 0.3%인 것이 바람직하고, 0.25%인 것이 보다 더 바람직하다.
Mn: 1.0~2.0%
망간은 탈산제 및 탈황제로서 유용한 원소이다. 본 발명에서 이러한 효과를 나타내기 위해서는 1.0% 이상 포함되는 것이 바람직하고, 1.1% 이상 포함되는 것이 보다 바람직하다. 다만, 그 함량이 과다할 경우, 강 자체의 강도가 지나치게 높아져 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 따라서, 상기 망간 함량의 상한은 2.0%인 것이 바람직하고, 1.8%인 것이 보다 바람직하다.
Cr: 0.5% 이하(0% 제외)
크롬은 열간압연시 페라이트 및 펄라이트 변태를 촉진시키는 역할을 한다. 또한, 강 자체의 강도를 필요 이상으로 높이지 않으면서도, 강 중 탄화물을 석출시켜 고용 탄소량을 저감시켜, 고용 탄소에 의한 동적 변형 시효의 감소에 기여한다. 다만, 그 함량이 과다할 경우, 강 자체의 강도가 지나치게 높아져 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 상기 크롬 함량은 0.5% 이하(0% 제외)인 것이 바람직하고, 0.05~0.45%인 것이 보다 바람직하다.
P: 0.02% 이하
인은 불가피하게 함유되는 불순물로써, 결정립계에 편석되어 강의 인성을 저하시키고, 지연 파괴 저항성을 감소시키는데 주요 원인이 되는 원소이므로, 그 함량을 가능한 한 낮게 제어하는 것이 바람직하다. 이론상 인의 함량은 0%로 제어하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 인의 함량의 상한을 0.02%로 관리한다.
S: 0.02% 이하
황은 불가피하게 함유되는 불순물로써, 결정립계에 편석되어 강의 연성을 크게 저하시키고, 강 중 유화물(MnS 개재물)을 형성하여 냉간 단조성, 지연 파괴 저항성 및 응력 이완 특성을 열화시키는데 주요 원인이 되는 원소이므로, 그 함량을 가능한 한 낮게 제어하는 것이 바람직하다. 이론상 황의 함량은 0%로 제어하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 황의 함량의 상한을 0.02%로 관리하고, 보다 바람직하게는 0.01%로 관리하며, 보다 더 바람직하게는 0.009%로 관리하고, 가장 바람직하게는 0.008%로 관리한다.
sol.Al: 0.01~0.05%
가용 알루미늄은 탈산제로서 유용하게 작용하는 원소이다. 본 발명에서 이러한 효과를 나타내기 위해서는 0.01% 이상 포함되는 것이 바람직하고, 0.015% 이상 포함되는 것이 보다 바람직하며, 0.02% 이상 포함되는 것이 보다 더 바람직하다. 다만, 그 함량이 0.05%를 초과할 경우 AlN 형성에 의한 오스테나이트 입도 미세화 효과가 커지게 되어 냉간가공성이 저하된다. 따라서 본 발명에서는 상기 가용 알루미늄 함량의 상한을 0.05%로 관리한다.
Nb: 0.005~0.02%
니오븀은 탄질화물을 형성하여 오스테나이트 및 페라이트의 입계 이동을 제한하는 역할을 하는 원소로서 0.005% 이상 함유한다. 하지만, 상기 탄질화물은 파괴 기점으로 작용하여 충격인성 특히, 저온 충격인성을 저하시킬 수 있으므로 역시 용해도 한계를 지켜 첨가하는 것이 바람직하다. 더욱이, 그 함량이 과다할 경우, 고용한계를 넘게 되어 조대한 석출물을 형성하는 문제가 있다. 따라서, 그 함량은 0.02% 이하로 제한하는 것이 바람직하고, 0.018% 이하로 제한하는 것이 보다 바람직하다.
V: 0.05~0.2%
바나듐은 니오븀과 마찬가지로 탄질화물을 형성하여 오스테나이트 및 페라이트의 입계 이동을 제한하는 역할을 하는 원소로서 0.05% 이상 함유한다. 다만, 상기 탄질화물은 파괴 기점으로 작용하여 충격인성 특히, 저온 충격인성을 저하시킬 수 있으므로, 용해도 한계(solubility limit)를 지켜 첨가하는 것이 바람직하다. 따라서, 그 함량은 0.2% 이하로 제한하는 것이 바람직하고, 0.18% 이하로 제한하는 것이 보다 바람직하다.
N: 0.01% 이하
질소는 불가피하게 함유되는 불순물로써, 그 함량이 과다할 경우, 고용 질소량이 증가하여 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 이론상 질소의 함량은 0%로 제어하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 질소의 함량의 상한을 0.01%로 관리하는 것이 바람직하고, 0.008%로 관리하는 것이 보다 바람직하며, 0.007%로 관리하는 것이 보다 더 바람직하다.
상기 합금조성 외 잔부는 철(Fe)이다. 뿐만 아니라, 본 발명의 비조질 선재는 통상 강의 공업적 생산 과정에서 포함될 수 있는 기타의 불순물을 포함할 수 있다. 이러한 불순물들은 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 알 수 있는 내용이므로 본 발명에서 특별히 그 종류와 함량을 제한하지는 않는다.
다만, Ti는 본 발명의 효과를 얻기위해 그 함량을 최대한 억제하여야 하는 대표적인 불순물에 해당하기 때문에, 이에 대하여 간략히 설명하면 다음과 같다.
Ti: 0.005% 이하
타이타늄은 탄질화물 형성원소로써, Nb 및 V보다 높은 온도에서 탄질화물을 형성한다. 따라서, 강 중 타이타늄이 포함될 경우 비록 C 및 N의 고정에는 유리할 수 있으나, Ti 탄질화물을 핵으로 하여 Nb 및/또는 V가 석출되어 기지 내에 조대한 탄질화물이 다량 형성됨으로써 냉간 가공성이 열화될 수 있다. 따라서, 그 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 타이타늄의 함량의 상한을 0.005%로 관리하는 것이 바람직하고, 0.004%로 관리하는 것이 보다 바람직하다.
일 예에 따르면, 본 발명의 선재의 탄소당량(Ceq)은 0.5 이상 0.6 이하일 수 있다. 여기서, 탄소당량(Ceq)은 하기 식 1에 의해 정의될 수 있다. 만약, 탄소당량(Ceq)이 0.5 미만이거나, 0.6을 초과하는 경우 목표 강도 확보가 어려울 수 있다.
[식 1] Ceq = [C] + [Si]/9 + [Mn]/5 + [Cr]/12
(여기서, [C], [Si], [Mn] 및 [Cr] 각각은 해당 원소의 함량(%)을 의미함)
일 예에 따르면, C, Mn, Cr, Nb 및 V의 함량은 하기 관계식 3을 만족할 수 있다. 만약, 하기 관계식 3을 만족하지 않을 경우, 중심부 편석으로 인해 선재의 중심편석부 및 비편석부의 경도차가 급증하며, 이에 따라 냉간 단조 가공시 내부 크랙 발생 가능성이 현저히 증가하여 냉간가공성이 열화될 우려가 있다.
[관계식 3] 7.35[C] + 1.88[Mn] + 0.34[Cr] + 0.25[Nb] + 0.47[V] ≤ 4.5
(여기서, [C], [Mn], [Cr], [Nb] 및 [V] 각각은 해당 원소의 함량(%)을 의미함)
일 예에 따르면, Nb 및 V의 함량은 하기 관계식 4를 만족할 수 있다. 본 발명자들은 관계식 4를 만족할 경우 조대한 Nb 및 V 복합 탄질화물의 형성이 억제됨을 확인하였다. 만약, Nb 및 V의 함량이 하기 관계식 4를 만족하지 않을 경우 빌렛 재가열시 Nb, V 탄질화물이 충분히 고용되지 않고 선재 제조 공정중에 기지 내에 조대하게 석출되어 냉간 가공성이 열화될 우려가 있다. 10[Nb]/[V] 값의 보다 바람직한 하한은 0.6이고, 보다 더 바람직한 하한은 0.7이며, 10[Nb]/[V] 값의 보다 바람직한 상한은 1.5이고, 보다 더 바람직한 상한은 1.2이다.
[관계식 4] 0.5 ≤ 10[Nb]/[V] ≤ 2.0
(여기서, [Nb] 및 [V] 각각은 해당 원소의 함량(%)을 의미함)
일 예에 따르면, 상기 비조질 선재는 Nb 및/또는 V를 포함하는 탄질화물을 포함하며, 상기 탄질화물의 평균 원상당 직경(equivalent circular diameter)은 70nm 이하일 수 있다. 만약, 탄질화물의 평균 원상당 직경이 70nm를 초과할 경우 중심 편석부에서 이러한 탄질화물들이 파괴의 기점으로 작용할 우려가 있다. 여기서, 탄질화물이란 탄소 및/또는 질소를 포함하는 석출물을 의미한다.
일 예에 따르면, 상기 Nb 및/또는 V를 포함하는 탄질화물 중 평균 원상당 직경 80nm 이상인 탄질화물의 단위 면적 당 개수가 5개/μm2 이하일 수 있다. 만약, 평균 원상당 직경 80nm 이상인 탄질화물의 단위 면적 당 개수가 5개/μm2를 초과할 경우, 목표하는 냉간 가공성 확보가 어려울 수 있다.
한편, 본 발명에서는 Nb 및/또는 V를 포함하는 탄질화물의 평균 원상당 직경 등을 측정하는 방법에 대해서는 특별히 한정하지 않으나, 예를 들면 다음과 같은 방법을 이용할 수 있다. 즉, 비조질 선재를 길이 방향과 수직한 방향으로 절단한 후, 주사전자현미경(FE-SEM, Field Emission Scanning Electron Microscope)을 이용해 1/4d 위치(여기서, d는 비조질 선재의 직경을 의미함)에서 1,000배율로 단면 사진을 촬영하고, 전자 탐침 미량 분석기(EPMA, Electron Probe Micro-Analyzer)를 이용하여 각각의 석출물의 조성을 분석하여 그 종류를 구분한 후, 이를 분석하여 Nb 및/또는 V를 포함하는 탄질화물의 평균 원상당 직경, 평균 원상당 직경 80nm 이상인 조대 탄질화물의 개수를 산출할 수 있다.
일 예에 따르면, 본 발명의 선재는 그 미세조직으로 페라이트(ferrite) 및 펄라이트(pearlite)를 포함할 수 있으며, 보다 바람직하게는, 면적분율로 30% 이상(100% 제외)의 페라이트(ferrite) 및 70% 이하(0% 제외)의 펄라이트(pearlite)를 포함할 수 있다. 상기와 같은 조직을 확보할 경우, 우수한 냉간가공성 확보와 더불어 적절한 신선가공 후 우수한 강도를 확보할 수 있는 장점이 있다.
또한, 일 예에 따르면, 상기 페라이트의 평균입경은 5~25㎛일 수 있고, 보다 바람직하게는 10~20㎛일 수 있다. 상기 페라이트의 평균입경이 5㎛ 미만일 경우 입계 미세화에 의해 강도가 증가하여 냉간가공성이 감소할 우려가 있으며, 반면 25㎛를 초과할 경우 강도가 감소할 우려가 있다.
또한, 일 예에 따르면, 상기 페라이트의 입경의 표준편차는 5㎛ 이하(0㎛ 포함)일 수 있고, 보다 바람직하게는 3㎛ 이하(0㎛ 포함)일 수 있다. 상기 페라이트의 입경의 표준편차가 5㎛를 초과할 경우 조대 페라이트가 취성 파괴의 기점이 되어 강의 인성 및 가공성이 열화될 우려가 있다.
한편, 함께 형성되는 펄라이트의 평균입경과 입경의 표준편차는 상기 페라이트의 평균입경과 입경의 표준편차에 영향을 받기 때문에 특별히 제한하지 않는다. 여기서, 입경은, 선재의 길이 방향 일 단면을 관찰하여 검출한 입자들의 원 상당 직경(equivalent circular diameter)을 의미한다.
일 예에 따르면, 본 발명의 선재는 선재 상태에서 단면감소율(RA)이 70% 이상으로 연성이 매우 우수한 장점이 있다.
일 예에 따르면, 본 발명의 선재를 5~25%의 신선 가공량(D)으로 신선가공시, 신선가공 후 선재의 경도는 하기 관계식 5를 만족할 수 있다. 만약, 신선가공 후 선재의 경도가 관계식 5를 만족하지 않을 경우, 가공경화에 의한 강도 상승이 매우 커져서 냉간가공성이 급격하게 저하될 수 있다.
[관계식 5] Hv,1-10 ≤ (Hv,D,1/2d+Hv,D,1/4d)/2 ≤ Hv,1+10
(여기서, Hv,1은 "(Hv,1/2D+Hv,1/4D)/2+85.45×{1-exp(-D/11.41)}"를 의미하고, Hv,D,1/2d, Hv,D,1/4d 각각은 신선가공 후 선재의 직경 방향으로 1/2d 위치 및 1/4d 위치에서 측정한 선재의 경도를 의미함)
이상에서 설명한 본 발명의 신선용 선재는 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 일 구현예로써 다음과 같은 방법에 의해 제조될 수 있다.
이하, 본 발명의 다른 일 측면인 냉간가공성이 우수한 비조질 선재의 제조방법에 대하여 상세히 설명한다.
먼저, 상기 성분계를 만족하는 블룸(bloom)을 가열 후, 강편 압연하여 빌렛(billet)을 얻는다.
블룸(bloom)의 가열 온도는 1200~1300℃인 것이 바람직하고, 1220~1280℃인 것이 보다 바람직하다. 블룸의 가열 온도가 1200℃ 미만일 경우 열간 변형 저항이 증가할 우려가 있으며, 반면, 1300℃를 초과할 경우 오스테나이트의 조대화로 인해 연성이 열화할 우려가 있다.
일 예에 따르면, 블룸의 가열시, 가열 온도에서의 유지 시간은 4시간 이상일 수 있다. 만약, 그 유지 시간이 4시간 미만일 경우 균질화 처리가 충분치 못할 우려가 있다. 한편, 가열 온도에서의 유지 시간이 길수록 균질화에 유리하여 편석의 저감에 유리한 바, 본 발명에서는 그 유지 시간의 상한에 대해서는 특별히 한정하지 않는다.
다음으로, 상기 빌렛(billet)을 재가열 후, 선재 압연하여 비조질 선재를 얻는다.
빌렛의 재가열 온도는 1050~1250℃인 것이 바람직하고, 1100~1200℃인 것이 보다 바람직하다. 만약, 빌렛의 재가열 온도가 1050℃ 미만일 경우, 열간 변형 저항이 증가하여 생산성의 저하를 가져 올 우려가 있으며, 반면, 가열 온도가 1250℃를 초과할 경우, 페라이트 결정립이 지나치게 조대해져 연성이 저하될 우려가 있다.
일 예에 따르면, 빌렛의 재가열시, 재가열 온도에서의 유지 시간은 80분 이상일 수 있다. 만약, 그 유지 시간이 80분 미만일 경우 균질화 처리가 충분치 못할 우려가 있다. 한편, 재가열 온도에서의 유지 시간이 길수록 편석 조장 원소들의 균질화에 유리한 바, 본 발명에서는 그 유지 시간의 상한에 대해서는 특별히 한정하지 않는다.
선재 압연시, 마무리 압연온도는 Ae3~(Ae3+50)℃인 것이 바람직하다. 만약, 마무리 압연온도가 Ae3℃ 미만인 경우 선재의 중심부와 표면부의 온도 편차로 인해 페라이트 결정립의 입도 편차가 발생하고, 페라이트 결정립 미세화에 의한 강도 상승으로 변형 저항이 증가할 우려가 있으며, 반면, Ae3+50℃를 초과하는 경우 페라이트 결정립이 지나치게 조대해져 인성이 저하될 우려가 있다. 참고로 Ae3는 아래 식 2로부터 계산할 수 있다. 참고로, 여기서 마무리 압연온도란 마무리 압연 개시 시점에서의 슬라브의 표면 온도를 의미하며, 마무리 압연 개시 후에는 복열 효과로 인해 슬라브의 표면 온도가 이보다 더 상승할 수 있다고 할 것이나, 본 발명에서는 마무리 압연 개시 후 슬라브의 표면 온도에 대해 특별히 한정하지 않는다.
[식 2] Ae3(℃) = 930 - 185√[C] + 60[Si] -25[Mn] -500[P] + 12[Cr] -200[Al] + 110[V] - 400[Ti]
(여기서, [C], [Si], [Mn], [P], [Cr], [Al], [V] 및 [Ti] 각각은 해당 원소의 함량(%)을 의미함)
이후, 상기 비조질 선재를 권취한 후, 냉각한다.
비조질 선재의 권취온도는 750~900℃일 수 있고, 보다 바람직하게는 800~850℃일 수 있다. 만약, 권취온도가 750℃ 미만인 경우에는 냉각시 발생한 표층부의 마르텐사이트가 복열에 의해 회복되지 않고, 소려 마르텐사이트가 생성되어 딱딱하고 무른 강이 되기 때문에 냉간가공성이 저하될 우려가 있다. 반면, 권취온도가 900℃를 초과하는 경우 그 표면에 두꺼운 스케일이 형성되어 탈스케일시 트러블이 발생하기 쉬울 뿐만 아니라, 냉각시간이 길어져 생산성이 저하될 우려가 있다.
비조질 선재의 냉각시 냉각속도는 0.1~1℃/sec일 수 있고, 바람직하게는 0.3~0.8℃/sec 이하일 수 있다. 이는 안정적으로 페라이트 및 펄라이트 복합조직을 형성하기 위함으로, 만약, 냉각속도가 0.1℃/sec 미만일 경우 펄라이트 조직의 라멜라 간격이 넓어져 연성이 부족할 우려가 있으며, 1℃/sec를 초과할 경우 페라이트 분율이 부족하여 냉간가공성이 열화될 우려가 있다.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
하기 표 1과 같은 합금조성을 갖는 블룸(bloom)을 1250에서 5시간 가열한 후, 1150의 마무리 압연 온도 조건으로 강편압연하여 빌렛(billet)을 얻었다. 이후, 상기 빌렛(billet)을 1150에서 2시간 재가열한 후, 선경 20mm로 선재 압연 하여 비조질 선재를 제조하였다. 이때, 비교예 1의 경우 마무리 압연온도 770에서 마무리 압연하였고, 나머지 실시예의 경우 마무리 압연온도 850에서 마무리 압연하였다. 이후, 800의 온도에서 권취한 후, 0.5/sec의 속도로 냉각하였다. 이후, 주사전자현미경을 이용해 냉각된 선재의 미세조직을 관찰하고, 탄질화물의 원상당 직경 등을 산출한 후, 직경 방향으로 1/2d 위치 및 1/4d 위치에서 경도를 측정하였으며, 그 결과를 하기 표 2에 나타내었다.
또한, 냉각된 선재의 냉간가공성을 평가하여 하기 표 2에 함께 나타내었다. 냉간가공성 평가는 노치압축시편을 진변형 0.7의 압축 시험을 실시하여 균열 발생 유무로 평가하였으며, 균열이 발생하지 않을 경우 "GO", 균열이 발생한 경우, "NG"로 평가하였다.
Figure PCTKR2016013028-appb-T000001
Figure PCTKR2016013028-appb-T000002
이후, 각각의 선재에 각각 10%, 20%, 30%의 신선 가공량을 인가하여 강선을 제조하였으며, 제조된 각각의 강선에 대해 직경 방향으로 1/2d 위치 및 1/4d 위치에서 경도를 측정하고, 냉간가공성을 평가하였으며, 그 결과를 하기 표 3에 나타내었다.
Figure PCTKR2016013028-appb-T000003
표 3에서 알 수 있듯이, 본 발명에서 제안하는 합금조성 및 제조조건을 만족하는 발명예 1 내지 8의 경우, 선재의 평균 경도와 선재의 중심편석부 및 비편석부의 경도비가 본 발명에서 제안하는 범위를 만족하여 냉간가공성이 매우 우수하다는 것을 알 수 있다. 반면, 비교예 1 내지 9의 경우, 선재의 중심편석부 및 비편석부의 경도비가 본 발명에서 제안하는 범위를 초과하여 신선가공 후 냉간단조시 내부에 크랙이 발생되었으며 발명강 대비 냉간가공성이 열위하게 나타났다.

Claims (17)

  1. 중량%로, C: 0.15~0.30%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Cr: 0.5% 이하(0% 제외), P: 0.02% 이하, S: 0.02% 이하, sol.Al: 0.01~0.05%, Nb: 0.005~0.02%, V: 0.05~0.2%, N: 0.01% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고,
    선재의 직경 방향으로 1/2d 위치(여기서, d는 선재의 직경을 의미하며, 이하 동일함) 및 1/4d 위치에서 측정한 선재의 경도를 각각 Hv,1/2d(Hv), Hv,1/4d(Hv)라고 할 때, 하기 관계식 1 및 2를 만족하는 비조질 선재.
    [관계식 1] (Hv,1/2d+Hv,1/4d)/2 ≤ 240
    [관계식 2] Hv,1/2d/Hv,1/4d ≤ 1.2
  2. 제1항에 있어서,
    상기 불가피한 불순물은 Ti를 포함하고, 중량%로, Ti: 0.005% 이하로 억제된 비조질 선재.
  3. 제1항에 있어서,
    Nb 및/또는 V를 포함하는 탄질화물을 포함하고, 상기 탄질화물의 평균 원상당 직경이 5~70nm인 비조질 선재.
  4. 제3항에 있어서,
    상기 탄질화물 중 평균 원상당 직경 80nm 이상인 탄질화물의 단위 면적 당 개수가 5개/μm2 이하인 비조질 선재.
  5. 제1항에 있어서,
    탄소당량(Ceq)이 0.5 이상 0.6 이하인 비조질 선재.
  6. 제1항에 있어서,
    하기 관계식 3을 만족하는 비조질 선재.
    [관계식 3] 7.35[C] + 1.88[Mn] + 0.34[Cr] + 0.25[Nb] + 0.47[V] ≤ 4.5
    (여기서, [C], [Mn], [Cr], [Nb] 및 [V] 각각은 해당 원소의 함량(%)을 의미함)
  7. 제1항에 있어서,
    하기 관계식 4를 만족하는 비조질 선재.
    [관계식 4] 0.5 ≤ 10[Nb]/[V] ≤ 2.0
    (여기서, [Nb] 및 [V] 각각은 해당 원소의 함량(%)을 의미함)
  8. 제1항에 있어서,
    미세조직으로, 페라이트(ferrite) 및 펄라이트(pearlite)를 포함하는 비조질 선재.
  9. 제1항에 있어서,
    미세조직으로, 30면적% 이상(100면적% 제외)의 페라이트(ferrite) 및 70면적% 이하(0면적% 제외)의 펄라이트(pearlite)를 포함하는 비조질 선재.
  10. 제8항 또는 제9항에 있어서,
    상기 페라이트의 평균입경은 5~25μm인 비조질 선재.
  11. 제1항에 있어서,
    5~25%의 신선 가공량(D)으로 신선 가공시, 신선 가공 후 선재의 경도가 하기 관계식 5를 만족하는 비조질 선재.
    [관계식 5] Hv,1-10 ≤ (Hv,D,1/2d+Hv,D,1/4d)/2 ≤ Hv,1+10
    (여기서, Hv,1은 "(Hv,1/2d+Hv,1/4d)/2+85.45×{1-exp(-D/11.41)}"를 의미하고, Hv,D,1/2d, Hv,D,1/4d 각각은 신선가공 후 선재의 직경 방향으로 1/2d 위치 및 1/4d 위치에서 측정한 선재의 경도를 의미함)
  12. 중량%로, C: 0.15~0.30%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Cr: 0.5% 이하(0% 제외), P: 0.02% 이하, S: 0.02% 이하, sol.Al: 0.01~0.05%, Nb: 0.005~0.02%, V: 0.05~0.2%, N: 0.01% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 탄소당량(Ceq)이 0.5 이상 0.6 이하이며, 하기 관계식 3 및 4를 만족하는 블룸(bloom)을 1200~1300℃의 가열 온도로 가열 후, 강편 압연하여 빌렛(billet)을 얻는 단계;
    상기 빌렛을 1050~1250℃의 재가열 온도로 재가열 후, 마무리 압연온도 Ae3~(Ae3+50)℃의 조건 하 선재 압연하여 선재를 얻는 단계; 및
    상기 선재를 권취 후, 냉각하는 단계;
    를 포함하는 비조질 선재의 제조방법.
    [관계식 3] 7.35[C] + 1.88[Mn] + 0.34[Cr] + 0.25[Nb] + 0.47[V] ≤ 4.5
    [관계식 4] 0.5 ≤ 10[Nb]/[V] ≤ 2.0
    (여기서, [C], [Mn], [Cr], [Nb] 및 [V] 각각은 해당 원소의 함량(%)을 의미함)
  13. 제12항에 있어서,
    상기 불가피한 불순물은 Ti를 포함하고, 중량%로, Ti: 0.005% 이하로 억제된 비조질 선재의 제조방법.
  14. 제12항에 있어서,
    상기 블룸의 가열시, 가열 온도에서의 유지 시간은 4시간 이상인 비조질 선재의 제조방법.
  15. 제12항에 있어서,
    상기 빌렛의 재가열시, 재가열 온도에서의 유지 시간은 80분 이상인 비조질 선재의 제조방법.
  16. 제12항에 있어서,
    상기 권취시, 권취온도는 750~900℃인 비조질 선재의 제조방법.
  17. 제12항에 있어서,
    상기 냉각시, 냉각속도는 0.1~1℃/sec인 비조질 선재의 제조방법.
PCT/KR2016/013028 2015-11-12 2016-11-11 냉간가공성이 우수한 비조질 선재 및 그 제조방법 WO2017082687A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680066249.XA CN108350549B (zh) 2015-11-12 2016-11-11 具有优异的冷加工性的非淬火和回火的线材及其制造方法
MX2018005059A MX2018005059A (es) 2015-11-12 2016-11-11 Alambron no templado y revenido que tiene excelente trabajabilidad en frio y metodo de manufactura para el mismo.
DE112016005223.5T DE112016005223T5 (de) 2015-11-12 2016-11-11 Nicht vergüteter Walzdraht mit ausgezeichneter Kaltverformbarkeit und Herstellungsverfahren davon
JP2018523799A JP6605141B2 (ja) 2015-11-12 2016-11-11 冷間加工性に優れた非調質線材及びその製造方法
US15/767,345 US10889876B2 (en) 2015-11-12 2016-11-11 Non-heat treated wire rod having excellent cold workability and manufactured method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0158814 2015-11-12
KR1020150158814A KR101758470B1 (ko) 2015-11-12 2015-11-12 냉간가공성이 우수한 비조질 선재 및 그 제조방법

Publications (2)

Publication Number Publication Date
WO2017082687A1 true WO2017082687A1 (ko) 2017-05-18
WO2017082687A8 WO2017082687A8 (ko) 2017-10-26

Family

ID=58695817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013028 WO2017082687A1 (ko) 2015-11-12 2016-11-11 냉간가공성이 우수한 비조질 선재 및 그 제조방법

Country Status (7)

Country Link
US (1) US10889876B2 (ko)
JP (1) JP6605141B2 (ko)
KR (1) KR101758470B1 (ko)
CN (1) CN108350549B (ko)
DE (1) DE112016005223T5 (ko)
MX (1) MX2018005059A (ko)
WO (1) WO2017082687A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173168A (ja) * 2018-03-26 2019-10-10 日本製鉄株式会社 冷間鍛造用鋼材

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714916B1 (ko) * 2015-11-12 2017-03-10 주식회사 포스코 냉간단조성이 우수한 선재 및 그 제조방법
KR101977467B1 (ko) * 2017-05-29 2019-05-13 주식회사 포스코 강도 및 냉간가공성이 우수한 중탄소 선재 및 이의 제조방법
KR102143075B1 (ko) * 2018-11-26 2020-08-31 주식회사 포스코 신선가공성 및 충격인성이 우수한 비조질 선재 및 그 제조방법
CN110284059A (zh) * 2019-06-20 2019-09-27 浙江众泰汽车制造有限公司 一种汽车前悬架下控制臂本体及其制备方法
KR102318035B1 (ko) * 2019-12-17 2021-10-27 주식회사 포스코 신선가공성 및 충격인성이 우수한 비조질 선재 및 그 제조방법
KR102318036B1 (ko) * 2019-12-17 2021-10-27 주식회사 포스코 절삭성 및 충격인성이 우수한 비조질 선재 및 그 제조방법
US20220235443A1 (en) * 2020-02-24 2022-07-28 Posco Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor
CN111304516B (zh) * 2020-03-05 2021-05-28 中天钢铁集团有限公司 一种高强度高低温冲击韧性吊钩用非调质钢及生产工艺
CN112981244A (zh) * 2021-02-02 2021-06-18 南京钢铁股份有限公司 非调质钢长杆螺栓及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713257A (ja) * 1993-06-21 1995-01-17 Fuji Photo Optical Co Ltd 画面サイズ規制装置
JP2002146480A (ja) * 2000-11-13 2002-05-22 Kobe Steel Ltd 冷間加工性に優れた線材・棒鋼およびその製造方法
JP2004137542A (ja) * 2002-10-17 2004-05-13 Sumitomo Metal Ind Ltd 非調質鋼熱間鍛造部材の製造方法
KR100940038B1 (ko) * 2007-09-20 2010-02-04 주식회사 세아베스틸 충격 인성이 우수한 열간단조용 비조질강, 이의 제조방법및 이에 의해 제조된 자동차 샤시용 부품
KR20150071216A (ko) * 2013-12-18 2015-06-26 주식회사 포스코 중탄소 연질 선재 및 그 제조방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274055A (ja) 1985-09-27 1987-04-04 Kobe Steel Ltd 熱間鍛造用高靭性非調質鋼
JPH03204328A (ja) * 1990-01-08 1991-09-05 Nippondenso Co Ltd 減衰力可変ショックアブソーバの製御装置
JPH0713257B2 (ja) 1990-05-30 1995-02-15 新日本製鐵株式会社 圧延ままで表面異常相のない軟質線材の製造方法
JP3117601B2 (ja) 1994-05-09 2000-12-18 新日本製鐵株式会社 非調質機械部品およびその製造方法
JPH10195530A (ja) 1996-12-28 1998-07-28 Daido Steel Co Ltd 高強度・高靱性フェライト+パーライト型非調質鋼鍛造品の製造方法
JP3715744B2 (ja) 1997-05-26 2005-11-16 新日本製鐵株式会社 破壊切断して使用する熱間鍛造用非調質鋼
JP3515923B2 (ja) 1998-04-21 2004-04-05 株式会社神戸製鋼所 冷間加工性に優れた線状または棒状鋼、および冷間鍛造品、冷間圧造品、または冷間転造品
JP3719037B2 (ja) 1999-03-10 2005-11-24 Jfeスチール株式会社 表面割れのない連続鋳造鋳片およびこの鋳片を用いた非調質高張力鋼材の製造方法
KR100428581B1 (ko) 1999-12-28 2004-04-30 주식회사 포스코 강도 및 인성이 우수한 비조질강 및 이를 이용한 선재의 제조방법
CN1116430C (zh) 2001-08-06 2003-07-30 武汉钢铁(集团)公司 大线能量焊接非调质高韧性低温钢及其生产方法
JP3961982B2 (ja) 2002-06-28 2007-08-22 住友金属工業株式会社 作業機用エンジンの非調質クランクシャフト
JP3969328B2 (ja) 2003-03-26 2007-09-05 住友金属工業株式会社 非調質継目無鋼管
JP4699342B2 (ja) * 2006-11-17 2011-06-08 株式会社神戸製鋼所 疲労限度比に優れた高強度冷間鍛造用非調質鋼
WO2011055651A1 (ja) * 2009-11-05 2011-05-12 住友金属工業株式会社 熱間圧延棒鋼または線材
CN102071368A (zh) 2011-01-30 2011-05-25 钢铁研究总院 低成本锻造用中碳非调质钢
KR101518571B1 (ko) 2013-08-23 2015-05-07 주식회사 포스코 고강도 및 고인성 비조질 선재 및 그 제조방법
CN103898417A (zh) 2014-04-01 2014-07-02 莱芜钢铁集团有限公司 非调质处理低裂纹敏感性钢带及其制备方法
JP7013257B2 (ja) * 2018-01-26 2022-01-31 タキロンシーアイ株式会社 止水板用支持柱の設置構造及びその設置方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713257A (ja) * 1993-06-21 1995-01-17 Fuji Photo Optical Co Ltd 画面サイズ規制装置
JP2002146480A (ja) * 2000-11-13 2002-05-22 Kobe Steel Ltd 冷間加工性に優れた線材・棒鋼およびその製造方法
JP2004137542A (ja) * 2002-10-17 2004-05-13 Sumitomo Metal Ind Ltd 非調質鋼熱間鍛造部材の製造方法
KR100940038B1 (ko) * 2007-09-20 2010-02-04 주식회사 세아베스틸 충격 인성이 우수한 열간단조용 비조질강, 이의 제조방법및 이에 의해 제조된 자동차 샤시용 부품
KR20150071216A (ko) * 2013-12-18 2015-06-26 주식회사 포스코 중탄소 연질 선재 및 그 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173168A (ja) * 2018-03-26 2019-10-10 日本製鉄株式会社 冷間鍛造用鋼材
JP7299475B2 (ja) 2018-03-26 2023-06-28 日本製鉄株式会社 冷間鍛造用鋼材

Also Published As

Publication number Publication date
JP2018537584A (ja) 2018-12-20
US10889876B2 (en) 2021-01-12
KR20170056059A (ko) 2017-05-23
KR101758470B1 (ko) 2017-07-17
WO2017082687A8 (ko) 2017-10-26
JP6605141B2 (ja) 2019-11-13
DE112016005223T5 (de) 2018-07-19
US20180298464A1 (en) 2018-10-18
MX2018005059A (es) 2018-06-13
CN108350549A (zh) 2018-07-31
CN108350549B (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2017082687A1 (ko) 냉간가공성이 우수한 비조질 선재 및 그 제조방법
WO2017111510A1 (ko) 열간 가공성이 우수한 비자성 강재 및 그 제조방법
WO2017082684A1 (ko) 냉간단조성이 우수한 선재 및 그 제조방법
WO2018074887A1 (ko) 고강도 철근 및 이의 제조 방법
WO2012067379A2 (ko) 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 냉연/열연 DP강의 제조방법
WO2019066328A1 (ko) 내부식 피로특성이 우수한 스프링용 선재, 강선 및 이들의 제조방법
WO2012064129A2 (ko) 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 냉연/열연 TRIP강의 제조방법
WO2018110853A1 (ko) 저온역 버링성이 우수한 고강도 복합조직강 및 그 제조방법
WO2018117646A1 (ko) 극저온 충격인성이 우수한 후강판 및 이의 제조방법
WO2012043984A2 (ko) 수소유기균열 저항성이 우수한 라인 파이프용 강판 및 그 제조 방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2019124814A1 (ko) 수소유기균열 저항성 및 길이방향 강도 균일성이 우수한 강판 및 그 제조방법
WO2021172604A1 (ko) 신선가공성 및 충격인성이 우수한 비조질 선재 및 그 제조방법
WO2018110906A1 (ko) 표면품질이 우수한 고탄소 열연강판 및 이의 제조방법
WO2018117606A1 (ko) 가공성이 우수한 용융도금강재 및 그 제조방법
WO2019004540A1 (ko) 핫 스탬핑 부품 및 이의 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2021010599A2 (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
WO2017104920A1 (ko) 강도 및 냉간가공성이 우수한 비조질 선재 및 그 제조방법
WO2023121179A1 (ko) 강도 및 저온 충격인성이 우수한 플랜지용 극후물 강재 및 그 제조방법
WO2016072679A1 (ko) 강도와 충격 인성이 우수한 선재 및 그 제조방법
WO2018110850A1 (ko) 충격인성이 우수한 고강도 선재 및 그 제조방법
WO2019132179A1 (ko) 고강도 고인성 열연강판 및 그 제조방법
WO2017111303A1 (ko) 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
WO2020085852A1 (ko) 항복강도가 우수한 오스테나이트계 고망간 강재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15767345

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/005059

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2018523799

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112016005223

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864613

Country of ref document: EP

Kind code of ref document: A1