WO2018117203A1 - 工作機械およびその制御装置 - Google Patents
工作機械およびその制御装置 Download PDFInfo
- Publication number
- WO2018117203A1 WO2018117203A1 PCT/JP2017/045855 JP2017045855W WO2018117203A1 WO 2018117203 A1 WO2018117203 A1 WO 2018117203A1 JP 2017045855 W JP2017045855 W JP 2017045855W WO 2018117203 A1 WO2018117203 A1 WO 2018117203A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- combination
- workpiece
- cutting tool
- machine tool
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 claims abstract description 139
- 238000003754 machining Methods 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 description 16
- 239000002699 waste material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000012840 feeding operation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/409—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B1/00—Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/013—Control or regulation of feed movement
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4093—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4093—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
- G05B19/40937—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35402—Calculate allowable machining capability from cutting conditions
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36308—Table for cutting conditions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present invention relates to a machine tool and its control device.
- a vibration tool includes a cutting tool for cutting a workpiece, a rotating means for relatively rotating the cutting tool and the workpiece at a predetermined rotational speed, and a vibrating means for relatively reciprocally vibrating the cutting tool and the workpiece.
- a machine tool is known that performs vibration cutting of a workpiece while feeding the cutting tool and the workpiece in a predetermined machining feed direction with vibration at a frequency per rotation relative to the vibration frequency of the means ( For example, see Patent Document 1.)
- the vibration frequency of the vibration means is determined based on a cycle that can be commanded by the machine tool control device, and is automatically corrected to a vibration condition usable by the machine tool control device with respect to the vibration condition input by the user. (For example, refer to Patent Document 2).
- the vibration frequency of the vibration means is determined based on a cycle that can be commanded by the control device of the machine tool, it is not easy to perform machining under vibration conditions that can be selected by the machine tool.
- the present invention solves the problems of the prior art as described above, and provides a machine tool and a control device for the same that allow a user to select a vibration condition according to an input value of rotation speed or vibration frequency. It is to be.
- the present invention provides a cutting tool for cutting a workpiece, a rotating means for relatively rotating the cutting tool and the workpiece, and feeding the cutting tool and the workpiece in a predetermined machining feed direction.
- a machine tool provided with a feeding means to be operated and a vibration means for reciprocally vibrating the cutting tool and the workpiece, and the relative rotation between the cutting tool and the workpiece, and the cutting tool relative to the workpiece.
- a machine tool control device having a control unit that causes the machine tool to perform vibration cutting of a workpiece by a feeding operation with reciprocating vibration, Input means for inputting the relative rotation speed or vibration frequency between the cutting tool and the workpiece; vibration frequency caused by a period that can be commanded to the vibration means; and the rotation speed or vibration input via the input means.
- Selection means for enabling selection of a combination of parameters consisting of rotation speed and vibration frequency determined based on the number, and the rotation speed based on a predetermined combination selected from the combinations made selectable by the selection means
- setting means for setting each parameter of the frequency in the control unit.
- the selection means displays a combination of parameters obtained from the obtained rotation speed and vibration frequency so as to be selectable.
- a combination of the parameters and a graph graphically showing a vibration operation corresponding to the combination of the parameters are displayed.
- the said control part is provided with the combination table which consists of a some combination based on the said vibration frequency, The said selection means shows the combination with a small difference with the value input via the said input means. It is possible to select from.
- control unit includes an adding unit that newly selects a combination different from the combination that can be selected by the selecting unit, and the selecting unit selects the different combination selected by the adding unit. It is characterized by enabling.
- a combination of vibration conditions that can be set in the machine tool can be selected. Therefore, the user can easily select a desired vibration condition and perform vibration cutting on the machine tool. Processing can be performed.
- the user can easily confirm the vibration operation when performing the cutting process in response to the input to the input means. It becomes possible. For example, it is possible to easily check the idling motion range in which the cutting tool does not cut the workpiece.
- the control unit includes an adding unit that newly selects a combination that is different from the combination that can be selected by the selecting unit, and the selecting unit can select a different combination that is selected by the adding unit.
- the combination of parameters can be easily changed according to the workpiece to be cut. Even if there is no desired vibration condition among the vibration conditions that can be selected, a new vibration condition can be added. Therefore, the desired vibration condition can be selected as the vibration condition to be selected.
- the machine tool 100 according to the present invention includes a main shaft 110, a cutting tool base 130 ⁇ / b> A, and a control device 180.
- a chuck 120 is provided at the tip of the main shaft 110.
- the main shaft 110 is used as a work holding means, and the work W is held on the main shaft 110 via the chuck 120.
- the spindle 110 is rotatably supported by the spindle stock 110A and is driven to rotate by the power of the spindle motor.
- the spindle motor can be a known built-in motor provided between the spindle stock 110A and the spindle 110, for example.
- a Z-axis direction feed mechanism 160 is provided on the bed of the machine tool 100.
- the Z-axis direction feed mechanism 160 includes a base 161 integrated with the bed, and a Z-axis direction guide rail 162 fixed to the base 161.
- a Z-axis direction feed table 163 is slidably supported on the Z-axis direction guide rail 162 via a Z-axis direction guide 164.
- the headstock 110 ⁇ / b> A is mounted on the Z-axis direction feed table 163.
- the headstock 110 ⁇ / b> A is arranged so that the axial direction of the main shaft 110 coincides with the extending direction of the Z-axis direction guide rail 162.
- the headstock 110A is provided so as to be movable in the axial direction (Z-axis direction in the figure) of the main shaft 110 by the Z-axis direction feed mechanism 160, and the main shaft 110 can move along the Z-axis direction via the headstock 110A.
- a mover 165 a of the linear servo motor 165 is provided on the Z-axis direction feed table 163.
- a stator 165 b of the linear servo motor 165 is provided on the base 161.
- the X-axis direction feed mechanism 150 is provided on the bed side of the machine tool 100.
- the X-axis direction feed mechanism 150 includes a base 151 that is integral with the bed side, and an X-axis direction guide rail 152 that extends in the X-axis direction perpendicular to the Z-axis direction in the vertical direction.
- the X-axis direction guide rail 152 is fixed to the base 151, and an X-axis direction feed table 153 is slidably supported on the X-axis direction guide rail 152 via the X-axis direction guide 154.
- a cutting tool base 130A is mounted on the X-axis direction feed table 153.
- the cutting tool base 130 ⁇ / b> A is provided so as to be movable in the X-axis direction by the X-axis direction feed mechanism 150.
- the cutting tool base 130 ⁇ / b> A constitutes a tool rest on which a cutting tool 130 such as a cutting tool for processing the workpiece W is mounted and holds the cutting tool 130.
- a mover 155 a of the linear servo motor 155 is provided on the X-axis direction feed table 153.
- a stator 155 b of the linear servo motor 155 is provided on the base 151.
- the Y-axis direction feed mechanism can have the same structure as the X-axis direction feed mechanism 150.
- the Y-axis direction feed table is moved in the Y-axis direction by driving the linear servo motor, and the cutting tool base 130A is moved in the Y-axis direction.
- the cutting tool 130 can be moved in the X-axis direction and the Y-axis direction.
- a Y-axis direction feed mechanism may be provided on the bed side via the X-axis direction feed mechanism 150, and the cutting tool base 130A may be mounted on the Y-axis direction feed table.
- the rotation of the main shaft 110 and the movement of the X-axis direction feed mechanism 150, the Z-axis direction feed mechanism 160, and the like are controlled by the control device 180.
- the X-axis direction feed mechanism 150 and the Z-axis direction feed mechanism 160 or a feed means including the Y-axis direction feed mechanism constitutes the X-axis direction feed mechanism 150 or the Y-axis direction feed mechanism and the Z-axis direction feed mechanism 160.
- the headstock 110 ⁇ / b> A and the cutting tool base 130 ⁇ / b> A can be moved to predetermined positions.
- the cutting tool 130 is moved relative to the spindle 110, and the spindle 110 is moved relative to the workpiece W and the cutting tool 130.
- the workpiece W can be processed into a desired shape by being driven as a rotating means for rotating and rotating the workpiece W with respect to the cutting tool 130.
- the configuration in which both the headstock 110A and the cutting tool base 130A can move has been described.
- the mainhead base 110A is fixed to the bed, and the cutting tool base 130A is set in the X-axis direction and the Y-axis direction.
- the structure may be movable in the Z-axis direction.
- the feed means is constituted by a feed mechanism that moves the cutting tool base 130A.
- the cutting tool base 130A may be fixed to the bed, and the head stock 110A may be configured to be movable in the X-axis direction, the Y-axis direction, and the Z-axis direction.
- the feeding means is constituted by a feeding mechanism provided on the bed.
- the linear servo motor is used for the X-axis direction feed mechanism 150 and the Z-axis direction feed mechanism 160.
- a known ball screw and servo motor may be used.
- the motor that rotates the cutting tool 130 corresponds to the rotating means of the present invention.
- the control unit 181 of the control device 180 moves the headstock 110A forward by a predetermined amount of advance (forward movement), and then moves backward (backward) by a predetermined amount of reverse movement.
- the cutting tool 130 can be fed to the workpiece W in the feed direction by a difference (advance amount) between the advance amount and the reverse amount with vibration along the feed direction.
- the vibrating means is constituted by feeding means including the X-axis direction feeding mechanism 150 and the Z-axis direction feeding mechanism 160 or the Y-axis direction feeding mechanism, and moves the headstock 110A and the cutting tool stage 130A forward and backward.
- the cutting tool 130 can be vibrated with respect to the workpiece W.
- the cutting tool 130 is fed to the workpiece W along with the vibration along the feeding direction by the feeding means that also serves as the vibration means, and is changed by one rotation of the spindle 110, that is, the spindle phase is changed from 0 ° to 360 °.
- the workpiece W is cut by using the total of the above-mentioned progress amount as a feed amount.
- An imaginary line (one-dot chain line) passing through the valley of the waveform becomes a feed straight line, and the position of the main axis phase 360 ° on the feed straight line corresponds to the feed amount per rotation of the workpiece W.
- the vertical axis of the graph represents the position of the cutting tool 130 relative to the workpiece W in the machining feed direction
- the horizontal axis of the graph represents one rotation of the workpiece W, that is, the spindle phase 0
- a cutting locus of vibration cutting by the cutting tool 130 on the outer peripheral surface of the workpiece developed from the angle of 360 ° to 360 ° along the circumferential direction of the workpiece is shown.
- the locus (indicated by a broken line in FIG. 4) is shifted in the main axis phase direction (horizontal axis direction of the graph of FIG. 4).
- the position of the shallowest point (in other words, the peak of the mountain as viewed from the cutting tool 130) of the phase valley of the workpiece outer peripheral surface shape shown by the broken line in FIG. 4 is the workpiece shown by the solid line in FIG.
- the main axis phase direction (horizontal axis direction of the graph) shifts without matching.
- the vibration cutting has a phase and amplitude at which the cutting trajectory at the time of reciprocating vibration and the cutting trajectory at the time of backward movement intersect each other,
- the cutting part partially overlaps, and the n + 1 rotation cutting part on the outer peripheral surface of the workpiece includes the cut part at the nth rotation, and vibration cutting is performed when passing through the already cut cutting locus.
- an idling operation in which the cutting tool 130 does not cut the workpiece W occurs.
- Cutting waste generated from the workpiece W during vibration cutting is sequentially divided by this idle swinging operation.
- the machine tool 100 can smoothly perform the vibration cutting of the workpiece W while dividing the cutting waste by the reciprocating vibration along the processing feed direction by the cutting tool 130.
- the period during which the n + 1-th cut portion of the outer peripheral surface of the workpiece is included in the n-th cut portion is reduced, and the n + 1-th cut is performed.
- the portion does not reach the n-th cut portion, the idling motion does not occur.
- the period during which the n + 1-th cut portion is included in the n-th cut portion varies depending on the feed amount and the amplitude of the vibration waveform, so that the vibration waveform is proportional to the feed amount so that an idling motion occurs. Set the amplitude.
- the amplitude is set by multiplying the feed amount by the amplitude feed ratio Q, where the ratio of the amplitude to the feed amount is the amplitude feed ratio Q.
- FIG. 4 shows an example in which the cutting portion at the current forward movement and the cutting portion at the next backward movement partially overlap the shallowest point of the phase valley.
- the idling motion of the cutting tool 130 occurs, for example, if the cut portion of the workpiece outer peripheral surface at the (n + 1) th rotation of the spindle 110 includes a cut portion of the workpiece outer peripheral surface at the nth rotation of the spindle 110.
- the cutting trajectory of the cutting tool 130 during the backward movement at the (n + 1) th rotation (n is an integer of 1 or more) on the outer peripheral surface of the workpiece may reach the cutting trajectory of the cutting tool 130 at the nth rotation of the outer peripheral surface of the workpiece.
- the cutting portion of the workpiece outer peripheral surface at the (n + 1) th rotation of the main shaft 110 and the cut portion of the workpiece outer peripheral surface at the nth rotation of the main shaft 110 are brought close to each other and divided so that the cutting waste is broken at the adjacent portion. Also good.
- the phases of the shapes cut by the cutting tool 130 in the (n + 1) th rotation and the nth rotation of the workpiece W do not have to coincide with each other (the same phase), and it is not always necessary to reverse 180 °.
- the frequency N which is the number of times that the workpiece W and the cutting tool 130 are reciprocally oscillated while the spindle 110 is rotated once, is 1.1, 1.25, 2.6, 3.75 (times / r), for example. ) Etc.
- the frequency N can be set to a value smaller than 1 (times / r) (0 ⁇ frequency N ⁇ 1.0).
- the spindle 110 rotates more than one rotation before the cutting tool base 130A makes one reciprocation.
- control unit 181 of control device 180 issues an operation command at a predetermined command cycle.
- the reciprocating vibration of the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) can be operated at a predetermined vibration frequency f based on the command period of the control unit 181.
- the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) can be reciprocally oscillated only at a plurality of predetermined limited frequencies that are reciprocals of values that are integral multiples of the reference period.
- a group of vibration frequencies f corresponding to the command cycle is a vibration frequency f group
- the vibration frequency of the head stock 110A or the cutting tool base 130A is determined to be a value selected from the vibration frequency f group.
- the command cycle may be set by a multiple other than an integer multiple of the reference cycle (2 (ms)).
- the frequency N is proportional to the vibration frequency f and inversely proportional to the rotation speed S.
- the main shaft 110 rotates at a higher speed as the vibration frequency f is increased and the frequency N is decreased.
- the control device 180 of the present embodiment can select and select a vibration condition according to the input means 182 that allows a user to input a desired rotation speed or vibration frequency and the input rotation speed or vibration frequency.
- Presenting means 183 for presenting to the user and setting means 184 for setting the selected vibration condition in the control unit 181 are provided.
- the input unit 182 includes an input device such as a keyboard or a touch panel linked to the presentation unit 183, and can input the rotation speed or the vibration frequency to the presentation unit 183 by a user input operation.
- the presenting means 183 uses the vibration frequency f resulting from the period that can be commanded to the vibration means and the input rotation speed or vibration frequency to set the rotation speed or vibration frequency close to the input rotation speed or vibration frequency to the vibration frequency.
- the calculation unit 183a to be calculated in response, the selection unit 183b to select a combination candidate of each parameter composed of the rotation speed and the vibration frequency calculated by the calculation unit 183a, and the parameter combination candidate selected by the selection unit 183b to the user
- a selection unit 183c that presents the selection to be selectable.
- the selection unit 183c corresponds to the selection unit of the present invention.
- a memory 185 that stores a combination table that indicates a correspondence relationship between each vibration frequency f of the vibration frequency f group and the rotation speed S (or vibration frequency N) with respect to an arbitrary vibration frequency N (or rotation speed S) in advance.
- the presenting unit 183 selects the parameter combination candidates selected from the combination table stored in the memory 185 by the selection unit 183b in the order close to the input rotation speed or vibration frequency value. Can be extracted.
- the combination table limits the number of vibrations N set in the control unit 181 to a plurality of predetermined values, and sets the number of combinations of each predetermined vibration frequency f and the number of rotations S calculated from the plurality of limited vibrations N. It may be finite. Note that a plurality of candidate combinations of parameters may be selected, or only one may be selected.
- a display unit 186 composed of a display or the like is linked to the presentation unit 183, and a combination candidate selected by the presentation unit 183 is configured to be displayed on the display unit 186.
- the setting unit 184 includes, for example, a touch panel of a display, and selects a combination desired by the user by touching a combination candidate displayed on the display unit 186, and includes the selected combination including the vibration frequency f. Thus, it can be set in the control unit 181 as a parameter of the vibration condition.
- the control unit 181 controls the spindle 110, the vibration unit, and the feeding unit based on the vibration condition set by the setting unit 184, and causes the machine tool 100 to perform vibration cutting of the workpiece W.
- the user can easily grasp the vibration conditions that can be selected by the machine tool 100, and can easily cause the machine tool 100 to perform processing according to the vibration conditions grasped and selected by the user.
- the input of a desired rotation speed or vibration frequency by the user uses an input device such as a keyboard or a touch panel as in the present invention.
- the values of the rotation speed S and the vibration frequency N are described in the machining program.
- the frequency N can be set as an argument in a predetermined program block (one line of the program).
- the rotation speed S of the spindle 110 generally described in the machining program and the frequency N called as an argument by execution of the program block Is input to the presenting means 183.
- the presentation means 183 (calculation part 183a) demonstrated the example which calculates rotation speed and a frequency based on the rotation frequency or frequency input with the vibration frequency f.
- the present invention is not limited to this example.
- the present invention can be applied to a case where calculation is not involved, such as obtaining a rotation speed or a vibration frequency from a predetermined table.
- the selection unit 183c may display the combination candidates on the display unit 186, or may notify the combination candidates to the user, for example, by voice.
- FIG. 5 shows an example of a vibration condition setting flowchart by the control device 180 in the first embodiment.
- the control device 180 is preliminarily provided with a memory 185 that stores the combination table.
- the presenting unit 183 determines whether or not the rotation number or the vibration frequency is input by the user via the input unit 182 (STEP 101).
- the presenting unit 183 sets the input rotation speed or vibration frequency as a target value for selecting a combination (STEP 102). For example, when the rotation speed is input, the input rotation speed is set as the target rotation speed Su, and when the vibration frequency is input, the input vibration frequency is set as the target vibration frequency Nu, and the set target frequency is set.
- the rotation speed Su or the target vibration frequency Nu is stored in the memory 185.
- the presenting unit 183 selects a candidate for a combination of vibration conditions close to the target rotation speed Su or the target vibration frequency Nu (STEP 103). For example, when selecting a combination candidate based on the target rotational speed Su, the presentation unit 183 compares the target rotational speed Su stored in the memory 185 in STEP 101 with the rotational speed of each combination in the combination table, and performs the target rotational speed. A combination close to several Su is extracted as a selection candidate. Specifically, the presenting unit 183 calculates a difference between the target rotation speed Su and the rotation speed of each combination, and extracts combinations as selection candidates in order of increasing difference.
- the presenting means 183 displays the selected combination as a selection candidate of the vibration conditions that the machine tool 100 can operate to the user via the display unit 186 (STEP 104).
- each combination candidate is displayed on the display unit 186 so that one can be selected as a vibration condition from the plurality of combination candidates.
- a determination button and a rejection button can be displayed on the display unit 186 so that the vibration condition can be determined or rejected.
- the selected combination can be configured to be set in the control unit 181 as a vibration condition parameter including the vibration frequency f.
- the combinations may be easily compared by sorting and displaying in order from the target rotational speed Su or the target frequency Nu. .
- a determination button and a rejection button can be displayed on the display unit 186 as two choices so that the presented combination can be determined or rejected as a vibration condition.
- the presentation unit 183 deletes the combination display on the display unit 186 and switches to a display for inputting a desired rotation speed or vibration frequency. It controls so that a user can input via the input means 182.
- the setting unit 184 vibrates the determined combination with the rotation speed S, the vibration frequency N, and the vibration frequency.
- Each parameter of the vibration condition is set in the control unit 181 as the frequency f (STEP 106).
- Each set parameter can be stored in the memory 185 as a vibration condition selection history.
- the control unit 181 operates the spindle 110 and the cutting tool 130 using the parameters set by the setting unit 184 as vibration conditions to perform vibration cutting of the workpiece W.
- the machine tool 100 can be selected from the combinations of vibration conditions that can be operated, so the user selects a condition close to the desired vibration condition,
- the vibration cutting of the workpiece W can be performed by grasping the vibration condition.
- the rotation is calculated from each vibration frequency f of the vibration frequency f group shown in FIG.
- the number correspondence table is stored in the memory 185 as a combination table used when selecting a combination candidate.
- each combination candidate is presented on the display unit 186 together with a selection button 187, a decision button 188, and a rejection button 189.
- the control unit 181 controls the rotation of the spindle 110 and the reciprocating vibration of the cutting tool 130 based on the set vibration conditions, and performs vibration cutting of the workpiece W.
- a vibration condition close to the desired rotation number input by the user can be selected.
- Cutting can be performed.
- the phase of the cutting locus generated on the outer peripheral surface of the work is reversed by 180 ° for each rotation of the spindle 110.
- a vibration condition having a rotational speed close to the number can be selected, and the cutting waste can be reliably divided.
- the second embodiment of the present invention uses another vibration condition combination table for the control device 180 in the first embodiment, and other configurations are the same as those in the first embodiment. Description of is omitted. Therefore, the second embodiment will be described in detail.
- the setting means 184 sets the desired number of rotations input via the input means 182 as a fixed value. A certain target rotational speed Su is set, and a combination as a selection candidate is selected based on the frequency value calculated from the target rotational speed Su and each vibration frequency f.
- the input unit 182 When 1500 is input as the value of the rotational speed, 1500 (r / min) is set as the target rotational speed Su.
- the presenting means 183 is configured to extract a value close to the integer +0.5 with respect to the calculated frequency, the difference between the calculated frequency and the integer +0.5 is compared. Then, a combination with a small difference is selected as a vibration condition candidate that can be selected by the user.
- the desired rotational speed input by the user is fixed to the target rotational speed Su, and the vibration conditions desired by the user are set from the combination candidates selected based on the target rotational speed Su, and vibration cutting is performed. It can be performed. Further, the value input by the user by the input means 182 is changed to the rotation frequency to be the vibration frequency, the input desired vibration frequency is fixed to the target vibration frequency Nu, and each vibration frequency of the target vibration frequency Nu and the vibration frequency group f is set. The number of rotations calculated from f may be used as a combination candidate.
- the third embodiment of the present invention uses another vibration condition setting flowchart for the control device 180 in the first embodiment, and other configurations are the same as those in the first embodiment. Description of is omitted. Therefore, the third embodiment will be described in detail.
- the control unit 180 described above newly selects a combination candidate different from the combination candidate presented on the display unit 186 according to a user instruction, and then presents it on the display unit 186.
- An additional means for newly selecting a combination candidate is provided. For example, when displaying the combination candidate selected by the presentation unit 183 on the display unit 186, the adding unit displays an additional button for adding a different combination on the display unit 186, and whether or not the addition button is selected on the input unit 182. It is controlled to make it judge.
- FIG. 9 An example of a vibration condition setting flowchart in the third embodiment is shown in FIG.
- STEPs 301 to 306 are the same processing as STEPs 101 to 106 of the first embodiment, and thus description thereof is omitted.
- an add button 190 that allows addition of a different combination candidate is presented, and it is confirmed whether or not the add button 190 has been selected (STEP 307 in FIG. 9). ).
- the presentation unit 183 selects a combination candidate different from the combination candidates already presented from the combination table (STEP 308).
- a combination candidate to be added among the combinations close to the target rotational speed Su or the target vibration frequency Nu in the combination table extracted in STEP 303, a combination closest to the already presented combination (small error) is selected.
- the fourth, fifth, sixth,... are additionally presented in order from the nearest combination according to the number of times the add button is selected.
- the combination candidates selected in STEP 308 are additionally displayed on the display unit 186 by STEP 304.
- the presenting unit 183 may be configured to display on the display unit 186, to input / output by voice, or a combination of these.
- Example 4 In the fourth embodiment of the present invention, different display contents are used for the control device 180 in the first embodiment, and the rest of the configuration is the same as that of the first embodiment. Is omitted. Therefore, the fourth embodiment will be described in detail.
- an input field 191 for a desired rotation speed S, amplitude feed ratio Q, vibration frequency N, cutting feed, and material diameter is displayed on the display unit 186.
- the user can input the rotation speed S, the amplitude feed ratio Q, the vibration frequency N, the cutting feed, and the material diameter.
- the cutting feed corresponds to the feed amount per rotation of the workpiece W.
- the amplitude feed ratio Q and the frequency N are not set in the input field 191, they can be set as predetermined default values.
- the default value of the amplitude feed ratio Q can be 1.5
- the frequency N that can be selected as the default value can be 1.5, 2.5, 3.5, 4.5 (times / r).
- the presentation unit 183 sets the target rotation speed Su to 1500.
- the presenting unit 183 selects three combinations to be presented in the order close to the target rotational speed Su, 1500, 1538, and 1429 are selected in the order closest to the input rotational speed.
- a button 187a and a decision button 188 are shown.
- combinations of parameters such as the rotation speed, the vibration frequency, and the frequency are shown.
- the graph column 193 graphically shows a two-dimensional vibration operation with the cutting tool position and the main shaft phase as vertical and horizontal axes, respectively.
- the cutting locus of the cutting tool 130 in the first rotation of the spindle 110 is indicated by a solid line
- the cutting locus of the cutting tool 130 in the second rotation of the spindle 110 is indicated by a broken line.
- a one-dot chain line indicates cutting feed
- a two-dot chain line indicates maximum actual feed. The maximum actual feed is obtained from the set cutting feed, the amplitude feed ratio Q, and the vibration frequency N, and the spindle phase 0 ° and the end point of the forward movement of the cutting tool 130 in the first rotation of the spindle 110 (return start point).
- the cutting tool 130 operates at a maximum actual feed larger than the set cutting feed (one-dot chain line). Further, it can be seen from this graph that the idling motion occurs in the vicinity of the main shaft phase of 72 °, 216 °, and 360 °.
- the display unit 186 includes a display field 192 and a graph field 193, a next button 187a, a back button 187b, and a decision button 188.
- the graph column 193 graphically shows a two-dimensional vibration operation.
- the cutting locus of the cutting tool 130 at the first rotation of the spindle 110 is indicated by a solid line
- the cutting locus of the cutting tool 130 at the second rotation of the spindle 110 is indicated by a broken line
- the spindle phase is 120 °. It can be seen that the idling motion occurs around 360 °.
- the display unit 186 described with reference to FIG. 12 is displayed.
- the display section 186 shows a display field 192, a graph field 193, a return button 187b, and an enter button 188.
- the graph column 193 graphically shows a two-dimensional vibration operation, and similarly to FIGS.
- the cutting locus of the cutting tool 130 at the first rotation of the main shaft 110 is indicated by a solid line, and the second rotation of the main shaft 110.
- the cutting locus of the cutting tool 130 at is indicated by a broken line. From this graph, it can be seen that the idling motion occurs in the vicinity of the main shaft phase of 51.4 °, 154.2 °, 257 °, and 360 °.
- the display unit 186 in FIG. 13 is displayed.
- the display unit 186 in FIG. 12 is displayed.
- the vibration frequency f is set to 62.5 (Hz).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Geometry (AREA)
- Numerical Control (AREA)
- Turning (AREA)
- Automatic Control Of Machine Tools (AREA)
Abstract
Description
また、振動手段の振動周波数は工作機械の制御装置が指令可能な周期に基づいて定まり、ユーザの入力した振動条件に対して、工作機械の制御装置で使用可能な振動条件に自動的に補正されることが知られている(例えば特許文献2参照。)。
本発明は、前述したような従来技術の課題を解決するものであって、入力した回転数または振動数の値に応じて、振動条件をユーザに選択可能にする工作機械とその制御装置を提供することである。
前記切削工具とワークとの相対的な回転数または振動数を入力する入力手段と、前記振動手段に指令可能な周期に起因する振動周波数と前記入力手段を介して入力された前記回転数または振動数とに基づいて求められる回転数および振動数からなる各パラメータの組み合わせを選択可能にする選択手段と、該選択手段によって選択可能にされた組み合わせから選択された所定の組み合わせに基づいた前記回転数および振動数の各パラメータを前記制御部に設定する設定手段とを有することを第1の特徴とする。
第3に、前記各パラメータの組み合わせと、該各パラメータの組み合わせに対応する振動動作をグラフィカルに示すグラフとが表示されることを特徴とする。
第4に、前記制御部が、前記振動周波数に基づいた複数の組み合わせからなる組み合わせテーブルを備え、前記選択手段が、前記入力手段を介して入力された値との差が小さい組み合わせを前記組み合わせテーブルから選択可能にすることを特徴とする。
選択可能にされた振動条件の中に所望の振動条件が無い場合であっても新たな振動条件を追加可能であるため、選定する振動条件としてより所望の振動条件を選定することができる。
本発明の第1実施例である工作機械100の全体構成について、以下に説明する。
図1に示すように、本発明に係る工作機械100は、主軸110と、切削工具台130Aと、制御装置180とを備えている。
主軸110をワーク保持手段とし、ワークWは、チャック120を介して主軸110に保持されている。
主軸110は、主軸台110Aに回転自在に支持され、主軸モータの動力によって回転駆動される。
主軸モータは、例えば、主軸台110Aと主軸110との間に設けられる公知のビルトインモータとすることができる。
Z軸方向送り機構160は、ベッドと一体的なベース161と、ベース161に固定されたZ軸方向ガイドレール162とを備えている。
Z軸方向ガイドレール162には、Z軸方向送りテーブル163がZ軸方向ガイド164を介してスライド自在に支持されている。
Z軸方向送りテーブル163に、主軸台110Aが搭載される。
主軸台110Aは、主軸110の軸線方向がZ軸方向ガイドレール162の延出方向と一致するように配置されている。
主軸台110Aは、Z軸方向送り機構160によって主軸110の軸線方向(図示のZ軸方向)に移動自在に設けられ、主軸110は、主軸台110Aを介してZ軸方向に沿って移動できる。
リニアサーボモータ165の固定子165bが、ベース161に設けられている。
Z軸方向送りテーブル163が、リニアサーボモータ165の駆動によってZ軸方向に移動すると、主軸台110AがZ軸方向に移動し、主軸110がZ軸方向に沿って移動する。
X軸方向送り機構150は、前記ベッド側と一体的なベース151と、Z軸方向に対して上下方向で直交するX軸方向に延びるX軸方向ガイドレール152とを備えている。
X軸方向ガイドレール152は、ベース151に固定され、X軸方向ガイドレール152には、X軸方向送りテーブル153がX軸方向ガイド154を介してスライド自在に支持されている。
切削工具台130Aは、X軸方向送り機構150によって、X軸方向に移動自在に設けられている。
切削工具台130Aは、ワークWを加工するバイト等の切削工具130が装着され、切削工具130を保持する刃物台を構成している。
リニアサーボモータ155の固定子155bが、ベース151に設けられている。
X軸方向送りテーブル153がリニアサーボモータ155の駆動によってX軸方向に移動すると、切削工具台130AがX軸方向に移動し、切削工具130がX軸方向に沿って移動する。
Y軸方向送り機構は、X軸方向送り機構150と同様の構造とすることができる。
X軸方向送り機構150をY軸方向送り機構を介してベッドに搭載することにより、Y軸方向送りテーブルをリニアサーボモータの駆動によってY軸方向に移動して、切削工具台130AをY軸方向に移動させ、切削工具130をX軸方向およびY軸方向に移動させることができる。
なお、Y軸方向送り機構を、X軸方向送り機構150を介してベッド側に設け、Y軸方向送りテーブルに切削工具台130Aを搭載してもよい。
X軸方向送り機構150とZ軸方向送り機構160とによって、あるいはY軸方向送り機構を含めて送り手段が構成され、X軸方向送り機構150あるいはY軸方向送り機構とZ軸方向送り機構160との協動により、図2に示すように、主軸台110Aと切削工具台130Aとを所定の位置に移動させることができる。
主軸台110Aと切削工具台130Aとを所定の位置に移動させることによって、切削工具130を主軸110に対して相対的に移動させるとともに、主軸110を、ワークWと切削工具130とを相対的に回転させる回転手段として駆動させ、ワークWを切削工具130に対して回転させることによって、ワークWを所望の形状に加工することができる。
この場合、送り手段は、切削工具台130Aを移動させる送り機構によって構成される。
あるいは、切削工具台130Aをベッドに固定し、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動可能な構造としてもよい。
この場合、送り手段は、ベッドに設けた送り機構によって構成される。
第1実施例においては、切削工具130に対してワークWを回転させた例で説明するが、切削工具130にドリル等の回転工具を用い、ワークWに対して切削工具130を回転させてもよい。
この場合、切削工具130を回転させるモータが、本発明の回転手段に相当する。
X軸方向送り機構150とZ軸方向送り機構160、あるいはY軸方向送り機構を含めた送り手段によって振動手段が構成され、主軸台110Aと切削工具台130Aとを往動移動および復動移動させることにより、ワークWに対して切削工具130を振動させることができる。
切削工具130は、振動手段を兼用した送り手段によって、ワークWに対して送り方向に沿った振動を伴って送られ、主軸110の1回転分、すなわち、主軸位相0°から360°まで変化したときの上記進行量の合計を送り量として、ワークWを切削加工する。
図4は、主軸110の1回転当たりにおける主軸台110Aの振動数Nが、3.5回(振動数N=3.5)の例を示す。波形の谷を通過する仮想線(1点鎖線)が送りの直線となり、この送りの直線における主軸位相360°の位置がワークW1回転あたりの送り量に相当する。
図4では、ワーク外周面の状態を分かり易く説明するため、グラフの縦軸を加工送り方向におけるワークWに対する切削工具130の位置、グラフの横軸をワークWの1回転、すなわち、主軸位相0°から360°とし、ワーク外周面を周方向に沿って展開したワーク外周面の切削工具130による振動切削加工の切削軌跡を示している。
具体的には、図4に破線で示したワーク外周面形状の位相の谷の最も浅い点(言い換えると、切削工具130から見た山の頂点)の位置が、図4に実線で示したワーク外周面形状の位相の谷の最も浅い点(言い換えると、切削工具130から見た山の頂点)の位置に対して、主軸位相方向(グラフの横軸方向)で一致せずにずれる。
振動切削加工時にワークWから生じる切削屑は、この空振り動作によって順次分断される。
この結果、工作機械100は、切削工具130による加工送り方向に沿った往復振動によって切削屑を分断しながら、ワークWの振動切削加工を円滑に行うことができる。
n+1回転目の切削部分がn回転目の切削済み部分に含まれる期間は、送り量と振動波形の振幅に応じて変化するため、空振り動作が生ずるように、送り量に比例して振動波形の振幅を設定する。具体的には、送り量に対する振幅の比率を振幅送り比率Qとして、送り量に振幅送り比率Qを乗じて振幅を設定している。
図4では、今回の往動時の切削加工部分と次回の復動時の切削加工部分とが位相の谷の最も浅い点を一部重複する例を示した。
ただし、切削工具130の空振り動作は、例えば、主軸110のn+1回転目におけるワーク外周面の切削部分に、主軸110のn回転目におけるワーク外周面の切削済み部分が含まれていれば発生する。
言い換えると、ワーク外周面のn+1回転目(nは1以上の整数)における復動時の切削工具130の切削軌跡が、ワーク外周面のn回転目における切削工具130の切削軌跡まで到達すればよい。
なお、主軸110のn+1回転目におけるワーク外周面の切削部分と、主軸110のn回転目におけるワーク外周面の切削済み部分とを近接させ、該近接部分で前記切削屑を折れるように分断させてもよい。
例えば、主軸110を1回転させる間にワークWと切削工具130とを往復振動させる回数である振動数Nは、例えば、1.1や1.25、2.6、3.75(回/r)等とすることができる。
また、振動数Nを1(回/r)よりも小さな値(0<振動数N<1.0)に設定することもできる。
振動数Nを1(回/r)よりも小さな値に設定した場合、切削工具台130Aが1往復するまでに、主軸110は1回転よりも多く回転する。
この動作指令によって、主軸台110A(主軸110)または切削工具台130A(切削工具130)の往復振動は、制御部181の指令周期に基づく所定の振動周波数fで動作可能となる。
例えば、制御部181によって1秒間に500回の動作指令を送ることが可能な工作機械100の場合、制御部181の指令周期は、1(秒間)÷500(回)=2(ms/回)が基準周期となる。
例えば、基準周期(2(ms))の5倍の10(ms)を指令周期とすると、10(ms)毎に往動と復動を実行させることができ、1÷(0.002×5)=100.0(Hz)で主軸台110A(主軸110)または切削工具台130A(切削工具130)を往復振動させることができる。
指令周期に応じた振動周波数fの集まりを振動周波数f群とすると、主軸台110Aまたは切削工具台130Aの振動周波数は、振動周波数f群から選択される値に定められる。
なお、制御装置180(制御部181)によっては、基準周期(2(ms))の整数倍以外の倍数で指令周期を設定することができる場合もある。
N=f×60/S
振動数Nは、振動周波数fに比例し、回転数Sに対して反比例する。
主軸110は、振動周波数fを高くするほど、また、振動数Nを小さくするほど高速回転になる。
本実施例の制御装置180は、ユーザによって所望の回転数または振動数を入力することができる入力手段182と、入力された前記回転数または振動数に応じて振動条件を選出して選択可能にユーザに提示する提示手段183と、選択された振動条件を制御部181に設定する設定手段184とを備えている。
提示手段183は、振動手段に指令可能な周期に起因する振動周波数fと入力された回転数または振動数に基づいて、入力された回転数または振動数に近い回転数と振動数を振動周波数に応じて算出する算出部183a、算出部183aによって算出される回転数および振動数からなる各パラメータの組み合わせの候補を選出する選出部183b、選出部183bによって選出された各パラメータの組み合わせの候補をユーザに対して選択可能となるように提示する選択部183cを有する。選択部183cが本発明の選択手段に相当する。
組み合わせテーブルは、制御部181に設定する振動数Nを複数の所定値に限定し、所定の各振動周波数fと限定された複数の振動数Nから算出される回転数Sとの組み合わせの数を有限にしてもよい。なお、各パラメータの組み合わせの候補は、複数選出してもよいし、1つだけ選出してもよい。
設定手段184は、例えばディスプレイのタッチパネル等を備え、表示部186に表示された組み合わせの候補をタッチ操作することによって、ユーザが所望する組み合わせを選択し、選択された組み合わせを、振動周波数fを含めて振動条件のパラメータとして制御部181に設定することができる。
制御部181は、設定手段184によって設定された振動条件に基づいて主軸110や振動手段、送り手段を制御し、工作機械100にワークWの振動切削加工を実行させる。
ユーザは、工作機械100が選択できる振動条件を容易に把握することができ、ユーザが把握して選択した振動条件によって容易に工作機械100に加工を行わせることができる。
なお、ユーザによる所望の回転数または振動数の入力は、本発明のようにキーボードやタッチパネルなどの入力デバイスを使用する他、例えば、回転数Sや振動数Nの値を加工プログラム中に記載することや、所定のプログラムブロック(プログラムの1行)における引数として振動数Nを設定することもできる。
なお、提示手段183(算出部183a)が、回転数と振動数を、振動周波数fと入力された回転数または振動数に基づいて算出する例で説明した。しかし、本発明はこの例に限定されない。例えば、回転数や振動数を所定のテーブルから求めるような、計算を伴わない場合にも適用できる。また、選択部183cは、組み合わせの候補を表示部186に表示させてもよいし、組み合わせの候補を例えば音声でユーザに伝えてもよい。
なお、第1実施例においては、制御装置180には、前記組み合わせテーブルを記憶したメモリ185が予め設けられている。
提示手段183は、入力手段182を介してユーザによって回転数または振動数が入力されたか否かを判定する(STEP101)。
例えば、回転数が入力されると、入力された回転数を目標回転数Suとして設定し、振動数が入力されると、入力された振動数を目標振動数Nuとして設定し、設定された目標回転数Suまたは目標振動数Nuをメモリ185に記憶させる。
例えば、目標回転数Suに基づいて組み合わせの候補を選出する場合、提示手段183は、STEP101でメモリ185に記憶された目標回転数Suと組み合わせテーブルにおける各組み合わせの回転数とを比較し、目標回転数Suに近い組み合わせを選択候補として抽出する。
具体的には、提示手段183は、目標回転数Suと各組み合わせの回転数との差を算出し、差の小さい順に組み合わせを選択候補として抽出する。
決定ボタンが実行されることによって、選択された組み合わせを、振動周波数fを含めて振動条件のパラメータとして制御部181に設定するように構成することができる。
複数の組み合わせの候補を表示する際、例えば、目標回転数Suまたは目標振動数Nuの値に近い順にソートして表示することによって、各組み合わせの比較を容易におこなうことができるようにしてもよい。
提示される組み合わせの候補が1つの場合は、提示した組み合わせを振動条件として決定または却下することができるように二択の選択肢として決定ボタン及び却下ボタンを表示部186に表示することができる。
ユーザによる決定または却下の操作は、ディスプレイのタッチパネル等の他、入力手段182を介して入力できるように構成することができる。
提示した組み合わせの候補が却下であった場合(図5のSTEP105における判定NO)、提示手段183は表示部186の組み合わせ表示を消去して、所望する回転数または振動数を入力する表示に切り換え、入力手段182を介してユーザが入力できるように制御する。
設定された各パラメータは、振動条件の選択履歴としてメモリ185に記憶することができる。
このように、ユーザが入力した所望の回転数または振動数に応じて、工作機械100が動作可能な振動条件の組み合わせの候補から選択できるため、ユーザは所望の振動条件に近い条件を選択し、かつ振動条件を把握してワークWの振動切削加工を行うことができる。
図7Aに示すように、表示部186に所望する回転数の入力窓が表示され、ユーザの入力操作によって入力手段182に回転数=1500(r/min)が入力された場合、提示手段183は目標回転数Suを1500に設定する。
提示する組み合わせを目標回転数Suに近い順に3つを選ぶ構成とする場合、入力された回転数に近い順に1500、1538、1429が選ばれ、各回転数に対応して、S=1500、N=2.5、f=62.5と、S=1538、N=1.5、f=38.5と、S=1429、N=3.5、f=83.3の3つの組み合わせが選択候補として選出される。
例えば、図7Cに示すように、ユーザにより回転数Sが1500(r/min)の組み合わせの選択ボタン187が選択され、決定ボタン188が選択されると、設定手段184は、制御部181に対して回転数S=1500(r/min)、振動数N=2.5(回/r)、振動周波数f=62.5(Hz)に設定する。
制御部181は、設定された振動条件に基づいて主軸110の回転と切削工具130の往復振動とを制御し、ワークWの振動切削加工を行う。
特に、振動数Nが整数+0.5となる値に限定した組み合わせテーブルを用いることにより、ワーク外周面に生ずる切削軌跡の位相が主軸110の回転毎に180°反転するため、ユーザは所望の回転数に近い回転数を有する振動条件を選択し、かつ、切削屑を確実に分断することができる。
本発明の第2実施例は、第1実施例における制御装置180に別の振動条件の組み合わせテーブルを使用したものであって、その他の構成については第1実施例と共通するので、共通する事項については説明を省略する。
そこで、本第2実施例について詳説すると、前述した第1実施例におけるSTEP102の組み合わせの候補を選出する際、設定手段184が、入力手段182を介して入力された所望の回転数を確定値である目標回転数Suに設定し、目標回転数Suと各振動周波数fとから算出される振動数の値に基づいて、選択候補となる組み合わせを選出するものである。
例えば、振動周波数f群が25.0、26.3、27.8、・・・、71.4、83.3、100.0(Hz)である工作機械100に対して、入力手段182により回転数の値として1500が入力された場合、目標回転数Suに1500(r/min)が設定される。
提示手段183が算出された振動数に対して整数+0.5に近い値を抽出するように構成されている場合、算出された振動数の小数点以下の値と整数+0.5との差を比較し、差が小さくなる組み合わせをユーザによる選択可能な振動条件の候補として選出する。
また、入力手段182によってユーザが入力する値を回転数に換えて振動数とし、入力された所望の振動数を目標振動数Nuに固定し、目標振動数Nuと振動周波数f群の各振動周波数fとから算出される回転数とを組み合わせの候補にしてもよい。
また、算出された組み合わせの中から、回転数の値が予め定められた設定範囲内にあるものを候補として選出することもできる。
本発明の第3実施例は、第1実施例における制御装置180に別の振動条件の設定フローチャートを使用したものであって、その他の構成については第1実施例と共通するので、共通する事項については説明を省略する。
そこで、本第3実施例について詳説すると、前述した制御部180が、表示部186に提示された組み合わせの候補とは異なる組み合わせ候補をユーザの指示によって新たに選出した後、表示部186に提示する組み合わせの候補を新規に選出する追加手段を有するものである。
例えば、追加手段は、提示手段183によって選出された組み合わせの候補を表示部186に表示する際、表示部186に異なる組み合わせを追加する追加ボタンを表示させ、入力手段182に追加ボタンの選択有無について判断させるように制御している。
図9において、STEP301~306は第1実施例のSTEP101~106と同様の処理であるため、説明を省略する。
STEP304による組み合わせの候補を提示する際、図10に示すように、異なる組み合わせの候補を追加可能にする追加ボタン190を提示し、追加ボタン190が選択されたか否かを確認する(図9のSTEP307)。
追加される組み合わせの候補は、STEP303によって抽出された組み合わせテーブルにおける目標回転数Suまたは目標振動数Nuに近い組み合わせのうち、既に提示した組み合わせの次に近い(誤差が小さい)組み合わせが選ばれる。
STEP308で選出された組み合わせの候補は、STEP304によって表示部186に追加表示される。
さらに、提示手段183は、表示部186に表示する構成、音声によって入出力する構成、これらを組み合わせた構成とすることもできる。
本発明の第4実施例は、第1実施例における制御装置180に別の表示内容を使用したものであって、その他の構成については第1実施例と共通するので、共通する事項については説明を省略する。
そこで、本第4実施例について詳説すると、図11に示すように、表示部186に、所望する回転数S、振幅送り比率Q、振動数N、切削送り、材料径の入力欄191が表示され、ユーザが回転数S、振幅送り比率Q、振動数N、切削送り、材料径を入力することができる。図11の場合、切削送り=0.03(mm/r)、材料径=10(mm)が設定入力されている。切削送りが、ワークW1回転あたりの送り量に相当する。振幅送り比率Qと振動数Nを入力欄191で設定しない場合は、予め定められるデフォルト値とすることができる。例えば、振幅送り比率Qのデフォルト値を1.5、デフォルト値として選択可能な振動数Nを1.5、2.5、3.5、4.5(回/r)とすることができる。入力欄191で回転数S=1500(r/min)を設定入力することによって、提示手段183は目標回転数Suを1500に設定する。
回転数S=1500、振動数N=2.5、周波数f=62.5とした第1の候補が、図12に示すように、表示部186に、表示欄192およびグラフ欄193や、次へボタン187a、決定ボタン188が示される。表示欄192には、回転数、振動数、周波数などの各パラメータの組み合わせが示される。
グラフ欄193には、2次元の振動動作がグラフィカルに示される。図12と同様に、主軸110の1回転目における切削工具130の切削軌跡が実線で示され、主軸110の2回転目における切削工具130の切削軌跡が破線で示されており、主軸位相120°、360°付近で、空振り動作が生じることが分かる。
グラフ欄193には、2次元の振動動作がグラフィカルに示され、図12,13と同様に、主軸110の1回転目における切削工具130の切削軌跡が実線で示され、主軸110の2回転目における切削工具130の切削軌跡が破線で示される。このグラフから、主軸位相51.4°、154.2°、257°、360°付近で、空振り動作が生じることが分かる。
そして、図12の表示部186でユーザが決定ボタン188を選択すると、設定手段184は、制御部181に対して回転数S=1500(r/min)、振動数N=2.5(回/r)、振動周波数f=62.5(Hz)に設定する。
110 ・・・ 主軸(回転手段)
110A・・・ 主軸台
120 ・・・ チャック(ワーク保持手段)
130 ・・・ 切削工具
130A・・・ 切削工具台
150 ・・・ X軸方向送り機構(送り手段、振動手段)
151 ・・・ ベース
152 ・・・ X軸方向ガイドレール
153 ・・・ X軸方向送りテーブル
154 ・・・ X軸方向ガイド
155 ・・・ リニアサーボモータ
155a・・・ 可動子
155b・・・ 固定子
160 ・・・ Z軸方向送り機構(送り手段、振動手段)
161 ・・・ ベース
162 ・・・ Z軸方向ガイドレール
163 ・・・ Z軸方向送りテーブル
164 ・・・ Z軸方向ガイド
165 ・・・ リニアサーボモータ
165a・・・ 可動子
165b・・・ 固定子
180 ・・・ 制御装置
181 ・・・ 制御部(切削制御手段)
182 ・・・ 入力手段
183 ・・・ 提示手段
183a・・・ 算出部
183b・・・ 選出部
183c・・・ 選択部
184 ・・・ 設定手段
185 ・・・ メモリ
186 ・・・ 表示部
187 ・・・ 選択ボタン
187a・・・ 次へボタン
187b・・・ 戻るボタン
188 ・・・ 決定ボタン
189 ・・・ 却下ボタン
190 ・・・ 追加ボタン
191 ・・・ 入力欄
192 ・・・ 表示欄
193 ・・・ グラフ欄
f ・・・ 振動周波数
N ・・・ 振動数
S ・・・ 回転数
W ・・・ ワーク
Claims (6)
- ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具とワークとを所定の加工送り方向に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備えた工作機械に設けられ、
前記切削工具とワークとの相対的な回転と、前記ワークに対する切削工具の往復振動を伴う送り動作とによって、前記工作機械にワークの振動切削加工を実行させる制御部を有する工作機械の制御装置であって、
前記切削工具とワークとの相対的な回転数または振動数を入力する入力手段と、前記振動手段に指令可能な周期に起因する振動周波数と前記入力手段を介して入力された前記回転数または振動数とに基づいて求められる回転数および振動数からなる各パラメータの組み合わせを選択可能にする選択手段と、該選択手段によって選択可能にされた組み合わせから選択された所定の組み合わせに基づいた前記回転数および振動数の各パラメータを前記制御部に設定する設定手段とを有する工作機械の制御装置。 - 前記選択手段が、求められた前記回転数および振動数からなる各パラメータの組み合わせを選択可能に表示させる請求項1に記載の工作機械の制御装置。
- 前記各パラメータの組み合わせと、該各パラメータの組み合わせに対応する振動動作をグラフィカルに示すグラフとが表示される請求項2に記載の工作機械の制御装置。
- 前記制御部が、前記振動周波数に基づいた複数の組み合わせからなる組み合わせテーブルを備え、
前記選択手段が、前記入力手段を介して入力された値との差が小さい組み合わせを前記組み合わせテーブルから選択可能にする請求項1乃至請求項3のいずれか1つに記載の工作機械の制御装置。 - 前記制御部が、前記選択手段によって選択可能にされた組み合わせとは異なる組み合わせを新規に選出する追加手段を有し、
前記選択手段が、前記追加手段によって選出された異なる組み合わせを選択可能にする請求項1乃至請求項4のいずれか1つに記載の工作機械の制御装置。 - 請求項1乃至請求項5のいずれか1つに記載の制御装置を備えている工作機械。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197020913A KR102088672B1 (ko) | 2016-12-22 | 2017-12-21 | 공작 기계 및 그의 제어 장치 |
CN201780079273.1A CN110088698B (zh) | 2016-12-22 | 2017-12-21 | 机床及其控制装置 |
JP2018558062A JP6546707B2 (ja) | 2016-12-22 | 2017-12-21 | 工作機械およびその制御装置 |
ES17882896T ES2956772T3 (es) | 2016-12-22 | 2017-12-21 | Máquina herramienta y dispositivo de control para la misma |
US16/472,498 US11084101B2 (en) | 2016-12-22 | 2017-12-21 | Machine tool and control device for the machine tool |
EP17882896.8A EP3561620B1 (en) | 2016-12-22 | 2017-12-21 | Machine tool and control device therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016249806 | 2016-12-22 | ||
JP2016-249806 | 2016-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018117203A1 true WO2018117203A1 (ja) | 2018-06-28 |
Family
ID=62626566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045855 WO2018117203A1 (ja) | 2016-12-22 | 2017-12-21 | 工作機械およびその制御装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11084101B2 (ja) |
EP (1) | EP3561620B1 (ja) |
JP (1) | JP6546707B2 (ja) |
KR (1) | KR102088672B1 (ja) |
CN (1) | CN110088698B (ja) |
ES (1) | ES2956772T3 (ja) |
TW (1) | TWI679079B (ja) |
WO (1) | WO2018117203A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109531073A (zh) * | 2018-12-29 | 2019-03-29 | 苏州莱易精密机电有限公司 | 一种泵阀体薄壁件内孔加工改进方法 |
CN109991920A (zh) * | 2019-03-13 | 2019-07-09 | 西安万威机械制造股份有限公司 | 适用于韧性金属材料加工的正弦动力钻孔方法及控制系统 |
JP2020017249A (ja) * | 2017-08-01 | 2020-01-30 | シチズン時計株式会社 | 工作機械の制御装置および工作機械 |
JP7039772B1 (ja) * | 2021-07-06 | 2022-03-22 | Dmg森精機株式会社 | 表示装置、工作機械、および表示方法 |
WO2022264807A1 (ja) * | 2021-06-17 | 2022-12-22 | スター精密株式会社 | 工作機械のための振動切削条件設定装置 |
DE112022000311T5 (de) | 2021-01-28 | 2023-09-14 | Fanuc Corporation | Anzeigevorrichtung und Computerprogramm |
WO2024013870A1 (ja) * | 2022-07-13 | 2024-01-18 | ファナック株式会社 | 工作機械制御装置および工作機械制御プログラム |
WO2024062544A1 (ja) * | 2022-09-21 | 2024-03-28 | ファナック株式会社 | 工作機械の表示装置 |
WO2024105842A1 (ja) * | 2022-11-17 | 2024-05-23 | ファナック株式会社 | 工作機械の制御装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7195110B2 (ja) * | 2018-10-26 | 2022-12-23 | シチズン時計株式会社 | 工作機械及び制御装置 |
DE102019127628A1 (de) * | 2019-10-14 | 2021-04-15 | Optotech Optikmaschinen Gmbh | Werkzeugantriebseinheit, Drehvorrichtung und Drehverfahren |
DE112022000213T5 (de) | 2021-02-26 | 2023-08-17 | Fanuc Corporation | Computer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001150201A (ja) | 1999-11-22 | 2001-06-05 | Mitsubishi Materials Corp | 振動工具による切削方法及び切削装置 |
JP2002103101A (ja) * | 2000-09-22 | 2002-04-09 | Matsushita Electric Ind Co Ltd | 切屑分断化旋削方法及びその装置 |
JP2003058218A (ja) * | 2001-06-06 | 2003-02-28 | Fanuc Ltd | サーボモータを駆動制御する制御装置 |
JP2007069330A (ja) * | 2005-09-08 | 2007-03-22 | Fanuc Ltd | 放電加工装置の加工条件設定方法 |
WO2015146946A1 (ja) | 2014-03-26 | 2015-10-01 | シチズンホールディングス株式会社 | 工作機械の制御装置及びこの制御装置を備えた工作機械 |
WO2015146945A1 (ja) * | 2014-03-26 | 2015-10-01 | シチズンホールディングス株式会社 | 工作機械の制御装置及びこの制御装置を備えた工作機械 |
WO2016084171A1 (ja) * | 2014-11-26 | 2016-06-02 | 三菱電機株式会社 | 数値制御装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2250278T3 (es) * | 2001-09-05 | 2006-04-16 | Mikron Comp-Tec Ag | Un metodo y un sistema de soporte del operario destinados a ayudar a un operario a ajustar parametros de maquina. |
US8240234B2 (en) | 2007-10-16 | 2012-08-14 | University Of North Carolina At Charlotte | Methods and systems for chip breaking in turning applications using CNC toolpaths |
DE112013007444B4 (de) * | 2013-10-11 | 2020-03-05 | Mitsubishi Electric Corporation | Einstell- und Justierfunktionsunterstützungseinrichtung für ein Mehrachsen-Steuerungssystem |
EP3176660B1 (en) * | 2014-09-03 | 2019-08-21 | Yamazaki Mazak Corporation | Machining program editing assistance device |
ES2906576T3 (es) * | 2014-10-08 | 2022-04-19 | Citizen Watch Co Ltd | Procedimiento para la fabricación de una rosca |
KR102335505B1 (ko) * | 2015-02-03 | 2021-12-07 | 두산공작기계 주식회사 | 가공 프로그램 자동 생성 장치 및 가공 프로그램 자동 생성 방법 |
JP6250896B2 (ja) * | 2015-06-30 | 2017-12-20 | ファナック株式会社 | 振動周期を加工面上の長さに変換して表示する波形表示装置 |
KR102639118B1 (ko) * | 2015-09-08 | 2024-02-22 | 소니그룹주식회사 | 정보 처리 장치, 방법 및 컴퓨터 프로그램 |
US10610993B2 (en) * | 2015-09-24 | 2020-04-07 | Citizen Watch Co., Ltd. | Machine tool control device and machine tool equipped with said control device |
-
2017
- 2017-12-21 EP EP17882896.8A patent/EP3561620B1/en active Active
- 2017-12-21 CN CN201780079273.1A patent/CN110088698B/zh active Active
- 2017-12-21 JP JP2018558062A patent/JP6546707B2/ja active Active
- 2017-12-21 ES ES17882896T patent/ES2956772T3/es active Active
- 2017-12-21 TW TW106145122A patent/TWI679079B/zh active
- 2017-12-21 WO PCT/JP2017/045855 patent/WO2018117203A1/ja unknown
- 2017-12-21 KR KR1020197020913A patent/KR102088672B1/ko active IP Right Grant
- 2017-12-21 US US16/472,498 patent/US11084101B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001150201A (ja) | 1999-11-22 | 2001-06-05 | Mitsubishi Materials Corp | 振動工具による切削方法及び切削装置 |
JP2002103101A (ja) * | 2000-09-22 | 2002-04-09 | Matsushita Electric Ind Co Ltd | 切屑分断化旋削方法及びその装置 |
JP2003058218A (ja) * | 2001-06-06 | 2003-02-28 | Fanuc Ltd | サーボモータを駆動制御する制御装置 |
JP2007069330A (ja) * | 2005-09-08 | 2007-03-22 | Fanuc Ltd | 放電加工装置の加工条件設定方法 |
WO2015146946A1 (ja) | 2014-03-26 | 2015-10-01 | シチズンホールディングス株式会社 | 工作機械の制御装置及びこの制御装置を備えた工作機械 |
WO2015146945A1 (ja) * | 2014-03-26 | 2015-10-01 | シチズンホールディングス株式会社 | 工作機械の制御装置及びこの制御装置を備えた工作機械 |
WO2016084171A1 (ja) * | 2014-11-26 | 2016-06-02 | 三菱電機株式会社 | 数値制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3561620A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020017249A (ja) * | 2017-08-01 | 2020-01-30 | シチズン時計株式会社 | 工作機械の制御装置および工作機械 |
JP7161349B2 (ja) | 2017-08-01 | 2022-10-26 | シチズン時計株式会社 | 工作機械の制御装置および工作機械 |
CN109531073A (zh) * | 2018-12-29 | 2019-03-29 | 苏州莱易精密机电有限公司 | 一种泵阀体薄壁件内孔加工改进方法 |
CN109991920A (zh) * | 2019-03-13 | 2019-07-09 | 西安万威机械制造股份有限公司 | 适用于韧性金属材料加工的正弦动力钻孔方法及控制系统 |
CN109991920B (zh) * | 2019-03-13 | 2022-05-27 | 西安万威机械制造股份有限公司 | 适用于韧性金属材料加工的正弦动力钻孔方法及控制系统 |
DE112022000311T5 (de) | 2021-01-28 | 2023-09-14 | Fanuc Corporation | Anzeigevorrichtung und Computerprogramm |
WO2022264807A1 (ja) * | 2021-06-17 | 2022-12-22 | スター精密株式会社 | 工作機械のための振動切削条件設定装置 |
JP7039772B1 (ja) * | 2021-07-06 | 2022-03-22 | Dmg森精機株式会社 | 表示装置、工作機械、および表示方法 |
WO2023281627A1 (ja) * | 2021-07-06 | 2023-01-12 | Dmg森精機株式会社 | 表示装置、工作機械、および表示方法 |
WO2024013870A1 (ja) * | 2022-07-13 | 2024-01-18 | ファナック株式会社 | 工作機械制御装置および工作機械制御プログラム |
WO2024062544A1 (ja) * | 2022-09-21 | 2024-03-28 | ファナック株式会社 | 工作機械の表示装置 |
WO2024105842A1 (ja) * | 2022-11-17 | 2024-05-23 | ファナック株式会社 | 工作機械の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
TW201822945A (zh) | 2018-07-01 |
KR20190094440A (ko) | 2019-08-13 |
EP3561620A1 (en) | 2019-10-30 |
US11084101B2 (en) | 2021-08-10 |
EP3561620A4 (en) | 2020-07-29 |
TWI679079B (zh) | 2019-12-11 |
JPWO2018117203A1 (ja) | 2019-07-04 |
JP6546707B2 (ja) | 2019-07-17 |
KR102088672B1 (ko) | 2020-03-13 |
CN110088698B (zh) | 2020-03-06 |
ES2956772T3 (es) | 2023-12-27 |
US20200094327A1 (en) | 2020-03-26 |
EP3561620B1 (en) | 2023-08-02 |
CN110088698A (zh) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018117203A1 (ja) | 工作機械およびその制御装置 | |
JP7450780B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP6416217B2 (ja) | 工作機械の制御装置及びこの制御装置を備えた工作機械 | |
JP6416218B2 (ja) | 工作機械の制御装置及びこの制御装置を備えた工作機械 | |
JP6297711B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP6470085B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP2020015167A (ja) | 工作機械及びこの工作機械の制御装置 | |
CN108025413B (zh) | 机床的控制装置以及具备该控制装置的机床 | |
JP6744815B2 (ja) | 工作機械の制御装置および工作機械 | |
CN108025411B (zh) | 机床的控制装置以及机床 | |
JP6875810B2 (ja) | 工作機械およびその制御装置 | |
JP2016182652A (ja) | 工作機械及びこの工作機械の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882896 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018558062 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197020913 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017882896 Country of ref document: EP Effective date: 20190722 |