WO2024062544A1 - 工作機械の表示装置 - Google Patents
工作機械の表示装置 Download PDFInfo
- Publication number
- WO2024062544A1 WO2024062544A1 PCT/JP2022/035088 JP2022035088W WO2024062544A1 WO 2024062544 A1 WO2024062544 A1 WO 2024062544A1 JP 2022035088 W JP2022035088 W JP 2022035088W WO 2024062544 A1 WO2024062544 A1 WO 2024062544A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- workpiece
- input
- cutting tool
- relative
- conditions
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 claims abstract description 138
- 238000004364 calculation method Methods 0.000 claims abstract description 90
- 230000010355 oscillation Effects 0.000 claims abstract description 90
- 230000008859 change Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims abstract description 4
- 238000003754 machining Methods 0.000 claims description 90
- 230000003746 surface roughness Effects 0.000 claims description 24
- 230000001133 acceleration Effects 0.000 claims description 18
- 238000012545 processing Methods 0.000 abstract description 24
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 14
- 230000015654 memory Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B1/00—Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/409—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
Definitions
- the present disclosure relates to a display device for a machine tool.
- the cutting tool and workpiece are oscillated relative to each other.
- Oscillating cutting for cutting a workpiece is known.
- the tool path which is the locus of the cutting tool, is set so as to partially overlap the previous tool path.
- the cutting edge of the cutting tool separates from the surface of the workpiece, causing a missed swing called an air cut, which shreds the chips.
- numerical values of oscillating conditions such as oscillating frequency and oscillating amplitude are input and the input results are checked on a display device (for example, Patent Document 1 reference).
- the oscillating conditions are input numerically and it is checked whether the obtained waveform intersects the previous pass and the current pass.
- machining conditions such as waveforms, whether or not chips can be shredded, chip length, and surface roughness change when machining conditions and swing conditions are changed. It was difficult.
- the present disclosure has been made in view of the above problems, and aims to provide a technology that allows intuitive understanding of changes in machining conditions due to changes in machining conditions and input values of oscillation conditions in oscillating cutting. do.
- the present disclosure is a display device for a machine tool that processes a cutting tool and a workpiece while relatively oscillating them, and in which at least one of machining conditions and oscillation conditions is displayed using an input means that can continuously change input values.
- a machine tool comprising: a condition input section that receives input; a machining state calculation section that calculates a machining state according to the input of the machining conditions and the swing conditions; and a display section that displays the calculated machining state. It is a control device.
- FIG. 3 is a diagram for explaining swing cutting.
- FIG. 2 is a functional block diagram of a display device for a machine tool according to a first embodiment.
- FIG. 3 is a functional block diagram of a machining state calculation section. It is a figure which shows the cutting path as a machining state. It is a figure explaining the maximum distance between paths in a cutting path. It is a figure which shows the example of the image displayed on the input means and the display part of a processing state before a condition change. It is a figure which shows the other example of the image displayed on the input means and the display part of a processing state before a condition change. It is a figure which shows the example of the image displayed on the input means and the display part of a processing state after a condition change. It is a figure which shows the example of the image of the input means which clearly shows the range in which chips can be shredded according to the second embodiment.
- FIG. 3 is a functional block diagram of a display device for a machine tool according to a third embodiment.
- a display device 1 for a machine tool according to a first embodiment of the present invention is for performing swing cutting in which a workpiece is cut while relatively swinging a cutting tool and a workpiece. First, swing cutting will be explained with reference to FIG.
- FIG. 1 is a diagram for explaining oscillating cutting.
- swing cutting shown in FIG. (not shown) are operated to relatively rotate the cutting tool T and workpiece W, and perform cutting while relatively swinging the cutting tool T and workpiece W in the feeding direction.
- the tool path which is the locus of the cutting tool T, is set so that the current path partially overlaps the previous path.
- the part that was machined in the previous path is partially included in the current path, causing a miss called air cut in which the cutting edge of the cutting tool T separates from the surface of the workpiece W, and the chips are shredded.
- Ru is a diagram for explaining oscillating cutting.
- the shape of the workpiece is not limited. In other words, even if the workpiece has a tapered part or an arcuate part on the machined surface and requires multiple feed axes (Z-axis and X-axis), if the workpiece is columnar or cylindrical and the feed axis is (Z-axis) is also applicable.
- FIG. 2 is a functional block diagram of a display device 1 for a machine tool according to an embodiment of the present invention.
- the machine tool display device 1 of this embodiment includes, for example, memories such as ROM (read only memory) and RAM (random access memory), a CPU (control processing unit), and communication control units that are connected to each other via a bus. It is constructed using a computer with a section. The functions and operations of each of the functional units described above are achieved by the cooperation of a CPU installed in the computer, a memory, and a control program stored in the memory.
- the display device 1 of the machine tool may be composed of a CNC (Computer Numerical Controller), a PLC (Programmable Logic Controller), etc., or a host computer that outputs machining conditions such as rotation speed in addition to the machining program. may be connected to.
- CNC Computer Numerical Controller
- PLC Programmable Logic Controller
- host computer that outputs machining conditions such as rotation speed in addition to the machining program. may be connected to.
- the display device 1 of the machine tool includes a condition input section 11, a machining state calculation section 12, and a display section 13.
- the condition input unit 11 receives input of at least one of the machining conditions and the swing conditions using an input means that can continuously change input values.
- An input means that can continuously change input values.
- a configuration example of the input means will be described later.
- the machining conditions include at least information regarding the relative feed amount per revolution between the cutting tool and the workpiece, information regarding the shape of the cutting tool's cutting edge, and, for example, the rotation speed S (1/ min), the feed rate of the cutting tool (mm/min), the workpiece diameter (mm), the clearance angle of the cutting tool (°), and the like.
- Information regarding the relative feed amount per revolution between the cutting tool and the workpiece includes the amount of transfer each time F (mm/rev), and information regarding the shape of the cutting tool edge includes the R ( mm).
- the oscillation conditions include information regarding the relative number of oscillations per revolution between the cutting tool and the workpiece, and information regarding the oscillation amplitude with respect to the relative feed amount per revolution between the cutting tool and the workpiece.
- Information regarding the relative number of oscillations per rotation between the cutting tool and the workpiece includes an oscillation frequency multiplier I (times) indicating the oscillation frequency per one rotation of the main shaft.
- the swing amplitude magnification K indicates the magnitude of the swing amplitude relative to the feed amount per rotation of the spindle. (times) is mentioned.
- the oscillation frequency magnification I can be specified directly, or it can be calculated from the oscillation frequency (Hz) and the spindle rotation speed S (1/min) after specifying the oscillation frequency (Hz). good.
- the swing amplitude magnification K may be specified directly in the same way, or after specifying the swing amplitude (mm), the swing amplitude (mm), feed rate (mm/min), and spindle rotation speed can be specified. It may be calculated from S(1/min).
- the machining state calculation unit 12 calculates the machining state based on the machining conditions and swing conditions input from the condition input unit 11.
- the machining conditions include the cutting path, whether or not chips can be cut, the length of the chips, the surface roughness of the workpiece W, the rocking frequency in rocking, the vibration amplitude in rocking, the maximum acceleration in rocking, etc. .
- Y is the coordinate value of the feed direction (mm)
- f is the feed amount per spindle rotation F (mm/rev)
- S is the spindle Rotation speed (1/min)
- t is time (sec)
- I oscillation frequency magnification (times)
- K oscillation amplitude magnification (times)
- r is workpiece diameter (mm), which is the radius of workpiece W
- R is the cutting edge (mm), which is the shape of the cutting edge of the nose, etc.
- h is the maximum height Rz ( ⁇ m), which is an index of surface roughness.
- FIG. 3 is a functional block diagram of the machining state calculation unit 12.
- the machining state calculation unit 12 includes a cutting path calculation unit 21, a chip shredding determination unit 22, a chip length calculation unit 23, a surface roughness calculation unit 24, and a It includes a frequency calculation section 25, a swing amplitude calculation section 26, and a maximum acceleration calculation section 27.
- the cutting path calculation unit 21 calculates a relative cutting path between the cutting tool T and the workpiece W based on the machining conditions and the swing conditions.
- the processing conditions used to calculate the cutting path are, for example, the rotation speed S (1/min) of the spindle and the feed amount F (mm/rev) per spindle rotation.
- the oscillation conditions used to calculate the cutting path include, for example, the oscillation frequency multiplier I (times) indicating the oscillation frequency per rotation of the spindle and the magnitude of the oscillation amplitude relative to the feed amount per rotation of the spindle. is the swing amplitude magnification K (times).
- the cutting path calculation unit 21 calculates the coordinate value Y (mm) of the cutting path in the feed direction using the following formula (1), and derives the oscillation waveform as the cutting path.
- FIG. 4 is a diagram showing the cutting path.
- the cutting path calculation unit 21 outputs a graph in which formula (1) is plotted as a machining state 40 to the display unit 13.
- the oscillating waveform is shown as the machining state 40.
- the chip shredding determination unit 22 determines whether or not the chips can be shredded.
- the oscillation conditions used to determine whether or not the chips can be shredded are, for example, an oscillation frequency magnification I (times), which indicates the oscillation frequency per rotation of the spindle, and an oscillation amplitude magnification K (times), which indicates the magnitude of the oscillation amplitude relative to the magnitude of the feed amount per rotation of the spindle.
- the chip shredding determination unit 22 determines whether chips can be shredded using the following formula (2).
- the chip shredding determination unit 22 determines that chip cutting is possible when formula (2) is satisfied, and determines that chip cutting is not possible when formula (2) is not satisfied.
- the chip length calculation unit 23 calculates the length of chips of the workpiece W based on the machining conditions and the swing conditions.
- the processing condition used to calculate the chip length is, for example, the workpiece diameter (mm), which is the radius of the workpiece W.
- the swinging condition used to calculate the chip length is, for example, a swinging frequency magnification I (times) indicating the swinging frequency per rotation of the main shaft.
- the chip length calculation unit 23 calculates the chip length using the following formula (3).
- the surface roughness calculation unit 24 calculates the surface roughness of the W workpiece based on the machining conditions and the oscillation conditions.
- the machining conditions used to calculate the surface roughness are, for example, the feed rate F (mm/rev) per one rotation of the spindle and the cutting edge R (mm), which is the cutting edge shape of the cutting tool T.
- the oscillation conditions used to calculate the surface roughness are, for example, the oscillation frequency multiplier I (times), which indicates the oscillation frequency per one rotation of the shaft, and the oscillation amplitude multiplier K (times), which indicates the magnitude of the oscillation amplitude relative to the magnitude of the feed rate per one rotation of the spindle.
- the surface roughness calculated by the surface roughness calculation unit 24 includes at least one of the following: arithmetic mean roughness; maximum height, which is the maximum distance between a peak and a valley; maximum peak height, which is the maximum height from the mean line of the surface; maximum valley depth, which is the absolute value of the minimum height from the mean line of the surface; average height, which is the average value of the heights of the profile curve elements consisting of adjacent peaks and valleys as a set; maximum cross-sectional height, which is the sum of the maximum peak height and maximum valley depth of the profile curve element; and load length ratio, which is the ratio of the load length of the profile curve element at a specified cutting level (height % or ⁇ m) to the evaluation reference length.
- FIG. 5 is a diagram illustrating the maximum distance between cutting paths.
- FIG. 5 shows the location where the distance between the cutting paths is maximum.
- each coordinate value Y of the location where the distance between the cutting paths is the maximum is determined by the above formula (1), and the distance between the determined coordinate values is set as the maximum distance between the cutting paths.
- the maximum height Rz which is the maximum value of the distance between peaks and valleys, as surface roughness
- the R (mm) of the cutting edge and the maximum distance between the cutting paths calculated as described above are calculated.
- f is calculated as the maximum height Rz.
- the surface roughness is not limited to the maximum height Rz.
- the surface roughness may be, for example, the arithmetic mean roughness Ra.
- the oscillation frequency calculation unit 25 calculates the oscillation frequency in the relative oscillation of the cutting tool T and the workpiece W based on the machining conditions and the oscillation conditions.
- the machining conditions used to calculate the oscillation frequency are, for example, the rotation speed S (1/min) of the spindle.
- the oscillation conditions used to calculate the oscillation frequency are, for example, the oscillation frequency magnification I (times) indicating the oscillation frequency per rotation of the spindle.
- the oscillation frequency calculation unit 25 calculates the oscillation frequency using the following formula (5).
- the swing amplitude calculation unit 26 calculates the swing amplitude in the relative swing between the cutting tool T and the workpiece W based on the machining conditions and the swing conditions.
- the processing condition used to calculate the swing amplitude is, for example, the transfer amount F (mm/rev) each time.
- the swing condition used to calculate the swing amplitude is, for example, a swing amplitude magnification K (times) that indicates the magnitude of the swing amplitude relative to the feed amount per rotation of the main shaft.
- the swing amplitude calculation unit 26 calculates the swing amplitude using the following formula (6).
- the maximum acceleration calculation unit 27 calculates the maximum acceleration in the relative oscillation of the cutting tool T and the workpiece W based on the machining conditions and the oscillation conditions.
- the machining conditions used to calculate the maximum acceleration are, for example, the spindle rotation speed S (1/min) and the feed rate F (mm/rev).
- the oscillation conditions used to calculate the maximum acceleration are, for example, the oscillation amplitude magnification K (times) indicating the magnitude of the oscillation amplitude relative to the magnitude of the feed rate per rotation of the spindle, and the oscillation frequency magnification I (times) indicating the oscillation frequency per rotation of the spindle.
- the maximum acceleration calculation unit 27 calculates the maximum acceleration using the following formula (7).
- processing state calculation unit 12 The above describes the configuration of the processing state calculation unit 12. Note that the above-mentioned determination method and calculation method are merely examples, and the processing state may be calculated using a method other than the method using the above-mentioned formula.
- FIG. 6 is a diagram showing an example of an image displayed on the display unit 13 of the input means and processing state before the conditions are changed.
- the display unit 13 displays both the input means 30 for inputting the machining conditions and swing conditions, and the machining state 41 calculated by the machining state calculation unit 12. Furthermore, in this embodiment, it is assumed that a machining state 40 showing the oscillating waveform shown in FIG. 4 is also displayed on the display section 13 in conjunction with the display shown in FIG.
- a slider bar 31 for inputting the feed amount F [mm] and a slider bar 32 for inputting the cutting edge R [mm] are displayed.
- a window 33 is displayed that numerically indicates the input result of the feed amount F [mm].
- the operator operates the slider bar and inputs 0.2 as a numerical value.
- a window 34 is displayed that numerically indicates the input result of the cutting edge R [mm].
- the operator operates the slider bar and inputs 0.4 as a numerical value. It is assumed that the rotational speed S (1/min) of the main shaft and the like are set in advance or by another input means.
- the block in which the rocking conditions of the input means 30 are displayed includes a slider bar 35 for inputting the rocking frequency magnification I (times) and a slider bar 36 for inputting the rocking amplitude magnification K (times). Is displayed. On the left side of the slider bar 35, a window 37 is displayed that numerically indicates the input result of the oscillation frequency magnification I (times). In this example, the operator operates the slider bar 35 and inputs 1.5 as a numerical value. On the left side of the slider bar 36, a window 38 is displayed that numerically indicates the input result of the swing amplitude magnification K (times). In this example, the operator operates the slider bar 36 and inputs 1.2 as a numerical value.
- FIG. 7 is a diagram showing another example of the image displayed on the input means and the processing state display section before the conditions are changed.
- a scroll bar is used to input both machining conditions and swing conditions, but as shown in Fig. 7, a slider bar is used for some of the processing conditions and swing conditions. Also good.
- only conditions that need to be checked continuously can be entered using the scroll bar, and conditions that can be checked intermittently can be entered using numerical values.
- the output result of the machining state calculation unit 12 is displayed.
- a symbol indicates that the chips can be shredded.
- a window 43 displays the calculation result of the chip length [mm]
- a window 44 displays the calculation result of the maximum height Rz [ ⁇ m], which is an index of surface roughness
- a window 44 displays the calculation result of the frequency [Hz].
- a window 47 for displaying the calculation results for the maximum acceleration [mm/s 2 ] display numerical values based on the machining conditions and the swing conditions, respectively. There is.
- FIG. 8 is a diagram showing an example of an image displayed on the input means and processing state display unit after the conditions have been changed.
- the feed amount F [mm] of the machining conditions has been changed from 0.2 to 0.3, and the cutting edge R [mm], the swing amplitude magnification K (times), and the swing frequency multiplier
- the value of I (times) remains the same.
- the machining state calculation unit 12 determines and calculates the machining state 41 again based on the input result.
- FIG. 8 is a diagram showing an example of an image displayed on the input means and processing state display unit after the conditions have been changed.
- the feed amount F [mm] of the machining conditions has been changed from 0.2 to 0.3
- the cutting edge R [mm] the cutting edge
- the swing amplitude magnification K (times) times
- the swing frequency multiplier The value of I (times) remains the same.
- the maximum height Rz [ ⁇ m] shown in the window 44 changes from 50.0 to 112.5
- the amplitude [mm] shown in the window 46 changes from 0.240 to 0.360
- the maximum height Rz [ ⁇ m] shown in the window 47 changes from 0.240 to 0.360.
- the maximum acceleration [mm/s 2 ] shown is from 18505.5 to 27758.3. Note that the output results of the determination result of whether or not chips can be cut from the window 42, the numerical value of the chip length [mm] of the window 43, and the numerical value of the frequency [Hz] remain the same.
- the machining state calculation unit 12 also re-outputs the machining state 40 of the oscillation waveform (cutting path) shown in Figure 4 based on the changed input conditions, and outputs it to the display unit 13.
- the slider bar 31 is the input part for the feed amount F [mm]
- the slider bar 32 is the input part for the cutting edge R [mm]
- the slider bar 35 is the input part for the oscillation frequency magnification I [times]
- the oscillation When at least one of the slider bars 36, which is the input section for the amplitude magnification K [times], is operated, the judgment result corresponding to the changed input value among the cutting path machining state 40 and other machining states 41 is displayed.
- the numbers change synchronously.
- the machine tool display device 1 In the machine tool display device 1 according to the present embodiment, at least one of the machining conditions and the swing conditions is inputted using the input means 30 (slider bars 31, 32, 35, 36) that can continuously change the input value.
- the machine includes a condition input section 11 that receives a condition, a machining state calculation section 12 that calculates a machining state according to input of machining conditions and swing conditions, and a display section 13 that displays the calculated machining state.
- the machining state calculation unit 12 of the present embodiment includes a cutting path calculation unit 21 that calculates a relative cutting path between the cutting tool T and the workpiece W, and a chip shredding determination unit 22 that determines whether chips can be shredded. , a chip length calculation section 23 that calculates the length of chips on the workpiece W, a surface roughness calculation section 24 that calculates the surface roughness of the workpiece W, and a relative vibration between the cutting tool T and the workpiece W.
- a swing frequency calculation unit 25 that calculates the swing frequency in the relative swing between the cutting tool T and the workpiece W
- a swing amplitude calculation unit 26 that calculates the swing amplitude in the relative swing between the cutting tool T and the workpiece W
- It has at least one or more of the maximum acceleration calculation section 27 that calculates the maximum acceleration in relative rocking.
- information regarding the relative feed amount per rotation (feed amount F) between the cutting tool T and workpiece W, and the relative number of oscillations per rotation between the cutting tool T and workpiece W are the cutting path calculation unit of the machining state calculation unit 12. 21. This allows input work to be performed while checking the cutting path that is re-outputted in synchronization with the input value.
- information regarding the relative number of oscillations per rotation between the cutting tool T and the workpiece W (oscillation frequency multiplier I) and the relative feed rate per rotation between the cutting tool T and the workpiece W are provided.
- Information regarding the oscillation amplitude (oscillation amplitude magnification K) with respect to the amount is input to the chip shredding determination section 22 of the machining state calculation section 12. This makes it possible to perform input work while checking the determination results that are output in synchronization with the input values.
- information regarding the relative number of oscillations per revolution between the cutting tool T and the workpiece W (oscillation frequency multiplier I) and the relative distance from the center of rotation between the cutting tool T and the workpiece W are provided. (workpiece diameter (mm)) is input to the chip length calculation unit 23 of the machining state calculation unit 12. You can perform input work while checking the chip length that is output in synchronization with the input value.
- the relative feed amount per revolution (feed amount F) between the cutting tool T and the work W, the shape of the cutting tool T (blade edge R), and the relative feed amount (feed amount F) between the cutting tool T and the work W Information regarding the number of oscillations per revolution (oscillation frequency multiplier I), information regarding the oscillation amplitude with respect to the relative feed amount per revolution between the cutting tool T and the workpiece W (oscillation amplitude multiplier K). is input to the surface roughness calculation section 24 of the machining state calculation section 12. Thereby, it is possible to more easily perform the input work while checking the index (maximum height Rz) indicating the surface roughness that is re-outputted in synchronization with the input value.
- the relative feed amount per revolution (feed amount F) between the cutting tool T and workpiece W, and the swing amplitude with respect to the relative feed amount per revolution between the cutting tool T and workpiece W. (oscillation amplitude magnification K) is input to the oscillation amplitude calculation section 26 of the machining state calculation section 12. This makes it easier to perform the input work while checking the amplitude that is re-outputted in synchronization with the input value.
- the oscillation amplitude magnification K) is input to the maximum acceleration calculation section 27 of the machining state calculation section 12. This makes it easier to perform the input work while checking the maximum acceleration that is re-outputted in synchronization with the input value.
- FIG. 9 is a diagram showing an example of an image of the input means 30a that clearly shows the range in which chips can be shredded according to the second embodiment.
- the slider bar 35a which is the input part for the rocking frequency magnification I [times] of the rocking condition
- the slider bar 36a which is the input part for the rocking amplitude magnification K [times]
- the range and the range where chip cutting is not possible are distinguished by color and displayed. Note that whether or not the range is within which chips can be shredded may be set in advance by the operator, or may be set by the chip shredding determination unit 22 based on a value input in advance.
- the range in which chips can be cut and the range in which chips cannot be cut are displayed in alternating colors in the longitudinal direction of the slider bar 35a, and the range in which chips cannot be cut is displayed in alternating colors.
- the possible range is an intermittent arrangement.
- the color indicates that almost the entire input range except the left end part is the range in which chips can be cut.
- condition input unit 11 sets the input means 30 to accept user operations only in the range where chips can be cut on both the slider bar 35a and the slider bar 36a. Therefore, the operator cannot move the slider bar 35a and the slider bar 36a to a range where chips cannot be cut.
- the condition input unit 11 clearly indicates the range in which the chips can be shredded on the input means 30a (slider bar 35a and slider bar 36a). This allows the user to easily grasp the range in which the chips can be shredded and smoothly proceed with the input work on the input means 30a.
- condition input unit 11 of the second embodiment sets the changeable range of the input means 30 based on the range in which the chips can be shredded. This ensures that the input value is set only within the range in which the chips can be cut, and it is possible to reliably prevent situations in which the chips are not shredded appropriately.
- the display is distinguished by color, but the display may be distinguished by shape or the like.
- Fig. 10 is a functional block diagram of a display device 1a of a machine tool according to the third embodiment. As shown in Fig. 10, the display device 1A of a machine tool according to the third embodiment is different from the display device 1 of a machine tool according to the first embodiment in that it includes a condition range acquisition unit 14, and other configurations are the same as those of the first embodiment.
- the range of the machining conditions and the swing conditions can be specified.
- the condition range acquisition unit 14 acquires the range of processing conditions and swing conditions from an input unit such as a keyboard or a touch display, or an input means (not shown) such as an external computer.
- the range of processing conditions is, for example, the range of feed amount [mm] and the range of cutting edge [mm].
- the operator can specify the feed amount [mm] range from 0 to 1.0 or a different range through input means (not shown), or specify the cutting edge [mm] range from 0 to 1.0 or a different range. You can also specify.
- the range of the rocking conditions is, for example, the range of the rocking frequency magnification I [times] or the range of the rocking amplitude magnification K [times].
- the operator may specify the range of the oscillation frequency multiplier I [times] to 0 to 16.0 or a different range, or specify the range of the oscillation amplitude multiplier K [times] from 0 to 16.0 through an input means (not shown). It can be specified as 0 or a range different from that.
- the machine tool display device 1a of the third embodiment further includes a condition range acquisition section 14 that acquires the range of machining conditions and swing conditions that can be input, and the condition input section 11
- the acquisition unit 14 receives input of machining conditions and swing conditions based on the input range acquired. This results in a prespecified input range, making it possible to realize an interface that is easier for operators to use depending on the situation.
- the configuration of the machining state calculation unit 12 of the above embodiment can be changed as appropriate depending on the circumstances, such as omitting some functions or adding other functions.
- the configuration of the third embodiment may be combined with the configuration of the second embodiment.
- the display unit 13 may be configured to display items different from those described in the above embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
揺動切削加工における加工条件や揺動条件の入力値の変更に伴う加工状態の変化を直感的に把握できる技術を提供する。切削工具TとワークWを相対的に揺動させながら加工する工作機械の表示装置1は、入力値を連続的に変更可能な入力手段30(スライダーバー31、32、35、36)によって加工条件及び揺動条件のうち少なくとも1つの入力を受け付ける条件入力部11と、加工条件及び揺動条件の入力に応じて加工状態を算出する加工状態算出部12と、算出された加工状態を表示する表示部13と、を備える。
Description
本開示は、工作機械の表示装置に関する。
従来、切削加工時に連続して発生する切り屑がワークや切削工具に絡まる等して加工不良や機械故障等の原因となるのを回避するべく、切削工具とワークを相対的に揺動させながらワークを切削加工する揺動切削が知られている。この揺動切削では、揺動周波数及び揺動振幅を調整することにより、切削工具の軌跡である工具経路を前回の工具経路に一部重なるように設定する。これにより、切削工具の刃先がワークの表面から離れるエアカットと呼ばれる空振りが発生することで切り屑が細断される。この種の揺動切削を行う工作機械において、揺動周波数及び揺動振幅等の揺動条件の数値を入力し、入力結果を表示装置で確認することが行われている(例えば、特許文献1参照)。
ところで、揺動切削加工では、揺動条件を数値入力し、取得した波形で前回パスと現在パスの交差が起きているかを確認している。しかしながら、従来技術の表示装置では、加工条件・揺動条件を変化させた場合の波形、切り屑細断可否、切り屑長さ、面粗さ等の加工状態がどのように変化するかを把握し難かった。
本開示は上記課題に鑑みてなされたものであり、揺動切削加工における加工条件や揺動条件の入力値の変更に伴う加工状態の変化を直感的に把握できる技術を提供することを目的とする。
本開示は、切削工具とワークを相対的に揺動させながら加工する工作機械の表示装置であって、入力値を連続的に変更可能な入力手段によって加工条件及び揺動条件のうち少なくとも1つの入力を受け付ける条件入力部と、前記加工条件及び前記揺動条件の入力に応じて加工状態を算出する加工状態算出部と、算出された前記加工状態を表示する表示部と、を備える、工作機械の制御装置である。
本開示によれば、揺動切削加工における加工条件や揺動条件の入力値の変更に伴う加工状態の変化を直感的に把握できる技術を提供することができる。
以下、本開示の実施形態について、図面を参照して詳しく説明する。
[第1実施形態]
本発明の第1実施形態に係る工作機械の表示装置1は、切削工具とワークを相対的に揺動させながらワークを切削加工する揺動切削を実行するためのものである。まず、図1を参照して揺動切削について説明する。
本発明の第1実施形態に係る工作機械の表示装置1は、切削工具とワークを相対的に揺動させながらワークを切削加工する揺動切削を実行するためのものである。まず、図1を参照して揺動切削について説明する。
図1は、揺動切削を説明するための図である。図1に示される揺動切削の一例では、切削工具TとワークWとを相対的に回転させる少なくとも1つの主軸Sと、切削工具TをワークWに対して相対移動させる少なくとも1つの送り軸(不図示)と、を動作させて、切削工具TとワークWとを相対的に回転させるとともに、切削工具TとワークWとを相対的に送り方向に揺動させながら切削加工する。このとき、切削工具Tの軌跡である工具経路は、前回経路に対して今回経路が部分的に重なるように設定される。即ち、前回経路で加工済の部分が今回経路に部分的に含まれることで、切削工具Tの刃先がワークWの表面から離れるエアカットと呼ばれる空振りが発生することにより、切り屑が細断される。
なお、本実施形態で実行される揺動切削では、ワークの形状は限定されない。即ち、ワークが加工面にテーパ部や円弧状部を有することで複数の送り軸(Z軸及びX軸)が必要となる場合でも、ワークが円柱状や円筒状で送り軸が特定の1軸(Z軸)で足りる場合であっても、適用可能である。
次に、工作機械の表示装置1の構成について説明する。図2は、本発明の一実施形態に係る工作機械の表示装置1の機能ブロック図である。本実施形態の工作機械の表示装置1は、例えば、バスを介して互いに接続された、ROM(read only memory)やRAM(random access memory)等のメモリ、CPU(control processing unit)、及び通信制御部を備えたコンピュータを用いて構成される。上記各機能部の機能及び動作は、上記コンピュータに搭載されたCPU、メモリ、及び該メモリに記憶された制御プログラムが協働することにより達成される。また、工作機械の表示装置1は、CNC(Computer Numerical Controller)やPLC(Programmable Logic Controller)等で構成されてもよいし、加工プログラムの他、回転速度等の加工条件等を出力する上位のコンピュータに接続されていてもよい。
図2に示されるように、工作機械の表示装置1は、条件入力部11と、加工状態算出部12と、表示部13と、を備える。
条件入力部11は、入力値を連続的に変更可能な入力手段によって加工条件及び揺動条件のうち少なくとも1つの入力を受け付ける。入力手段の構成例については後述する。
ここで、加工条件としては、切削工具とワークの相対的な1回転あたりの送り量に関する情報と、切削工具の刃先の形状に関する情報が少なくとも含まれる他、例えば、主軸の回転数S(1/min)、切削工具の送り速度(mm/min)、ワーク径(mm)、切削工具の逃げ角(°)等に関する情報が含まれる。なお、切削工具とワークの相対的な1回転あたりの送り量に関する情報としては、毎回転送り量F(mm/rev)が挙げられ、切削工具の刃先の形状に関する情報としては、刃先のR(mm)が挙げられる。
また、揺動条件としては、切削工具とワークの相対的な1回転あたりの揺動数に関する情報と、切削工具とワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報が含まれる。切削工具とワークの相対的な1回転あたりの揺動数に関する情報としては、主軸の1回転当たりの揺動周波数を示す揺動周波数倍率I(倍)が挙げられる。また、切削工具とワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報としては、主軸の1回転当たりの送り量の大きさに対する揺動振幅の大きさを示す揺動振幅倍率K(倍)が挙げられる。揺動周波数倍率I(倍)は直接指定してもよいし、揺動周波数(Hz)を指定した上で揺動周波数(Hz)と主軸の回転数S(1/min)から算出してもよい。また揺動振幅倍率K(倍)も同様に直接指定してもよいし、揺動振幅(mm)を指定した上で揺動振幅(mm)と送り速度(mm/min)と主軸の回転数S(1/min)から算出してもよい。
加工状態算出部12は、条件入力部11から入力される加工条件及び揺動条件に基づいて加工状態を算出する。ここで、加工状態とは、切削経路、切り屑裁断可否、切り屑の長さ、ワークWの表面粗さ、揺動における揺動周波数、揺動における振動振幅、揺動における最大加速度等である。
加工状態算出部12の判定方法及び算出方法の一例について説明する。なお、以下の説明では必要に応じて数式を用いるが、当該数式中において、Yは送り方向の座標値(mm)、fは主軸1回転あたりの送り量F(mm/rev)、Sは主軸回転数(1/min)、tは時間(sec)、Iは揺動周波数倍率(倍)、Kは揺動振幅倍率(倍)、rはワークWの半径であるワーク径(mm)、Rはノーズ等の刃先の形状である刃先(mm)、hは面粗さの指標である最大高さRz(μm)、を表すものとする。
図3は、加工状態算出部12の機能ブロック図である。図3に示されるように、加工状態算出部12は、切削経路算出部21と、切り屑細断判定部22と、切り屑長さ算出部23と、表面粗さ算出部24と、揺動周波数算出部25と、揺動振幅算出部26と、最大加速度算出部27と、を備える。
切削経路算出部21は、加工条件と揺動条件に基づいて切削工具TとワークWの相対的な切削経路を算出する。切削経路の算出に用いる加工条件は、例えば、主軸の回転数S(1/min)、主軸1回転あたりの送り量F(mm/rev)である。切削経路の算出に用いる揺動条件は、例えば、主軸の1回転当たりの揺動周波数を示す揺動周波数倍率I(倍)や主軸の1回転当たりの送り量の大きさに対する揺動振幅の大きさを示す揺動振幅倍率K(倍)、である。
切削経路算出部21は、下記数式(1)を用いて切削経路の送り方向の座標値Y(mm)を算出し、揺動波形を切削経路として導き出す。
図4は、切削経路を示す図である。図4に示されるように、切削経路算出部21は、数式(1)をプロットしたグラフを加工状態40として表示部13に出力する。換言すれば、揺動波形が加工状態40として示される。
切り屑細断判定部22は、切り屑細断可否を判定する。切り屑細断可否の判定に用いる揺動条件は、例えば、主軸の1回転当たりの揺動周波数を示す揺動周波数倍率I(倍)や主軸の1回転当たりの送り量の大きさに対する揺動振幅の大きさを示す揺動振幅倍率K(倍)、である。
切り屑細断判定部22は、下記数式(2)を用いて切り屑細断可否を判定する。切り屑細断判定部22は、数式(2)を満たす場合に切り屑裁断が可能と判定し、数式(2)を満たさない場合に切り屑裁断が不可能であると判定する。
切り屑長さ算出部23は、加工条件及び揺動条件に基づいてワークWの切り屑の長さを算出する。切り屑長さの算出に用いる加工条件は、例えば、ワークWの半径であるワーク径(mm)である。切り屑長さの算出に用いる揺動条件は、例えば、主軸の1回転当たりの揺動周波数を示す揺動周波数倍率I(倍)である。切り屑長さ算出部23は、下記数式(3)を用いて切り屑長さを算出する。
表面粗さ算出部24は、加工条件及び揺動条件に基づいてWワークの面粗さを算出する。面粗さの算出に用いる加工条件は、例えば、主軸1回転あたりの送り量F(mm/rev)、切削工具Tの刃先形状である刃先R(mm)である。面粗さの算出に用いる揺動条件は、例えば、軸の1回転当たりの揺動周波数を示す揺動周波数倍率I(倍)、主軸の1回転当たりの送り量の大きさに対する揺動振幅の大きさを示す揺動振幅倍率K(倍)である。
表面粗さ算出部24により算出される面粗さとしては、例えば、算術平均粗さ、山と谷の距離の最大値である最大高さ、表面の平均線からの高さの最大値である最大山高さ、表面の平均線からの高さの最小値の絶対値である最大谷深さ、隣り合う山と谷を一組とした輪郭曲線要素の高さの平均値である平均高さ、上記輪郭曲線要素の山の高さの最大値と谷の深さの最大値との和である最大断面高さ、及び、所定の切断レベル(高さ%又はμm)における上記輪郭曲線要素の負荷長さの評価基準長さに対する比率である負荷長さ率のうち、少なくとも1つが含まれる。
図5を参照して表面粗さ算出部24が、面粗さとして最大高さRzを算出する例について説明する。図5は、切削経路における経路間の最大距離を説明する図である。図5には、切削経路間の距離が最大となる箇所が示されている。本実施形態では、この切削経路間の距離が最大となる箇所の各座標値Yを上記数式(1)により求め、求められた各座標値間の距離を、切削経路間の最大距離とする。そして、例えば面粗さとして山と谷の距離の最大値である最大高さRzを算出する場合には、刃先のR(mm)と、上述のようにして求めた切削経路間の最大距離を下記数式(4)のfに代入することにより、hを最大高さRzとして算出する。
なお、上述の通り、面粗さは、最大高さRzに限定される訳ではない。面粗さは、例えば、算術平均粗さRaであってもよい。
揺動周波数算出部25は、加工条件及び揺動条件に基づいて切削工具TとワークWの相対的な揺動における揺動周波数を算出する。揺動周波数の算出に用いる加工条件は、例えば、主軸の回転数S(1/min)である。揺動周波数の算出に用いる揺動条件は、例えば、主軸の1回転当たりの揺動周波数を示す揺動周波数倍率I(倍)である。揺動周波数算出部25は、下記数式(5)を用いて揺動周波数を算出する。
揺動振幅算出部26は、加工条件及び揺動条件に基づいて切削工具TとワークWの相対的な揺動における揺動振幅を算出する。揺動振幅の算出に用いる加工条件は、例えば、毎回転送り量F(mm/rev)である。揺動振幅の算出に用いる揺動条件は、例えば、主軸の1回転当たりの送り量の大きさに対する揺動振幅の大きさを示す揺動振幅倍率K(倍)である。揺動振幅算出部26は、下記数式(6)を用いて揺動振幅を算出する。
最大加速度算出部27は、加工条件及び揺動条件に基づいて切削工具TとワークWの相対的な揺動における最大加速度を算出する。最大加速度の算出に用いる加工条件は、例えば、主軸の回転数S(1/min)と、毎回転送り量F(mm/rev)と、である。最大加速度の算出に用いる揺動条件は、例えば、主軸の1回転当たりの送り量の大きさに対する揺動振幅の大きさを示す揺動振幅倍率K(倍)と、主軸の1回転当たりの揺動周波数を示す揺動周波数倍率I(倍)と、である。最大加速度算出部27は、下記数式(7)を用いて最大加速度を算出する。
以上、加工状態算出部12の構成について説明した。なお、上述した判定方法及び算出方法は、一例であり、上述した数式を用いた方法とは異なる方法で加工状態を算出してもよい。
次に、表示部13について説明する。図6は、条件変更前の入力手段及び加工状態の表示部13に表示される画像例を示す図である。
図6に示されるように、表示部13は、加工条件及び揺動条件を入力する入力手段30と、加工状態算出部12によって算出された加工状態41と、の両方を表示する。また、本実施形態では、図4に示す揺動波形を示す加工状態40も、図6の表示と併せて表示部13に表示されるものとする。
入力手段30の加工条件が表示されるブロックには、送り量F[mm]を入力するためのスライダーバー31と、刃先R[mm]を入力するためのスライダーバー32が表示される。スライダーバー31の左側には、送り量F[mm]の入力結果を数値で示す窓33が表示されている。この例では、オペレータがスライダーバーを操作し、0.2が数値として入力されたことになる。スライダーバー32の左側には、刃先R[mm]の入力結果を数値で示す窓34が表示されている。この例では、オペレータがスライダーバーを操作し、0.4が数値として入力されたことになる。なお、主軸の回転数S(1/min)等は予め設定される又は別の入力手段によって設定されているものとする。
入力手段30の揺動条件が表示されるブロックには、揺動周波数倍率I(倍)を入力するためのスライダーバー35と、揺動振幅倍率K(倍)を入力するためのスライダーバー36が表示される。スライダーバー35の左側には、揺動周波数倍率I(倍)の入力結果を数値で示す窓37が表示されている。この例では、オペレータがスライダーバー35を操作し、1.5が数値として入力されたことになる。スライダーバー36の左側には、揺動振幅倍率K(倍)の入力結果を数値で示す窓38が表示されている。この例では、オペレータがスライダーバー36を操作し、1.2が数値として入力されたことになる。
なお、図7は、条件変更前の入力手段及び加工状態の表示部に表示される画像の他の例を示す図である。図6に示す例では、加工条件と揺動条件の入力の両方にスクロールバーを用いているが、図7のように、加工条件・揺動条件のうち一部にスライダーバーを用いるようにしても良い。特に連続的に確認をしたい条件のみをスクロールバーによる入力とし、断続的な確認でもよい条件は数値入力とすることもできる。
加工状態41には、加工状態算出部12の出力結果が表示される。この例では、切り屑細断可否の結果を表示する窓42には切り屑裁断可能であることが記号によって示されている。また、切り屑長さ[mm]の算出結果を表示する窓43、面粗さの指標である最大高さRz[μm]の算出結果を表示する窓44、周波数[Hz]の算出結果を表示する窓45、振幅[mm]の算出結果を表示する窓46、最大加速度[mm/s2]の算出結果を表示する窓47には、加工条件及び揺動条件に基づく数値がそれぞれ表示されている。
図8は、条件変更後の入力手段及び加工状態の表示部に表示される画像例を示す図である。図8に示される例では、加工条件の送り量F[mm]が0.2から0.3に変更されており、刃先R[mm]、揺動振幅倍率K(倍)、揺動周波数倍率I(倍)の数値は同じままである。加工状態算出部12は、新たな条件が入力されると、入力結果に基づいて加工状態41を再び判定及び算出する。図8の例では、窓44に示される最大高さRz[μm]が50.0から112.5となり、窓46に示される振幅[mm]が0.240から0.360となり、窓47に示される最大加速度[mm/s2]が18505.5から27758.3となっている。なお、窓42の切り屑裁断可否の判定結果、窓43の切り屑長さ[mm]の数値、周波数[Hz]の数値の出力結果は同じままである。
また、加工状態算出部12は、図4に示した揺動波形(切削経路)の加工状態40についても変更された入力条件に基づいて再出力し、表示部13に出力する。
本実施形態では、加工条件及び揺動条件の変更に基づく再出力は、入力手段30の操作に同期して行われる。即ち、送り量F[mm]の入力部であるスライダーバー31、刃先R[mm]の入力部であるスライダーバー32、揺動周波数倍率I[倍]の入力部であるスライダーバー35、揺動振幅倍率K[倍]の入力部であるスライダーバー36の少なくとも何れかが操作されると、切削経路の加工状態40及びその他の加工状態41のうち、変更された入力値に対応する判定結果及び数値が同期して変更されるのである。
以上説明した本実施形態に係る切削工具TとワークWを相対的に揺動させながら加工する工作機械の表示装置1によれば、以下の効果が奏される。
本実施形態に係る工作機械の表示装置1では、入力値を連続的に変更可能な入力手段30(スライダーバー31、32、35、36)によって加工条件及び揺動条件のうち少なくとも1つの入力を受け付ける条件入力部11と、加工条件及び揺動条件の入力に応じて加工状態を算出する加工状態算出部12と、算出された加工状態を表示する表示部13と、を備えた。これにより、スライダーバー31、32、35、36を連続的に動かしながら、加工状態がどのように変化するかを直感的に把握することでき、加工条件及び入力条件の手間を削減できる。
また、本実施形態の加工状態算出部12は、切削工具TとワークWの相対的な切削経路を算出する切削経路算出部21と、切り屑細断可否を判定する切り屑細断判定部22と、ワークWの切り屑の長さを算出する切り屑長さ算出部23と、ワークWの表面粗さを算出する表面粗さ算出部24と、切削工具TとワークWの相対的な揺動における揺動周波数を算出する揺動周波数算出部25と、切削工具TとワークWの相対的な揺動における揺動振幅を算出する揺動振幅算出部26と、切削工具TとワークWの相対的な揺動における最大加速度を算出する最大加速度算出部27と、のうち、少なくともいずれか1つ以上を有する。これにより、加工状態40又は加工状態41に示すような種々の出力結果をオペレータが確認しながら加工条件及び揺動条件の入力作業を行うことができる。
また、本実施形態では、切削工具TとワークWの相対的な1回転あたりの送り量(送り量F)と、切削工具TとワークWの相対的な1回転あたりの揺動数に関する情報(揺動周波数倍率I)と、切削工具TとワークWの相対的な1回転あたりの送り量に対する揺動振幅に関する情報(揺動振幅倍率K)と、が加工状態算出部12の切削経路算出部21に対して入力される。これにより、入力値に同期して再出力される切削経路を確認しながら入力作業を行うことができる。
また、本実施形態では、切削工具TとワークWの相対的な1回転あたりの揺動数に関する情報(揺動周波数倍率I)と、切削工具TとワークWの相対的な1回転あたりの送り量に対する揺動振幅(揺動振幅倍率K)に関する情報と、が加工状態算出部12の切り屑細断判定部22に対して入力される。これにより、入力値に同期して出力される判定結果を確認しながら入力作業を行うことができる。
また、本実施形態では、切削工具TとワークWの相対的な1回転あたりの揺動数に関する情報(揺動周波数倍率I)と、切削工具TとワークWの相対的な回転中心からの距離を含む情報(ワーク径(mm))と、が加工状態算出部12の切り屑長さ算出部23に入力される。入力値に同期して出力される切り屑長さを確認しながら入力作業を行うことができる。
また、本実施形態では、切削工具TとワークWの相対的な1回転あたりの送り量(送り量F)と、切削工具Tの刃先形状(刃先R)と、切削工具TとワークWの相対的な1回転あたりの揺動数に関する情報(揺動周波数倍率I)と、切削工具TとワークWの相対的な1回転あたりの送り量に対する揺動振幅に関する情報(揺動振幅倍率K)と、が加工状態算出部12の表面粗さ算出部24に入力される。これにより、入力値に同期して再出力される面粗さを示す指標(最大高さRz)を確認しながら入力作業をより容易に行うことができる。
また、本実施形態では、切削工具TとワークWの相対的な回転数(回転数S)と、切削工具TとワークWの相対的な1回転あたりの揺動数に関する情報(揺動周波数倍率I)と、が加工状態算出部12の揺動周波数算出部25に入力される。これにより、入力値に同期して再出力される揺動周波数を確認しながら入力作業をより容易に行うことができる。
また、本実施形態では、切削工具TとワークWの相対的な1回転あたりの送り量(送り量F)と、切削工具TとワークWの相対的な1回転あたりの送り量に対する揺動振幅(揺動振幅倍率K)に関する情報と、が加工状態算出部12の揺動振幅算出部26に入力される。これにより、入力値に同期して再出力される振幅を確認しながら入力作業をより容易に行うことができる。
また、本実施形態では、切削工具TとワークWの相対的な回転数(回転数S)と、切削工具TとワークWの相対的な1回転あたりの送り量(送り量F)と、切削工具TとワークWの相対的な1回転あたりの揺動数に関する情報(揺動周波数倍率I)と、切削工具TとワークWの相対的な1回転あたりの送り量に対する揺動振幅に関する情報(揺動振幅倍率K)と、が加工状態算出部12の最大加速度算出部27に入力される。これにより、入力値に同期して再出力される最大加速度を確認しながら入力作業をより容易に行うことができる。
次に、第1実施形態とは異なる実施形態について説明する。なお、以下の説明において上記実施形態と共通の構成については、同じ符号を付してその詳細な説明を省略する場合がある。
[第2実施形態]
図9は、第2実施形態の切り屑細断可能な範囲を明示した入力手段30aの画像例を示す図である。図9の例では、揺動条件の揺動周波数倍率I[倍]の入力部であるスライダーバー35a及び揺動振幅倍率K[倍]の入力部であるスライダーバー36aにおいて、切り屑裁断可能な範囲と切り屑裁断不可能な範囲が色で区別して表示されている。なお、切り屑裁断可能な範囲か否かは、オペレータが事前に設定してもよいし、事前に入力される値に基づいて切り屑細断判定部22が設定する構成としてもよい。
図9は、第2実施形態の切り屑細断可能な範囲を明示した入力手段30aの画像例を示す図である。図9の例では、揺動条件の揺動周波数倍率I[倍]の入力部であるスライダーバー35a及び揺動振幅倍率K[倍]の入力部であるスライダーバー36aにおいて、切り屑裁断可能な範囲と切り屑裁断不可能な範囲が色で区別して表示されている。なお、切り屑裁断可能な範囲か否かは、オペレータが事前に設定してもよいし、事前に入力される値に基づいて切り屑細断判定部22が設定する構成としてもよい。
揺動周波数倍率I[倍]のスライダーバー35aでは、スライダーバー35aの長手方向において切り屑裁断可能な範囲と切り屑裁断不可能な範囲が交互に色を変えて表示されており、切り屑裁断可能な範囲が間欠的な配置となっている。揺動振幅倍率K[倍]の入力部であるスライダーバー36aでは、入力範囲の左端の部分を除くほぼ全域が切り屑裁断可能な範囲であることが色によって示されている。
また、条件入力部11は、スライダーバー35a及びスライダーバー36aのいずれにおいても、切り屑裁断可能な範囲のみユーザの操作を受け付けるように入力手段30を設定している。そのため、オペレータは切り屑裁断不可能な範囲にスライダーバー35a及びスライダーバー36aを移動させることができないようになっている。
以上説明したように、第2実施形態の工作機械の表示装置1では、条件入力部11は、入力手段30a(スライダーバー35a及びスライダーバー36a)に切り屑細断可能な範囲を明示する。これにより、切り屑裁断可能な範囲を容易に把握しつつ、円滑に入力手段30aの入力作業を進めることができる。
また、第2実施形態の条件入力部11は、切り屑細断可能な範囲に基づいて入力手段30の変更可能な範囲を設定する。これにより、切り屑裁断可能な範囲にしか入力値が設定されなくなり、切り屑細断が適切に実行されない事態を確実に回避できる。
なお、第2実施形態では、色で区別して表示しているが、形状等で区別して表示してもよい。
[第3実施形態]
図10は、第3実施形態に係る工作機械の表示装置1aの機能ブロック図である。図10に示されるように、第3実施形態に係る工作機械の表示装置1Aは、第1実施形態に係る工作機械の表示装置1と比べて、条件範囲取得部14を備える点が相違し、その他の構成は第1実施形態と共通である。
図10は、第3実施形態に係る工作機械の表示装置1aの機能ブロック図である。図10に示されるように、第3実施形態に係る工作機械の表示装置1Aは、第1実施形態に係る工作機械の表示装置1と比べて、条件範囲取得部14を備える点が相違し、その他の構成は第1実施形態と共通である。
第3実施形態では、加工条件及び前記揺動条件の範囲を指定することができる。条件範囲取得部14は、キーボードやタッチディスプレイ等の入力部や外部コンピュータ等の入力手段(不図示)から加工条件及び揺動条件の範囲を取得する。
加工条件の範囲は、例えば、送り量[mm]の範囲や刃先[mm]の範囲である。オペレータは、不図示の入力手段を通じて送り量[mm]の範囲を0~1.0やそれとは異なる範囲に指定したり、刃先[mm]の範囲を0~1.0やそれとは異なる範囲に指定したりすることができる。
揺動条件の範囲は、例えば、揺動周波数倍率I[倍]の範囲や揺動振幅倍率K[倍]の範囲である。オペレータは、不図示の入力手段を通じて揺動周波数倍率I[倍]の範囲を0~16.0やそれとは異なる範囲に指定したり、揺動振幅倍率K[倍]の範囲を0~16.0やそれとは異なる範囲に指定したりすることができる。
以上説明したように、第3実施形態の工作機械の表示装置1aでは、入力可能な加工条件及び揺動条件の範囲を取得する条件範囲取得部14を更に備え、条件入力部11は、条件範囲取得部14が取得した入力範囲に基づいて加工条件及び揺動条件の入力を受け付ける。これにより、予め指定した入力範囲となるので、状況に応じたオペレータがより使い易いインターフェースを実現できる。
また、上記実施形態の加工状態算出部12の構成も、一部の機能を省略したり、別の機能を追加したりする等、事情に応じて適宜変更することができる。また、第3実施形態の構成を第2実施形態の構成に組み合わせてもよい。更に、表示部13が、上記実施形態で説明した態様とは異なる項目を表示する構成であってもよい。
なお、本開示は上記実施形態に限定されるものではなく、本開示の目的を達成できる範囲での変形、改良は本開示に含まれる。
1 工作機械の表示装置
11 条件入力部
12 加工状態算出部
13 表示部
21 切削経路算出部
22 切り屑細断判定部
23 切り屑長さ算出部
24 表面粗さ算出部
25 揺動周波数算出部
26 揺動振幅算出部
27 最大加速度算出部
11 条件入力部
12 加工状態算出部
13 表示部
21 切削経路算出部
22 切り屑細断判定部
23 切り屑長さ算出部
24 表面粗さ算出部
25 揺動周波数算出部
26 揺動振幅算出部
27 最大加速度算出部
Claims (12)
- 切削工具とワークを相対的に揺動させながら加工する工作機械の表示装置であって、
入力値を連続的に変更可能な入力手段によって加工条件及び揺動条件のうち少なくとも1つの入力を受け付ける条件入力部と、
前記加工条件及び前記揺動条件の入力に応じて加工状態を算出する加工状態算出部と、
算出された前記加工状態を表示する表示部と、を備える工作機械の表示装置。 - 前記条件入力部は、前記入力手段に切り屑細断可能な範囲を明示する、請求項1に記載の工作機械の表示装置。
- 前記条件入力部は、切り屑細断可能な範囲に基づいて前記入力手段の変更可能な範囲を設定する、請求項1又は2に記載の工作機械の表示装置。
- 指定された前記加工条件及び前記揺動条件の入力範囲を取得する条件範囲取得部を更に備え、
前記条件入力部は、前記入力範囲に基づいて前記加工条件及び前記揺動条件の入力を受け付ける、請求項1から3のいずれかに記載の工作機械の表示装置。 - 前記加工状態算出部は、
前記切削工具と前記ワークの相対的な切削経路を算出する切削経路算出部と、
切り屑細断可否を判定する切り屑細断判定部と、
前記ワークの切り屑の長さを算出する切り屑長さ算出部と、
前記ワークの表面粗さを算出する表面粗さ算出部と、
前記切削工具とワークの相対的な揺動における揺動周波数を算出する揺動周波数算出部と、
前記切削工具とワークの相対的な揺動における揺動振幅を算出する揺動振幅算出部と、
前記切削工具とワークの相対的な揺動における最大加速度を算出する最大加速度算出部と、
のうち、少なくともいずれか1つ以上を有する、請求項1か4いずれかに記載の工作機械の表示装置。 - 前記切削工具と前記ワークの相対的な1回転あたりの送り量と、
前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、
前記切削工具と前記ワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、
が前記加工状態算出部の前記切削経路算出部に対して入力される、請求項5に記載の工作機械の表示装置。 - 前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、
前記切削工具と前記ワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、
が前記加工状態算出部の前記切り屑細断判定部に対して入力される、請求項5又は6に記載の工作機械の表示装置。 - 前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、
前記切削工具と前記ワークの相対的な回転中心からの距離を含む情報と、
が前記加工状態算出部の前記切り屑長さ算出部に入力される、請求項5から7いずれかに記載の工作機械の表示装置。 - 前記切削工具と前記ワークの相対的な1回転あたりの送り量と、
前記切削工具の刃先形状と、
前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、
前記切削工具と前記ワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、
が前記加工状態算出部の前記表面粗さ算出部に入力される、請求項5から8いずれかに記載の工作機械の表示装置。 - 前記切削工具と前記ワークの相対的な回転数と、
前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、
が前記加工状態算出部の前記揺動周波数算出部に入力される、請求項5から9いずれかに記載の工作機械の表示装置。 - 前記切削工具と前記ワークの相対的な1回転あたりの送り量と、
前記切削工具と前記ワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、
が前記加工状態算出部の前記揺動振幅算出部に入力される、請求項5から10いずれかに記載の工作機械の表示装置。 - 前記切削工具と前記ワークの相対的な回転数と、
前記切削工具と前記ワークの相対的な1回転あたりの送り量と、
前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、
前記切削工具と前記ワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、
が前記加工状態算出部の前記最大加速度算出部に入力される、請求項5から11いずれかに記載の工作機械の表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/035088 WO2024062544A1 (ja) | 2022-09-21 | 2022-09-21 | 工作機械の表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/035088 WO2024062544A1 (ja) | 2022-09-21 | 2022-09-21 | 工作機械の表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024062544A1 true WO2024062544A1 (ja) | 2024-03-28 |
Family
ID=90454006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/035088 WO2024062544A1 (ja) | 2022-09-21 | 2022-09-21 | 工作機械の表示装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024062544A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003058218A (ja) * | 2001-06-06 | 2003-02-28 | Fanuc Ltd | サーボモータを駆動制御する制御装置 |
WO2018117203A1 (ja) * | 2016-12-22 | 2018-06-28 | シチズン時計株式会社 | 工作機械およびその制御装置 |
JP2019503879A (ja) * | 2016-02-03 | 2019-02-14 | ミルウォーキー エレクトリック ツール コーポレイション | レシプロソーを設定するシステム及び方法 |
JP2019191857A (ja) * | 2018-04-24 | 2019-10-31 | ファナック株式会社 | 表示装置 |
JP2021047520A (ja) * | 2019-09-17 | 2021-03-25 | 株式会社ジェイテクト | 作業支援システム |
JP2021070089A (ja) * | 2019-10-30 | 2021-05-06 | オークマ株式会社 | 工作機械における主軸回転速度のモニタ装置及びモニタ方法、工作機械 |
JP2021096839A (ja) * | 2019-12-16 | 2021-06-24 | ファナック株式会社 | 工作機械の制御装置及び工作機械制御方法 |
WO2022181594A1 (ja) * | 2021-02-26 | 2022-09-01 | ファナック株式会社 | 計算装置 |
-
2022
- 2022-09-21 WO PCT/JP2022/035088 patent/WO2024062544A1/ja unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003058218A (ja) * | 2001-06-06 | 2003-02-28 | Fanuc Ltd | サーボモータを駆動制御する制御装置 |
JP2019503879A (ja) * | 2016-02-03 | 2019-02-14 | ミルウォーキー エレクトリック ツール コーポレイション | レシプロソーを設定するシステム及び方法 |
WO2018117203A1 (ja) * | 2016-12-22 | 2018-06-28 | シチズン時計株式会社 | 工作機械およびその制御装置 |
JP2019191857A (ja) * | 2018-04-24 | 2019-10-31 | ファナック株式会社 | 表示装置 |
JP2021047520A (ja) * | 2019-09-17 | 2021-03-25 | 株式会社ジェイテクト | 作業支援システム |
JP2021070089A (ja) * | 2019-10-30 | 2021-05-06 | オークマ株式会社 | 工作機械における主軸回転速度のモニタ装置及びモニタ方法、工作機械 |
JP2021096839A (ja) * | 2019-12-16 | 2021-06-24 | ファナック株式会社 | 工作機械の制御装置及び工作機械制御方法 |
WO2022181594A1 (ja) * | 2021-02-26 | 2022-09-01 | ファナック株式会社 | 計算装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3214513B1 (en) | Control method for machining tool and control device for machining tool | |
EP2821870B1 (en) | Setting method of revolutions per minute on real time of rotating cutting tool, and control device | |
CN108604089B (zh) | 加工状态显示装置 | |
WO2022181594A1 (ja) | 計算装置 | |
EP3045988B1 (en) | Methods and apparatuses for toolpath evaluation | |
CN106796426B (zh) | 机床的控制装置 | |
EP2868412A1 (en) | Fluting method, control device for machine tool and tool path-generating device | |
KR20150031187A (ko) | 기어 절삭 기계를 제어하는 방법 및 기어 절삭 기계 | |
CN116157220A (zh) | 数控装置及数控方法 | |
KR890003118B1 (ko) | 수치제어장치가 붙은 선반에 의한 공구표시 방법 | |
US12066811B2 (en) | Machine tool, input assistance method for machine tool, and non-transitory computer-readable storage medium | |
JP4639058B2 (ja) | ねじ切り加工装置 | |
WO2024062544A1 (ja) | 工作機械の表示装置 | |
US20040251238A1 (en) | Machining monitor | |
JP2004206723A (ja) | 工具製造装置及び製造方法 | |
KR101108211B1 (ko) | 복합선반용 파트프로그래밍 장치 및 복합 공정간 동기화 프로그램 생성방법 | |
KR101078800B1 (ko) | 외장형 파트프로그램 작성장치 | |
JP7525593B2 (ja) | 工作機械の制御装置、制御方法 | |
JP7252426B1 (ja) | 工作機械の制御装置及び工作機械の表示装置 | |
WO2023181301A9 (ja) | 表示装置およびコンピュータ読み取り可能な記憶媒体 | |
WO2024069954A1 (ja) | 工作機械の制御装置及び工作機械の表示装置 | |
WO2023218648A1 (ja) | 工作機械の制御装置 | |
WO2023218649A1 (ja) | 工作機械の制御装置 | |
JP7039772B1 (ja) | 表示装置、工作機械、および表示方法 | |
WO2024189907A1 (ja) | 加工経路表示装置およびコンピュータ読み取り可能な記憶媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22959508 Country of ref document: EP Kind code of ref document: A1 |